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Figure 3.8. Decadal trends in the number of Tmax extreme heat event per summer 
during the 1970-2010 time period in the Maurer dataset.  The symbology regarding 
color groupings and statistical significance is the same as figure 3.6. 
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Figure 3.9. Decadal trends in the annual mean duration (in days) of Tmax extreme 
heat events during the 1970-2010 time period in the Maurer dataset.  The symbology 
regarding color groupings and statistical significance is the same as figure 3.6. 
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Figure 3.10. Decadal trends in the number of Tmnx extreme heat event per summer 
during the 1970-2010 time period in the Maurer dataset.  The symbology regarding 
color groupings and statistical significance is the same as figure 3.6. 
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Figure 3.11. Decadal trends in the annual mean duration (in days) of Tmax extreme 
heat events during the 1970-2010 time period in the Maurer dataset.  The symbology 
regarding color groupings and statistical significance is the same as figure 3.6. 
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3.12. Tables 
Table 3.1. A continental characterization of trend sign and significance.  The percent 
of stations with negative trend values (significant negative) and positive trend values 
(significant positive).  PEC stands for percentile exceedence counts, EHE-days 
stands for the number of extreme heat event days. 

Maurer PRISM/DiLuzio DAYMET 

Tmin temperature bias 43(43), 57(56) 61(58), 39(39) 52(47), 48(45) 

Tmax temperature bias 32(31), 68(66) 35(32), 65(63) 39(31), 61(58) 

Tmin PEC residual trend 66(47), 34(25) 52(29), 48(28) 52(24), 48(21) 

Tmax PEC residual trend 76(63), 24(12) 51(28), 49(29) 67(35), 33(12) 

EHE-days residual trend 71(43), 29(12) 47(12), 53(20) 65(21), 35(8) 

 
 
 
Table 3.2. Continental spatial averages of the metrics of comparison.  Specifically the 
summer average temperature bias (°C), the decadal residual trends in percentile 
exceedence counts (PEC), the decadal residual trends in the number of extreme 
heat event days (EHE-days) and the same in both the USHCN and datasets being 
evaluated.  The numbers in parenthesis are the upper and lower 90% confidence 
bounds as determined by bootstrapping. 

Maurer PRISM/DiLuzio DAYMET 

Tmin temperature bias -0.15 (-0.17, -0.13) -0.12 (-0.13, -0.11) 0.02 (0.01, 0.04) 

Tmax temperature bias 0.11 (0.10, 0.13) 0.09 (0.08, 0.11) 0.18 (0.17, 0.20)  

Tmin PEC residual trend 0.14 (0.09, 0.19)  0.16 (0.13, 0.20) -0.22 (-0.28, -0.17) 

Tmax PEC residual trend -0.58 (-0.59, -0.55) 0.06 (0.03, 0.10) -0.97 (-1.02, -0.91) 

EHE-days residual trend -0.09 (0.07, 0.11) 0.12 (0.10, 0.14) -0.31 (-0.35, -0.28) 

EHE-days USHCN trend 0.75 (0.72, 0.78) 1.04 (1.01, 1.07)  0.84 (0.78, 0.90) 

EHE-days Target trend 0.66 (0.62, 0.69) 1.16 (1.13, 1.19) 0.53 (0.46, 0.60) 
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Table 3.3. Sensitivity of continental spatial average comparison metrics to map 
making method. IDW representing the inverse distance weighting and OK 
representing the kriging method. Comparison metrics include the summer average 
temperature bias, the decadal residual trends in percentile exceedence counts (PEC), 
the decadal residual trends in the number of extreme heat event days (EHE-days) 
and the same in both the USHCN and datasets being evaluated. The number in 
parenthesis are the upper and lower 90% confidence bounds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maurer PRISM/DiLuzio DAYMET 

Tmin temperature bias (IDW) (°C) -0.15 (-0.17, -0.13) -0.12 (-0.13, -0.11) 0.02 (0.01, 0.04) 

Tmin temperature bias (OK) (°C) -0.15 (-0.17, -0.13) -0.12 (-0.12, -0.11) 0.02 (0.01, 0.03) 

Tmax temperature bias (IDW) (°C) 0.11 (0.10, 0.13) 0.09 (0.08, 0.11) 0.18 (0.17, 0.20)  

Tmax temperature bias (OK) (°C) 0.12 (0.11, 0.13) 0.10 (0.09, 0.11) 0.18 (0.17, 0.18) 

Tmin PEC trend diff (IDW) 0.14 (0.09, 0.19)  0.16 (0.13, 0.20) -0.22 (-0.28, -0.17) 

Tmin PEC trend diff (OK) 0.10 (0.06, 0.14) 0.14 (0.12, 0.16) -0.22 (-0.25, -0.18) 

Tmax PEC trend diff (IDW) -0.58 (-0.59, -0.55) 0.06 (0.03, 0.10) -0.97 (-1.02, -0.91) 

Tmax PEC trend diff (OK) -0.59 (-0.60, -0.58) 0.09 (0.07, 0.11) -0.99 (-1.03, -0.96) 

Tmnx EHE-days USHCN (IDW) 0.75 (0.72, 0.78) 1.04 (1.01, 1.07)  0.84 (0.78, 0.90) 

Tmnx EHE-days USHCN (OK) 0.76 (0.73, 0.78) 1.02 (1.00, 1.05) 0.82 (0.77, 0.87) 

Tmnx EHE-days Target (IDW) 0.66 (0.62, 0.69) 1.16 (1.13, 1.19) 0.53 (0.46, 0.60) 

Tmnx EHE-days Target (OK) 0.69 (0.66, 0.72) 1.15 (1.13, 1.18) 0.49 (0.43, 0.55) 

Tmnx EHE-days Target-USHCN (IDW) -0.09 (-0.07, -0.11) 0.12 (0.10, 0.14) -0.31 (-0.35, -0.28) 

Tmnx EHE-days Target-USHCN (OK) -0.11 (-0.09, -0.12) 0.12 (0.11, 0.13) -0.32 (-0.34, -0.30) 
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Table 3.4. Regional mean residual trends as determined.  PEC stands for percentile 
exceedence counts, EHE-days stands for the number of extreme heat event days.  
The numbers in parenthesis are the upper and lower 90% confidence bounds as 
determined by bootstrapping. 
 

Tmin PEC Maurer PRISM/DiLuzio DAYMET 

Northwest (218) 0.11 (0.05 - 0.16) 0.42 (0.37 - 0.46) 0.23 (0.15 - 0.31) 

Southwest (188) 1.40 (1.31 - 1.50) 0.23 (0.18 - 0.29) -0.65 (-0.76 - -0.51) 

Northcentral (123) -0.36 (-0.41 - -0.31) 0.04 (-0.03 - 0.10) -0.12 (-0.20 - -0.04) 

Southcentral (145) -0.28 (-0.35 - -0.22) -0.01 (-0.08 - 0.06) -0.04 (-0.16 - 0.09) 

Northeast (47) -0.52 (-0.61 - -0.43) -0.18 (-0.28 - -0.09) -0.34 (-0.51 - -0.17) 

Southeast (98) -0.72 (-0.83 - -0.59) 0.08 (-0.08 – 0.25) -0.71 (-1.00 - -0.42) 

Tmax PEC 

Northwest (218) -0.55 (-0.58 - -0.52) 0.18 (0.11 - 0.25) -1.33 (-1.42 - -1.25) 

Southwest (188) -0.47 (-0.51 - -0.43) 0.11 (0.03 - 0.19) -1.35 (-1.42 - -1.27) 

Northcentral (123) -0.71 (-0.75 - -0.67) -0.08 (-0.15 - -0.02) -0.55 (-0.63 - -0.46) 

Southcentral (145) -0.68 (-0.74 - -0.62) -0.10 (-0.18 - 0.01) -0.10 (-0.24 – 0.03) 

Northeast (47) -0.46 (-0.52 - -0.40) -0.21 (-0.31 - -0.11) -0.96 (-1.12 - -0.80) 

EHE-days 

Northwest (218) 0.10 (0.07 - 0.13) 0.22 (0.21 - 0.24) 0.11 (0.06 - 0.16) 

Southwest (188) -0.40 (-0.44 - -0.37) 0.12 (0.08 - 0.16) -0.70 (-0.78 - -0.62) 

Northcentral (123) 0.35 (0.32 - 0.37) 0.05 (0.02 - 0.08) -0.42 (-0.46 - -0.38) 

Southcentral (145) 0.24 (0.22 - 0.27) 0.05 (0.00 - 0.09) -0.17 (-0.24 - -0.10) 

Northeast (47) 0.37 (0.32 - 0.41) -0.06 (-0.10 - -0.02) -0.49 (-0.58 - -0.40) 

Southeast (98) 0.41 (0.38 - 0.44) 0.18 (0.11 – 0.24) -0.43 (-0.52 - -0.35) 
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Table 3.5. Regional mean residual trends as determined via the kriging map making 
method.  PEC stands for percentile exceedence counts, EHE-days stands for the 
number of extreme heat event days. The numbers in parenthesis next to the region 
are the number of grid cells within each region. The number in the parenthesis next 
to the averages are the upper and lower 90% confidence bounds as determined by a 
bootstrapping procedure. 
 

Tmin PEC Maurer PRISM/DiLuzio DAYMET 

Northwest (218) 0.10 (0.07 - 0.14) 0.45 (0.42 - 0.48) 0.17 (0.12 - 0.23) 

Southwest (188) 1.21  (1.14 – 1.27) 0.17 (0.12 - 0.20) -0.53 (-0.63 - -0.44) 

Northcentral (123) -0.35 (-0.38 - -0.34) 0.06 (0.03 - 0.09) -0.12 (-0.18 - -0.06) 

Southcentral (145) -0.22 (-0.26 - -0.18) 0.05 (0.01 - 0.08) -0.15 (-0.21 - -0.09) 

Northeast (47) -0.47 (-0.51 - -0.42) -0.24 (-0.27 - -0.19) -0.31 (-0.42 - -0.21) 

Southeast (98) -0.82 (-0.89 - -0.74) -0.14 (-0.22 - -0.04) -0.59 (-0.74 - -0.45) 

Tmax PEC 

Northwest (218) -0.51 (-0.53 - -0.49) 0.17 (0.14 - 0.21) -1.30 (-1.35 - -1.24) 

Southwest (188) -0.57 (-0.60 - -0.55) 0.20 (0.16 - 0.25) -1.46 (-1.50 - -1.41) 

Northcentral (123) -0.68 (-0.70 - -0.66) -0.06 (-0.11 - -0.02) -0.55 (-0.61 - -0.50) 

Southcentral (145) -0.66 (-0.69 - -0.63) -0.09 (-0.14 - -0.05) -0.09 (-0.15 - -0.02) 

Northeast (47) -0.40 (-0.43 - -0.38) -0.14 (-0.20 - -0.10) -0.95 (-1.10 - -0.80) 

EHE-days 

Northwest (218) 0.09 (0.07 – 0.11) 0.21 (0.19 - 0.22) 0.03 (0.00 - 0.06) 

Southwest (188) -0.33 (-0.36 - -0.30) 0.13 (0.10 - 0.16) -0.63 (-0.68 - -0.57) 

Northcentral (123) 0.34 (0.32 – 0.36) 0.05 (0.04 - 0.07) -0.41 (-0.43 - -0.38) 

Southcentral (145) 0.23 (0.22 – 0.25) 0.08 (0.06 - 0.11) -0.21 (-0.25 - -0.17) 

Northeast (47) 0.35 (0.33 – 0.38) -0.07 (-0.09 - -0.05) -0.53 (-0.58 - -0.46) 

Southeast (98) 0.42 (0.40 – 0.44) 0.14 (0.11 - 0.18) -0.42 (-0.45 - -0.39) 

 
 
 
Table 3.6. Moran’s I index analysis of residual trends autocorrelation.  The first value 
is the index value and the second value is the P-value.  Percentile exceedence 
counts (PEC) and the number of extreme heat event days (EHE-days) are both listed 
for each dataset. 

Maurer PRISM/DiLuzio DAYMET 

Tmin PEC res. trends  0.080, 0.004 0.069, 0.017 -0.006, 0.999 

Tmax PEC res. trends -0.005, 0.863 0.041, 0.137 0.030, 0.137 

EHE-days res. trends 0.033, 0.199 0.028, 0.295 -0.020, 0.586  
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Table 3.7. Correlation of population growth trends for each dataset and comparison 
metric. First value listed is the radius of strongest correlation, the values in the 
parenthesis are the Pearson’s correlation coefficient and the leftmost number the P-
value. Bold values are statistically significant with 90% confidence. 
 

Maurer PRISM/Diluzio DAYMET 

Tmin PEC 3.61km (+0.16; 0.02) 3.00km (+0.07; 0.31) 1.80km (+0.17; 0.04) 

Tmax PEC 3.61km (+0.03; 0.67) 1.12km (+0.07; 0.30) 1.80km (+0.14; 0.10) 

EHE-days 3.61km (+0.12; 0.10) 3.00km (+0.16; 0.01) 1.80km (+0.07; 0.91) 

 
 
 
Table 3.8. Comparison of instrument-type grouped residual trends.  The median 
(10th and 90th percentile) of daily minimum (Tmin) and maximum (Tmax) percentile 
exceedence count (PEC) mean trend residuals by instrument type (liquid in glass 
thermometer in cotton region shelters (CRS), maximum minimum temperature 
sensors (MMTS) or hygrometer (Hygro)). Values estimated via 7500 bootstraps of 
the sample mean. Values in square brackets are the number of stations. 
 

Maurer PRISM/DiLuzio Daymet 

CRS Tmin PEC -0.36 (-0.68, -0.05) [39] -0.02 (-0.19, 0.16) [54] 0.21 (-0.16, 0.56) [37] 

MMTS Tmin PEC -0.28 (-0.41, -0.13) [124] 0.01 (-0.12, 0.14) [156] -0.48 (-0.78, -0.20) [94] 

Hygro Tmin PEC 0.01 (-0.29, 0.36) [32] 0.39 (-0.09, 0.88) [30] 0.89 (0.20, 1.63) [23] 

CRS Tmax PEC -0.52 (-0.69, -0.36) [39] 0.08 (-0.11, 0.28) [54] -1.48 (-1.84, -1.12) [37] 

MMTS Tmax PEC -0.66 (-0.77, -0.55) [124] 0.00 (-0.16, 0.16) [156] -0.57 (-0.84, -0.31) [94] 

Hygro Tmax PEC -0.36 (-0.55, -0.16) [32] -0.03 (-0.39, 0.40) [30] -1.05 (-1.70, -0.42) [23] 

CRS EHE-days -0.25 (-0.38, -0.12) [39] 0.03 (-0.05, 0.11) [54] -0.11 (-0.32, 0.11) [37] 

MMTS EHE-days -0.29 (-0.35, -0.22) [124] -0.08 (-0.02, 0.14)  [156] -0.57 (-0.74, -0.42) [94] 

Hygro EHE-days -0.02 (-0.11, 0.08) [32] 0.15 (-0.06, 0.35) [30] 0.06 (-0.32, 0.46) [23] 
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Table 3.9. Correlations with proxies for homogenization levels.  Pearson’s correlation 
coefficients are provided between both the trends in percentile exceedence counts 
(PEC) residual trends and extreme heat event days (EHE-days), and the trends in 
summer average temperature residuals between time series of USHCN data with 
different levels of homogenization.  The daily temperature extreme corresponding to 
the PEC (i.e. daily minimum and daily minimum) is only shown, but the first value in 
the EHE-days is the daily minimum and the second daily maximum. 

Maurer PRISM/DiLuzio DAYMET 

Tmin PEC (raw-tob) 0.10 0.11 0.03 

Tmax PEC (raw-tob) 0.37 0.13 0.20 

EHE-days (raw-tob) 0.20/0.33 0.13/0.17 0.14/0.15 

Tmin PEC (tob-full) 0.82 0.38 0.52 

Tmax PEC (tob-full) 0.69 0.35 0.38 

EHE-days (tob-full) 0.62/0.31 0.34/0.16 0.28/0.17 

Tmin PEC (raw-full) 0.84 0.40 0.53 

Tmax PEC (raw-full) 0.80 0.37 0.45 

EHE-days (tob-full) 0.67/0.44 0.36/0.18 0.31/0.22 
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CHAPTER 4. AN INVESTIGATION INTO THE SPATIAL VARIABILITY OF 
NEAR-SURFACE AIR TEMPERATURES IN THE DETROIT, MI METROPOLITAN 

REGION 
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Newsome, S. J. Brines and D. G. Brown, 2012:  An investigation into the 
spatial variability of near-surface air temperatures in the Detroit, MI 
metropolitan region. Journal of Applied Meteorology and Climatology, 51: 
1290-1304, doi: 10.1175/JAMC-D-11-0127.1 

 
Abstract 

Annually, heat is the chief cause of weather-related deaths in the United 
States.  Understanding the air temperature patterns throughout urban regions is 
important for locating resources during dangerously hot weather.  This study focused 
on the air temperatures in the Detroit, MI metropolitan region during the summer of 
2009.  An observational network was established that included 1) monitors sited in 
the back yards of residential participants, 2) National Weather Service standard 
observations, and 3) a network of monitors operated by the state of Michigan.  Daily 
maximum and minimum temperatures were analyzed for their spatial pattern, 
magnitude of spatial variability and relationships with weather conditions.  The 
existence of spatial variability was confirmed specifically during weather considered 
dangerous to the public’s health.  The relationships between temperature 
observations and distance to water, distance to city center, and local percent 
impervious surface were investigated.  The investigation was redone using only 
dates with weather conditions favorable to spatial variability to assess the 
differences. 

The spatial variability during the daily minimum was typically stronger in 
magnitude and the spatial pattern more consistent than that during the daily 
maximum.  The existence of spatial variability during dangerously hot weather was 
confirmed via several methods of classifying dangerous weather, and only a weak 
inverse relationship existed between daily minimum temperatures and the amount of 
spatial variability.  The largest correlation with land-cover and location attributes was 
between percent impervious surface values and daily minimum temperatures.  Daily 
maximum temperatures were most correlated with distance to water.  Consistent with 
previous studies on spatial variability in urban environments, the results suggest a 
need for sensitivity to the spatially variable nature of exposure to heat events in both 
public health and urban planning.  For example these results showed the downtown 
area experienced elevated temperatures in daily minimums and the eastern portions 
of Detroit experienced decreased temperatures in daily maximums.  When 
reevaluated only during nights with low wind speeds and light cloud cover, the spatial 
variability was larger, the statistical models performed about equivalently and the 
locations of relative hot and cold were the same as those predicted by the model 
using all 110-days of field observations. 
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4.1. Introduction 

Near surface air temperatures vary spatially over a region because the land 

cover land use (LCLU) types vary spatially.  LCLU types alter the surface energy 

budget and how the surface interacts with the lower atmosphere.  Urban areas are 

effectively congregations of LCLU types that cause the overnight temperatures to be 

warmer than the surrounding rural LCLU types; this effect is termed the Urban Heat 

Island effect (UHI effect) (Bornstein 1968; Oke 1973; Landsberg 1981). 

In particular, the fabric of the urban environment has a difficult time converting 

the incident radiative energy gain into an upward flux of latent heat because of lack of 

water availability at the surface (Oke 1982; Grimmond 2007).  Moreover, the 

materials that comprise the bulk of the developed LCLU types have a relatively high 

potential to store and conduct heat throughout the day.  Overnight, the geometric 

characteristics (e.g. mean building height and street width) of developed LCLU types 

lead to relatively small radiative cooling rates.  This is because the view of space 

(cold) is often reduced (Chen et al. 2010), often referred to as the urban canyon 

effect (Nunez and Oke 1977; Barring and Mattsson 1985).  Another physical 

mechanism for the UHI is the reduction in total turbulent sensible heat flux by 

reduced low-level winds.   

These wind speeds are reduced because of relatively large ground roughness 

prevents momentum exchange with (faster) higher altitude winds (Grimmond 2007); 

this mechanism should work to reduce the flux during both nighttime and daytime.  

Physically this is because the ground roughness dictates the vertical extent of the 

lowest two layers of the atmosphere.  First the urban canopy layer which extends to 

the ground to just above the buildings and has the exchanges of momentum, heat 

and moisture.  Next the the roughness sublayer extends from the ground to the 

height where blending action is complete.  Both of these are dependent on the 

roughness length (Oke 2004). 

Another physical mechanism is a reduction in shortwave albedo.  Interestingly, 

regardless of its color relative to the rural surroundings - the geometric shape of cities 

causes them to trap upwards to 20% more shortwave radiation (Aida 1982), because 
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this radiation comes in and bounces around until it finds an absorptive surface.  

Lastly, heat is also added into the urban system by anthropogenic means (Hart and 

Sailor 2009) such as cars engines, industrial and commercial exhaust, and cooling 

and refrigeration systems. 

Conversely during the daytime developed LCLU types can potentially cause 

relatively cool temperatures, albeit not as consistent nor strongly an effect.  One 

mechanism is when less shortwave radiation is received at the ground level due to 

increased pollution (e.g. soot).  The other mechanism (that applies to semiarid 

climates) is called the Urban Oasis effect (Oke 1987).  It works on the scale of an 

entire city and on the smaller scale, for example in urban parks (Spronken-Smith et 

al. 2000).  That is because both urban parks and cities can both be local maximums 

for vegetation and soil moisture, which causes relatively higher latent heat fluxes and 

thus lower air temperatures. 

This illuminates an important point: on a larger scale temperatures over rural 

landscapes are different from those within an adjacent city, but on a smaller scale 

(within a city) the temperature varies by neighborhoods with similar types of urban 

development (Oke 1984).  This arises in part from the differences in the 

aforementioned characteristics (albedo, geometrical shape, moisture availability, etc.) 

between different “urban” LCLU types.  Most cities have clustering of land primarily 

consisting of industrial and commercial use; regular, compact and block housing; old 

and modern city cores (Stewart and Oke 2009).  These are laid out different in each 

city.  The natural geography also plays a role in the temperature distribution 

throughout a developed region (Kuttler et al. 1996).  For example on the small scale, 

topographical elevation allows cool air drainage and inversions to occur.  On the 

larger scale sizeable water bodies/coastlines (Childs and Raman 2005; Freitas et al. 

2007) and mountain ranges can interact with the city. 

Observational studies have not fundamentally changed since the 1980’s, 

although numerical modeling studies have emerged.  Examples of the typical 

methods of the observational studies include time trends (i.e. the site is becoming 

more urban) at singular locations (e.g. Tarleton and Katz 1995; Tereshchenko and 

Filonov 2001), comparative time trends at one (or more) urban stations and one (or 
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more) rural stations (e.g. Ackerman 1985; Magee et al. 1999; Philandras et al. 1999; 

Morris and Simmonds 2000; Zhou and Shepherd 2009), networks of fixed stations 

within and around a city (e.g. Basara et al. 2008, 2010; Camilloni and Barrucand 

2010) and transects across an urban area (e.g. Saitoh et al. 1996; Goh and Chang 

1999; Bottyán and Unger 2003; Wong and Yu 2005; Yokobori and Ohta 2009).  It is 

common for studies to use more than one method (Kuttler et al. 1996; Montávez et 

al. 2000; Longxun et al. 2003). 

Most urban climate studies focus on the UHI effect on a large scale, or the 

temperature differences between an urban station and its rural counterparts (e.g. 

Zhou and Shepherd 2009; Basara et al. 2008; Camilloni and Barucand 2011; Chow 

and Roth 2006; Morris et al. 2001; Mohsin and Gough 2011; Velazquez-Lozada et al. 

2006).  That difference is often termed the magnitude of the UHI, UHI magnitude, 

Intensity of the UHI or UHI Intensity.  Its effectiveness as a metric relies on the 

study’s success to characterize the stations as rural or urban.  However these 

metrics have limitations, for example LCLU types categorized as both “urban” and 

“rural” vary within those categories (e.g. agriculture vs. industrial; forest vs. 

commercial; barren vs. residential; etc). 

It is rare for studies to investigate the smaller scale variability of temperatures 

within an urban region and/or city.  Some of those studies demonstrated the 

existence of, and the amount/sign, variability within cities (e.g. Saaroni et al. 2000; 

Basara et al. 2008; Gaffin et al. 2008); others attempted to map the spatial structure 

(Montávez et al. 2000; Longxun et al. 2003; Bottyán and Unger 2003; Kim and Baik 

2005; Hart and Sailor 2009).  More involved studies showed the variability was linked 

to the local scale spatial attributes (Kuttler et al. 1996; Goh and Chang 1999; Bottyán 

and Unger 2003; Hart and Sailor 2009; Buttstädt et al. 2010) and land cover types 

(Wong and Yu 2005; Yokobori and Ohta 2009).  Spatial variables found to be good 

predictors were building height, building density, building area, building height-to-

street width ratios, building use type, canopy cover, sky view factor, water surface 

ratio, amount of impervious surface and ground elevation. 

Studies have shown the maximum UHI magnitude resides after sunset but 

before the daily minimum temperature (Tmin) (e.g. Oke 1982, Morris and Simmonds 
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2000) and some have shown when Tmin occurs can even be at different times 

depending on LCLU type (Morris and Simmonds 2000).  The time of strongest signal 

is the time of day typical UHI studies focus on because they are focusing on the 

physical impacts of the urban landscape.  However epidemiological literature more 

commonly has linked the daily temperature extremes to mortality data (for whatever 

reason).  Summertime daily maximum temperature (Tmax) is associated with both 

heat-related medical dispatches (Dolney and Sheridan 2006; Golden et al. 2008) and 

mortality rates (Baccinni et al. 2008; Anderson and Bell 2009; Basu 2009; Gosling et 

al. 2009).  Summertime Tmin is also associated with mortality rates (Kalkstein and 

Smoyer 1993; Hajat et al. 2002; Grize et al. 2005; Schwartz 2005; Hajat et al. 2006; 

Fouillet et al. 2007; Basu et al. 2008).  It is not clear which daily temperature extreme 

is most important, however it likely varies with region (Kalkstein 1989).  Consequently 

this study focused on the spatial variability specifically on Tmin and Tmax.  Thus 

while our analysis does not focus on the strongest urban landscape signal it 

compensates by being more useful scientists in the heat-health field. 

To focus the scope of this study the goal was to answer the following set of 

questions.  First, did the daily temperature extremes vary spatially across the 

metropolitan domain?  Was the day-to-day magnitude of that variability diagnosable 

by the large-scale weather?  Was the spatial pattern predictable by the land 

attributes?  Lastly, did the spatial variability exist during hot/oppressive weather? 

 

 

4.2.Methods 

4.2.1. Observational network 

4.2.1.1. Descriptions of networks 

For this study it was chosen to integrate multiple networks into one observing 

network.  While it was not the focus of this study, future studies might also construct 

such networks.  In this section, first the networks and data used are described, then 

comparability between the networks and uncertainty in using the integrated-network 

are explained. 
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NWS network 

The hourly NWS observations used to anchor our integrated network were 

observed at the local airports by the NWS’s Automated Weather Observing Station 

(AWOS) and Automated Surface Observing Station (ASOS) networks (Mannarano 

1998).  Temperature measurements are observed at a 1.5-meter height.  These are 

the standard operational products used by the weather service and are subject to 

calibration standards (Federal Aviation Administration 1998).  Five airports were used 

in the network, located from well within to the outskirts of the city (Figures 4.1, 4.2) 

and on a sizeable island (Grosse Isle).  Acquired from the National Climatic Data 

Center (NCDC) was the hourly temperature, cloud cover, and wind speed (taken at 

10 m above ground level) data during the observational period. 

The Michigan Department of Environmental Quality network 

The Michigan Department of Environmental Quality (MDEQ) operates an air 

pollution-monitoring network as mandated by the U.S. Environmental Protection 

Agency for monitoring compliance with National Ambient Air Quality Standards under 

the Clean Air Act (Department of Natural Resources and Environment 2010).  This 

network provided hourly means of air temperatures five meters above ground level 

(i.e. still within the urban canopy layer) and wind characteristics measured at ten 

meters above ground level.  Six of their monitoring locations were suitable for this 

study (two locations were used for co-location) and the aforementioned data were 

acquired through contact with the MDEQ staff.  Figures 4.1 and figures 4.3-4.5 show 

locations and some photographs of observing sites. 

The temporarily established network 

For the custom study network, 21 HOBO Pro V2 External Temp/RH data 

loggers (Onset Computer Corporation 2010) (Onset Computer Corp., Pocasset/MA) 

were used, herein referred to as HOBOs.  Previous studies have demonstrated that 

these monitors are capable of similarly detailed studies of the spatial structure of 

temperature fields (Whiteman et al. 2000).  The HOBO monitors consist of 

temperature and relative humidity sensors inside naturally aspirated radiation shields 

and fastened to thin wooden stakes, along with a data logger, at a height of 1.5 
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meters above ground level.  Detroit-area residents, and some businesses, were 

approached for permission to place loggers outside on their property, which ranged 

in location from the city limits to the old downtown district; near and far from the two 

lakes (Erie and St. Clair) and the Detroit River; in densely populated suburbs to the 

outskirts of more distant suburban communities and in the countryside (Figure 4.1).  

To the east of the Detroit River lies the city of Windsor, Ontario, Canada; it was 

assumed that Windsor’s close proximity did not affect Detroit’s temperature pattern 

because it is typically downwind of Detroit and separated by a river up to 4 km in 

width.  The HOBOs were placed primarily in back yards (or grassy areas at 

businesses) of participants, sampling at a 10-minute frequency, and sited to minimize 

microclimate impacts (e.g. over grassy groundcover, ample sky view, at least 15 

meters away from heat sources) (Figures 4.5-4.6).  Lastly, it was assumed the 

turbulent mixing produced by flow around barriers was adequate to blend the 

observed atmospheric temperatures so as to allow measurement of local-scale (e.g. 

neighborhoods) average temperatures. 

 

4.3.1.2. Evaluation of network comparability and uncertainty 

A primary advantage of the HOBO network was the ability to calibrate its 

measurements with those of existing networks.  In general, the method was for a 

given calibration period, to a) locate a HOBO monitor in as close proximity as 

possible to at least one monitor from an existing network, b) quantify the relationship, 

or bias, between the co-observed daily temperature extremes, c) if necessary, apply 

bias corrections or simple modeling in order to make observations as similar as 

possible, then d) re-quantify the mean difference between HOBO and existing 

network observations over the calibration experiment, referred to as the uncertainty 

(Table 4.1) in using the existing network with the HOBO network. 

Complications arose when integrating multiple networks; each network had 

unique monitoring uncertainties and also further uncertainties when using them in 

concert.  The details of how the uncertainties associated with each network’s 

observations are described in this section.  A metric of comparison was desired that 
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would allow for comparison of values across the network but also ensured that any 

spatial variability found would exceed the unique uncertainties of the networks.  This 

new formed metric was referred to as the “anomaly” and mathematically was  

 

with d being the day, j signifying either Tmax or Tmin and i indicating location.  

First, the differences between each day’s value of the Tmax (or Tmin), at each 

location (Ti,j,d), and the network mean (i.e. across all locations) of that particular Tmax 

or Tmin (  

€ 

Tj,d ) were calculated.  Then depending on the sign of the first term (Ti,j,d - 

  

€ 

Tj,d ) the network-specific uncertainty value (uncerti,j) was either subtracted or added 

in such a manner that always worked to reduce the absolute value of the first term. 

First the accuracy of the HOBO monitors relative to one another was 

empirically determined.  Pre and Post-deployment tests were both undertaken but 

the later was bigger.  Post-deployment tests were chosen because they would 

capture any drift in accuracy of the monitors during the field study.  For those tests, 

all monitors were placed in a temperature-controlled room during testing.  With 3097 

observations per monitor (for the post -deployment test), the range across the 

monitors was calculated for each observation-time and then the mean was calculated 

at 0.44 °C. This was effectively the typical disparity in temperatures observed across 

the HOBO monitors when they should have been monitoring the same temperature.  

This was referred to as the “inherent-relative uncertainty” of the HOBO network 

(Table 4.1) and it represents an amount of uncertainty in our observations. 

Then the differences between the HOBO network and the standard NWS 

observations from the airports were sought.  Although it was impossible to gain 

permission to collocate monitors on airport property, a monitor was located 2.7 km 

away from one of the airport monitoring locations (KDTW) and the differences were 

consecutively observed for two weeks.  This large separation and small sample size 

is an admitted limitation to the network calibration.  In order to lessen that limitation, 

the siting and sampling algorithm differences were separately accounted for.  This 

Anomalyi , j ,d ≡ (Ti , j ,d −Tj ,d )±uncerti , j
+,(Ti , j ,d −Tj ,d ) < 0
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HOBO siting was typical of the other HOBO monitor sitings as opposed to the very 

open airport monitor sitings.  Using this nearby HOBO monitor’s observations, which 

sampled at a higher frequency (every two minutes) than the typical HOBO monitor 

(every ten minutes), the KDTW observations (i.e. mean value within five minutes prior 

to hour) were estimated, and the mean bias for Tmin and Tmax was calculated at 

+0.14 °C and +0.49 °C, respectively.  Once the HOBO observations were adjusted 

for these biases, the mean differences between the HOBO and the KDTW 

observations for both Tmax and Tmin were calculated at values less than the 

prescribed uncertainty of the ASOS/AWOS instrumentation (0.5 °C); therefore the 

“HOBO siting uncertainty” was taken as 0.0 °C (Table 4.1).  While this seems 

counterintuitive, it was hard to assign an uncertainty when the mean difference was 

less than the uncertainty of the ASOS/AWOS instrumentation; however in response 

we took a more conservative approach when determining the total HOBO 

uncertainty.  In regards to the NWS AWOS/ASOS observations in the network, the 

only uncertainty it was assumed they had was the 0.5°C “instrumentation uncertainty” 

(Mannarano 1998) (Table 4.1). 

For this observing network Tmin at each station was taken as the minimum 

temperature recorded between 0100 and 0700 EDT, and Tmax was taken as the 

maximum temperature recorded between 1300 and 1900 EDT.  Initially this 

convention was chosen over a 24-hour maximum/minimum temperature selection to 

filter out ensure the Tmax time was later in the day than the Tmin time.  However, 

this method also was ensured to represent the temperatures while humans slept 

(morning) and were active (afternoon).  Moreover, it allows better relationships to 

weather conditions, as it is guaranteed that temperature observations and the 

weather observations happened at roughly the same time of day.  However because 

this study focused on the daily temperature extremes, instead of the time of day (i.e. 

usually more in the middle of the overnight cooling process) with the most robust 

influence from the landscape (i.e. largest MTR), our results should be considered to 

be underestimates of the maximum amount of spatial variability that metropolitan 

Detroit experiences over the course of a night. 
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The temporal sampling varies across the three networks.  The HOBO monitors 

were programmable but the typical configuration was a 10-minute sampling 

frequency with no additional averaging.  The MDEQ network reports hourly means 

every hour, and the airport network reports five-minute means every hour.  To test 

the impact of the temporal sampling differences, a HOBO was set to sample on a 

one-minute sampling frequency over the duration of the study and used to replicate 

the various network products each day.  This was used to estimate the biases and 

uncertainties associated with the different temporal sampling algorithms among the 

networks. 

As mentioned previously, the HOBO-AWOS/ASOS collocation was only two 

weeks long, and so it was elected to explicitly account for the difference in sampling 

algorithms.  This bias between AWOS/ASOS and HOBO observations was 

calculated at -0.48 °C for Tmax, and +0.16 °C for Tmin.  The mean difference, after 

these bias corrections were applied, was calculated at 0.28 °C for Tmax and 0.11 °C 

for Tmin, and this was referred to as the “HOBO sampling algorithm uncertainty” 

(Table 4.1).  Since the HOBO-MDEQ collocation experiment occurred over a large 

sample, we decided to incorporate the sampling algorithm difference between the 

two networks in the collocation experiment itself.  However using the HOBO-

AWOS/ASOS sampling algorithm bias and uncertainty values was still required, since 

the airport sampling – not the HOBO sampling - was the integrated network baseline. 

To integrate data from the MDEQ network, quantification was needed of the 

differences in observations that were due to both the differences in height, 

instrumentation and sampling algorithm between the network’s measurements and 

HOBO observations.  To quantify the sum impact of these differences two 1.5-meter 

above ground level HOBO monitors were collocated at two MDEQ monitoring sites 

for two months (Figures 4.4-4.5).  On site MDEQ wind-speed and nearby NWS 

AWOS/ASOS sky-cover observations were useful in predicting the daily temperature 

extreme HOBO observations from MDEQ observations.  The relationships 

determined were designed to be non-site specific by pooling the data from both 

collocation sites for the two months duration (128 days) and then building the 

relationships.  The linear multiple regression equations used for this prediction are 
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briefly provided (Table 4.1), and analysis of fit was performed (not shown).  The 

mean differences between MDEQ-statistical-model predicted and HOBO observed 

Tmin and Tmax values were adopted as the “MDEQ collocation uncertainty” (Table 

4.1) and calculated at 0.43 °C and 0.52 °C, for Tmin and Tmax, respectively.  The 

measurement uncertainty stated in the MDEQ instrumentation specifications was 

0.3°C, but this was less than the aforementioned determined uncertainties and it was 

assumed to be included in those values.  Thus the uncertainties were summed 

related to the collocation and sampling algorithm differences.  Summing these 

uncertainties resulted in an uncertainty in Tmin of 0.54 °C, and 0.80 °C in Tmax, 

when using the MDEQ stations observation within the larger network. 

Additionally, even with careful siting standards, inconsistencies between 

HOBO observations exists, simply because they monitored in yards with different 

microclimates.  It was decided not to include uncertainty arising from microclimate 

variability across either the six MDEQ stations or five AWOS/ASOS stations because 

the level of monitoring standardization and siting strictness was better and assumed 

adequate.  To assess the magnitude of this uncertainty within the HOBO network, 

data from two similarly located and sited monitors (separated by ~300 meters) were 

analyzed to determine the yard-to-yard differences, indicated in table 4.1 as the 

“HOBO microclimate uncertainty.”  First the mean difference between the two 

monitors was calculated, over the duration of the study, per extreme, and showed a 

Tmax value of 0.76 °C, and Tmin value of 0.33 °C.  For Tmin the inherent-relative 

uncertainty of the HOBO network was larger than this difference, so the microclimate 

uncertainty was assumed to be 0 °C.  However, for Tmax the microclimate 

uncertainty exceeded the inherent-relative uncertainty by 0.32 °C, and thus the 

(Tmax) microclimate uncertainty was taken as 0.32 °C.  Therefore the final HOBO 

uncertainty calculation all four uncertainties (inherent-relative, microclimate, siting 

and sampling algorithm difference) were summed, per daily temperature extreme.  

We recognize this was a conservative approach because some cancelling or overlap 

of the uncertainties likely occurs.  This resulted in an assumed uncertainty in Tmin of 

0.55 °C, and 1.04 °C in Tmax when using HOBO values in the integrated network. 
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Lastly, Tmax measurements from two HOBO stations were excluded from the 

study.  These stations were first identified as having possibly compromised sitings, 

more specifically, a built or cement surface within three meters of the monitor.  These 

observations were subsequently compared to nearby observations to assess their 

quality (not shown).  The daily minimum temperature was devoid of obvious siting 

impacts, consistent with preliminary tests (not shown) indicating this type of 

undesirable microclimate to have a notably lesser impacts on Tmin than Tmax (e.g. 

building receiving shortwave radiation and warming, then radiating heat into 

immediate area).  These stations were the Southgate and West Detroit #2 HOBO 

monitors (Figure 4.1).  All other locations passed scrutiny of potentially compromised 

siting, so that the integrated network utilized a total of 30 and 28 stations for Tmin 

and Tmax, respectively.  One station was located in a park roughly 1 km across but 

we retained it within the network because we felt it was very near the edge of the 

park. 

 

4.2.2. Analysis of observations 

In order to characterize the weather during the study, relative to long-term 

summer weather data, the 2009 KDTW observations were converted to percentiles 

relative to historical observations (Figure 4.1).  The KDTW observing station’s data 

from 1979-2009 was acquired online at the National Climatic Data Center.  The Tmax 

(Tmin) was again considered the highest (lowest) temperature each day observed 

between one and seven pm (am) (EDT or GMT-4).  The 1979-2008 period was used 

as a climate base period and a sub sampling method within that base period of a 19-

day window centered on the calendar date (Figure 4.7).  The percentiles were 

determined by calculating the empirical cumulative distribution function (i.e. no 

assumptions on the underlying distribution) and bi-linear interpolation of those 

percentiles (the same procedure as described in section 2.2.2).  Subsequently, the 

percentile for each day during the 2009 field study was determined, for both daily 

temperature extremes, with respect to 570 (19x30) observations of temperatures 

experienced at KDTW around that calendar date.  The time series, during the 

summer of 2009, of both Tmax and Tmin percentiles was then provided along with 
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the 110-day mean (110DM) percentiles.  110 days was the length of this field study 

and thus 110DM values are meant to represent the typical conditions during the 

observational study. 

Initially, the basic statistics of the magnitude of spatial variability across the 

integrated network were calculated.  The magnitude of spatial variability was taken - 

each day and for both daily temperature extremes - as the range in the anomalies 

across all sensors, and was referred to as the metropolitan temperature range 

(MTR).  This was done for each of the 110 Tmax and Tmin of the field experiment.  

First the 110DM, standard deviation and maximum MTR were calculated, for both 

daily temperature extremes.  Histograms were constructed for the MTR, in both daily 

temperature extremes over the field experiment duration.  Lastly a Student’s t-test 

was used to determine statistical significance (at the 0.05 significance level) in the 

summer mean MTR. 

Next a characterization of the spatial structure of anomalies was sought.  

Foremost the 110DM anomalies of both daily temperature extremes were calculated 

and plotted on maps.  Subsequent investigation into the stability (i.e. consistency) of 

that spatial pattern was undertaken by comparing the range in the 110DM anomalies 

to the 110DM MTR.  The 110DM anomalies require no consistency and the 110DM 

MTR is reduced by inconsistency, and thus we compared the ratio of the two values 

in both Tmax and Tmin.  We know of no other studies using this method of inference.  

In order to combine the temporal and spatial characteristics of the anomalies, figures 

were created to compare the signal-to-noise across all stations.  This method of 

assessing the spatial consistency makes the assumption that the disparity in 

consistency was not limited to only the hottest and coolest stations but rather 

indicative of the consistency of the spatial pattern of anomalies.  To eliminate 

uncertainty arising from the sample size (n=110), a bootstrapping procedure with 

10000 resamples was used to better estimate the true means and standard 

deviations of the 110DM anomalies. 
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4.2.2.1. Intersection with dangerously hot weather 

The importance of the spatial variability in temperature to the heat-health 

discussion depends on whether it exists during dangerously hot weather.  The 

definition of “dangerous” is not universal, thus we chose to evaluate the intersection 

of the MTR with days labeled dangerous by various methods.  Methods were 

generally chosen because they were familiar to heat health warning system 

operators in most U.S. cities, and can apply outside of the region.  These methods 

are more fully described below. 

The first method used the air-mass-based Spatial Synoptic Classification 2 

method (SSC2) (Sheridan 2002; Kalkstein and Sheridan 2003) to diagnose days.  Air 

masses are large homogeneous bodies of air, which when present, exhibit distinctive 

meteorological characteristics (Kalkstein et al. 2008).  Then historical mortality data is 

examined for substantial empirical relationships with air mass observations, along 

with cofounders (e.g. duration, timing within season, etc.).  It was a great way to 

evaluate the MTR because most modern heat health warning system operators are 

familiar with it and even forecast it on an operational basis (R. Pollman 2009, 

personal communication).  Also the results are useful to locations outside of Detroit 

since the air masses are not specific to Detroit.  In Detroit “Dry Tropical”, “Moist 

Tropical +” and “Moist Tropical ++” are the dangerous air masses in the SSC/SSC2.  

The mean MTR was calculated as a function of all air masses observed, as well as a 

group of the oppressive air masses.  This was done to further our characterization of 

the MTR with respect to weather conditions.  Calendar data provided by Dr. Scott 

Sheridan’s website (Sheridan 2010) was used for this purpose. 

The second method was that of the NWS heat advisory.  Local NWS forecast 

offices call heat advisories based on weather and heat stress related index forecasts, 

with familiarity of their local climate and recent weather conditions (R. Pollman 2009, 

personal communication).  All major cities within the U.S. have NWS forecast offices 

available to them, and thus this method to evaluate the MTR in some ways should 

relate to all cities.  Tmax and Tmin MTR were selected that occurred during period of 

advisories as indicated from the NWS’s Non-Precipitation Warnings, Watches, 

Advisories bulletins (NCDC HDSS Access System reference).  The mean MTR was 
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calculated for the Tmax on all dates with heat advisories spanning the afternoon and 

for the Tmin on all dates with heat advisories overnight. 

The last method was to investigate the linear relationships between 

temperature and MTR; this method was advantageous because it’s simple and direct.  

Specifically, ordinary least squares regression between the normalized observed 

MTR and the temperature percentile values was used to determine the magnitude of 

trends and their significance.  Normalized refers to dividing all the values by the 110-

day maximum value.  The temperature percentile is always an important driver of any 

heat health warning system.  Calculation details regarding temperature percentile 

values were in section 4.2.2.  Scatter plots and the 95 percent confidence intervals of 

the linear trends were calculated as well as the y-intercepts at the extrapolated 100th 

percentiles.  The correlation coefficient (R), percent of variance explained (R2) and 

model P-value were also calculated. 

 

4.2.2.2. Spatial variability's relationship with weather 

Large day-to-day variability of the MTR led to investigation into whether the 

variability could be diagnosed, or predicted, by the city-wide weather conditions.  The 

elected weather variables were chosen because they theoretically could impact the 

physical processes that lead to some areas being warmer than others (e.g. cloud 

cover as an proxy for radiative heating or cooling rates).  The Tmin MTR was 

evaluated against three variables: previous afternoon average cloud-cover 

percentage, morning average cloud-cover percentage and morning average wind 

speed.  The relationship with the previous afternoon cloud cover had not been 

previously inspected.  The Tmax MTR was tested against two variables: average 

afternoon cloud-cover percentage and average afternoon wind speed. 

These weather observations were spatially averaged over three surrounding 

NWS ASOS/AWOS locations (KVLL, KDET and KDTW) (Figure 4.1), and temporally 

averaged for the morning between four and eight AM, and the afternoon between two 

and six PM (all EDT, or GMT-4).  Once the relationships with the NWS ASOS/AWOS 

observations were determined the investigation was repeated with corresponding 
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variables from a reanalysis dataset.  Reanalysis datasets are blended products of 

observations and weather forecasting models, and thus variables available in those 

models are available in the reanalysis datasets.  The relationships were rebuilt with 

reanalysis data in order to examine the differences in predicative abilities between in-

situ observational data and model-observation blended products.  The North 

American Regional Reanalysis (NARR) dataset (Mesinger et al. 2006) was used and 

similarly spatially averaged (e.g. grid points that the three airports were located 

within) and temporally averaged (e.g. only the times within the time ranges previously 

used).  The wind speed values, for both afternoon and nighttime, were calculated 

from NARR’s 3-hourly value of U-Component at 10-meters and the analogous V-

Component variable.  To represent cloud cover the 3-hourly forecast of Total Cloud 

Cover of the entire atmosphere was used for the overnight periods and the 3-hourly 

average Downward Shortwave Radiation Flux at the surface for the afternoon 

periods.  Then for both predictands stepwise multiple regression, via the backwards 

elimination method, was performed to select the appropriate predictands. 

Evaluation of the regression coefficients determined from scaled inputs, was 

done to determine each predictor’s relative contributions to the models.  To 

determine the goodness of those regression models, statistics such as P-values, root 

mean squared error (RMSE) and R2 were compared to both the mean and maximum 

MTR.  Multiple regression models that passed initial scrutiny were further tested for 

their functionality by evaluating their predictive ability in a cross-validation manner.  

This was done by breaking the sample into five even number groups by counting by 

fives throughout the 110-night sample (i.e. classic k-folds method).  Then five times 

over, a model could be trained using four of the groups and then have its 

performance quantified by the left-out group.  Then the mean RMSE and average 

absolute difference were calculated across all five groups and compared to the 

maximum and mean MTR of the 110-night evaluation sample.  The average absolute 

difference was calculated to give confidence to the RMSE values, and allow others 

an additional way to compare our models performance to their own models.  

Additionally, the confidence in the determined regression coefficients was evaluated 

using a bootstrapping technique to evaluate regression coefficients.  This was 
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accomplished by creating 10000 bootstrap samples, by sampling with replacement 

from the 110-sample, and then determining an estimate of the regression coefficients 

each time.  In addition to calculating the median coefficient (for the regression 

coefficient estimator), the standard deviation of those 10000 coefficients was 

calculated as a measure of variability. 

 

4.2.2.3. Mean anomalies relationships with land attributes  

Next, investigation into the relationships between the spatial attributes and 

observed temporally averaged anomalies was undertaken.  These relationships were 

built and assessed (for performance) using the observing stations, and since spatial 

attributes are continuous they can be used to estimate the temperatures in the 

spaces between the observing stations.  These processes are described below. 

We created three spatial attributes that we will refer to as “distance to city 

center” (D2CC), “distance to water” (D2H2O) and “percent impervious surface” (PIS).  

The values of these variables were extracted at each monitoring location using Esri 

ArcGIS software.  The Spearman Rank (SR) correlation coefficients between each 

different spatial variable were calculated, and then investigation into their 

relationships with the 110DM anomalies was undertaken.  SR correlations were used 

because the spatial data values looked non-normal (not shown).  Pearson’s 

correlation coefficients were also calculated (not shown) and did not disagree with 

the SR correlation coefficients.  The spatial variables are better described below. 

The first variable, PIS is an indicator of the built environment (Oke 1973; 

Arnold and Gibbons 1996).  Impervious surfaces are the hard constructed surfaces 

that cover buildings, roadways, parking lots, etc.  Areas surrounded by a larger PIS 

may be more likely to store heat, and then release that heat overnight.  The spatial 

dataset used was the National Land Cover Data 2001 Imperviousness dataset, which 

was derived from Landsat imagery taken in 2001 (U.S. Geological Survey 2008).  

Maps were constructed with both the sites of the monitoring and a superimposed 

data layer of per-pixel (30m resolution) estimates of imperviousness.  Using Esri 

ArcGIS software, the percent of surrounding surface indicated as impervious was 
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calculated for each station.  Imperviousness does not take into account the 3-

dimensional geometrical factors or distance from city center.  Initially investigated 

was the sensitivity between the temporally averaged mean anomalies, both Tmax 

and Tmin, for each station and the PIS values within various circular radii from 0.15 

to 3.0 km.  SR correlation coefficients were calculated between each radius’ PIS 

values (at each station) and the 110DM anomalies.  This was done in order to 

determine the strongest relationship between local percent impervious values and 

both daily temperature extremes.  Subsequent assessment of the relationship with 

PIS was performed only with the radius with the strongest relationship. 

The second spatial variable, D2H2O was a logical driving mechanism of 

temperature variability.  If the thermal inertial of a water body could dampen the 

diurnal cycle, then it would impact both daily temperature extremes of near-shore 

locations.  Specifically with regards to Tmax, both small-scale ‘lake breezes’ and 

meso-scale cold-air advection could potentially cool near-shore regions.  With 

regards to Tmin, lower-level atmospheric water vapor content at near-shore locals 

might decrease long wave radiative cooling rates at the surface and subsequently 

affect shelter height temperatures.  Relevant water bodies were taken here as the 

Detroit River, Lake St. Clair and Lake Erie and the straight-line distances were drawn 

from the land-water boundary nearest to each location. 

Next, distance from city center was examined as a driving mechanism of the 

temperature variability.  The traditional, and crude, model of the UHI phenomenon 

consists of concentric isotherms surrounding a city (coolest on the outside).  The city 

center might be warmer because of contributions from increased anthropogenic heat 

flux and roughness length nearer the city center.  Roughness length retards the rate 

of heat loss (upwards) within the urban canopy layer and roughness sub layer 

because it stretches them vertically.  Additionally, latent heat flux and short-wave 

albedo should be lowest in a city’s interior (due to moisture availability and short-

wave radiation trapping).  However during Tmax, one can make some counter points 

in Detroit, with the water bodies’ proximity to downtown.  Conversely, the relationship 

between Tmin and distance from city center is uncomplicated, considering the urban-

canyon effect (e.g. long-wave radiation trapping) and volumetric heat capacity are 
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expected to be largest at the city center, and the proximity to water is not expected 

cool near-shore locations at night. 

We then evaluated the ability to predict the 110DM anomalies from the 

aforementioned spatial attributes.  The backwards elimination stepwise regression 

method was employed with all three variables as predictors.  In order to evaluate the 

determined regression equations, the RMSE, R2 and full-model P-value were 

calculated.  A brief evaluation within each equation (e.g. strength of the standardized 

correlation coefficients) and between equations (e.g. RMSE, R2) was undertaken.  To 

test the utility of the regression equations that were deemed successful, we predicted 

each station’s temporally averaged temperature anomalies using the other stations, 

in a leave-one-out cross-validation manner (i.e. the k-folds method).  Equation 

goodness was then evaluated by calculating the RMSE and average absolute error 

and comparing them to the range in the anomalies being predicted and the RMSE 

from the model built on all stations.  The confidence in the regression coefficients 

was evaluated with a bootstrapping technique where 10000 resamples of the stations 

values were made and the regression coefficients calculated for each resample.  

Then the median regression coefficient (of those 10000 coefficients) was calculated 

as well as the standard deviation of the 10000 coefficients (as a measure of 

variability of those coefficients).  Lastly, using the spatially continuous data sets and 

the regression model in ArcGIS software a spatially continuous map of the bootstrap 

derived model output was created.  An analogous map was created using the 

statistical model created without bootstrapping, and compared it with the 

aforementioned map. 

 

4.2.2.4. Anomalies relationship during conducive conditions 

The last matter investigated was how the characterizations changed from the 

experiment average to during weather conditions favorable to large MTRs.  Thus 

some of the analysis was repeated, with observations used only during days where a 

large MTR was predicted, and compared to the summer average analysis.  The 

bootstrapped derived regression equation relating the MTR to the weather conditions 
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was used to choose the dates.  It was decided to select days in which the equation 

predicted MTR was larger than the median value; thus the new sample size was 55 

days.  For comparison purposes, we recalculated the signal-to-noise ratio, the mean 

MTR, the range in mean anomalies and then the ratio between the two.  Lastly, the 

spatial distribution of mean anomalies was again plotted atop a map of Detroit.  All 

these were then compared to the analogous products for the temporal average. 

Evaluation was then undertaken of the ability to predict these subselected 

mean anomalies from the spatial variables.  This was undertaken only for Tmin.  The 

backwards elimination stepwise regression method was used and indicated that all 

three variables were appropriate predictors for a regression equation of the 

anomalies.  Again the RMSE, R2 and full-model P-value were calculated for 

performance evaluation purposes.  The coefficients calculated using normalized 

predictor variables were used to quantify the influence each variable had.  To further 

test the ability of the spatial attributes to predict the mean anomalies we estimated 

each station’s anomaly in the leave-one-out cross-validation manner previously 

described; then calculated the RMSE and average absolute error in predicting the 

true values.  Again, the same bootstrapping method as described for the 110DM 

anomalies to estimate the regression coefficients and quantify the variability was 

used to subsequently assess the same things here using the subselected 55 day 

sample. 

Lastly using this regression equation and the spatially continuous landscape 

attributes, a map was created and compared to the analogous map created using the 

regression model based on the entire 110-day sample.  This assessed the model 

output’s spatial pattern sensitivity between summer average and conducive-weather. 

 

4.3. Results 

When calculating the percentiles w.r.t the past 30 years worth of summer (M, 

J, J, A, S) data at the KDTW location, there existed ample data (e.g. only 0.0042% of 

the temperature data was missing).  The 110DM Tmin and Tmax percentiles were 

both slightly cool, calculated at the 47.0th and 43.5rd percentiles, respectively.  
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Inspection of the time series (Figure 4.8) of the 110 days during the field study 

revealed that there was a wide range of percentiles experienced with episodes of 

warmer and cooler temperatures, in both Tmax and Tmin. 

Analysis of the spatial variability across the network, via the MTR, showed that 

Tmin had more variability than Tmax.  The mean (standard deviation) over the study 

period in Tmin was 2.8 °C (1.5 °C) and 1.4 °C (0.8 °C) in Tmax.  The maximum MTR 

observed in Tmin was 6.3 °C and in Tmax was 4.8 °C.  The histograms for both Tmin 

and Tmax (Figure 4.9) showed that while mild MTRs were frequent in the Tmax, 

large MTRs were more prevalent in Tmin.  This was expected because the nighttime 

mechanisms (e.g. radiative cooling differences, heat storage, etc.) work in concert to 

create large spatial variability in temperature in Tmin.  Conversely, with sometimes 

conflicting physical mechanisms in Tmax, large spatial variability was harder to 

accomplish.  Lastly, for both daily temperature extremes a Student’s t-test rejected 

the hypothesis that the true mean MTR could be zero.  This simply means over the 

duration of the summer there was statistically significant spatial variability in both 

daily temperature extremes. 

Next, the anomalies’ spatial patterns were characterized.  The 110DM 

anomalies, per station, were calculated and displayed on maps of the Detroit 

Metropolitan region (Figure 4.10).  These indicated that warmer Tmin generally 

occurred in the downtown area (Figure 4.1) and near the waterfront while warmer 

Tmax generally occur in the western suburbs.  The range in Tmin 110DM anomalies 

was calculated at 2.0 °C, and at 0.6 °C for Tmax.  The ratios between those values 

and the corresponding 110DM MTR values (2.8 °C and 1.4 °C, respectively) were 

0.72 and 0.42.  These ratios imply Tmin has more consistency in which stations were 

the hottest and coolest, than Tmax.  Physically these results make sense because 

wind speeds are stronger during the day, leading to wind direction and cold air 

advection (from the water bodies) playing bigger roles in the resultant spatial pattern.  

Moreover, lake breezes play a big role (restricted to daytime) and vary in extent and 

direction.  Looking at maps of each date’s spatial anomalies fully supported these 

results (not shown). 
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When the stations’ mean anomalies were plotted with their respective 

standard deviations (Figure 4.11), it was clear that both of the signal-to-noise ratios 

were noise heavy – especially Tmax.  These figures imply large day-to-day variability.  

These results were physically sensible: on some dates the spatial variability was 

small and on others it was large; there was large variability at each station relative to 

the temperature differences between station means, particularly in Tmax. 

 

4.3.1. Intersection with dangerously hot weather 

Next the existence of spatial variability across the urban region during 

dangerously hot weather was examined.  The first method of classifying dates as 

stressful was the air mass-based SSC2, which indicated only three days (June 24th, 

Aug. 9th and Sept. 22nd) were in air masses considered oppressive to Detroit, and 

they were not consecutive (i.e. an extreme heat event).  These days were classified 

as “moist tropical plus” airmass days, and no "dry tropical" days were observed.  The 

mean MTR observed during those three dates was 2.0 °C in Tmin, and 0.9 °C in the 

Tmax.  There was not enough data for a Student’s t-test to be meaningful.  Also the 

mean MTR was calculated for each air mass type (Table 4.2); the results indicated 

larger Tmin MTRs during dry air masses and did not indicate bias with warmer (as 

opposed to colder) air masses.  This was physically sensible as atmospheric humidity 

is associated with clouds and consequently low radiative heat loss (and thus low 

disparity in heat loss rates) at the surface. 

The second method of selecting dangerous dates, the region’s NWS heat 

advisories, only had two days (June 24th and Aug. 9th) during which the afternoon 

was under alert, and no dates with heat advisories at nighttime.  The mean MTR was 

0.7 °C in Tmax during those dates. 

The last method of exploring the relationship with dangerous weather was to 

examine the relationships between temperature percentiles and the MTR.  Both the 

Tmin and Tmax MTRs were normalized and thus the units of slope here were 

percentile MTR per temperature percentile.  A scatter plot (Figure 4.12) indicated that 

Tmin MTR exhibited a weak inverse relationship with temperature.  Figure 4.12 
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suggests Tmax was not a function of temperature percentile.  The regression 

coefficients and confidence intervals confirmed that the there was no significant 

relationship with Tmax percentiles and only a weak, albeit significant, relationship 

with Tmin percentiles (Table 4.8).  The R for Tmin was 0.41 (R2=0.17) and 0.05 

(R2=0.002) for Tmax; the P-value for the two regression models was < 0.001 for Tmin 

and 0.62 for Tmax.  Further analysis indicated that cloud cover was somewhat to 

blame for the inverse correlation (not shown). 

 

4.3.2. Spatial variability relationship with weather 

The ability to predict the amount of spatial variability (i.e. MTR) from the larger 

scale weather conditions was investigated.  Preliminary scatter plots indicated linear 

relationships (Figure 4.13).  The multiple stepwise regression method indicated all 

three predictors, of Tmin MTR, should be included.  For Tmax, the multiple stepwise 

regression method indicted only the wind speed would be an appropriate predictor.  

Speculating on physical mechanisms to explain why cloud cover wasn’t included; 

cloud cover percentage is potentially a weak predictor of downwelling shortwave 

radiation (due to scattering and lack of information about cloud height or type) or 

possibly during cloudy afternoons large spatial variability in temperature can arise 

due to isolated precipitation (e.g. thunderstorms).  The Tmin MTR multiple regression 

coefficients, with the predictor variables normalized, indicated that overnight cloud 

cover was the most important (-0.72) variable and of lesser importance were the 

previous afternoon cloud cover (-0.39) and overnight wind speed (-0.28) variables.  

These results suggested that the driver of the spatial variability of temperature during 

the daily low in Detroit was dominated by factors related to radiative cooling (e.g. sky 

view), as opposed to those related to mixing (e.g. wind). 

The Tmin regression equation performed relatively well with a RMSE of 1.0 

°C, a R2 of 0.55 and P-value of effectively zero compared to a 2.8 °C mean and 6.3 

°C maximum MTR.  The Tmax regression equation was less effective with a RMSE 

of 0.8 °C, a R2 of 0.11 and P-value on the order of 10-4 compared to a 1.4 °C mean 

and 4.8 °C maximum MTR.  Such results for Tmax suggested that the Tmax spatial 
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variability was influenced by variables not considered in this study.  It is the author’s 

inclination that both the synoptic wind direction and temperature difference between 

the city and the adjacent lakes were possibly such variables. 

Further investigation seemed warranted into the expected fit of the 

observational-based model predicting the Tmin MTR.  This was accomplished via 

cross validation by separating model training and testing samples, and then 

averaging the equation performance measures (i.e. RMSE, average absolute 

difference).  The equations built on these samples (n=88) had similar coefficients for 

the individuation terms to those coefficients built on the entire sample (n=110) (not 

shown).  The mean (std) RMSE was 1.0 °C (0.2 °C) and the average absolute 

difference between predicted and observed values was 0.8 °C (0.2 °C) and these can 

be compared with the mean MTR of 2.8 °C and maximum of 6.3 °C.  The lack of 

performance decline suggests that this model was useful and the performance was 

not overly dependant on the data that was used to train the model.  Lastly, we used a 

bootstrapping technique to estimate the regression coefficients.  The mean 

regression coefficients were calculated and compared well with the coefficients 

calculated from the 110-night sample (Table 4.4).  The standard deviations 

suggested we had confidence in these coefficients, but also that the confidence in 

the overnight cloud cover coefficient was largest and the confidence was lowest in 

the coefficient of the previous day’s cloud cover.  Possible physical explanations for 

the performance of previous day’s cloud cover as a reliable predictor were the roles 

of diffuse radiation and precipitation, as well as the amount of cloud cover earlier 

than 1pm (cloud cover was calculated from the observations from 2 to 6pm). 

The appeared ability to diagnose the MTR from city-wide weather 

observations led to investigation into whether a reanalysis product could be used 

instead.  The SR correlation coefficient (R=0.33) indicated substantial differences 

between the NARR derived afternoon cloud cover percentages and the 

corresponding observational percentages.  Due to the spatial scale of precipitation 

and cloud formation processes, disconnects between a model-observation blended 

product and the observations are not uncommon.  Subsequently, in its place a 

possibly superior NARR variable afternoon downward shortwave radiation flux at the 
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surface was employed instead of afternoon cloud cover percentage.  Such a variable 

could be superior to cloud cover as it likely incorporates factors such as cloud height, 

scattering and atmospheric humidity, but in general there was low confidence in such 

a variable due to it being based on cloud cover (it is difficult for models to accurately 

diagnose). 

Multiple stepwise regression with respect to Tmin MTRs indicated that all three 

predictors were appropriate to use for regression.  Conversely, for Tmax the multiple 

stepwise regression method indicted again that only the wind speed would be an 

appropriate predictor.  The Tmin MTR multiple regression coefficients, with the 

predictor variables normalized, indicated overnight cloud cover was the most 

important (-0.72) and previous afternoon radiation flux (0.36) and overnight wind 

speed (-0.20) being of lesser importance.  Besides the strength of the wind speed 

coefficient being reduced these coefficients were very similar to those in the model 

based on the in-situ observations.  Overall the performance decline was small when 

using reanalysis variables relative to in-situ observations models.  The equation had 

a RMSE of 1.2 °C, a R2 of 0.42 and P-value of effectively zero.  The Tmax regression 

model was also slightly less effective than the corresponding model with 

observational inputs.  That model’s performance was not as good as the Tmin 

model's performance and had a RMSE of 0.8 °C, a R2 of 0.08 and P-value on the 

order of 10-3. 

Likewise, it also seemed warranted to further investigate the usefulness of the 

reanalysis-based Tmin model predicting MTRs.  A cross validation technique was 

employed to test the dependency of the training sample.  The equations built here 

were similar to the one built using the entire sample, and performed similarly to the 

110-day trained model with a RMSE of 1.2 °C and an average absolute difference of 

1.0 °C (Table 4.5).  Again, we used bootstrapping to estimate confidence in the 

regression coefficients and to more accurately determine the mean.  These estimates 

were very comparable to those from the 110-day sample.  They also indicated a 

similar confidence in the coefficients as was indicated in the model with in-situ 

observations as input (Table 4.4).  The only difference was a lesser confidence (e.g. 
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larger standard deviation to mean ratio) in the wind speed term coefficient from the 

reanalysis data. 

 

4.3.3. Mean anomalies relationship with land attributes 

Prior to predicting each station’s 110DM anomaly the spatial attributes 

inherent to those stations themselves were briefly investigated.  First, the radius of 

PIS best correlated to the 110DM anomalies was calculated.  Correlations with Tmin 

seemed to decrease with larger distance and ranged from 0.68 (P-value=10-5) 

associated with the 0.20 km radius to 0.27 associated with the 1.95 km radius (Figure 

4.14).  The daily maximum correlations were less systematic, but ranged from 0.39 

(P-value=0.04) at 1.95 km to -0.06 at 2.65 km.  These results suggested that Tmin 

was preferentially influenced by smaller scale factors (e.g. moisture availability and 

heat storage characteristics) as opposed to Tmax that were hardly scale size 

dependant.  This makes sense because the heat released from the urban fabric 

overnight would affect smaller areas due to advection/mixing being driven by winds, 

which are typically weaker during the daytime.  In addition, the Pearson’s correlation 

coefficients did not disagree with these findings (Figure 4.14).  Moving forward, the 

two aforementioned radii of strongest correlation were used to calculate the PIS 

attributes. 

The correlations between the spatial variables were then investigated.  The 

SR correlation coefficient between 0.20 km PIS and D2H2O was calculated at -0.30 

(P-value=0.11), and between the 1.95 km PIS and the D2H2O it was calculated at -

0.12 (P-value=0.54).  The correlation coefficient between 0.20 km PIS and D2CC 

values was calculated at -0.60 (P-value=10-4), and similarly for the 1.95 km values 

was calculated at -0.65 (P-value=10-4).  Lastly, the correlation coefficient between the 

D2CC and D2H2O attributes was calculated at 0.74 (P-value=10-6).  These results 

were anticipated since the spatial patterns of D2H2O and D2CC variables were 

similar in many regards and much less similar to the PIS variable.  Certainly the 

correlation between D2CC and PIS will vary from city to city.  Detroit’s lack of 

correlation allowed evaluation of which variable was more influential. 
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Next we evaluated the ability to predict each station’s 110DM anomalies from 

the aforementioned spatial attributes.  The stepwise multiple regression method 

indicated for Tmin that all three variables were appropriate predictors.  The RMSE for 

the Tmin model was calculated at 0.3 °C (the range in 110DM anomalies was 2.0 

°C), the R2 was 0.62 and the P-value was 10-5.  For the Tmax equation, the stepwise 

multiple regression indicated that D2H2O and D2CC variables only should be used.  

This equation led to a RMSE of 0.1 °C (the range in 110DM anomalies was 0.6 °C), a 

R2 of 0.33 and a P-value on the order of 10-3.  The superior performance of the Tmin 

model, compared to the Tmax model, was not a surprise as previous results alluded 

to possible important factors (to explain Tmax) not being accounted for.  Conversely, 

explaining more than half of the variability with only the three variables was a 

pleasant surprise, as the model did not incorporate urban geometry variability (e.g. 

sky view factor, height to width ratios). 

Examination of the Tmin correlation coefficients of the normalized predictors 

showed PIS was most influential (0.38), and D2H2O (-0.30) and D2CC (0.27) were 

secondary (Table 4.7).  It was expected that PIS would outperform D2CC, but the 

substantial contribution from D2H2O was unexpected.  Physically D2CC is simply an 

ideal model of land development, thus theoretically PIS should outperform it.  The 

physical mechanism behind D2H2O is more ambiguous, however.  It has already 

been stated that locations near the water might have more water vapor in the 

atmosphere, which could reduce radiative cooling rates overnight (thus raising the 

temperatures).  However another hypothesis was as follows: on nights with a large 

temperature differential between land and water land breeze circulations should 

develop, and thus locations near shore would have wind directed out towards the 

water.  That air is originating either from a location just inland (often of denser 

development than the onshore locations) or from sinking air aloft.  A similar analysis 

for Tmax indicated that the D2H2O variable was dominant (0.12) over the D2CC (-

0.08) variable.  These values for coefficients were expected inasmuch as the D2H2O 

variable being the dominant driver of Tmax. 

The Tmax model explained a small portion of a spatial variability that did not 

vary much, and thus it was subsequently decided that only the Tmin equation would 
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be tested further.  Through cross-validation each station’s 110DM anomaly was 

predicted with an equation built on the other 29 stations, and these predicted values 

were compared to the actual values to give a mean RMSE of 0.4 °C and absolute 

difference of 0.3 °C.   

Cross validation is primarily designed to test for overfitting, or the drop in 

performance when tested on a location outside of the equation-training sample.  Said 

another way, it tests how well the relationship holds in spaces (or times) where Y and 

Xn are not available to build the relationship(s).  The lack of sizeable performance 

decline suggests the model can confidently be used to describe the space between 

the stations.  By design our training stations robustly spanned the predicator 

variables.  Lastly, bootstrapping was employed to more accurately estimate the 

regression coefficients.  These bootstrap estimates of the coefficients compared well 

to the coefficients estimated from the original sample (Table 4.6) but not as well as 

the coefficients of the regression equation used to predict the MTR (Table 4.4).  This 

was anticipated since the training sample size was 28, instead of the 110 in the 

model to predict the MTR.  The estimated regression coefficients and their standard 

deviations suggested larger confidence in the PIS variable than the other two 

variables, and the least amount of confidence in the D2CC variable. 

The map created from the traditional regression method (Figure 4.15) had a 

spatial pattern highly similar to that from the bootstrapped method (Figure 4.16).  The 

only noticeable difference was a modestly larger range of temperature predictions 

from the traditional regression model.  These maps showed in general the area to the 

north west was cool and most of the downriver (south) region and certain east Detroit 

areas were warm, along with the expected city center (downtown) area. 

 

4.3.4. Relationship during conducive weather 

To further explore the behavior of Detroit’s urban climate, it was reevaluated 

with respect to only days expected to have larger than normal spatial variability in 

temperatures.  Selecting those days was accomplished by using the regression 

equation derived from bootstrapping (Table 4.4) to predict the Tmin MTR.  Since the 
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regression equation for predicting Tmax was not effective, days were retained 

instead because they had less than the median windspeed (8.6 m s-1). 

The means and standard deviations were calculated for the different locations 

and the subsequent signal-to-noise ratios were larger in both daily temperature 

extremes (Figure 4.17).  The mean MTRs during the 55 selected dates were larger 

than the respective 110DM anomalies, calculated at 3.7 °C (Tmin) and 1.8 °C 

(Tmax).  The ranges of the aforementioned mean anomalies were also larger than 

the corresponding 110-day ranges, calculated at 3.1 °C for Tmin and 1.0 °C for 

Tmax.  Thus the ratio of the range in mean anomalies to the mean MTR was 0.82 in 

Tmin and 0.55 in Tmax; these were again larger than the corresponding 110-day 

ratios (0.72 and 0.42).  Larger ratios physically suggest that the spatial patterns were 

more consistent during the 55 selected dates than during the entire 110-day sample.  

Physically sensible, as the 55 selected dates had fewer dates with small Tmin-MTR 

values (dates not selected were preferentially biased towards small MTR because 

the selection was based on prediction of the MTR equation, from the weather 

variables, being above the median value), and during Tmax less influence from the 

wind.  Lastly, the mean anomalies were plotted over a map of Detroit (Figure 4.18), 

and showed a similar-yet-stronger pattern to that of the 110DM anomalies. 

The stepwise regression method indicated that all three spatial variable 

predictors were appropriate for predicting the 55-selected-dates mean anomalies at 

each station.  This model explained slightly less variability compared to the equation 

used to predict the 110DM anomalies; the RMSE was 0.5 °C (the range in anomalies 

was 3.1 °C), the R2 was 0.60 and the P-value was on the order of 10-5.  This was 

physically sensible because when the weather conditions were conducive to spatial 

variability in temperature, the temperature pattern was more sensitive to differences 

in landscape (e.g. urban geography, soil moisture, vegetation, etc.); thus more 

variability existed and the statistical model explained a smaller portion of it (because 

we did not add predictor variables).  The ratio of the RMSE to range in mean 

anomalies was slightly smaller than that of the corresponding 110-day model.  The 

most influential predictor was again the PIS (normalized coefficient of 0.56) with 

D2H2O being second (-0.43) and D2CC slightly less influential (0.40).  All three non-
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normalized coefficients were larger for the 55-selected-dates regression model 

because the variability they were explaining was larger (Figure 4.17). 

Cross validation efforts showed the RMSE was 0.6 °C and average absolute 

difference 0.5 °C.  The lack of large performance decline suggests this model was 

independent of the training stations and thus would hold true in the space between 

the stations.  The bootstrapping method indicated again that the MTR models (Table 

4.4, 4.5) did a better job of estimating the regression coefficients; likely due to training 

sample size (Table 4.7).  The estimated regression coefficients and their 

corresponding standard deviations also indicated slightly less confidence in the 

estimates for this model compared to the one of the 110-day period.  Similarly to the 

110DM anomalies model, the results indicated the least (most) confidence in the 

D2CC (PIS) coefficient.  The map created using this bootstrap derived regression 

model (Figure 4.19) was nearly identical (albeit larger range, more distinctive 

features) to those of modeling the 110DM anomalies (Figures 4.15-4.16). 

 

4.4. Conclusions 

While spatial variability in temperatures existed for both the Tmax and Tmin, 

the variability in Tmin was larger and the pattern more consistent than in Tmax.  

Results such as the histograms of the MTR and the maps of the averaged anomalies 

indicated larger spatial variability.  The ratios between the mean temperature range 

and range of mean anomalies also suggested such spatial pattern coherency.  This 

was similar to other recent studies that found (similar) indices such as the “UHI 

magnitude” (Runnalls and Oke 2000; Wilby 2003; Erell and Williamson 2007; Gaffin 

et al. 2008; Basara et al. 2008; Camilloni and Barrucand 2010) and “intra-urban 

spatial variability” (Wilby 2003; Erell and Williamson 2007; Gaffin et al. 2008; Basara 

et al. 2008) to be largest at nighttime.  The existence of spatial variability during 

Tmax was confirmed similar to other studies (e.g. Oklahoma City in 2003 (Basara et 

al. 2008)). 

The amount of spatial variability was comparable during hot weather as it was 

during typical weather.  The mean MTRs calculated during subsets of hot weather 
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being comparable to the temporal averages supported this conclusion.  Furthermore, 

a lack of substantial relationships between temperature percentiles and MTR shored 

up this conclusion.  Very few studies have investigated this, but our results seemed 

to confirm the findings of a previous study that examined, and found, both the intra-

urban and intra-suburban temperature variability during a heat event (Basara et al. 

2010). 

The amount of spatial variability during Tmin depends on the large-scale 

weather conditions, and there were indications that forecasting that variability may be 

possible.  The strong performance of the statistical models using both reanalysis and 

in-situ observational data led to these conclusions.  Furthermore, bootstrapping and 

cross validation methods suggested confidence/utility in these statistical models.  

This was consistent with other studies that indicated both the nighttime intra-urban 

spatial variability (Eliasson 1996, Wilby 2003, Kim and Baik 2005, Erell and 

Williamson 2007) and UHI magnitude (Runnalls and Oke 2000, Morris et al. 2001, 

Gedzelman et al. 2003, Wilby 2003, Camilloni and Barrucand 2010) to be largest 

during low wind speed and clear sky weather conditions.  However, our results build 

on these findings, first by suggesting an explicit relationship between Tmin spatial 

variability and the previous afternoon’s average cloud cover, which was not found in 

the literature.  Secondly, previous studies relating the spatial variability to weather 

variables derived from a reanalysis dataset were not found. 

The spatial patterns of temperature were more closely associated to land 

characteristics during the Tmin than during the Tmax.  The stronger performance of 

the Tmin statistical models supported this conclusion.  Interestingly, Buttstädt et al. 

(2010) found stronger relationships between geospatial variables and temperature 

during the afternoon than early morning.  Possible explanations for this discrepancy 

were the definition of time periods (i.e. Tmin versus “before 7:30am (local time)”), 

differences in climate (Detroit versus western Germany) or differences in geospatial 

variables (urban geometry and LCLU classification variables were primarily used by 

Buttstädt et al. (2010)).  Conversely Kuttler et al. (1996) found stronger relationships 

during the nighttime than daytime.  Our model of the spatial pattern of temperature 

was primarily driven by local imperviousness and distance to water.  The Kuttler et al. 



	
   	
   	
   165	
  

(1996) study also found local imperviousness to be a relatively strong predictor of 

overnight temperatures.  Other similar studies using statistical models to explain the 

nighttime metropolitan spatial pattern of temperature (Kuttler et al. 1996, Bottyán and 

Unger 2003, Buttstädt et al. 2010) confirmed it could be done adequately (R2 

between 0.50-0.85) with only a small number of variables (2-4).  Other studies (Gaffin 

et al. 2008) however, failed to find land-cover variables driving temperature but did 

not use the same variables this study did.  No previously studies were found that 

used distance to water as a predictor for Tmin temperatures. 

The signal-to-noise of the spatial variability was small over the temporal 

average but larger during weather conditions linked to large MTR values.  

Comparisons of the station anomaly signal-to-noise ratios between date-samples 

(110 vs 55) support these conclusions.  The implications were that the probability of 

expected temperature patterns is higher during certain weather conditions (e.g. 

anticyclonic weather).  We know of no other study that explicitly investigated the 

signal-to-noise ratio as a function of weather condition. 

Lastly, relationships with the mean temperatures built during weather 

conditions linked to large MTR values performed well but explained relatively less of 

the total variability (which was larger than during the temporal average).  This 

physically suggests that the spatial variability of urban climate temperatures is highly 

reduced by wind speed, and so when wind speed is held low you have more factors 

meaningfully influencing the temperatures.  The performance of both the statistical 

models and the maps of mean anomalies during a subset of conducive conditions 

supported these conclusions.  Other studies (Kuttler et al. 1996; Buttstädt et al. 2010) 

showed marginally improved performance of regression models during dates 

selected based on weather conditions. 

 

4.5. Discussion 

The conclusions concerning the existence of spatial variability in temperature 

during dangerously hot weather would benefit from exploration into whether this is 

true for climates other than that in Detroit and Oklahoma City (Barasra et al. 2008)).  
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Such conclusions inform heat-health decision makers whether they should consider 

exposure disparities by location within the city, and thus its role in heat stress 

vulnerability mapping.  Daytime temperatures being unusually hot during the early 

portion of the summer likely has a stronger relationship with temperature variability 

through the physical mechanisms of land-lake breezes, than they do during the later 

portion of the summer.  This is because in the late summer the water temperatures 

are likely the highest of the year, which reduces the land – water temperature 

gradient. 

Atmospheric moisture is associated with both warmer overnight temperatures, 

and less spatial variability.  Specifically air masses with higher atmospheric moisture 

exhibited lower spatial variability in temperature; thus predictions of a future climate 

with more (less) occurrences of relatively moist air masses would suggest a future 

decrease (increase) in attention to the spatial variability in temperatures will be 

required.  Additionally with respect to climate forecasts, a future climate with stronger 

(weaker) winds and/or more clouds would require less (more) attention to spatial 

variability in temperature in urban areas. 

The conclusions regarding the relationships between variables representing 

the spatial variability in temperatures during Tmin and the preceding afternoon’s 

shortwave radiation received would profit from exploration into whether this is a 

universal relationship and/or how its influence changes depending on climate or 

latitude.  Furthermore, such conclusions suggest that reducing (daytime) shortwave 

radiation absorption can mitigate overnight spatial variability in temperature over an 

urban region – supporting the legitimacy of albedo-alteration as a method of urban 

geoengineering towards mitigating the urban heat island. 

Furthermore, our conclusion concerning the temporal variability of spatial 

variability conveys to heat-health decision makers that optimally the amount of spatial 

variability would be forecasted for upcoming hot weather episodes.  Heat exposure is 

only one spatially variable factor in heat vulnerability mapping, and if the amount of 

variability is going to be small then placing it in an area focusing on other variables 

(e.g. population age, income) may be preferable.  Conversely, if the amount of spatial 

variability is deemed high, resources should be deployed in areas with high heat 
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stress risk.  Since the models built during average weather suggest the same 

locations as the models built during weather with above average spatial variability, 

statistical models based on only conducive weather conditions were unnecessary for 

spatial indicating those locations of high heat. 

The implications of this study still hold outside of the Detroit region.  First the 

way the intersection with dangerously hot weather was explored (e.g. NWS 

advisories, relationship with temperature percentile, SSC2 method) applies outside of 

the Detroit region.  Next these results demonstrate that when modeling spatial 

patterns of temperature both the geospatial variables intrinsic to urban development 

(e.g. percent impervious surface) and variables intrinsic to the natural terrain (e.g. 

distance to water) are important in modeling spatial patterns of temperature.  Lastly, 

the proof of concept for exploring the spatial variability in temperature can be applied 

to other cities/regions and existing observing networks.  Specifically, similar 

integrated observing networks and statistical models temporally and spatially 

forecasting the variability could be used to inform the HHWS designers in any city. 
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4.8. Figures 

Figure 4.1: Map of the observing sites within the network used to monitor the Detroit 
Metropolitan region.  Airport refers to FAA observing locations, HOBO refers to the 
temporary network and MDEQ refers to the locations of Michigan Department of 
Environmental Quality observing sites.  A layer of imperviousness is provided for 
reference and four locations referenced within the text labeled. 

D #*

[

Y

KVLL

KONZ

KYIP

KDTW

KDET

State Roads

Water

Network

Airport

HOBO

MDEQ

Built Environment

High Impervious

High Greenspace

#* City Center

D Large Park

Y W.Detroit2 HOBO

[ SouthGate HOBO

²

0 10 205 Kilometers

Imperviousness 
image via the 

2001 U.S. 
Geologic Survey

Lake St. Clair

Lake
Erie

 
 

Figure 4.2: A photograph taken of the Coleman Young Municipal City airport 
observing station. 
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Figure 4.3: A photograph taken of the MDEQ observing station in Oakpark (north 
west of downtown). 

  
Figure 4.4: A photograph taken of the Joy road observing site.  This location was a 
site of MDEQ and HOBO co-location.  The MDEQ monitor is circled in red and the 
HOBO monitor circled in yellow. 
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Figure 4.5: A photograph of the Allen Park observing site.  This location was a site of 
MDEQ and HOBO co-location.  The MDEQ monitor is not visible in this photograph. 

  
Figure 4.6:  A photograph of a HOBO monitoring site in Redford. 
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Figure 4.7: Schematic of the calendar date-dynamic base climate sample used to 
calculate the percentiles at each station.  Thirty years worth of the dates with red 
(yellow, green) on them are used to determine the percentiles on the date marked 
with a red (yellow, green) X on it. 
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Figure 4.8: The time series of daily maximum and minimum temperature percentiles 
as observed by the KDTW airport observing station during the observational period.  
Tmax provided in the top panel and Tmin in the bottom.  In each panel both the 5-day 
running average and the un-averaged time series is provided. 

15 20 25 1 5 10 15 20 25 1 5 10 15 20 25 1 5 10 15 20 25 30
0

20

40

60

80

100

percentile as a function of time
daily maximum

15 20 25 1 5 10 15 20 25 1 5 10 15 20 25 1 5 10 15 20 25 30
0

20

40

60

80

100

Calendar date

p
e

rc
e

n
til

e
 o

f 
a

p
p

a
re

n
t 

te
m

p
e

ra
tu

re

daily minimum

June July August September

June July August September

daily percentile
5-day running avg.

 
 
 
 
 
 



	
   	
   	
   176	
  

Figure 4.9: The histograms of the observed Metropolitan temperature range over the 
110-day experiment.  Both Tmin (a) and Tmax (b) histograms are provided. 
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Figure 4.10: The 110-day average anomaly values at each station.  Both Tmin (left 
panel) and Tmax (right panel) are provided.  The six symbol groups for each figure 
are equal interval categories moving away from the zero value. 
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Figure 4.11: The mean and standard deviations of the anomalies over the 110-day 
experiment.  Each station’s anomaly is ordered by lowest to highest mean.  Both 
Tmin (top panel) and Tmax (bottom panel) are provided. 
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Figure 4.12: The metropolitan temperature range as a function of temperature 
percentile observed over the 110-day period.  Both Tmax (red) and Tmin (blue) are 
shown, as well as the ordinary least squares (OLS) linear fit to both sets.  The Y-axis 
has been normalized so that 1 (0) is the maximum (minimum) metropolitan 
temperature range. 
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Figure 4.13:  Scatterplots of the metropolitan temperature range as a function of city-
average weather observations.  Morning (afternoon) wind speeds and cloud cover 
related to Tmin (Tmax) temperature ranges. 
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Figure 4.14. Correlation coefficients between 110-day mean anomalies and PIS 
values, as a function of radius of PIS.  Both Tmin (a) and Tmax (b) are provided.  
Both Spearman rank and Pearsons correlation coefficients provided. 
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Figure 4.15: Spatially continuous model output from the statistical model built to 
predict the 110DM anomaly values at each observing station.  The 110DM anomaly 
observations are also displayed (circles) and are categorized by half-standard 
deviations away from the zero value. 
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Figure 4.16: Continuous model output from the statistical model built to predict the 
110DM anomaly values at each observing station using bootstraps to estimate the 
model.  The 110DM anomaly observations are also displayed (circles) and are 
categorized by half-standard deviations away from the zero value. 
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Figure 4.17: The mean and standard deviation of anomalies over the 55-day 
subselected sample. Each station is listed and ordered from lowest to highest mean 
anomaly.  Both Tmin (top panel) and Tmax (bottom panel) are provided. 
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Figure 4.18: The mapped 55-day subselected sample average anomaly values.  Both 
Tmin anomalies (left panel) and Tmax anomalies (right panel) are provided for each 
station.  The six symbol groups (for each map) are equal interval categories moving 
away from the zero value. 
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Figure 4.19: Continuous model output from the statistical model built to predict the 
subselected mean anomalvalues at each observing station using bootstraps to 
estimate the model.  The subselected mean anomaly observations are also displayed 
(circles) and are categorized by half-standard deviations.  
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4.9. Tables 

Table 4.1. Determined biases and uncertainties between networks. All biases (mean 
difference) and uncertainties (mean absolute difference after bias correction) values 
are in degrees Celsius.  HOBO_t denotes the HOBO temperature extreme 
observations in degrees Celsius, MDEQ_t denotes the MDEQ temperature extreme 
observations in degrees Celsius, avg_WS denotes MDEQ stations mean observed 
wind speed in meters per second between 0300-0800 EDT or 1400-1800 EDT and 
CC denotes the mean airport observed cloud-cover percentage between 0400-0800 
EDT or 1300-1800 EDT. 

Network Difference Bias Uncertainity
Tmin Airport instrument n/a 0.50

HOBO inherent/relative n/a 0.44
microclimate n/a 0.00
siting 0.14 0.00
sampling algorithm 0.16 0.11

MDEQ co-location * 0.43
sampling algorithm 0.16 0.11

Tmax Airport instrument n/a 0.50
HOBO inherent/relative n/a 0.44

microclimate n/a 0.32
siting 0.49 0.00
sampling algorithm -0.48 0.28

MDEQ co-location ** 0.52
sampling algorithm -0.48 0.28

*HOBO_t ≈ -4.2+1.1*MDEQ_t+0.13*avg_WS-2.0*(1-CC%)
**HOBO_t ≈ 5.8 + 0.97 × MDEQ_t - 0.16 × avg_WS + 1.3 × (1-CC%)  

Table 4.2. Characterization of average MTR as a function of SSC2 airmass types. 
Percent refers to the portion of the field experiment the airmass was observed. 

Air Mass Type Days Percent Tmin MTR Tmax MTR
Dry Polar 9 8.2% 3.59°C 1.42°C
Dry Mod. 41 37.3% 3.48°C 1.47°C
Dry Trop. 0 0.0% n/a n/a
Moist Polar 5 4.5% 1.23°C 1.41°C
Moist Mod. 21 19.1% 1.96°C 1.70°C
Moist Trop. 22 20.0% 2.34°C 1.31°C
Moist Trop.+/++ 3 2.7% 2.01°C 0.89°C  
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Table 4.3. Regression coefficients between the observed normalized MTR and 
temperature percentiles.  xMax Y value refers to the normalized MTR value 
corresponding to the far extreme (100th percentile) of percentiles 

Y"intercept Percen+le-coeff. xMax-Y-value 

Tmin 61.1-(52.9,-69.2) "0.34-("0.49,-"0.20) 26.74 

Tmax 31.2-(24.7,-37.8) "0.03-("0.16,-0.09) 28.13 
 

 
Table 4.4. Regression coefficients of multiple linear regression model predicting the 
Tmin MTR from three observered weather variables.  The top row depicts results of 
an equation built on the observations; the bottom row depicts the results of an 
equation built using bootstrapping to better estimate the true coefficients.  The 
median coefficients are listed while the corresponding standard deviations are inside 
parentheses.  CC % denotes cloud cover percentage. 
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Table 4.5. Regression coefficients of multiple linear regression model predicting the 
Tmin MTR from three weather variables derived from reanalysis data.  The top row 
depicts results of an equation built on the observations; the bottom row depicts the 
results of an equation built using bootstrapping to better estimate the true 
coefficients.  The median coefficients are listed while the corresponding standard 
deviations are inside parentheses.  CC % denotes cloud cover percentage and SW 
denotes “short wave”. 
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Table 4.6. Regression coefficients of multiple linear regression between the 110-day 
mean anomalies and three spatial variables.  The top row depicts results of an 
equation built on the observations; the bottom row depicts the results of an equation 
built using bootstrapping to better estimate the true coefficients.  The median 
coefficients are listed while the corresponding standard deviations are inside 
parentheses.  200m PIS denotes the percent impervious surface predictor, D2H2O 
denotes the distance-to-water predictor and D2CC denotes the distance-to-city 
center predictor. 
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Table 4.7. Regression coefficients of multiple linear regression between the 55-day 
subslected sample mean anomalies and three spatial variables.  The top row depicts 
results of an equation built on the observations; the bottom row depicts the results of 
an equation built using bootstrapping to better estimate the true coefficients.  The 
median coefficients are listed while the corresponding standard deviations are inside 
parentheses.  200m PIS denotes the percent impervious surface predictor, D2H2O 
denotes the distance-to-water predictor and D2CC denotes the distance-to-city 
center predictor. 
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CHAPTER 5. THESIS CONCLUSIONS 

This work used observational data to examine extreme temperature trends 

and how those trends were portrayed in new high-resolution datasets.  This work also 

investigated the variability of air temperatures within an urban region.  These 

investigations led to learning in regards to how temperature extremes have been 

changing and how that change has related to changes in other parts of the climate 

system.  As well as learning in regards to how to characterize the uncertainty present 

in the gridded datasets and how they might be corrected, and in regards to what 

drives spatial variability in temperatures across urban regions and why some 

locations were hotter or colder.  This learning developed take away messages such 

as extreme heat being sensitive to many factors including region, the daily extreme 

they are based on and the timing within the summer.  Also messages such as there 

are some applications for which the gridded datasets are not appropriate for, but 

applications that focus on small-scale variability will have larger uncertainty 

associated with them.  Lastly, the spatial variability in urban regions occurs during hot 

weather and is relatively well linked to weather conditions and land attributes.  This 

chapter will reflect on what was learned and how what questions could be explored 

next. 

 

5.1. Regarding the EHE trends analysis 

Described below was how this EHE trend analysis contributed to the overall 

understanding of the topic of EHEs.  Trends in EHEs were unexpectedly sensitive to 

which daily temperature extreme met the requirements of the EHE definition.  This 

implied that EHEs based on different daily temperature extremes were quite different, 

which was party a reflection of the daily maximum and minimum temperatures having 

changed differently and partly due to differences between summer mean temperature 

trends and EHE trends.  Future studies of EHEs should appreciate and further study 

physical mechanisms that work oppositely on the different daily temperature 

extremes (e.g. humidity, certain kinds of LCLU change, urbanization).  A study 

looking closer at the relationship between the temporal coupling of elevated 
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temperature, dubbed the "Tmax-Tmin coupling" (Section 2.5; Gershunov et al. 2009), 

would also improve the understanding of EHEs.  Essentially, do extreme daily 

maximum temperatures beget extreme daily minimum temperatures in the following 

morning more so than extreme daily minimum temperatures lead to extreme daily 

maximum temperatures in the ensuing afternoon (i.e. which side of the Tmax-Tmin 

coupling is stronger)?  How does this mechanism compare to mechanisms that work 

oppositely on both daily temperature extremes?  This conclusion suggests EHE trend 

analyses should separately quantify EHEs with daily minimum and maximum 

temperatures above their chosen threshold(s).  Moreover they should also quantify 

EHEs with both daily temperature extremes over the threshold(s).  As is, these 

conclusions should aid the informed use of past and future EHE trend analyses as 

guidance for heat-health scientists.  Specifically that the trends of EHEs based on 

different daily temperature extremes are not interchangeable. 

Trends in EHEs during the earlier portion of the summer can differ from those 

of the later portion of the summer.  This implied that the tendencies of the 

atmosphere over the CONUS in the early and later parts of the summer could change 

independently of one another.  A future study better quantifying the past changes in 

EHEs as a function of time within the summer season might be very beneficial to the 

field.  Moreover if a reanalysis dataset was used, the changes in the physical system 

(e.g. North American Jet Stream positioning, speed of progression of upper-level 

waves) could be easily attributed to the changes (in EHEs).  More simply, moving 

forward it might be appropriate for EHE trend analyses to explicitly quantify early 

summer trends in EHEs, along with full summer trends.  Early season EHEs are 

particularly important to both human-health (Kalkstein 1990) and physical systems 

like agriculture.  As for heat-health scientists these conclusions add to the informed 

use of existing and future EHE trend analyses.  Specifically it adds uncertainty to 

what to expect in the early part of the summer, based on results likely describing the 

summer as a whole. 

There exist differences between the trends in summer mean daily temperature 

extremes and the corresponding EHEs.  Those differences existed primarily at the 

regional level, but also at the continental level the summer average temperatures 
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seemed to have differences (e.g. more positive bias trends in the 1930-2010 period, 

overall stronger trends).  This implies that the different portions of the statistical 

distribution (e.g. very cold, cool, normal, warm, very hot) were changing differently.  

Shen et al. (2011) has already shown the various statistical moments (i.e. mean, 

variability, skew, kurtosis) have changed differently in the CONUS single-day 

temperature observations.  Subsequent studies in this field should explicitly examine 

what roles the trends in the different statistical moments (e.g. mean, variability, etc.) 

play in the trends in the EHEs.  Do those relationships vary regionally, and are they 

different for different EHE characteristics (e.g. duration, frequency, intensity) or EHE 

types?  What do climate forecasts of the different statistical moments then indicate 

about future EHEs?  Also these conclusions should encourage climatologists to retire 

the concept that the probability distribution function is simply shifting towards warmer 

temperatures, and begin thinking about the different physical mechanisms that 

correspond to the different statistical moments (e.g. upper-level Rossby waves and 

synoptic variability in temperatures at the surface, GHG concentrations and the mean 

temperature, etc.).  As for heat-health scientists these conclusions add to the 

informed use of existing and future EHE trend analyses.  Specifically it adds 

uncertainty as in what to expect of EHEs from trend analyses of the summer mean 

temperatures, which are much more common. 

 

5.2.Regarding the evaluation of gridded climate datasets 

Described below was how this evaluation of gridded climate datasets 

contributed to the overall confidence of this type of climate information product, and 

pointed to future work in this area.  On large scales the datasets had statistically 

significant differences in both trends and temporal averages.  This was contrary to 

prior beliefs, and implies that the effects of the non-climatic biases do not average 

out over time and space.  To put it differently, while the uncertainty this brings to the 

utility of the datasets depends on the application, it is hoped the existence of 

uncertainty across scales will encourage correction of the causes.  Our results 

suggest the corrections should focus on the homogenization of the underlying data 

network.  On the short term, climatologists must recognize the implications on 
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downscaling products, as the bulk of the uncertainty in the gridded datasets 

manifests itself at same scale (small scale).  Specifically, downscaling methods use 

gridded datasets to spatially refine the larger-scale model output, but this evaluation 

demonstrated differences in temperature over the life of the datasets (i.e. the 

temporal average) that operate heavily at the small scale.  Heat-health scientists 

should use (for decision making guidance) the current versions of these datasets with 

some caution, particularly at the small scale and in trends.  

 Non-climatic biases that occurred at the stations were not as strongly related to 

the differences between the differences the datasets had (with the reference dataset) 

at those locations, as expected.  This was because the errors within the underlying 

network (due to lack of homogenization) were propagated spatially away from those 

stations and merged throughout the dataset by the interpolation processes used to 

create the grids.  This means each grid point is plagued by more individual 

discontinuities than a typical station within the underlying network.  The next study in 

this line of evaluation should be designed to explicitly test the different interpolation 

methods in these datasets for their impact on the propagation of these errors.  Which 

interpolation method handles the non-climatic biases the best (e.g. is weighting the 

stations based on quality possible)?  Until better versions of these datasets are made 

available, these conclusions suggest that climatologists could opt to use ungridded 

station data (e.g. NWS Co-Op stations or USHCN station) instead of the gridded 

data.  Scientists who are not comfortable acquiring their own station data can still use 

the datasets but should be aware that the data has frequent discontinuities related to 

non-climatic biases and this is true at every gridpoint. 

 

5.3.Regarding the temperature variability across an urban region 

Explained below is how this evaluation of an urban region contributed tools 

available for studying and to the overall knowledge in urban climate.  First, it was 

concluded that reanalysis data was able to force a statistical model of the spatial 

variability across the region nearly as well as in-situ observations.  This insinuates 

not only are city-wide meteorological variables linked to the spatial variability, but 
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their representation within model-observation blended products can be used.  This is 

important because there might be variables linked to the spatial variability that are 

hard to observe via observing stations such as cloud height or lower level 

atmospheric moisture.  Future work in this area should examine the relationships 

between a large suite of meteorological variables and the amount of spatial variability 

in anticipation of finding a set of variables with excellent diagnostic capabilities.  Does 

that set of variables change with region or time of summer?  Then an analysis should 

be done of the ability to forecast (into the future) the spatial variability using the 

knowledge of which variables are optimal, and which forecast models are the most 

capable of doing so.  For now, climatologists can infer how the tendencies of spatial 

variability will change in the future from those relationships (between the city-wide 

weather variables and the amount of spatial variability) and the changes in those 

variables as predicted by climate forecast models. 

The previous afternoon’s radiative characteristics were a useful predictor of 

the following overnight spatial variability in temperatures.  This suggests that physical 

mechanisms linked to afternoon downwelling shortwave radiation (albedo, heat 

storage ability within and on the surface, moisture availability, etc.) are influential in 

overnight temperatures.  Future observational studies ought to explicitly examine the 

roles these three land attributes play in the amount of spatial variability overnight.  

This can be done specifically by observing at locations spanning those variables, 

building statistical models predicting the spatial variability amount and examining 

their performance as a function of previous afternoon cloud cover.  Urban planners 

and climatologists can use knowledge from this conclusion immediately by 

discouraging the creation of neighborhoods with large heat storage (e.g. lots of 

cement, wood), low albedo (e.g. dark surfaces, tall buildings with narrow streets) and 

low moisture availability (e.g. no vegetation, too much cement coverage). 

This study represents a framework to observationally study the urban climate.  

This unique observing network was an example of an urban measurement network 

called for in the Grimmond et al. (2010) assessment of climate information for city 

planners.  The statistical models predicting the amount of variability and locations of 

warm and cool temperatures were easy to make and performed reasonably.  Moving 
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forward with this framework, it is felt it could potentially be used to realize the 

potential the nation-wide “weather underground” (Weather Underground, Ann Arbor 

MI) observing network has in studying urban climate.  More specifically the Weather 

Underground network uses several different types of weather stations and thus 

currently is of use on a qualitative, not quantitative, level due to the uncertainty 

introduced by observing with different weather station types.  So if the biases and 

uncertainties can be quantified, similar to in our observing network (or in a more 

sophisticated manner), the Weather Underground network could be integrated so 

that it would be more appropriate assessing spatial variability.  It then could be used 

to build the statistical models.  There exists available large-scale weather and land 

attribute information that can be quantified and used to build the relationships.  More 

short term, this framework can be used to study other cities as well for both its use as 

a tool for learning the physical environment and informing a heat-health vulnerability 

analysis (i.e. when and where is it hottest). 

The occurrence of the spatial variability was specifically confirmed during hot 

weather.  This speaks to the relevancy of the spatial variability to periods of hot 

weather and suggests a lack of dependence on air temperatures.  Future studies 

exploring the relationships between hot weather and spatial variability in 

temperatures (across urban regions) should use more metrics of hot weather (e.g. 

heat index, other biometeorological indices) and focus on regions outside of the 

Midwest (e.g. dry hot climates, marine dominated climates).  This knowledge is also 

immediately usable to scientists as it suggests a need for sensitivity to spatial 

variability in temperatures during hot weather as well as it justifies attempts at 

mapping the variability of spatial for use within human health vulnerability analyses 

(Wilhelmi and Hayden 2010). 
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