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Thesis abstract 
 

Oswald, Evan. Ph.D., University of Michigan, May 2013.  Heat as a hazard to 
human health: A multiple dataset assessment of extreme heat indices relevant to 
human health. 

Advisor: Richard B. Rood.  
 
In the United States more people die due to complications of extremely hot 

near surface air temperatures than any other weather type.  This is true despite a 

systematic underestimation of accrediting heat to death.  Global climate change may 

raise temperatures substantially by mid century but even more so in some regions - 

particularly in high latitudes.  This situation coupled with resource issues caused by 

urbanization and population increases, generates a need for research in this field to 

be relevant and informative to the climate field, as well as by scientists within other 

fields. 

Research in this field can be difficult as surface meteorological data can be 

compromised by non-climatic factors (e.g. built environment surrounding station, 

observing practice variability), especially in areas were people live.  Thus often 

datasets require corrections of such influences.  This, in part, generates datasets with 

different strengths and limitations, and occasionally the differences between them 

can also be informative.  One of our datasets consisted of station data that corrected 

non-climatic factors, another was a gridded dataset that did not correct those factors 

and yet another was constructed and the non-climatic factors were adjusted and/or 

accounted for.  Ultimately, this work investigated trends in extreme heat across the 

United States, how they were represented in a group of high-resolution gridded 

datasets, as well as how temperatures varied across an urban region. 

Part of this research used a dataset created by combining the United States 

Historical Climatology Network monthly and daily dataset versions into a dataset both 

with accurate trends while also being at the scale required to resolve extreme heat 

events (daily).  Trends in the characteristics of extreme heat events (EHEs) were 

investigated as well as EHEs based on different daily temperatures.  Additionally 

studied was how those trends related to the more predictable, summer average 
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trends.  Subsequently it was desired to quantify those trends on a spatially 

continuous surface able to resolve the smaller scales (e.g. the Upper Peninsula of 

Michigan), but a literature review suggested that the current generation of gridded 

datasets could be of insufficient quality.  Thus the aforementioned dataset was used 

to evaluate the ability of three high-resolution datasets to reproduce trends in 

extreme heat indices.  In order to investigate the climate within an urban region with 

respect to spatial variability, an observational network across an urban region 

(Detroit, MI) was constructed by integrating multiple observing networks. 

The extreme heat analysis produced maps of linear trends in EHE 

characteristics as well as trends on the regional and continental scale.  It also 

quantified the relationships with both early season (before June 30) trends in EHEs 

and summer average temperature trends.  It was found that EHEs have increased in 

the recent history, however this was partially offset by decrease during 1930-1970 

period.  Notably the center of the United States had a decrease/lack of increase.  

This study also indicated trends were sensitive to which daily temperature extreme 

the definition was based on or what region was being described, and showed 

differences between trends in both EHEs and summer average temperatures and 

between early and late summer EHE trends. 

The evaluation of high-resolution gridded climate observational datasets 

indicated that non-climatic biases (such as urbanization, instrument changes, station 

relocations) caused temporal discontinuities that led to statistically significant 

differences between the datasets.  The differences between the datasets changed 

through time and varied in space.  The differences existed at interannual and long-

term (e.g. trends) time scales as well as at the continental, regional and small spatial 

scales.  The bulk of the errors operate at the small scale.  The differences were 

loosely empirically linked to proxies for non-climatic biases at those stations.  The 

results also indicated that in gridded datasets, the errors caused by non-climatic 

biases in time series extend away from the data locations and integrated with errors 

from other data locations to form time series with intricate differences from a 

homogenized dataset. 
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The research that focused on the urban spatial variability indicated that spatial 

variability was more pronounced during the daily minimum than daily maximum 

temperatures.  That is important to the heat-health discussion because the spatial 

variability in temperature exists during hot weather.  Also it was demonstrated that 

the spatial variability could be diagnosed, and possibly forecasted, from the city-

average wind and sky conditions.  Finally, a method for diagnosing the spatial pattern 

of temperatures was demonstrated in Detroit.  Informing heat health decision makers 

on the tools to protect people from hazardous heat was important as was 

demonstrating a framework for observationally studying urban regions. 

Several things learned from these studies have implications moving forward.  

Trends in EHEs were unexpectedly sensitive to which daily temperature extreme met 

the requirements of the EHE definition.  This means future studies should explicitly 

quantify EHEs based on different daily temperature extremes and both daily 

temperature extremes.  It was learned that trends in EHEs during the earlier portion 

of the summer can differ from those of the later portion of the summer.  A further 

investigation is needed into which mechanisms enable independent changes of the 

earlier portion from the later portion of the summer, and how those mechanisms will 

change in the future.  Lastly, establishing that the existence of differences between 

the trends in summer mean daily temperature extremes and the corresponding 

EHEs, implies caution should be used when assuming summer temperature trends 

equate to EHE trends.  The next question addressed should be regarding the role of 

the mean temperature changes in the changes in EHEs (as opposed to the 

variability). 

On the large scale, the high-resolution gridded datasets had statistically 

significant differences in both trends and temporal averages.  This was significant 

because previous conclusions were that the issues caused by non-climatic biases 

would cancel out at large scales.  The differences however were much larger at the 

small scales, which is important as it means uncertainty likely exists in statistical 

downscaling products.  Conclusions that the non-climatic biases that occurred at the 

stations were not as strongly related as expected to the differences between the 

datasets at those locations implied that the gridding process effectively merges the 
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effects of non-climatic biases across space, creating time series at all locations 

affected by many biases.  Ultimately the next generation of this type of climate 

dataset needs to homogenize the underlying network (prior to the creation of grids) 

without removing so many stations as to make high-resolution grids impossible. 

Observational evidence that the previous afternoon’s radiative characteristics 

were a useful predictor of the following overnight spatial variability in temperatures is 

new to the field and should be followed up by a more concrete analysis of that 

relationship.  Findings that reanalysis data could force a statistical model of the 

spatial variability across the region suggests the next work should lead to building the 

relationship with forecast models so the amount of spatial variability during EHEs can 

be forecasted.  This study represents a framework to observationally study an urban 

climate.  This framework might be applied to other cities in a similar fashion or could 

be expanded with the goal of converting the “weather underground” observing 

network into a tool that could provide quality quantitative studies of the urban climate.  

Lastly, the confirmation of the spatial variability specifically during hot weather implies 

that spatial variability in temperatures should be considered during EHEs when 

assessing vulnerability
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

Extremely high temperatures contribute to death (Baccini 2008; Basu 2009) 

and between 2001 and 2010 the average United States fatalities for heat was behind 

hurricanes by only one fatality per year (NWS 2011).  This decade included the 

extraordinary toll of Hurricane Katrina, and looking over several decades, extreme 

heat caused more deaths than any other weather-related event.  That is impressive 

considering it is generally agreed that heat as a cause of death is systematically 

underestimated (Donoghue et al. 1997).  The soon to be released fifth climate 

assessment by the Intergovernmental Panel on Climate Change will show that 

surface air temperature changes by mid-century in certain regions are predicted to be 

over 2 °C.  Furthermore, the number of heat-related deaths will likely increase due to 

resource limitations in response to population growth (Kapitza 2006) and 

urbanization (United Nations 2012).  Thus understanding how extreme temperatures 

vary in time and space and which datasets properly describe that variability is, and 

will remain, important in the future.  This thesis explores questions regarding the near 

surface air temperatures with a focus on extreme heat. 

Currently, there exist many questions yet unanswered concerning extreme 

heat.  Exploring such questions builds knowledge of the physical mechanisms of the 

climate at large and small scales, which is a chief objective of atmospheric science.  

However beyond exploring the physical system, this research also strives to reduce 

the gap between the provision of information about the physical climate and the 

usability of that data by those charged with making decisions regarding weather, 

climate and climate change. 

The question of whether EHEs have changed in the past is not a new one, but 

neither has it been fully explored.  For instance most EHE trend analyses focusing on 

the CONUS start their analysis in the middle or end of a period of temperature 

decrease (temperature decreased from about 1935 to 1975 in the CONUS (Menne et 

al. 2009; Hansen et al. 2010)) instead of capturing the entire period of cooling (i.e. 
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starting at or slightly before 1935).  Trends in EHEs have never been quantified using 

the latest dataset version of the United States Historical Climatology Network.  How 

the trends in EHEs relate to the trends in the mean summer temperature trends has 

not been explicitly examined to our knowledge.  Furthermore, EHE trend analyses 

have never been undertaken with a focus to transfer knowledge to the heat-health 

discussion (discussed in section 2.1). 

The differentiations between high-resolution gridded observational climate 

datasets and more traditional climate datasets that lacks published evaluation.  

These datasets originate out of the need for high-resolution datasets by various 

modeling sectors outside of the atmospheric science sector, for example hydrology, 

and have not been robustly evaluated for their application in extended climate 

studies.  An older study touched on the subject and concluded that issues averaged 

out on larger temporal and spatial scales (Moberg and Alexandersson 1997).  

Questions need to be addressed regarding which spatial and temporal scale(s) the 

differences between these gridded datasets and more trusted climate datasets exist 

at.  Questions need to be tackled regarding the role of inhomogeneities in the 

underlying ungridded data and what effect the gridding process had.  This 

information in turn can guide the changes made to the next generation of these 

datasets.  Also the answers to these questions contribute to the informed use of 

these datasets for evaluations and of downscaled global climate model products 

produced with these datasets help.  Often scientists from other communities (public 

health, forestry, fire risk, biogeochemical modeling) use these data products as 

guidance for decision-making.  This evaluation was tailored to the heat-health 

discussion. 

Improving knowledge in the urban climate field is also beneficial for both 

climatologists and scientists in the heat-health discussion.  While the differences in 

temperatures between outside the city and inside the city have been examined, the 

temperatures differences throughout developed regions were much less examined.  

Most previous studies focus on the time of day where the temperatures are more 

influenced by the built environment, in other words the time with the largest 

temperature difference (or "urban heat island effect").  However since the heat-health 
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discussion regularly focuses on daily minimum and maximum temperatures, 

examining the variability in those daily temperature extremes was how this study 

proceeded.  Additionally, examination of the spatial variability in temperatures during 

hot or stressful weather was a previously underexplored are that was investigated. 

 

1.2. Scientific questions 

 This thesis set out to answer a handful of scientific questions that would be 

helpful to the respective fields.  These questions were approached in a manner that 

would also be helpful to the heat-health discussion.  These questions are succinctly 

provided below. 

In regards to EHEs, were there linear trends in the characteristics of EHEs 

since the 1930’s (the last "hot decade")?  Did the trends generally follow the air 

temperatures decreasing pattern until the mid 1970s and increasing pattern through 

2010?  Furthermore, did those trends depend on which daily temperature extreme 

the EHEs were based on, or the portion of the summer (e.g. timing within the 

summer)?  Were the trends the same as the trends in the summer mean 

temperatures? 

In regards to the gridded datasets, were there differences in linear trends in 

extreme heat climate indices?  Were there differences in the temporal average 

temperatures?  Did the differences in linear trends and temporal averages exist at 

the continental and regional spatial scales as well as the smaller scales?  Did the 

trends relate well to the non-climatic biases that occurred at the observing stations? 

 In regards to the urban climate of the Detroit, MI metropolitan region, the first 

question was whether there existed spatial variability in both daily temperature 

extremes.  What were the differences, in that variability, between the daily minimum 

and maximum temperatures?  Did that variability exist during dangerous weather?  

Was the amount of variability controlled by the larger-scale weather conditions?  

Were the locations of hotter and cooler temperatures related to the land attributes? 

Did those locations and/or relationships with land attributes, change during weather 
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favoring above average amounts of spatial variability (as opposed to during all 

weather types)? 

 

1.3. Datasets 

The longest standing meteorological observing network in the continental 

United States (CONUS) is called the Co-Operative Observer Network Program (Co-

Op) (McCarthy 2007); this network has roughly 7600 stations reporting daily 

maximum and minimum temperatures for at least 10 of the network’s 120-plus year 

history.  This network observes daily minimum and maximum temperatures as well 

as precipitation.  Volunteers operate the network and subsequently the locations are 

typically located in areas accessible from where they live (i.e. near where people 

live).  Most CONUS climate datasets are based on observations made by the Co-Op 

network. 

The gridded Maurer dataset has a spatial resolution of roughly 12 km, daily 

temporal resolution and is serially complete over the 1949-2010 period.  The spatial 

domain is the CONUS and parts of Mexico and Canada.  Its widespread use has 

risen due to the dataset being used to downscale global climate model output (e.g. 

Maurer et al. 2010; Hayhoe et al. 2010) through the bias-correction and spatial 

disaggregation downscaling technique (Wood et al. 2004).  It has also been used to 

assess climate signals, for example summer nighttime temperature trends in the 

California’s Central Valley (Bonfils et al. 2007), trends in annual maximum 

temperatures in Florida (Waylen et al. 2012) and the U.S. spatio-temporal patterns in 

surface temperature caused by the El-Niño/Southern Oscillation (Zhang et al. 2012). 

The DAYMET dataset spans only 1980-2008 but is at a higher spatial 

resolution (1 km).  The domain of publicly available data is the United States, Mexico 

and Canada; however data in other parts of the globe have been made available to 

other studies.  The temperature values in the DAYMET dataset are widely used in 

several application communities such as those modeling past and current fire hazard 

and risk (Keane et al. 2010), modeling productivity of forests (Turner et al. 2011; 

Littell et al. 2010), modeling biogeochemical cycling rates (Hartman et al. 2011; Pan 
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et al. 2009), mapping past and future corn pest risk (Diffenbaugh et al. 2008) and 

modeling the transmission risk of human diseases (Konrad et al. 2011; Wimberly et 

al. 2008). 

 The final dataset evaluated is a daily version of the PRISM dataset, which has 

a 4 km resolution from 1895-2010 over the CONUS. Climate scientists did participate 

in the design of the PRISM dataset.  The PRISM dataset has relatively sophisticated 

consideration of geographical features and quality control (Daly et al. 2008).  For 

example, it takes distance to coast into consideration when creating its grids for 

temperature.  The PRISM dataset is frequently used for its precipitation fields but 

studies also use it for its temperatures fields such as the projected impact the 21st 

century climate changes will have on tree growth (Williams et al. 2010), river basin 

crop yields (Srinivasan et al. 2010) and riverine nitrogen flows (Schaefer et al. 2009).  

The temporally downscaled version of the PRISM dataset described in a study by Di 

Luzio et al. (2005) spans 1960-2001 over the CONUS. 

Within the climate community a number of datasets have been designed for 

determining trends, oscillations and the behavior of temperature at multiple spatial 

and temporal scales.  Popular datasets include the National Climatic Data Center’s 

(NCDC) Global Historical Climatology Network (GHCN)/United States Historical 

Climatology Network (USHCN), (Lawrimore et al. 2011; Menne et al. 2009), the 

Hadley Centre and University of East Angila’s Climate Research Unit (CRU) datasets 

(Mitchell and Jones 2005), the National Aeronautics and Space Administration’s 

Goddard Institute for Space Studies (NASA-GISS) dataset (Hansen et al. 2010).  

These datasets have monthly resolution and are either ungridded (GHCN, USHCN) 

or low resolution (CRU and GISS are 0.5° and 2.0°, respectively).  These datasets 

generally agree with one another (Rohde et al. 2013; Hansen et al. 2010) and in 

some regards are thought of as "standard" or "trustworthy" climate datasets. 

The United States Historical Climatology Network (USHCN) is a high-quality 

dataset of daily and monthly meteorological observations from 1218 observing 

stations across the CONUS.  These stations were selected due to a balance of 

geographic distribution with other factors such as the length of temperature records, 

amount of missing data, and stability of a station’s location and other measurement 
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conditions (GAO 2011).  Daily data include observations of maximum and minimum 

temperature, precipitation amount, snowfall amount, and snow depth; monthly data 

consist of monthly-averaged maximum, minimum, and mean temperature and total 

monthly precipitation.  The homogenization process for the version 2.0 monthly 

dataset (Menne and Williams 2009) has been defended as robust (Menne and 

Williams 2005, 2009; Hausfather et al. 2013), and will be discussed in section 1.4.1. 

The automated airport weather stations are a network of "sensor suites" 

devised to assist in effective aviation operations, climatology and weather 

forecasting.  The observations are at the hourly (sometimes sub-hourly) resolution, 

and include several meteorological variables.  These stations include the Automated 

Weather Observing System (AWOS), the Automated Weather Sensor System 

(AWSS) and the Automated Surface Observing System (ASOS).  These are operated 

and maintained by the Federal Aviation Administration, National Weather Service 

(NWS) and Department of Defense.  While there are differences between these 

networks, the way the observations (of temperature, cloud cover, wind speed) were 

used in this study, discussion is not essential. 

The North American Regional Reanalysis dataset (Mesinger et al. 2006) is a 

high-resolution climate dataset blending observations and the NCEP Eta Model (a 3-

D numerical model used to forecast weather).  The data covers 1979-2003 and 

provides 3-hourly data at a 32km resolution through 29 atmospheric levels, 5 soil 

layers and the surface and near surface (2 meters above ground level).  Reanalysis 

datasets have full the suite of atmosphere of information, while also being in overall 

agreement with the meteorological observations.  The differences between 

reanalysis and observational datasets reflect the sensitivity of surface temperature 

trends to land use land cover change (Fall et al. 2010), but is outside the scoop of 

this work. 
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1.4. Working definitions and concepts 

1.4.1. Homogenization 

The concept of homogenization is a reoccurring one throughout this research.  

Homogenization is the process of making observations uniform through time and 

across numerous stations throughout an observing network.  In climate datasets this 

is done through the removing of erroneous temporal discontinuities (e.g. jumps, 

drifts) in time series; often referred to as non-climatic biases.  Non-climatic biases 

come in 5 general forms: instrument changes, urbanization, time of observation 

change (“time of observation bias” or TOB), micro-climate changes (e.g. a change 

within the relevant vicinity) and station relocations.  These causes of non-climatic 

temporal discontinuities in climate records are known and there currently exist 

methods of fixing them at the monthly, seasonal and annual levels.  Daily 

homogenization methods were recently developed but have their own limitations and 

to date have not produced datasets for the CONUS (Mestre et al. 2011).  Another 

way to look at homogenization is the adjustment of different station's observations so 

that they agree with other station's observations.  For example, correcting for 

elevation, instrument differences or sampling methods between different stations or 

networks (e.g. the observing network in chapter 4). 

The “pairwise comparison method” is a popular method of homogenization, 

and fully described elsewhere (Menne and Williams Jr. 2009).  This method uses the 

time series of differences between a station and its highly correlated neighbors to 

detect the time and magnitude of discontinuities.  This method was used to 

homogenize the USHCNv2.0-monthly dataset (Menne et al. 2009) and has been 

defended as robust and objective at the monthly level (Menne and Williams 2005, 

2009; Hausfather et al. 2013). 

 

1.4.2. Definition of EHEs 

There are numerous ways to quantify extreme heat and EHEs.  One reason 

for the lack of consensus is the spatial variability of the temperature-mortality 

relationship: it varies by geographical region (Kalkstein 1989).  Another is that EHEs 
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impact many systems and thus definitions tend to be constructed with a certain 

impact in mind (e.g. human health, livestock health, wildfire, agriculture, electricity).  

However the epidemiological literature (i.e. tailored to the human health impact) does 

suggest attributes closer linked to mortality such as duration, timing within the 

summer and the use of percentiles.  This study used a definition of two consecutive 

dates exceeding a threshold percentile to start any EHE, and when the EHE-mean 

percentile dips below the threshold percentile the EHE ended.  The threshold in 

chapter 2 was 92.5 and the threshold in chapter 3 was 90.0.  We chose to lower the 

threshold for the chapter 3 analysis because having a lower threshold allowed for 

less instances of a zero value, and thus more confidence in the ordinary least 

squares method of linear trend estimation.  This increased confidence was more 

important when analyzing another dataset. 

This EHE definition was applied in three different ways to produce three 

distinct types of EHEs.  This was done in order to represent the differences between 

EHE definitions based on different daily temperatures.  Periods where the 

requirements of the EHE definition were satisfied based only on the daily maximum 

temperatures were diagnosed "Tmax EHEs", periods where the requirements of the 

EHE definition were satisfied based only on the daily minimum temperatures were 

diagnosed "Tmin EHEs", and periods where the requirements of the EHE definition 

were satisfied based only on the daily maximum temperatures were diagnosed 

"Tmnx EHEs". 

 

1.4.3. Mathematical techniques 

There were a number of mathematical tools used repeatedly throughout this 

thesis, and they are described here.  The first was a resampling method called 

bootstrapping.  Bootstrapping is the practice of approximating properties of an 

estimator (e.g. median, standard deviation, correlation coefficient, regression 

coefficient) by measuring those properties when sampling from an approximating 

distribution.  This is accomplished by constructing a number of resamples of the 

observed sample (and of equal size to the sample), each of which is obtained by 
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random sampling with replacement from the original sample.  Then the estimator is 

calculated with each sample, and subsequently the median value of the sample of 

estimators (of equal size to the number of resamples) is considered a stronger 

approximation of that estimator.  Random resampling means that the values obtained 

each time vary a little.  However, throughout the analysis the number of resamples 

was adjusted to create estimates that varied at a more fine precision than the 

numbers we wanted to present. 

 The next tool was that of percentiles.  Percentiles were used instead of 

conventional temperatures because the way they were calculated allowed them to be 

specific to the location of observations and account for the typical changes of 

temperature throughout the summer season.  This is akin to adapting to human heat 

tolerance (i.e. people in Florida can tolerate hotter temperatures than in Michigan, 

and people tolerate hotter temperatures in August than in June).  All percentiles were 

calculated without assuming a statistical distribution.  In other words, all values from 

the climate base period were used to calculate the empirical cumulative distribution 

function (Kaplan and Meier, 1958), which assigned a percentile (yo) to each 

temperature value (xo) in the climate base period sample.  Subsequently, bi-linear 

interpolation was used to find the value (yi) of the aforementioned percentile function 

(yo) at the target temperature value point (xi) in the climate base period temperature 

function (xo).  If the target temperature value (xi) was larger (smaller) than any value 

in the climate base period sample (xo) then it (yi) was assigned a 1.0 (0.0). 

Throughout the analysis a statistical hypothesis test, the Student’s t test, was 

used to test the mean or mean(s).  Student's t tests can be used with one sample or 

two samples.  Within this work a single sample was tested for its mean being equal 

(or greater, lesser than) to the zero value.  Two samples were tested for their means 

being equal to one another.  A Student's t test rejects or accepts the hypothesis and 

also provides a P-value for interpretation of the statistical significance of the decision. 

 Lastly, there were choices to be made throughout the analysis between 

parametric and non-parametric types of statistical methods.  In all cases tests of both 

types were used and the sensitivity examined (often not shown).  It was found that 

the amount of difference usually indicated differences from normality of the statistical 
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distribution.  However, often the statistical distributions were too small for normality 

tests to determine if the samples were well described by a normal distribution.  

Moreover, in time series it is generally unclear what missing values do to non-

parametric statistical tests, and overall parametric tests are more common and thus 

facilitate comparisons better.  Thus typically parametric tests were used in this work, 

unless there was disagreement or no need to strive for comparability. 

 

1.5. Organization 

This thesis was presented in three chapters (in addition to an introduction and 

a conclusions chapter), each of them corresponding to a full-length journal-article.  

However, each chapter was slightly extended from those articles as they had content 

limitations, were tailored to the journal scope and goals of the funding agencies.  The 

citations of the journal articles will be provided at the beginning of each chapter. 

Chapter 2 investigates the trends of EHE characteristics within the USHCN 

version 2 monthly (USHCNv2-monthly) dataset.  This chapter corresponds to a paper 

recently accepted (with revisions) and resubmitted to the Journal of Applied 

Meteorology and Climatology.  Chapter 3 deals with the agreement between three 

high-resolution gridded observational climate datasets and a climate community 

standard dataset.  This study is near submission to the International Journal of 

Climatology.  Chapter 4 evaluates the spatial variability in daily temperature extremes 

across the Detroit, MI region.  This study has been published in the Journal of 

Applied Meteorology and Climatology. 

 

1.6. Commonality between chapters 

The work in chapter 2 evaluated the CONUS linear trends in several 

characteristics of EHEs.  Two products of the USHCN network were combined to 

provide a daily dataset more suitable for trend analysis.  Its suitability was due to 

homogenization at the monthly level.  A series of scientific questions were addressed 

relating to EHEs and their relationships to other variables. 



	
   	
   	
   11	
  

The primary connection between the research in chapter 2 and chapter 3 was 

their focus on CONUS trends in extreme heat climate indices in publicly available and 

widely used climate datasets.  The primary incentive for the evaluation of the 

datasets in chapter 3 was confirmation that the chapter 2 trends within highly 

resolved gridded datasets agreed with a more trusted climate dataset.  If yes, then 

more robust trend analyses should be performed (e.g. trends in the spatial area of 

EHEs) using those gridded datasets; if not, a characterization of the disagreements 

might allow insight into how/if they can be appropriately used, or how to correct them.  

The reason for the disconnect with the more trusted climate datasets was a lack of 

homogenization in the underlying network of the gridded datasets. 

The research in chapter 4 was similar to the previous two chapters because it 

also focused on daily temperature extremes and extreme heat.  The work in this 

chapter was an extension of the work in chapter 2 and 3; while chapter 2 examined 

extreme heat climate risk on larger scales (decadal trends, regional variability), this 

chapter examines that risk on smaller scales (days, intra-city variability).  The primary 

allure of the datasets evaluated in chapter 3 was the spatial resolution that allows 

extreme heat risk to be studied on smaller scales, but the analysis of chapter 4 was 

at even smaller scales than the datasets used in chapter 3.  This network was based 

on integrating three observing networks in the urban environment, which required a 

type of homogenization since there were biases using observations from different 

networks and from monitoring in an urban environment.  Lastly, the chapter 3 

datasets fall short of being excellent tools for such a purpose, in part, because they 

were influenced by urbanization, which was a primary driver of the small-scale spatial 

variability in chapter 4. 
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Abstract 

Extreme heat events (EHEs) are linked to mortality rates, making them an 
important research subject in both the climate and public health fields.  This study 
evaluated linear trends in EHEs using the United States Historical Climatology 
Network (USHCN) version 2.0 dataset and quantified the longer-term EHE trends 
across the continental United States (CONUS). 

The USHCN-daily version 1 dataset was integrated with the homogenized 
USHCN-monthly version 2.0 dataset to create daily data more appropriate for trend 
analysis.  Time series and estimated trends in multiple characteristics of EHEs (e.g. 
mean duration, intensity) were calculated as were the continental means and maps.  
In order to focus on warming and cooling periods the trends were also estimated 
separately over the first half and second half of the study period (1930-2010).  The 
differences between EHEs based on daily maximum temperatures, minimum 
temperatures and both minimum and maximum temperatures were explored.  
Furthermore the differences between EHE trends and trends in the summer mean 
temperatures, and between EHE trends in the early and mid-late summer were both 
explored. 

The results indicated the trends for different EHE characteristics were coherent 
(e.g. temporally correlated, similar spatial pattern of trends).  Conversely trends for 
EHEs based on different daily temperature extremes were much less coherent.  
Continental scale increases between 1970 and 2010 were mostly offset by the 
decreases between 1930 and 1970.  Several daily maximum (minimum) EHEs near 
the 1930’s (2000’s) led to 1930-2010 trends of daily maximum (minimum) EHEs 
decreasing (increasing).  Maps indicated negative trends in the interior of the CONUS 
and positive trends in coastal and southern areas.  Summer mean temperature 
trends and trends in EHEs were generally similar (moreso between daily maximum 
and daily maximum based EHEs) but regions of discrepancies existed.  Lastly, trends 
in early and late summer were dissimilar during the 1930-1970 period, but not the 
1970-2010 period. 

Follow up work should focus on the differences between early and late season 
EHE trends, and what roles trends in the mean and synoptic variability play in EHE 
trends.  Lastly, regional, instead of continental-scale, analyses should be used as 
guidance due to the amount of spatial variability. 
 



	
   	
   	
   17	
  

2.1. Introduction 

Knowledge of past extreme heat event (EHE) trends assists in the prediction 

of future EHEs trends.  This is particularly true in light of trends in more certain 

variables such as seasonal average temperatures.  Recent studies have quantified 

past continental United States (CONUS) annual daily mean near-surface air 

temperatures (Hansen et al. 2010) and annual daily minimum and maximum 

temperatures (Menne et al. 2009; Shen et al. 2011).  Such studies are valuable to 

both the climate and applications communities but similar studies tailored to be more 

inline with the heat-health discussion could be further useful in protecting lives.  This 

study attempts to fill gaps between the epidemiological literature (linking mortality and 

weather) and the climate community (exploring extreme temperatures over time), 

while still producing new knowledge about EHEs. 

In the epidemiological literature, features of hot weather linked to mortality 

rates have been identified.  Trend analyses of EHE characteristics related with 

mortality generate knowledge more usable to scientists within the heat-health field.  

For example, the epidemiological literature has established the importance of 

duration in elevated temperatures (e.g. Kalkstein 1991; Díaz et al. 2002; Hajat et al. 

2006; Anderson and Bell 2009; Ostro et al. 2009).  Also important is the event’s sum 

of cumulative degree-days over a heat stress-relevant threshold (i.e. intensity) (Díaz 

et al. 2002; Díaz et al. 2006; Fouillet et al. 2007; Fouillet et al. 2008; Gershunov et al. 

2009).  Also timing within the summer is important, as studies have indicated EHEs 

earlier in the season have a larger impact on mortality (Kalkstein and Smoyer 1993; 

Rooney et al. 1998; Hajat et al. 2002; Páldy et al. 2005; Baccini et al. 2008). 

 From the climate community, extreme temperature trend analyses that include a 

duration requirement (e.g. Gaffen and Ross 1998; New et al. 2006; Gershunov et al. 

2009; Kuglitsch et al. 2010) are much less common than studies of trends in single-

day extremes (e.g. 90th and 10th percentiles).  Studies without duration requirements 

exist on the global scale (Frich et al. 2002; Alexander et al. 2006), as well as regional 

studies including focus on the CONUS (Gaffen and Ross 1998; DeGaetano and Allen 

2002; Peterson et al. 2008; Portmann et al. 2009), the northeastern CONUS (Griffiths 

and Bradley 2007; Brown et al. 2010), Italy (Tomozeiu et al. 2006), Europe (Klein 
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Tank and Können 2003; Moberg and Jones 2005; Della-Marta et al. 2007), South 

Africa (New et al. 2006), and south and central Asia (Klein Tank et al. 2006). 

 EHEs with unusually elevated temperatures in both daily minimum temperatures 

and daily maximum temperatures have been associated with significant mortality 

impacts.  Fouillet et al. (2006) showed in France during the 2003 EHE, mortality was 

linked to simultaneously elevated minimums and maximums.  Similarly Karl and 

Knight (1997) in the 1995 Chicago EHE, Henschel et al. (1969) in the 1966 St. Louis 

EHE, and Grumm (2011) in the 2010 Russian EHE observed extreme daily 

minimums and maximums.  Most studies only impose requirements on the daily 

minimums (e.g. Tamrazian et al. 2008) or maximums (e.g. Tomozeiu et al. 2006; 

Kyseĺý et al. 2010; Huth et al. 2000; Meehl and Tebaldi 2004).  This could give the 

impression that trends of EHEs focusing on different daily temperature extremes, or 

both daily temperature extremes, are interchangeable.  Kuglitsch et al. (2010) is the 

only study we’re familiar with that required both extremes to be simultaneously 

elevated over a threshold. 

 Epidemiological studies have linked mortality to daily minimum temperatures 

(e.g. Kalkstein 1991; Grize et al. 2005; Schwartz 2005; Hajat et al. 2006; Fouillet et 

al. 2007; Fouillet et al. 2008; Basu et al. 2008), daily maximum temperatures (e.g. 

Hajat et al. 2002; Díaz et al. 2002; Tan et al. 2007; Baccinni et al. 2008; Anderson 

and Bell 2009) and daily mean temperatures (Hajat et al. 2002; Hajat et al. 2006; 

Basu et al. 2008; Anderson and Bell 2009; Ostro et al. 2009).  While it is not clear 

which daily temperature is closer related to mortality, the heat-mortality relationship 

likely varies with region (Kalkstein and Davis 1989).  For example, in Texas duration 

may play a larger role or in Michigan maybe the daily minimum temperatures are 

more important.  Some studies use biometeorological indices (e.g. heat index) as 

predictors (Grize et al. 2005, Hajat et al. 2006), but sensitivity analyses have not 

found substantial differences with conventional temperatures (Anderson and Bell 

2009; Vaneckova et al. 2011).  Within the climate literature many of the analyses do 

not examine the attributes found to be important in the epidemiological literature. 

 Many trend analyses employ popular extreme heat indices such as the “Warm 

Spell Duration Indicator” (e.g. Frich et al. 2002; Alexander et al. 2006; New et al. 
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2006; Brown et al. 2010), Heat Wave Frequency index (e.g. Wu et al. 2012) and Heat 

Wave Duration Index (e.g. Griffiths and Bradley 2007).  While these indices can be 

good for comparing to other studies, they can also be seen as too simplistic and/or 

inflexible for some purposes.  For instance, none of these indices require the daily 

minimum temperatures to be elevated, quantify the number of separate EHEs or 

recognize EHE’s with shorter durations (e.g. three days). 

 Instead a multi-aspect approach describing the different characteristics was 

taken in the current study.  Quantifying the trends in only one aspect only partially 

explains the trends, and trends in indices sensitive to numerous aspects might not be 

specific enough.  For instance trends in duration, intensity and frequency all provide 

different information.  Nevertheless, some scientists specifically want indices that 

incorporate numerous aspects.  Perkins and Alexander (2013) recently took a similar 

multi-aspect approach in their analysis of Australian EHEs.  Another study that did a 

robust job of EHE characterization was a study by Gershunov et al. (2009), which 

evaluated the California region’s trends in EHE intensity, duration and spatial extent.  

The Kuglitsch et al. (2010) study quantified the EHE intensity as well as duration and 

number of EHEs per summer in the Mediterranean region. 

 As detailed in section 2.2, the current study was designed to address the 

aforementioned gaps.  For instance, the current study requires duration and 

examines trends in duration.  Also inspected were the trends in EHEs with both daily 

temperature extremes simultaneously meeting the EHE requirements, and 

furthermore the differences were quantified in EHE trends based on different daily 

temperature extremes.  Lastly, the current study examined multiple aspects of EHEs 

in addition to indices encompassing multiple aspects (e.g. the number of EHE days 

per summer).  An examination of EHE timing within the season was also 

accomplished, through evaluating the difference between trends based on the early 

portion of the summer (i.e. before July 1) and those based on the mid-late summer 

(i.e. after June 30). 

 Similar to this study, DeGaetano and Allen (2002) focused on the CONUS 

trends starting in 1930.  The EHE required either two or three days of thresholds to 

be met, at various percentiles, for either (not both) the daily minimums or maximums.  
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The current study has numerous differences from the DeGaetano and Allen (2002) 

study, for instance the EHEs were specific to summertime and used dynamic (with 

calendar date) percentiles instead of annual percentiles. 

 Another similar study, by Gaffen and Ross (1998), quantified modern trends in 

EHEs across the CONUS.  The authors presented linear trends since 1949 in 

apparent temperature (Steadman 1984) based EHEs.  The current study has 

differences than Gaffen and Ross (1998) such as independence from the 

hydrological trends, quantifying multiple EHE characteristics and including the hot 

1930's decade.  As described in section 2.2, conventional temperatures facilitated 

this analysis.  They simplify interpretation of the results, are easier to project into the 

future and remove the issue of needing a homogenized long-term time series of 

water vapor observations. 

 The analysis aims of the current study focused on some specific questions 

about past EHEs.  Did CONUS average linear trends exist in the characteristics of 

EHEs from 1930 to 2010?  Was there spatial structure in those trends over the 

CONUS, and what did it look like?  Did the trends differ within that time period, and 

how?  Did discrepancies exist between the trends of EHEs with definitions based on 

different daily temperature extremes?  Were the trends in EHE characteristics during 

the earlier portion of the summer similar to those of the whole summer?  Lastly, did 

the summer average temperature trends behave differently than EHE trends? 

 The organization of this thesis chapter is as follows:  In the next section 2.2 the 

datasets and definitions were described.  In section 2.3 the results were presented 

and in section 2.4 discussed.  In section 2.5 the conclusions were discussed and 

suggestions for future work provided. 

 

2.2. Methods 

2.2.1. Dataset and temporal downscaling 

This investigation required a daily dataset that was appropriate for trend 

analysis (i.e. homogenized).  The process of homogenization removes non-climatic 

biases (e.g. urbanization, microclimate changes, station relocations, etc.) that cause 
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temporal discontinuities in time series of climate observations (as described in 

section 1.4.1).  To form this dataset a temporal downscaling method similar to that 

used by Di Luzio et al. (2008) and Hamlet and Lettenmaier (2005) was used that 

mapped day-to-day variability onto monthly resolution data.  This method provided a 

daily dataset more suitable for trend analysis.  This approach was chosen because a 

dataset with an effective daily adjustment scheme has not been devised and made 

available yet. 

This combined information from two products of the United States Historical 

Climatology Network (USHCN).  The USHCN version 1 dataset (USHCNv1-daily; 

Menne et al. 2012) is a quality-controlled (Durre et al. 2008) dataset with daily 

variability, but it is not homogenized.  The USHCN version 2.0 monthly dataset 

(USHCNv2.0-monthly; Menne et al. 2009, 2011) utilizes the same 1218 stations as 

the USHCNv1-daily dataset, but is both homogenized and has serially complete data 

at each station over that station’s respective operational period.  The USHCNv2.0-

monthly dataset is ideal for trend analyses (Menne et al. 2010; Williams et al. 2012) 

because the homogenization process regarding urbanization is robust (Menne and 

Williams 2005, 2009; Hausfather et al. 2013). 

The USHCNv1-daily dataset was acquired online from the Carbon Dioxide 

Information Analysis Center (CDIAC), but only the data from 1930 through 2010 and 

from May though September.  During that period 9.78% (9.81%) of the station-

months from the Tmax (Tmin) variable were missing.  The focus on the summer 

months is important to heat-health scientists; it is the season elevated temperature 

manifests itself as a hazard to human health.  The starting date 1930 was chosen 

because our confidence in Co-Op based data was lower prior to 1930 than after it (J. 

A. Andresen 2012, personal communication).  Furthermore the performance of the 

homogenization process of the USHCNv2.0-monthly dataset (Menne and Williams 

2009) was low before 1930, but high after (Hausfather et al. 2013). 

The daily temperature values first needed to be converted into anomalies 

relative to their respective monthly means.  The monthly mean temperature (

€ 

Tm,y ) 

from the USHCNv1-daily dataset was calculated in the typical manner: 
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€ 

Tm,y =

Tdailyd ,m,y
Tot _ daym

d=1

∑
Tot _ daym

 

Tdaily  represents the USHCNv1-daily temperature, Tot_day the total number of 

days in each month, d the day of the month, m the month and y represents each 

year.  This was done for months with no consecutive missing/flagged days and less 

than four total missing/flagged days.  Months with more missing/flagged days were 

not used because missing/flagged data points complicate the ability to estimate the 

monthly mean temperature accurately.  Accurate monthly means are required for 

accurate calculation of anomalies.  That meant 6.07% (6.19%) of the months for the 

Tmax (Tmin) variable did not pass these requirements. 

Missing/flagged days were infilled via bi-linear interpolation using the values 

one day before and after the date.  This infilling method might affect the accuracy of 

single-day percentile exceedence count trends (DeGaetano et al. 2002), however 

this study examines multiple-day events and thus the infilling of a single day should 

be small.  Quantifiably, the error this infilling introduces into estimating the monthly 

mean was 0.03 multiplied by the degrees the estimated sum was over (or below) the 

actual monthly sum.  For example if you infilled three days and those estimates were 

a sum of 16 degrees over the actual temperatures, then the monthly average 

temperature would be just shy of 0.5 degrees over the actual monthly average 

temperature.  However, this added uncertainty is not a function of time and thus likely 

has a minimal effect on quantifying trends.  For the Tmax (Tmin) variable, 7.88% 

(8.52%) of the total months had one missing/flagged date, 1.76% (1.94%) of the 

months had two missing/flagged dates and 0.64% (0.67%) had three missing/flagged 

dates.  Then each day’s temperature was converted into an anomaly with respect to 

its monthly mean temperature in this manner: 

€ 

Anomalyd ,m,y = Tdailyd ,m,y − Tm,y  

d represents the day of the month, m the month and y the year. 

The daily anomalies were combined with the USHCNv2.0-monthly dataset.  

First the fully adjusted (F52), September 2011 version of the dataset was acquired 

from the CDIAC over the same time-season span as the daily data.  To create the 
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new temperature time series the anomaly time series was combined with the 

USHCNv2.0-monthly mean temperature time series in the following manner: 

€ 

NewTemperatured ,m,y = Tmonthlym,y + Anomalyd ,m,y  

Tmonthly represents the USHCNv2.0-monthly temperatures.  The resulting time 

series at each station comprised the resulting dataset, and retained both the 

homogenization of the USHCNv2.0-monthly dataset and the daily variability of the 

USHCNv1-daily dataset.  This process has its limitations and is at best an empirical 

method.  The assumption that the monthly homogenization-adjustments made in the 

USHCNv2.0-monthly dataset apply equally to all daily values (within that month) may 

be weak, but its accuracy likely does not change with time.  Thus the uncertainty in 

estimating trends is probably minimal. 

Three time periods: 1930-1970, 1970-2010 and 1930-2010 were explicitly 

evaluated.  This allowed quantification of the entire period as well as two periods of 

equal length.  This isolated the general CONUS warming since 1970 and the general 

cooling between the mid 1930s and 1970 (Menne et al. 2009; Hansen et al. 2010), 

which informs the description of uncertainty for end users.  Splitting the total period 

into separate sections allowed improved spatial density, as compared with the full 

time span.  Even when accounting for spatial variability of the sampling density in the 

calculations of the CONUS spatial mean (CONUS mean) trends, some uncertainty 

still exists from sampling at different locations.  So recalculating half-period trends 

using the 161 overlapping stations enabled confirmation of the results. 

Since the resulting downscaled dataset was not serially complete, a series of 

quality criteria were needed to filter out inappropriate stations.  These requirements 

were applied separately for each study period, and all stations meeting the 

requirements during that study period were retained.  Stations employed to 

determine the overall 1930-2010 period were required to pass the requirements for 

both the 1930-1970 and 1970-2010 periods. 

The first criterions insured each station would have enough data to assume 

uncertainty due to missing data was negligible.  Specifically, each station was 

required to a) have available data for at least 80% of the years in the period, b) have 
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available data at least 70% of the years within each half of each period and c) have 

available data for both the first or second and last or second-to-last years in the 

period.  A year’s data was only considered available if all five summer months were 

present for both daily temperature extremes.  This left 581 stations for the 1930-1970 

period, 312 stations for the 1970-2010 period and 171 stations for the 1930-2010 

period.  The discrepancy between older and newer periods was due to the amount of 

available data within the resulting dataset.  Each station was sequentially tested for 

meeting the aforementioned a, b and then c requirements; and resulted in 844, 33 

and 29 disqualifications (respectively) in the 1970-2010 period; and 564, 34 and 39 

disqualifications in the 1930-1970 period.  The amount of available data in the 

resulting dataset was controlled by both the completeness of the USHCNv1-daily 

dataset and the station density of the USHCNv2.0-monthly dataset (the USHCNv2.0-

monthly dataset is serially complete but not all stations span the entire dataset).  

Interestingly, the USHCNv2.0-monthly dataset station density was lowest at the end 

of the 1930-2010 period (Menne et al. 2009) and played a major role of the newer 

periods shortage of appropriate stations. 

The next criterion focused on station siting quality.  A list of station rankings 

was acquired from surfacestation.org (http://surfacestations.org/fall_etal_2011.htm on 

Feb. 14, 2012) and any station with the lowest ranking was excluded.  This further 

reduced the number of stations for the 1930-1970 period to 546, the 1970-2010 

period to 303 and the 1930-2010 period to 165. 

The next criterion was sufficient data for a climate base sample (which is 

discussed in section 2.2.2).  Here the availability was determined at the monthly level 

and it was not dependent on the other daily temperature extreme.  It was required 

that at least 125 (out of 150 possible) months during the climatological period be 

available and at least 25 (out of 30 possible) years be available for each month.  This 

brought the number of stations for the 1930-1970 period to 543, for the 1970-2010 

period to 302 and for the 1930-2010 period to 165.  The last criterion was based on 

originality of the monthly values from the USHCNv2.0-monthly dataset.  At least 80% 

of the present months in the climate base period were required to be original values 

(i.e. not infilled/estimated within the USHCNv2.0-monthly dataset).  This reduced the 
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number of stations for the 1930-1970 period to 541, for the 1970-2010 period to 295 

and the number of stations in both periods to 161.  These sets of stations can be 

seen in figures 2.3-2.5. 

 

2.2.2. Percentiles, extreme heat events 

Each station’s time series of temperature was turned into a time series of 

percentiles relative to both calendar date and station.  These percentiles were 

sensitive to the geographical location and the annual cycle.  Thus they accounted for 

human adaption, which is important to scientists of the heat-health discussion.  The 

percentiles at each station were determined from the values at that station during a 

common period called the climate base period.  Here the climate base period for the 

1930-1970 period was 1941-1970 and the climate base period for both the 1970-

2010 and 1930-2010 periods was 1970-1999.  These climate base periods exclude 

the hot decades of the 1930s and 2000s. 

To avoid the climate base period-related inhomogeneity described by Zhang 

et al. (2005); the current study replaced such years in the climate base sample by a 

time series that was constructed by averaging the time series’ of the other 29 years 

within the climate base period.  The method of sampling used to select the values 

within the climate base period for calculating the percentiles was a window size of 15-

consecutive days centered on the date (Figure 2.1).  This size was chosen as Zhang 

et al. (2005) explained a 5-consecutive day window could be problematic and a 25-

consecutive day window was big enough to have no issues, except a general 

lessened sensitivity to the peak of the seasonal cycle in mid-late July.  Thus a 15-

consecutive day window was between the two. 

The percentiles were calculated empirically; first the empirical cumulative 

distribution function (Kaplan and Meier, 1958) was calculated, which assigned a 

percentile (yo) to each temperature value (xo) from the climate base period sample.  

Subsequently, bi-linear interpolation was used to find the value (yi) of the 

aforementioned percentile function (yo) at the target temperature value point (xi) in 

the climate base period temperature function (xo).  If the target temperature value (xi) 
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was larger (smaller) than any value in the climate base period sample (xo) then it (yi) 

was assigned a 1.0 (0.0).  For example, if the empirical cumulative function indicated 

that 20 °C corresponded to the 50th percentile and 22 °C to the 54th, then 21 °C 

would be the 52nd percentile. 

The exceedence threshold in EHE definitions varies throughout the literature 

but is usually between the 81st and 99th percentiles.  This study chose the 92.5th 

percentile because a) the 90th percentile was exceeded too frequently (Zhang et al. 

2012), b) the 99th percentile was exceeded too infrequently (Zhang et al. 2012) and 

c) the higher the percentile the more uncertainty exists in the mathematical 

estimation of that percentile. 

EHE duration requirements also vary throughout the literature.  Here trends in 

EHE duration were explicitly quantified, so this study only required any duration, and 

thus two consecutive dates with percentiles over the 92.5th percentile were required 

to start an EHE.  Requirements of EHE continuation vary in the literature, some 

studies require consecutive exceedences of the threshold (Alexander et al. 2006; 

New et al. 2006; Griffiths and Bradley 2007), and others require an EHE-mean 

temperature to stay above a threshold (e.g. Huth et al. 2000; Meehl and Tebaldi 

2004).  The current study terminated an EHE when the EHE-mean percentile no 

longer exceeded the aforementioned 92.5th percentile threshold.  It was assumed 

that humans would consider a time period as one continuous event if an isolated 

inner date marginally failed to exceed the threshold, and thus it was felt that this 

flexibility might relate better to human heat stress.  The EHE-mean percentiles (

€ 

P ) 

were calculated as follows: 

€ 

Pi =

Pn
i

n=1

∑
i  

n represents each day within an EHE and i the day number within the EHE.  For 

example, if you had four consecutive dates of 95, 95, 92.5 and 60 percentiles, then 

the EHE-mean percentile was 95 on the first two dates, 94.2 on the third date and 

85.6 on the fourth date.  Thus the EHE lasted three dates and had an intensity of 5 

CPE. 
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Which daily temperature extremes are required by the EHE definition to 

exceed the threshold also varies, but is rarely discussed in the literature.  This study 

separately quantified EHEs requiring a) only daily minimum compliance (Tmin type), 

b) only daily maximum compliance (Tmax type) and c) both minimum and maximum 

compliance (Tmnx type).  In this study EHE type refers to one of these three EHEs, 

and was used to differentiate between EHEs with definitions based on the different 

daily temperature extremes.  Discriminating Tmnx EHEs from Tmax and Tmin type 

EHEs was essential because in our dataset on a Tmin or Tmax type EHE date the 

opposing daily temperature extreme percentile was over the same threshold (92.5 

percentile) roughly 35% of the time, over a lower threshold (80.0 percentile) around 

60% of the time and above normal (50.0 percentile) about 85% of the time. 

The first two EHE types were diagnosed using the aforementioned 

requirements, but Tmnx type EHEs were diagnosed using the time series of Tmin 

and Tmax type EHEs.  Tmnx EHEs were triggered when either a) two calendar dates 

overlapped of Tmin type and Tmax type EHEs or b) the two Tmax type EHE dates 

were one single date behind the Tmin type dates (Figure 2.1).  A Tmnx EHE event 

continued forward in time until a date was reached that was not diagnosed as an 

EHE by either Tmin or Tmax type.  Thus, half days were effectively the temporal 

resolution of the Tmnx EHE diagnosis and whole days for Tmin and Tmax type EHEs 

(Figure 2.1).  Since this study was focused on the summertime the earliest (latest) 

possible EHE start (end) date was May (September) 15. 

 

2.2.3. EHE characteristic trends, significance and spatial averages 

The current study investigated multiple aspects of EHEs, ranging from 

objective to inclusive.  A value was calculated for every year that the station had 

available data for the following five specific aspects, or EHE characteristics: the 

number of EHEs, the total number of days categorized as EHEs (EHE-days), the 

mean EHE duration, the mean EHE intensity and the sum of all EHE intensities.  The 

EHE mean duration, number per year and intensity were considered objective 

characteristics because they focused on specific aspects of EHEs.  EHE-days and 
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sum intensity were considered inclusive because they describe the combination of 

multiple aspects of EHEs.  The Pearson’s correlation coefficients between the 

different EHE characteristics were calculated over the 1930-2010 period using the 

CONUS-mean time series (discussed later in this section). 

The intensity for each EHE was calculated in a cumulative degree-day 

manner, similarly to Díaz et al. (2006).  However, here percentiles replaced the role 

of temperatures.  Calculating the intensity (w.r.t. either daily temperature extreme) 

was determined by: 

€ 

Intensityx = (Pn − 92.5)
durx

n=1

∑  

x represents each EHE, dur the duration in days for that EHE, n each day within that 

EHE, P each dates percentile.  Percentiles below the 92.5 value were set to 92.5.  

The intensity was based on the daily maximum percentiles only for the Tmax EHE 

type, on the daily minimum percentiles for the Tmin EHE type and on both daily 

minimum and maximum percentiles for the Tmnx EHE type.  The intensity was 

calculated for each EHE and the units were referred to as cumulative percentile 

exceedences (CPEs).  Physically, CPEs depend on how far the percentiles exceeded 

the threshold and how long the event lasted.  The sum intensity then depends on 

both mean intensity and the number of events in a summer. 

The linear trends of each EHE characteristic, for the three time periods were 

calculated for each EHE type and station.  Both the magnitude and significance of 

trends were determined using the often-used least squares regression method.  

Significance here refers to non-inclusion of the zero value within the 90 percent 

confidence interval.  While the results were verified with non-parametric alternatives 

(not shown), the study was not primarily undertaken using them because questions 

exist about the effect of missing values on non-parametric tests. 

When calculating the CONUS means, for added confidence two separate 

methods were employed.  The first was used to create time series, per region and 

EHE type, from 1930-2010.  This method first divided the country into six 

geographical regions (north west, south west, north central, south central, north east 
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and south east; delineated using the 100-degree longitude line, the 39.72-degree 

latitude line and either the 83 or 87-degree longitude line (in the north and south, 

respectively)).  Then stations from the 161 stations that spanned 1930-2010 within 

the regional boundaries produced arithmetic means for each region (regional 

means).  The CONUS mean was then the weighted (by spatial area) mean of those 

regional means. 

The second method determined the CONUS-mean linear trends for each 

period.  Grids over the CONUS at roughly 100 km resolution were filled by the 

estimated linear trends (at each station) within their boundaries using the nearest 

neighbor spatial interpolation method (Gold 1991), which places randomly spaced 

data onto the nearest locations of a grid.  Grids without stations in their boundaries 

had values infilled by solving Poisson’s equation via relaxation over the input domain 

using NCL (Brown et al. 2012).  The CONUS means were calculated with all the 

retained grid points by weighting grid values by the cosine of the latitude.  This was 

done to compensate for the smaller spatial areas represented by grid points at higher 

latitudes. 

 

2.2.4. Spatial variability 

The spatial characteristics of the different trends were examined via maps 

showing the trend magnitudes at each station and their significance.  Visual analysis 

was chose as it allows one to look beyond the spatial coverage biases and 

differences when assessing spatial patterns and scales of spatial variability. 

 

2.2.5. Sensitivity to daily temperature extreme and timing 

 To explore the relationships between the trends in Tmin, Tmax and Tmnx EHE 

types, the Pearson’s correlation coefficients were calculated across all stations 

between the Tmin and Tmax, the Tmin and Tmnx and between the Tmax and Tmnx 

trend magnitudes.  To further explore the relationships between the EHE type trends, 

Student’s t tests determined if the arithmetic mean trend magnitudes of the different 

EHE type trends were statistically different at the 0.01 significance level.  The spatial 
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coverages were identical across the comparisons and thus uncertainty due spatial 

coverage differences should be minimalized. 

To explore the relationships between the trends in EHE characteristics of early 

and whole season EHEs, the number of EHE days per summer between 15 May and 

30 June (early season), 1 July and 15 September (mid-late season), 15 May and 15 

September (whole season) EHEs was compared.  EHE-days was the EHE 

characteristic of choice due to its high correlation with the other EHE characteristics 

and its inclusive nature.  Comparisons using other characteristics were executed and 

confirmed our findings, but the results are not shown.  The early period is 38% the 

length of the total summer length, and thus if the early part of the summer is 

changing the same as the whole summer, then the trend magnitude (in the early part 

of the summer) will be 38% of that of the whole summer season magnitude. 

First, CONUS-mean trends were calculated and compared across all three 

seasons (early, mid-late, whole).  To gauge statistical significance, Student’s t-tests 

were used to test whether the arithmetic means (over all locations) of the early 

season trends were different than 38% of the arithmetic means in the whole season 

trends (the early season is 38% of the whole season).  This testing was for a 

difference at the 0.1 statistical significance level between the sample averages.  

Next, maps of the trends in all three seasons were visually compared.  Lastly, 

correlation coefficients over all locations were calculated between trends in early, 

mid-late and whole seasons to quantify the relationships between the spatial 

patterns. 

 

2.2.6. Relationship with mean temperature trends 

The last relationships explored were between the summer average 

temperatures and (whole season) EHE characteristic trends.  Again, the number of 

EHE days was the EHE characteristic used for comparison with the summer average 

temperatures.  Summer average temperatures were calculated for daily maximums, 

daily minimums and daily means (constructed by averaging the two time series 

together).  The summer averages were calculated using the same calendar dates (15 
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May to 15 September) and the trends and magnitude were calculated the same as 

the EHE trends were. 

Examination of the summer average temperature trends at the continental 

scale was by calculating the percentages of stations with positive and negative 

trends (and corresponding significant trends) in each time period for each daily 

temperature extreme (daily average included) and comparing those percentages with 

those percentages in the EHE trends.  Then, Pearson’s correlation coefficients were 

calculated through time (at each station) to assess the relationships between the 

temporal variability (e.g. speaks to the predicative ability on shorter time scales).  To 

assess the spatial pattern similarities, maps were created and visually compared with 

the EHE trends.  Furthermore, correlation coefficients over the spatial domain were 

calculated between trends in average temperature and the trends in EHE-days. 

 

2.3. Results 

The arithmetic mean values for all EHE characteristics over all stations and 

years are listed in table 2.1 for both the 1930-1970 and 1970-2010 periods.  These 

indicate that EHEs based on the daily maximum temperatures (Tmax type) and those 

based on the daily minimum temperatures (Tmin type) had roughly twice the number 

of events per summer, 1.5 times the duration but only .75 of the intensity of EHEs 

based on both daily temperature extremes (Tmnx type).  Albeit, the technique of 

calculating the intensity for each EHE type potentially plays a large role in these 

differences in intensity.  These results also indicate Tmax type EHEs were typically 

slightly longer, more frequent and intense than Tmin type EHEs. 

Time series of the CONUS mean EHE-days for all three EHE types (Figure 

2.2) demonstrated both temporal and regional variability of EHEs.  They showed 

parallels in the behavior of different EHE types (e.g. the deficiency of EHE-days 

during the 1960’s and 1970’s) and differences (e.g. a stronger recent increase in 

Tmin type EHEs and stronger past decrease in Tmax type EHEs).  Correlation 

coefficients between time series of different EHE characteristics of the same EHE 

type (Table 2.2) indicated they behaved coherently; the lowest coefficient being 0.85 
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(mean duration, number of EHEs per year) and highest being 0.99 (sum EHE 

intensity, EHE-days). 

 

2.3.1. Continental scale trends 

The results of CONUS-mean linear trends are provided (Figure 2.3, Table 

2.2).  These results show that all EHE type trends were negative in the 1930-1970 

period and positive in the 1970-2010 period.  However, for the Tmin (Tmax) type 

EHE, the increase during the 1970-2010 period was larger (smaller) in magnitude 

than the 1930-1970 decrease.  This led to negative (positive) trends in the 1930-2010 

period for Tmax (Tmin) type EHE characteristics.  For the Tmnx type of EHE, the two 

time periods had increasing and decreasing trends of similar magnitude, which led to 

small positive trend magnitudes during 1930-2010.  The 1930-2010 CONUS-mean 

EHE duration trends appeared to have stronger trends in the number of EHEs, and 

mean EHE intensity trended stronger in Tmax type EHEs than in the Tmin type.  This 

resulted in stronger EHE-day trends in Tmin but stronger sum EHE intensity trends in 

Tmax.  While uncertainty exists from using different stations during different periods, 

the results of trends re-calculated only using the overlapping 161 stations (not 

shown) indicated it to be negligible. 

 

2.3.2. Spatial variability 

Trend maps indicated both small-scale (i.e. sub regional) spatial variability as 

well as regional-scale variability.  The small-scale variability might arise physically in 

part from the local level where LCLU play larger roles (Gallo et al. 1996); Pielke Sr. et 

al. (2011) note LCLU has significantly changed since 1920.  Additionally, because 

the majority of stations have some amount of missing data, differences in which 

years were missing between stations also can cause small-scale variability in linear 

trend estimations.  Differences in the regional-scale spatial patterns were not 

distinguishable between different EHE characteristics (Figure 2.4), and so only the 

EHE characteristic-wide spatial patterns are described here; the individual maps are 

available to be analyzed (Figures 2.5-2.12).  To assist in visual comparison, figures 
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with maps grouped by time period were also provided (Figures 2.13-2.17).  Albeit 

small, the largest discrepancies in spatial patterns between EHE characteristics were 

observed between the mean duration and number per year.  Differences in regional 

spatial patterns between different EHE types were noticeable, but not as large as the 

differences between time periods. 

The first maps described are those of the trends in the EHE characteristics 

during the 1930-1970 period (Figures 2.5-2.7).  Here the stations with decreasing 

trends out numbered those with increasing trends.  The common pattern was that of 

decrease from Montana eastward as far as New England and southward through 

most of the south east.  The area from roughly Texas westward and northwestward 

all the way to the west coast was mixed to generally increasing.  The areas of 

decrease were more convincing in the Tmax type EHE trends, and the areas of 

mixed sign were more positively biased in the Tmin type EHE.  The Tmnx type EHE 

trend spatial pattern appeared roughly a blend of the other two EHE types. 

The maps of the trends in EHE characteristics during the 1970-2010 period 

(Figures 2.4, 2.8-2.9) demonstrated a common spatial pattern of a loose horseshoe 

shape of increase (e.g. increase in the west, south and east parts of the CONUS).  

The northern areas were mixed but favored decreasing trends.  There existed two 

areas of decrease; one centered on roughly Idaho and another on Minnesota.  Areas 

of increase and decrease varied in strength depending on EHE type, with the Tmin 

(Tmax) type showing more increase (decrease).  The area from central Texas north 

through Missouri and Arkansas generally changed dominant sign based on EHE 

type.  The Tmnx type EHE trend spatial patterns were a mix of the other two EHE 

types. 

The maps of trends during the 1930-2010 period (Figures 2.10-2.12) showed 

both the most prominent regional-scale variability and the most balanced number of 

stations with increasing and decreasing trends.  The general spatial pattern was that 

of decreasing trends in the continental center (extending north and east of the 

center), and increasing trends in the west, north east and south east and south 

areas.  Consistent with the other time periods, the areas of increase (decrease) were 
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prominent in the Tmin (Tmax) EHE type trends, and the Tmnx EHE type trend spatial 

pattern was a mix between the two. 

The results of testing for regional variability by separating the CONUS into six 

regions are given in table 2.3 (region’s sample average number of EHE days) and 

table 2.4 (results of the Student’s t-tests between regions).  Table 2.3 confirms what 

can be seen on the maps and time series: the northern central region had the 

smallest positive trend magnitude during the period of increase and largest trend 

magnitude during the period of decrease, resulting in a negative trend magnitude 

during the overall 1930-2010 period.  There were also other regions of interesting 

behavior such as the southeastern region (largest Tmin type EHE trend magnitudes 

in all periods).  Table 2.4 confirms that the regions were fairly independent of one 

another (75 out of 135 comparisons were determined as different); as well that the 

northern central region behaves the most independently of the other regions. 

 

2.3.3. Relationships between EHE type trends 

The results of the correlation coefficients and Student’s t-tests between the 

EHE types are shown in table 2.5.  The correlation coefficients between the EHE 

characteristics of the Tmin and Tmax EHE types were notably smaller than those 

between either types and the Tmnx type.  Student’s t test results showed that the 

arithmetic means were usually statistically different between EHE types.  While about 

20% of the Tmin and Tmnx, and Tmax and Tmnx means were statistically dissimilar, 

all means were dissimilar between Tmax and Tmin types.  Although modest, 

correlation coefficients indicated stronger relationships between Tmin and Tmnx type 

EHE trends than Tmax and Tmnx type EHE trends. 

 

2.3.4. Relationship between early and whole/late season trends 

First, the results of the comparison between the trends in the number of EHE 

days during the different portions of the summer season at the continental level were 

given (Table 2.6).  The results suggest the 1930-1970 period consistently had early 

season trends statistically dissimilar from the whole and mid-late season trends.  
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Generally, early season trends and mid-late season trends were rarely close (+/- 5%) 

to the 38% and 62% respective values of the corresponding whole season trends.  

The early and mid-late season trends do not always equal the whole season trends 

because all trends were estimates of the true trends. 

The spatial structure of the early season EHE trends was first evaluated by 

comparing maps created of the trends in the number of early season EHE days with 

the corresponding maps of the whole and mid-late seasons (Figures 2.18-2.20).  The 

general patterns seemed similar, but regions of disagreement between maps did 

exist.  For instance the west and north west regions were often in disagreement 

between early and mid-late season trends.  Preliminary examination (not shown) of 

the lack of stations with statistically significant trends in the early season suggested 

this result was possibly due to statistical distribution effects (e.g. there were more 

zero values) on the estimated confidence (in the linear trends), rather than a physical 

signal in the climate system.  While the patterns were never wildly different, there did 

exist regions of differences. 

For a more quantifiable relationship, the results of the Pearson’s correlation 

coefficients over the spatial domain were given (Table 2.7).  The correlation 

coefficients between early and whole season spatial patterns ranged from 0.77 and 

0.90.  All coefficients between early and late season patterns ranged from 0.55 to 

0.78.  There were not obvious patterns between the coefficients from EHE type or 

time period. 

 

2.3.5. Relationship between mean and EHE trends 

The relationships between the trends in the number of EHE days and summer 

average temperature trends were evaluated mostly by calculating the percentages of 

positive and negative trends and comparing them with the EHE trends (Table 2.8).  

Compared to the EHE trends, the summer average temperature trends often had 

larger discrepancies in the percentages of positive and negative trends, both 

significant and insignificant.  The 1970-2010 and 1930-2010 period trends in Tmax 

were exceptions to that, however.  The later may have induced the daily mean being 



	
   	
   	
   36	
  

positive over the 1930-2010 period, rather than the balanced negative and positive 

trends in the Tmnx EHE characteristics in the 1930-2010 period. 

The average coefficients of temporal correlation (Table 2.9) displayed the 

temporal variability of each EHE type was most strongly correlated with its summer 

average counterpart (e.g. summer mean daily minimum with Tmin type EHEs).  In 

other words Tmin (Tmax) EHE types correlated best with summer average daily 

minimum (maximum) temperatures and Tmnx EHE types correlated best with 

summer average daily mean temperatures.  The correlations between summer 

average daily mean temperatures and either Tmin or Tmax type EHE-days were 

stronger than those between opposing daily temperature extremes (e.g. daily 

minimum temperatures and Tmax type EHE days).  The correlations between the 

Tmax (Tmnx) type EHE and its summer average counterpart had the largest 

(smallest) correlation. 

Next the similarities between the spatial patterns of the trends were assessed.  

Maps again facilitated a visual analysis (Figures 2.21–2.23).  It was notable that in 

the 1930-2010 period the daily average trends (Figure 2.23) show more positive 

trends and less significant negative trends than the Tmnx type EHEs, which agreed 

with table 2.8.  Also it seems that there was more consistency (i.e. less small scale 

variability) in the trends in the summer average maps.  Albeit in general the spatial 

patterns were quite similar and have comparable numbers of stations with statistically 

significant trends, but there again exist regions with systematic dissimilarities.  

Particularly notable, the patterns in Tmin summer averages were different than those 

in the Tmin type EHEs in the upper Midwest region (e.g. Wisconsin) during the 1970-

2010 period. 

Lastly Pearson correlation coefficients (Table 2.10) enabled quantifiable 

comparisons of the spatial patterns of trends in summer mean temperature and 

EHEs.  Each EHE type’s spatial pattern correlated with its corresponding summer 

mean daily temperature extreme pattern the best, and similarly the Tmnx type EHE 

trends correlated best with the summer average daily mean temperature trends.  Also 

the spatial pattern of trends in Tmin and Tmax type EHEs correlated much stronger 

with the summer average daily mean temperature spatial patterns than the opposite 
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daily temperature extreme (e.g. daily minimum and Tmax type EHEs) did.  The 

largest coefficients between EHE days and summer mean daily mean temperatures 

were between the Tmax EHE days and daily maximums temperatures.  Lastly, these 

results, in conjunction with table 2.7, indicated that the spatial patterns between 

summer mean temperatures and the number of EHE days were roughly as correlated 

as those between total and early season EHEs (excluding Tmax type EHEs which 

correlated strongly to summer mean Tmax). 

 

2.4 Discussion 

Empirically linking physical drivers to the continental scale trend variability was 

beyond the scope of this study, nonetheless several possibilities are herein 

considered.  Several of the possible driving mechanisms are categorized as climate 

system oscillations at decadal scales and longer.  Teleconnections between sea 

surface temperatures (SSTs) in the Atlantic and Pacific ocean basins allow 

oscillations such as the Pacific Decadal Oscillation (PDO), Interdecadal Pacific 

Oscillation (IPO), El Niño/Southern Oscillation (ENSO) and the Atlantic Multi-decadal 

Oscillation (AMO) (McCabe et al. 2004) to play major roles in CONUS-mean 

summertime daily minimum and maximum temperatures (Robinson et al. 2002; 

Alfaro et al. 2006; McCabe et al. 2004).  For example during 1930-1970 the PDO 

index values generally decreased and during 1970-2010 they increased; this could 

explain the 1930-1970 (1970-2010) decrease (increase) in EHE activity. 

Many potential explanations for the differences in trends between Tmin and 

Tmax type EHE trends were land cover/land use (LCLU) related, as called for in the 

Pielke Sr. et al. (2011) study.  For instance, the United States irrigation statistics 

indicate substantial increases over during 1930-1970 compared to that during 1970-

2010 (USGS 2012, Segal et al. 1998).  Misra et al. (2012) showed agricultural 

irrigation affects both daily temperature extremes oppositely, and subsequently in the 

1930-1970 period these irrigation trends would work against the daily minimum 

decreasing trends and aide the decreasing trends in daily maximum temperatures.  

Another possible factor influencing the large Tmin increase during 1970-2010 relative 
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to 1930-1970, was that during 1970-2010 more land area was developed (urban, 

exurban) than during 1930-1970 (Brown et al. 2005).  Any urbanization biases the 

homogenization algorithm (Menne et al. 2009) failed to eliminate would increase the 

daily minimum temperatures preferentially (Hausfather et al. 2013). 

Atmospheric water vapor trends also should impact Tmin and Tmax EHE type 

trends.  Gershunov et al. (2009) showed high water vapor levels to be conducive 

(non-conducive) to Tmin (Tmax) type EHEs.  Brown et al. (2013) showed CONUS-

mean dewpoint temperature and specific humidity generally decreased (increased) 

during the 1930-1970 (1970-2010) period.  This should have encouraged Tmin 

(Tmax) type EHE decrease (increase) in the 1930-1970 period and Tmin (Tmax) type 

EHE increase (decrease) in the 1970-2010 period.  This could account in part for the 

discrepancies in the trends of Tmin and Tmax type EHEs during the 1970-2010 

period, but not during the 1930-1970 period. 

The spatial patterns of EHE characteristic trends could be influenced by 

several physical mechanisms that are mentioned below.  LCLU types and LCLU 

changes can affect regional-scale trends; Fall et al. (2010) demonstrated that surface 

temperature trends can both be a function of LCLU type and be impacted by LCLU 

changes (e.g. agricultural to urban).  For instance Fall et al. (2010) demonstrated the 

temperature trends in agriculture LCLU types were shown to have decreased during 

the 1979-2003 period.  The agriculture LCLU type spatially occupies much of the 

area of decrease during the 1970-2010 period found in this study (i.e. the central, 

east central CONUS). 

Climate system oscillations likely influenced the observed spatial patterns as 

well.  McCabe et al. (2004) demonstrated that oscillations of the IDO/PDO and AMO 

could account for 52% of the spatial and temporal variance over the CONUS.  Other 

works (e.g. Pan et al. 2004; Robinson et al. 2002) have also linked the decrease in 

the central CONUS (i.e. the “warming hole”) to Pacific and Atlantic Ocean basin 

oscillations. 

The changes in moisture (soil, atmospheric) could also potentially impact the 

observed spatial patterns in EHE trends.  McCabe et al. (2004) suggested 22% of the 
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spatial and temporal variance was explainable by drought indices (which are often 

related to SST oscillations).  Brown et al. (2013) observed that the central CONUS 

experienced atmospheric moistening since 1930 while other regions experienced 

drying.  This moistening was similarly located (spatially) with the region of EHE 

decrease in the central CONUS.  The noted area of disagreement between EHE 

types from central Texas north through Missouri and Arkansas, is an area where 

Steiner and Owen (2013, unpublished manuscript) propose an aerosol-circulation 

mechanism has induced more precipitation during 1998-2007. 

The differences between trends in Tmin and Tmax type EHEs might suggest 

relevancy of physical mechanisms that act oppositely on different daily temperature 

extremes (e.g. urbanization, atmospheric water vapor (Gershunov et al. (2009), soil 

moisture (Misra et al. 2012)).  The spatial patterns of Tmin EHE type trends having 

slightly closer relationships to Tmnx, than Tmax did, was sensible since Tmin type 

EHEs were observed to be less common, and thus could be considered a limiting 

factor. 

The differences between EHE trends in the early portion of the summer and 

the later (and whole) portion of the summer suggested the physical system is being 

driven, or forced, differently during the early and later portions of the summer.  One 

possible physical cause within the climate system for the lack of a closer relationship 

could be associated with trends in winter snow accumulation or spring precipitation 

affecting soil moisture and subsequently spatial patterns in the early summer EHEs.  

Another possible cause could be the North American Jet Stream; it is typically 

positioned differently over North America in the spring-early summer than it is in the 

mid-late summer, and recent studies have indicated recent changes in the 

tendencies of the North American Jet Stream positions (e.g. Woollings and Blackburn 

2012; Francis and Vavrus 2012). 

In regards to the discrepancies between the mean temperature and the EHE 

trends, these indicate that the mean and the tails of the statistical distributions of 

daily temperature extremes changed differently.  Such incoherency is possible 

because the mean is sensitive to all parts of the statistical distribution, and the tails 

are not.  This likely occurs for both daily temperature extremes, but these results 
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suggest the mean of the daily maximum temperatures acted more coherently with the 

statistical left tail than the daily minimums did. 

To speculate on a possible physical driver, storm paths changing (e.g. Yin 

2005) could increase nighttime cloud cover or soil moisture.  That moisture could 

then reduce the frequency of extremely cold nights without necessarily affecting the 

extremely warm nights, and subsequently affect the mean temperatures differently 

than the number of EHEs. 

 

2.5. Conclusions 

Over the 1930-2010 period the characteristics of EHEs based on daily 

minimums (Tmin type) increased, the characteristics of EHEs based on daily 

maximum (Tmax type) decreased and the characteristics of EHEs with respect to 

both daily temperature extremes (Tmnx type) increased a small amount.  Such 

conclusions were cemented by CONUS-mean linear trends that showed during the 

1930-2010 period all characteristics increased for the Tmin type EHEs, decreased for 

the Tmax type EHEs and increased by an order of magnitude less than the other 

EHE types for the Tmnx type EHEs.  The CONUS-mean time series of EHE-days for 

all three EHE types supported these conclusions.  In contrast, DeGaetano and Allen 

(2002) indicated decreasing continental trends in both Tmax EHEs and Tmin EHEs in 

1930-1996 (Tmin trends were smaller).  The 14 additional (recent) years in our study 

potentially explain why our conclusions in the Tmin type EHEs were of increase 

(instead of decrease). 

The linear trends in EHE characteristics in 1930-1970 decreased (Tmax type 

EHEs most prominently), but the 1970-2010 trends of all EHE types increased in 

EHE characteristics (Tmin type EHEs most prominently).  The results of the CONUS-

mean EHE characteristics demonstrated that during 1930-1970 all EHE 

characteristics, regardless of EHE type, decreased and during 1970-2010 all EHE 

characteristics increased.  Time series of the number of EHE-days for all EHE types 

supported these conclusions.  Both times series and CONUS-mean EHE 

characteristic trends demonstrated a stronger decrease in Tmax type EHEs during 
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the 1930-1970 period and a stronger increase in Tmin type EHEs during the 1970-

2010 period.  The next step for time series analysis of EHEs is likely one of principal 

component analysis in hopes of more fully describing the oscillations pertinent to 

EHEs. 

Shen et al. (2011) demonstrated summertime mean daily minimum and 

maximum temperatures decreased during the 1946-1975 period and both increased 

during the 1976-2000 period.  DeGaetano and Allen (2002) indicated a stronger 

decrease in extreme percentiles of daily maximums than minimums during 1930-

1996, and a stronger increase in the minimums than maximums during 1970-1996.  

Peterson et al. (2008) showed that both daily minimum and maximum extreme 

percentiles decreased during 1950-1970 and increased during 1970-2005.  

DeGaetano and Allen (2002) demonstrated during 1960-1996 the percentage of 

increasing trend stations was larger than the percentage of decreasing stations.  

These support our conclusions.  These conclusions implied that similar to the 

CONUS-mean temperatures (e.g. Hansen et al. 2010), EHEs decreased from roughly 

the mid 1930’s until the late 1970’s and then increased through 2010; notably Tmax 

type EHEs were prominent the 1930s and 1950s while Tmin type EHEs more 

dominant in the 1990s and 2000s. 

Regional and small-scale spatial variability existed across the CONUS for all 

periods, EHE characteristics and EHE types.  Small-scale variability was plainly seen 

in the maps, as was regional-scale variability.  Examples of regional variability might 

be the lack of warming in the north central CONUS during the 1970-2010 period or 

the cooling in the central CONUS region during the 1930-2010 period.  Conclusions 

of regional variability were also reinforced by the time series results. 

Several other studies also showed regional-scale spatial variability (Gaffen 

and Ross 1998; DeGaetano and Allen 2002; Peterson et al. 2008; Portmann et al. 

2009; Wu et al. 2012).  The existence of substantial regional variability in the past 

insinuates differences between regions will also exist in the future, thus CONUS-

mean trends were not representative of trends in each region and thus regional 

analyses would have been substantially more helpful for scientists in the heat-health 

field.  Likewise, several studies confirmed the existence of small-scale spatial 
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variability (e.g. Gaffen and Ross 1998; DeGaetano and Allen 2002; Portmann et al. 

2009).  The presence of small-scale variability might serve as notice to future EHE 

trend analyses calculating regional and sub-regional spatial means.  The next step in 

exploration of the drivers behind the spatial patterns in EHEs is likely an empirical 

orthogonal function analysis of EHE characteristics.  However, first a gridded climate 

dataset appropriate for long-term trend analysis must be created. 

The different EHE characteristics behaved coherently.  This was evidenced by 

the different EHE characteristic trends having nearly indistinguishable spatial 

patterns, strong temporal correlations with one another and by the CONUS-mean 

linear trends showing the same signs.  That is not to say they were identical, 

however.  Other studies that assessed multiple aspects of EHEs (Kuglitsch et al. 

2010; Gershunov et al. 2009; Perkins and Alexander 2013) also showed general 

agreement across trends in the different aspects of EHEs.  Such conclusions reduce 

some of the uncertainty in using single aspects of EHEs to study EHEs.  This might 

also suggest similar coherency in future changes in EHE characteristics. 

Conversely the different EHE types behaved less coherently.  Relationships 

found between EHE characteristics of Tmin and Tmax types were modest.  By 

definition EHE characteristics in Tmnx type trends are connected to Tmax and Tmin 

type EHEs and the relationships were strong, but short of very strong.  The 

correlation coefficients and maps confirmed such conclusions regarding spatial 

structure, and Student’s t tests confirmed them with respect to the large-scale 

arithmetic mean trends.  These conclusions should reaffirm to the climatologist that 

the different daily temperature extremes respond differently to changes in the climate 

system.  Mathematically speaking, examination of both daily temperature extremes 

relationships to the forcing variables controlling the same climate system is akin to 

have two solution sets.  These conclusions were consistent with Portmann et al. 

(2009) that showed different spatial patterns and CONUS means in the 90th 

percentile exceedence occurrences for minimum and maximum temperatures.  Also 

the Gaffen and Ross (1998) results support these conclusions; they showed 

meaningful differences in both CONUS and regional-mean trends in the daily 

minimum and maximum apparent temperature percentile exceedences. 
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The climate literature could do a better job of emphasizing EHEs based on 

different daily temperature extremes are not interchangeable.  Particularly to 

scientists outside the climate community, it is not obvious that the trends of EHEs 

depend on which daily temperature extreme(s) is (are) required to be elevated.  

Which extreme is optimal depends on both the region and purpose, and not explored 

here.  These conclusions imply that Tmin and Tmax EHE trends could be used to get 

a good, but not a great, estimate for how EHEs with requirements on both daily 

temperature extremes (Tmnx) changed or will change.  Trends in EHEs with both 

daily temperature extremes exceeding thresholds should be quantified in trend 

analyses more often.  An epidemiological assessment linking mortality to events 

requiring both daily temperature extremes to be over a threshold could further 

knowledge about this type of EHEs.  The next step was likely assessing both the 

trends in EHEs that meet requirements in both daily temperature extremes and the 

relationships between all three EHE types moving forward in time using global 

climate model output. 

The trends in EHE characteristics during the earlier portion of the summer had 

differences from those of the mid-late and whole summer.  For example, continental-

mean results showed the 1930-1970 period to have statistically different early and 

whole season trends.  Spatial correlation coefficients indicated in general the 

patterns were similar, but not indistinguishable.  Maps of the trends indicated that 

some regions were dissimilar, most notably the western U.S. region.  Such 

conclusions were important because they demonstrated the existence of differences 

in extreme heat trends between early summer and the other parts of the summer, 

which hah not previously been explored.  These conclusions will hopefully inform 

heat-health scientists not to rely too heavily on early summer trends behaving the 

same as whole summer trends.  To climate scientists this indicates either a) 

differences in which factors were influential, or b) the influential factors were 

behaving differently at different parts of the summer.  The next steps in this area are 

better quantifications of the disparity in trends by time within summer, and linking 

changes in the physical system (e.g  North American Jet Stream position, spring 

precipitation) to the different trends. 
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The trends in the characteristics of EHEs and the summer mean temperature 

were also similar yet had some notable differences.  On the large scale the summer 

temperature trends indicated the same signs but seemed to have stronger signals 

(increasing or decreasing).  The spatial correlations and maps of trends both 

indicated similar overall spatial structure but that there existed regions of 

disagreement.  These conclusions were important to the heat-health discussion 

because it warns heat-health scientists not to rely too heavily on summer mean 

trends for guidance in EHEs.  These conclusions were also important because no 

other studies were found explicitly discussing the relationships between summer 

mean temperatures and EHE characteristics. 

These conclusions first demonstrate that the different portions of the statistical 

distribution were changing differently, at least at the regional level.  Thus the often-

seen figure of a probability distribution function of temperatures merely shifting (as a 

result of climate change) towards warmer temperatures should be retired.  Instead 

the probability distribution is probably going to change shape as well as shift.  Shen 

et al. (2011) demonstrated this as well.  The next step in regards to the study of 

EHEs is exploration into what roles the mean, variability, skew and other higher 

statistical moments have in the trends of EHEs.  From a climatologist’s perspective, 

physical mechanisms of the climate system may control different statistical moments 

(e.g. the jet stream controlling synoptic variability of temperatures at the surface 

(Francis and Vavrus 2012)).  

Comparing results between extreme temperature trend analyses with different 

periods is problematic because linear trends are highly sensitive to many factors.  For 

example, they are considerably sensitive to the time period, seasonal focus and daily 

temperature extreme.  Generally, linear trends are very limited in their ability to 

describe the temporal behavior of any variable in a climate system that behaves non-

linearly.  Despite this, maps were created to match the time periods of other studies 

such as 1950-2006 in the Portman et al. (2009) study (Figure 2.24), 1960-1996 in the 

DeGaetano and Allen (2002) study (Figure 2.25), 1950-2004 in the Peterson et al. 

(2008) paper (Figure 2.26), and the 1950-1999 in the Meehl et al. (2012) paper 

(Figure 2.27).  It should be noted that the stations used to create these maps were 
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not chosen with the data availability of these time periods in mind, but rather the 

stations selected for the 1930-2010 period; thus additional spatial noise arises in 

these maps due to the effect of missing years.  It was felt the disparities between our 

results and comparable studies’ results were explainable by the differences in the 

data being presented in the figures. 

Additionally, our results show the so-called “warming hole” investigated by 

multiple studies (Kunkel et al. 2006; Pan et al. 2004; Robinson et al. 2002; Meehl et 

al. 2012).  There is an amount of debate what mechanisms cause the warming hole, 

and we felt that this study’s results might lend insight.  Pan et al. (2004) 

demonstrated changes in the low-level jet (from the gulf to the Plains) lead to soil 

moisture changes that suppressed daily maximum temperatures.  Regardless of 

mechanism, the moisture levels have been observed to increase in this region 

(Brown et al. 2013).  Misra et al. (2012) showed increased irrigation statistics to 

increase (decrease) daily minimum (maximum) temperatures.  However a decrease 

was seen in both Tmin and Tmax type EHEs (albeit Tmin EHE type showed a weaker 

decrease).  Thus, a hypothesis that works with these results is while soil moisture 

efficiently suppressed Tmax it did not increase Tmin as much as the Tmax-Tmin 

coupling mechanism (Gershunov et al. 2009) decreased Tmin.  An analysis of the 

Tmax-Tmin coupling mechanism (e.g. which daily temperature extreme is better 

linked with its trailing opposite daily temperature extreme) would provide relevant 

knowledge to the EHE field. 
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2.8. Figures 

Figure 2.1. Two schematics.  The top illustrates how EHEs are diagnosed.  Light 
(dark) colored bars indicate Tmax (Tmin) percentile exceedence on that date.  Thus 
the Tmin EHE dates are July 8, 9, 14, 15, 25, 26, 27, 28, 29 and 30; Tmax EHE 
dates are July 8, 9, 15, 16, 24, 25, 28 and 29; two Tmnx EHEs exist and are 
diagnosed as two days in length (July 8, 9), two days (July 24, 25, 26) and 2.5 days 
(July 28, 29, 30) in length.  The bottom, of the calendar date-dynamic base climate 
sample used to calculate the percentiles at each station.  Thirty years worth of the 
dates marked with a dark grey (light grey, mild grey) line through them are used to 
determine the percentiles on the date marked with a dark grey (light grey, mild grey) 
X on it.  
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Figure 2.2. Time series of regional and continental average EHE-day values per 
summer.  The legend assigning colors to specific regions provides the number of 
stations used to create the regional averages and the spatial weight of the region in 
the continental average, respectively. 
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Figure 2.3. Visual display of the CONUS average EHE characteristics trends. Trends 
are represented by bars and arranged by EHE characteristics vertically and EHE type 
and time period horizontally.  Increases are in red and decreases in 
blue.
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Figure 2.4. The decadal trends of EHE characteristics in Tmnx type EHEs at each 
station during the 1970-2010 period.  The trend significance (alpha=0.10) is indicated 
by symbol shading.  The graduated symbol groupings are based on standard 
deviations away from the zero value, and are different for each map.  The trends in 
the number of EHEs, the number of EHE days, the mean EHE duration, the mean 
EHE intensity and the sum of all EHEs intensities per year are listed respectively 
from a to e. 
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Figure 2.5. The decadal trends of EHE characteristics in Tmnx type EHEs at each 
station during the 1930-1970 period.  All else is the same as figure 2.4. 
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Figure 2.6. The decadal trends of EHE characteristics in Tmax type EHEs at each 
station during the 1930-1970 period.  All else is the same as figure 2.4. 
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Figure 2.7. The decadal trends of EHE characteristics in Tmnx type EHEs at each 
station during the 1930-1970 period.  All else is the same as figure 2.4. 
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Figure 2.8. The decadal trends of EHE characteristics in Tmin type EHEs at each 
station during the 1970-2010 period.  All else is the same as figure 2.4. 
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Figure 2.9. The decadal trends of EHE characteristics in Tmax type EHEs at each 
station during the 1970-2010 period.  All else is the same as figure 2.4. 
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Figure 2.10. The decadal trends of EHE characteristics in Tmin type EHEs at each 
station during the 1930-2010 period.  All else is the same as figure 2.4. 
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Figure 2.11. The decadal trends of EHE characteristics in Tmax type EHEs at each 
station during the 1930-2010 period.  All else is the same as figure 2.4. 
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Figure 2.12. The decadal trends of EHE characteristics in Tmnx type EHEs at each 
station during the 1930-2010 period.  All else is the same as figure 2.4. 
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Figure 2.13. The decadal trends in the number of EHEs per summer at each station 
during the 1930-1970 period.  All three types of EHEs are given, and the symbology 
is the same as figure 2.4.  
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Figure 2.14. The decadal trends in the mean EHE duration at each station during the 
1930-1970 period.  All three types of EHEs are given, and the symbology is the same 
as figure 2.4. 
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Figure 2.15. The decadal trends in the mean EHE duration at each station during the 
1970-2010 period.  All three types of EHEs are given, and the symbology is the same 
as figure 2.4. 
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Figure 2.16. The decadal trends in the mean EHE duration at each station during the 
1930-2010 period.  All three types of EHEs are given, and the symbology is the same 
as figure 2.4. 
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Figure 2.17. The decadal trends in the mean EHE intensity at each station during the 
1930-2010 period.  All three types of EHEs are given, and the symbology is the same 
as figure 2.4. 
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Figure 2.18. Trends in the number of EHE-days during the 1930-1970 period for 
different EHE types and intra-seasonal focus.  All three types of EHEs are given, with 
three seasonal focuses and the symbology is the same as figure 2.4. 
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