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Figure 2.19. Trends in the number of EHE-days during the 1970-2010 period for 
different EHE types and intra-seasonal focus.  All three types of EHEs are given, with 
three seasonal focuses and the symbology is the same as figure 2.4. 
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Figure 2.20. Trends in the number of EHE-days during the 1930-2010 period for 
different EHE types and intra-seasonal focus.  All three types of EHEs are given, with 
three seasonal focuses and the symbology is the same as figure 2.4. 
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Figure 2.21. Trends in the number of Tmin EHE days and summer average daily 
minimum temperatures.  All three time periods are provided and the symbology 
follows that of figure 2.4. 
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Figure 2.22. Trends in the number of Tmax EHE days and summer average daily 
maximum temperatures.  All three time periods are provided and the symbology 
follows that of figure 2.4. 
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Figure 2.23. Trends in the number of Tmnx EHE days and summer average daily 
mean temperatures.  All three time periods are provided and the symbology follows 
that of figure 2.4. 
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Figure 2.24. Trends of the EHE days over the CONUS over the 1950-2006 period.  
Trends shown at the 161 stations that span the 1930-2010 period.  All three EHE 
types are shown and the symbology follows that of figure 2.4. 
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Figure 2.25.  Trends of the EHE days over the CONUS over the 1960-1996 period.  
Trends shown at the 161 stations that span the 1930-2010 period.  All three EHE 
types are shown and the symbology follows that of figure 2.4. 
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Figure 2.26. Trends of the EHE days over the CONUS over the 1950-2004 period.  
Trends shown at the 161 stations that span the 1930-2010 period.  All three EHE 
types are shown and the symbology follows that of figure 2.4. 
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Figure 2.27. Trends of the EHE days over the CONUS over the 1950-2006 period.  
Trends shown at the 161 stations that span the 1930-1020 period.  All three EHE 
types are shown and the symbology follows that of figure 2.4. 
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2.9. Tables 

Table 2.1. Typical values of EHE characteristics.  Listed are the sample means 
(standard deviations) of the of stations temporal means.  Each EHE characterization 
metric, both periods and all three EHE types are listed. 

1930‐1970 (n=541) 

EHE characteris8c  Tmin EHE  Tmax EHE  Tmnx EHE  

No. of EHEs per year  2.1 (0.3)   2.5 (0.4)  1.0 (0.4)  

No. of EHE days  7.5 (1.7)    11.0 (2.3)  3.7 (1.7)  

No. of early EHE days  2.5 (1.4)  3.9 (2.7)  1.3 (1.0) 

Mean EHE dura=on  2.7 (0.4)   3.5 (0.6)   1.9 (0.7)  

Mean EHE intensity  10.0 (1.6)  12.9 (2.1)   15.3 (5.7) 

Sum of EHE intensi=es  27.6 (6.6)   41.9 (9.7)  30.9 (15.3) 

1970‐2010 (n=295) 

EHE characteris8c  Tmin EHE  Tmax EHE   Tmnx EHE  

No. of EHEs per year  2.3 (0.3)    2.5 (0.4)   1.0 (0.3)  

No. of EHE days  8.1 (1.7)   9.8 (1.8)   3.3 (1.1)  

No. of early EHE days  3.1 (1.7)  3.6 (2.0)  1.4 (0.9) 

Mean EHE dura=on  3.0 (0.4)   3.2 (0.5)  1.9 (0.5)  

Mean EHE intensity  10.6 (1.4)   11.5 (1.7)   15.0 (4.0)   

Sum of EHE intensi=es  29.6 (6.1)   36.0 (6.7)   28.3 (8.9)  
 

Table 2.2. CONUS spatial average of the decadal trends in EHE characteristics.  
Values are arranged by EHE characteristic and type of EHE.  In each cell, listed from 
left to right, are the values for 1930-1970, 1970-2010 and the 1930-2010 period. 

 
 
 

 

 

 

EHE#characteris,cs# Tmin#EHE# Tmax#EHE# Tmnx#EHE#

Number'of'EHEs' -0.24,'0.43,'0.10'' -0.38,'0.28,'-0.05'' -0.19,'0.23,'0.02''

Number'of'EHE'days' -1.02,'2.13,'0.51'' -2.23,'1.56,'-0.42'' -0.84,'0.96,'0.06''

Mean'EHE'dura>on' -0.13,'0.34,'0.12'' -0.30,'0.20,'-0.08'' -0.23,'0.29,'0.04''

Mean'EHE'intensity' -0.63,'1.36,'0.38'' -1.57,'0.99,'-0.41'' -2.37,'2.50,'0.24''

Sum'EHE'intensity' -4.33,'8.09,'1.71'' -10.22,'6.46,'-2.02'' -8.07,'7.91,'0.14''
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Table 2.3. Regional average decadal trends in the number of EHE days per summer.  
The rows correspond to the north western region (NW), south western region (SW), 
north central region (NC), south central region (SC), north eastern region (NE) and 
south eastern region (SE); and the columns correspond to the three EHE types. 

1930-1970
region(stations) Tmin Tmax Tmnx

NW (99) -0.84 -0.82 -0.44
SW (58) -0.04 -1.03 -0.26
NC (129) -1.9 -4.39 -1.92
SC (106) -1.08 -3.3 -1.17
NE (60) -0.56 -1.61 -0.48
SE (89) -1.75 -3.26 -1.12

1970-2010
region(stations) Tmin Tmax Tmnx

NW (50) 1.27 1.15 0.66
SW (25) 2.4 2.82 1.6
NC (70) 0.34 -1.11 -0.22
SC (53) 2.91 1.59 1.16
NE (49) 1.08 1.52 0.71
SE (48) 3.65 2.27 1.36

1930-2010
region(stations) Tmin Tmax Tmnx

NW (27) 0.33 0.38 0.16
SW (14) 0.53 0.18 0.31
NC (44) -0.06 -1.48 -0.47
SC (29) 0.58 -1.24 -0.09
NE (25) 0.47 -0.16 0.13
SE (22) 1.23 -0.79 0.31
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Table 2.4. Results of the Student's t-tests of mean between regions.  Two sided, two 
sample Students t-tests were employed, and here 1 indicates significantly different 
trends and a 0 indicates the means were unable to be distinguished at the 99% 
confidence level. 

1930-1970

Tmin type EHE trends Tmax type EHE trends Tmnx type EHE trends

region(stations) NW SW NC SC NE SE NW SW NC SC NE SE NW SW NC SC NE SE
NW (99) 0 X X X X X NW 0 X X X X X NW 0 X X X X X
SW (58) 0 0 X X X X SW 0 0 X X X X SW 0 0 X X X X
NC (129) 1 1 0 X X X NC 1 1 0 X X X NC 1 1 0 X X X
SC (106) 0 1 1 0 X X SC 1 1 1 0 X X SC 1 1 1 0 X X
NE (60) 0 0 1 0 0 X NE 0 0 1 1 0 X NE 0 0 1 1 0 X
SE (89) 1 1 0 0 1 0 SE 1 1 1 0 1 0 SE 1 1 1 0 1 0

1970-2010

Tmin type EHE trends Tmax type EHE trends Tmnx type EHE trends

region(stations) NW SW NC SC NE SE NW SW NC SC NE SE NW SW NC SC NE SE
NW (50) 0 X X X X X NW 0 X X X X X NW 0 X X X X X
SW (25) 0 0 X X X X SW 1 0 X X X X SW 1 0 X X X X
NC (70) 1 1 0 X X X NC 1 1 0 X X X NC 1 1 0 X X X
SC (53) 1 0 1 0 X X SC 0 0 1 0 X X SC 0 0 1 0 X X
NE (49) 0 1 1 1 0 X NE 0 1 1 0 0 X NE 0 1 1 1 0 X
SE (48) 1 0 1 0 1 0 SE 1 0 1 0 0 0 SE 1 0 1 0 1 0

1930-2010

Tmin type EHE trends Tmax type EHE trends Tmnx type EHE trends

region(stations) NW SW NC SC NE SE NW SW NC SC NE SE NW SW NC SC NE SE
NW (27) 0 X X X X X NW 0 X X X X X NW 0 X X X X X
SW (14) 0 0 X X X X SW 0 0 X X X X SW 0 0 X X X X
NC (44) 1 1 0 X X X NC 1 1 0 X X X NC 1 1 0 X X X
SC (29) 0 0 1 0 X X SC 1 1 0 0 X X SC 0 0 0 0 X X
NE (25) 0 0 1 0 0 X NE 0 0 1 1 0 X NE 0 0 1 0 0 X
SE (22) 1 0 1 0 1 0 SE 1 0 0 0 0 0 SE 0 0 1 0 0 0  

 

Table 2.5. Pearson’s correlation coefficients and Student’s t-test restuls between 
trends of different EHE types.  Displayed are three values, representing the three 
time periods (1930-1970, 1970-2010, 1930-2010) for each metric and between all 
three different EHE types.  Regular font values indicate the means are statistically not 
equal at the 0.10 significance level, and bold font values signify a failure to prove 
they are not equal at that significance level. 

EHE characteris,c  Tmin/Tmax  Tmin/Tmnx  Tmax/Tmnx 

No. of EHEs per year  0.36, 0.38, 0.35   0.75, 0.70, 0.79   0.69, 0.78, 0.69  

No. of EHE days  0.42, 0.42, 0.32   0.78, 0.76, 0.82   0.76, 0.78, 0.69 

No. of early EHE days  0.27, 0.36, 0.19  0.67, 0.62, 0.72  0.48, 0.69, 0.55 

Mean EHE dura>on  0.21, 0.36, 0.34   0.72, 0.72, 0.82   0.59, 0.67, 0.69  

Mean EHE intensity  0.26, 0.32, 0.35   0.72, 0.69, 0.82   0.65, 0.67, 0.71  

Sum EHE intensity  0.44, 0.39, 0.34   0.77, 0.73, 0.82   0.79, 0.78, 0.70  
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Table 2.6. The CONUS spatial average decadal trends in the number of EHE days 
differentiated calendar date, or intra-seasonal, focus.  Three values are listed per 
time period and EHE type: between 15 May and 30 June, between 1 July and 15 
September and between 15 May and 15 September, respectively.  Shaded boxes 
indicate the sample mean trend from the 15 May to 30 June values is statistically 
different from the 38% of the 15 May to 15 September value it should be. 

Tmin EHE type  Tmax EHE type  Tmnx EHE type 

1930‐1970  ‐0.07, ‐0.87, ‐1.02  ‐0.41, ‐1.61, ‐2.23  ‐0.07, ‐0.74, ‐0.84 

1970‐2010  0.71, 1.35, 2.13  0.51, 1.03, 1.56  0.37, 0.58, 0.96 

1930‐2010  0.25, 0.25, 0.51  ‐0.10, ‐0.25, ‐0.42  0.07, ‐0.01, 0.06 
 

 

Table 2.7. Spatial correlation coefficients of trends in the number EHE days between 
different intra-seasonal focus.  The first value given, per EHE type and time period, is 
the coefficient between early season and whole season.  The second value is 
between early and late season. 

Tmin%EHE% Tmax%EHE% Tmnx%EHE%

1930%1970' 0.82,'0.63' 0.89,'0.67' 0.77,'0.55'

1970%2010' 0.87,'0.70' 0.88,'0.69' 0.86,'0.60'

1930%2010' 0.90,'0.78' 0.87,'0.57' 0.87,'0.72'  
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Table 2.8. Characterization and comparison of sign and significance of trends in 
EHEs and seasonal average temperatures.  The top four rows in the table provide 
summer average temperature trends and the bottom four the trends in EHE-days; 
columns corresponding to different extreme heat manifestations.  The first value 
listed for each entry is the percent within stations of the sample with negative trends, 
the second is the percent of stations within the sample with positive trends.  The 
values in parenthesis behind those values are the percentage of stations within the 
sample with corresponding significant trends. 

Daily&min.& Daily&max.& Daily&mean&

1930%1970' 79(49),'21(7)' 87(58),'13(3)' 85(60),'15(3)'

1970%2010' 6(1),'94(64)' 32(10),'68(32)' 16(1),'84(45)'

1930%2010' 25(3),'75(55)' 67(43),'33(16)' 47(16),'53(26)'

Tmin&EHE/days& Tmax&EHE/days& Tmnx&EHE/days&

1930%1970' 72(34),'28(6)'' 82(47),'18(2)'' 78(41),'22(3)''

1970%2010' 21(2),'79(41)'' 39(8),'64(24)'' 27(2),'73(36)''

1930%2010' 34(7),'66(39)'' 68(45),'32(14)'' 49(22),'51(26)''  

 

Table 2.9. Comparison of the average EHE and summer average Pearson’s 
correlation coefficients (through time) at each station.  From left to right are listed the 
sample-average correlation coefficients for the 1930-1970, 1970-2010 period and 
1930-2010 periods and then the average (of those three periods sample-averages) 
standard deviation.  These values are arranged vertically by seasonal average and 
horizontally by EHE type. 

Tmin%type%EHE% Tmax%type%EHE% Tmnx%type%EHE%

Daily&min.& 0.68,&0.68,&0.68,&0.08&& 0.43,&0.42,&0.39,&0.17&& 0.50,&0.51,&0.50,&0.13&&

Daily&max.& 0.48,&0.50,&0.47,&0.17&& 0.80,&0.78,&0.80,&0.07&& 0.58,&0.58,&0.58,&0.21&&

Daily&mean& 0.63,&0.65,&0.64,&0.11&& 0.73,&0.70,&0.71,&0.09&& 0.62,&0.62,&0.62,&0.11&& 
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Table 2.10. Comparison of Pearson correlation coefficients between summer 
average temperature trends and the trends in the number of EHE days.  The leftmost 
column indicates daily minimum (Tmin) temperature, daily maximum (Tmax) 
temperature and daily mean (Tavg) temperature trends.  The topmost column 
represents EHE types.  Each cells three values from left to right represent the 1930-
1970 period, the 1970-2010 period and the 1930-2010 period, respectively. 

Tmin%type%EHE% Tmax%type%EHE% Tmnx%type%EHE%

Daily&min.& 0.84,&0.68,&0.75&& 0.38,&0.27,&0.23&& 0.69,&0.55,&0.63&&

Daily&max.& 0.39,&0.27,&0.32&& 0.90,&0.84,&0.93&& 0.69,&0.64,&0.66&

Daily&mean& 0.70,&0.55,&0.62&& 0.81,&0.78,&0.81& 0.83,&0.77,&0.81&  
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CHAPTER 3. A CHARACTERIZATION OF THE ACCURACY OF HIGH-
RESOLUTION GRIDDED OBSERVATIONAL CLIMATE DATASETS FOR TREND 

ANALYSIS AND DOWNSCALING 
 
 

Full citation of corresponding manuscript 
Oswald E. M. and R. B. Rood: A characterization of the accuracy of high-resolution 

gridded observational climate datasets for trend analysis and downscaling.  
Submitted to the International Journal of Climatology. 
 

Abstract 
Gridded observational climate datasets with high spatial resolution and daily 

temporal resolution are currently some of the only tools publicly available for many 
areas of climate related research (e.g. frost days, extreme heat events).  This study 
compared the representation of temperature and extreme heat climate indices of 
three such datasets with a more trusted climate dataset.  That dataset is modern, 
well trusted and homogenized by a well-evaluated method; and was subsequently 
temporally downscaled using the daily version of the dataset.  The high-resolution 
gridded observational climate datasets being evaluated were originally constructed to 
force hydrological models and did not address issues regarding non-climatic biases, 
but are now used in other fields including atmospheric science and global climate 
model output downscaling.  These datasets were compared at the locations of the 
reference network monitoring sites and over the durations of the datasets being 
evaluated. 

The results exhibited statistically significant differences in temporal averages 
and linear trends, for all three datasets.  Explicit examinations at the continental, 
regional and small scales indicated that while the small scale dominates the spatial 
variability of the differences, the differences were also statistically significant at the 
regional and continental scales.  Maps of the results confirmed such conclusions.  
While it is well known that erroneous discontinuities arise from non-climatic biases 
(e.g. urbanization, time of observation bias, instrument changes), proxies for them 
had weak relationships with the differences.  Results indicated the differences were 
closest related to homogenization adjustments made after the “time of observation 
bias” adjustments.  Weak relationships with proxies for discontinuities and 
homogenization adjustments suggested the gridding process convolves the 
discontinuities from multiple surrounding stations to create especially discontinuous 
time series at all grid points.   

It was concluded that the next generation of high-resolution gridded climate 
observational dataset must have an amount of homogenization applied to the 
underlying data network.  Future studies focusing on how to homogenize a spatially 
dense underlying network are needed.  Acknowledgement of the uncertainty within 
downscaling products that use these datasets is essential moving forward. 
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3.1. Introduction 

Currently, gridded datasets available for evaluation of daily-scale climate at 

high spatial resolutions are not in full agreement with more trusted climate datasets 

provided by the climate community.  The lack of agreement stems from a larger 

disagreement about how to deal with inhomogeneities in climate data.  

Inhomogeneities arise from using data with discontinuities in the time series caused 

by non-climatic biases, and moreover additional inhomogeneities can arise from the 

gridding process.  Unfortunately because the differences between non-homogenized 

high-resolution climate datasets and climate community standard datasets are so 

rare, it is unclear if and how non-homogenized high-resolution gridded datasets can 

be confidently used. 

High-resolution climate datasets originated because small-scale process 

modeling over large spatial domains (e.g. hydrological modeling) requires high-

resolution serially complete gridded datasets for meteorological inputs (Christensen 

et al. 2004; El-Sadek et al. 2011).  These datasets have subsequently evolved to 

become some of the more commonly used tools to assess climate signals at high 

spatial resolution.  Regional and small-scale climate signals are particularly important 

to decision makers, as they often make decisions on those spatial scales.  Climate 

datasets that enable quantification of sub-monthly events (frost days, heat events, 

flooding) are important because those events are often very impactful.  Furthermore, 

these gridded datasets are used not only for studying historical records, but also for 

downscaling climate model output forecasts. 

The climate community approaches their datasets with a guarded 

methodology, as results are occasionally contested (e.g. Pielke Sr. et al. 2007; Fall et 

al. 2011).  The gridded datasets developed by the applications communities address 

their dataset needs from a standpoint that estimates of the variables are better than 

no estimates.  In general, these very high spatial resolution datasets are possible due 

to relaxed requirements for station inclusion and infilling (of missing values), as well 

as from use of highly resolved secondary information (e.g. elevation) to enhance 

spatial interpolation performance.  They also employ statistical models to estimate a 

suite of secondary variables (e.g. humidity, incoming radiation). 



	
   	
   	
   88	
  

Disconnects between these high-resolution datasets and the more trusted 

climate community datasets have been previously acknowledged but poorly 

quantified.  Early evaluations of similar gridded climate datasets (e.g. Moberg and 

Alexandersson 1997) concluded these datasets averaged over large spatial domains 

would be accurate due to the cancelling out of conflicting inhomogeneities.  A 2005 

study by Hamlet and Lettenmaier, established a method to effectively adjust the grid 

cell values in the Maurer et al. (2002) dataset to compensate for the discontinuities 

the underlying Co-Op data contained.  Subsequently numerous studies (Hamlet et al. 

2005; Bonfils et al. 2008; Lobell et al. 2008) have mentioned the Maurer et al. (2002) 

dataset was less than optimal for use and decided to either use other datasets or use 

the Hamlet and Lettenmaier (2005) method to construct similar, but homogenized, 

gridded products.   

Yet to date no manuscripts by the high-resolution datasets creators have been 

located, which discuss the topic of homogenization of the datasets.  Unpublished 

masters-thesis work by Scully (2010) compared monthly and annual daily maximum 

and minimum temperatures between the PRISM (Daly et al. 2008) and DAYMET 

(Thornton et al. 1997) datasets.  They found no trends and no seasonality in the 

absolute error or bias, and the averaged absolute error and bias were on the order of 

a hundredth to a tenth of a degree Celsius, but there was concerns regarding the 

dataset used to evaluate the gridded datasets.  Guentchev et al. (2010) tested the 

PRISM dataset and the dataset describe by Maurer et al. (2002) for inhomogeneities 

in the precipitation time series over the Colorado River basin, and found both to 

contain them but the Maurer et al. (2002) dataset contained more.  Hasenauer et al. 

(2003) aimed to validate the concept of the DAYMET dataset over Austria for 1960-

1999, but again the dataset was evaluated against a questionable time series. 

The purpose of this study was to evaluate three popular and highly resolved 

gridded climate datasets.  Those datasets were described by Maurer et al. (2002), 

Daly et al. (2008)/Di Luzio et al. (2008) and Thornton et al. (1997) and are referred to 

as the Maurer, PRISM/DiLuzio and DAYMET datasets.  The evaluation took place 

both at the daily scale via extreme heat indices and at the seasonal level via 

conventional temperatures.  It focused on the summer season, which is important 
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because the effects of discontinuities are often a function of season and the summer 

season is important to the heat-health discussion.  We are unaware of a similar 

evaluation of these datasets. 

The beginning of this evaluation examines whether significant temporal mean 

differences existed.  The next part addresses whether these datasets reproduced the 

temporal trends of the reference climate dataset.  Then subsequent focus was on 

what spatial scales could reproduce the trends of the reference dataset.  Lastly, 

attention was given to linking the differences to urbanization, instrument changes, 

time of observation changes and different homogenization adjustments made at the 

stations. 

 

3.3. Background and datasets 

3.3.1 Climate datasets 

The Maurer dataset spatial domain covers the CONUS plus parts of Canada 

and Mexico.  It has a spatial resolution of roughly 12 km, daily data and is serially 

complete over the 1949-2010 period.  Its widespread use has risen due to the 

dataset being used to downscale global climate model output (Maurer et al. 2010; 

Hayhoe et al. 2010) through the bias-correction and spatial disaggregation 

downscaling technique (Wood et al. 2004).  It has also been used to assess climate 

signals, for example summer nighttime temperature trends in the California’s Central 

Valley (Bonfils et al. 2007), trends in annual maximum temperatures in Florida 

(Waylen et al. 2012) and the U.S. spatio-temporal patterns in surface temperature 

caused by the El-Niño/Southern Oscillation (Zhang et al. 2012).  The dataset is 

based on the Co-Op network observations (as described in section 1.3).  There is no 

mention of disqualifying any stations due to quality concerns and the stated average 

density of stations in the underlying network implies that all Co-Op stations were 

used.  There is no mention of homogenization or addressing non-climatic biases. 

The DAYMET dataset spatial domain covers the United States, Mexico, and 

Canada.  It spans only 1980-2008 but is at a higher resolution (1 km).  The published 

and unpublished literature regarding the DAYMET dataset could be larger.  The only 
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known published literature regarding temperature is a proof of concept paper 

(Thornton et al. 1997), which provides analysis of a 400000 km2 area in the north 

west CONUS during 1989.  The temperature values in the DAYMET dataset are 

widely used in several application communities such as those modeling past and 

current fire hazard and risk (Keane et al. 2010), modeling productivity of forests 

(Turner et al. 2011; Littell et al. 2010), modeling biogeochemical cycling rates 

(Hartman et al. 2011; Pan et al. 2009), mapping past and future corn pest risk 

(Diffenbaugh et al. 2008) and modeling the transmission risk of human diseases 

(Konrad et al. 2011; Wimberly et al. 2008).  The DAYMET dataset literature states 

that it is based on observations from the Co-Op network and several hundred from 

the SNOTEL network to create its grids.  There were no mentions of disregarding 

stations due to quality concerns, or any steps taken to homogenize the time series. 

 The final dataset evaluated was a daily version of the PRISM dataset.  The 

PRISM dataset has a 4 km resolution from 1895-1997 covering the CONUS.  

Scientists of various backgrounds, including climate, created the PRISM dataset.  

The PRISM dataset has relatively sophisticated consideration of geographical 

features and quality control (Daly et al. 2008).  For example, it takes distance to coast 

into consideration (for temperature) when creating its grids.  The PRISM dataset is 

frequently used for its precipitation fields but studies also use it for its temperatures 

fields such as the projected impact the 21st century climate changes will have on tree 

growth (Williams et al. 2010), river basin crop yields (Srinivasan et al. 2010) and 

riverine nitrogen flows (Schaefer et al. 2009).  The NWS Co-Op station observations 

provide the temperature data, and there was no mention of not using stations due to 

quality.  There was no mention of homogenization efforts.  The temporally 

downscaled version of the PRISM dataset described in a study by Di Luzio et al. 

(2005) spans 1960-2001.  A similar method to that described by Hamlet and 

Lettenmaier (2005) was employed for this downscaling.  That downscaled dataset is 

the dataset evaluated and is referred to as the PRISM/DiLuzio dataset. 

Within the climate community a number of observational datasets (of surface 

climate) have been designed for determining trends, oscillations and the behavior of 

temperature at multiple spatial and temporal scales.  There is, and has been, 
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continuous effort to develop and improve the creation of the independent/optimal and 

systematic processes of homogenization, quality control, and subsequent updating 

that each dataset has in current operation.  These datasets are often funded by 

major agencies (e.g. NASA) and are widely accepted to be of high quality and are 

made publicly available; thus informally they are considered to be standards or 

"trustworthy". 

These climate-community observational dataset standards include the 

National Climatic Data Center’s (NCDC) Global Historical Climatology Network 

(GHCN)/United States Historical Climatology Network (USHCN), (Lawrimore et al. 

2011; Menne et al. 2009), the Hadley Centre and University of East Angila’s Climate 

Research Unit (CRU) datasets (Mitchell and Jones 2005), the National Aeronautics 

and Space Administration’s Goddard Institute for Space Studies (NASA-GISS) 

dataset (Hansen et al. 2010).  These datasets have monthly resolution and are either 

ungridded (GHCN, USHCN) or low resolution (CRU and GISS are 0.5° and 2.0°, 

respectively).  These datasets generally agree with one another (Rohde et al. 2013; 

Hansen et al. 2010).  The dataset for this study used was the downscaled form of the 

USHCNv2.0-monthly dataset (Menne et al. 2009), as described in section 2.2.1.  The 

USHCNv2.0-monthly dataset is appropriate to evaluate trends, but needed to be 

temporally downscaled to the daily scale (described in section 2.2.1).  We again want 

to acknowledge that an empirical method of arriving at daily data was used, but 

chose this route since there were no homogenized daily climate datasets available 

(that homogenized properly at the daily scale). 

The continental United States (CONUS) has a robust meteorological 

observing network called the Cooperative Observer (Co-Op) Network Program 

(McCarthy 2007) with roughly 7600 stations reporting daily minimum and maximum 

temperatures.  Observations from this network encompass the temperature 

information in the Maurer, DAYMET, PRISM/DiLuzio and USHCN datasets.  The 

USHCN network is a subset of 1218 Co-Op stations with longer records.  The Maurer 

dataset states that it is based on the Co-Op stations and does not acknowledge 

removing any stations.  Available information regarding the PRISM/DiLuzio dataset 

recognized the Co-Op network as its source of temperature observations but also did 
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not mention removing stations due to quality concerns.  The DAYMET dataset 

literature does not mention any needs of removing stations for any reasons, and lists 

the Co-Op network as its source of temperature observations. 

 

3.3.2 Supplementary datasets 

A gridded population dataset available at NCDC (Owens and Gallo 2000) was 

used to generate a proxy for urbanization.  The dataset spans 1930-2000 at the 

decadal temporal resolution with a spatial resolution of 1 km.  This dataset has 

previously been used to diagnose observing stations as either rural or urban 

(Hausfather et al. 2013) from the surrounding areas. 

Information regarding the instrument type at each station was used as a proxy 

for discontinuities stemming from instrumentation changes.  The list of USHCN sites 

with Maximum Minimum Temperature Sensors (MMTS) and Cotton Region Shelter 

liquid in glass thermometers (CRS) used in the Menne et al. (2010) study was used 

for establishing the majority of stations.  Stations not included in that set were 

diagnosed using the NCDC’s Historical Observing Metadata Repository.  The 

equipment listed as of summer 2010 was extracted and each station was 

subsequently categorized as MMTS, CRS, hygrothermometer or other. 

 

3.3.3. Background 

The causes of non-climatic temporal discontinuities in climate records are 

understood and there exist methods of, to some degree, correcting most of them (i.e. 

homogenization as in section 1.4.1).  The pairwise comparison method is a popular 

method of homogenization, and fully described elsewhere (Menne and Williams Jr. 

2009).  This method uses the time series of difference between a station and its 

highly correlated neighbors to detect the time and magnitude of discontinuities.  This 

method was used to homogenize the USHCNv2.0-monthly dataset (Menne et al. 

2009) and has been defended as robust and objective (e.g. Menne et al. 2010). 

Discontinuities stemming from changes in what time of day the temperatures 

were observed at, referred to as the “time of observation bias” are well documented 
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(Baker 1975; Karl et al. 1986; DeGaetano 1999; Belcher and DeGaetano 2005) and 

are corrected for in the USHCNv2.0-monthly dataset (Menne et al. 2009; Vose et al. 

2003).  Likewise, discontinuities stemming from development/urbanization of the local 

scale surroundings affecting the temperatures at a station are documented (Karl et al. 

1988; Gallo et al. 1996; Menne et al. 2009).  The pairwise comparison method the 

USHCNv2.0-monthly employs corrects those biases (Hausfather et al. 2013).  

Similarly, changes in microscale surroundings and station relocations also create 

erroneous discontinuities.  The pairwise comparison method corrects these errors as 

well.  Instrument changes at a station also create discontinuities and should be 

corrected by the pairwise comparison method.  Metadata indicating when the non-

climatic biases occurred at each station were not necessary.  The pairwise 

comparison method does not require documentation to detect points in time where 

non-climatic biases caused shifts in the time series. 

 

3.4. Methods 

3.4.1 Comparison description 

The comparison occurred during the summertime (i.e. May 15 through 

September 15) using five metrics.  Three of which were extreme heat indices; 

specifically summertime percentile exceedence and the sum of participating extreme 

heat event (EHE) days per summer, referred to as percentile exceedence counts 

(PEC) and EHE-days.  The 90th percentile was chosen as the threshold because it 

equates to the widely used “warm night” and “hot day” climate indices.  An EHE was 

defined as a period that began when two or more consecutive daily maximum and 

minimum percentile exceedences occurred and ended when either the running mean 

percentile for the daily maximum or minimum ceased to exceed the threshold 

(following the methodology in section 2.2.2).  The other two comparison metrics were 

summer-mean daily maximum and minimum temperatures.  The comparisons were 

through the differences in those metrics, and those differences were calculated by 

subtracting the value of the metric in the USHCN dataset from that in the gridded 
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dataset, for each location of comparison and year of available data.  These 

differences were referred to as residuals. 

These comparisons between the gridded datasets and the downscaled 

USHCN dataset occurred at the locations of selected USHCN stations, referred to as 

comparison-locations.  Bilinear interpolation from the nearest grid points provided the 

time series from the gridded datasets at comparison-locations.  Since the USHCN is 

a subset of the Co-Op network and the gridded datasets use all of the Co-Op network 

stations it was assumed that the same Co-Op station within the USHCN network 

should predominantly influence the time series at the comparison-locations within the 

gridded datasets.  The difference is the time series of the Co-Op stations at the 

comparison-locations were homogenized within the USHCN network but not in the 

underlying data within the gridded datasets.  The high spatial resolution of these 

grids should minimize both the influences of the interpolation techniques used to 

estimate time series at the gridpoints and the bilinear interpolation used to estimate 

the time series at the comparison-locations. 

Appropriate sets of USHCN stations to be used for comparison-locations were 

chosen based on meeting several requirements (nearly identical to those in section 

2.2.1).  The sets were unique to each dataset being evaluated because each gridded 

dataset spanned a different time period.  The evaluation of each dataset matched the 

time span of that dataset: 1949-2010 for the Maurer dataset, 1960-2001 for the 

PRISM/DiLuzio dataset and 1980-2008 for the DAYMET dataset.  The first set of 

requirements were having at least 80% of the years available, 70% available in both 

the first and second half of the period and having available data both the first or 

second-to-first and last or second-to-last years of each period.  A year’s data was 

only considered available if all five summer months (i.e. May, June, July, August and 

September) were present in both the daily maximums and minimums.  This left 325 

USHCN stations in the Maurer evaluation set, 408 stations in the PRISM/DiLuzio set 

and 272 stations in the DAYMET set. 

The next requirement was that no station could have the worst site-quality 

rating in the surfacestations.org project.  Consequently, stations with compromised 

sittings were not included in the set of comparison-locations.  This left 315 stations in 



	
   	
   	
   95	
  

the Maurer evaluation set, 395 stations in the PRISM/DiLuzio set and 267 stations in 

the DAYMET set. 

The next requirement ensured the climatology period would have a robust 

amount of data at each station.  The Maurer and PRISM/DiLuzio climatology periods 

were 1971-2000, but because the DAYMET dataset didn’t have any data in the 

1970s, the climatology period was 1980-2010.  The requirements were that at least 

135 (out of 150) months were available, and that 27 (out of 30) years were available 

for each month.  This left 272 stations in the Maurer set, 360 stations in the 

PRISM/DiLuzio set and 248 stations in the DAYMET set. 

The last two requirements ensured the monthly data in the USHCNv2.0-

monthly dataset were robustly original, rather than estimated by the USHCNv2.0-

monthly infilling algorithms.  Specifically, the first requirement was that 90% of the 

available data in the time period was original for each station.  This left 245 stations 

in the Maurer set, 301 stations in the PRISM/DiLuzio set and 196 stations in the 

DAYMET set.  The second requirement ensured the climate base period specifically, 

had original data.  Thus 90% of the data during the respective 30-year climate base 

period were required to be original.  This left 202 stations in the Maurer set, 247 

stations in the PRISM/DiLuzio set and 156 stations in the DAYMET set. The bulk of 

the comparisons focused on climate indices of extreme heat.  These indices were 

specifically summertime percentile exceedence and the sum of participating extreme 

heat event (EHE) days per summer, and again are referred to as percentile 

exceedence counts (PEC) and EHE-days.  Summertime was defined as May 15 

through September 15.  The 90th percentile was chosen as the threshold because it 

equates to the widely used “warm night” and “hot day” climate indices.  An EHE was 

defined as a period that began when two or more consecutive daily maximum and 

minimum percentile exceedences occurred and ended when either the running mean 

percentile for the daily maximum or minimum ceases to exceed the threshold 

(following the methodology in section 2.2.2). 
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3.4.2. Percentiles, biases and residual trends 

The time series of temperatures, from both gridded and USHCN station 

datasets at each comparison-location, were turned into time series of percentiles.  

The percentiles at each comparison-location were determined relative to the past 

values at that comparison-location, on similar calendar dates within the climate base 

period.  This climate base period was built following the suggestions in the Zhang et 

al. (2005) study evaluating percentiles and climate base periods. For example, one 

consideration was the method of subsampling used to select the values within the 

climate base period for calculating each percentile.  This analysis used a window size 

of 15 consecutive dates centered on the calendar date (e.g. the sample for June 15th 

consisted of data from June 7th to 22nd) (as described in section 2.2.2; Figure 2.1). 

The climate base sample that the percentiles were established from, for both 

the USHCN and the gridded datasets, was built using only the USHCN data.  This 

was done because the DAYMET dataset only had 29 years worth of data and 

because the USHCN data was not afflicted by any erroneous discontinuities.  

Furthermore, holding the climate base sample constant allows for clearer 

interpretation of the results.  This required the times series from the gridded dataset 

be brought into line with their USHCN counterparts.  The mean difference was 

quantified over all (summertime) calendar dates and all years of available 

overlapping data, separately at each comparison-location and for each daily 

temperature extreme.  These values were subsequently used to force the means of 

the gridded time series to equate to those of the USHCN time series (i.e. subtracted 

the quantified mean difference value from each individual value within the gridded 

time series).  These temporal mean temperature differences comprise two of the 

comparison metrics, as will be described in this section. 

The percentiles were calculated by first calculating the empirical cumulative 

distribution function (Kaplan and Meier 1958), which assigned a percentile (yo) to 

each temperature value (xo) from the climate base period sample.  Subsequently, 

bilinear interpolation was used to find the value (yi) of the aforementioned percentile 

function (yo) at the target temperature value point (xi) in the climate base period 

temperature function (xo).  If the target temperature value (xi) was larger (smaller) 
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than any value in the climate base period sample (xo) then it (yi) was assigned a 1.0 

(0.0). 

Of the five comparison metrics, only the summer mean daily maximum and 

minimum temperatures evaluated the differences in the temporal average, and were 

referred to as biases.  The biases, as described previously, were the mean residuals 

(i.e. differences) quantified over all summertime calendar dates in all years of 

available overlapping data.  They were tested for statistical significance using 

Student’s t-tests.  Significance was at the 90% confidence (or alpha = 0.10) level.  

Conversely, the trends were evaluated via the three heat indices by evaluating the 

linear trends in the residuals, referred to as the residual trends.  Residual trend 

magnitudes were estimated through the ordinary least squares method and the 

statistical significance was indicated by non-inclusion of the zero value for the 90% 

confidence intervals of that estimated trend.  Trends calculated using non-parametric 

methods were evaluated (for assurance), but were decided against because of 

uncertainty in handling missing values.  Those results, however, confirmed the trends 

presented. 

Because both the USHCN and gridded datasets use the same data from the 

Co-Op network, the USHCN is not in the conventional position to evaluate the 

absolute accuracy of the values in the gridded datasets (e.g. the USCRN network 

observations (Heim Jr. 2001), which are in pristine locations with multiple 

simultaneous observations).  However since the noteable differences in the datasets 

lie in station quality requirements, homogenization and the subsequent grid creation, 

if the biases and temporal residuals were statistically significant and can be attributed 

to the effects of the non-climatic discontinuities then a reasonable conclusion was the 

lack of homogenization generated error(s) in the data. 

 

3.4.3. Continental averages 

For all five comparison metrics, the continental mean residuals each year were 

calculated to display time series of the residuals for all three datasets.  The 

continental averages of the residual linear trends were also provided.  Determination 
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of the CONUS spatial averages required creating a gridded product from the 

ungridded distribution of values; this was done for both residual trends and biases 

using Esri ArcGIS software (Esri Corporation, Redlands, CA).  The common “inverse 

distance weighting” method (exponent of distance weighting of two) estimated the 

values at each grid point using the underlying comparison-location values.  For each 

grid point, values from the ten nearest comparison-locations were used to determine 

the value.  To ensure sensitivity to map-making methods with the spatial distributions 

of the evaluation sets was not substantial, grids were also constructed via the 

“Ordinary Kriging” (OK) interpolation method (Holdaway 1996).  Kriging is a 

geostatistical estimator used to infer values at unobserved locations based on values 

at known locations, and a popular interpolation method. 

Only grids with centroids within the continental United States were used in the 

averaging process.  When calculating the continental spatial mean each grid cell was 

weighted by the cosine of its latitude.  This was done because the spatial area of 

northern gids was smaller than that of southern grids, due to the arrangement of the 

grid.  The averaging was done using a bootstrapping procedure that created 7500 

means with sample replacement and subsequently the median mean was 

determined along with the 90% confidence intervals. 

 

3.4.4. Spatial variability 

Evaluation of the spatial variability was partially accomplished via maps of the 

comparison-locations.  Maps were created showing either the residual trend 

magnitudes, or biases, at each comparison-location and their statistical significance.  

This allowed visual analysis of spatial patterns and offered support to the results of 

tests in spatial variability at different scales. 

 

3.4.5. Regional and small-scale variability 

Objective testing of the agreement in residual trends at the regional scale 

prompted splitting the country into regions: north west, south west, north central, 

south central, north east and south east.  The country was delineated using the 100-
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degree longitude line, the 39.72-degree latitude line and either the 83 or 87-degree 

longitude line (in the north and south, respectively).  To avoid influence on the 

comparison-location distributions within each region, the grid points (see section 

3.5.1) within each region were used instead of the comparison-locations. 

Next the spatial autocorrelations of the residuals trends were examined, using 

Esri ArcGIS software.  The distances between each comparison-location were 

estimated with the simple spherical law of cosines formula.  Using the distances 

between comparison-locations and the residual trends at each one, the “Moran’s I 

test” (Moran 1950) estimated the Moran’s index statistic, which indicates where on a 

spectrum (-1 to +1) the pattern was from perfectly dispersed (i.e. spatial anti-

autocorrelated) to perfectly clustered (i.e. spatial autocorrelated).  It also provides P-

values for inference of the statistical significance of each index value estimated.  

Lack of meaningful autocorrelations was taken as indicative of large amounts of 

small-scale variability relative to the regional-scale variability. 

 

3.4.6. Relationships with non-climatic bias proxies 

In an attempt to discuss the physical drivers behind the differences these high-

resolution gridded climate datasets had with the USHCN dataset; residual trends 

were assessed for relationships with external information variables inherent to those 

comparison-locations.  Pearson’s correlation coefficients were calculated over the full 

set of comparison-locations evaluating each dataset (i.e. estimated the spatial 

correlation).  These correlations were with proxies for known causes for non-climatic 

bias type discontinues. 

Before correlations with the proxy for urbanization were calculated from the 

population dataset, sensitivity of the correlations to the sampling radius (of the 

population 1km grids) surrounding each comparison-location was breifly examined.  

After preliminary examination of the correlation coefficients over a wide range of radii 

it was decided to move forward using the radius corresponding to the largest 

coefficient between the nearest 5 to 65 grid cells (~1-4km radius).  This was 

separately done with each dataset and heat index.  Subsequently the ordinary least 
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squares estimated linear trend in population over that radius from 1950-2000, 1960-

2000, 1980-2000 for the Maurer, PRISM/DiLuzio and DAYMET datasets 

(respectively), provided the population change values.  The sets of these values, for 

each dataset, represent the urbanization proxy. 

Proxies for different amounts of homogenization applied to the USHCN 

dataset were quantified and subsequently correlated with the residual trends in the 

heat indices for each dataset being evaluated.  This was feasible (within the scope of 

this work) because the USHCNv2.0-monthly dataset is publicly available in three 

versions: adjusted for time of observation bias only (TOB adjusted), fully adjusted 

(fully adjusted) and completely unadjusted (raw).  After aggregation of USHCNv2.0-

monthly values into summer mean temperatures, three time series were calculated 

by subtracting: TOB adjusted values from raw values (proxy for TOB adjustments), 

fully adjusted values from raw values (proxy for all adjustments) and fully adjusted 

values from TOB adjusted values (adjustments post TOB adjustments).  This was 

done separately for each daily temperature extreme; subsequently the linear trends 

were estimated for each of these resulting six time series.  These linear trends were 

the proxies for three levels of homogenization. 

As a proxy for changes in instrument type; the residual trends were grouped 

by current instrument type (MMTS, CRS or hygrothermometer) and the group means 

compared with one another.  This was done in residual trends across the three heat 

indices and datasets.  The comparison was done by the median of 7500 means 

estimated via bootstrapping, and significant differences were determined by non-

overlapping 90% confidence intervals. 

 

3.4.7. Interpretation of gridded extreme heat index trends 

It was potentially a beneficial exercise to produce and examine grids of trends 

in extreme heat indices from a gridded dataset, post the conclusions about the 

uncertainties within these datasets.  The Maurer dataset was chosen and the time 

period was 1970-2010 to match the chapter 2 analysis.  The methodology for 

processing these grids (e.g. percentiles, EHE definition) was like that described in 



	
   	
   	
   101	
  

chapter 2, except here the Maurer dataset observations were used for its climate 

base period.  The only EHE characteristics quantified here were the number of EHEs 

and the mean duration of those events each summer.  All three EHE types (as 

described in section 2.2.2.) were quantified and thus six maps were made.  Statistical 

significance was also determined at each gridpoint and indicated on the map. 

 

3.5. Results 

3.5.1. Biases and continental averages 

Nearly all comparison-locations (89-99%) had statistically significant biases 

(Table 3.1).  Most comparison-locations showed positive bias (i.e. gridded time series 

were warmer than USHCN station time series) of the daily maximum, and the daily 

minimum bias was less consistent but was generally negative.  Continental averages 

of the biases (Table 3.2) supported those results including the (spatial) statistical 

significance of the biases.  While statistically significant, these values were two to 

three orders of magnitude smaller than the summertime mean temperatures they 

were evaluating. 

The time series of the annual continental mean residuals (Figure 3.1) 

displayed the residuals varied through time from short to long time-scales, and 

appeared to vary independently of the other datasets as well as from the other daily 

temperature extreme.  For example, the time series seemed to (temporally) vary from 

inter-annual to long-term trends and the daily maximum summer-average 

temperatures and PEC residuals varied dissimilarly (Pearson’s temporal correlation 

coefficient for the PRISM/Diluzio residuals was 0.35).  The jump in the 

PRISM/DiLuzio biases in Daily minimum PEC in the late 1990s was also notable. 

Regarding residual trends, the popular sign and percent of significant residual 

trends showed 25-75% of the comparison-locations were significant depending on 

heat index and dataset (Table 3.1).  The continental mean results (Table 3.2) 

indicated the trends were commonly (5 out of 6) the opposite sign of the 

corresponding biases (summer mean daily maximum and daily maximum PEC), and 

results from table 3.1 did not disagree with that (4 out of 6).  Bootstrapping of the 
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continental averages indicated all were statistically significant.  Continental mean 

biases and residual trends both varied by heat index and dataset.  The EHE-days 

index consistently showed characteristics similar to both the two PEC trends.  The 

magnitudes of the trends in EHE-days within the USHCN dataset and gridded 

datasets were also provided, and show the trends to be from double to an order of 

magnitude larger than the residual trends.  Statistically significant distinctions were 

not seen between methods of map making (Table 3.3). 

The continental mean residual trends varied by dataset; which was anticipated 

in small part due to different spatial coverages of comparison-locations, but primarily 

because of time period differences.  It was unexpected that the biases and residual 

trends were statistical significant at the continental mean level.  Both the biases and 

residual trends at the continental level were notably smaller than the temperatures 

and index trends they evaluated, but the biases were much smaller than their 

counterparts.  The residual trends were of the opposite sign of the mean biases, 

which signifies that further backwards in time the residuals were larger.  This is 

typical of differences between homogenized and non-homogenized time series 

(Peterson and Vose 1997). 

 

3.5.2. Spatial Variability 

The spatial patterns of biases (Figure 3.2) were spatially ‘noisy’ at small 

scales, supported the table 3.1 and 3.2 results, and did not resemble the linear 

trends in the summer mean temperatures during this period (not shown).  Particularly 

visible was the abundance of comparison-locations over 1 °C (theoretically 32% of 

comparison-locations exist outside +/- 1 standard deviation) including 1 comparison-

location in the north east region with biases over 4 °C.  Thus biases at the small 

scale were of a more similar magnitude to the continental mean summertime 

temperatures. 

Evaluation of PEC residual trend maps of each comparison-location’s 

magnitude and statistical significance (Figure 3.3) indicated spatial patterns 

appeared generally anti-correlated with the patterns in the biases (Figure 3.2).  This 
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was confirmed by (spatial) correlation coefficients between biases and residual 

trends ranging from -0.13 to -0.57 (not shown).  The spatial patterns were different 

depending on daily temperature extreme, but how different, varied with dataset.  For 

example, the spatial patterns of Tmin and Tmax PEC looked dissimilar in the Maurer 

dataset, but similar in the PRISM/DiLuzio dataset.  All spatial patterns were 

dominated by small-scale variability, however there did exist some distinguishable 

regional coherency.  For instance, the south west region of the Tmin PEC residual 

trends in the Maurer dataset appeared to have positive residual trends (i.e. larger 

trends in the gridded dataset).  The mapped results also confirmed that the 

abundances of comparison-locations with statistically significant residual trends were 

not sensitive to daily temperature extreme but did vary with dataset being evaluated 

(~45-74%; Table 3.1). 

Maps of the EHE-day residual trends (Figure 3.4) also exhibited the 

dominance of small-scale variability.  Comparisons with the PEC residual trend maps 

(Figure 3.3) suggested the spatial distributions of EHE-days had similar spatial 

patterns, but were neither strictly an average of the two daily temperature extreme 

PECs nor identical to one particular daily temperature extreme PEC.  It appeared that 

there were fewer instances of statistically significant residual trends in the EHE-day 

index than either of the PEC indices.  Comparisons were provided with maps of EHE-

day trends in the gridded datasets and in the USHCN station data (Figure 3.5), which 

illuminate how much more (less) small-scale (large-scale) variability exists in the 

trend residuals (trends) of the heat indices we were comparing. 

Anti-correlation of the spatial patterns between biases and residual trends was 

indicative that the residuals generally shrank forward in time, as homogenization 

typically induces.  Contrary to previous conclusions that suggested they should 

average out at larger scales, results indicated regional variability and continental bias 

existed.  As illustrated in the time series, the differences in residuals between 

datasets and daily temperature extremes were indicative of the impacts the methods 

of interpolation and spatial resolution have. 
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3.5.3. Regional and small-scale variability 

Further investigation of the biases was omitted due to the relatively smaller 

size of the biases compared to what they evaluated.  The results of grouping the 

residual trends by geographical region indicated regional-scale variability existed in 

the trend residuals (Table 3.4).  Across all three datasets and heat indices, significant 

disparities existed between the different regional mean residual trends.  The ratio of 

dissimilar to similar regions varied from roughly 3 to 5.5, depending on dataset.  The 

sensitivity to map-making method again was not statistically significant (Table 3.5).  

Features seen in the maps were confirmed here, such as the south west region daily 

minimum PEC residual trends being positively biased. 

The results of the evaluation of the spatial patters from an autocorrelation 

standpoint indicated dominance of small-scale variability over regional clustering.  

The Moran’s I index values for the residual trends were very small (Table 3.6), 

indicating the variability within regions was large compared to the variability between 

regions.  Comparing the residual trends to the trends in the heat indices themselves 

(not shown) displayed the Moran’s I index values were an order of magnitude smaller 

in the residual trends.  That implied the small-scale variability was relatively larger 

than the regional variability in the residual trends than it was in the trends in the heat 

indices. 

 

3.5.4. Relationships with proxies 

The population trends surrounding each comparison-location (i.e. the 

urbanization proxy) had the largest correlation coefficients at 3.61km, 3.00/1.12km 

and 1.80km for the Maurer, PRISM/Diluzio and DAYMET datasets, respectively 

(Table 3.7).  Radii were consistent between heat indices for two out of the three 

datasets, but were not consistent across datasets.  Correlation coefficients ranged 

from 0.03-0.17 and less than half were statistically significant. 

Comparisons of the residual trend means for each instrument type (Table 3.8) 

displayed that about a quarter of the groupings were statistically dissimilar.  The 
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DAYMET dataset had the most instances of dissimilar groupings, and the 

PRISM/DiLuzio dataset had no groupings deemed to be statistically dissimilar.  The 

heat index with the most dissimilar groupings was EHE-days, and the grouping that 

was most dissimilar was the “MMTS compared to CRS” grouping. 

The correlations with the levels of homogenization proxies (proxy for TOB 

adjustments, adjustments post TOB adjustments and all adjustments) showed 

coefficients (Table 3.9) ranged from 0.03-0.84.  The proxy for TOB adjustments 

exhibited substantially smaller coefficients (0.03-0.37) than the coefficients for the 

proxy for adjustments made post TOB adjustments (0.16-0.82).  The proxy for all 

adjustments had the largest coefficients (0.18-0.84).  The Maurer dataset typically 

had larger coefficients than the other datasets did.  The coefficients corresponding to 

the adjustments made post TOB adjustments proxy had larger coefficients with the 

daily maximums than minimums, but both the proxy for adjustments post TOB 

adjustments and the proxy for all adjustments showed larger coefficients with the 

daily minimums. 

The proxy for all adjustments being larger than the other two homogenization 

proxies was anticipated, but the coefficients for the proxy for all adjustments was 

lower than expected.  The small spatial correlation coefficients might have been due 

in part to poor performance of the proxies, however the correlations were very low 

and had substantial variability.  The variability across datasets with the population 

dataset sampling radii was expected however, as these datasets all have different 

spatial resolutions and interpolation methods. 

 

3.5.5. Construction of gridded extreme heat index trends 

The grids of an extreme heat index (number of EHE days per summer) 

produced by the high-resolution datasets for post conclusions discussion, were 

available (Figures 3.6-3.11) for visual analysis.  These resulting grids will be 

evaluated and interpreted in the discussion section. 
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3.6. Conclusions and discussion 

3.6.1 Conclusions regarding residuals 

Both the summer mean temperature residuals (i.e. biases) of the datasets 

being evaluated were statistically significant.  The percentages of comparison-

locations with significant biases and the statistically significant continental averages 

cemented such conclusions.  Albeit, the biases were substantially smaller than the 

summer mean temperatures being evaluated and thus for some applications the 

biases may be irrelevant.  Regardless this was meaningful because these datasets 

are used for downscaling global climate model output.  Issues at the temporal mean 

level within these high-resolution gridded climate datasets likely impact that 

downscaled output, regardless of downscaling method.  Thus while such 

downscaling spatially resolves model output it likely introduces uncertainty, which is 

regularly not recognized and/or discussed. 

Our conclusions diverge from the notion that the inaccuracies from 

discontinuities cancel one another out over large scales.  Results in the Scully (2010) 

work related to large-scale averages were mixed: the daily maximum temperature 

bias in the DAYMET dataset was trivial, but those in the daily minimums and both 

daily temperature extremes in the PRISM dataset were not.  There were similarities 

(similar magnitude of PRISM bias values to our PRISM/Diluzio bias) and 

dissimilarities (0.18 vs. 0.00 °C daily maximum bias) between the continental mean 

biases found in our study and those Scully (2010) indicated in the annual 

temperature biases.  However any comparison is difficult because the Scully (2010) 

investigation focused on annual temperatures and did not fix the discontinuities in the 

time series used to evaluate the gridded datasets.  Hasenauer et al. (2003) indicated 

essentially zero biases over a smaller region (Austria) for the DAYMET dataset, but a 

similar lack of homogenization and summer season focus mades comparisons 

difficult. 

The residual trends of the heat indices were statistically significant across 

spatial scales, and largest at small scales.  The percentage of comparison-locations 

with significant trends and the significance of the continental mean residual trends 
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again prompted such conclusions at the large scale.  Regional and autocorrelation 

tests drove the small to regional-scale conclusions, and maps supported those 

conclusions as well.  While more comparable than the biases, the residual trends still 

were sometimes an order of magnitude smaller than the trends they evaluated.  

Results also suggested residual trends to be more comparable to what they 

evaluated at smaller scales.  These conclusions imply trends of features of any 

spatial scale should be considered to have uncertainty attached to them related to 

the lack of homogenization.  This was meaningful because it has not been quantified 

previously and thus contributes to the informed use of the dataset for trend analysis.  

Particularly uncertainty should be acknowledged in small-scale features of trends.  

Also important was the existence of errors at the continental level because of 

previous conclusions that large-scale features would be free of error.  Disagreement 

with the Hasenauer et al. (2003) conclusions of no residual trends on the spatial 

mean was reasonable due to lack of homogenization of the reference time series. 

The residuals were highly variable.  They varied temporally and across time-

scales, which was seen in the time series.  The biases varied spatially, as did the 

residual trends.  Both were explicitly confirmed to be significant at the continental 

scale and the residual trends also confirmed at the regional and small scales.  Maps 

indicated that the biases likely vary as well at the regional and near certainly at the 

small-scale, but variability at these scales was not actually tested.  The residuals 

acted differently depending on comparison metric and dataset, as was also seen in 

the time series.  These conclusions were noteworthy because they imply that easy 

solutions/corrections to the datasets are unlikely and homogenizing the underlying 

data may be the only solution.  Due to paucity of evaluations of these datasets there 

aren’t other studies to compare these conclusions to. 

Both biases and residual trends were primarily caused by non-climatic 

discontinuities.  These conclusions were based on the way the residuals generally 

shrank forward in time and the correlation coefficients between the residual trends 

and the proxy for all the homogenization adjustments.  Our disagreements with the 

Scully (2010) and Hasenauer et al.(2003) studies also support such conclusions as 

they evaluated the gridded datasets against non-homogenized datasets.  Such 
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conclusions were meaningful because they imply that proper homogenization of the 

underlying data can potentially substantially improve the quality of these datasets.  

The improvements the Hamlet and Lettenmaier (2005) method bring to these 

datasets are a testament to how non-climate discontinuities are a major problem in 

these datasets. 

The residual trends were not strongly correlated with proxies for non-climatic 

biases or homogenization adjustments at each comparison-location.  The results of 

correlations between residual trends and the proxies (homogenization and 

urbanization), and the lack of distinctions seen in the residual trends between 

comparison-locations of different station instrument type, prompted such conclusions.  

These results were important, as will be discussed below, because they provide 

insight into how these differences arise. 

Results suggest that the adjustments correcting discontinuities unrelated to 

the TOB were responsible for the majority of the residual trends.  This implies the 

TOB-related adjustments were a relatively small part of this homogenization process.  

Causes of non-climatic biases adjusted post TOB-adjustment includes:  urbanization, 

microclimate influences, instrument changes and station relocations.  However, weak 

relationships were found between residual trends and proxies for urbanization and 

instrument changes, which suggests microclimate changes and station relocations 

play meaningful roles. 

Furthermore it can be argued the spatial distribution of station relocations and 

microclimate influences would be relatively dominated by small-scale variability.  

Biases due to instrument changes are generally a function of the climate they monitor 

in, and thus should have regional variability (Quale et al. 1991).  Similarly, the 

influence of urbanization is also a function of the climate being monitored in 

(Grimmond et al. 2010) and furthermore land use changes during the 1950-2000 

period were geographically clustered (Brown et al. 2005).  Biases that arise from 

TOB discontinuities are a function of the levels of temperature persistence (Belcher 

and DeGaetano 2003), which is also geographically controlled (e.g. coastal areas).  

Conversely, station relocations and microclimate influences have no 

geographical/climate controls and thus the errors they instill would have relatively 
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large small-scale variability. 

Another source of the residuals was the gridding process and comparing grids 

to point sources.  During the gridding process discontinuities can arise from changes 

in the set of comparison-locations used to determine the grid points, via missing data 

or stations going in and out of use during the dataset duration.  Discontinuities also 

arise at a comparison-location due to the aliasing of discontinuities in surrounding 

stations into that estimated time series.  The time series at each grid point was 

constructed using an interpolation method (methods are not consistent between 

datasets) that employs input of numerous surrounding stations’ time series.  Since 

the four surrounding grid points were interpolated to generate the time series at the 

comparison-locations, that time series was a function of numerous stations 

surrounding the comparison-location.  Effectively merging all time series 

discontinuities from several surrounding stations into the time series at every grid 

point.  This error source potentially explains the lack of stronger correlations with 

proxies of non-climatic biases and homogenization adjustments in this study.  These 

errors are a source of uncertainty rarely discussed.  Thus, while ideally the time 

series at each USHCN location could be reconstructed by interpolating the four 

surrounding grid points, it makes more sense that such a reconstruction would be 

dissimilar. 

 

3.6.2. Discussion regarding gridded extreme heat index trends 

 As explained in section 3.4.7 an interpretation of the trends of an extreme heat 

index in a gridded dataset is provided below.  The trends in Tmin EHE duration and 

frequency (as described in section 2.2.2 and 2.2.3) within the Maurer dataset are 

provided in figure 3.6 and figure 3.7.  While it was clear in both grids that small-scale 

variability/features exist, they should be only lightly trusted here.  This study 

demonstrated the trends in a similar extreme heat index were inaccurate (on the 

order of days per decade), and the bulk of those errors operate at the small-scale.  

Thus it would be less than robust to have much confidence in these small-scale 

features.  However there exists regional variability in these figures as well.  The 
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majority of the south showed increase (excluding southern California, Nevada and an 

area from Kansas through north Texas).  There also exists a region in the north 

central US that displayed slight decreased EHE activity, but it was less consistent 

(e.g. the frequency slightly increased). 

Since this study demonstrated that there existed errors operating at the 

regional scale, there was an amount of skepticism, but a region of some amount of 

increase in the south could still be a confident conclusion.  However, there was less 

confidence in the existence of a region of decrease in the north – partly due to a 

weak signal but also due to smaller spatial extent.  On the continental scale, there 

seems to be a small dominance of increasing trends in both EHE frequency and 

duration.  Since this study’s results indicate an amount of uncertainty at the 

continental scale, such a conclusion might be in relatively low confidence 

Both maps of Tmax type EHE (as described in section 2.2.2.) trends also 

show small-scale variability in the trends of both EHE characteristics (Figures 3.8, 

3.9).  Again, while some of these features can be interesting limited confidence 

should be given for features of small scale in this gridded dataset. 

Conversely, in both maps there was an increase in a region centered on Utah 

or Colorado and a region of decrease in the north central region.  Other regions of 

increase and decrease exist but were not coherent across frequency and duration.  

The trends were convincing in both regions, and so mild confidence could be had in 

an increase/decrease in these regions.  On the continental scale, neither sign was 

particularly strong, perhaps decreasing trends dominated.  Regardless the existence 

of uncertainty at the continental scale might eliminate what little confidence in that 

decrease one can acquire from a visual analysis of these maps. 

The maps of the Tmnx type EHE (as described in section 2.2.2.) trends 

display a relatively large amount of regional scale variability in addition to the typical 

amount of small-scale variability (Figures 3.10-3.11).  Again, most all small-scale 

features should be considered with caution due to the uncertainty at that scale in the 

Maurer dataset. 
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The north central region displayed decreasing frequency and duration trends, 

and the south west and south east regions had frequency and duration trends of 

increase.  It was hard to know whether the south central region actually separated 

the regions of increase because it was a small area (of generally mixed sign trends), 

and thus uncertainty was relatively large.  Similarly, the confidence in the decreasing 

region (north central) was less than the regions of increase because it was smaller in 

areal extent than the increasing region(s).  On the continental scale the grids only 

suggest a very small positive bias and thus confidence in a positive continental-scale 

trend was very small. 

 

3.6.3 Discussion regarding the Hamlet and Lettenmaier (2005) correction method 

The work in both this chapter, and chapter 2, lent itself to thinking about the 

role of homogenization, scales and gridding in observational datasets.  Specifically in 

chapter 2 the temporal downscaling of the monthly data was not dissimilar from the 

Hamlet and Lettenmaier (2005) (HL) method of adjusting unhomogenized Co-Op 

derived datasets in order to better align with more trusted climate datasets.  

Moreover, this chapter compared gridded Co-Op data to points for comparison with a 

well-homogenized climate dataset, which was similar to comparing grids of 

homogenized and non-homogenized climate data (as is done in the HL method). 

The HL method has not been explicitly evaluated in the literature; the only 

known published evaluation was by said authors and its impact on the ability to 

model normalized stream flow.  Its theoretical workings have not been discussed in 

the literatures either.  However there are numerous studies that use the method of 

correction.  Thus thoughts concerning the method, its limitations and how it can be 

improved are briefly given here in hopes to inform the authors of the next generation 

of gridded products. 

The HL method consists of six simple steps.  First a monthly, homogenized 

dataset – typically the USHCN (1218 stations) – is gridded to 1/8th degree spatial 

resolution (adjusting also for elevation at each point).  Then, post infilling of individual 

days, a (much larger) subset of the daily data from the Co-Op network is gridded to a 
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matching 1/8th degree resolution (also adjusting for elevation).  Thus while the 

gridded day-to-day variability operates at a high spatial resolution (because of the 

dense data source distribution of the Co-Op subset), the gridded USHCN monthly 

averages are effectively at a much lower resolution (e.g. that of the USHCN network).  

The Co-Op daily grid is subsequently aggregated to produce monthly 1/8th degree 

resolution grids.  Then both the USHCN and Co-Op monthly grids have a three-

monthly-running mean applied to each grid point, and subsequently the differences 

between the USHCN and Co-Op values for each month-grid point are quantified.  

Those differences are used to adjust the Co-Op monthly grids to match the USHCN 

grid points.  Then the day-to-day anomalies (with respect to the monthly average) are 

calculated based on the daily Co-Op grids.  Subsequently those anomalies are used 

in conjunction with the adjusted Co-Op monthly grids to make daily grids loosely 

equal to the USHCN dataset.  Full details are available in the Hamlet and 

Lettenmaier (2005) study. 

Subsequent mathematical combination of these two grids results in the daily 

scale variability and monthly scale variability not operating at the same spatial 

resolution.  The problem is clear when such a dataset is averaged to the monthly 

scale and the spatial variability drops down to the much lower resolution, a physically 

not realistic scenario.  Furthermore, in an attempt to incorporate a portion of the high 

spatially varying information, discontinuities are less than optimally handled.  

Specifically, by forcing the three-month-running mean grids to equate instead of the 

raw grids to equate, abrupt discontinuities are adjusted over three-month periods 

instead of instantaneously.  Thus discontinuities will still occur but are gradually, and 

erroneously, ‘corrected’ over three months; this could have a significant impact on the 

month before and month after a discontinuity. 

A way to move forward on both fronts is herein proposed.  It method starts 

with the full 1218 USHCNv2-monthly stations that are well homogenized as 

explained in the Menne et al. (2009) study.  Iteratively, a pairwise homogenization 

algorithm is used with those stations to homogenize the time series of nearby Co-Op 

station not previously included in the USHCN network of 1218, and then 

subsequently add those newly homogenized stations to the group of USHCN stations 
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(herein referred to the “homogenized stations sample”).  This can continue until the 

desired increase in the number of stations, and thus station density, is accomplished.  

Next this set of homogenized stations is turned into a grid using the regression-

decision making process that the PRISM dataset uses to interpolate the data down to 

the 1/8th degree resolution.  This allows climatologically smart (i.e. with respect to 

relationships between physical geography and climate) interpolation of the station 

data to the high-resolution grids.  Then the combination of these monthly-

homogenized grids and the daily Co-Op grids should be done, similarly to the HL 

method but without the temporal averaging.  Thus, the disconnect in spatial variability 

(between monthly and daily scales) will be smaller since the effective resolution of 

the monthly-homogenized grids will be higher.  Moreover the advantages in the 

PRISM method of interpolation would be retained.  Lastly, temporal discontinuities 

will not be erroneously corrected since the daily data is adjusted to equal the raw, as 

opposed to temporally averaged, monthly data grids. 
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3.11. Figures 
Figure 3.1.  Time series of the continental average residuals of the metrics being 
evaluated.  Specifically summer average temperatures, percentile exceedence 
counts and the number of extreme heat event days.  All three datasets span their 
evaluation period. 
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Figure 3.2.  Spatial distribution of summer average temperature biases for all 
datasets and both daily extremes.  Symbols increase by standard deviations away 
from the zero values, and thus the groupings are different for each map.  Symbols 
are shaded/filled in if the biases are statistically significant. 
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Figure 3.3.  Spatial distribution of residual trends in 90th percentile summer 
exceedence counts for all datasets and both daily extremes.  Symbology follows 
figure 3.2 except for trends. 
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Figure 3.4.  The spatial distribution of residual trends in extreme heat event days per 
summer for all datasets.  Symbology follows figure 3.3.  
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Figure 3.5.  Comparison of trends and trend residuals in EHE-days.  The left column 
shows the trends in the gridded dataset, the right column shows the trends in the 
USHCN station data and the middle column is the trends in the residuals. For each 
dataset, maps in all three columns have symbols based on the standard deviation of 
the dataset being evaluated. Statistical significance indicated by symbol infilling. 
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Figure 3.6. Decadal trends in the number of Tmin extreme heat event per summer 
during the 1970-2010 time period in the Maurer dataset.  Plus signs within a grid cell 
signify statistically significant trends.  Groupings are by color and signify standard 
deviations away from the zero value. 
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Figure 3.7. Decadal trends in the annual mean duration (in days) of Tmin extreme 
heat events during the 1970-2010 time period in the Maurer dataset.  The symbology 
regarding color groupings and statistical significance is the same as figure 3.6. 
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