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ABSTRACT

Quasilinear Control Theory for Systems with Asymmetric Actuators and Sensors

by

Hamid-Reza Ossareh

Co-chairs: Professor Pierre Kabamba and Professor Semyon Meerkov

Quasilinear Control (QLC) theory provides a set of methods for analysis and de-

sign of systems with nonlinear actuators and sensors. In practice, actuators always

saturate and sensors often have deadzone or quantization. One limitation of the

current QLC theory is that it is applicable only to systems with symmetric nonlin-

earities. In many situations, however, nonlinearities are asymmetric. Examples of

such systems abound: air-conditioning/heating systems, automotive torque and idle

speed control, wind turbine control, etc. In this work, we provide an extension of the

QLC theory to the asymmetric case. Similar to the symmetric case, the approach is

based on the method of stochastic linearization, which replaces nonlinear systems by

quasilinear ones. Unlike the symmetric case, however, stochastic linearization in the

asymmetric case replaces each nonlinearity not only by an equivalent gain, but also by

an equivalent bias. The latter leads to steady state errors incompatible with the usual

error coefficients predicted by linear systems theory. For this reason, the extension to

the asymmetric case is non-trivial. Specific problems addressed in this dissertation

with regards to asymmetric systems are: (i) Introduction and investigation of the

xv



notion of asymmetry. (ii) Development of a formalism of stochastic linearization for

systems at hand. (iii) Analysis of tracking and disturbance rejection performance.

(iv) Introduction and investigation of performance loci, i.e., root locus and tracking

error locus. (v) Utilization of the performance loci for random reference and step

reference tracking controller design. (vi) Recovery of linear performance in nonlinear

systems. (vii) Disturbance rejection controller design using an LQR-type approach.

(viii) Application of the methods developed to a wind farm controller design. In ad-

dition, a Matlab-based toolbox that implements most of the QLC methods has been

developed and is available at www.QuasilinearControl.com.

xvi



CHAPTER I

Introduction

1.1 Motivation and Approach

1.1.1 Motivation

Consider the single-input single-output (SISO) linear system shown in Figure

1.1.1, where P (s) and C(s) are the plant and controller, respectively, and r and

d are the reference signal and the disturbance. Over the past century, this system

has been extensively studied, and a plethora of analysis and design techniques have

been developed.

Control systems, however, always contain nonlinear instrumentation, i.e., actua-

tors and sensors. Two ubiquitous nonlinearities are actuator saturation and sensor

deadzone. This leads to the block diagram of Figure 1.1.2, where f(·) and g(·) are

static nonlinearities representing the actuator and sensor, respectively. Here, the

plant P (s) is linear because the system is assumed to operate close to an operating

point. However, while the plant is kept in the vicinity of an operating point, nonlin-

earities in the instrumentation might be activated in order to reject large disturbances

or to track large references. For this reason, the system of Figure 1.1.2 is referred to

as linear plant/nonlinear instrumentation (LPNI) system.

Stability of LPNI systems has been extensively studied in the literature (see the
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Figure 1.1: SISO linear system and LPNI system.

literature review in Subsection 1.5.1). Hence, we will not pursue the issue of stability

of such systems in this work. The problems of performance analysis and controller

design, however, have received far less attention. The earlier work [1] developed

the theory of Quasilinear Control (QLC), which provides a set of methods for per-

formance analysis and controller design of LPNI systems. One shortcoming of the

existing QLC theory is that it is only applicable to systems with odd (i.e., symmetric)

nonlinearities driven by zero-mean exogenous signals. In applications, however, these

nonlinearities may be asymmetric or the exogenous signals may have non-zero mean.

Roughly speaking, we refer to these systems as asymmetric LPNI (A-LPNI) systems

(see Section 1.2 for a formal definition). Examples of A-LPNI systems abound:

• In the xerographic process, toner can be added to the process but cannot be

removed [2]. Thus, the actuator can be modeled as a one-sided saturation,

which can only actuate the plant in one direction.

• A simple model of a wind turbine consists of a first order system preceded by

a saturation nonlinearity, which, for most operating conditions, is asymmetric.

2



The saturation appears in the model because the available wind power is always

positive and finite [3] (see Chapter VIII for modeling and controller design of

such a system).

• In aircraft, each elevator can typically be modeled by a saturation, which is

asymmetric after trimming (i.e., has more authority in one direction than the

other [4]).

• In simple heating (or cooling) systems, heat can be added to (or removed from)

the process; however, the control action cannot remove (or add) heat. Thus,

the actuator is a one-sided saturation, which can only actuate the plant in one

direction [5].

Thus, motivated by applications, as well theoretical interests, the intention of this

work is to develop methods for performance analysis and controller design of A-LPNI

systems.

1.1.2 Technical approach

In the study of A-LPNI systems, rigorous analytical results are difficult to achieve

because of the nature of such systems. However, these difficulties may be alleviated

when the exogenous signals are random. In this situation, a powerful mathematical

technique may be employed – stochastic linearization [6] – which replaces each static

nonlinearity with an affine function, i.e., an equivalent gain and an equivalent bias

(note that only an equivalent gain arises in the stochastic linearization of symmetric

LPNI systems considered in [1]). For reasons that will become clear in Chapter II,

the linearized system is referred to as quasilinear. As it turns out, if the plant has

sufficiently slow dynamics, the quasilinear system provides faithful estimates of the

first and second moments of the signals in the original A-LPNI system and can,

thus, be used for performance analysis and controller design. Accordingly, in this

3
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1.2.2: Translated operating point.

Figure 1.2: LPNI system with nonlinear actuator and sensor with the original and
translated operating points.

work, we transfer methods of linear control theory to the quasilinear system. These

methods include techniques for performance analysis, time domain design using root

locus, step-tracking controller design, performance recovery, and an LQR approach

for controller design.

Throughout, many examples are presented to illustrate the developed theory. All

simulations and plots are created using the MATLAB and SIMULINK computational

environments.

1.2 Definition of S- and A-LPNI Systems

Consider the LPNI system shown in Figure 1.2.1, where P (s) and C(s) are the

plant and the controller, f(u) and g(y) are functions representing the actuator and

sensor, r0 is a wide-sense stationary zero-mean Gaussian process, and µr is a constant.

Assume that the system is operating in the stationary regime so that all signals have

average values that do not vary with time.

To define the notion of symmetry, we translate the operating point of this system

such that, with respect to the new operating point, the reference signal has zero mean.
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To accomplish this, introduce the new signals

∆e = e− 1

1 + C0P0

µr, ∆u = u− C0

1 + C0P0

µr,

∆v = v − C0

1 + C0P0

µr, ∆y = y − C0P0

1 + C0P0

µr,

∆ym = ym −
C0P0

1 + C0P0

µr,

(1.1)

where P0 and C0 are the dc-gains of the plant and controller, and e, u, v, y, and ym

are signals shown in Figure 1.2.1. Clearly, with respect to the translated operating

point, the system is as illustrated in Figure 1.2.2, where

f0(∆u) = f(∆u+
C0

1 + C0P0

µr)−
C0

1 + C0P0

µr, (1.2)

g0(∆y) = g(∆y +
C0P0

1 + C0P0

µr)−
C0P0

1 + C0P0

µr. (1.3)

We refer to the system of Figure 1.2.2 as the canonical form of that of Figure

1.2.1. Based on the above, we define the notion of S- and A-LPNI systems.

Definition I.1. The system of Figure 1.2.1 is called symmetric (or S-LPNI) if f0 and

g0 defined by (1.2), (1.3) are odd functions. Otherwise, it is called asymmetric (or

A-LPNI).

As mentioned in Section 1.1, symmetric LPNI systems with µr = 0 have been

treated in [1] for analysis and design. In the current work, we focus on analysis and

design of the general case.

Example I.1. Consider the LPNI system of Figure 1.2.1, where f(u) = satβα(u) is the

saturation function with limits α and β (see Figure 1.3), and g(·) is a linear sensor.

Then, f0 in (1.2) is given by:

f0(∆u) = satβ0
α0

(∆u),

5
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Figure 1.3: Saturation function satβα(u).

where α0 = α − C0

1+C0P0
µr and β0 = β − C0

1+C0P0
µr. Therefore, the LPNI system is

symmetric iff α0 = −β0, i.e.,

C0

1 + C0P0

µr =
α + β

2
. (1.4)

Otherwise, it is A-LPNI.

Remark I.1. Taking the expected value of both sides of the first equation in (1.1)

and rearranging the terms, we obtain

µe =
1

1 + P0C0

µr + µ∆e,

where µx denotes expected value of x. Note that the first term on the right hand

side of the above expression is exactly the average value of the tracking error of the

underlying linear system. Moreover, the second term is the tracking error of a LPNI

system driven by zero-mean signals. Therefore, this expression provides a method

for separating the average value of e into two parts: the part which is caused by the

underlying linear system, and the part that is induced because of the asymmetry in

the nonlinearity. Similar reasoning applies to all other signals in (1.1). This idea is

exploited later in this work.
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1.3 Problems Considered

1.3.1 Problem 1: Formalism of stochastic linearization for A-LPNI sys-

tems

The first problem is to formulate stochastic linearization for closed loop A-LPNI

systems. Unlike the symmetric case, each nonlinearity is replaced not only by a

quasilinear gain, but also by a bias. The goals here are:

• present stochastic linearization of common nonlinearities in the open loop en-

vironment,

• develop the equations for the quasilinear gain and bias in the closed loop envi-

ronment,

• study existence and uniqueness of the solutions of these equations,

• quantify the accuracy of stochastic linearization,

• define a measure of asymmetry, and, using this measure, investigate the effects

of asymmetry on the quasilinear gain and bias.

1.3.2 Problem 2: Performance analysis of A-LPNI systems

To analyze tracking and disturbance rejection performance of A-LPNI systems,

we assume that the references and disturbances are random processes. We, thus,

stochastically linearize the A-LPNI system to obtain a quasilinear one. Block dia-

grams of the A-LPNI and quasilinear systems are shown in Figures 1.4.1 and 1.4.2,

respectively. In these figures, FΩd(s) and FΩr(s) are low pass filters, wr and wd are

independent standard Gaussian white noise processes, f(·) and g(·) are static nonlin-

earities representing actuator and sensor, and Na, Ns, ma, ms are quasilinear gains

and biases of the actuator and sensor. The goals here are:
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1.4.2: Stochastic linearization of the A-LPNI system

Figure 1.4: A-LPNI system and its stochastic linearization.

• investigate if the stochastically linearized system can indeed be used to study

tracking and disturbance rejection performance of A-LPNI systems,

• develop a method for quantifying the quality of tracking and disturbance rejec-

tion in A-LPNI systems.

1.3.3 Problem 3: Time-domain design of A-LPNI systems

The third problem of interest is time domain design of A-LPNI systems. The focus

is on systems with saturating actuator. Consider the system of Figure 1.5, where f(u)

is the saturation function. The goal is to choose K > 0 such that the closed loop

system tracks the reference well, if at all possible. This problem has been solved for

linear systems using the root locus method and for symmetric LPNI systems using

the S-root locus method [1], where “S” stands for saturating. For A-LPNI systems,

however, this problem has not been addressed.
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Since the tool used in our work is stochastic linearization, we model the reference

r(t) as a random process. We then stochastically linearize the system and consider

the resulting quasilinear one. Since stochastic linearization of asymmetric systems

results in not only a gain but also a bias, two loci must be investigated: the usual

root locus modified appropriately to account for the quasilinear gain, and a tracking

error locus to account for steady state errors. The goals here are:

• introduce a notion of closed loop poles for A-LPNI systems,

• develop the AS-root locus for A-LPNI systems, where “AS” stands for asym-

metric saturating,

• develop the TE locus, where “TE” stands for tracking error,

• investigate the properties of these loci and rules for their sketching.

1.3.4 Problem 4: Design of step-tracking controllers for LPNI and A-

LPNI systems

In classical control, the goal is often to design controllers that track step signals. To

this end, specifications are typically based on overshoot, rise time, settling time, etc.,

of the step response. To design a controller that achieves the specifications, numerous

techniques exist if the system is linear. If the system has nonlinear instrumentation,

however, this problem has not been solved at any level of generality. The goals here

are:
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• investigate the possibility of “converting” step tracking specifications into random-

signal tracking specifications,

• use the QLC theory to design controllers that track random signals with these

specifications,

• explore whether the same controller tracks step signals and satisfies the original

step-tracking specifications.

Note that this problem was not addressed in [1]. So the goal here is to address

both symmetric and asymmetric cases.

1.3.5 Problem 5: Performance recovery in A-LPNI systems

Consider the system of Figure 1.6, where d is a disturbance generated by passing

standard Gaussian white noise wd through the low pass filter FΩd(s). It is desired

to design a controller C(s) to achieve good disturbance rejection. A control designer

typically ignores the nonlinearities in the actuator and sensor and designs C(s) for the

resulting linear system. The same controller implemented on the nonlinear system,

however, typically exhibits a degradation in performance as compared with the linear

system. Accordingly, the goals are:

• study whether it is possible to recover linear disturbance rejection performance

by “boosting” the gain of the controller and introducing a bias at the input of

the actuator nonlinearity,

• provide methods for computing the boosting gains and bias.

1.3.6 Problem 6: LQR approach for A-LPNI systems

Given a linear system, the LQR method provides an optimal way of selecting

a controller that achieves good disturbance rejection. The approach is based on

10
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Figure 1.6: System considered for performance recovery.

designing a state feedback controller that minimizes a quadratic cost function. When

there are nonlinearities in the instrumentation, however, the controller designed based

on linear LQR theory is no longer optimal. In fact, attempting to use cheap control

may activate significantly the nonlinearities and lead to poor performance. In [1],

an LQR theory (called SLQR, where “S” stands for saturating) is developed for

symmetric LPNI systems with saturating actuator. No such method exists for A-

LPNI systems. Here, we focus on A-LPNI systems with saturating actuators, and

• develop stochastic linearization of state space models,

• formulate the relevant optimization problem, which accounts for the quasilinear

gain and bias,

• provide methods for solving the optimization problem,

• evaluate the performance of the resulting controllers.

This LQR-type problem for asymmetric systems is referred to as A-SLQR, where

“A” stands for asymmetric.

1.4 Original Contributions

The following contributions have been made by solving the problems addressed in

Section 1.3:
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1.4.1 Contributions to formalism of stochastic linearization in A-LPNI

systems

• Stochastic linearization of common nonlinearities in the open loop environment

has been developed.

• Equations for the gain and bias of the quasilinear closed loop system have been

constructed.

• Conditions for existence of the solutions of these equations have been developed.

• The accuracy of stochastic linearization in the closed loop environment has been

characterized.

• A measure of asymmetry has been introduced and the quasilinear gain and bias

have been studied as a function of this measure.

1.4.2 Contributions to performance analysis in A-LPNI systems

• Stochastic linearization has been successfully employed to study tracking per-

formance of A-LPNI systems. Specifically, it has been shown that the mean and

variance of the tracking error in the quasilinear system can be used to study

quality of tracking of the A-LPNI system. Moreover, since not all step sizes can

be tracked in the presence of saturation, the notions of trackable domain and

system types for A-LPNI systems have been developed. The saturating random

sensitivity function and quality indicators have been introduced to quantify the

quality of tracking. These developments parallel those in the symmetric case.

• Stochastic linearization has been shown to successfully predict disturbance re-

jection performance of A-LPNI systems. It has been shown that the mean and

variance of the output of the quasilinear system can be used for this purpose.
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• Stochastic linearization has been used to correctly quantify the phenomenon of

noise-induced loss of tracking, which arises in systems with asymmetric satu-

rating actuator, sensor noise, and anti-windup.

1.4.3 Contributions to time-domain controller design in A-LPNI systems

• The notion of closed loop poles for A-LPNI systems has been introduced. Simi-

lar to the symmetric case, these poles are are poles of the closed loop quasilinear

system.

• The AS-root locus has been developed.

• It is shown that a new locus arises in asymmetric systems – the tracking error

(TE) locus – which is the locus of the average value of the tracking error as a

function of the controller gain.

• The properties of these loci have been investigated and methods for their sketch-

ing presented.

1.4.4 Contributions to step-tracking controller design in A-LPNI systems

• The step-tracking specifications have been converted to random-signal tracking

specifications. The new specifications involve tracking a colored random pro-

cess with bandwidth determined from the dynamic part of the step-tracking

specifications. Using this random reference, the time domain design technique

(AS-root locus and TE locus method) is employed to design a controller.

• It has been demonstrated that the same random reference tracking controller,

implemented on the original system augmented with a precompensator, tracks

step signals and satisfies the original step-tracking specifications.
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1.4.5 Contributions to performance recovery

• The equations for boosting have been developed.

• It has been shown that if these equations have a solution, and if stochastic

linearization is accurate, then the boosted controller performs better than the

non-boosted one on the A-LPNI system.

1.4.6 Contributions to the A-SLQR technique

• Equations of stochastic linearization in state space form have been developed.

• The A-SLQR problem has been formulated and solved.

• Performance limitations of A-LPNI systems with saturating actuators have been

quantified.

1.4.7 Application: Wind farms controller design

As mentioned in Section 1.1, a wind turbine can be modeled by an A-LPNI system

with asymmetric saturation. In [3], the authors design two controllers for a wind farm

consisting of N wind turbines: a model predictive controller on the outer loop, which

takes the saturation into account, and an adaptive controller in the inner loop, which

ignores the saturation. It is desirable to include saturation in the design of the adap-

tive controller to obtain better performance of the A-LPNI system. Consequently, to

address this issue, we developed:

• equations of stochastic linearization for the wind farm problem,

• formulation of an optimization problem for the adaptive controller,

• demonstration of the efficacy of the controllers obtained.
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1.4.8 QLC toolbox

As part of this work, a Matlab-based QLC Toolbox has been developed. This tool-

box, which is available for download at www.QuasilinearControl.com, could provide

control engineers with a convenient means of using the QLC methods. While most

of the functions in this toolbox are intended for the symmetric case, the important

methods for the asymmetric case are also implemented.

A brief description of each of these functions, along with their syntax and example

usage, are included in Appendix B.

1.5 Literature Review

In this section, we first briefly review the available literature on stability of A-

LPNI systems. Then, the issues of design and performance analysis are reviewed.

Finally, we discuss the appropriate literature on the mathematical method used in

this work: stochastic linearization.

1.5.1 Stability

The issue of stability of both symmetric and asymmetric LPNI systems has been

extensively studied in the literature. One of the most important works in this area is

the theory of absolute stability ([7–12]), where stability of the closed loop system is

established using, for example, sector conditions. A modern description of absolute

stability can be found in [13]. Other works typically consider specific nonlinearities for

actuators and sensors. In [14], the authors consider a system with saturating actuator

in the framework of absolute stability. The works [15–18] study semi-global stability

of LPNI systems with saturating actuators and linear feedback. The authors of [19]

examine stability of pole-placement algorithms in systems with actuator saturation.

In [20–22], the authors consider LMI methods to establish stability and region of
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attraction. A thorough review of LPNI systems with saturating actuators is presented

in the survey paper [23]. The issue of stability of A-LPNI systems with asymmetric

actuator saturation is addressed in [24]. The authors of [25] consider stability of

systems with deadzone in the actuator. In [26–30], the issue of stability of systems

with sensor nonlinearities is addressed.

As reviewed above, stability analysis of LPNI systems has been studied extensively

in the literature; however, the problems of performance analysis and controller design

have received less attention [23, 31, 32]. For this reason, we do not pursue the issue

of stability of these systems in this work. Instead, we focus on performance analysis

and controller design. Indeed, while the controllers resulting from our methods ensure

the desired dynamic and steady state performance of quasilinear systems, stability

properties of A-LPNI systems with these controllers can be ascertained using the

usual methods mentioned above.

1.5.2 Performance analysis and design in A-LPNI systems

Many works in the area of nonlinear control (see, e.g., [33, 13]) consider nonlinear

differential equations of the form

ẋ = f(x) + g(x)u,

where u enters the differential equation in an affine manner and g(x) takes into account

the effects of the actuator. Feedback linearization [34, 35, 13], for example, can be

used to stabilize systems of this type. However, in A-LPNI systems considered in this

work, u does not enter in an affine manner and, therefore, LPNI systems cannot be

studied in this framework.

For the issue of performance recovery and controller design, the main available

methods can be classified into two approaches: anti-windup (see, e.g., [36–41]), and
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model predictive/governor (see, e.g., [42–48]) approach. Within the former, a con-

troller is designed without taking into account the saturation, and then the design is

improved by using an anti-windup scheme. In the latter, the controller is designed on

a receding horizon by solving an online optimization problem. In contrast to these

methods, the approach here takes into account the actuator saturation at the initial

stage of the design. Moreover, the controllers designed using our methods are all

computed offline and have the same computational complexity as linear controllers.

Other approaches to control design of systems with actuator saturation are L1

analysis and synthesis techniques [49] and gain scheduling [50, 51]. In the former,

actuator saturation is handled as a constraint in an optimization problem, while in

the latter, the authority of the control is increased as the state of the system converges

to the origin to improve system performance.

In the current work, performance analysis and design is performed by analyzing

the system dynamics excited by random exogenous signals. For the problem of distur-

bance rejection, this can be done by means of the Fokker-Planck equation [52], which

provides the stationary probability distribution of the signals in the loop. However,

while solvable for low-order systems [53], Fokker-Planck equations are typically dif-

ficult to solve for high order systems. In the latter case, the method of stochastic

linearization may be used to characterize the first and second moments of the relevant

signals in the loop. A literature review of the method of stochastic linearization is

provided in the next subsection.

1.5.3 Stochastic linearization

As mentioned in Section 1.1, the main tool used in this work is stochastic lineariza-

tion, which replaces all nonlinearities with affine functions. In this sense, stochas-

tic linearization is analogous to the well-known method of describing functions [54–

56, 13]. However, the two methods are fundamentally different: the main focus of
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describing functions is to study limit cycles in LPNI systems or periodic response of

LPNI systems to periodic excitations, while the main focus of stochastic linearization

is to study dynamics of LPNI systems driven by random signals.

Two of the earliest papers on stochastic linearization are [57] and [58] published

in 1954. Since then, many authors have used stochastic linearization to study the

behavior of nonlinear systems driven by random excitations (see, e.g., [59, 55, 6, 1]).

Works [59, 55] include pioneering applications of stochastic linearization to feedback

systems. A complete description of stochastic linearization appears in [6], in which

stochastic linearization has been referred to as statistical linearization. In early work

[1], stochastic linearization has been used for symmetric LPNI systems to study per-

formance analysis and controller design.

Typically, the random excitations are assumed to be Gaussian since this assump-

tion is both practical and simplifying. In the current work, we also assume that the

signals are Gaussian. Some authors have examined other distributions as well (see,

e.g., [60–62]).

The issue of open-loop accuracy of stochastic linearization has also been addressed

in the literature (see, e.g., [63]). In our early work, [1], we addressed the issue of closed

loop accuracy; however, the focus there is on symmetric systems, not asymmetric ones.

In Chapter II of this work, we address the issue of accuracy of stochastic linearization

in asymmetric systems.

1.6 Statement of Impact

The developed quasilinear control theory for A-LPNI systems has both theoretical

significance and practical implications. Indeed, there are many applications in which

A-LPNI systems arise. Examples in heating systems, xerography, wind farms, and

aviation have already been provided in Section 1.1. The methods developed in this

work can assist a control engineer to better predict the performance of such systems
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and design controllers to satisfy given specifications. Furthermore, the QLC Toolbox

could aid the engineer in applying the QLC methods to both S- and A-LPNI sys-

tems. It should be noted that all methods are systematic and proper extensions of

linear control theory, which is a familiar subject to control engineers. Furthermore,

the methods require only off-line computations, which greatly simplifies controller

implementation.

1.7 Dissertation Outline

The outline of this dissertation is as follows. Chapter II presents the formalism of

stochastic linearization for A-LPNI systems. In Chapter III, methods for analysis of

reference tracking and disturbance rejection are developed and illustrated. Chapter

IV introduces the performance loci for A-LPNI systems and utilizes them for con-

troller design. Chapter V presents a method for designing step-tracking controllers.

In Chapter VI, the problem of linear performance recovery by A-LPNI systems is

discussed. Chapter VII solves the A-SLQR problem. In Chapter VIII, the developed

theory is applied to controller design of a wind farm consisting of multiple wind tur-

bines. The conclusions and future work are outlined in Chapter IX. All proofs are

included in Appendix A. In Appendix B, the QLC Toolbox functions and their usage

are summarized.
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CHAPTER II

Stochastic Linearization for A-LPNI Systems

This chapter presents the main mathematical tool of this work, namely the method

of stochastic linearization. First, the formalism of stochastic linearization in the open

loop environment is presented. It is shown that, unlike the symmetric case, stochastic

linearization in the asymmetric case results in not only an equivalent (or quasilinear)

gain, but also a bias. Second, stochastic linearization in the closed loop environment

is described and equations for computing the quasilinear gains and biases in the

closed loop environment are provided. Third, the accuracy of stochastic linearization

is discussed. It is shown that, even though accuracy in the asymmetric case is lower

than the symmetric case, stochastic linearization still results in faithful prediction

of first and second moments of the signals in the original LPNI system. Finally, the

notion of asymmetry is formally introduced, and a measure for quantifying the degree

of asymmetry is presented. The quasilinear gain and bias are studied with respect to

this measure of asymmetry.

2.1 Open Loop Environment

2.1.1 General equations

Consider Figure 2.1, where u0(t) is a zero-mean wide-sense stationary (WSS)

Gaussian process with standard deviation σu, µu a constant, and f(u) a piece-wise
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v̂(t)

v(t)f(u)
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u(t) = u0(t) + µu

Figure 2.1: Stochastic linearization of an isolated nonlinearity.

differentiable function. Clearly, u(t) is a WSS Gaussian process with mean µu and

standard deviation σu. The problem of stochastic linearization is concerned with

approximating v(t) = f(u(t)) by v̂(t) = Nu0(t) +M , where N and M are constants,

such that the functional

ε(N,M) := E
[
(v(t)− v̂(t))2] (2.1)

is minimized. The solution of this problem is given by:

Theorem II.1. If f(u) : R→ R is piecewise differentiable, u0(t) is a zero-mean WSS

Gaussian process, and u(t) = u0(t) + µu, functional (2.1) is minimized by

N = E
[
f ′(u)|u=u(t)

]
, (2.2)

M = E
[
f(u)|u=u(t)

]
. (2.3)

Proof. See [6] Chapter 5.

For the sake of convenience, we denote the right hand sides of (2.2) and (2.3) by

FN(σu, µu) and FM(σu, µu), respectively, i.e.,

FN(σu, µu) =

∞∫

−∞

d
dx
f(x)√
2πσu

exp

(
−(x− µu)2

2σ2
u

)
dx, (2.4)

FM(σu, µu) =

∞∫

−∞

f(x)√
2πσu

exp

(
−(x− µu)2

2σ2
u

)
dx. (2.5)

Note that the block diagram of Figure 2.1 can be equivalently represented as
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N

m

u(t) = u0(t) + µu

+

Figure 2.2: Alternative representation of Figure 2.1.

shown in Figure 2.2, where

m = M −Nµu. (2.6)

This representation, which is used throughout this work, is more convenient in the

closed loop environment because N multiplies u, not u0. The gain N(σu, µu) and bias

m(σu, µu) are referred to as the quasilinear gain and quasilinear bias, respectively.

The following corollary is a direct consequence of Theorem 1.

Corollary II.1. Let f1(u), f2(u), and f3(u) be piece-wise differentiable functions with

stochastic linearization given by Nf1(σu, µu),Mf1(σu, µu), Nf2(σu, µu),Mf2(σu, µu), and

Nf3(σu, µu),Mf3(σu, µu), respectively, and let a and b be real constants. Then, the fol-

lowing holds:

(a) If f3(u) = f1(u) + f2(u), then Nf3 = Nf1 +Nf2 and Mf3 = Mf1 +Mf2.

(b) If f3(u) = af1(u) + b, then Nf3 = aNf1 and Mf3 = aMf1 + b.

(c) If f3(u) = f1(au+ b), then Nf3(σu, µu) = Nf1(|a|σu, aµu + b) and Mf3(σu, µu) =

Mf1(|a|σu, aµu + b).

(d) If f3(u) = au+ b, then Nf3 = a and Mf3 = aµu + b.

(e) If f3(u) is odd with respect to µu, i.e., f3(µu− u) = −f3(µu + u), then Mf3 = µu.

Note that, according to parts (b) and (c) of the above corollary, the quasilinear

gain of f(au) and af(u) are not the same. For this reason, we call N the quasilinear

gain, rather than linear gain, of f . Similar arguments apply to the quasilinear bias.
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2.1.2 Stochastic linearization of common nonlinearities

Using (2.2) and (2.3), we derive explicit expressions for N and M for common

nonlinearities below.

• Saturation: The saturation function is depicted in Figure 2.3.1 and is given by

satβα(u) =





β, u > β,

u, α ≤ u ≤ β,

α, u < α,

(2.7)

where β > α. If α = −β, the saturation function is odd, otherwise it is not.

Since

d

du
satβα(u) =





1, α < u < β,

0, u < α or u > β,

using (2.2) and (2.3), it follows that

N = FN(σu, µu) =
1

2

[
erf

(
β − µu√

2σu

)
− erf

(
α− µu√

2σu

)]
, (2.8)

M = FM(σu, µu) =
α + β

2
+
µu − β

2
erf

(
β − µu√

2σu

)
− µu − α

2
erf

(
α− µu√

2σu

)

− σu√
2π

[
exp

(
−(
β − µu√

2σu
)2

)
− exp

(
−(
α− µu√

2σu
)2

)]
,

(2.9)

where

erf(x) =
2√
π

x∫

0

e−t
2

dt (2.10)

is the error function. Note that with f(u) = satβα(u), (2.2) implies that N =

P{α ≤ u ≤ β}, i.e., N is the probability that saturation does not take place.

As a result, assuming that σu 6= 0, N satisfies 0 < N < 1. Furthermore, since

M = E[f(u)], it satisfies α < M < β.
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2.3.1: Saturation nonlinearity.
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2.3.2: Relay nonlinearity.
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1

2.3.3: Deadzone nonlinearity.

Figure 2.3: Common piece-wise differentiable functions.

Since the saturation function is the main nonlinearity considered in this work,

we provide below some additional properties.

Proposition II.1. Consider v = satβα(u) with stochastic linearization given by

v̂ = Nu0 +M , where u0 is the zero-mean part of u, and let µ(·) and σ(·) represent

expected value and standard deviation, respectively. Then,

1. For a fixed σu, N is maximized when µu = α+β
2

;

2. N < β−α√
2πσu

;

3. σv̂ <
β−α

2
;

4. ∃ 0 < m∗ < ∞ such that ∀ σu ∈ R+ and µu ∈ R, m < m∗, where m is

given by (2.6);

5. µu = α+β
2
⇐⇒ µv = α+β

2
;
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6. limσu→0N =





1, α < µu < β,

0.5, µu = α or µu = β,

0, otherwise;

7. limσu→0M = limσu→0 µv =





µu, α ≤ µu ≤ β,

β, µu > β,

α, µu < α;

Proof. See Section A.1.

• Relay: For the relay function (see Figure 2.3.2),

relβα(u) =





β, u ≥ 0,

α, u < 0,

(2.11)

the derivative is given by (β − α)δ(u). Therefore, employing equations (2.2)

and (2.3), we have:

N = FN(σu, µu) =
β − α√

2πσu
exp

(
−(

µu√
2σu

)2

)
, (2.12)

M = FM(σu, µu) =
α + β

2
+
β − α

2
erf

(
µu√
2σu

)
. (2.13)

From the above expressions, assuming that σu 6= 0, it follows that N > 0 and

α < M < β.

• Deadzone: Consider the deadzone nonlinearity (see Figure 2.3.3) given by

dzβα(u) =





u− β, u > β,

0, α ≤ u ≤ β,

u− α, u < α.

(2.14)
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P (s)f (u)C (s)_
yvu

g (y)
ym

r

d

Figure 2.4: Closed loop LPNI system.

Using Corollary 1 and the fact that dzβα(u) = u− satβα(u), it follows that

N = 1−Nsat, (2.15)

M = µu −Msat, (2.16)

where Nsat and Msat are the quasilinear gain and bias for the saturation function

as defined in (2.8) and (2.9). Note that N = P{u > β or u < α}, and as a

result, 0 < N < 1.

2.2 Closed Loop Environment

Consider the closed loop system of Figure 2.4, where P (s) and C(s) are the plant

and the controller, respectively, f(u) and g(y) are piece-wise differentiable functions

representing the actuator and sensor, respectively, r and d are the reference and the

disturbance, respectively, and u, v, y, and ym are the controller output, actuator

output, plant output, and measured output, respectively. The goal is to develop a

method for performance analysis of this system using stochastic linearization. To

accomplish this, we assume that r(t) and d(t) are random processes obtained by

filtering the signals wr(t) and wd(t) (see Figure 2.5.1) through filters FΩr(s) (with

‖FΩr(s)‖2 = 1) and FΩd(s) (with ‖FΩd(s)‖2 = 1), respectively, where wr(t) and wd(t)

are independent standard Gaussian white noise processes and ‖ · ‖2 denotes the H2

norm. The outputs of the filters are then scaled by σr and σd and shifted by µr and
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2.5.1: Closed loop LPNI system driven by white noise processes.

P (s)NaC (s)
_

û v̂ ŷ

ma
r

Ns

ms

d+

+

FΩr
(s)wr σr

µr

FΩd
(s)wd

µd

σd

2.5.2: Stochastic linearization of the LPNI system

Figure 2.5: LPNI system and its stochastic linearization.

µd to generate r(t) and d(t). Clearly, r(t) and d(t) have standard deviations σr and

σd, expected values µr and µd, and power spectral densities determined by FΩr(s)

and FΩd(s), respectively. Applying stochastic linearization to the system of Figure

2.5.1 and using the representation of Figure 2.2, we obtain the quasilinear system of

Figure 2.5.2, where

Na = E
[
f ′(û)|û=û(t)

]
, Ns = E

[
g′(ŷ)|ŷ=ŷ(t)

]
,

Ma = E
[
f(û)|û=û(t)

]
, Ms = E

[
g(ŷ)|ŷ=ŷ(t)

]
,

ma = Ma −Naµû, ms = Ms −Nsµŷ,

(2.17)

and µû and µŷ are the expected values of û and ŷ, respectively. Note that stochastic

linearization in the closed loop environment is different from that in the open loop

environment in two respects. First, the signal at the input of the nonlinearity is not

necessarily a Gaussian process. Second, signals u and û are not the same. Therefore,
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stochastic linearization of closed loop systems is sub-optimal. In Section 2.3, we

address the accuracy of this approximation.

To evaluate (2.17), the standard deviations of û and ŷ (denoted by σû and σŷ),

and the expected values µû and µŷ are required. To discuss how these quantities can

be obtained, we first address the case of nonlinear actuators and sensors separately

and then the case of nonlinearities in both actuators and sensors simultaneously.

2.2.1 Reference tracking with nonlinear actuator

Consider the closed loop system of Figure 2.5.1 with d(t) = 0 and g(y) = y, i.e.,

a linear sensor. Note that, since g(y) = y, Corollary 1 implies that Ns = 1 and

Ms = µŷ, which results in ms = 0.

Assuming that the system is operating in the stationary regime, the standard

deviation σû can be evaluated as the H2-norm of the transfer function from wr to û:

σû =
∥∥∥ FΩr(s)C(s)

1 + P (s)NaC(s)

∥∥∥
2
σr =




√√√√√ 1

2π

∞∫

−∞

∣∣∣∣
FΩr(jw)C(jw)

1 + P (jw)NaC(jw)

∣∣∣∣
2

dw


σr.

(2.18)

To derive an expression for the mean µû, note that stochastic linearization requires

E[v] = E[v̂] = Ma. As a result, µû satisfies:

µû = C0(µr − P0E[v̂]) = C0(µr − P0Ma), (2.19)

where C0 and P0 are the DC gains of C(s) and P (s), respectively. As it turns out, to

account for cases where either P0 = ∞ or C0 = ∞, it is more convenient to rewrite

(2.19) as:

Ma =
µr
P0

− 1

C0P0

µû. (2.20)
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Substituting Ma into (2.17) and using (2.18), we obtain the following system of equa-

tions for µû and Na:

Na −FN(
∥∥∥ FΩr(s)C(s)

1 + P (s)NaC(s)

∥∥∥
2
σr, µû) = 0, (2.21)

µr
P0

− µû
C0P0

−FM(
∥∥∥ FΩr(s)C(s)

1 + P (s)NaC(s)

∥∥∥
2
σr, µû) = 0, (2.22)

where FN and FM are given in (2.4) and (2.5), respectively. Once (2.21) and (2.22)

are solved, Ma can be computed from (2.20) and ma can be found using (2.17):

ma =
µr
P0

− (
1

C0P0

+Na)µû.

These equations are used in this work for analysis and design of reference tracking

systems.

The issue of the existence of solutions is considered next.

Theorem II.2. Let Ma denote the range of Ma and assume that either C0 = ∞ or

P0 =∞. Then, a necessary condition for (2.21), (2.22) to have a solution is:

µr
P0

∈Ma. (2.23)

Proof. See Section A.1.

Clearly, for symmetric nonlinearities and µr = 0, condition (2.23) is always met

(because 0 ∈ Ma). For asymmetric nonlinearities, however, this is not always the

case. For instance, if P0 = ∞, (2.23) becomes 0 ∈ Ma, which, in turn, implies that

for a “fully” asymmetric saturation, i.e., satβ0 (u), (2.23) does not hold. Similarly, if

P0 < ∞ but C0 = ∞ and µr = 0, for the fully saturating actuator, the condition

again is not satisfied.

A sufficient condition for the existence of solutions of (2.21), (2.22) is given below.
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Theorem II.3. Let the range of Na be denoted by Na and the range of Ma, as before,

Ma. Assume that the following holds:

1. 1 + γP (s)C(s) has all zeros in the open left half plane for all γ ∈ Na;

2. The ranges Na and Ma are bounded connected sets;

3. If C0 =∞ or P0 =∞, condition (2.23) holds.

Then, the system of equations (2.21), (2.22) has a solution.

Proof. See Section A.1.

Note that the first condition in Theorem II.3 implies that both P (s) and C(s)

have all poles in the closed left half plane.

While Theorem II.3 guarantees existence of a solution, it does not guarantee

its uniqueness. In fact, system (2.21), (2.22) may have multiple solutions. If (2.21),

(2.22) has more than one solution, similar to the symmetric case, the system typically

exhibits the undesirable “jumping phenomenon” [1]. In this situation, the controller

must be modified to avoid this behavior.

Solutions of (2.21), (2.22) may be found using a plethora of numerical techniques,

e.g., the 2-variable bisection algorithm. In the Matlab computational environment,

the “fsolve” function provides a convenient method for solving this system.

2.2.2 Disturbance rejection with nonlinear actuator

Consider the closed loop system of Figure 2.5.1 with r(t) = 0 and g(y) = y, i.e., a

linear sensor. Note that, similar to Subsection 2.2.1, Ns = 1, Ms = µŷ, and ms = 0.

In this subsection, we derive expressions for σû and µû for this system. Assuming

that the system is operating in the stationary regime, σû can be obtained from the

H2-norm of the transfer function from wd to û:

σû =
∥∥∥FΩd(s)P (s)C(s)

1 + P (s)NaC(s)

∥∥∥
2
σd. (2.24)
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To compute µû, we follow a procedure similar to Subsection 2.2.1 and obtain µû =

−C0P0(Ma + µd). Rewriting this in terms of Ma, we obtain:

Ma = −µd −
1

C0P0

µû.

Using the above expressions for Ma and σû, we obtain the following system of equa-

tions:

Na −FN(
∥∥∥FΩd(s)P (s)C(s)

1 + P (s)NaC(s)

∥∥∥
2
σd, µû) = 0,

− µd −
1

C0P0

µû −FM(
∥∥∥FΩd(s)P (s)C(s)

1 + P (s)NaC(s)

∥∥∥
2
σd, µû) = 0,

(2.25)

where FN and FM are as in (2.4) and (2.5), respectively, and the unknowns are µû

and Na. These equations are used in Subsection 3.2 for the analysis of disturbance

rejection of LPNI systems.

For this case, Theorems II.2 and II.3 also hold, except that the necessary condition

(2.23) must be modified to −µd ∈Ma.

2.2.3 Reference tracking with nonlinear sensor

Consider the closed loop system of Figure 2.5.1 with d = 0 and f(u) = u, i.e.,

a linear actuator. Note that, since f(u) = u, Corollary 1 implies that Na = 1 and

Ma = µû, which results in ma = 0. By following a procedure similar to the case of

nonlinear actuator, the following equations can be derived:

Ns − GN(
∥∥∥FΩr(s)C(s)P (s)

1 + P (s)NsC(s)

∥∥∥
2
σr, µŷ) = 0,

µr −
µŷ
C0P0

− GM(
∥∥∥FΩr(s)C(s)P (s)

1 + P (s)NsC(s)

∥∥∥
2
σr, µŷ) = 0,

where GN and GM are the same as FN and FM in (2.4) and (2.5), except that f(·) is

replaced by g(·).
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2.2.4 Disturbance rejection with nonlinear sensor

Consider the closed loop system of Figure 2.5.1 with r = 0 and f(u) = u, i.e., a

linear actuator. Similar to Subsection 2.2.3, this implies that Na = 1, Ma = µû, and

ma = 0. By following a procedure similar to the previous subsections, the following

equations in Ns and µŷ can be derived:

Ns − GN(
∥∥∥ FΩd(s)P (s)

1 + P (s)NsC(s)

∥∥∥
2
σd, µŷ) = 0,

µd
C0

− µŷ
C0P0

− GM(
∥∥∥ FΩd(s)P (s)

1 + P (s)NsC(s)

∥∥∥
2
σd, µŷ) = 0,

where GN and GM are the same as FN and FM in (2.4) and (2.5), except that f(·) is

replaced by g(·).

2.2.5 Reference tracking with nonlinear actuator and nonlinear sensor

Consider the closed loop system of Figure 2.5.1 with d = 0 and both nonlinearities

present. Similar to the previous cases, since µû = C0(µr −Ms) and µŷ = P0Ma, the

following equations in the unknowns Na, Ns, µû, and µŷ can be derived:

Na −FN(
∥∥∥ FΩr(s)C(s)

1 + P (s)NaNsC(s)

∥∥∥
2
σr, µû) = 0,

Ns − GN(
∥∥∥FΩr(s)C(s)NaP (s)

1 + P (s)NaNsC(s)

∥∥∥
2
σr, µŷ) = 0,

µŷ
P0

−FM(
∥∥∥ FΩr(s)C(s)

1 + P (s)NaNsC(s)

∥∥∥
2
σr, µû) = 0,

µr −
µû
C0

− GM(
∥∥∥FΩr(s)C(s)NaP (s)

1 + P (s)NaNsC(s)

∥∥∥
2
σr, µŷ) = 0,

(2.26)

where FN and FM are as in (2.4) and (2.5), respectively, and GN and GM are the same

as FN and FM in (2.4) and (2.5), except that f(·) is replaced by g(·). The modified

version of Theorem II.3 for this case is given below:

Theorem II.4. Let the ranges of Na, Ns, and NaNs be denoted by Na, Ns and Nas,
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respectively, and the ranges of Ma and Ms be denoted by Ma and Ms, respectively.

Then, system (2.26) has a solution if the following holds:

1. 1 + γP (s)C(s) has all zeros in the open left half plane for all γ ∈ Nas.

2. The ranges Na, Ns, Ma, and Ms are all bounded and connected sets;

3. If C0 =∞ then µr ∈Ms, and if P0 =∞ then 0 ∈Ma.

Proof. The proof is similar to the proof of Theorem II.3.

2.2.6 Disturbance rejection with nonlinear actuator and nonlinear sensor

Consider the closed loop system of Figure 2.5.1 with r = 0 and both nonlinearities

present. Similar to the previous case, the following equations can be derived:

Na −FN(
∥∥∥FΩd(s)P (s)C(s)Ns

1 + P (s)NaNsC(s)

∥∥∥
2
σd, µû) = 0,

Ns − GN(
∥∥∥ FΩd(s)P (s)

1 + P (s)NaNsC(s)

∥∥∥
2
σd, µŷ) = 0,

−µd +
µŷ
P0

−FM(
∥∥∥FΩd(s)P (s)C(s)Ns

1 + P (s)NaNsC(s)

∥∥∥
2
σd, µû) = 0,

−µû
C0

− GM(
∥∥∥ FΩd(s)P (s)

1 + P (s)NaNsC(s)

∥∥∥
2
σd, µŷ) = 0.

2.2.7 Simultaneous reference tracking and disturbance rejection with non-

linear actuator and nonlinear sensor

Consider the closed loop system of Figure 2.5.1, where both r(t) and d(t) are

non-zero. In this subsection, we consider the general case of simultaneous nonlin-

ear actuator and sensor and derive the equations for stochastic linearization of this

system.

To obtain the standard deviations σû and σŷ, assume that {Ap, bp, cp}, {Ac, bc, cc},

{Ar, br, cr}, and {Ad, bd, cd} are minimal realizations of P (s), C(s), FΩr(s), and

FΩd(s), respectively. Moreover, let xp, xc, xr, and xd denote the states of P (s),
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C(s), FΩr(s), and FΩd(s), respectively, xG = [xTp x
T
c x

T
r x

T
d ]T , w = [wr wd]

T , m =

[ma −ms]
T , and µ = [µd µr]

T . Then, the stochastically linearized closed loop system

of Figure 2.5.2 can be represented as

˙̂xG = AGx̂G +BGw +B1(m+ µ),

û = c1x̂G,

ŷ = c2x̂G,

where

AG =




Ap bpNacc 0 σdbpcd

−bcNscp Ac σrbccr 0

0 0 Ar 0

0 0 0 Ad



, BG =




0 0

0 0

br 0

0 bd



, B1 =




bp 0

0 bc

0 0

0 0



,

c1 = [0 cc 0 0], c2 = [cp 0 0 0].

(2.27)

It follows that the standard deviations σû and σŷ can be obtained from
√
c1PcT1

and
√
c2PcT2 , respectively, where P is the positive definite solution of the Lyapunov

equation

AGP + PATG +BGB
T
G = 0.

Therefore, the equations of stochastic linearization are:

Na −FN(
√
c1PcT1 , µû) = 0,

Ns − GN(
√
c2PcT2 , µŷ) = 0,

−µd +
µŷ
P0

−FM(
√
c1PcT1 , µû) = 0,

µr −
µû
C0

− GM(
√
c2PcT2 , µŷ) = 0,

AGP + PATG +BGB
T
G = 0,
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where AG, BG, c1, and c2 are defined in (2.27), FN and FM are as in (2.4) and (2.5),

respectively, and GN and GM are the same as FN and FM in (2.4) and (2.5), but with

f(·) replaced by g(·).

2.3 Accuracy

In [1] it was shown that, for the case of symmetric nonlinearities, stochastic lin-

earization in the closed loop environment results in accuracy well within 10%, as

far as the difference between the standard deviations of the outputs, σy and σŷ, is

concerned. Furthermore, it was noted that if the plant is sufficiently low-pass fil-

tering, the accuracy is high because the plant “Gaussianizes” its input [64]. In this

subsection, we focus on asymmetric saturating actuators and perform similar studies.

2.3.1 Statistical experiment

To characterize the accuracy of stochastic linearization for asymmetric nonlinear-

ities and compare it with that of symmetric ones, we perform the following Monte

Carlo experiment: We consider 2400 LPNI systems of Figure 2.5.1 with r(t) = 0. In

1200 of these systems, we assume that P (s) = 1
Ts+1

, and in the remaining 1200, we

assume that P (s) = w2
n

s2+2ζwns+w2
n
. The parameters are randomly and equiprobably

selected from the following intervals:

T ∈ [0.01, 10], wn ∈ [0.01, 10], ζ ∈ [0.05, 1].

Furthermore, we assume that, in all these systems, σd = 1, µd = 0, and

C(s) = K, f(·) = satβα(·),
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2.6.1: Symmetric case, β/|α| =
1.
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2.6.2: Asymmetric case, β/|α| =
5.
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2.6.3: Asymmetric case, β/|α| =
14.

Figure 2.6: Histograms of e1.

where K is selected equiprobably from [1, 20], β + |α| = 1.5, and FΩd(s) is the third

order Butterworth filter with 3-dB bandwidth Ωd = 1 and dc-gain selected so that

‖FΩd(s)‖2 = 1, i.e.,

FΩd(s) =

√
3

s3 + 2s2 + 2s+ 1
.

For each of these systems, we consider three cases: one with the symmetric nonlin-

earity, i.e., β/|α| = 1, and two with asymmetric ones, specifically, β/|α| = 5 and

β/|α| = 14.

For each of the 2400 systems and each of the above three cases, we evaluate σy by

simulations and σŷ from (2.24), (2.25). The accuracy, as quantified by

e1 =
|σy − σŷ|

σy
,

is illustrated by the histograms of Figure 2.6 and the data of Table 2.1. Clearly,

the accuracy of stochastic linearization in predicting the standard deviation σy is

quite high, even for asymmetric nonlinearities. Furthermore, as the nonlinearity

becomes asymmetric, the percentage of simulations resulting in high accuracy (e1 <

5%) decreases, while that resulting in lower accuracy (e1 < 20%) slightly improves;

however, note that the improvement and degradation in accuracy are not significant.

Since e1 does not seem to be sensitive enough, we consider another measure for
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β/|α| = 1 β/|α| = 5 β/|α| = 14
percentage of systems that result in e1 < 5% 22.9 17.0 16.8
percentage of systems that result in e1 < 10% 70.7 72.1 75.9
percentage of systems that result in e1 < 20% 98.8 99.8 99.9

average e1 8.1% 8.4% 8.1%

Table 2.1: Accuracy as quantified by e1.
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2.7.1: β/|α| = 1.
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2.7.2: β/|α| = 5.
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2.7.3: β/|α| = 14.

Figure 2.7: Histograms of e2.

accuracy given by

e2 =

√
E[(y − ŷ)2]

σr
.

Its histograms and numerical values are shown in Figure 2.7 and Table 2.2, respec-

tively. These data clearly show that, although the accuracy in all cases remains

relatively high, it monotonically degrades as a function of asymmetry.

β/|α| = 1 β/|α| = 5 β/|α| = 14
percentage of systems that result in e2 < 5% 38.0 31.4 30.1
percentage of systems that result in e2 < 10% 70.9 56.9 50.7
percentage of systems that result in e2 < 20% 92.5 88.4 86.8

average e2 10.8% 12.9% 13.4%

Table 2.2: Accuracy as quantified by e2.
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2.3.2 Filtering hypothesis and accuracy of stochastic linearization for fil-

tering plants

Consider the LPNI system of Figure 2.5.1 with

d(t) = 0, σr = 1, µr = 0,

P (s) =
1

Ts+ 1
, C(s) = 5, f(u) = satβα(u),

and FΩr(s) the third order Butterworth filter with bandwidth Ωr = 1. We assume

that α = −0.1 and β = 0.3 and consider two cases: T = 1 and T = 10. For each case,

we simulate the system for a sufficiently long time. The histograms of v and y for both

cases are shown in Figure 2.8. Clearly, the input to the plant v is not Gaussian in

either case. However, the output resembles the Gaussian distribution when the plant

is more low-pass filtering (i.e., T = 10). This illustrates that the “Gaussianization”

phenomenon takes place for asymmetric saturation as well.

The data of Subsection 2.3.1 characterizes the accuracy of stochastic linearization

for both filtering and non-filtering plants (due to ranges of T , ζ, and wn). It is of inter-

est to illustrate this accuracy for filtering plants that exhibit signal Gaussianization.

We carry this out by considering the above system with T = 10 and f(u) = satβα(u),

where β + |α| = 0.4. Figure 2.9 illustrates the behavior of e2, obtained via simula-

tions, as a function of the midpoint of saturation (α+ β)/2. Clearly, for the filtering

plant considered, e2 is a monotonically increasing function of asymmetry; however,

the accuracy deterioration is quite small.

2.4 Measure of Asymmetry

In this section, we introduce a measure to quantify the degree of asymmetry. The

focus here is on the saturation function, which is the main nonlinearity examined in
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Figure 2.8: Histograms of v and y.
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Figure 2.9: Accuracy as quantified by e2 as a function of the midpoint of saturation,
i.e., (α + β)/2.
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this work.

Consider the block diagram shown in Figure 2.1, where f is the saturation func-

tion. To quantify asymmetry in this system, compute P [u ≤ α] and P [u ≥ β], which

determine the probability that the lower and upper saturation limits are activated.

Accordingly, define the degree of asymmetry

A = P [u ≥ β]− P [u ≤ α]. (2.28)

If the saturation is activated equally from above and below, A = 0. If saturation is

activated more on the upper limit, A > 0. Similarly, if saturation is activated more

on the lower limit, A < 0. Note that, since A is the difference of two probabilities, it

satisfies the inequalities

−1 < A < 1.

The following theorem provides an explicit formula for A.

Theorem II.5. An explicit formula for computing A is given by

A = −1

2

(
erf(

β − µu√
2σu

) + erf(
α− µu√

2σu
)

)
. (2.29)

Proof. See Section A.1.

As it follows from equation (2.29), A is small if one of the following holds:

• µu is close to the midpoint of the saturation, i.e., α+β
2

.

• σu is small and µu is within the linear domain of saturation. In this case, A is

small because the nonlinearity is almost never activated – neither from above

nor below. Thus, the input signal does not “sense” any asymmetry.

• σu is much larger than the saturation authority. This is because large σu implies

that the saturation is significantly activated – almost equally from above and
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Figure 2.10: Degree of asymmetry A as a function of µu and σu.

below. Therefore, again, the input signal does not sense any asymmetry.

To illustrate these findings, we let α = −1 and β = 1, and compute A using (2.29)

for various σu’s and µu’s. Figures 2.10.1 and 2.10.2 show A as a function of µu and

σu, respectively. As expected, asymmetry is an increasing function of µu. Moreover,

A is small exactly when one of the above conditions is satisfied.

Notice the similarity between (2.29) and the equation for quasilinear gain (2.8).

Indeed, the following relationship can be established:

Corollary II.2. The degree of asymmetry A given by (2.29) and the quasilinear gain

N for the saturation function given by (2.8) satisfy

0 < N < 1− |A|.

Proof. See Section A.1

According to this theorem, large asymmetry implies small quasilinear gain.

We now demonstrate the effect of asymmetry on the quasilinear gain and bias.

To accomplish this, we let α = −1 and β = 1, and compute the values of N , m, and

A for µu ∈ [−5, 5] and three σu’s: σu = 0.1, σu = 0.7, and σu = 1.5. Figure 2.11

shows N and m as a function of A. Clearly, the larger the asymmetry, the smaller

the N and the larger the m. In the framework of the closed loop environment, this
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Figure 2.11: Quasilinear gain N and quasilinear bias m as a function of degree of
asymmetry A.

implies that asymmetry could have two deteriorating effects: it could degrade dynamic

performance of the system because the quasilinear gain is smaller as compared with

the symmetric case, and it could degrade steady state performance because the bias,

which acts as additional disturbance, is non-zero. These facts are investigated further

in Chapter IV.

We now connect the measure of asymmetry A with the notion of asymmetry

defined by condition (1.4) in Section 1.2. Recall from Section 1.2 that, in the closed

loop environment, an LPNI system is called symmetric if (1.4) is satisfied. Otherwise,

it is called asymmetric. The following theorem connects the degree of asymmetry A

with condition (1.4).

Theorem II.6. Assume that the closed loop LPNI system of Figure 1.2.1, with f(·)

the saturation function and g(·) linear, is operating in the stationary regime. Then,

condition (1.4) is satisfied iff A = 0, where u in the definition of A is the controller

output shown in Figure 1.2.1.

Proof. See Section A.1.

The above theorem confirms that the notion of asymmetry defined by (1.4) is

consistent with the notion of asymmetry defined in this subsection. Specifically,

A = 0 when and only when the LPNI system is symmetric.
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Remark II.1. In the closed loop environment, σu and µu are difficult to compute

analytically. We, therefore, consider the degree of asymmetry in the framework of

the quasilinear system, i.e.,

A = −0.5

(
erf(

β − µû√
2σû

) + erf(
α− µû√

2σû
)

)
. (2.30)

This measure of asymmetry is used in the analysis of Chapter IV.
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CHAPTER III

Performance Analysis in A-LPNI Systems

This chapter is devoted to the problem of performance analysis of A-LPNI systems.

For linear systems, this problem has been extensively studied. For symmetric LPNI

systems with zero-mean exogenous signals, this problem has been addressed in [1].

For asymmetric LPNI systems, however, this problem has not been solved at any level

of generality. Consequently, in this chapter, we explore the problem of performance

analysis of A-LPNI systems in the framework of stochastic linearization developed

in Chapter II. Although the focus is on systems with saturating actuator and linear

sensor, the obtained results can be easily extended to systems with other nonlinearities

in actuators and sensors.

The outline of this chapter is as follows. First, the case of reference tracking is

treated. Specifically, a motivating example is presented and the so-called trackable

domain, system types, and quality indicators are introduced to quantify tracking

quality. Second, the case of disturbance rejection is considered. Finally, the phe-

nomenon of noise-induced loss of tracking in systems with sensor noise, anti-windup,

and saturating actuator is quantified using stochastic linearization.
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Figure 3.1: LPNI and quasilinear systems for the tracking problem of Section 3.1.1.

3.1 Analysis of Tracking Performance

In this section, we apply stochastic linearization to analyze the tracking perfor-

mance of A-LPNI systems.

First, we begin with a motivating example to demonstrate that stochastic lin-

earization provides a good approach in studying tracking performance of LPNI sys-

tems. Second, we develop the notion of Trackable Domain for A-LPNI systems, which

determines the set of step sizes that can be tracked in the presence of saturation. Fi-

nally, we introduce quality indicators, which quantify the tracking performance for

A-LPNI systems. Some of the results are proper generalizations of the symmetric

case while some are only pertinent to the asymmetric case.

3.1.1 Motivating example

Consider the closed loop system of Figure 3.1.1 with

P (s) =
10

s(s+ 10)
, C(s) = 5. (3.1)
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Assume that wr is the standard Gaussian white noise process, σr = 1, µr = 0, and

FΩr(s) is the third order Butterworth filter with bandwidth Ωr = 1, i.e.,

FΩr(s) =

√
3

s3 + 2s2 + 2s+ 1
.

The quasilinear version of this LPNI system is shown in Figure 3.1.2. Since P0 =∞,

stochastic linearization of this system can be calculated using (2.21), (2.22) as follows:

Na −FN(σû, µû) = 0, (3.2)

FM(σû, µû) = 0, (3.3)

where FN(σû, µû) and FM(σû, µû) are as in (2.8), (2.9) and

σû =
∥∥∥ 5

√
3s(s+ 10)

(s3 + 2s2 + 2s+ 1)(s2 + 10s+ 50Na)

∥∥∥
2
.

We now consider three cases: α = −1, β = 1; α = −0.5, β = 1.5; and α =

−0.2, β = 1.8. Note that the total authority of saturation is the same in all three cases,

specifically β+|α| = 2. For each of the cases, we compute the unique solution (Na, µû)

of (3.2), (3.3) using Matlab’s “fsolve” function, and, thus, obtain the quasilinear

system. Then, using Na and µû, we compute the measure of asymmetry A using

(2.30). For case 1, A = 0, i.e., system is symmetric, while for cases 2 and 3, A = −0.46

and A = −0.8, i.e., system is asymmetric. Figure 3.2 shows traces of r(t), y(t), and

ŷ(t) obtained by simulations, for all three cases. Clearly, with larger asymmetry, the

tracking performance of both y(t) and ŷ(t) deteriorates: with large asymmetry, y(t)

displays one-sided rate-saturation while ŷ(t) approximates y(t) as lagging in a linear

manner.

Figure 3.3 shows the standard deviations, expected values, and square root of the

second moment of the tracking errors e and ê. Clearly, as (α + β)/2 increases, the
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Figure 3.2: Traces of r(t), y(t), and ŷ(t) for the example of Subsection 3.1.1.

quality of tracking, as quantified by any of these quantities deteriorates monotoni-

cally. Furthermore, stochastic linearization provides a faithful estimate of all three

quantities for the original nonlinear system. Consequently, the quasilinear system is

a good approximation to the LPNI and A-LPNI systems, as far as prediction of loss

of tracking is concerned.

This example demonstrates that stochastic linearization may be suitable to predict

the quality of tracking in A-LPNI systems. Clearly, if σê is small, dynamic tracking

is good and if µê is small, steady state tracking of average values is good. It follows

that for good tracking, both quantities must be small.

Obviously, if these quantities are large, the reason for poor tracking is not imme-

diately clear. For this reason, below, we first develop the notions of step and ramp

trackable domains, which determine the set of step sizes and ramp slopes that can

be tracked in the presence of saturation. These domains are proper extensions of the

ones in the symmetric case. We then introduce the quality indicators, which deter-

mine quality of tracking. Based on these indicators, we present a diagnostic chart,
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the midpoint of nonlinearity, for the tracking problem of Subsection 3.1.1.
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Figure 3.4: System for studying the trackable domain.

from which reasons for poor tracking can be determined.

3.1.2 Trackable domains for A-LPNI systems

Consider the system of Figure 3.4, where r(t) = r01(t). Here, r0 ∈ R and 1(t) is

the unit step signal. Define the steady state error ess as

ess = lim
t→∞

e(t).
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The standing assumption in this section is that ess exists and is unique. For linear

systems, this error is given by

ess =
1

1 + P0C0

r0,

where C0 and P0 are the dc-gains of controller and plant, respectively. For A-LPNI

systems this is not always the case, as established by the following theorem.

Theorem III.1. Assume the system of Figure 3.4 has a unique ess. Then, the fol-

lowing hold:

1. ess = r0
1+P0C0

if

r0 sign(
1

C0

+ P0) ∈
[
| 1

C0

+ P0|α, |
1

C0

+ P0|β
]
.

2. ess = r0 − P0α if

1 + P0C0 > 0, r0 < | 1
C0

+ P0|α,

OR

1 + P0C0 < 0, r0 < | 1
C0

+ P0|(−β).

3. ess = r0 − P0β if

1 + P0C0 > 0, r0 > | 1
C0

+ P0|β,

OR

1 + P0C0 < 0, r0 > | 1
C0

+ P0|(−α).

Proof. See Section A.2.

Using the above theorem, we introduce the following definition:

Definition III.1. The step Trackable Domain (TDstep) is the set of all step sizes
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Figure 3.5: Illustration of ess vs. r0 when 1
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that can be tracked with the usual linear error, i.e.,

TDstep = {r0 ∈ R : r0 sign(
1

C0

+ P0) ∈
[
| 1

C0

+ P0|α, |
1

C0

+ P0|β
]
}.

In typical systems, C0 > 0 and P0 > 0. The trackable domain for these systems

is the closed interval

TDstep =

[
(

1

C0

+ P0)α, (
1

C0

+ P0)β

]
.

In the subsequent discussion, for simplicity, we assume that C0 > 0 and P0 > 0.

If r0 ∈ TDstep, the step signal can be tracked at steady state with the usual

tracking error. However, if r0 /∈ TDstep, tracking does not take place since ess is given

by r0 shifted by a constant (either P0α or P0β). This can be illustrated by Figure

3.5.

Let us consider the step trackable domain for the special case where P0 =∞. In

this case, if α < 0 < β, TDstep = R, i.e., all step sizes can be tracked. If, however,

0 ≤ α or β ≤ 0, then the system cannot operate in the stationary regime, a case in

which we are not interested.

If P0 < ∞ but C0 = ∞, we have that TDstep = [P0α, P0β]. Clearly, not all step

sizes can be tracked. Therefore, unlike linear systems, the poles at the origin of the
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plant and controller play different roles as far as steady state tracking is concerned.

Ramp inputs: Consider system of Figure 3.4 with r(t) = r1t1(t), and let ess be,

as before, the steady state tracking error. Define P1 by

P1 = lim
s→0

sP (s).

In linear systems theory, the steady state error for ramp signals is given by

ess =
r1

lims→0 sC(s)P (s)
.

However, this is not always the case in A-LPNI systems. The following theorem

establishes this fact:

Theorem III.2. Assume the system of Figure 3.4 with r(t) = r1t1(t) has a unique

ess. Then, the following holds:

ess =
r1

C0P1

,

if

r1sign (P1) ∈ [|P1|α, |P1|β] .

Proof. See Section A.2.

Using the above theorem, we introduce the following definition:

Definition III.2. The ramp Trackable Domain (TDramp) is defined as

TDramp = {r1 ∈ R : r1sign (P1) ∈ [|P1|α, |P1|β]}.

Note that if P1 = ∞ and α < 0 < β, then TDramp = R. If P1 < ∞, the ramp

trackable domain is finite. Also note that the controller does not play any role in the

ramp trackable domain. However, if r1 ∈ TDramp, then the steady state tracking error

51



is inversely proportional to C0. Clearly, similar to the case of step inputs considered

above, the roles of the controller and plant poles at the origin are different.

The notions of step and ramp trackable domains can be extended to other signals

(e.g., parabola) in a similar manner.

System types: In linear systems, the open loop (OL) transfer function specifies

the system type. Specifically, system is of type k if the OL transfer function has k

poles at the origin. Clearly, the plant and controller poles at the origin play equal

roles as far as steady state tracking is concerned. According to Definitions III.1 and

III.2, however, the integrators in the plant and controller play different roles in steady

steady behavior of A-LPNI systems. Since the role of plant and controller integrators

explained above is the same as those in the symmetric case described in [1], the notion

of system types for A-LPNI systems remains the same as that in the S-LPNI case.

Specifically, system is of type kS if the plant has k poles at the origin. It is of type

k+
s if, in addition, the controller has one or more integrators. For example, if system

is of type 0S, then TDstep is finite, and the tracking error is non-zero. If system is of

type 0+
S , then TDstep is finite, and the tracking error is zero. In both cases, the ramp

trackable domain is empty. If system is of type 1S, then TDstep = R, and the step

tracking error is zero. Moreover, the ramp trackable domain is finite and the steady

state tracking error for ramp signals is non-zero. If system is of type 1+
S , then the

steady state tracking error for ramp signals is zero.

3.1.3 The quality indicators and the diagnostic flowchart

3.1.3.1 Preliminaries

Consider the A-LPNI system shown in Figure 3.1.1, where, as before, reference

r(t) is a Gaussian colored process with standard deviation σr and mean µr. To study

the quality of tracking for this system, we consider instead the quasilinear system of

Figure 3.1.2, where Na and ma = µr
P0
− ( 1

C0P0
+ Na)µû are, as before, given by the
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solution of the transcendental equations

Na −FN(σû, µû) = 0, (3.4)

µr
P0

− µû
P0C0

−FM(σû, µû) = 0. (3.5)

Here, σû is given by

σû =
∥∥∥ FΩr(s)C(s)

1 +NaP (s)C(s)

∥∥∥
2
σr,

where FN and FM are given in (2.8) and (2.9), respectively.

As explained in Subsection 3.1.1, to achieve good tracking, both σê and µê must

be small, where ê is the tracking error in the quasilinear system. These quantities are

given by

σê =
∥∥∥ FΩr(s)

1 +NaP (s)C(s)

∥∥∥
2
σr, (3.6)

µê =
µû
C0

, (3.7)

where N and µû are the solutions of (3.4) and (3.5).

Below, we first address the dynamic tracking quality. We accomplish this by

employing the so-called Saturating Random Sensitivity (SRS) function. Based on

the SRS, quality indicators I1, I2, and I3 are introduced. Then, the phenomena of

amplitude truncation and rate saturation are described. To quantify them, the quality

indicators I0 and I0,rate are introduced, respectively. Finally, to quantify the steady

state tracking of average values, the quality indicator I1,mean is introduced. Based on

these indicators, a diagnostic chart is presented that aids in determining causes of

poor tracking. The results are illustrated using several examples.

As it is shown, the definition of SRS remains the same as that in the symmetric

case defined in [1]. However, the indicators I0, I1, I2, and I3 are modified appropriately

to account for asymmetry. Moreover, rate saturation, which has not been treated in

[1], and steady state tracking, which does not arise in the symmetric case, lead to
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new, novel indicators.

3.1.3.2 Quantification of dynamic tracking quality

To address the dynamic tracking properties, we define the saturating random

sensitivity function:

Definition III.3. The Saturating Random Sensitivity (SRS) function of the A-LPNI

system of Figure 3.1.1 is the standard deviation of the error signal in the quasilinear

system of Figure 3.1.2 normalized by σr, i.e.,

SRS(Ωr, σr, µr) =
∥∥∥ FΩr(s)

1 +NaP (s)C(s)

∥∥∥
2
, (3.8)

where Na is the solution of (3.4) and (3.5).

The above definition of SRS is the same as that in the symmetric case. Note,

however, that asymmetry is accounted for by the quasilinear gain Na. Indeed, as seen

in Chapter II, Na is smaller in the asymmetric case as compared with the symmetric

case.

It can be shown that SRS satisfies the following properties:

Theorem III.3. SRS satisfies the following:

1. ∀Ω > 0, limσr→0 SRS(Ωr, σr, µr) =





∥∥∥ FΩr (s)

1+P (s)C(s)

∥∥∥
2
, µr ∈ TDstep,

1, otherwise.

2. ∀σr > 0,∀µr, limΩ→∞ SRS(Ωr, σr, µr) = 1.

3. ∀σr > 0,∀µr, limΩ→0 SRS(Ωr, σr, µr) = | 1
1+N0P0C0

|, where N0 is the solution of

N0 −FN(
∣∣∣ FΩr(0)C0

1 +N0P0C0

∣∣∣σr, µû) = 0,

µr
P0

− µû
P0C0

−FM(
∣∣∣ FΩr(0)C0

1 +N0P0C0

∣∣∣σr, µû) = 0.
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4. ∀σr > 0,∀Ω > 0, limµr→±∞ SRS(Ωr, σr, µr) =





1, |P0C0| 6=∞,
∥∥∥ FΩr (s)

1+NaP (s)C(s)

∥∥∥
2
, |P0| =∞,

undefined, otherwise,

where Na is the solution of

Na −FN(
∥∥∥ FΩr(s)C(s)

1 +NaP (s)C(s)

∥∥∥
2
σr, µû) = 0,

FM(
∥∥∥ FΩr(s)C(s)

1 +NaP (s)C(s)

∥∥∥
2
σr, µû) = 0.

Proof. See Section A.2.

To characterize the shape of the SRS function, we assume that µr ∈ TDstep (if

not, tracking is poor due to significant amplitude truncation). Then, similar to the

symmetric case, we introduce the following:

• Saturated random dc-gain: SRdc(µr) = limΩr→0,σr→0 SRS(Ωr, σr, µr). This quan-

tity represents the sensitivity of the error signal to the amplitude of a constant

reference signal.

• Saturated random bandwidth: SRΩBW (σr, µr) = minΩ>0{SRS(Ωr, σr, µr) =

1√
2
}. This quantity represents the bandwidth of the SRS as a function of σr and

µr.

• Saturated random resonance frequency: SRΩr(σr, µr) = arg supΩ>0SRS(Ωr, σr, µr).

This quantity denotes the frequency at which the peak of SRS takes place, as a

function of σr and µr.

• Saturated random resonance peak: SRMr(σr, µr) = supΩ>0SRS(Ωr, σr, µr).

This quantity designates the magnitude of the peak of SRS, as a function of σr

and µr.
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Using the above, following the same approach as the symmetric case, we introduce

the following indicators:

I1 = SRdc(µr),

I2 =
Ω

SRΩBW (σr, µr)
,

I3 = min{SRMr(σr, µr)− 1,
Ω

SRΩr(σr, µr)
},

where the quantities on the right hand side are evaluated at the mean and standard

deviation of the reference signal. The indicator I1 indicates static unresponsiveness, I2

determines dynamic characteristics such as lagging or oscillations, and I3 distinguishes

between these two. In Subsection 3.1.3.6, we explain how these indicators can be

employed in determining the quality of tracking.

3.1.3.3 Quantification of amplitude truncation

In A-LPNI systems with saturating actuators, amplitude truncation may occur

when the trackable domain is finite and the input signal is large enough that the

saturation is occasionally activated.

To quantify amplitude truncation, we introduce an indicator, I0, which is a proper

generalization of the symmetric I0 defined in [1]. When µr ∈ TD, we define I0 as

I0 = max{ σr
| 1
C0

+ P0|β − µr
,− σr
| 1
C0

+ P0|α− µr
}.

When µr /∈ TD, we define I0 =∞. If I0 is small, amplitude truncation does not take

place.
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3.1.3.4 Quantification of rate saturation

As discussed in Subsection 3.1.2, if the plant has a pole at the origin and α <

0 < β, the trackable domain is infinite and I0 = 0. However, in this case, a new phe-

nomenon may occur: rate saturation. This occurs when the ramp trackable domain is

small and the rate of change of the input signal is such that the nonlinearity is often

activated. As an example, consider the example of Subsection 3.1.1. When α = −0.2

and β = 1.8, significant rate saturation occurs at the falling slopes of the reference

(see Figure 3.2.3).

To quantify rate saturation, we first assume that filter FΩr(s) is the usual third

order Butterworth filter with bandwidth Ωr. The standard deviation of the slope of

r(t) can be computed to be

‖sFΩr(s)‖2σr =
σrΩ√

2
.

Using the ramp trackable domain and above standard deviation, we introduce the

following indicator:

I0,rate = max{ σrΩ|P1|β
,− σrΩ

|P1|α
}.

If this indicator is large, rate saturation of the output occurs. If it is small, no rate

saturation occurs. For the example of Subsection 3.1.1, we compute I0,rate for all

three cases considered in the example:

• α = −1, β = 1: I0,rate = 1.

• α = −0.5, β = 1.5: I0,rate = 2.

• α = −0.2, β = 1.8: I0,rate = 5.

Clearly, in the first case, minimal rate saturation takes place, while in the third case

significant rate saturation occurs.
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3.1.3.5 Steady state tracking

To characterize the tracking quality of average values, we introduce a new unitless

quality indicator

I1,mean =
|µê|
σr

=
|µû|
|C0|σr

.

Clearly, if C0 = ∞, I1,mean = 0. The following proposition establishes bounds on

I1,mean.

Proposition III.1. Assume P0 <∞. Then, I1,mean satisfies the following bound:

I1,mean < max(
|µr − P0β|

σr
,
|µr − P0α|

σr
).

Proof. See Section A.2.

Remark III.1. In Section 1.2, it is shown that the mean of the error µe (or equiva-

lently µê) can be decomposed in two parts: one due to the underlying linear system,

and one due to asymmetry in the system. Therefore, two causes can contribute to

large I1,mean:

• The underlying linear system. This case arises when either µr is large or when

the system is statically unresponsiveness, i.e., has small loop gain P0C0.

• The asymmetry in the system. This case arises when asymmetry is large (for a

measure of asymmetry, see Section 2.4). In terms of the quasilinear system, large

asymmetry implies large quasilinear bias ma, which leads to large µê. However,

note that asymmetry also affects the quasilinear gain Na: Na is lower in the

asymmetric case as compared with the symmetric case. Therefore, dynamic

tracking, as quantified by SRS, may be poor as well. Finally, note that if

|P0| =∞, then, according to Section 1.2, large µê is only due to the asymmetry

in the system.
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3.1.3.6 Quality of tracking and the diagnostic flowchart

As mentioned above, the indicators I0, I0,rate, I1, I1,mean, I2, and I3 indicate, respec-

tively, the amount of amplitude truncation, rate saturation, static unresponsiveness,

steady state tracking error, lagging or oscillatory behavior, and the distinction of the

latter two. In our experience these quantities are small when: I0 < 0.4, I0,rate < 0.8,

I1 < 0.1, I1,mean < 0.1, I2 < 0.3, I3 < 0.3. The diagnostic flowchart in Figure 3.6

provides a method for determining the quality of tracking using the quality indicators.

Remark III.2. Thus far, the focus of this section has been on A-LPNI systems with

saturating actuator. However, the analysis of this section can be extended to systems

with other nonlinearities. Specifically, the notion of saturating random sensitivity

function can be generalized to the nonlinear random sensitivity (NRS) function:

NRS(Ωr, σr, µr) =
σê
σr
.

The quality indicators can be extended accordingly.

Example III.1. Consider the LPNI system of Figure 3.1.1, where FΩr(s) is the usual

3rd order Butterworth filter with bandwidth Ωr = 1, and σr = 1. We consider five

systems:

• System 1: P (s) = 4
s
, C(s) = 0.005 s+30

s
, α = −1, β = 2, µr = 0,Ωr = 0.5.

• System 2: P (s) = 0.5
s+0.5

, C(s) = 100, α = −2.5, β = 2.5, µr = 1,Ωr = 1.

• System 3: P (s) = 0.4
s+0.2

, C(s) = 8, α = 0, β = 7, µr = 10,Ωr = 1.

• System 4: System in the example of Subsection 3.1.1, with α = −1, β = 1.

• System 5: System in the example of Subsection 3.1.1, with α = −0.2, β = 1.8.
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3.6.1: Diagnostic chart for I0 and I0,rate.
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3.6.2: Diagnostic chart for I1.
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3.6.3: Diagnostic chart for I1,mean.
	
  

Start	
  

I2	
  large?	
  
Dynamic	
  

tracking	
  poor	
  

I3	
  large?	
  
Lagging	
  
response	
  

Dynamic	
  tracking	
  
is	
  good	
  

No	
  Yes	
  

No	
  
Yes	
   Oscillatory	
  

response	
  

3.6.4: Diagnostic chart for I2 and I3.

Figure 3.6: Diagnostic chart for tracking performance.
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3.7.1: System 1.
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3.7.2: System 2.
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3.7.3: System 3.
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3.7.4: System 4.
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3.7.5: System 5.

Figure 3.7: SRS of systems in Example III.1

The SRS for each of the above systems are shown in Figure 3.7. The indicators

for each system as well as the prediction for the quality of tracking is shown in Table

3.1.

Figure 3.8 shows time traces of the outputs of systems 1, 2, and 3. Time traces of

systems 4 and 5 are plotted in Figures 3.2.1 and 3.2.3. Clearly, the predictions shown

in Table 3.1 match the tracking performance of all systems considered.
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System I0 I0,rate I1 I1,mean I2 I3 Quality of tracking
1 0 0.125 0 0 1.67 0.68 Poor due to oscillations

and lag.
2 0.65 0 0.01 0.03 0.28 0 Poor due to amplitude

truncation.
3 0.21 0 0.06 0.60 0.30 0 Poor due to bad tracking

of average values.
4 0 1 0 0 0.44 0.01 Tracking good, minor lag

and minor rate satura-
tion in the output.

5 0 5 0 0.79 1 0.04 Poor due to lag, bad
tracking of average val-
ues, and large rate satu-
ration.

Table 3.1: Indicators for the systems of Example III.1.
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3.8.2: System 2.
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3.8.3: System 3.

Figure 3.8: Time traces of the output for systems in Example III.1.
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3.2 Analysis of Disturbance Rejection Performance

Consider the closed loop LPNI system of Figure 2.5.1 with the same parameters

as in (3.1) but assume that r(t) = 0, wd is the standard Gaussian white noise process,

σd = 1, µd = 0, and FΩd the third order Butterworth filter with 3-dB bandwidth

Ωd = 2. For this system, the equations of stochastic linearization are:

Na −FN(σû, µû) = 0, (3.9)

FM(σû, µû) = 0, (3.10)

where FN(σû, µû) and FM(σû, µû) are as in (2.8), (2.9), and

σû =
∥∥∥ 400

√
3/2

(s3 + 4s2 + 8s+ 8)(s2 + 10s+ 50Na)

∥∥∥
2
.

We now consider the following three cases: α = −2, β = 2; α = −1, β = 3;

α = −0.5, β = 3.5. For each of the cases, we find the unique solution (Na, µû) of (3.9),

(3.10) and, thus, obtain the quasilinear system. Then, using Na and µû, we compute

the measure of asymmetry A. For case 1, A = 0, i.e., system is symmetric, while for

cases 2 and 3, A = −0.3 and A = −0.73, i.e., systems is asymmetric. Traces of d(t),

y(t) and ŷ(t) obtained by simulations are shown in Figure 3.9. Clearly, with more

asymmetry, quality of disturbance rejection deteriorates in both LPNI and quasilinear

systems. Figure 3.10 shows the standard deviations, means, and the square root of

the second moment of y and ŷ as a function of (α + β)/2. Clearly, as quantified by

any of these quantities, disturbance rejection deteriorates with an increasing actuator

asymmetry, and stochastic linearization is accurate as far as prediction of loss of

performance is concerned.
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3.9.1: α = −2, β = 2 (symmetric).
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3.9.2: α = −1, β = 3 (asymmetric).
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3.9.3: α = −0.5, β = 3.5 (asymmetric).

Figure 3.9: Example of Section 3.2.
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3.10.1: σy and σŷ.
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3.10.2: µy and µŷ.
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E [ŷ2]

3.10.3:
√
E[y2] and

√
E[ŷ2].

Figure 3.10: The standard deviations, means, and square root of second moments of
y and ŷ for the disturbance rejection problem of Section 3.2.
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3.3 Analysis of Noise-Induced Loss of Tracking in Systems

with PI Control and Anti-Windup

Consider the closed loop A-LPNI system of Figure 3.11.1, where f(u) = satβα(u), n

is a zero-mean Gaussian white noise process, r and d are constants, KI is the integral

gain, KP is the proportional gain, and KAW is the anti-windup gain. This system

represents, for example, the Toner Concentration control in a Xerographic process (see

[2]). In [2], the authors discovered that, in the presence of an asymmetric saturating

actuator f(u) and sensor noise, the mean of the output process ym(t) at steady-state

exhibits a significant tracking error, inconsistent with the usual prediction by error

coefficient, in the step response. They termed this error the noise-induced tracking

error and quantified it using the method of stochastic averaging theory. In this section,

we apply the method of stochastic linearization to the LPNI system of Figure 3.11.1

to obtain the stochastic linearization shown in Figure 3.11.2, and demonstrate that

the latter system correctly predicts the noise-induced tracking error.

Clearly, in the quasilinear system of Figure 3.11.2, the saturation function f(u)

is replaced by the quasilinear gain Na and the bias ma = M − Nµû. Similar to the

analysis of Subsection 2.2.1, to compute these values, we require σû and µû. The

standard deviation σû can be computed using the H2-norm of the transfer function

from n to û:

σû =
∥∥∥ (KP s+KI)FΩ(s)

s(1 +N(KPP (s)−KAW )) +KAW +NP (s)KI

∥∥∥
2
σn, (3.11)

where σn denotes the intensity of the noise process n. To obtain µû, note that the

signal h in Figure 3.11.2 is the input to an integrator and, as a result, must have

zero mean (i.e., µh = 0) in order for the system to be in the stationary regime. With
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3.11.2: Stochastic linearization of the A-LPNI system.

Figure 3.11: System with noise-induced tracking error.

µh = 0, we follow a procedure similar to the one in Subsection 2.2.1 and obtain

Ma =
µû − KI

KAW
(r − P0d)

1− KI
KAW

P0

,

where P0 is the dc-gain of the plant. Therefore, the equations of stochastic lineariza-

tion for this system are:

Na −FN(σû, µû) = 0, (3.12)

µû − KI
KAW

(r − P0d)

1− KI
KAW

P0

−FM(σû, µû) = 0, (3.13)

where σû is defined in (3.11) and FN(σû, µû) and FM(σû, µû) are as in (2.8), (2.9).

We use the following parameters, also used in [2], for simulations:

P (s) =
0.0322

s
, KI = 0.0065, KP = 0.82, r = 5,
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d = −0.011, σn = 0.06.

We assume that FΩ(s) is the third order Butterworth filter with bandwidth Ω =

100 and consider three cases:

1. KAW = 0.25, α = −0.33, β = 0.33, i.e., symmetric saturation;

2. KAW = 0.25, α = 0, β = 0.66, i.e., asymmetric saturation (these parameters are

used in [2]);

3. KAW = 0, α = 0, β = 0.66, i.e., asymmetric saturation with anti-windup inactive.

The traces of ym(t) and ŷm(t) for all three cases are plotted in Figure 3.12. As can

be seen, only the second case results in the noise-induced tracking error. The steady-

state mean of the signals ym(t) and ŷm(t) for all three cases are given in Table 3.2,

along with the error
|µym−µŷm |

µym
. Clearly,

• The noise induced tracking error is present only when the anti-windup is active

and the saturation is asymmetric. Therefore, the tracking error is a direct

consequence of asymmetry.

• Stochastic linearization is accurate in predicting the noise-induced tracking er-

ror.

Remark III.3. Observe that the linearized system does not approximate the tran-

sient behavior of the LPNI system well (unlike [2], where both transient and steady-

state behaviors are accurate). This is expected because the method of stochastic

linearization assumes steady-state, stationary regime of the system.

To study the effects of the sensor noise intensity σn on the noise-induced tracking

error, Figure 3.13.1 plots µŷ as a function of σn for KAW = 0, 0.25, 0.5. Clearly,

• the noise-induced tracking error is zero when KAW = 0,
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3.12.1: KAW = 0.25, α = −0.33, β = 0.33.
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3.12.2: KAW = 0.25, α = 0, β = 0.66
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3.12.3: KAW = 0, α = 0, β = 0.66.

Figure 3.12: Simulation results for the noise-induced tracking error.

Case 1 Case 2 Case 3
µym 5.00 6.12 5.00
µŷm 5.00 6.35 5.00

|µym−µŷm |
µym

0% 3.7 % 0 %

Table 3.2: The steady-state mean of signals ym and ŷm, and the accuracy of stochastic
linearization.

• for non-zero KAW , the error increases with KAW ,

• the error increases monotonically with σn and is practically linear for large

values of σn.

To study the effects of the anti-windup gain KAW on the noise-induced tracking

error, Figure 3.13.2 plots µŷ as a function of KAW for σn = 0.06. Clearly, the tracking

error increases monotonically with KAW and is practically linear for all KAW .

In sum, in this subsection, we have demonstrated that the method of stochastic

linearization for asymmetric systems can be used to provide faithful prediction of the
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a function of KAW for σn = 0.06.

Figure 3.13: Demonstration of the noise induced tracking error as a function of KAW

and σn.

phenomenon of noise-induced loss of tracking in systems with anti-windup, sensor

noise, and asymmetric actuator. We have also demonstrated that this error increases

monotonically with both sensor noise intensity and anti-windup gain.
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CHAPTER IV

Time Domain Design of Tracking Controllers in

A-LPNI Systems

In this chapter, a time domain method for design of A-LPNI tracking systems with

saturating actuators is developed. This method is based on the so-called performance

loci, which include the root locus for asymmetric saturating systems (AS-root locus)

and tracking error locus (TE locus). Together, these loci are used for designing

controllers that place closed loop poles and steady state tracking errors of quasilinear

systems in appropriate admissible domains (defined by design specifications).

As it is shown, the AS-root locus is a proper generalization of the symmetric S-

root locus developed in [1]. Similar to the symmetric case, the AS-root locus is a

subset of the usual root locus and sometimes terminates prior to the open loop zeros.

A method for computing these termination points is provided. In addition, similar to

the symmetric case, the AS-root locus is equipped with truncation points to account

for truncation of the output signal. However, in contrast to the symmetric case, a new

phenomenon arises in the asymmetric case: the mean of the error signal may exhibit

a tracking error, which depends on the controller gain. Therefore, we introduce the

notion of the tracking error locus. Both loci must be placed within their respective

admissible domains to ensure good tracking.
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4.1.1: Closed loop A-LPNI system.
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4.1.2: Closed loop quasilinear system.

Figure 4.1: A-LPNI system and equivalent quasilinear system.

4.1 Performance Loci

4.1.1 Preliminaries

Consider the SISO tracking system of Figure 4.1.1, where P (s) is the plant, KC(s)

(K > 0) is the controller, and FΩr(s) is the third order butterworth filter with dc-

gain scaled so that ‖FΩr(s)‖2 = 1. The reference signal r(t) is generated by passing

standard Gaussian white noise wr through FΩr(s), and scaling and shifting the output

of the filter by σr and µr, respectively. Similar to the development in Chapter II, the

stochastically linearized version of system of Figure 4.1.1 is the quasilinear system

shown in Figure 4.1.2, where ma = µr
P0
− ( 1

KC0P0
+Na)µû, Na and µû are solution of

Na −FN(K
∥∥∥ FΩr(s)C(s)

1 + P (s)KNaC(s)

∥∥∥
2
σr, µû) = 0, (4.1)

µr
P0

− µû
KC0P0

−FM(K
∥∥∥ FΩr(s)C(s)

1 + P (s)KNaC(s)

∥∥∥
2
σr, µû) = 0, (4.2)

and FN and FM are given in (2.8) and (2.9), respectively.

The goal is to use the quasilinear system to design tracking controllers. To ac-

complish this, note from Figure 4.1.2 that the quasilinear gain Na and the quasilinear
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bias ma enter the system as an additional gain and input disturbance, respectively.

Also, as can be seen from (4.1) and (4.2), both of them are functions of the controller

gain, K. Thus, to characterize the system behavior as K changes from 0 to ∞, the

behavior of “quasilinear” poles and quasilinear steady state errors as a function of K

must be investigated. As mentioned at the beginning of this chapter, this leads to two

loci: the “usual” one – root locus, and a novel one – tracking error locus. Together,

they are referred to as performance loci. These loci are characterized in Subsections

4.1.2 and 4.1.3.

To begin, we group together the controller gain K and quasilinear gain Na in

Figure 4.1.2 and denote the product by the effective gain Ke:

Ke(K) = KNa(K).

Clearly, using (4.1), (4.2), for each K > 0, Ke(K) and µû can be obtained by solving

Ke −KFN(K
∥∥∥ FΩr(s)C(s)

1 + P (s)KeC(s)

∥∥∥
2
σr, µû) = 0, (4.3)

µr
P0

− µû
KC0P0

−FM(K
∥∥∥ FΩr(s)C(s)

1 + P (s)KeC(s)

∥∥∥
2
σr, µû) = 0. (4.4)

Throughout this paper, we assume that the solution of the above equations exists

and is unique.

Denote by µê the mean of the error signal ê in the quasilinear system, which can

be expressed as

µê(K) =
µû(K)

KC0

. (4.5)

Based on the above notations, we introduce the following definitions.

Definition IV.1. The saturated closed loop poles (AS-poles) of the system of Figure

4.1.1 are the poles of the system of Figure 4.1.2, i.e., the poles of the transfer function
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from r to ŷ:

T (s) =
Ke(K)C(s)P (s)

1 +Ke(K)C(s)P (s)
. (4.6)

Definition IV.2. The AS-root locus is the path traced by the AS-poles when K

changes from 0 to ∞.

Definition IV.3. The TE locus is the plot of µê(K) as K changes from 0 to ∞.

As it turns out, the AS-root locus and the TE locus are continuous functions of

K. To show this, the following lemma is required.

Lemma IV.1. Assume that Ke(K) and µû(K) are unique for all K > 0. Then,

Ke(K) and µû(K) are continuous for all K > 0.

Proof. See section A.3.

Continuity of the AS-root and TE loci is an immediate consequence of the above

lemma.

Below, we develop the AS-root locus and the TE locus and investigate their prop-

erties.

4.1.2 The AS-root locus

In equation (4.6), Ke(K) enters the transfer function as a usual gain. Furthermore,

since 0 < Na < 1, we have that 0 ≤ Ke(K) < K. Therefore, the AS-root locus is

a proper subset of the usual linear root locus. As in the linear root locus, we are

interested in the points of origin and termination of the AS-root locus. Clearly, since

Ke(K) = 0 when K = 0, the points of origin of the AS-root locus are the same as the

linear root locus (i.e., at the poles of P (s)C(s)). The termination points, however,

may not necessarily be at the open loop zeros. This is because Ke(K) may not tend

to infinity as K tends to infinity. Therefore, we equip the AS-root locus with the so-

called AS-termination points. In addition, saturation may lead to output truncation.
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To account for this phenomenon, we equip the AS-root locus with the so-called AS-

truncation points, beyond which the output does not follow the reference. Below,

methods for computing both AS-termination and AS-truncation points are provided.

4.1.2.1 Calculating AS-termination points

Denote by K∗e the limiting effective gain, i.e.,

K∗e = lim
K→∞

Ke(K).

Clearly, if K∗e = ∞, the termination points are the open loop zeros and the AS-

root locus coincides with the usual root locus. However, if K∗e < ∞, the root locus

terminates prematurely.

As it turns out, to compute K∗e , the following two equations in the unknowns φ∗

and η∗ must first be solved:

φ∗ −
∥∥∥∥∥

FΩr(s)C(s)

1 + β−α√
2πφ∗

e−
η∗2

2 P (s)C(s)

∥∥∥∥∥
2

σr = 0, (4.7)

µr
P0

− φ∗η∗

C0P0

=
α + β

2
+
β − α

2
erf(

η∗√
2

). (4.8)

Before determining K∗e , we establish some of the properties of the above equations in

the following lemma.

Lemma IV.2. The solutions of system (4.7), (4.8) have the following properties:

1. φ∗ ≥ 0.

2. If φ∗ = 0, then η∗ =
√

2erf−1(
µr
P0
−α+β

2
β−α

2

).

3. The point

(φ∗, η∗) =

(
0,
√

2erf−1

(
µr
P0
− α+β

2

β−α
2

))
(4.9)

always satisfies system of equations (4.7), (4.8).
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Proof. See Section A.3.

Note that (4.7) always has a solution φ∗ = 0. There may be positive solutions as

well, which lead to the following theorem.

Theorem IV.1. Assume that Ke(K) and µû(K) exist and are unique for all K.

Then,

1. if φ∗ = 0 is the only solution of (4.7), (4.8), K∗e =∞.

2. if there exists another solution, φ∗ > 0, then

K∗e =
β − α√

2πφ∗
e−( η

∗2
2

). (4.10)

Proof. See section A.3.

Definition IV.4. If K∗e <∞, the AS-termination points are the poles of the transfer

function

Tter(s) =
K∗eC(s)P (s)

1 +K∗eC(s)P (s)
. (4.11)

Equations (4.10) and (4.11) are used to calculate the AS-termination points, which

are marked by white squares on the AS-root locus.

As it turns out, unlike the linear root locus, the AS-root locus can never enter the

right half plane. This is establishes by the following theorem.

Theorem IV.2. Assume that Ke(K) and µû(K) are unique for all K, and let Γ,

0 < Γ <∞, be such that the closed loop transfer function

Tγ(s) =
C(s)P (s)

1 + γC(s)P (s)

is asymptotically stable only for γ ∈ [0,Γ) and unstable for γ = Γ. Then,

K∗e < Γ.
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Proof. See Section A.3.

It is noteworthy to discuss the solutions φ∗ and η∗ of (4.7), (4.8). As discussed in

the proof of Theorem IV.1, φ∗ and η∗ are, respectively, the limiting standard deviation

and the inverse of the coefficient of variation of the signal at the input of gain K in

Figure 4.1.2, i.e.,

φ∗ = lim
K→∞

σl̂,

η∗ = lim
K→∞

µl̂
σl̂
.

As far as solving (4.7), (4.8) is concerned, the 2-variable bisection algorithm or Mat-

lab’s “fsolve” function may be used. Note, however, that (4.7), (4.8) can be simplified

by eliminating one of the variables from (4.8):

• If C0P0 =∞, (4.8) can be solved explicitly for η∗:

η∗ =
√

2erf−1(

µr
P0
− α+β

2

β−α
2

).

In this case, η∗ is a constant independent of φ∗.

• If C0P0 6=∞, (4.8) can be solved explicitly for φ∗:

φ∗ =
C0P0

η∗

(
µr
P0

− α + β

2
− β − α

2
erf(

η∗√
2

)

)
.

In this case, φ∗ depends on η∗.

In both cases, substituting the eliminated variable into (4.7) yields one equation in

one unknown. The one-variable bisection algorithm or Matlab’s “fsolve” function can

be used to solve the resulting equation.
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4.1.2.2 Calculating the AS-truncation points.

The AS-truncation points are introduced based on the notion of the trackable

domain TD and the quality indicator I0 introduced in Chapter III. In the subsequent

discussion, we assume, for simplicity, that C0 > 0, P0 > 0, and µr ∈ TD for all

K > 0.

The indicator I0 is defined in Chapter III as:

I0 = max{ σr
( 1
KC0

+ P0)β − µr
,− σr

( 1
KC0

+ P0)α− µr
}.

Clearly, I0 depends on K. Therefore, we denote it by I0(K). As a rule of thumb,

amplitude truncation is typically small when I0(K) < 0.4 (see Chapter III). Based

on this idea, the following definition for the AS-truncation points is introduced.

Definition IV.5. The AS-truncation points are the poles of

Ttr =
Ke(KI0)C(s)P (s)

1 +Ke(KI0)P (s)C(s)
,

where

KI0 = min
K>0
{K : I0(K) = 0.4}.

Since the termination points occur when K tends to infinity, the AS-truncation

points, when they exist, must occur prior to the AS-termination points. We use black

squares to denote the AS-truncation points on the AS-root locus.

Example IV.1. Consider the system of Figure 4.1.1 with

C(s) = 1, P (s) =
s+ 20

(s+ 15)(s+ 0.5)
, σr = 1,

77



−30 −20 −10 0
−15

−10

−5

0

5

10

15

Figure 4.2: AS-root locus.

and FΩr(s) as the third order butterworth filter with bandwidth Ωr = 1, i.e.,

FΩr(s) =

√
3

s3 + 2s2 + 2s+ 1
. (4.12)

Initially, assume that α = −0.92, β = 0.92, and µr = 0. This system, which,

according to Definition I.1, is symmetric for all K, has been studied in Example 5.3

of [1]. Specifically, it has been shown that K∗e = ∞ (i.e., the termination points are

at the open loop zeros). Now, assume that µr = 1, i.e., the system is asymmetric.

The limiting effective gain K∗e , calculated using Theorem IV.1, becomes K∗e = 21.4.

The AS-termination points, therefore, are at −18.5 ± 9.8j instead of the open loop

zeros. Furthermore, the gain KI0 calculated using Definition IV.5 is 0.88, and the

AS-truncation points are at −14.7 and −1.5. The complete AS-root locus is shown

in Figure 4.2, where, as before, the white squares denote AS-termination points, the

black squares denote the AS-truncation points, the x’s denote open loop poles and the

circle denotes the open loop zero. The shaded area is referred to as the “admissible

domain”, which is discussed in Section 4.2. Note that, in this example, the truncation

points are close to the open loop poles, which, as we show in Section 4.2, implies that

amplitude truncation takes place even for small values of controller gain.
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4.1.2.3 Calibration of the AS-root locus

Let s be a point on the AS-root locus. Clearly, there exists a unique 0 < Ke(K) <

K∗e such that, with this gain, one of the AS-poles is exactly at s. But how can we find

the gain K that generates Ke(K)? In this subsection, we explain how the AS-root

locus can be calibrated, i.e., given an arbitrary point s on the AS-root locus, how can

we find the gain K such that

1 +Ke(K)C(s)P (s) = 0.

This can be accomplished using (4.3) and (4.4):

Ke −KFN(K
∥∥∥ FΩr(s)C(s)

1 + P (s)KeC(s)

∥∥∥
2
σr, µû) = 0, (4.13)

µr
P0

− µû
KC0P0

−FM(K
∥∥∥ FΩr(s)C(s)

1 + P (s)KeC(s)

∥∥∥
2
σr, µû) = 0, (4.14)

where

Ke = − 1

C(s)P (s)
.

The unknowns in the above two equations are µû and K. The solution K is the

desired calibrated gain.

4.1.3 TE locus

The TE locus may be plotted for each K using (4.3)-(4.5). As it turns out, it

can be either increasing, or decreasing, or even non-monotonic function of K. As an

example, consider the A-LPNI system of Figure 4.1.1, with

P (s) =
1

s+ 1
, C(s) = 1, σr = 1, (4.15)
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Figure 4.3: TE loci of system (4.15) for three cases.

and FΩr given by (4.12) with Ωr = 1. Figure 4.3 shows the TE locus of this system

for three different cases:

• Case 1: α = −1.5, β = 0.5, µr = 0;

• Case 2: α = −1.5, β = 0.5, µr = 0.5;

• Case 3: α = −0.5, β = 1.5, µr = 0.5;

Clearly, in case 1, the TE locus is increasing for all K, in case 2, it is non-monotonic,

and in case 3, it is decreasing for all K. Furthermore, in cases 1 and 2, this locus does

not tend to zero and as K tends to infinity. This is in contrast with linear systems, in

which large K implies arbitrarily small steady state tracking error. Note that, using

the measure

|µê
µr
|,

case 2 implies that the steady state tracking error for large gains is 82%, which is

significant. The above measure cannot be used in case 1 because µr = 0. However,

it can be said that in absolute terms, the error is 16%. In case 3, the error tends to

zero, similar to linear systems.

The TE loci of Figure 4.3 have been constructed by solving (4.3)-(4.5) for various

K’s. The following theorem provides a way of sketching TE locus without solving
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Figure 4.4: A sketch of the TE locus for system (4.15) with µr = 1, α = −0.5, β = 1.5.

these equations, but using the properties of the locus at K = 0 (origination), K =∞

(termination), and an intermediate K for which the system is symmetric.

Theorem IV.3. Assume that α ≤ 0 ≤ β and that (4.3), (4.4) admit unique solutions

for all K. Then, µê(K) has the following properties:

a. limK→0+ µê(K) =





µr, P0C0 6=∞,

0, P0C0 =∞;

b. limK→∞ µê(K) = φ∗η∗

C0
, where φ∗ and η∗ are the solution of (4.7) and (4.8);

c. If µr
P0
> α+β

2
, then µê(K) = µr

1+KP0C0
, where K = 1

C0( µr
α+β

2

−P0)

Proof. See Section A.3.

For instance, applying this theorem to system (4.15) with µr = 1, α = −0.5,

β = 1.5, we obtain:

µê(0) = 1, µê(∞) = 0.18, µê(1) = 0.5. (4.16)

Therefore, the TE locus can be sketched as shown in Figure 4.4.

Returning to Example IV.1, the TE locus of the system is plotted in Figure 4.5.

This locus originates at µê(0) = 1 and terminates at µê(∞) = 0.016.

The following theorem provides structural properties of the TE locus.

Theorem IV.4. Assume that (4.3), (4.4) admit unique solutions for all K. Then,

µê(K) has the following properties:
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a. If C0 =∞, then µê(K) = 0 for all K;

b. limK→∞ µê(K) = 0 ⇐⇒ (K∗e = ∞) or (C0 = ∞) or (µr
P0

= α+β
2

), where K∗e is

given in Theorem IV.1.

c. If P0 6=∞, µr − P0β < µê < µr − P0α.

d. If µê(∞) < µê(0), then there exists a portion of the TE locus that is decreasing.

e. If µê(∞) > µê(0), then there exists a portion of the TE locus that is increasing.

Proof. See Section A.3.

Thus, when C0 =∞, the TE is identically zero. Moreover, the TE locus tends to

zero (similar to linear systems) when K∗e =∞, i.e., when the AS-root locus coincides

with the usual linear root locus, or when µr
P0

= α+β
2

, i.e., the system becomes symmetric

at K =∞.

4.1.4 Effect of asymmetry on the performance loci

In this subsection, we first study, with an example, the effect of controller gain

K on the degree of asymmetry. We then explore the effects of asymmetry on the

performance loci.
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Figure 4.7: δ as a function of A.

Consider

P (s) =
1

s+ 1
, C(s) = 1, σr = 1, α = −1, β = 1,

and two µr’s: µr = 0.5 and µr = 1. For each µr, Figure 4.6 plots A defined in (2.30)

as a function of K. Clearly, for both cases, as K increases, asymmetry increases.

Furthermore, asymmetry is larger for larger µr.

The following theorem provides, similar to Theorem IV.3, a method for computing

A(K) when K → 0 and K →∞.

Theorem IV.5. Assume that (4.3), (4.4) admit unique solutions for all K and α <

0 < β. Then, the degree of asymmetry A satisfies the following properties:

a. limK→0+ A(K) =





0, (C0 6=∞) or (C0 =∞ and µr
P0
∈ [α, β]),

1, otherwise.
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b. limK→∞A(K) =





0, µr
P0

= α+β
2
,

erf( η
∗
√

2
), otherwise,

where η∗ is given by (4.7) and (4.8).

Proof. See Section A.3.

We now explore the effect of asymmetry on the performance loci. To accomplish

this, we consider again the above example. To illustrate the effect of asymmetry

on the TE locus, note that, without saturation, the TE locus of the linear system

behaves as 1
1+KC0P0

µr. Thus, to study how detrimental the effect of asymmetry is,

we introduce δ, the deviation of the TE locus from 1
1+KC0P0

µr:

δ = µê −
1

1 +KC0P0

µr.

When δ = 0, the TE locus of the A-LPNI system coincides with that of the linear

system; otherwise, it does not. Figure 4.7 plots δ as a function of A for both µr = 0.5

and µr = 1. Clearly, in both cases, δ increases with asymmetry.

We now study the effects of asymmetry on the TE and AS-root loci for fixed

controller gains. To accomplish this, we consider three K’s: K = 1, K = 5, and

K =∞. For each K, we compute A(K), Ke(K), and µê(K) for µr ∈ [−2, 2]. Figures

4.8.1 and 4.8.2 illustrate, respectively, the effective gain Ke and δ as a function of A.

Clearly, for each K, as magnitude of asymmetry increases, the effective gain decreases.

Specifically, the termination gain K∗e decreases, which implies that the termination

points move closer to the open loop poles as asymmetry increases. Furthermore, as

the magnitude of the asymmetry increases, |δ| increases. Therefore, the TE locus

of the LPNI system deteriorates with asymmetry. This example suggests that with

increasing asymmetry, both dynamic and steady state tracking of A-LPNI systems

degrade.
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Figure 4.8: Ke and δ as a function of A.

4.2 Design using the performance loci

4.2.1 Design for required dynamic performance

4.2.1.1 Review of the admissible domain for random reference tracking

In linear systems theory, the admissible domain for deterministic signals is derived

based on overshoot, rise time, etc., of the step response. For random references,

however, the admissible domain is based on the quality indicators I2 and I3, which

were presented in [1] for linear systems:

I2 =
Ω

RΩBW

, I3 = min{RMr − 1,
Ω

RΩr

}.

Here, Ω is the bandwidth of the input coloring filter, RΩBW is the random bandwidth,

i.e.,

RΩBW = min
Ω>0
{RS(Ω) =

1√
2
},

and RMr, RΩr are, respectively, the resonance peak and resonance frequency of the

RS:

RΩr = arg supΩ>0RS(Ω),

RMr = supΩ>0RS(Ω).
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Figure 5.2: Level curves of I2

5.1.2 Admissible domains for random reference tracking
by prototype second order system

As it follows from the above, the admissible pole domain for tracking random
references is the intersection of two sets in the s-plane, defined by the inequalities

I2 ≤ γ, (5.21)

I3 ≤ η, (5.22)

where γ and η are sufficiently small positive constants. Clearly, the boundaries of
these sets are level curves of I2 and I3. Below, these level curves are constructed.

Admissible domains from the point of view of I2: Assume that the
closed loop transfer function (5.13) has poles s1, s2 = σ ± jω, σ < 0. We are
interested in studying the behavior of I2 as a function of σ and ω.

In order to make the level curves of I2 independent of Ω, using the normal-
ization introduced in Section 5.1.1, we view I2 as a function of ‘dimensionless’
pole locations (σ/Ω) ± j(ω/Ω). Figure 5.2 depicts these level curves, calculated
using the method described in Subsection 3.2.3.

Thus, all poles located to the left of the curve I2 = γ, where γ is sufficiently
small, result in acceptable tracking quality. It has been shown in Subsections
3.2.4 and 3.3.3 that γ ≤ 0.4 generally leads to good behavior. Clearly, the
smaller γ, the better the quality of tracking. Nevertheless, some amount of
quality degradation always occurs and, as mentioned in Subsection 3.2.4, can
be due to either dynamic lagging or excessive oscillations. To prevent the latter,
it is necessary to amend the admissible domain with a specification on I3.

4.9.1: The level curves of I2.
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Figure 5.3: Level curves of I3
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Figure 5.4: Tracking quality for various values of I3, with σe = 0.1.

Admissible domains from the point of view of I3: Figure 5.3 presents
the level curves of I3 in the above normalized coordinates. Since these level
curves are almost radial straight lines, it follows that, as the damping ratio ζ
of the closed loop poles decreases, the value of I3 increases. Such an increase
implies the appearance of oscillations in the output response (see, for instance,
Figure 5.4, which shows the tracking quality for various values of I3 with the
same error standard deviation σe = 0.1). Therefore, it is of importance to
determine the values of η in (5.22) that lead to acceptable oscillatory properties
of tracking. This can be accomplished by ensuring that the sensitivity function,
S(s), does not amplify spectral components beyond the input bandwidth Ω. For
that purpose, a design rule can be inferred from the magnitude characteristic
of S(s) for the prototype second order system. We restrict S(s) to a peak of
no more than 5dB, which corresponds to a value of ζ = 0.3. This, in turn,
corresponds to a value of I3 = 0.3.

4.9.2: The level curves of I3.

Figure 4.9: The level curves of I2 and I3 for the prototype second order system.

In the above definitions, the random sensitivity function is defined as RS(Ω) =
∥∥∥ FΩ(s)

1+C(s)P (s)

∥∥∥
2
, where FΩ is assumed to be the Butterworth filter with bandwidth Ω:

FΩ(s) =
√

3
Ω

Ω3

s3+2Ωs2+2Ω2s+Ω3 .

To derive the admissible domain for random reference tracking, the authors in [1]

assume that C(s)P (s) is such that the closed loop transfer function is the prototyp-

ical second order system with natural frequency wn and damping ratio ζ: T (s) =

w2
n

s2+2ζwns+w2
n
. The authors then proceed to compute the level curves of I2 and I3, using

the definitions above, for different values of wn and ζ. These level curves are shown

in Figure 4.9.1 and Figure 4.9.2, respectively. Note that the axes of these figures are

scaled by the input bandwidth Ω. The complete admissible domain is the superpo-

sition of the level curves for I2 and I3. For example, for I2 < 0.1 and I3 < 0.3, the

admissible domain is the shaded area shown in Figure 4.10.

Lastly, it is shown in [1] that the notion of dominant poles in linear systems theory

also holds for tracking random references. In other words, to design a good tracking

controller, it suffices to place the dominant closed loop poles within the admissible

domain.
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Figure 5.5: Admissible domain for I2 < 0.1, I3 < 0.3, Ω = 1

Complete admissible domain: The complete admissible domain now be-
comes the intersection of the regions defined by

I2 ≤ γ, I3 ≤ η, (5.23)

where γ ≤ 0.4 and η ≤ 0.3. For the reference signal with Ω = 1 and for
γ = 0.1 and η = 0.3, the complete admissible domain is illustrated in Figure
5.5. Of immediate note are the similarities between Figure 5.5 and the classical
desired region for the tracking of step references. Indeed, the requirement on I2

is analogous to the classical requirement on rise time, while that on I3 can be
correlated with percent overshoot. Nevertheless, quantitatively the two domains
are different.

Figure 5.6 illustrates the relationship between I2 and σe when the standard
deviation of the reference signal σr = 1 and ζ = 1. Clearly, for I2 < 0.25 this
relationship is approximately linear with unit slope (i.e., I2 = σe). Repeating
this numerical analysis for various values of ζ, it is possible to ascertain that,
for σe < 0.25, if I2 = γ, then the following takes place:

σe ≤ γσr. (5.24)

Hence, I2 ≤ γ implies that the standard deviation of the tracking error is at
most γσr.

Note that the above admissible domain has been obtained under the assump-
tion that σr = 1. In general, however, σr may take arbitrary values. Clearly,
due to linearity, the quality of tracking does not change relative to the magni-
tude of σr. Hence, the admissible domains constructed above remain valid for
any σr.

Figure 4.10: The admissible domain for I2 < 0.1 and I3 < 0.3.

4.2.1.2 Design methodology

The design goal is to choose gain K so that all AS-poles are within the admissible

domain and positioned prior to the AS-truncation points. Note that there exists a

fundamental trade-off in the size of K: it must be large enough to achieve static

responsiveness, but small enough to avoid amplitude truncation.

Returning to the AS-root locus of the system in Example IV.1 (see Figure 4.2),

the AS-truncation points are outside the admissible domain; therefore, the quality of

tracking is bad due to amplitude truncation. To alleviate this problem, the authority

of the actuator must be increased. With β = 1.3, the termination gain is K∗e = 104

and the truncation gain KI0 is 39. The AS-root locus for this case is shown in Figure

4.11. Selecting 4 < K < 39, the AS-poles are within the admissible domain and prior

to the AS-truncation points. As far as static responsiveness is concerned, assume that

the specifications call for 1
1+KC0P0

< 0.05. This implies that K > 7.2. Therefore, to

achieve both good dynamic tracking and static responsiveness, K must satisfy

7.2 < K < 39. (4.17)
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4.2.2 Design for required steady state performance

Assume that the steady state specifications call for |µê(K)| < µe. Based on this

specification, an admissible domain for TE can be introduced (see the shaded area in

Figure 4.12). For design, gain K must be selected such that the TE locus is in the

admissible domain.

Returning to Example IV.1, assume that the specifications call for |µê(K)| < 0.05.

The TE locus of the system, along with the admissible domain, is plotted in Figure

4.12. As it follows from Figure 4.12, the TE loci for β = 0.92 and β = 1.3 are in the

admissible domain for K > 17 and K > 7.6, respectively.

Combining the above results, we conclude that, for the case of β = 1.3, for good

static and dynamic tracking, K must satisfy

7.6 < K < 39.

Selecting K = 35, we illustrate the quality of tracking for both β = 0.92 and β = 1.3

in Figure 4.13. Clearly, the quality of tracking is good for β = 1.3, but poor for

β = 0.92 because of amplitude truncation.

There may be cases where the AS-poles and TE cannot be placed in their respec-

tive admissible domains simultaneously. An example of this situation is as follows.
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Figure 4.12: The TE locus for Example 1 with β = 0.92 and β = 1.3.
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4.13.2: β = 1.3.

Figure 4.13: Responses of the system of Example IV.1.

Example IV.2. Consider the system of Figure 4.1.1 with

C(s) = 1, P (s) =
3

0.5s+ 1
, σr = 1, µr = 5, α = 0, β = 2,

and FΩr(s) as the third order butterworth filter with bandwidth Ωr = 2. Assume that

the steady state specifications call for TE < 0.1. The AS-root locus and TE locus of

this system are plotted in Figure 4.14. As it follows from the AS-root locus, to place

the AS-poles within the admissible domain and prior to the truncation points, K must

satisfy 1.24 < K < 1.33. However, to place the TE within the admissible domain, K

must satisfy K > 21.5. Clearly, no K satisfies both requirements. Figure 4.15 shows

the response of the system with K = 1.3 and K = 22. Clearly, with K = 1.3, dynamic

tracking is good but there exist significant error in tracking of average values. With

K = 22, the steady state tracking is good but significant output truncation occurs.
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Figure 4.14: AS-root locus and TE locus of Example IV.2.
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4.15.1: K = 1.3.

0 5 10 15 20

3

4

5

6

7

 

 

r(t)

y(t)

4.15.2: K = 22.

Figure 4.15: Response of the system of Example IV.2.
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CHAPTER V

Design of Step-Tracking Controllers in LPNI

Systems

This chapter presents a QLC-based method for step-tracking controller design of

systems with saturating actuators. Since this problem has not been addressed for the

symmetric case, we begin the development with S-LPNI systems and then extend the

results to the A-LPNI case. Although the focus throughout this chapter is on the

saturating actuator, the methods developed here can be applied to other nonlinearities

as well. Based on the developed methodology, in the second part of this chapter, we

address the problem of anti-windup design.

5.1 Design of Step-Tracking Controllers

5.1.1 Motivation

Consider the feedback system of Figure 5.1.1, where

P (s) =
1

s2 + 0.4s+ 1
, (5.1)

and satα(u) is the symmetric saturation function shown in Figure 5.1.2. The problem

is to design a controller, C(s), so that the closed loop system tracks unit step reference
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signal satisfying the following specifications:

Steady state error ≤ 1%; Overshoot ≤ 5%;

Settling time ≤ 1 sec.

(5.2)

Since there are no rigorous methods for designing step-tracking controllers for

systems with saturating actuators, one usually designs a controller satisfying (5.2)

assuming that the actuator is linear and then verifies the performance using simula-

tions. For the system of Figure 5.1 a controller can be selected, for example, as

C(s) =
22s+ 200

0.01s+ 1
, (5.3)

and the resulting performance meets the specifications if, say, α = 25 (see Figure

5.2.1). However, if α = 10, the step response does not meet the dynamic part of

the specs (overshoot degrades – see Figure 5.2.2). If α = 5, not only does overshoot

degrade, but the settling time spec is also violated (see Figure 5.2.3). Finally, if

α = 0.5, not only is the dynamic part of the specs violated, but the steady state spec

is also violated (see Figure 5.2.4).

So, given a specific α, how can a step-tracking controller be designed so that the

step response meets the specs, if at all possible? This is the question addressed in

this section.

The development here is based on the time domain design method of Chapter IV.

C (s)_
yvu

r0 1 (t) satα(u) P (s)

5.1.1: System with saturating actuator.

v

u

α

−α

1

5.1.2: Saturation function v =
satα(u).

Figure 5.1: Motivating example.
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Figure 5.2: Step responses of the motivating example.

In Chapter IV, these controllers are designed to track random references. Here, we

extend the results to track steps.

The QLC block-diagram relevant to this chapter is shown in Figure 5.3.1 (the case

of asymmetric saturation function is treated in Subsection 5.1.6). Here, the reference

signal r(t) is generated by filtering a standard Gaussian white noise process scaled by

r0 through a 3rd order Butterworth filter with 3dB bandwidth Ω:

FΩ(s) =

√
3

Ω

(
Ω3

s3 + 2Ωs2 + 2Ω2s+ Ω3

)
. (5.4)

In the current section, this block-diagram is modified as shown in Figure 5.3.2. Here,

the reference signal is generated by processing a step signal of size r0 by a nominal

second order system,

Fd(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (5.5)

where ζ and ωn are selected so that the output of Fd(s) (i.e., r(t)) satisfies specifi-

cations of type (5.2). The goal is to design a controller C(s), if at all possible, such
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e

5.3.1: Random reference tracking system.

P (s)C (s)_
yvur(t)

satα(u)Fd(s)r01(t)
e

5.3.2: Step reference tracking system.

Figure 5.3: Systems for tracking random and step inputs.

that the output y(t) tracks well r(t) (instead of the step-signal itself) and, therefore,

satisfies the specs. To this end, in this section we

1. Verify if a necessary condition for existence of a controller that meets the specs

is satisfied.

2. Convert the dynamic part of the step tracking specifications to random-signal

tracking specifications. This is carried out by determining Ω from the dynamic

part of the specs such that if a controller for the system of Figure 5.3.1 tracks

well the random reference r(t) with this bandwidth, the same controller tracks

well r(t) in Figure 5.3.2; we refer to this Ω as the adjoint bandwidth and denote

it by Ωa.

3. Design such a controller for the system of Figure 5.3.1 with Ω = Ωa, using the

S-root locus approach (note that S-root locus, developed in [1], is a special case

of AS-root locus and is only applicable to symmetric systems).

4. Finally, use the same controller in the system of Figure 5.3.2. By doing so, we

view the output of Fd(s), i.e., r(t), as the function to be tracked, rather than

the step signal itself. In other words, Fd(s) can be viewed as a pre-compensator

in a 2 degree-of-freedom architecture [65].

The two key ideas that lead to this design method are:
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1. “connecting” step tracking specs (5.2) with adjoint bandwidth Ωa;

2. viewing the output of Fd(s), i.e., r2(t), as the function to be tracked (rather

than the step signal itself). We refer to this r(t) as the modified step signal.

The above approach may lead to a conservative design since the adjoint bandwidth

may be too large. Nevertheless, as demonstrated in this section, the proposed method

is practical and systematic.

Summarizing, the original contribution of this section is in employing Quasilinear

Control Theory to provide a direct method for linear step tracking controller design

in systems with saturating actuators.

Below, we first provide a necessary and sufficient condition for existence of a

step-tracking controller satisfying steady state specs. We then present a method for

calculating the adjoint bandwidth, Ωa. Next, we show several examples indicating

that if a controller tracks well random references in Figure 5.3.1, it also tracks well

r(t) of Figure 5.3.2, thereby satisfying the specs. Lastly, we compare the QLC method

with the anti-windup technique

5.1.2 Necessary and Sufficient Condition for Existence of Step Tracking

Controllers Satisfying Steady State Specifications

Consider the system of Figure 5.3.2 and the following steady state specifications:

r0 ≤ r∗0,

Steady state error =
limt→∞ |e(t)|

r0

≤ e∗ss,
(5.6)

where r∗0 is the maximum step size to be tracked, e(t) is the tracking error, i.e.,

e(t) = r(t)− y(t), and e∗ss < 1. For simplicity, we assume that only positive steps are

required to be tracked. Let P0 and C0 be the dc-gains of the plant and controller,

respectively. The following proposition provides a necessary and sufficient condition
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for existence of a controller that satisfies the above specifications.

Proposition V.1. Assume P0 > 0 and C0 > 0. Then, a controller that satisfies

(5.6) exists if and only if

r∗0 ≤
P0α

1− e∗ss
. (5.7)

Proof. See Section A.4.

Note that while (5.7) is a necessary and sufficient condition for existence of a

controller satisfying the steady state part of the specs, it is also a necessary condition

for existence of a controller satisfying all specs, steady state and dynamic.

Returning to the motivating example of Section 5.1.1, we observe that for α = 5,

the value of P0α
1−e∗ss

is 5.05, and therefore, the condition for existence of a unit step

tracking controller is satisfied. On the other hand, for α = 0.5, P0α
1−e∗ss

= 0.505, and

therefore, no controller satisfying the specs exists.

5.1.3 Calculating the Adjoint Bandwidth

Assume that the dynamic part of step-tracking specifications is as follows:

Overshoot ≤ OS∗%;

Settling time ≤ t∗s sec;

Rise time ≤ t∗r sec.

(5.8)

Proposition V.2. Let Fd(s) be the nominal second order transfer function (5.5),

whose step response satisfies specs (5.8). Then, the adjoint bandwidth is given by

Ωa =
√

2ωn exp

(
− σ

ωd
tan−1(

ωd
σ

)

)
, (5.9)

where σ = ζωn and ωd = ωn
√

1− ζ2.
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Justification: The adjoint bandwidth is defined by equating the maximum rate of

change of r(t) in Figure 5.3.2 with the standard deviation of the rate of change of r(t)

in Figure 5.3.1. It can be shown that the maximum rate of change of r(t) in Figure

5.3.2 is given by

max
t≥0

ṙ(t) = ωn exp(− σ

ωd
tan−1(

ωd
σ

))r0, (5.10)

and the standard deviation of the rate of change of r(t) in Figure 5.3.1 is the H2-norm

of sFΩ(s), i.e.,
∥∥sFΩ(s)

∥∥
2

=
Ω√
2
r0. (5.11)

Therefore, Ωa is defined by the equation

ωn exp(− σ

ωd
tan−1(

ωd
σ

))r0 =
Ωa√

2
r0,

which leads to (5.9).

For the motivating example of Section 5.1.1, based on the dynamic part of the

specs, we select

Fd(s) =
34

s2 + 8s+ 34
. (5.12)

Using (5.9) and this Fd(s), the adjoint bandwidth for the motivating example is

Ωa = 3.8.

5.1.4 Examples of QLC-based controller design

In this section, we illustrate the method developed above for the motivating ex-

ample and three types of step tracking specs: those with non-zero steady state error,

those with zero steady state error, and those with zero overshoot.
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5.1.4.1 Design for the motivating example

In this subsection, we illustrate the method of this Chapter for the motivating

example of Section 5.1.1.

Figure 5.4.1 shows the admissible domain (shaded area) and the S-root locus for

the motivating example of Section 5.1.1 with α = 25, adjoint bandwidth Ωa = 3.8,

and the controller selected as:

C(s) = K
22s+ 200

0.01s+ 1
. (5.13)

For this example, the termination and truncation points of the S-root locus coincide

with the open loop zeros; therefore, the S-poles can be selected within the admissible

domain. With K = 1, the resulting trajectories of the closed loop system of Figure

5.3.1 are shown in Figure 5.5.1. Clearly, the quality of random reference tracking is

good.

Since the unit step is in the trackable domain when α = 25, we use the same

controller in Figure 5.3.2. The resulting response is shown in Figure 5.5.2. Clearly,

the quality of tracking is good, and specs (5.2) are satisfied.

With α = 10, using the same controller (5.13), the S-root locus of the motivating

example is shown in Figure 5.4.2. Obviously, the S-root locus terminates before

entering the admissible domain. Consequently, the quality of tracking is low for

random references (see Figure 5.6.1). Figure 5.6.2 shows the tracking quality for the

system of Figure 5.3.2. As can be seen, overshoot does not meet the specs and the

quality of tracking is poor.

When α is even smaller, the termination points move closer to the open loop poles,

and the quality of tracking degrades further.
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Figure 5.4: S-root loci of the motivating example.
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5.5.1: Random signal tracking.
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5.5.2: Step tracking.

Figure 5.5: Trajectories of the systems of Figure 5.3.1 and 5.3.2 for the motivating
example of Section 5.1.1 with α = 25 and K = 1.
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5.6.1: Random signal tracking.
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5.6.2: Step tracking.

Figure 5.6: Trajectories of the systems of Figure 5.3.1 and 5.3.2 for the motivating
example of Section 5.1.1 with α = 10 and K = 1.
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5.1.4.2 Specs with non-zero steady state tracking error

Consider the system of Figure 5.3.2 with

P (s) =
116

(s2 + 20s+ 116)(0.02s+ 1)

and α = 1.5. The goal is to design a pre-compensator Fd(s) and a controller C(s)

that achieve the following step-tracking specifications:

r0 ≤ 1.5;

Steady state error < 2.5%;

Overshoot ≤ 5%;

Settling time ≤ 1 sec.

(5.14)

First, we check condition (5.7). Since r∗0 = 1.5 < P0α
1−e∗ss

= 1.54, this condition is

satisfied and the steady state spec can be met. As far as the dynamic part of the

specs is concerned, since it is the same as (5.2), filter Fd(s) is given by (5.12) and the

adjoint bandwidth is Ωa = 3.8 as before.

The poles of the plant P (s) are at −10 ± 4j,−50. Clearly, the complex conju-

gate poles are dominant. In [1], it is shown that the idea of dominant poles works

in systems with saturating actuators in the same manner as it does in the linear

case. Accordingly, we design a controller such that these dominant poles enter the

admissible domain, while still remaining dominant in the closed loop.

Given the above plant, we select the following controller:

C(s) = K
s+ 30

0.01s+ 1
.

The S-root locus of the resulting system is shown in Figure 5.7. With the controller

gainK = 1.5, the S-poles are within the admissible domain and prior to the truncation
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Figure 5.7: S-root locus for the example of Subsection 5.1.4.2.
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5.8.1: Random tracking.
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5.8.2: Step tracking.

Figure 5.8: Trajectories of the system in Subsection 5.1.4.2.

points (black squares on the S-root locus); thus, both steady state and dynamic

specs are satisfied. The resulting performance of systems of Figures 5.3.1 and 5.3.2 is

illustrated in Figures 5.8.1 and 5.8.2, respectively. Clearly, step tracking specifications

are satisfied.

Note that in Figure 5.8.1, the quality of random reference tracking deteriorates at

two time moments (around t = 2s and t = 4s). This is because with the selected K,

the S-poles are close to the S-truncation points. However, since r0 = 1 is inside the

trackable domain, tracking of the unit step in Figure 5.8.2 is good.

5.1.4.3 Specs with zero steady state tracking error

In this subsection, we consider two examples. In the first one, the plant has a pole

at the origin, while in the second, it does not.

Designing a controller for a plant with a pole at the origin:
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Consider the system of Figure 5.3.2 with

P (s) =
10

s(s+ 10)

and α = 3. The goal is to design pre-compensator Fd(s) and controller C(s) that

achieve the following step tracking specifications:

r0 ≤ 2;

Steady state error = 0;

Overshoot ≤ 5%;

Settling time ≤ 1 sec.

(5.15)

Clearly, since P0 = ∞, from (5.7) we conclude that the steady state part of the

specs are satisfied by any controller without a zero at the origin.

Based on the dynamic part of the specs, the filter Fd(s) is still given by (5.12)

(since the dynamic specs remain the same), for which the adjoint bandwidth is again

Ωa = 3.8. Select the phase-lead controller

C(s) = K
s+ z

s+ p
, p > z, (5.16)

where p and z are design parameters. The S-root locus of this closed loop system with

z = 20 and p = 100 is shown in Figure 5.9. Clearly, it does not enter the admissible

domain. Moreover, calculations using different p’s and z’s show that for any finite p

and z with z < p, the S-root locus still remains outside the admissible domain and,

thus, a lead controller cannot satisfy the dynamic part of the specs if α = 3.

However, if one uses an actuator with α = 4, controller (5.16) with z = 20 and

p = 100 leads to the S-root locus shown in Figure 5.10, which does enter the admissible

domain. Selecting K = 200 results in responses of the systems of Figures 5.3.1 and
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Figure 5.9: S-root locus of the example of Subsection 5.1.4.3 with α = 3
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Figure 5.10: S-root locus of the example of Subsection 5.1.4.3 with α = 4

5.3.2 shown in Figures 5.11.1 and 5.11.2, respectively. Clearly, the quality of tracking

is good in both cases, and the step tracking specifications are satisfied. Note that in

this example no windup occurs, since the controller has no pole at the origin.

Designing a controller for a plant without a pole at the origin:

Consider the system of Figure 5.3.2 with

P (s) =
150

s2 + 28s+ 232
(5.17)

and α = 4. The goal is to design a pre-compensator and controller such that the
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Figure 5.11: Trajectories of the system in Subsection 5.1.4.3 with α = 4.

closed loop system satisfies the following specifications:

r0 ≤ 1;

Steady state error = 0;

Overshoot ≤ 5%;

Settling time ≤ 1 sec.

(5.18)

Since r∗0 = 1 < P0α
1−e∗ss

= 2.58, (5.7) is satisfied, and to meet the steady state specs, the

controller must have a pole at the origin.

Similar to the previous subsection, Fd(s) is given by (5.12) and the adjoint band-

width is Ωa = 3.8. Select a PI controller as follows:

C(s) = K

(
3 +

75

s

)
.

The S-root locus is shown in Figure 5.12, which enters the admissible domain. With

K = 1, the S-poles are within the admissible domain. For this K, the quality of

tracking for the system of Figures 5.3.1 and 5.3.2 are shown in Figures 5.13.1 and

5.13.2, respectively. As can be seen, the quality of tracking is good in both cases, and

the step tracking specs are satisfied. Also, we remark that with this PI controller,

no integrator windup takes place (see Fig 5.14, where the trace of the output of

saturation of the System in Figure 5.3.2 is illustrated).
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Figure 5.12: S-root locus of the example of Subsection 5.1.4.3.
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Figure 5.13: Trajectories of the system in Subsection 5.1.4.3.
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Figure 5.14: Output of saturation for the example of Subsection 5.1.4.3.
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5.1.4.4 Specs with zero overshoot

Consider the plant (5.1) of the motivating example in Section 5.1.1 and α =

10. The goal is to design a controller such that the closed loop system tracks steps

satisfying the following specifications:

r0 ≤ 1.5;

Steady state error ≤ 1%;

Overshoot = 0%;

Settling time ≤ 1 sec.

(5.19)

Since r∗0 = 1.5 < P0α
1−e∗ss

= 10.1, condition (5.7) is satisfied and the steady state specs

can be met.

Next, we turn to the dynamic part of the specs. Since they call for zero overshoot,

the underdamped pre-compensator Fd(s) given in (5.5) with 0 < ζ < 1 cannot be

used. Rather, the required pre-compensator must be either critically damped or

overdamped. Selecting ζ = 1, similar to Subsection 5.1.3, it is possible to show that

the adjoint bandwidth is defined by

Ωa =
√

2ωne
−1. (5.20)

Thus, for the example at hand, the pre-compensator can be selected as

Fd(s) =
28

s2 + 10s+ 28
,

which results in Ωa = 2.77. Further, selecting the phase-lead controller

C(s) = K
s+ 5

0.01s+ 1
,
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Figure 5.15: S-root locus of the example of Subsection 5.1.4.4.
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Figure 5.16: Trajectories of the system in Subsection 5.1.4.4.

we obtain the S-root locus entering the admissible domain (see Figure 5.15). With

K = 20, the response of systems of Figures 5.3.1 and 5.3.2 are shown in Figures

5.16.1 and 5.16.2, respectively. Clearly, the specs are satisfied. Note that the quality

of random reference tracking slightly degrades around 4 seconds. This is because the

S-poles are placed at the edge of the admissible domain, and the system exhibits a

slight lagging behavior.

5.1.5 Comparison of QLC-based and anti-windup-based design method-

ologies

As shown above, QLC-based design takes into account the actuator saturation

during the initial design stage. In contrast, the anti-windup (AW) approach first

designs a linear controller satisfying step tracking specs ignoring the saturation, and
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then adds an additional feedback loop to prevent controller windup.

There are numerous ways of designing the AW mechanism – linear and nonlinear

(see [41], where 25 various AW techniques are described). Obviously, a comparison of

QLC-based design with all possible AW implementations is impossible and, perhaps,

unnecessary in this paper. Hence, we limit our considerations to issues of general

nature.

5.1.5.1 Areas of applicability

One of the main differences between QLC and AW design methods is that of

applicability: QLC is applicable to any performance specs, while AW is applicable

only to specs that call for a controller with an integrator. For instance, returning

to the motivating example of Section 5.1.1 (with the plant and specs given by (5.1)

and (5.2), respectively, and with the actuator saturation level α = 10), a controller

designed using the QLC approach is given by

C(s) = 100
s+ 6

0.001s+ 1
. (5.21)

The resulting behavior, illustrated in Figure 5.17, satisfies the specs. As far as the

AW approach is concerned, the current literature does not offer methods for AW

design applicable to the problem at hand, because the controller has fast dynamics.

As an aside note, we would like to point out that both controllers (5.3) and (5.21)

lead to saturation activation in the respective systems (Figure 5.1.1 for controller

(5.3) and Figure 5.3.2 for controller (5.21)). These saturating trajectories are shown

in Figure 5.18. However, controller (5.3) leads to detrimental saturation (specs are

not met), while controller (5.21) does not (specs are satisfied). Additionally, we would

like to note that even in the architecture of Figure 5.3.2, controller (5.3) still violates

specifications (the behavior of y(t) is almost identical to that of Figure 5.2.2 and
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Figure 5.17: Trajectories of the system of Subsection 5.1.5.1.
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5.18.2: With controller (5.21).

Figure 5.18: Output of saturation in the example of Subsection 5.1.5.1.

overshoot is still 16%).

5.1.5.2 QLC-based design enlarges the set of possible linear controllers

as compared to AW

Consider the plant

P (s) =
325

s2 + 40s+ 375
, (5.22)

actuator saturation level α = 1.5, and the specifications

r0 ≤ 1.25;

Steady state error = 0;

Overshoot ≤ 5%;

Settling time ≤ 1 sec.

(5.23)
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5.19.2: Performance at the initial stage of
AW approach.

Figure 5.19: Trajectories of the tracking systems in Subsection 5.1.5.2.

The necessary condition (5.7) is met, Fd(s) is selected as in (5.12), and to satisfy the

specs, the following QLC-based controller is designed:

C(s) = 100 +
2000

s
. (5.24)

The performance of the resulting closed loop system is shown in Figure 5.19.1. Clearly,

the output closely tracks the reference and, thus, satisfies the specs.

Let us now apply controller (5.24) to the same plant in the framework of the initial

stage of AW design, i.e., ignoring the saturation and removing the pre-compensator.

The resulting performance is shown in Figure 5.19.2. Clearly, the overshoot spec is

violated. Thus, controller (5.24) could not have been selected at the initial stage of

AW design. This implies that QLC-based design brings into consideration controllers

that do not emerge in the AW approach.

5.1.5.3 The AW approach may not lead to a successful design in situations

where QLC does

We now design a controller, using the anti-windup technique, for the same plant

(5.22), α = 1.5, and specs (5.23). In the initial stage of the design, select the PID

controller

C(s) = 7 +
100

s
+ 0.4s,
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Figure 5.20: Trajectories of the tracking systems in Subsection 5.1.5.3.

which satisfies the specs (Figure 5.20.1). The same controller implemented on the

system with saturating actuator violates the overshoot specs (Figure 5.20.2). To

alleviate this problem, introduce the anti-windup mechanism with back-calculation

shown in Figure 5.21, where KAW is the anti-windup gain. In [66], the authors

suggest to select KAW as the geometric mean of the derivative and integral actions,

i.e., KAW = 6.3. The resulting system performance is illustrated in Figure 5.22. The

overshoot is 16%, which, despite being smaller than that of the system without anti-

windup, still violates the specs. Since KAW = 6.3 may not be an optimal solution,

we numerically evaluate the overshoot of the system using different anti-windup gains

between 1 and 50 (with the step of 0.1). As it turns out, the minimum overshoot

is 10%, which is achieved with KAW = 15. Thus, the design (5.24) with the above

anti-windup mechanism cannot satisfy the specs.

This example illustrates that for a controller selected in the initial stage of design,

the AW approach does not offer a constructive way of analyzing the performance

after being augmented by an anti-windup mechanism. In contrast, in the QLC-based

design, the performance of the selected controller can be directly ascertained using

the S-root locus technique.
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Figure 5.21: The anti-windup mechanism.
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Figure 5.22: Tracking performance for the system with saturating actuator and anti-
windup.

5.1.6 Step-tracking design for the asymmetric case

A method for designing step tracking controllers has been developed above for the

symmetric case. In this subsection, we extend the method to the asymmetric case

and demonstrate the technique with an example.

To design step-tracking controllers for the asymmetric case, assume that the spec-

ifications call for a controller to track a step change from r1 to r2. In other words, the

goal is to track a step size of r2 − r1 starting from r1. Note that this spec is a gen-

eralization of the specs presented for the symmetric case. Assume that the dynamic

part of the specs is as before.

To achieve the specs, we select the pre-compensator Fd(s), as before, based on

the dynamic part of the specs. Accordingly, the adjoint bandwidth is the same as

before. However, we modify the mean and standard deviation of the random reference

to r1 and r2 − r1, respectively. The goal now is to design a controller, using the

performance loci method, to track a reference with bandwidth given by the adjoint

112



35 40 45

0

1

2

3

Time [s]

 

 

y(t)

r(t)

5.23.1: Random tracking.

10 10.5 11 11.5 12 12.5 13
1

1.5

2

Time [s]

 

 

y(t)

r(t)
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Figure 5.23: Trajectories of the system in Subsection 5.1.6.

bandwidth and mean and standard deviation given by r1 and r2 − r1, respectively.

The same controller implemented on the system with precompensator Fd(s) satisfies

the step-tracking specifications.

Example V.1. Consider the second example in Subsection 5.1.4.3 with plant given

by (5.17). Assume that α = −1, β = 3, and that the step tracking specs are given by

r1 = 1, r2 = 2;

Steady state error = 0;

Overshoot ≤ 5%;

Settling time ≤ 1 sec.

(5.25)

Similar to Subsection 5.1.4.3, Fd(s) is given by (5.12) and the adjoint bandwidth

is Ωa = 3.8. We select, as before, the PI controller C(s) = K
(
3 + 75

s

)
. The resulting

AS-root locus, constructed by assuming µr = 1 and σr = 1, is the same as that shown

in Figure 5.12. Selecting K = 1 places the AS-poles within the admissible domain.

Note that, since the controller has an integrator, the TE locus is identically zero and

the steady state tracking specs are satisfied. Figures 5.23.1 and 5.23.2 illustrate the

tracking of random and step references. Clearly, the quality of tracking is good in

both cases and the step-tracking specs are met.
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5.2 Analysis and Design of Systems With Integrator Anti-

windup Using Stochastic Linearization

5.2.1 Motivation

In practice, PID controllers are one of the most widely used controllers. However,

in the presence of actuator saturation, their performance may be limited due to

integrator windup. Moreover, because of this windup, the specs may not be satisfied

even using the QLC-based approach described in Section 5.1. Since almost all real

systems are subject to actuator saturation, design of anti-windup schemes is of great

importance.

One of the most common integrator anti-windup designs is the so-called back cal-

culation method shown in Figure 5.24.1. The inner loop feeds the difference between

the input and output of the saturation to the integrator through the anti-windup gain

Ka. When the actuator does not saturate, no signal is fed back and system behaves

as if no anti-windup is present. When the actuator saturates, the anti-windup loop

helps drive the input of the integrator towards zero and prevent windup.

To illustrate performance improvements with anti-windup, consider the system of

Figure 5.24.1 with KAW = 0 (i.e., no anti-windup) and α = −∞, β =∞ (i.e., linear

actuator). Assume that

P (s) =
1

s
,Ki = Kd = Kp = 1,

and that r(t) is the unit step function. The output y(t) for this system is shown in

Figure 5.25.1. Now, assume that β = −α = 0.2. The output y(t) for this case is

shown in Figure 5.25.2. Clearly, both overshoot and settling time have dramatically

degraded. To see why this happens, Figure 5.25.3 plots the output of the integrator,

as well as the output of the saturation. As can be seen, when the actuator saturates,
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5.24.3: The quasilinear system.

Figure 5.24: Systems considered for controller design of systems with anti-windup.
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5.25.2: Step tracking with β = −α = 0.2
and Ka = 0.
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5.25.3: Integrator output and actuator out-
put with β = −α = 0.2 and Ka = 0.

10 20 30 40 50
0

0.5

1

1.5

2

Time (s)

 

 

r(t)

y(t)

5.25.4: Step tracking with β = −α = 0.2
and Ka = 1.

Figure 5.25: Motivating example.

the integrator winds up significantly. To alleviate this situation, we select Ka = 1.

Figure 5.25.4 plots the output of this system. Clearly, performance has improved

dramatically as compared to Figure 5.25.2.

But how can the anti-windup gain Ka be chosen? In [66], the authors suggest to

select Ka large when there is no derivative action, and select Ka as

Ka =
√
KiKd,

when there is derivative action. For the above example, this implies that Ka = 1.

However, this is a just a rule obtained from experience. In this section, we provide

an optimal method for choosing Ka using the method of stochastic linearization.
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5.2.2 Design strategy

Consider the system shown in Figure 5.24.1. Assume Kp, Ki, and Kd are already

selected so that the underlying linear system without the saturating actuator behaves

as desired. The goal is to choose the anti-windup gain Ka in an optimal way to

minimize performance degradation when the same controller is used on the A-LPNI

system. We propose the following design method:

1. First, convert the step reference tracking specifications to random-reference

tracking specifications using the notion of adjoint bandwidth developed in Sub-

section 5.1.3. This results in the system of Figure 5.24.2.

2. Second, apply stochastic linearization to the system of Figure 5.24.2 to obtain

the quasilinear system of Figure 5.24.3.

3. Third, minimize E[ê2] over all anti-windup gains, i.e., find the minimizer

min
Ka

E[ê2].

The first step is an essential part of the design method presented in Section 5.1

for step-tracking controller design. Therefore, for the sake of brevity, we refer the

reader to Section 5.1 for details. Here, we focus on the last two steps. In particular,

we derive the equations for stochastic linearization and formulate the optimization

problem.

Assume that the plant and coloring filter in Figure 5.24.2 have the state space

representations

ẋP = APxP +BP sat(u),

ẋF = AFxF +BFwr,

y = CPxP ,

r = CFxF ,

(5.26)
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where xF and xP are, respectively, the states of the coloring filter and the plant. To

model the derivative action, we approximate the derivative by a first order dynamical

system with time constant τ , i.e., by

Kds

τs+ 1
. (5.27)

Let z1 be the state corresponding to the above dynamical equation. To model the

integral action, let us denote the output of the integrator by z2. Then, the input to

the saturation can be expressed as

u = Kpe+
Kd

τ
e+ z1 + z2 = (Kp +

Kd

τ
)(CFxF − CPxP ) + z1 + z2,

and the states z1 and z2 can be described by

ż1 = −1

τ
z1 −

Kd

τ 2
(CFxF − CPxP ),

ż2 = Ki(CFxF − CPxP ) +Ka(sat(u)− u).

(5.28)

After application of stochastic linearization, it can be shown that the quasilinear

system may be represented by the following state space system:

˙̂x = Ax̂+Bwr + B̃ma,

where x̂ = [X̂T
F X̂T

P ẑ1 ẑ2]T , X̂F , X̂P , ẑ1, and ẑ2 are the states of the plant, coloring

filter, integrator, and differentiator of the quasilinear system, ma = ( Ka
Ka−KiP0

−N)µû,

A =



AF 0 0 0

BPN [Kp + Kd
τ

] AP −BPN [Kp + Kd
τ

]CP BPN BPN

−Kd
τ2
CF

Kd
τ2
CP − 1

τ
0[

Ki +Ka(N − 1)(Kp + Kd
τ

)
]
CF −

[
Ki +Ka(N − 1)(Kp + Kd

τ
)
]
CP Ka(N − 1) Ka(N − 1)


,
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B =



BF

0

0

0


,

and B̃ is an appropriate vector. As it is shown below, the actual form of B̃ is not

required for this derivation.

Similar to the development in Chapter II, to derive the equations of stochastic

linearization, the standard deviation σû must be developed, and the expected value

of the output of the saturation must be expressed in terms of µû. To this end, the

state covariance matrix of the closed loop quasilinear system is required. The state

covariance matrix is given by the solution P > 0 of the Lyapunov equation

AP + PAT +BBT = 0.

Using the state covariance matrix, the variances of ê and û are given by

σ2
ê = C1PC

T
1 ,

σ2
û = C2PC

T
2 ,

where C1 = [CF − CP 0 0] and C2 = [(Kp + Kd
τ

)CF − (Kp + Kd
τ

)CP 1 1]. Now,

the expected value of the output of saturation can be shown to be given by:

Ma =
Ka

Ka −KiP0

µû.

Therefore, Na and µû are the solutions of the transcendental equations

Na −FN(
√
C2PCT

2 , µû) = 0, (5.29)

Ka

Ka −KiP0

µû −FM(
√
C2PCT

2 , µû) = 0, (5.30)
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where FN and FM are as in (2.8), (2.9).

We now formulate the optimization problem. First, note that the expected value

of the signal ê is given by

µê =
KaP0

KiP0 −Ka

µû.

Therefore, the second moment E[ê2] can be equivalently written as

E[ê2] = µ2
ê + σ2

ê = (
KaP0

KiP0 −Ka

µû)
2 + C1PC

T
1 .

Therefore, the optimization problem is as follows:

min
Ka>0,0<N<1,µû∈R

(
KaP0

KiP0 −Ka

µû)
2 + C1PC

T
1 ,

subject to

AP + PAT +BBT = 0,

Na −FN(
√
C2PCT

2 , µû) = 0,

Ka
Ka−KiP0

µû −FM(
√
C2PCT

2 , µû) = 0.

(5.31)

This optimization problem can be solved using Matlab’s “fmincon” function.

We now apply the above to the motivating example presented at the beginning

of this Section. Based on the rise time and overshoot of the output shown in Figure

5.25.1, the adjoint bandwidth can be selected as

Ωa = 0.5.

We now consider three cases: β = 0.1, α = −0.1 (symmetric), β = 0.2, α = −0.2

(also symmetric), and β = 0.3, α = −0.1 (asymmetric). In the first case, the total

actuator authority is 0.2, while in the latter two cases the total actuator authority is
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0.4. We use the above development to compute the optimal Ka to be 6.2, 3.92, and

3.67 for the first, second, and third cases, respectively. Note that Ka obtained using

this method is not far from Ka = 1, which is what is suggested by the authors in [66].

Also note that the optimal gain depends on the actuator authority and asymmetry.

Specifically, for this example, with a bigger actuator, the optimal anti-windup gain is

smaller, i.e., less anti-windup action is required.

A remark on the pros and cons of the proposed method is in order. On the one

hand, the proposed method is straight forward and systematic, while the method in

[66] is heuristic. On the other hand, the proposed method is based on a conserva-

tive estimate of the adjoint bandwidth, which might lead to conservative design. In

addition, the assumption is that stochastic linearization provides a faithful estimate

of the first and second moments of the signals in the loop. Therefore, the proposed

method works best when the plant is low pass filtering.

In conclusion, this section employs the method of stochastic linearization to find

the optimal anti-windup gain in systems with back-calculation anti-windup. Note

that the method developed here can be applied to other nonlinearities in the actuator

as well.
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CHAPTER VI

Linear Performance Recovery in A-LPNI Systems

This chapter is concerned with the problem of complete performance recovery in

A-LPNI systems. The approach is, as before, based on the method of stochastic lin-

earization. It is shown that linear disturbance rejection performance can be partially

recovered in the A-LPNI system by introducing a boosting gain in the sensor and a

boosting gain and bias in the controller.

6.1 Scenario

Consider the A-LPNI system of Figure 6.1, where P (s) and C(s) are the plant and

controller, respectively, f(·) and g(·) are static nonlinearities describing the actuator

and sensor, respectively, y is the plant output, and d is a disturbance generated by

passing standard Gaussian white noise wd through the low pass filter FΩd(s) with

‖FΩd(s)‖2 = 1. For simplicity, we assume that d(t) has mean zero and standard

deviation one. The general case can be treated in a similar manner.

To design a controller C(s) that achieves satisfactory disturbance rejection, a

designer typically ignores the nonlinearities in the actuator and sensor and designs a

controller for the resulting linear system. This system is shown in Figure 6.2, where

yl is the plant output and Cl(s) is a controller that achieves satisfactory disturbance

rejection for this system. Typically, the same controller implemented on the nonlinear
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Figure 6.1: A-LPNI system considered for performance recovery.
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Figure 6.2: Linear system considered for controller design.

system exhibits a degradation in performance as compared with the linear system,

i.e.,

σy > σyl .

Furthermore, the asymmetry in the nonlinearities may induce a bias in the output of

the system, i.e.,

|µy| > 0.

This output bias, which is not present in the linear system, is undesirable.

Accordingly, this chapter explores the possibility of modifying Cl(s) to recover

linear disturbance rejection performance, i.e., σy = σyl and µy = 0. In [1] a strategy

is presented for symmetric LPNI systems: “boosting” the gain of the controller and

the sensor. Here, we not only boost the gain of the controller and sensor, but we also

introduce a bias at the controller output. To be consistent with the symmetric case,
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Figure 6.4: Stochastic linearization of the boosted A-LPNI system.

we refer to this strategy as simply boosting. The boosted A-LPNI system is shown

in Figure 6.3. Here, ka, ks, and kb must be chosen so that

σy = σyl ,

µy = 0,

if possible. The approach for computing the gains ka, ks, and bias kb is, as before,

based on the method of stochastic linearization. In the next section, we stochastically

linearize the A-LPNI system of Figure 6.3 to compute the boosting gains.
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6.2 Computing the Boosting Gains

Figure 6.4 shows the stochastic linearization of the system of Figure 6.3. Here,

Na, Ns, ma, and ms can be found by solving the following system of transcendental

equations in the unknowns Na, Ns, µû, and µŷ:

Na −FN(
∥∥∥ kaFΩd(s)P (s)Cl(s)Nsks

1 + P (s)NakaNsksCl(s)

∥∥∥
2
, µû) = 0, (6.1)

Ns − GN(
∥∥∥ FΩd(s)P (s)

1 + P (s)NakaNsksCl(s)

∥∥∥
2
, µŷ) = 0, (6.2)

µŷ
P0

−FM(
∥∥∥ kaFΩd(s)P (s)Cl(s)Nsks

1 + P (s)NakaNsksCl(s)

∥∥∥
2
, µû) = 0, (6.3)

1

kaksCl0
(kb − µû)− GM(

∥∥∥ FΩd(s)P (s)

1 + P (s)NaksNsksCl(s)

∥∥∥
2
, µŷ) = 0, (6.4)

where Cl0 is the dc-gain of Cl, FN and FM are as in (2.4) and (2.5), respectively,

and GN and GM are the same as FN and FM in (2.4) and (2.5), except that f(·) is

replaced by g(·). The constants ma and ms can be found from:

ma =
µŷ
P0

− µûNa,

ms =
1

kaksCl0
(kb − µû)− µŷNs.

To recover linear disturbance rejection performance, we choose ka and ks to offset

Na and Ns, i.e.,

Naka = Nsks = 1,

and choose kb such that µŷ = 0. If such ka, ks, and kb exist, linear performance is

recovered in the quasilinear system.

To compute these boosting gains, we multiply both sides of (6.1) by ka, both

sides of (6.2) by ks, and use the fact that Naka = Nsks = 1 and µŷ = 0. Equations

(6.1)-(6.4) then become:
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1− kaFN(ka

∥∥∥FΩd(s)P (s)Cl(s)

1 + P (s)Cl(s)

∥∥∥
2
, µû) = 0, (6.5)

1− ksGN(
∥∥∥ FΩd(s)P (s)

1 + P (s)Cl(s)

∥∥∥
2
, 0) = 0, (6.6)

FM(ka

∥∥∥FΩd(s)P (s)Cl(s)

1 + P (s)Cl(s)

∥∥∥
2
, µû) = 0, (6.7)

1

kaksCl0
(kb − µû)− GM(

∥∥∥ FΩd(s)P (s)

1 + P (s)Cl(s)

∥∥∥
2
, 0) = 0, (6.8)

The standing assumption is that the solution of the above equations is unique.

Note that the above equations can be decoupled. First, (6.6) can be solved for ks:

ks =
1

GN(
∥∥∥ FΩd

(s)P (s)

1+P (s)Cl(s)

∥∥∥
2
, 0)

=
1

GN(σyl , 0)
.

Therefore, ks always exists. In other words, the sensor nonlinearity can always be

boosted.

Second, (6.5) and (6.7) can be solved together for µû and ka. So, boosting of the

actuator nonlinearity is only possible when (6.5), (6.7) have a solution.

Finally, (6.8) can be solved for kb. Here, two cases can arise:

• Cl0 =∞: In this case, boosting is only possible when GM(
∥∥∥ FΩd

(s)P (s)

1+P (s)Cl(s)

∥∥∥
2
, 0) = 0.

This equation is satisfied, for example, if the sensor nonlinearity is an odd

function. Note that bias kb is not required in this case. We, thus, set kb = 0.

• Cl0 6=∞: Here, kb can computed as follows:

kb = µû + kaksCl0GM(
∥∥∥ FΩd(s)P (s)

1 + P (s)Cl(s)

∥∥∥
2
, 0).

Note that if the sensor nonlinearity is an odd function, then GM(
∥∥∥ FΩd

(s)P (s)

1+P (s)Cl(s)

∥∥∥
2
, 0) =

0. Therefore, kb = µû.
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Remark VI.1. The boosted controller, as designed above, may or may not perform

as desired on the A-LPNI system. This depends on the accuracy of stochastic lin-

earization: if stochastic linearization is accurate, then the boosted A-LPNI system

performs well. As an example, consider a system with linear actuator and a sensor

with deadzone. The above analysis implies that boosting is always possible for this

system. However, as it can be shown using simulations, if the deadzone band is large

enough compared to the output signal, then the accuracy of stochastic linearization

is low, and the boosted controller does not perform as desired.

6.3 Example

Consider system of Figure 6.1 with a saturating actuator and a linear sensor.

Assume that

P (s) =
2

20s+ 1
, α = −0.5, β = 2,

and FΩd(s) the usual third order Butterworth filter with bandwidth Ωd = 1. Let

C(s) = Cl(s) = 5 be a controller that satisfies the disturbance rejection specifications

for the underlying linear system without the saturating actuator. The resulting mean

and standard deviation of the output of the linear system is:

σyl = 0.136, µyl = 0.

The same controller implemented on the A-LPNI system results in:

σy = 0.209, µy = 0.056.

Based on the standard deviation, the system performance has degraded by 53%. We

now boost the controller using the method described in the previous section. The
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resulting boosting gain and bias are:

ka = 4.15, kb = −1.695.

Note that ks = 1 since the sensor is linear. The boosted controller implemented on

the A-LPNI system results in:

σy = 0.186, µy = 0.017,

an 11% and a 69% improvement as compared with the unboosted controller. The

performance of the boosted controller on the A-LPNI system as compared with that

of Cl(s) on the linear system shows a 36% degradation as opposed to 53% shown

previously. Clearly, the boosted system has superior performance as compared with

the unboosted controller.
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CHAPTER VII

LQR-based Design of A-LPNI Systems

This section introduces the A-SLQR problem, where A stands for “asymmetric”

and S stands for “saturating”. Similar to the usual linear LQR, the A-SLQR problem

is concerned with designing a state feedback controller to reject disturbances in an

optimal manner. However, unlike the LQR approach, the A-SLQR method takes into

account the actuator saturation at the design stage. Therefore, as it is shown, the

A-SLQR method performs better than the LQR approach.

7.1 Preliminaries

Consider the SISO LPNI system shown in Figure 7.1, where P (s), FΩd(s), and

satβα(u) are, as before, the plant, coloring filter with H2 norm equal to 1, and the

saturation function shown in Figure 1.3, w is a Gaussian white noise process, and µd

and σd are constants. Assume that minimal realizations of P (s) and FΩd(s) are given

P (s)

FΩd
(s)w

d
y

µd

satβ
α(u)u

σd

v

Figure 7.1: LPNI system used for analysis of state space feedback.
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by (AP , BP , CP ) and (AF , BF , CF ), respectively. Then, the overall system is governed

by

ẋ = Ax+B1w +B2satβα(u) +B2µd,

y = Cx,

(7.1)

where x = [xTP xTF ]T , xP and xF are the states of the plant and coloring filter,

respectively, and

A =



AP σdBPCF

0 AF


 , B1 =




0

BF


 , B2 =



BP

0


 , C = [CP 0].

With a state feedback controller u = Kx, the closed loop system is governed by

ẋ = Ax+B1w +B2satβα(Kx) +B2µd,

y = Cx.

(7.2)

Application of stochastic linearization to this system yields

˙̂x = (A+B2NK)x̂+B1w +B2(m+ µd),

ŷ = Cx̂,

(7.3)

where N and m are the quasilinear gain and bias, respectively. Assuming that K is

chosen such that A+B2NK is Hurwitz, it can be shown that

m = − µû
K(A+B2NK)−1B2

− µd

and N and µû can be obtained from the following two equations in unknowns N and

µû:

N −FN (σû, µû) = 0,

(
−1

K(A+B2NK)−1B2

+N)µû − µd −FM (σû, µû) = 0,
(7.4)
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where σû =
√
KRKT , and R is the positive definite solution of the Lyapunov equation

(A+B2NK)R +R(A+B2NK)T +B1B
T
1 = 0.

Clearly, the average value of the signals in the loop depends not only on µd, but

also on the quasilinear bias m, which acts as an additional disturbance.

7.2 The A-SLQR Problem

In contrast to the symmetric case with µd = 0, the plant output and control input

are characterized not only by their variance, but also by their mean. Hence, the goal

of the A-SLQR problem is design K to minimize the cost function

J = lim
t→∞

E[ŷ(t)2 + ρû(t)2] = σ2
ŷ + µ2

ŷ + ρ(σ2
û + µ2

û),

where ρ is the control penalty. In terms of the system parameters, the A-SLQR

problem can be recast into the following optimization problem: minimize

J = CRCT +

[
C(A+B2NK)−1B2

K(A+B2NK)−1B2

]2

µ2
û + ρ(KRKT + µ2

û),

subject to

(A+B2NK)R +R(A+B2NK)T +B1B
T
1 = 0,

N −FN (σû, µû) = 0,

(
−1

K(A+B2NK)−1B2

+N)µû − µd −FM (σû, µû) = 0,

σû =
√
KRKT .

(7.5)

The solution of the A-SLQR problem is provided in the following theorem.

Theorem VII.1. Assume that (A,B2) is stabilizable and (C,A) is detectable. Then

the solution, K, of the A-SLQR problem is given by the root of the following equations
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in unknowns K,N, µû, R,Q.

(A+B2NK)R +R(A+B2NK)T +B1B
T
1 = 0, (7.6)

N −FN (σû, µû) = 0, (7.7)

(
−1

K(A+B2NK)−1B2

+N)µû − µd −FM (σû, µû) = 0, (7.8)

(A+B2NK)TQ+Q(A+B2NK) + CCT + ρKTK − λ3

2σ3
u

KTK = 0, (7.9)

λ1√
2πσu

[
exp(−(

β − µu√
2σu

)2)− exp(−(
α− µu√

2σu
)2)

]
+ λ2(N +

1

KA−1B2

)+

2µû

[
(
C(A+B2NK)−1B2

K(A+B2NK)−1B2

)2 + ρ
]

= 0,

(7.10)

where

σû =
√
KRKT , (7.11)

λ1 = −KRQB2, (7.12)

λ2 = −
λ1

σu

[
exp(−(β−µu√

2σu
)2)(β−µu√

2σu
)− exp(−(α−µu√

2σu
)2)(α−µu√

2σu
)
]

[
exp(−(β−µu√

2σu
)2)− exp(−(α−µu√

2σu
)2)
] , (7.13)

λ3 = 2σu

(
−Nλ1 +

1

KA−1B2

(λ2µû − 2
(CA−1B2)2

KA−1B2

)

)
. (7.14)

Proof. See Section A.5.

The root of the above equations can be found using Matlab’s “fsolve” function.

Proposition VII.1. Assume that C(sI − A)−1B1 6= 0. Then,

inf
K
E[ŷ2] = γ0 > 0. (7.15)

Proof. See Section A.5.

The above proposition implies that, unlike linear systems, the output of the quasi-

linear system cannot be made arbitrarily small using cheap control. The value of γ0
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in (7.15) can be approximated using the A-SLQR algorithm with sufficiently small ρ.

Note that, since E[ŷ2] approximates well E[y2], γ0 also quantifies the limits of best

achievable performance for the original LPNI system.

7.3 Example

Consider the LPNI system

P (s) =
1

s+ 1
, F (s) =

2
√

5

s+ 10
, σd = 3, µd = 0,

and actuator given by satβα(·). A state space representation of this system is

A =



−1 1

0 −10


 , B1 =




0

2
√

5


 , B2 =




1

0


 , C = [1 0].

We assume that the control penalty is given by ρ = 10−5 and consider two cases: one

in which the total width of saturation is 2, i.e., β−α = 2, and one in which β−α = 1.

For each of these cases, we compute the solution of the A-SLQR problem for various

values of β+α
2

. Note that when β+α
2

= 0, the system is symmetric; otherwise it is

asymmetric. To analyze the performance of the A-SLQR controller on the original

LPNI system, we simulate the LPNI system using the A-SLQR gains and calculate the

minimum cost numerically. Figures 7.2.1 and 7.2.2 show the values of the minimum

cost computed analytically and via simulations for both β − α = 2 and β − α = 1.

Clearly, since the analytically computed minimum cost and numerically evaluated

costs are close in both cases, the accuracy of stochastic linearization is very good.

Next, to compare the performance of the A-SLQR controller with the usual LQR

approach, we apply the standard LQR technique to this system by ignoring the satura-

tion. We then simulate the LPNI system using the obtained LQR gains to numerically

compute the minimum cost. Figures 7.2.1 and 7.2.2 also show the minimum cost ob-
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7.2.1: β − α = 2.
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7.2.2: β − α = 1.

Figure 7.2: Minimum cost as a function of asymmetry for the example of Section 7.3.

tained analytically and numerically using the LQR technique. Clearly, as compared

with the LQR controllers, the A-SLQR controllers perform significantly better in all

cases.

Finally, to approximate the value of γ0 in Proposition 1, we let ρ = 10−12 and

compute E[ŷ2] using the A-SLQR approach. Figure 7.3 shows the minimum E[ŷ2] for

both β−α = 2 and β−α = 1, as well as the open loop value of E[ŷ2]. Clearly, as the

authority of saturation becomes smaller, the best achievable performance degrades as

expected.

Remark VII.1. Throughout this chapter, we assumed that all states are available

for feedback. In practice, however, this is usually not the case. In this situation,
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2
for the example of Section 7.3.

similar to the case of linear systems, a state estimator can be constructed as follows:

˙̂x = Ax̂+B2satβα(u) +B2µd − L(y − ŷ),

ŷ = Cx̂,

(7.16)

where it is assumed that µd is known. If not, a bias estimator can be designed to

estimate µd.

With the control law u = Kx̂, the LPNI system becomes

ẋ = Ax+B1w +B2satβα(Kx̂) +B2µd,

y = Cx.

(7.17)

Moreover, the dynamics of the error e = x− x̂ are given by

ė = (A+ LC)e+B1w.

Clearly, assuming (A,C) is observable and the system is minimum phase, the observer

gain L can be chosen such that e is arbitrarily small. The A-SLQR method can then

be applied as if the states were known.

Of course, the above argument assumes that the sensor is not noisy. In the presence

of sensor noise, the optimization problem in the A-SLQR problem can be reformulated
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to take into account the observer error dynamics. This is a simple extension and will,

therefore, not be pursued here.
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CHAPTER VIII

Application: QLC-based Design of a Wind Farm

Controller

In this section, QLC is used for controller design of a wind farm with multiple

wind turbines. It is shown that each of these turbines can be modeled by a linear

plant preceded by an asymmetric saturation nonlinearity, which accounts for limited

availability of wind. Numerical simulations illustrate that the controllers obtained via

QLC perform significantly better in a broad range of regimes as compared to those

designed previously that ignore saturation.

8.1 Background

A wind farm is a collection of wind turbines used to generate electricity. Since

a limiting factor for wide-spread use of wind power has been the intermittent and

uncontrollable nature of wind, it is important to design wind farms that smoothly

track reference signals provided by a grid operator, despite fluctuations in wind.

To accomplish this goal, it is necessary to design a control system, which can

generally be represented in a block diagram form as shown in Figure 8.1. In this figure,

the Wind Turbine Control Systems (WTCSs) represent the wind turbines together

with their turbine-level controllers. The higher level Wind Farm Controller uses the
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Figure 8.1: Block diagram of a wind farm control system.

desired power reference from a grid operator, Pd,wf , and various measurements to

calculate the control signals ui’s, so that the actual wind farm power output Pwf ,
∑n

i=1 Pi closely tracks Pd,wf .

This wind farm power control problem is receiving growing attention from re-

searchers [67–76]. For example, to reduce variation in Pwf , [69] presents a fuzzy

neural network WFC that adjusts the desired active power references (i.e., in this

case the ui’s are the power references). Through the use of either an external energy

storage device, or a power reserve achieved through part-loading of some turbines,

[71] suggests a supervisory scheme for making Pwf smooth. In [67, 68], a hierar-

chical, supervisory WFC that determines the active and reactive power setpoints of

every turbine so that Pwf is regulated around Pd,wf , is proposed. In [70, 73], an

optimization-based approach for designing WFCs is introduced, in which the wind

turbines are assumed to be static. Reference [74] proposes a scheme for adjusting the

blade pitch angles in unison, so that Pwf is close to Pd,wf , and that damping power

may be provided to the power grid as ancillary service. Furthermore, [72] utilizes a

proportional-integral regulator-based method to manage the wind farm reactive pow-

ers for secondary voltage control. More recently, [75] develops a distributed learning

WFC for maximizing wind farm energy production without explicitly modeling the

aerodynamic interactions among the turbines, while [76] presents a tutorial on wind

turbine active power control in the context of supporting power grid frequency.
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In [77], a simple model of WTCS that is valid under normal wind farm operating

conditions is presented and, for completeness, summarized in Section VIII-B. In this

model, each turbine is modeled by a linear plant preceded by an asymmetric saturation

nonlinearity, which accounts for limited availability of wind. Based on this model,

[78] developed a wind farm controller consisting of two feedback loops: a model

predictive controller on the outer loop, and an adaptive controller on the inner loop.

Collectively, they enable the power output Pwf to accurately and smoothly track a

desired reference Pd,wf .

The model predictive controller uses forecast of the wind, forecast of Pd,wf , and

measurement of the power output of each WTCS, Pi, to optimize the deterministic

tracking accuracy of Pwf (t) on a receding horizon. The output of the model predictive

controller is a set of reference signals for the adaptive controller, which, in turn, uses

these references and an estimate of the covariance of wind to adaptively tune the

gains of a set of decentralized proportional controllers.

Although the controller developed in [78] possesses some positive features, it has a

notable drawback: in order to simplify the design process, the saturation blocks in the

otherwise linear WTCS model are neglected in the design of the adaptive controller.

While this assumption greatly simplifies the controller design and the corresponding

analysis, the results obtained may be overly optimistic and may not accurately reflect

the performance when saturation is present. To alleviate this drawback, we leverage

QLC theory. As we show, since the wind turbines are sufficiently slow as compared

with the fluctuations in wind, QLC theory can be successfully applied.

8.2 Model

In [77], a WTCS model is developed based on standard system identification

approaches and typical WTCS characteristics. Composed of a first order LTI system

preceded by an asymmetric saturation nonlinearity, this structurally simple model was
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shown via extensive validation in [77] to be accurate and versatile. In this section,

we utilize this model and augment it with a simple wind speed model in essentially

the same way as was done (and justified) in [79, 78]. Specifically, we assume that

the wind speed Vw,i(t) entering each WTCS i, i ∈ {1, 2, . . . , n}, of Figure 8.1 may be

expressed as

Vw,i(t) = V w,i + Ṽw,i(t), (8.1)

where V w,i > 0 represents the slow, average component of Vw,i(t), and Ṽw,i(t) ∈ R rep-

resents the fast, deviation-from-average component of Vw,i(t). Each slow component

V w,i is assumed to be deterministic and specified by empirical data. In contrast, each

fast component Ṽw,i(t) is assumed to be a stationary, zero-mean colored Gaussian

random process specified by

˙̃
V w,i(t) = − 1

τw,i
Ṽw,i(t) +

1

τw,i
wi(t), (8.2)

where τw,i > 0 is a time constant for the wind speed model, w(t) = (w1(t), . . . , wn(t)) ∈

Rn is a stationary, zero-mean white Gaussian noise with autocovariance function

E{w(t)w(τ)T} = Wδ(t − τ), W = W T > 0 is the covariance matrix, and δ is the

Dirac delta function. In addition, similar to [79, 78] we let the dynamics of each

WTCS i be given by

Ṗi(t) = − 1

τi
Pi(t) +

1

τi
sat

aiV
3
w,i(t)

0 (Pd,i(t)) + γiṼw,i(t), (8.3)

where τi > 0 is a time constant for the WTCS model, ai > 0 is a unit conversion

factor, γi ≥ 0 is a scalar gain, and satβα(u) is the saturation function.

Remark VIII.1. Notice that since Ṽw,i(t) is Gaussian, despite V w,i(t) being posi-

tive, the wind speed Vw,i(t) in (8.1) may be negative with a small probability. For
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simplicity, however, we will allow that in this section.

8.3 Problem formulation and controller design

In the subsequent discussion, we assume that the model predictive controller is

already designed for the outer control loop. The outputs of the model predictive

controller are reference signals, denoted by P ∗i , i = 1, . . . , n, for the the inner control

loop. For the details and rationale behind this design, we refer the reader to [78, 79].

For the inner loop, the control law for each WTCS i, i ∈ {1, 2, . . . , n}, is given by

Pd,i(t) = Ki

(1 +Ki

Ki

P ∗i (t)− Pi(t)
)
, (8.4)

where 1+Ki
Ki

is a feedforward gain intended to yield an appropriate equilibrium point,

and Ki is to be optimized adaptively to yield smoothness of the wind farm power

output (see below). Substituting control law (8.4) into WTCS model (8.3) and as-

suming that the intermediate power references P ∗i (t)’s are so slow that they may be

treated as constants P ∗i ’s, we obtain for each i = 1, 2, . . . , n,

Ṗi(t) = − 1

τi
Pi(t)+

1

τi
sat

aiV
3
w,i(t)

0

(
Ki

(1 +Ki

Ki

P ∗i −Pi(t)
))

+ γiṼw,i(t). (8.5)

By introducing the variables

∆Pi(t) = Pi(t)− P ∗i , (8.6)

∆Pd,i(t) = Pd,i(t)− P ∗i , (8.7)

system (8.5) can be written as

∆Ṗi(t) = − 1

τi
∆Pi(t) +

1

τi
sat

aiV
3
w,i(t)−P ∗i

−P ∗i
(∆Pd,i(t)) + γiṼw,i(t). (8.8)
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The goal is to design Ki to minimize the cost function

J = lim
t→∞

E
{( n∑

i=1

∆Pi(t)
)2

+
n∑

i=1

εi∆P
2
d,i(t)

}
, (8.9)

where εi > 0 are control penalties. Note that the first term in J is the steady-state

variance of the regulation error reflecting the smoothness of the wind farm power

output, and the second term is a weighted sum of the steady-state variances of the

control magnitudes reflecting the control effort. We address this problem below using

QLC.

Observe that system (8.8) is subject to n decoupled asymmetric saturation func-

tions, whose limits change over time. To facilitate the design of the wind farm con-

troller using QLC, we assume that the upper saturation limits are constant; specifi-

cally, we assume that they depend only on the average component of the wind, i.e.,

aiV
3

w,i(t)−P ∗i . To further simplify the presentation, introduce the following notations:

ui , ∆Pd,i, yi , ∆Pi,

βi , aiV
3

w,i − P ∗i , αi , −P ∗i .
(8.10)

With these notations, the WTCS model (8.8) becomes:

ẏi = − 1

τi
yi +

1

τi
satβiαi(ui) + γiṼw,i, i = 1, . . . , n. (8.11)

With ui given by (8.4) and Ṽw,i given by (8.2), the block diagram of this system is

shown in Figure 8.2.1. Application of stochastic linearization to this system yields the

quasilinear system shown in Figure 8.2.2. Note that since the WTCS’s are decoupled,

stochastic linearization of each WTCS is independent of the others. To compute Ni

and mi, i = 1, . . . , n, the following two transcendental equations in the unknowns Ni

and Mi must be solved:
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_

wi γiτi

ui
Ki

1

τis + 1

1

τw,is + 1

yi

Ṽw,i

satβi
αi

(ui)

8.2.1: LPNI model of WTCS.

N
i_

wi γiτi

ûi
Ki

1

τis + 1

1

τw,is + 1

mi

ŷi

Ṽw,i

8.2.2: Quasilinear version of the LPNI model.

Figure 8.2: Control system for the ith turbine, i = 1, . . . , n.

Ni =
1

2

[
erf

(
βi − µûi√

2σûi

)
− erf

(
αi − µûi√

2σûi

)]
, (8.12)

Mi =
αi + βi

2
+
µûi − βi

2
erf

(
βi − µûi√

2σûi

)
− µûi − αi

2
erf

(
αi − µûi√

2σûi

)

− σûi√
2π

[
exp

(
−(
βi − µûi√

2σûi
)2

)
− exp

(
−(
αi − µûi√

2σûi
)2

)]
,

(8.13)

where µûi and σûi are given by

µûi = −KiMi,

σûi = Kiγiτi

√
Wii

2(1 +KiNi)(τi + τw,i(1 +KiNi))
.

(8.14)

The quantities µûi and σûi are, respectively, the expected value and standard deviation

of the signal ûi in Figure 8.2.2. Once the solution of (8.12), (8.13) is found, mi can

be calculated as mi = Mi(1 + NiKi). It can be shown that the average value of the

output ŷi in Figure 8.2.2 is given by:

µŷi = Mi.
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Using these notations, the dynamics of the quasilinear systems and the wind can

be shown to be governed by:




˙̃
V w(t)

˙̂y


 =



A11 0

A21 A22




︸ ︷︷ ︸
A



Ṽw(t)

ŷ


+



−A11

0




︸ ︷︷ ︸
B

w(t) +




0

Am


m, (8.15)

where Ṽw(t) = (Ṽw,1(t), . . . , Ṽw,n(t)) ∈ Rn and ŷ = (ŷ1, . . . , ŷn) ∈ Rn are the 2n states,

w(t) = (w1(t), . . . , wn(t)) ∈ Rn is the white noise with covariance matrix W , A11 =

diag(− 1
τw,1

, . . . ,− 1
τw,n

), A21 = diag(γ1, . . . , γn), A22 = diag(−1+N1K1

τ1
, . . . ,−1+NnKn

τn
),

m = [m1, . . . ,mn], and A is asymptotically stable since τw,i > 0 and τi > 0.

To re-formulate the optimization problem posed above in terms of the parameters

in the quasilinear system, let us denote the zero mean part of ŷi by y0,i. Then,

ŷi = y0,i + Mi. Therefore, letting M = [M1 . . . MN ]T , the cost function J given in

(8.9), becomes:

J = lim
t→∞

E

{(
n∑

i=1

(y0,i(t) +Mi)

)2

+
n∑

i=1

εiK
2
i (y0,i(t) +Mi)

2

}

= lim
t→∞

E





(
n∑

i=1

y0,i(t)

)2

+
n∑

i=1

εiK
2
i y

2
0,i(t)



+

(
n∑

i=1

Mi

)2

+
n∑

i=1

εiK
2
iM

2
i

= lim
t→∞

E
{[

Ṽw(t)T ŷT0,i

]



0 0

0 Q22




︸ ︷︷ ︸
Q



Ṽw(t)

ŷ0,i



}

+

(
n∑

i=1

Mi

)2

+
n∑

i=1

εiK
2
iM

2
i

= trace(SQ) +MTQ22M,

(8.16)

where Q22 = 1 · 1T + diag(ε1K
2
1 , . . . , εnK

2
n), 1 ∈ Rn is an all-one column vector, and

S = ST > 0 is the unique solution of the Lyapunov equation

AS + SAT +BWBT = 0. (8.17)
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Thus, the optimal QLC-based controller is the solution of the following optimiza-

tion problem:

min
Ki,Ni,Mi,1≤i≤n

J, (8.18)

subject to equality constraints given by (8.12) and (8.13) with µûi and σûi given

by (8.14), i = 1, . . . , n. In the next section, we numerically solve this optimization

problem to evaluate the performance of the QLC-based controller.

8.4 Performance evaluation

To carry out the evaluation, the system parameters are divided into two groups.

The first group contains parameters to be held constant throughout the evalua-

tion process. These parameters and their fixed values are: n = 10 and, for each

i = 1, 2, . . . , n, τw,i = 1, τi = 60, ai = 0.657, and γi = 0.02. The second group con-

tains parameters to be varied. These parameters represent operating regimes of the

WFCS and, hence, varying their values allows us to examine the WFCS performance

in different regimes. For simplicity, we let their values be governed by four scalar

parameters (v, p, r, e) in the following manner:

• Wind speed v: For all i, let the slow wind speed component V w,i(t) = v, where

v ∈ {0.4, 1}, so that v = 0.4 and v = 1 represent low and high wind speed

regimes, respectively. With this v, the saturation in (8.8) becomes sat
0.657v3−P ∗i
−P ∗i

.

Thus, its linear region is narrow if v = 0.4 and wide if v = 1.

• Power generation p: For all i, let the intermediate power reference P ∗i (t) =

paiV
3

w,i(t) = 0.657pv3, where p ∈ {0.7, 1}. Since aiV
3

w,i(t) is the maximum

power turbine i can generate, the quantity p is the fraction of the maximum

power. Hence, p = 0.7 and p = 1 correspond to medium (70%) and high (100%)

power generation regimes, respectively. With both v and p, the saturation
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in (8.8) further becomes sat
0.657(1−p)v3

−0.657pv3 . Therefore, its linear region is nearly

symmetric about the origin if p = 0.7 and one-sided if p = 1.

• Wind correlation r: Let the covariance matrix W = [Wij] with Wij = v2/9 r|i−j|,

where r ∈ {0, 0.999}, so that r = 0 and r = 0.999 represent, respectively, weak

and strong wind correlation regimes. The scaling v2/9 is intended to make the

standard deviation of Ṽi one third of the average value V i so that the wind is

negative with negligible probability.

• Control penalty e: For all i, let the control penalty εi = e, where e ∈ {0.05, 0.1, 0.2,

0.5, 1, 2, 5, 10, 20, 100}, so that e = 0.05 may be regarded as a cheap control

regime and e = 100 an expensive one.

Observe that v, p, and r each has two possible values, while e has ten. Thus, a total

of 23 · 10 = 80 distinct scenarios are considered, covering a wide range of operating

conditions.

For each scenario defined by (v, p, r, e), we use Matlab to evaluate analytically

and via simulation both the performance of the QLC method and the linear method

(i.e., by ignoring the saturations, as performed in [77]). We denote the minimum cost

computed analytically and via simulation with the linear method by Ja
lin(v, p, r, e) and

J s
lin(v, p, r, e), respectively. Similarly, we denote the minimum cost computed analyti-

cally and via simulation with the QLC method by Ja
QLC(v, p, r, e) and J s

QLC(v, p, r, e).

Note that the difference between Ja
lin(·) and J s

lin(·), and that between Ja
QLC(·) and

J s
QLC(·), quantify the accuracy of the linear and QLC methods, respectively. More-

over, the extent to which J s
QLC(·) is less than J s

lin(·) represents the improvement offered

by the QLC method. For convenience, the percentage of such improvement is denoted

as δ(v, p, r, e) and defined as

δ(v, p, r, e) = 100× J s
lin(v, p, r, e)− J s

QLC(v, p, r, e)

J s
lin(v, p, r, e)

. (8.19)
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Figure 8.3: Values of cost functions Ja
lin(·), J s

lin(·), Ja
QLC(·), and J s

QLC(·) in the low
wind speed regime (v = 0.4).

Figures 8.3–8.5 show the evaluation results. Analyzing these figures, the following

observations about the accuracy and effectiveness of the linear and QLC methods can

be made:

• Accuracy of linear method: Regardless of (v, p, r), when control is expensive (i.e.,

when e is large), Ja
lin(v, p, r, e) and J s

lin(v, p, r, e) are indistinguishable. This agrees

with expectation because when e is large, the optimal Ki’s are small, causing

the WFCS to operate mostly in the linear regime, so that Ja
lin(·) ≈ J s

lin(·).

As control becomes cheap (i.e., as e goes to zero), Ja
lin(v, p, r, e) approaches zero.

This is also expected as it is well known that for minimum-phase linear systems,

cheap control can yield arbitrarily good disturbance rejection [80]. However, as
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Figure 8.4: Values of cost functions Ja
lin(·), J s

lin(·), Ja
QLC(·), and J s

QLC(·) in the high
wind speed regime.

e goes to zero, not only is J s
lin(v, p, r, e) bounded away from zero, it actually

increases substantially in most cases. This suggests that the linear method has

poor accuracy when e is small. The result also implies that ignoring saturation

and attempting a cheap control design of the WFCS may not be advisable.

• Accuracy of QLC method: Similar to Ja
lin(·) and J s

lin(·) above, regardless of

(v, p, r), when e is large, Ja
QLC(·) and J s

QLC(·) are indistinguishable, which again

agrees with expectation. However, unlike Ja
lin(·) and J s

lin(·) above, as e goes

to zero, Ja
QLC(·) and J s

QLC(·) remain close to each other, with the former be-

ing slightly below the latter. This implies that the QLC method is accurate,

providing an analytical means for estimating the true performance that is only
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Figure 8.5: Percentage of improvement δ(v, p, r, e) across various regimes.

slightly more optimistic than reality. The result also implies that stochastic

linearization performs well for the WFCS, which has good low-pass filtering

characteristics.

• Linear method versus QLC method: To compare the effectiveness of the two

methods, consider the improvement curve δ(·) in Figure 8.5. Note that as e

decreases, the percentage of improvement δ(·) monotonically increases, reaching

40%–60% in all regimes but two. This result shows that the QLC method is

significantly better than the linear method if control is not expensive, and as

good as the linear method otherwise.
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CHAPTER IX

Conclusions and Future Work

9.1 Conclusions

In this dissertation, the theory of Quasilinear Control (QLC) for Asymmetric Lin-

ear Plant/Nonlinear Instrumentation (A-LPNI) systems has been developed. The

approach, similar to the symmetric case, is based on the method of stochastic lin-

earization, which reduces nonlinear systems to quasilinear ones. It is shown that

stochastic linearization in the asymmetric case results in not only a quasilinear gain,

but also a quasilinear bias. This bias leads to steady state errors incompatible with

the usual error coefficients, which makes the QLC theory for asymmetric systems a

non-trivial extension of the symmetric case.

In this work, the problems addressed and the main results are as follows.

• The notion of symmetric LPNI (S-LPNI) and asymmetric LPNI (A-LPNI) sys-

tems is formally introduced. It is shown that symmetry depends not only on the

nonlinear elements in the loop, but also on all functional blocks and exogenous

signals of the system. In addition, a measure of asymmetry is introduced and

analyzed.

• Stochastic linearization for the closed loop environment has been developed. It

is shown that stochastic linearization results in a system of two transcenden-
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tal equations in two unknowns. Using these equations, the so-called quasilinear

gain and bias can be computed. Necessary and sufficient conditions for existence

of solutions of these equations are provided. Moreover, accuracy of stochastic

linearization in the closed loop environment is investigated. It has been shown

that, even though accuracy in the asymmetric case is lower than the symmetric

case, stochastic linearization still provides good accuracy as far as first and sec-

ond moments of the output are concerned. Furthermore, accuracy is higher for

sufficiently slow plants. This is because a low pass filtering plant Gaussianizes

its input, leading to a higher accuracy of stochastic linearization.

• The issue of performance analysis in A-LPNI systems is addressed. It is shown

that stochastic linearization provides faithful prediction for quality of tracking

and disturbance rejection. Moreover, the phenomenon of noise-induced tracking

error in systems with anti-windup and sensor noise has been successfully quan-

tified. As far as tracking is concerned, the notions of trackable domain, system

types, saturating random sensitivity function, and quality indicators have been

extended from the symmetric case to the asymmetric one. Some results here

are proper extensions of the symmetric case, while others are pertinent only to

the asymmetric case.

• The notion of performance loci is introduced and analyzed. Specifically, it is

shown that in the asymmetric case, the performance of closed loop system is

characterized by a modified root locus (AS-root locus) and, in addition, by a

tracking error locus (TE locus), which does not emerge in the symmetric case.

• A method for random-reference tracking controller design based on the perfor-

mance loci is introduced. In this method, the AS-root and TE loci must both

be placed within their respective admissible domains for good tracking.

• The problem of step tracking controller design is addressed. The proposed
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method consists of three steps: on the first step, a second order pre-compensator

is introduced, whose step response satisfies the step-tracking specifications.

Then, the output of this precompensator is “mapped” into a random reference

signal with a bandwidth determined by the dynamic part of the step tracking

specifications. At the third step, the performance loci approach is used to de-

sign a controller that tracks this random reference. The same controller is used

to track the output of the precompensator.

• The problem of selecting an optimal anti-windup gain in an anti-windup system

with back-calculation is formulated and solved.

• The problem of complete performance recovery for A-LPNI systems is ad-

dressed. This problem is concerned with recovering linear disturbance rejection

performance in the presence of nonlinearities in the actuators and sensors. The

design consists of two boosting gains at the controller and sensor to cancel the

effects of the quasilinear gains, and a bias at the controller to account for the

quasilinear bias. It is shown that, if the accuracy of stochastic linearization is

good, this design leads to improved performance of the nonlinear system.

• The A-SLQR method is developed for disturbance rejection controller design.

This method is carried out by minimizing a weighted combination of the second

moment of the plant output and controller output of the quasilinear system. The

optimization problem has equality constraints to account for the usual Lyapunov

equation and the quasilinear gain and bias equations. Using examples, it is

shown that the A-SLQR controllers perform better than those based on linear

LQR.

• The methods developed in this work are applied for controller design of a wind

farm with multiple wind turbines. Each of these turbines is modeled by a first

order plant preceded by an asymmetric saturation function, which accounts for
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limited availability of wind. It is shown that in a broad range of regimes, the

QLC-based controllers perform better than controllers designed by ignoring the

nonlinearities.

It is fair to say that the QLC theory for asymmetric LPNI systems is a proper

extension of the symmetric case. However, as it is demonstrated in this dissertation,

this extension is not a trivial one because of the quasilinear bias. Moreover, many

new phenomena arise in the asymmetric case that are not present in the symmetric

case: new quality indicators for tracking, the TE locus, the modified cost functions in

the optimization problems, etc. Finally, it is worth mentioning that symmetric LPNI

systems are only a small subset of LPNI systems. Therefore, the results obtained

here are more powerful and are applicable to a larger class of systems.

The theory developed in this dissertation is expected to have impact on both

academia and industry. In academia, in opens a new area of research. In the next

section, some possible future research directions are listed. In industry, it provides

new methods for design of controllers, which are “slight” extension of the usual linear

techniques.

As a final comment, a personal reflection on this dissertation follows. In developing

the theory presented herein, I faced many interesting challenges, of which the most

prominent ones were:

• The quasilinear bias: One of the earliest challenges I faced in this work was

formalizing a stochastic linearization in A-LPNI systems that accounts for both

dynamic and steady state behaviors. After much thinking, I introduced the

quasilinear bias, which accounted for steady state behavior of the system.

• The degree of asymmetry: Throughout this work, I introduced different mea-

sures to quantify asymmetry in for A-LPNI systems, none of which was sat-

isfactory. Towards the end of my doctoral studies, I devised the measure A
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introduced in Chapter II, which captured the essence of asymmetry.

• The TE locus: It was not at first clear how both dynamics and steady state

behaviors can be characterized for tracking controller design of A-LPNI systems.

The TE locus was the outcome of a long study to address this problem.

• Step-tracking controller design: Since all our methods have been based on

stochastic linearization, it was not clear how the results could be extended

to tracking deterministic signals, e.g., steps. The introduction of the pre-

compensator and the adjoint bandwidth enabled converting the step-tracking

problem into a random-tracking problem, followed by subsequent application of

stochastic linearization.

Even though these and other challenges brought frustration at times, they led

me to learn a great deal about quasilinear control and control theory in general.

Undoubtedly, this work has enabled me to expand my horizons as a researcher.

9.2 Future Work

Future work in this area is abundant:

• The phenomenon of Gaussianization must be analytically proven, and the ac-

curacy of stochastic linearization for Gaussianizing systems thoroughly studied.

While such a study has been done for a small class of systems in [64], the general

case has not been treated. The method of cumulants [81] may be applicable for

the study of Gaussianization.

• QLC theory can be extended to other nonlinearities in the sensors and actuators.

For example, the performance loci and A-SLQR approaches can be extended to

systems with saturating sensor, sensor with deadzone or quantization, actuator

with deadzone or relay, etc.
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• It has been observed that if the solution of quasilinear gain and bias equations

is not unique, the jumping phenomenon occurs. As a future direction, this

phenomenon can be thoroughly studied and analytically proven.

• The results can be extended to the MIMO case. Multi-loop and state feedback

control of systems with decoupled saturating actuators is a natural extension

of this work.

• The relationship between existence of solution to the quasilinear gain and bias

equations and existence of an invariant measure in the original LPNI system

can be explored.

• Other linear control methods such as H∞ and LMI approaches can be extended

to the quasilinear control of S- and A-LPNI systems.

• QLC can be applied to standard nonlinear control techniques (e.g., feedback

linearization of systems with saturating actuators) for performance analysis

and controller design.

• The robustness of the quasilinear gain and bias must be analyzed with respect to

the system parameters. Moreover, robustness of the resulting QLC controllers

must be quantified in terms of stability and performance.

• Lastly, a comprehensive experimental validation of the theory in an industrial

setting is important.

The solutions of these problems will provide a relatively complete theory of Quasi-

linear Control.
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APPENDIX A

Proofs

A.1 Proofs for Chapter II

Proof of Proposition II.1: We prove each part of this proposition below:

1. Let σu > 0 be fixed. Differentiating the quasilinear gain equation (2.8) with respect

to µu and setting the result equal to zero, we obtain

exp(−(
β − µu√

2σu
)2) = exp(−(

α− µu√
2σu

)2).

The above equality holds when and only when β = α or µu = α+β
2

. The first case

gives the minimum while the second case gives the maximum.

2. Substituting µu = α+β
2

into (2.8) and noting that erf(x) < 2√
π
x, we obtain that

N =
1

2
[erf

(
β − µu√

2σu

)
− erf

(
α− µu√

2σu

)
] ≤ 1

2
[erf

(
β − α+β

2√
2σu

)
− erf

(
α− α+β

2√
2σu

)
]

= erf(
β − α

2

1√
2σu

) <
β − α√

2πσu
.

This proves the result.
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3. By part (2),

σv̂ = Nσu < σuerf(
β − α

2

1√
2σu

) <
β − α√

2π
<
β − α

2
,

which proves this part.

4. Since m = M − Nµu and α < M < β, it suffices to show that Nµu is always

bounded. Since 0 < N < 1, it follows that for small µu, m is indeed bounded. It

remains to show that µuN is bounded for large µu. According to the expression

for N , as µu tends to ∞, N tends to zero. Therefore, to study limµu→∞ µuN , we

use L’Hospital’s rule:

lim
µu→∞

µuN = lim
µu→∞

N
1
µu

= lim
µu→∞

−µ2
uN
′ = − µ2

u√
2πσu

(
e
−(β−µu√

2σu
)2 − e−(α−µu√

2σu
)2
)
.

Since the exponentials dominate the polynomial µ2
u, it follows that limµu→∞ µuN =

0. Therefore, µuN is equal to 0 both when µu = 0 and when µu = ∞. Thus,

continuity of µuN implies that µuN is bounded. Same argument holds when

µu → −∞.

5. (⇒): Assume that µu = α+β
2

. Then, equation (2.9) simplifies to

M =
α + β

2
.

Since equation (2.9) implies that M = µv̂ = µv, the result follows.

(⇐): Now assume that µv = α+β
2

. Then, the quasilinear bias equation equation

(2.9) can be written as:

0 =
µu − β

2
erf

(
β − µu√

2σu

)
−µu − α

2
erf

(
α− µu√

2σu

)
− σu√

2π

[
exp

(
−(
β − µu√

2σu
)2

)
− exp

(
−(
α− µu√

2σu
)2

)]
.

To simplify this expression, define the function f(x) = xerf(x) + 1√
π
e−x

2
. Then,
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the above can be written as

0 = f

(
β − µu√

2σu

)
− f

(
α− µu√

2σu

)
.

It can be shown, using the graph of f(x), that f(x) = f(y) when and only when

x = y or x = −y. The former implies that α = β, which is not the case. The latter

implies that
(
β−µu√

2σu

)
= −

(
α−µu√

2σu

)
, which simplifies to µu = α+β

2
. This proves this

part of the proposition.

6. This part can be proved by direct manipulation of the equation for quasilinear

gain (2.8).

7. This part can be proved by direct manipulation of the equation for quasilinear bias

(2.9).

Proof of Theorem II.2: If either C0 =∞ or P0 =∞, (2.22) can be written as

µr
P0

= FM(σû, µû).

Since the range of FM is Ma, a necessary condition for the above equation to have a

solution is µr
P0
∈Ma. This proves the theorem.

Proof of Theorem II.3: We consider two cases. First assume that C0 6=∞ and

P0 6=∞. Therefore, using (2.19), we rewrite (2.21), (2.22) as

Na = FN (σû, C0(µr − P0Ma)) , (A.1)

Ma = FM (σû, C0(µr − P0Ma)) , (A.2)
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where σû is given in (2.18). The first assumption of this theorem implies that for any

value of Na ∈ Na, the standard deviation σû exists and is a continuous function of Na.

Therefore, the right hand sides of (A.1), (A.2) form continuous functions of Na and

Ma. Now, if the sets Na and Ma are closed, then by the second assumption, they are

also compact. Therefore, by Brouwer’s fixed point theorem [82], system (A.1), (A.2)

has a solution and the result follows. If, however, the sets Na and Ma are not closed,

we proceed formally and consider their closures. Application of Brouwer’s fixed point

theorem proves existence of at least one solution in the closures of Na and Ma. This

proves the first case.

For the second case, assume that either C0 =∞ or P0 =∞ or both. Then, (2.22)

becomes:

µr
P0

−FM(σû, µû) = 0.

Note that µr
P0

is a constant. By the third assumption in the theorem, for each σû, the

above equation has a solution µû. Since FM is an analytic function of the variable

µû, its zero forms a continuous function of the parameter σû, i.e.,

µû = g(σû),

where g is continuous. Substituting the above instead of µû in equation (2.21), yields

one equation in the unknown N . Now, the resulting right hand side is a continuous

function of N . Therefore, by Brouwer’s fixed point theorem, the result follows.

Proof of Theorem II.5: Since u is a Gaussian process, we have that

P [u ≤ α] =

α∫

−∞

1√
2πσu

e

(
−(x−µu√

2σu
)2
)
dx =

1

2
(1 + erf(

α− µu√
2σu

)),
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P [u ≥ β] =

∞∫

β

1√
2πσu

e

(
−(x−µu√

2σu
)2
)
dx = 1− 1

2
(1 + erf(

β − µu√
2σu

)) =
1

2
(1− erf(

β − µu√
2σu

)).

Subtracting the above two expressions results in (2.29).

Proof of Corollary II.2: For convenience, let A = α−µu√
2σu

and B = β−µu√
2σu

. Then,

we can express N in terms of A as follows:

N = 0.5 (erf(B)− erf(A)) = 0.5 (erf(B) + erf(A)− 2erf(A)) = −A− erf(A).

Now, since erf(A) > −1, we have that

N < −A+ 1.

Similarly, we can write

N = 0.5 (erf(B)− erf(A)) = 0.5 (−erf(B)− erf(A) + 2erf(B)) = A+ erf(B) < A+ 1.

Together, these expressions imply that N < 1 − |A|. This proves one of the in-

equalities. The second inequality follows from the fact that N is the probability that

saturation does not take place; hence, N > 0.

Proof of Theorem II.6: We first make the following claim: In the open loop en-

vironment, assuming that σu is finite and non-zero and µu is finite, A = 0 iff µu = α+β
2

.

To show this, note that (2.29) implies thatA = 0 iff erf(β−µu√
2σu

) = −erf(α−µu√
2σu

). Since the

error function is odd, this implies that β−µu√
2σu

= −α−µu√
2σu

, which simplifies to µu = α+β
2

.

This proves the above claim. We now prove the theorem. Note that, according to

Section 1.2, if condition (1.4) is satisfied, the system in the canonical form has a

symmetric saturation nonlinearity. Stationarity of closed loop signals implies that
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the average value of signal at the input of this nonlinearity must be 0. This, in turn,

implies that the average value of the signal at the input of the saturation in the orig-

inal LPNI system is α+β
2

. Thus, according to the above claim, A = 0. This proves

one direction. To prove the other direction, assume that A = 0. Then, µu = α+β
2

.

By part 5 of Proposition II.1, µv = α+β
2

. Now, using the fact that µu = µv = α+β
2

,

we have that α+β
2

= µu = C0(µr − P0
α+β

2
). Solving for α+β

2
leads to condition (1.4).

This proves the theorem.

A.2 Proofs for Chapter III

Proof of Theorem III.1: For convenience, introduce the following notations:

vss = limt→∞ v(t) and uss = limt→∞ u(t). We consider two cases: (a) |P0| < ∞ and

(b) |P0| =∞.

Case (a): |P0| < ∞. Under the assumption of unique ess only one of these cases

may happen: vss = α, vss = β, α < vss < β. First consider α < vss < β. In this

case, the saturation is inactive and steady state error is the same as that for the

underlying linear system: ess = r0
1+P0C0

. Now, since the saturation is inactive, we have

that α < uss < β, which implies that

α < uss =
r0C0

1 + P0C0

< β.

The above can be written in terms of r0 as follows: if 1
C0

+P0 > 0, then ( 1
C0

+P0)α <

r0 < ( 1
C0

+ P0)β, and if 1
C0

+ P0 < 0, then ( 1
C0

+ P0)α > r0 > ( 1
C0

+ P0)β. Combining

the two, we can write

r0 sign(
1

C0

+ P0) ∈
[
| 1

C0

+ P0|α, |
1

C0

+ P0|β
]
.
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This proves part (1) of the theorem for case (a).

To prove parts (2) and (3) of the theorem for case (a), we consider two sub-cases:

(i) 1
C0

+ P0 > 0 and (ii) 1
C0

+ P0 < 0.

Case (i) 1
C0

+P0 > 0: Since the saturation must be activated, we either have that

vss = α or vss = β. We divide the range of possible r0’s that can lead to this situation

into two parts: r0 > ( 1
C0

+ P0)β and r0 < ( 1
C0

+ P0)α. First assume r0 > ( 1
C0

+ P0)β.

In what follows, we show that ess = r0 − P0β if C0 > 0 and ess = r0 − P0α if C0 < 0.

When r0 > ( 1
C0

+ P0)β, one of the following takes place: vss = α or vss = β.

If vss = α, then ess = r0 − P0α and uss = C0(r0 − P0α) < α. This implies that

r0 < ( 1
C0

+ P0)α if C0 > 0 and r0 > ( 1
C0

+ P0)α if C0 < 0. But r0 < ( 1
C0

+ P0)α

contradicts the assumption that r0 > ( 1
C0

+ P0)β. Therefore, this case only happens

when C0 < 0. Now, if vss = β, then ess = r0 − P0β and uss = C0(r0 − P0β) > β.

This implies that r0 > ( 1
C0

+ P0)β if C0 > 0 and r0 < ( 1
C0

+ P0)β if C0 < 0. But

r0 < ( 1
C0

+ P0)β contradicts the assumption that r0 > ( 1
C0

+ P0)β. Therefore, this

case only happens when C0 > 0. Combining the two cases, we have proved that

ess = r0 − P0β if C0 > 0 and ess = r0 − P0α if C0 < 0. Using a similar argument, we

can show that when r0 < ( 1
C0

+ P0)α, ess = r0 − P0β if C0 < 0 and ess = r0 − P0α if

C0 > 0.

In sum, when 1
C0

+ P0 > 0, ess = r0 − P0α when C0 < 0 and r0 > ( 1
C0

+ P0)β,

or when C0 > 0 and r0 < ( 1
C0

+ P0)α. Moreover, ess = r0 − P0β when C0 > 0 and

r0 > ( 1
C0

+ P0)β, or when C0 < 0 and r0 < ( 1
C0

+ P0)α.

Case (ii) 1
C0

+ P0 < 0: In this case, similar to case (i), it can be shown that

ess = r0−P0α when C0 < 0 and r0 < ( 1
C0

+P0)α, or when C0 > 0 and r0 < −( 1
C0

+P0)β.

Moreover, ess = r0 − P0β when C0 < 0 and r0 > ( 1
C0

+ P0)β, or when C0 > 0 and

r0 > −( 1
C0

+ P0)α.
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Combining cases (i) and (ii), we obtain that ess = r0 − P0α if

1 + P0C0 > 0, r0 < | 1
C0

+ P0|α,

OR

1 + P0C0 < 0, r0 < | 1
C0

+ P0|(−β),

and ess = r0 − P0β if

1 + P0C0 > 0, r0 > | 1
C0

+ P0|β,

OR

1 + P0C0 < 0, r0 > | 1
C0

+ P0|(−α),

which proves parts (2) and (3) of the theorem are proven for case (a).

case (b): If |P0| = ∞, then vss = 0 for unique steady state to exist. Now, this

implies that zero must necessarily be in the range (α, β), in which case system runs

in the linear region. This implies that only case 1 of the theorem occurs and ess = 0.

This proves the theorem for case (b).

Proof of Theorem III.2: The proof is similar to the proof of Theorem 3.3 in

[1]. Note that with the ramp input r(t) = r1t1(t), Figure A.1.1 can be equivalently

represented by Figure A.1.2, in which the input is now a step of size r1. Define

P̂ (s) = sP (s) and Ĉ(s) = 1
s
C(s) and note that P̂0 = P1 and Ĉ0 = ∞. Applying

Theorem III.1 yields the result.

Proof of Theorem III.3:

1. We know that as σr → 0,

σû = ‖ FΩr(s)C(s)

1 +NaP (s)C(s)
‖2σr → 0.
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P (s)C (s)_

yvu
r1t 1(t) satβα(u)

e

A.1.1: System with ramp input.

s P (s)C (s)/s
_

vu
r11(t) satβα(u)

ė ẏ

A.1.2: Equivalent system.

Figure A.1: System with ramp input and its equivalent system.

Now, conisder three cases: (i) α < µû < β, (ii) µû ≥ β, (iii) µû ≤ α.

Case (i): when α < µû < β, we have that β−µû√
2σû
→ ∞, and α−µû√

2σû
→ −∞.

Therefore, the quasilinear gain equation implies that N → 1 as σr → 0, and

SRS → ‖ FΩr(s)

1 + P (s)C(s)
‖2.

The second equation of stochastic linearization implies that µû = C0

1+C0P0
µr.

This, together with the fact that α < µû < β, implies that µr ∈ TD.

Case (ii) when µû ≥ β, we have that β−µû√
2σû
→ −∞, and α−µû√

2σû
→ −∞. Therefore,

the first equation of stochastic linearization implies that N → 0 as σr → 0, and

SRS → 1.

The second equation of stochastic linearization implies that M = β. This

implies that µr /∈ TD.

Case (iii): the proof here is similar to case (ii). The result is that SRS → 1

and µr /∈ TD. This completes the proof of (1).
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2. We show that as Ωr →∞,

‖ FΩr(s)

1 +NaP (s)C(s)
‖2

2 → 1.

To prove the above use the fact that ‖FΩr(s)‖2 = 1, assume w0 > 0, and write

∣∣∣1− ‖ FΩr(s)

1 +NaP (s)C(s)
‖2

2

∣∣∣ =
∣∣∣1− 1

π

∞∫

0

|FΩr(jw)
1

1 +NaP (jw)C(jw)
|2dw

∣∣∣

=
∣∣∣ 1
π

∞∫

0

|FΩr (jw)|2(1− | 1

1 +NaP (jw)C(jw)
|2)dw

∣∣∣

≤ 1

π

∞∫

0

|FΩr (jw)|2
∣∣∣1− 1

|1 +NaP (jw)C(jw)|
∣∣∣
2

dw
∣∣∣

=
1

π

w0∫

0

|FΩr
(jw)|2

∣∣∣1− 1

|1 +NaP (jw)C(jw)|
∣∣∣
2

dw+
1

π

∞∫

w0

|FΩr
(jw)|2

∣∣∣1− 1

|1 +NaP (jw)C(jw)|
∣∣∣
2

dw

Let ε > 0. We now bound each of the above integrals by ε/2 so that the above

expression is less than ε. To bound the first integral, note that since FΩr(s) is

the third order Butterworth filter, |FΩr(jw)|2 < 3
Ωr

. Therefore,

1

π

w0∫

0

|FΩr
(jw)|2

∣∣∣1− 1

|1 +NaP (jw)C(jw)|
∣∣∣
2

dw ≤ 3

πΩr

w0∫

0

∣∣∣1− 1

|1 +NaP (jw)C(jw)|
∣∣∣
2

dw

Since the above integral is bounded, for large enough Ωr, the first integral can

be made less than ε/2. To bound the second integral, note that regardless of

Na, the magnitude of the sensitivity function 1
1+NaP (jw)C(jw)

converges to 1 as

w →∞; therefore, for the given ε, w0 can be chosen such that w > w0 implies

|1 − 1
|1+NaP (jw)C(jw)| |2 < ε/2. Therefore, the second integral can be made less

than ε/2.
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3. Let ε > 0. We show that for small enough Ωr,

∣∣∣| 1

1 +N0P0C0

|2 − ‖ FΩr

1 +NaPC
‖2

2

∣∣∣ < ε,

where N0 is the solution of

N0 −FN(
∥∥∥ FΩr0

C0

1 +N0P0C0

∥∥∥
2
σr, µû) = 0,

µr
P0

− µû
P0C0

−FM(
∥∥∥ FΩr0

C0

1 +N0P0C0

∥∥∥
2
σr, µû) = 0,

and Na is the solution of

Na −FN(
∥∥∥ FΩrC

1 +NaPC

∥∥∥
2
σr, µû) = 0,

µr
P0

− µû
P0C0

−FM(
∥∥∥ FΩrC

1 +NaPC

∥∥∥
2
σr, µû) = 0.

Similar to part (2) of the theorem, we write

∣∣∣| 1

1 +N0P0C0

|2 − ‖ FΩr

1 +NaPC
‖2

2

∣∣∣

≤ 1

π

w0∫

0

|FΩr |2
∣∣∣| 1

1 +N0C0P0
|2−| 1

1 +NaCP
|2
∣∣∣dw+

1

π

∞∫

w0

|FΩr |2
∣∣∣| 1

1 +N0C0P0
|2−| 1

1 +NaCP
|2
∣∣∣dw.

We now show that both integrals can be made smaller than ε/2. To bound

the first integral, note that since the equations of quasilinear gain and bias are

analytic, Na can be made arbitrarily close to N0 for small enough w. Further-

more, the magnitude of the sensitivity function can be made arbitrarily close

to the dc gain of the sensitivity function for small enough w. Therefore, w0 can

be chosen such that ∀w < w0, || 1
1+N0C0P0

|2 − | 1
1+NaCP

|2| < ε/2. Therefore, the

first integral can be made smaller than ε/2.

To bound the second integral, note that |FΩr(jw)|2 < 3
Ωr

. So, for large enough

167



Ωr, the second integral can be made less than ε/2. This proves this part of the

theorem.

4. We conisder the three cases in the theorem separately:

• For the case |C0| = ∞ and |P0| 6= ∞, we prove that SRS is undefined.

Since |C0| =∞, the expected value of the error signal must be zero, which

implies that Ma = µr
P0

, where Ma is the expected value of the output of

saturation. Now, Ma must be bounded above and below by α < Ma < β.

Therefore, α < µr
P0
< β, which implies that µr must be bounded. Therefore,

if µr → ±∞, system cannot be stochastically linearized. Therefore, SRS

cannot be defined for this case.

• For the case P0 6=∞ and C0 6=∞, we first note that Ma = µr
P0
− µû

C0P0
must

be bounded between α and β. Therefore, µû → ±∞ as µr → ±∞. Also,

note that σû is always finite; therefore,

N =
1

2

[
erf

(
β − µû√

2σû

)
− erf

(
α− µû√

2σû

)]
→ 0,

which implies that SRS → 1.

• If P0 =∞, as shown in Section 1.2, µr does not affect the error dynamics.

Therefore, SRS remains the same as the SRS of system with P0 =∞, i.e.,

SRS =
∥∥∥ FΩr(s)

1 +NaP (s)C(s)

∥∥∥
2
,

where Na is the solution of

Na −FN(
∥∥∥ FΩr(s)C(s)

1 +NaP (s)C(s)

∥∥∥
2
σr, µû) = 0,

FM(
∥∥∥ FΩr(s)C(s)

1 +NaP (s)C(s)

∥∥∥
2
σr, µû) = 0.
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This completes the proof.

Proof of Proposition III.1: When P0 <∞, µê satisfies

µê = µr − P0Ma.

The result follows from the fact that α < Ma < β and I1,mean = |µê|
σr

.

A.3 Proofs for Chapter IV

Proof of Lemma IV.1: By Theorem II.3, the quasilinear equations (4.3) and

(4.4) are guaranteed to have a solution for all K > 0, and this solution is unique by

the assumption. Furthermore, these equations are both analytic functions. Therefore,

Ke(K) and µû(K) are roots of analytic functions that depend on the parameter K.

We know that roots of analytic functions form continuous functions of the parame-

ters. Hence, Ke(K) and µû(K) are continuous.

Proof of Lemma IV.2:

Part (1) of the lemma follows from (4.7) since φ∗ is equal to an H2 norm. To prove

part (2), we set φ∗ = 0 in equation (4.8) and solve for η∗: η∗ =
√

2erf−1(
µr
P0
−α+β

2
β−α

2

).

Part (3) can be shown by substituting the given point in (4.7) and (4.8).

Proof of Theorem IV.1:

Denote by K∗e and µ∗û the limiting Ke and µû, i.e.,

K∗e = lim
K→∞

Ke(K), µ∗û = lim
K→∞

µû(K).
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Define

φ(K) =
∥∥∥ FΩ(s)C(s)

1 +Ke(K)P (s)C(s)

∥∥∥
2
σr,

and let φ∗ = limK→∞ φ(K).

Then, applying Taylor series expansions, we obtain

Ke(K) =
K

2

[
erf

(
β − µû(K)√

2Kφ(K)

)
− erf

(
α− µû(K)√

2Kφ(K)

)]

=
1√
π

[(
β − µû(K)√

2φ(K)

)
− K

3

(
β − µû(K)√

2Kφ(K)

)3

+ · · · −
((

α− µû(K)√
2φ(K)

)
− K

3

(
α− µû(K)√

2Kφ(K)

)3

+ · · ·
)]

.

(A.3)

We now consider four cases: (i) K∗e < ∞, µû < ∞, (ii) K∗e = ∞, µû < ∞, (iii)

K∗e <∞, µû =∞, (iv) K∗e =∞, µû =∞.

Case (i) K∗e <∞, µû <∞: We take limit of both sides of (A.3) and obtain:

K∗e =
1√
π

(
β − α√

2φ∗
),

and

φ∗ =
∥∥∥ FΩ(s)C(s)

1 + 1√
π
( β−α√

2φ∗
)P (s)C(s)

∥∥∥
2
σr.

Now, the second equation of quasilinear bias implies that µr
P0

= α+β
2

. So, case (i) arises

only when the system is symmetric at K =∞.

Case (ii) K∗e = ∞, µû < ∞: This case can be solved similar to case (i). In this

case, φ∗ = 0.

Case (iii) K∗e <∞, µû =∞:

K∗e = lim
K→∞

1√
π

β − α√
2φ∗

(1− 1

3

3µ2
û

(
√

2Kφ∗)2
+

1

10

5µ4
û

(
√

2Kφ∗)4
− · · · ).
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Define η∗ = limK→∞
µû(K)
Kφ(K)

. Then,

K∗e =
1√
π

β − α√
2φ∗

∞∑

n=0

1

n!
(−(

η∗√
2

)2)n =
β − α√

2πφ∗
e−η

∗2/2.

We now expand the quasilinear bias equation in Taylor series term by term:

• µû(K)
2

(erf( β−µû√
2Kφ

)− erf( α−µû√
2Kφ

))→ β−α√
2π
η∗e−η

∗2/2.

• −β
2
erf( β−µû√

2Kφ
) + α

2
erf( α−µû√

2Kφ
)→ β−α

2
erf(η∗/

√
2).

• Kφ√
2π

[e
−(

β−µû√
2Kφ

)2

− e−(
α−µû√

2Kφ
)2

]→ β−α√
2π
η∗e−η

∗2/2.

Therefore, in the limit, the second equation becomes

µr
P0

− φ∗η∗

C0P0

=
α + β

2
+
β − α

2
erf(η∗/2),

by noting that limK→∞ µû(K)/K = η∗φ∗. Therefore, the two equations in two un-

knowns that lead to this case are (4.7) and (4.8). Moreover, K∗e for this case is the

same as before:

K∗e =
β − α√

2πφ∗
e−( η

∗2
2

).

Note that cases (i) and (ii) can be covered by these equations as well.

Case (iv) K∗e = ∞, µû = ∞: Since K∗e = ∞, the equation for K∗e implies that

φ∗ = 0 and the limiting quasilinear bias equation implies that η∗ is a finite number:

η∗ =
√

2erf−1(
µr
P0
−α+β

2
β−α

2

). Therefore, equations (4.7), (4.8) cover this case also.

Proof of Theorem IV.2 (by contradiction): suppose there exists a K such that

Ke(K) = Γ. Then,

Γ =
K

2
(erf(

β − µû√
2Kφ

)− erf(
α− µû√

2Kφ
)).

Since the closed loop transfer function becomes unstable at Ke = Γ, we have that
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φ(K) =∞. Therefore,

Γ = 0,

which is a contradiction.

Proof of Theorem IV.3

Denote by K∗e and µ∗û the limiting Ke and µû, i.e.,

K∗e = lim
K→∞

Ke(K), µ∗û = lim
K→∞

µû(K).

We prove each case below:

(Part a:) First note that if C0 =∞, then µê = 0 for all K. Therefore, µê(0) = 0.

This proves parts (a) for this case. Therefore, assume that C0 6=∞. Then, as K → 0,

σû → 0 and µû → 0. Hence, N → 1 and m → 0. Moreover, using (4.3), (4.4), it

can be shown, similar to the proof of Theorem IV.1, that as K → 0, m
K
→ 0. Now,

consider two cases: P0 6= ∞ and P0 = ∞. If P0 6= ∞, since N → 1 and m → 0, µê

satisfies:

µê =
µr + P0m

1 +KNP0C0

→ µr.

If P0 =∞,

µê →
m

KNC0

→ 0.

This proves part (a).

(Part b:) This part follows from the definition of η∗ in Theorem IV.1.

(Part c:) This part follows from the definition of symmetry, i.e., (1.4).

Proof of Theorem IV.4:

(part a:) This part follows from definition of TE locus.

(part b:)
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(⇐): First note that, according to the (a), C0 = ∞ implies that µ∗ê = 0. Now,

assume that K∗e =∞. Then, by definition of K∗e , we have that

∞ =
β − α√

2πφ∗
e−( η

∗2
2

).

Note that the exponential is always bounded above by 1, so φ∗ must tend to 0. Then,

since η∗ is bounded,

lim
K→∞

µê(K) = lim
K→∞

1

KC0

µû(K) =
φ∗η∗

C0

= 0.

Now, assume that system is symmetric at K = ∞, i.e., µr = P0
α+β

2
. When the

system becomes symmetric, the average value of the signals must be equal to those

of the underlying linear system, i.e., µ∗ê = 0. Now, when µr = P0
α+β

2
, (4.8) implies

that η∗ = 0, from which (4.7) implies that φ∗ is the same as that for the symmetric

LPNI system. Uniqueness implies that this is the only possible solution.

(⇒): Assume that µ∗ê = 0. Note that we may write

µ∗ê = lim
K→∞

µû(K)

KC0

.

Therefore, µ∗ê = 0 implies that either C0 =∞ or limK→∞
µû(K)
K

= 0.

Now, using the definition of φ∗ and η∗, we can write limK→∞
µû(K)
K

= φ∗η∗. There-

fore, limK→∞
µû(K)
K

= 0 implies that either φ∗ = 0 or η∗ = 0 (note that both cannot

be zero). If φ∗ = 0, then K∗e =∞. If η∗ = 0, then by (4.7), µr
P0

= α+β
2

meaning system

is symmetric. This proves (b). .

(part c:) This follows from the fact that α < M < β, and that µê = µr − P0M .

(part d, e:) These follow directly from definitions of µê(0) and µê(∞). .

Proof of Proposition IV.5:
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(part a): If C0 6= ∞, then µû = KC0µê, which tends to zero as K tends to zero.

This proves part a for the case of C0 6= ∞. Now assume C0 = ∞. In this case,

stationarity of the signals implies that µv̂ = µr
P0

. If µr
P0
∈ [α, β], then µû = µr

P0
, which

belongs to the linear range of saturation. Hence, saturation is not activated and the

signal at the input of the saturation has standard deviation tending to zero. This

implies that A tends to 0. If µr
P0

/∈ [α, β], however, saturation is completely activated

on one side; hence, A tends to 1.

(part b): If µr
P0

= α+β
2

, system becomes symmetric as K tends to infinity, which im-

plies that µû is finite. By Theorem II.6, A must tend to 0. If, however, system does not

becomes symmetric, note that µû and σû both tend to infinity as K tends to infinity.

Hence, β−µû√
2σû
→ −µû√

2σû
. Similarly, α−µû√

2σû
→ −µû√

2σû
. Therefore, A → limK→∞ erf( µû√

2σû
).

The result follows from definition of η∗.

A.4 Proofs for Chapter V

Proof of Proposition V.1:

The derivation of (5.7) is based on the notion of step trackable domain (TDstep)

introduced in Chapter III. Using the expressions for the trackable domain and steady

state error, specs (5.6) can be represented in terms of P0 and C0 as follows:

r∗0 ≤ (
1

C0

+ P0)β, (A.4)

e∗ss ≥
1

1 + C0P0

. (A.5)

For convenience, we re-writte (A.5) as

1

C0

≤ P0

1
e∗ss
− 1

. (A.6)

We now prove the proposition.
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Necessity: Assume (5.7) is satisfied. Then, if the plant has a pole at the origin,

(A.4) and (A.5) are satisfied. If P0 is finite, we show, by construction, that there

exists a controller that satisfies (A.4) and (A.5). Let C(s) be such that C0 = 1−e∗ss
P0e∗ss

.

With this C0

1

1 + C0P0

= e∗ss,

implying that (A.5) is satisfied. Using this C0, it also follows that

(
1

C0

+ P0)β =
P0β

1− e∗ss
,

which, together with (5.7), implies that (A.4) holds.

Sufficiency: Assume that there exists a controller that satisfies (A.4) and (A.5).

Then, substituting (A.6) into (A.4), we obtain (5.7).

A.5 Proofs for Chapter VII

Proof of Theorem VII.1: We use the method of Lagrange multipliers to solve

the problem. Form the Lagrangian:

Φ(µû, σû, K,R,N,Q, λ1, λ2, λ3) =

CRCT +

[
C(A+B2NK)−1B2

K(A+B2NK)−1B2

]2

µ2
û + ρ(KRKT + µ2

û)

+ tr{[(A+B2NK)R +R(A+B2NK)T +B1B
T
1 ]Q}

+ λ1(N −FN (σû, µû))

+ λ2((
−1

K(A+B2NK)−1B2

+N)µû − µd −FM (σû, µû))

+ λ3(σû −
√
KRKT ).

(A.7)

In the subsequent discussion we use the fact that K(A+B2NK)−1B2 = KNA−1B2

1+NKA−1B2
.
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Differentiating Φ with respect to σû, µû, R,K,N and setting the results equal to

zero yields:

λ1

σu

[
exp(−(

β − µu√
2σu

)2)(
β − µu√

2σu
)− exp(−(

α− µu√
2σu

)2)(
α− µu√

2σu
)

]

+ λ2

[
exp(−(

β − µu√
2σu

)2)− exp(−(
α− µu√

2σu
)2)

]
= 0,

(A.8)

λ1√
2πσu

[
exp(−(

β − µu√
2σu

)2)− exp(−(
α− µu√

2σu
)2)

]
+ λ2(N +

1

KA−1B2

)+

2µû

[
(
C(A+B2NK)−1B2

K(A+B2NK)−1B2

)2 + ρ
]

= 0,

(A.9)

(A+B2NK)TQ+Q(A+B2NK) + CCT + ρKTK − λ3

2σ3
u

KTK = 0, (A.10)

NBT
2 QR + λ2(

µû
(KA−1B2)2

BT
2 A
−T )− λ3

2σ3
u

KR + (CA−1B2)2 −2

(KA−1B2)3
BT

2 A
−T = 0,

(A.11)

KRQB2 + λ1 = 0. (A.12)

Note that (7.12) follows immediately from (A.12). Right-multiplying (A.11) by KT

and rearranging terms yields (7.14). Moreover, rearranging (A.8) yields (7.13). The

rest of the equations in the theorem are the same as above.

Proof of Proposition VII.1: It is a well known fact, from linear system theory,

that in order to achieve arbitrarily small output variance, the gain of the controller

must be large, which implies that the signal at the plant input must be large. How-

ever, as suggested by part 3 of Proposition II.1, the input to the plant in the quasi-

linear system is always bounded and, hence, arbitrary disturbance rejection cannot

be achieved.
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APPENDIX B

QLC Toolbox

B.1 Introduction

QLC Toolbox consists of MATLAB functions that implement the methods for

analysis and design of feedback systems with nonlinear actuators and sensors. A

copy of the QLC toolbox can be downloaded free of charge from

http ://www. q u a s i l i n e a r c o n t r o l . com/ toolbox download . php

In this appendix, we present the MATLAB functions currently included in the

QLC toolbox. Specifically, we explain each function’s usage followed by an examples.

All terms and notations used here, as well as the methods themselves, can be found

in this dissertation and in [1].

B.2 QLC Functions

B.2.1 stochlinearize

This function performs stochastic linearization of a closed loop S-LPNI system.

The return values Na and Ns are the equivalent gains of the actuator and sensor

nonlinearities, respectively.
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Syntax

[ Na , Ns ] = s t o c h l i n e a r i z e ( plant , c o n t r o l l e r , actuator , sensor ,

actuator parameters , sensor parameters , c o l o r i n g f i l t e r , sigma w ,

contro l prob lem , Tol , p l o t o r n o p l o t )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.

• actuator: The actuator nonlinearity. Takes one of following values: ‘sat’, ‘dz’,

‘qz’, ‘satdz’, ‘linear’.

• actuator parameters: A number corresponding to the actuator nonlinearity: (i)

for ‘sat’, the saturation limit, (ii) for ‘dz’, the deadzone half-width, (iii) for ‘qz’,

the quantization increment and (iv) for ‘satdz’, the saturation limit and and

deadzone half-width (specified as a 2-element vector).

• sensor: The sensor nonlinearity. Takes one of following values: ‘sat’, ‘dz’, ‘qz’,

‘satdz’, ‘linear’.

• sensor parameters: A number corresponding to the sensor nonlinearity: (i) for

‘sat’, the saturation limit, (ii) for ‘dz’, the deadzone half-width, (iii) for ‘qz’,

the quantization increment and (iv) for ‘satdz’, the saturation limit and and

deadzone half-width (specified as a 2-element vector).

• coloring filter: The coloring filter specified either as transfer function or state

space or gain. The 2-norm of the filter must be equal to 1.
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• sigma w: The driving-noise intensity at the input of the coloring filter.

• control problem: Takes one of two values: ‘track’ or ‘distreject’ for reference

tracking or disturbance rejection, respectively.

• Tol: The error tolerance for the solver.

• plot or no plot: If equal to 1, the function, besides finding the quasilinear

gains, plots traces of the output of the LPNI system and that of the quasilinear

system. If 0, no plotting takes place.

Outputs

• Na: The quasilinear gain for the actuator.

• Ns: The quasilinear gain for the sensor.

Note: if the quasilinear gain is not unique, the function returns an error message.

Example

In this example, we perform stochastic linearization of an S-LPNI system with a

saturating actuator. The coloring filter is a third-order Butterworth filter with 3-dB

bandwidth equal to 5.

s = t f ( ’ s ’ ) ;

omega = 5 ;

F = t f ( [ sqrt (3/ omega ) ∗omega ˆ 3 ] , [ 1 2∗omega 2∗omegaˆ2 omega ˆ 3 ] ) ;

[ Na , Ns ] = s t o c h l i n e a r i z e (1/( s+1) , t f ( 10 , 1 ) , ‘ sat ’ , ‘ l i n e a r ’ , 1 , 1 , F ,

1 , ‘ track ’ , 1e−6, 0) ;

B.2.2 stochlinearizeMIMO

This function performs stochastic linearization of a closed loop MIMO S-LPNI

system. The problem considered is that of disturbance rejection. The return values

are the quasilinear gains of the system.
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Syntax

[N, sigma ]= stochl inearizeMIMO (At , B1t , B2t , C1t , C2t , actuator , sensor ,

actuator param , sensor param , sigma w , Tol )

Inputs

• At, B1t, B2t, C1t, C2t: The matrices in the QLC disturbance rejection problem.

‘t’ stands for tilde. These matrices must be in the format specified in Chapter

4 of [1].

• actuator, sensor: the actuator and sensor nonlinearities. They both must be in

Matlab cell format. Each cell takes one of the values: ‘sat’, ‘dz’.

• actuator parameters, sensor parameters: A vector whose elements correspond

to actuator/sensor nonlinearities. The order must be the same as that specified

in ‘actuator’ and ‘sensor’ fields.

• sigma w: The driving-noise covariance matrix. Each row i corresponds to noise

wi.

• Tol: The error tolerance for the solver.

Outputs

• N: A vector containing the stochastically linearized gains. The first part corre-

sponds to actuators, and second part to sensors. The order is the same as that

specified in ‘actuator’ and ‘sensor’ vectors.

• sigma: the standard deviation of the performance output.

Example
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In this example, we perform stochastic linearization of a MIMO S-LPNI system

with two saturating actuators and two saturating sensors. The system is that of

Example 4.1 of [1].

At2 = [A zeros ( 4 , 4 ) ; zeros ( 4 , 4 ) , M] ; B1t2 = [ B1;−L∗D21 ] ; C1t2=[C1 zeros

(2 , 4) ] ; B2t2=[B2 zeros ( 4 , 2 ) ; zeros ( 4 , 2 ) −L ] ;

C2t2=[zeros ( 2 , 4 ) K; C2 zeros ( 2 , 4 ) ]

ac{1}=‘ sat ’ ; ac{2}=‘ sat ’ ;

sn{1}=‘ sat ’ ; sn{2}=‘ sat ’ ;

[N, s ]= stochl inearizeMIMO (At2 , B1t2 , B2t2 , C1t2 , C2t2 , ac , sn , [ 1 1 ] , [ 1 1 ] , eye

(4 ) , 1e−6)

B.2.3 SRS

This function returns the saturating random sensitivity (SRS) function for an S-

LPNI system with saturating actuator. The range of coloring filter cutoff frequencies

must be provided by the user. A third order Butterworth filter structure is used for

the coloring filter.

Syntax

[ returnSRS , returnN ] = SRS( plant , c o n t r o l l e r , actuator parameter ,

sigma w , c o l o r i n g f i l t e r f r e q u e n c i e s , Tol )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.

• actuator parameter: The saturation limit.
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• sigma w: The driving-noise intensity at the input of the coloring filter.

• coloring filter frequencies: The frequencies at which the random sensitivity

function is evaluated and plotted.

• Tol: The error tolerance for the solver.

Outputs

• returnSRS: A vector containing the SRS.

• returnN: A vector containing the quasilinear gains N at each frequency.

Example

In this example, we plot the SRS for a logarithmically distributed range of fre-

quencies.

s = t f ( ’ s ’ ) ;

w = logspace (−2 ,2 ,20) ;

[ retSRS , retN ] = SRS(1/( s+1) , t f ( 10 ,1 ) , 1 , 1 , w, 1e−6) ;

semilogx (w, retSRS ) ;

B.2.4 trackingind

This function computes the tracking quality indicators I0− I3, as well as the peak

of the saturating random sensitivity (SRS) function for the symmetric case.

Syntax

[ I0 , I1 , I2 , I3 , peak ] = t rack ing ind ( plant , c o n t r o l l e r , f requency ,

sigma w , actuator param , Tol )

Inputs
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• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.

• frequency: The 3-dB bandwidth of the coloring filter. A third order Butterworth

filter is used.

• sigma w: The driving-noise intensity at the input of the coloring filter.

• actuator param: the saturation limit.

• Tol: The error tolerance for the solver.

Outputs

• I0–I3: Indicators I0 − I3.

• peak: peak of the random sensitivity function.

Example

In this example, we calculate the tracking quality indicators for a system.

s = t f ( ’ s ’ ) ;

[ I0 , I1 , I2 , I3 , peak ] = t rack ing ind (1/( s+1) , 10 , 5 , 1 , 1 , 1e−6) ;

B.2.5 admissibledomain

This function plots the admissible domain for specified values of the tracking

quality indicators I2 and I3.

Syntax

admiss ibledomain ( I2 , I3 , f requency )
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Inputs

• I2: The value of the level curve for indicator I2.

• I3: The value of the level curve for indicator I3.

• frequency: The 3-dB bandwidth of the coloring filter. A third order Butterworth

filter is used.

Outputs

None.

Example

In this example, we plot the admissible domain for selected values of I2 and I3.

admiss ibledomain ( 0 . 3 , 0 . 3 , 2) ;

B.2.6 srlocus

This function plots the S-root locus for a given S-LPNI system with saturating

actuator.

Syntax

[ K ter , K tr ] = s r l o c u s ( plant , c o n t r o l l e r , c o l o r i n g f i l t e r , sigma w ,

actuator param , Tol )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.
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• coloring filter: The coloring filter model specified either as transfer function or

state space or gain. The 2-norm of this filter must be equal to 1.

• sigma w: The driving-noise intensity at the input of the coloring filter.

• actuator param: The saturation limit.

• Tol: The error tolerance for the solver.

Outputs

• K ter: the S-termination equivalent gain of the S-root locus.

• K tr: the S-truncation gain of the S-root locus.

Example

In this example, we plot the S-root locus and calculate the termination and trun-

cation gains. The coloring filter is a 3rd order Butterworth filter with 3-dB bandwidth

equal to 5.

s = t f ( ’ s ’ ) ;

omega = 5 ;

F = t f ( [ sqrt (3/ omega ) ∗omega ˆ 3 ] , [ 1 2∗omega 2∗omegaˆ2 omega ˆ 3 ] ) ;

[ K ter , K tr ] = s r l o c u s (1/( s+1) , t f ( 10 ,1 ) , F , 1 , 1 , 1e−6)

B.2.7 boosting

This function calculates the boosting gains for a disturbance rejection S-LPNI

system. The return values Ka and Ks are the a-boosting and s-boosting gains, re-

spectively.

Syntax
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[ Ka , Ks ] = boost ing ( plant , c o n t r o l l e r , actuator , sensor ,

actuator parameters , sensor parameters , c o l o r i n g f i l t e r , sigma w ,

Tol )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.

• actuator: The actuator nonlinearity. Takes one of following values: ‘sat’, ‘dz’,

‘qz’, ‘satdz’, ‘linear’.

• actuator parameters: A number corresponding to the actuator nonlinearity: (i)

for ‘sat’, the saturation limit, (ii) for ‘dz’, the deadzone half-width, (iii) for ‘qz’,

the quantization increment and (iv) for ‘satdz’, the saturation limit and and

deadzone half-width (specified as a 2-element vector).

• sensor: The sensor nonlinearity. Takes one of following values: ‘sat’, ‘dz’, ‘qz’,

‘satdz’, ‘linear’.

• sensor parameters: A number corresponding to the sensor nonlinearity: (i) for

‘sat’, the saturation limit, (ii) for ‘dz’, the deadzone half-width, (iii) for ‘qz’,

the quantization increment and (iv) for ‘satdz’, the saturation limit and and

deadzone half-width (specified as a 2-element vector).

• coloring filter: The coloring filter specified either as transfer function or state

space or gain. The 2-norm of the filter must be equal to 1.

• sigma w: The driving-noise intensity at the input of the coloring filter.
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• Tol: The error tolerance for the solver.

Outputs

• Ka: The a-boosting gain for the actuator.

• Ks: The s-boosting gain for the sensor.

Example

In this example, we find the boosting gains for an S-LPNI system. The coloring

filter is a third-order Butterworth filter with 3-dB bandwidth equal to 5.

s = t f ( ’ s ’ ) ;

omega = 5 ;

F = t f ( [ sqrt (3/ omega ) ∗omega ˆ 3 ] , [ 1 2∗omega 2∗omegaˆ2 omega ˆ 3 ] ) ;

[ Ka , Ks ] = boost ing (1/( s+1) , t f ( 10 , 1 ) , ‘ sat ’ , ‘ l i n e a r ’ , 1 , 1 , F , 1 , 1e

−6) ;

B.2.8 slqr

This function computes the gain vector K that solves the SLQR problem.

Syntax

[K, s i g z ] = s l q r (A, B1 , B2 , C1 , non l inea r i ty paramete r , sigma w , rho ,

Tol )

Inputs

• A, B1, B2, C1: The matrices in the SLQR Problem.

• Nonlinearity parameter: Actuator saturation limit.

• sigma w: The driving-noise covariance matrix at the input of the coloring filter.
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• rho: The control penalty.

• Tol: The error tolerance for the solver.

Outputs

• K: The gain vector.

• sigz: Minimum standard deviation of the performance output achieved by K.

Example

In this example, we find the solution of the SLQR problem for the following system:

P (s) = 1
s+1

, coloring filter the third-order butterworth filter with 3-dB bandwidth 1,

and ρ = 0.1. The resulting matrices are assumed to be:

A =




−1 0 0
√

3

0 −2 −2 −1

0 1 0 1

0 0 1 0



, B1 =




0

1

0

0



, B2 =




1

0

0

0



, C1 =




0.1 0 0 0

0 0 0 0


 .

[K, s ]= s l q r (A, B1 , B2 , C1 , 1 , 1 , 0 . 1 , 1 e−6) ;

B.2.9 slqg

This function computes the gain vectors K and L and the observer matrix M that

solve the SLQG problem.

Syntax

[K, L , M, s i g z ] = s l q g (A, B1 , B2 , C1 , C2 , non l inea r i ty paramete r ,

sigma w , rho , mu, Tol )

Inputs

188



• A, B1, B2, C1, C2: The matrices in the SLQG Problem.

• Nonlinearity parameter: Actuator saturation limit.

• sigma w: The driving-noise intensity at the input of the coloring filter.

• rho: The control penalty.

• mu: The number µ in the SLQG problem.

• Tol: The error tolerance for the solver.

Outputs

• K: The control gain vector.

• L: The observer gain vector.

• M: The observer system matrix.

• sigz: Minimum standard deviation of the performance output achieved by K,

L, M.

Example

In this example, we find the solution of the SLQG problem for the following

system:

A =




−1 −2 −1

1 0 0

0 1 0



, B1 =




0

0

1



, B2 =




1

5

0



, C1 =

[
0 1 1

]
, C2 =

[
0 0 3

]
,

ρ = 0.0095, µ = 1× 10−4.

[K, L ,M, s i g z ] = s l q g (A, B1 , B2 , C1 , C2 , 1 , 1 , rho ,mu, 1 e−6)
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B.2.10 ilqr

This function calculates the gain matrix K and the saturation limit α that solve

the ILQR problem.

Syntax

[K, alpha , s i g ] = i l q r (A, B1 , B2 , C1 , sigma w , Tol , rho , nu)

Inputs

• A, B1, B2, C1: The matrices in the ILQR Problem.

• sigma w: The driving-noise intensity at the input of the coloring filter.

• rho: The control penalty.

• nu: The actuator penalty.

• Tol: The error tolerance for the solver.

Outputs

• K: The gain vector.

• alpha: The saturation limit.

• sigz: Minimum standard deviation of the performance output achieved by K

and alpha.

Example

In this example, we find the solution of the ILQR problem for the following system:

A =




0 0

1 0


 , B1 = B2 =




1

0


 , C1 =




0 1

0 0


 .

190



[K, alpha , s i g ] = i l q r (A, B1 , B2 , C1 , 1 , 1e−6, 0 . 1 , 0 . 1 )

B.2.11 ilqg

This function computes the gain matrices K, L and M and actuator and sensor

limits that solve the ILQG problem

Syntax

[K, L , M, alpha , beta , s i g ] = i l q g (A, B1 , B2 , C1 ,C2 , mu, rho , nu1 , nu2 ,

Tol )

Inputs

• A, B1, B2, C1, C2: The matrices in the ILQG Problem.

• rho: The control penalty.

• mu: µ in the ILQG problem.

• nu1: The actuator penalty.

• nu2: The sensor penalty.

• Tol: The error tolerance for the solver.

Outputs

• K: The control gain vector.

• L: The observer gain vector.

• M: The observer system matrix.

• alpha: The saturation limit for the actuator.
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• beta: The saturation limit for the sensor.

• sigz: Minimum standard deviation of the performance output achieved by the

above.

Example

In this example, we find the solution of the ILQG problem for the following system:

A =




−1 −2 −1

1 0 0

0 1 0



, B1 =




0

0

1



, B2 =




1

5

0



, C1 =

[
0 1 1

]
, C2 =

[
0 0 3

]
,

ρ = 0.0095, µ = 1× 10−4.

[K, L ,M, alpha , beta , s i g ] = i l q g (A, B1 , B2 , C1 , C2 ,mu, rho , 1 e−4,1e−6,1e−10)

B.2.12 stepTracker

This function determines the pre-compensator and the adjoint bandwidth from

given step-tracking specifications on settling time and overshoot, plots the S-root locus

and the admissible domain for the a controller provided by the user, and plots the

trajectories of the random tracking system and step tracking system for a controller

gain provided by the user.

Syntax

[ Kter , Ktr , Fd , adjointBW ] = stepTracker ( plant , c o n t r o l l e r , K, r 0 ,

actuator param , Tse t t l i ng , Overshoot )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

192



• controller: The controller model specified either as transfer function or state

space or gain.

• K: The controller gain.

• r 0: The step size to be tracked.

• actuator param: The saturation limit.

• Tsettling: The settling time specification.

• Overshoot: The overshoot specification in percents.

Outputs

• Kter: The termination equivalent gain of the S-root locus.

• Ktr: The truncation gain of the S-root locus.

• Fd: The pre-compensator filter.

• adjointBW: The adjoint bandwidth.

Example

In this example, we plot the S-root locus and trajectories for the following speci-

fications: settling time < 1s, overshoot < 5%.

s = t f ( ’ s ’ ) ;

[ Kter , Ktr , Fd , adjointbw ] = stepTracker (10/( s ˆ2+10∗ s ) , ( s +20) /( s +100) ,

200 , 1 , 4 , 1 , 5)
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B.2.13 graphicalStochLinearize

This function evaluates and plots the transcendental equation that arises during

closed loop stochastic linearization of the tracking system with saturating actuator

and linear sensor. The zero-crossings indicate the resulting quasilinear gains. Multiple

crossings indicate non-unique solutions. This function is intended for the S-LPNI case.

Syntax

g r a p h i c a l S t o c h L i n e a r i z e ( plant , c o n t r o l l e r , c o l o r i n g f i l t e r ,

actuator param , sigma w , Tol , rangeN )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.

• coloring filter: The coloring filter specified either as transfer function or state

space or gain.

• actuator param: The saturation limit.

• sigma w: The driving-noise intensity at the input of the coloring filter.

• Tol: The error tolerance for the solver.

• rangeN: the values for which the function is to be evaluated (i.e., the points on

the abscissa).

Outputs

None.
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Example

s = t f ( ’ s ’ ) ;

g r a p h i c a l S t o c h L i n e a r i z e (1/( s+1) , 20 , 1/( s +10) , 3 , 1 , 1e−6, [ 0 : . 0 1 : 1 ] )

B.2.14 stochlinearizeAsym

This function performs stochastic linearization of a closed loop A-LPNI system.

Syntax

[ Na , Mu, Ns , My] = s t o c h l i n e a r i z e ( plant , c o n t r o l l e r , actuator , sensor ,

actuator parameters , sensor parameters , c o l o r i n g f i l t e r , s igma r ,

mu r , contro l prob lem , Tol )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.

• actuator: The actuator nonlinearity. Currently, it can only take one of following

values: ‘sat’, ‘dz’, ‘linear’.

• actuator parameters: Numbers corresponding to the actuator nonlinearity: (i)

for ‘sat’, the lower saturation limit followed by the upper saturation limit, (ii)

for ‘dz’, the lower deadzone limit followed by the upper deadzone limit.

• sensor: currently only linear sensor is implemented.

• sensor parameters: N/A.
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• coloring filter: The coloring filter specified either as transfer function or state

space or gain. The 2-norm of the filter must be equal to 1.

• sigma r: The standard deviation of the reference.

• mu r: The mean of the reference.

• control problem: Takes one of two values: ‘track’ or ‘distreject’ for reference

tracking or disturbance rejection, respectively.

• Tol: The error tolerance for the solver.

Outputs

• Na: The quasilinear gain for the actuator.

• Mu: The mean of the signal at the input of the actuator.

• Ns: The quasilinear gain for the sensor.

• My: The mean of the signal at the input of the sensor.

Example

In this example, we perform stochastic linearization of an A-LPNI system with a

saturating actuator.

s=t f ( ’ s ’ )

F = sqrt (3 ) / ( s ˆ3 + 2∗ s ˆ2 + 2∗ s + 1) ;

[ Na ,Mu, Ns ,My] = stoch l inear i zeAsym (1/( s+1) , 5 , ‘ sat ’ , ‘ l i n e a r ’ , [−1 2 ] ,

1 , F , 1 , 0 , ‘ track ’ , 1e−6)
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B.2.15 srlocusAsym

This function plots the AS-root locus and TE locus for a given A-LPNI system

with saturating actuator.

Syntax

[ K ter , M e ter , K I0 , M e I0 , K e , M e ] = s r l o c u s ( plant , c o n t r o l l e r ,

c o l o r i n g f i l t e r , s igma r , mu r , alpha , beta , p lo t t ingGains , Tol )

Inputs

• plant: The plant model specified either as transfer function or state space or

gain.

• controller: The controller model specified either as transfer function or state

space or gain.

• coloring filter: The coloring filter model specified either as transfer function or

state space or gain. The 2-norm of this filter must be equal to 1.

• sigma r: The standard deviation of the reference.

• mu r: The mean of the reference.

• alpha: Lower saturation limit.

• beta: Upper saturation limit.

• PlottingGains: The gains at which TE locus is evaluated.

• Tol: The error tolerance for the solver.

Outputs

• K ter: The AS-termination equivalent gain of the AS-root locus.
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• M e ter: The termination point of the TE locus.

• K I0: The truncation gain of the AS-root locus.

• M e I0: The TE locus evaluated at the truncation gain.

• K e: The effective gain of the AS-root locus evaluated at the plottingGains.

• M e: The TE locus evaluated at the plottingGains.

Example

In this example, we plot the AS-root locus and the TE locus of a simple system.

s = t f ( ’ s ’ ) ;

F = sqrt (3 ) / ( s ˆ3 + 2∗ s ˆ2 + 2∗ s + 1) ;

admiss ibledomain ( 0 . 3 , 0 . 3 , 1 ) ;

[ k1 ,m1, k2 ,m2, ke ,me]= srlocusAsym (1/( s+5) , 2/( s +10) , F , 1 , 0 , −1, 4 , [ 0 . 1

0 .5 1 5 1 0 ] , 1e−6) ;

f igure ;

plot ( [ 0 . 1 0 .5 1 5 1 0 ] , me)
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