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Abstract

To study the bound system of 3 valence quarks, Λ and Λb baryons represent

ideal particles, since they are produced in relatively high quantities at the Large

Hadron Collider (LHC) and decay into fully reconstructible final states. This thesis

summarizes results of two important measurements with Λ and Λb baryons: a

measurement of the Λb lifetime and mass, and a measurement of the Λ polarization

in minimum bias and di-jet events.

The Λb lifetime is predictable within a framework of the heavy quark expansion

(HQE) calculations, which is widely and successfully used in b-physics. In past

decade, the Λb lifetime has received some special attention due to a discrepancy

between the theoretical prediction and experimental results. The measurement

presented here improves on the precision of the previous measurements and helps

resolving this discrepancy. The Λb lifetime and mass are measured to be τΛb
=

1.449±0.036(stat)±0.017(syst) ps and mΛb
= 5619.7±0.7(stat)±1.1(syst) MeV.

A value of the Λb and B
0
d lifetime ratio is measured, too, with the value of R =

τΛb
/τBd

= 0.960 ± 0.025(stat) ± 0.016(syst). The measured value of the ratio is

compatible with the theoretical predictions, which range between 0.86 and 0.97.

Large hyperon polarization observed at low-energy fixed target experiments

has been puzzling physicists for decades, since their results are incompatible with

pQCD calculations. This suggests that some unknown mechanism, which cannot

be described by pQCD, is responsible for the hyperon polarization. Measurements

at the LHC open up a new avenue for study of the hyperon polarization, since

the measurement of polarization of the Λ hyperon produced within a jet becomes

possible for the first time. This measurement probes non-perturbative QCD pro-

cesses, such as fragmentation and hadronization, as possible sources of the hyperon

polarization. Λ polarization is measured to be −0.007± 0.006(stat)± 0.012(syst)

in the minimum bias and 0.007 ± 0.011(stat) ± 0.007(syst) in the di-jet sample.

The observed results agree with the extrapolation of the low-energy data.

xii



Chapter 1

Introduction

B-physics and soft-QCD physics are part of a rich physics program in the ATLAS

experiment, which also includes study of baryon production and its spin-related

properties. This thesis summarizes results of analyses studying production and

decay of Λ and Λb baryons. They are the lightest baryons containing s and b

quarks, respectively, and are therefore produced in copious quantities at the LHC.

Their decays Λ → pπ− and Λb → J/ψ(µ+µ−)Λ(pπ−) are fully reconstructible and

have clear experimental signature, which makes them ideal final states for study of

these baryons. The Λb mass is too high to be produced in B-factories, i.e. the e+e−

colliders with the center-of-mass energy tuned to the mass of Υ(4S) state, which

is immediately above the production threshold for a pair of B-mesons. Therefore,

Λb properties can only be measured at the hadron colliders such as the LHC. As a

consequence, the basic properties of Λb baryon, such as its lifetime, has not been

measured with a great accuracy, yet. The need for a more precise measurement

is further strengthen by the fact that two major Tevatron experiments, CDF and

DØ, disagree on the value of the Λb lifetime. Unlike pseudo-scalar mesons (K and

B), the baryons carry spin of 1/2, which makes them ideal experimental tools for

study of spin dynamics. Measurements of Λ (and eventually also Λb) polarization

offer a natural extension of the previous experimental observations of the large

hyperon polarization – which has been puzzling physicists for decades – into a

completely new energy regime.

This thesis summarizes results of two measurements at the ATLAS experiment:

the measurement of the Λb lifetime and the measurement of the Λ polarization.

The document is structured into 5 chapters. After a brief introduction into the the

ATLAS experiment in Chapter 2, there follow a detail description of the two main

1



analyses in Chapters 3 and 4. An outlook for possible future measurements is given

in the final Chapter, 5. Each of the two main sections has its own introduction

outlining the physics motivation for the measurement.

The analyses presented in here (and some additional results not included here)

were done during the first 3 years of the LHC running. The results are presented in

several ATLAS notes and papers, of which Scheirich is the main author. The first

observation of the B0
d meson in ATLAS 2010 data is reported in Ref [1]. A fully

reconstructible cascade decay B0
d → J/ψ(µ+µ−)K0

S(π
+π−) was used to identify the

mesons. Although properties of the B0
d meson are well known, this analysis was

extremely important for understanding of the ATLAS reconstruction performance

and in preparation for the forthcoming Λb studies. The first Λb study, using the

decay Λb → J/ψ(µ+µ−)Λ(pπ−), was finished in mid of 2011 (using 1.2 fb−1 of

data) and is reported in Ref [2]. This preliminary measurement was then followed

by the measurement of the Λb lifetime and mass using the full 2011 statistics

(4.9 fb−1), which is published in Ref [3]. The measurement of the Λ polarization

is currently in the ATLAS reviewal process, the internal documentation of the

analysis can be found in Ref [4].

Apart from the physics analyses, the author of this thesis participated in com-

missioning and calibration of the Level-2 b-physics trigger in the earlier months

of 2010. Without these efforts the ATLAS b-physics program would have not

been possible, since the trigger represents a very first selection step in any physics

analysis on a hadron collider. Results of the measurement of the b-physics trigger

efficiency after the calibration is are reported in paper [5].

2



Chapter 2

ATLAS Experiment

ATLAS (A Toroidal LHC ApparatuS) [6, 7] is one of the four main experiments

at the Large Hadron Collider (LHC) at CERN (European Centre for Nuclear Re-

search). The LHC is proton-proton (or lead ion) collider, currently the largest one

in the World in terms of both energy and luminosity of its beams. Four inter-

action points at the collider circumference are each occupied by one of the main

experiments: ATLAS, LHCb, CMS and ALICE. Between November 2009 and

December 2012 the LHC operated at reduced center-of-mass energy of 900 GeV

(2009), 7 TeV (2010 and 2011) and 8 TeV (2012). After the planned shutdown,

which should last till the end of 2014, the machine will restart its operation at the

center-of-mass energy close to the design value of 14 TeV. The peak luminosity

of the LHC steadily increased throughout the initial period of running until it

reached its maximal value of about 8 × 1033 cm−1s−1 in 2012, as shown in Fig-

ure 2.1. After the shutdown, the LHC is expected to reach the nominal design

luminosity of 1034 cm−1s−1 or higher. The ATLAS experiment has collected inte-

grated luminosities of about 45 pb−1, 5.2 fb−1, and 23 fb−1 in years 2010, 2011,

and 2012, respectively.

The ATLAS experiment is designed to exploit a full discovery potential of the

LHC. The ATLAS physics program focuses mainly on the origin of the mass at elec-

troweak scale based on a spontaneous symmetry breaking, which manifests itself

by existence of the standard model (SM) Higgs boson, a family of Higgs particles or

a strongly interacting Higgs system. Already the first period of the LHC running

provided enough data to allow experiments ATLAS and CMS to discover particle

compatible with the standard model Higgs boson with mass around 126 GeV [8].

Searches for heavy W and Z-like objects and final states with the large missing

3
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Figure 2.1: Peak luminosity of the LHC vs. time.

energy predicted by super-symmetry (SUSY) and other beyond-standard model

theories, as well as searches for exotic physics signatures like black holes, extra

dimensions, gravitons and dark matter represent another goal of the experiment.

To date, no evidence of physics beyond the standard model has been observed.

Figure 2.2, shows measured cross-sections of main SM production processes and

their agreement with the theoretical prediction, Figure 2.3, shows the mass reach

of ATLAS SUSY searches for a representative selection of the available results.

High rate of b and t-quarks allows physicists to study properties of t quark (pro-

duction cross-section, charge, mass, ...) and properties of B hadrons. The ATLAS

B-physics program includes a general spectroscopy of B-states, study of their pro-

duction mechanisms including measurement of polarization of baryons (Λ, Λb) and

quarkonia (J/ψ, Υ), precise measurements of CP violation, determination of el-

ements of Cabbibo-Kobaiashi-Maskawa matrix (CKM), and indirect searches for

new physics.

The layout of the ATLAS detector is shown in Figure 2.4. It is designed as

a general purpose detector for wide variety of physics measurements. It consists

of the following sub-detectors serving for reconstruction of main classes of physics

objects: the inner detector (ID) for charged particle tracking, the electromagnetic

and hadronic calorimeters for electron, photon, τ , and jet reconstruction and the

muon spectrometer (MS) for identification and reconstruction of muons. The

magnet system, needed for momentum measurement, consists of a thin solenoid

placed at the outer radius of the inner detector and three air core toroids in

the muon spectrometer outside of the hadronic calorimeter. The ATLAS physics

program requires very good electromagnetic calorimetry for a photon and electron
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Figure 2.2: Summary of several Standard Model total production cross section mea-
surements, corrected for leptonic branching fractions, compared to the corresponding
theoretical expectations. The inclusive b cross section has not been measured by AT-
LAS, yet.

identification. The hadronic calorimeter must provide accurate measurements of

jets and a good η and full φ coverage, which is necessary for precise determination

of missing transverse energy. The muon spectrometer together with the inner

detector tracking system must be able to accurately measure low-pT muons with

possibility to measure high-pT muons with the muon spectrometer alone. The

tracking is required to be efficient for high-pT lepton momentum measurement, an

electron and photon identification and τ -lepton and heavy-flavor tagging.

2.1 Magnet System

The superconducting solenoid is 5.3 m long with a diameter of 2.44 m and provides

a magnetic field of 2 T for precise momentum measurements in the ID. It shares

its cryostat with the liquid-argon (LAr) electromagnetic calorimeter. The MS

magnet system consists of three toroid magnets: barrel toroid and two endcap

toroids. Each of them is made of eight independent superconducting coils arranged

with an eight-fold symmetry. The outer and inner diameter of the barrel toroid

are 20.1 m and 9.4 m, respectively, and it is 25.3 m long. Two endcap toroids

enclose the magnet system from sides and they have an outer diameter of 10.7 m.

The toroid magnets provide a magnetic field for momentum measurements in
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Figure 2.3: Mass reach of ATLAS searches for SUSY. Only a representative selection
of the available results is shown. No evidence of physics beyond SM has been observed
to date.

the MS that is independent of the ID. The magnetic field of the toroids is not

homogeneous and its peak value is 3.9 T and 4.1 T for the barrel and the endcap

toroids, respectively.

2.2 Inner Detector

The inner detector [9] is contained in the cavity of the electromagnetic calorimeter.

It is 7 m long with a radius of 1.15 m. A pattern recognition, accurate momentum

and vertex measurements and electron identification are achieved with a combina-

tion of discrete high-resolution silicon pixel and strip detectors in the inner part of

the tracking volume, and continuous straw-tube tracking detectors with transition

radiation capability in its outer part. The layout of the ID is shown in Figure 2.5.
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Figure 2.4: ATLAS experiment.

The silicon detectors are arranged in cylindrical layers parallel to the beam

axis in the barrel region and perpendicular discs in the endcap regions. Each layer

consists of a number of detector modules with an independent read-out electronics.

For purpose of vertex reconstruction a high granularity around the interaction

point is needed. Therefore, a pixel technology is used for the innermost part of

the tracking system. The pixel detectors form three layers in the barrel region

and three endcap discs on each side. The pixel detectors have digital readout,

allowing for limited measurement of charge (energy) deposited in the pixel by

charged particles. The pixel detector have the finest granularity of all the ID

Figure 2.5: Layout of the ATLAS inner detector.
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components and over 80 million of the read channels. The spacial resolution is

10 µm in the φ direction and 115 µm in the z direction.

The semi-conductor tracker (SCT) is made of four barrel layers and nine end-

cap discs on each side provides precise measurement of track space-points. A

silicon micro-strip technology is used in order to minimize cost and the number of

read-out channels (in total about 6 million) while preserving excellent space-point

resolution. The strip detectors allow to measure position only in one dimension

(perpendicular to the strips). The two-dimensional position measurement in each

module is achieved by using two silicon wafers that are rotated by an angle of

40 mrad. The spacial resolution of the SCT detector module is 17 µm in the

φ direction and 580 µm along the z direction. The SCT detectors have binary

readout, considering only hits with deposited charge above certain threshold.

The transition-radiation tracker (TRT) represents the outermost part of the ID.

TRT straws are laid in parallel to the beam in the barrel region and radially in the

endcaps. The spacial resolution of the TRT detector is only 2-dimensional, with

the resolution along φ direction of about 130 µm. TRT straws are surrounded by a

radiator (felt-like substrate) packed between the straws. A charged particle passing

the radiator produces transition radiation proportional to its Lorentz factor, γ.

Two thresholds on the charge deposited in the straws – which is proportional to

an intensity of a transition radiation – allow to distinguish between relativistic

electrons and low-pT hadrons.

Typically, three pixel layers and eight strip layers (four space points) are

crossed by each track. A large number of tracking points (typically 36 per track)

is provided by TRT.

2.3 Calorimeters

The calorimeter system [10] provides measurement of energy of hadrons, electrons,

and photons. It consists of the two main parts, the electromagnetic (EM) calorime-

ter and the hadronic calorimeter. Both calorimeters are of sampling type, which

means they consist of the inactive medium (absorber) of high density (lead, iron,

copper or tungsten) interlaced with the active detectors for measurement of energy.

When electromagnetically or strongly-interacting particle enters the calorimeter,

secondary particles are created from interactions with the absorber medium and

the particle shower propagates through the calorimeters. The calorimeters are

8



build to fully contain both electromagnetic and hadronic showers. Only a small

portion of the energy deposited by the particle is converted to electronic signal

and read out by the active detectors, however, this sample of the total together

with the information about the longitudinal and transverse profile of the shower

is sufficient to determine the original particle’s energy, after proper calibration.

The highly granular liquid argon (LAr) EM calorimeter provides an energy

measurement and identification of photons, electrons and τ leptons. It is a sam-

pling calorimeter with accordion-shaped layers of lead used as an absorber and

liquid argon as active medium. Charge deposited in the liquid argon is collected

on segmented copper electrodes immersed in the medium. The EM calorimeter

covers pseudorapidity of |η| < 4.9 and it is hermetic in φ. The EM calorimeter has

a thickness of 22− 33 radiation lengths, X0, in its central part and 24− 36 X0 in

the forward regions. The radiation length is defined as a length that an electron

or positron has to travel in the medium to loose all but 1/e of its energy due to

the radiation loss. The energy resolution of the EM calorimeter is given by the

formula [11]:
σE
E

=
a

√

E/GeV
⊕ b

E
⊕ c, (2.1)

where parameter a parametrizes uncertainty due to fluctuations in the deposited

energy (stochastic term), b parametrizes the strength of the electronic noise (noise

term), and c is the constant term. Values of all the parameters are η-dependent,

with the mean values a ≈ 10%, b ≈ 0.17 GeV, and c ≈ 0.7%.

The bulk of the hadronic calorimetry is provided by a scintillator-tile sampling

calorimeter (TileCal) with iron used for an absorber medium. The tile calorimeter

is separated into a large barrel and two smaller extended barrel cylinders, one on

each side of the main barrel, covering pseudorapidity up to |η| < 1.7. Both

calorimeters are contained in a cylinder with a radius of 4.25 m and width of

12.2 m. The layout of the calorimeters is shown in Figure 2.6. The thickness of

the hadronic calorimeter is 7.4 interaction lengths, λ, defined as the mean free path

of a hadronic particle before undergoing an inelastic interaction in the medium.

Hadronic calorimetry in the endcap (1.5 < |η| < 3.2) and forward (3.1 < |η| < 4.9)

regions is provided by the LAr calorimeters, using copper and tungsten as passive

material. The resolution of the tile calorimeter and the LAr hadronic endcaps is

9
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ters.

given by the formula [11]:

σE
E

=
50%

√

E/GeV
⊕ 3%, (2.2)

whereas the resolution of the forward calorimeter is

σE
E

=
100%

√

E/GeV
⊕ 10%. (2.3)

2.4 Muon Spectrometer

The layout of the muon system [12] is shown in Figure 2.7. Four types of muon

detectors are used. In the barrel, resistive plate chambers (RPC) are used for

muon trigger and monitored drift tube chambers (MDT) for accurate tracking,

with resolution of about 80 µm. In the endcaps, thin gap chambers (TGC) are

used for trigger, MDT and cathode strip chambers (CSC) for tracking (resolution

of 80 µm). Momentum measurement is based on deflection of muon trajectories

in the magnetic fields of three air-core toroids. In a pseudorapidity region |η| <
1 the tracks are bent by the field of the barrel toroid. For a pseudorapidity
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1.4 < |η| < 2.7 the deflection is provided by the endcap toroids. In the region of

1.0 < |η| < 1.4, so called transition region, deflection is provided by a combination

of the barrel and endcap fields. The magnet configuration provides field that is

mostly orthogonal to the muon trajectories.

In the barrel region, the muon chambers are arranged into three super-layers

or so called stations. Each station consists of six or eight layers of the monitored

drift tubes. The three stations are placed near inner and outer field boundaries

and inside the field volume in concentric cylinders with radii of about 5, 7.5 and

10 m, respectively. They cover pseudorapidity of |η| < 1. A muon momentum

is determined from the measurement of a sagitta of the track. In the transition

and the endcap regions, the chambers are arranged in four discs orthogonal to the

beam axis placed in distances of 7, 10, 14 and 21–23 m from the interaction point.

Cryostats of the endcap toroids don’t allow to place chambers inside the magnetic

field. Therefore, the momentum is determined from a point-angle measurement.

Both in the barrel and the endcaps the chambers are arranged in a sixteen-

fold symmetry while the magnetic field have an eight-fold symmetry reflecting

the position of the toroid coils. Over the most of the pseudorapidity range the

high-precision tracking is provided by MDT chambers. At a large pseudorapidity

close to the beam axis, CSC are used to sustain high radiation conditions. In

the barrel region two chambers at the bottom side have special shape since they

have to make space for the rails supporting the calorimeters. Chambers at the

pseudorapidity of η = 0 are missing to make space for cables and other support

lines.

The muon trigger system covers a pseudorapidity range of |η| < 2.4. In the

barrel, RPC are placed in three layers: on both sides of the middle MDT chamber

station and directly below the outer one. TGC’s are located near the middle

station of the endcaps.

2.5 Trigger

A nominal bunch crossing frequency of the LHC is 40 MHz which corresponds to

a period of 25 ns [7]. In the initial period of the LHC operation in years 2010

to 2012, the typical bunch separation was larger, ranging from 75 to 50 ns (30 to

20 MHz). The full detector information can be read out at a rate of 75 kHz and

stored at a rate of only 200 Hz. Reduction of the event rate is provided by a so
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Figure 2.7: Layout of the muon chambers.

called trigger, which is a fast real-time event filtering system being able to reduce

the event rate while preserving events with signatures of an interesting physics

(e.g. Higgs boson, super-symmetric particles, etc.)

ATLAS employs a three-level trigger system [13, 14], with each level reducing

the event rate to the next level and providing seeds for the object reconstruction.

The respective levels are called Level-1 (hardware-based), and Level-2 and Event

Filter, together called the High Level Trigger (HLT, software-based). An available

processing time at each trigger level together with the output rate is shown in

Figure 2.8.

The Level-1 trigger is entirely hardware based and it uses only a subset of

ATLAS detectors in order to increase the decision speed. High pT muons (with

pT ≥ 4 GeV at the initial run and pT ≥ 6 GeV at nominal luminosity) are

reconstructed using only RPC and TGC subdetectors. In both electromagnetic

and hadronic calorimeters the reduced granularity is used for an event selection.

No information from the inner detector is available at Level-1.

The Level-1 trigger uses simple algorithms to make a decision. The algorithms

are executed by custom electronics with adjustable parameters and reduce the

initial event rate down to about 75 kHz, with execution times of the order of

2 µs. Before the decision is made, data from all of the ∼ 107 ATLAS detector

channels are stored in pipeline memories waiting to be read out in case the event

12



Figure 2.8: Available processing time vs. the output rates of the three trigger levels.

is accepted, which gives the Level-1 trigger necessary time to make the decision.

The Level-one trigger distinguishes the following types of trigger objects:

Muon: muon candidate object reconstructed by the muon spectrometer. The

Level-1 muon trigger provides six independently programmable pT thresh-

olds. The selection is based on a requirement of the coincidence of the muon

hits in the two or three-station spacial coincidence window. Because of the

muon track’s bending in the magnetic field, the low-pT muons require a

larger coincidence window than the high-pT ones, whose trajectory is more

straight.

EM/Tau: electron, photon or τ lepton candidate reconstructed by the EM calorime-

ter. The EM showers of electrons and photons have the same shape and are

therefore indistinguishable at the Level-1. τ leptons decayed into a hadronic

final state create a narrow jet of pions which makes a signal in the EM and

hadronic calorimeters, that is however distinguishable from the signal of jets.

16 ET thresholds as well as criteria on isolation (both EM and Tau candi-

dates) and hadronic veto (EM candidates) can be applied on the EM/Tau

objects.

Jet RoI: hadronic jet candidate reconstructed by hadronic calorimeter. Two

different sets of ET thresholds are available for central and forward jets. 8

13



to central and 4 to forward jets.

Missing ET: signature of neutral weakly interacting particles. ET of all recon-

structed jets (or jets with ET above some optional threshold) is converted

to Ex and Ey using their φ coordinate which are then summed. Set of 8

thresholds can be applied on the global sum.

Total ET: total transverse energy calculated as a sum of ET of all jets (or jets

with ET above some optional threshold). 4 thresholds can be applied on

total energy sum.

Min. Bias Event: any inelastic-scattering event. The minimum bias trigger uses

two segmented minimum bias scintillators located on both faces of the inner

detector, which detect any particle with pseudorapidity 2 < |η| < 4, thus

selecting any event where the hard p-p collision occurred.

The software-based high level trigger must reduce the rate coming from the

Level-1 to about 200 Hz where most of the reduction is done by the Level-2

trigger. Level-2 algorithms are seeded by the Level-1 objects, which means that

only a small portion of the event around the Level-1 object, so called Region

of Interest (RoI), is transferred to the Level-2 trigger processors. Fast tracking,

muon, electron, photon, τ and jet reconstruction is performed in these regions

of interest. Since information from the inner detector is now available, more

complicated objects such as b-jets or heavy b hadron decays can be reconstructed

at Level-2. The employed algorithms usually use simplified versions of algorithms

used for the offline reconstruction and have therefore worse resolution. The Level-

2 trigger decision is based on requirement of a single object (e.g. single muon

trigger), combination of objects (e.g. di-muon trigger), or a more complicated

topology of multiple objects (e.g. J/ψ trigger).

The event filter represents the last layer of the trigger selection. It has already

access to the whole event and it uses complex algorithms with the performance

similar to the one of the offline algorithms. Even though it has already access to

the whole event, the event filter algorithms are still guided by the Level-2 objects

similarly as Level-2 algorithms are seeded by Level-1. The task of the event

filter is to perform the final selection and reduce the output rate from Level-2 to

approximately 200 Hz which can be stored on disks and tapes.
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Chapter 3

Λb Lifetime and Mass

3.1 Introduction

The Λb baryon (and its charge conjugate Λ̄b) is the lightest baryon containing a

b (b̄) quark. With the mass of about 5620 MeV [15, 16] it is not produced at

B-factories, where the collision center-of-mass energy is tuned to produce pairs

of B mesons. Currently, hadron colliders are the only facilities where the prop-

erties of b-baryons can be studied. This thesis presents a measurement of the

Λb mass and lifetime in the ATLAS experiment [11] using the decay channel

Λb → J/ψ(µ+µ−)Λ(pπ−) (the charge conjugate mode is implied throughout the

document unless explicitly stated otherwise). The Λb lifetime, although measured

by many experiments [15, 17, 18, 19], still suffers from a large experimental un-

certainty. The decay B0
d → J/ψ(µ+µ−)K0

S(π
+π−) has the same topology as the

studied Λb decay. The B0
d mass and lifetime are measured with good precision

[15], and therefore this decay provides a useful tool to validate the Λb results, as

both measurements are subject to similar systematic uncertainties. Furthermore,

measurement of the Λb and B0
d lifetime ratio is of great theoretical interest, as

explained in the following Section. The lifetime and mass are determined using

a simultaneous unbinned maximum likelihood fit to the reconstructed mass and

decay time.

3.1.1 Theoretical Considerations

Both Λb baryon and B0
d meson decay through weak interaction. It means that

the b quark inside the hadron decays through exchange of a virtual W boson into
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Figure 3.2: Schematic diagram of the decay Λb → J/ψ(µ+µ−)Λ(pπ−) (left) and B0
d →

J/ψ(µ+µ−)K0
S(π

+π−) (right). Curly lines represent color fields binding the constituent
quarks into hadrons.

a lighter u or c quark. For example, in the case of the decays studied in this

analysis, Λb → J/ψ(µ+µ−)Λ(pπ−) and B0
d → J/ψ(µ+µ−)K0

S(π
+π−), the relevant

quark-level weak decay, b→ c c̄ s, is the same in both cases. A tree-level Feynman

diagram of such a decay is shown in Figure 3.1, left. Because the mass of the

b quark is negligible compared to the mass of the W boson, an effective Fermi

theory with a 4-fermion couping (Figure 3.1, right) is sufficient to describe the b

quark decay. These simple diagrams, however, correspond to the decay of a free b

quark, while in reality the b quark, and also the final state quarks, are enclosed in

hadrons, which implies presence of accompanying (spectator) quarks and strong

interaction among them, schematically illustrated in Figure 3.2. Similar diagrams

can be drawn for other decay channels. Strong interaction with the spectator

quarks causes a difference between the inclusive decay rates of Λb and B
0
d .

Unlike in the case of light hadrons, lifetimes of heavy b hadrons are predictable

by theory with a reasonably good precision. This is possible because the energy

release in the decay of heavy b quark is so large that the decay rate is dominated
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by the short-distance physics. Large momentum transfer also justifies use of the

heavy quark expansion framework (HQE) [20, 21, 22, 23, 24], which leads to a

separation (factorization) of the short-distance and long distance effects. Using

the HQE, the inclusive decay rate of hadron Hb is expressed as a sum of terms

suppressed by powers of the b quark mass, 1/mk
b :

ΓHb
=

∑

k

1

mk
b

Ck〈Hb|Ok|Hb〉. (3.1)

In this expansion, the short-distance effects are encoded in the Wilson coefficients,

Ck, which are calculated perturbatively, and the long distance physics is confined

in the matrix elements of the local ∆B = 0 operators of increasing dimension,

〈Hb|Ok|Hb〉, to be obtained from the heavy hadron spectroscopy and the lattice

QCD calculations.

It is customary to express the decay rates in terms of ratios, e.g. τΛb
/τBd

=

ΓBd
/ΓΛb

, since this way many theoretical uncertainties cancel out. Up to the

second order contribution of HQE (i.e. the term proportional to 1/m2
b), the light

quark fields do not enter the short-distance weak decay (in such approximation

the lifetime ratio would be 1). The spectator quarks contribution appear at order

of 1/m3
b , and is therefore suppressed by a factor ∼ 1/mb relative to the leading

contributions, suggesting that the spectator quark effect is small. This seems to

be true in case of lifetime ratios for B mesons, i.e. τBu
/τBd

and τBs
/τBd

, where

excellent agreement between the experimental measurements and the theoretical

prediction can be seen [18, 24]:

τBu
/τBd

∣
∣
ex

= 1.088± 0.009,

τBu
/τBd

∣
∣
th

= 1.07± 0.03,

τBs
/τBd

∣
∣
ex

= 0.951± 0.038,

τBs
/τBd

∣
∣
th

= 1.00± 0.02.

The situation is more complicated in case of the Λb to B0
d ratio. The HQE

calculations including leading order spectator quark effects [20, 21, 22, 23] (i.e.

term proportional to 1/m3
b) predict value ranging between 0.93 to 0.95. At the

time these predictions were made (i.e. 90’s of the 20th century), this value seemed

to be quite inconsistent with the experimental results from LEP experiments [15]
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that reported value close to 0.8. The controversy persisted even with early CDF

[25] and DØ results [26], τΛb
/τBd

= 0.797 ± 0.053 and 0.81 ± 0.10, respectively,

which are still inconsistent with the theoretical prediction.

This lead theorists to investigate next-to-leading order (NLO) spectator effects

(the term proportional to 1/m4
b in the HQE) and improving the pQCD calcula-

tions of the Wilson coefficients, yielding the new theoretical prediction of the ratio,

RNLO = 0.86± 0.05, bringing theoretical and experimental values into agreement

and seemingly resolving the controversy. However, the situation gets complicated

again with the updated CDF and DØ results [18, 19], analyzing the full Tevatron

Run II datasets. While the new DØ result, RDØ = 0.864±0.052(stat)±0.033(syst),

remains consistent with the theoretical prediction, the new CDF value, RCDF =

1.020±0.030(stat)±0.008(syst), is now inconsistent with both the theoretical pre-

diction and also the DØ result. It is clear that new experimental measurements at

the LHC are needed to resolve this new (this time experimental) controversy. The

result reported in this thesis (and also Ref [3]) is the first of such measurements.

Testing of the HQE calculations is of great importance, since the same theo-

retical calculation methods are also used to predict exclusive b-hadron decay rates

which are sensitive to the new physics, such as anomalous CP violation or rare and

semi-rare decays. These indirect searches for new physics would not be possible

without the excellent understanding of the b hadron decay dynamics.

3.2 Data Samples and Trigger Selection

The ATLAS experiment [11] is a general-purpose detector at the Large Hadron

Collider (LHC). It covers nearly the entire solid angle around the interaction point

with layers of tracking detectors, calorimeters, and muon chambers. The coordi-

nate system has the z-axis aligned with the beam direction. The transverse mo-

mentum, pT, and pseudo-rapidity, η, of reconstructed particles are defined with

respect to that direction. This analysis uses two ATLAS sub-systems: the inner

detector (ID) and the muon spectrometer (MS). Both are situated in a magnetic

field and serve as tracking detectors. The ID consists of three types of detector:

the silicon pixel detector (Pixel), the silicon micro-strip detector (SCT) and the

transition radiation tracker (TRT). The MS consists of monitored drift tube cham-

bers (MDT) and cathode strip chambers (CSC) for precision muon measurements,

resistive plate chambers (RPC) and thin gap chambers (TGC) employed by the
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muon trigger system. Tracks are reconstructed in the ID and the MS is used to

identify muons. Only tracks with pT above 400 MeV and pseudorapidity |η| < 2.5

are used in this analysis.

The analysis is based on data collected in 2011 using single-muon, di-muon,

and J/ψ triggers. The ATLAS trigger system [5] has three levels: the hardware-

based Level-1 trigger and the two-stage High Level Trigger (HLT). At Level-1 the

muon trigger uses dedicated fast muon-trigger chambers to search for patterns of

hits corresponding to muons passing different pT thresholds. Regions of Interest

(RoI) around these Level-1 hit patterns then serve as seeds for the HLT muon

reconstruction. Since the rate from the low-pT muon triggers was too high for

all accepted events to be saved, prescale factors were applied to a subset of the

triggers to reduce the output rate. The muon transverse momentum thresholds

for single and di-muon triggers range from 4 GeV to 22 GeV. The J/ψ di-muon

triggers require that the muons originate from a common vertex, have opposite

charge, and the di-muon mass is in the range 2.5 GeV < mµµ < 4.3 GeV. The

majority of the sample was collected by the J/ψ trigger with a pT threshold of

4 GeV applied to each muon. This was the lowest-pT unprescaled trigger in the

2011 data taking, however other complementary triggers were used, too. The pT

spectrum of the selected muons peaks at 5 GeV, the lowest muon pT is above

2.5 GeV.

The list of triggers used to collect the data sample is shown in Table 3.1. The

number of Λb events accepted by the individual triggers is shown in Figure 3.3

(top). Only events passing the offline Λb selection are counted. One event can be

accepted by multiple triggers. Figure 3.3 (bottom) shows the average prescale of

each trigger item.

The average prescales extracted from data are used to modify the trigger ef-

ficiency in the MC. This means that for a given trigger item only the fraction of

events that correspond to the average prescale is considered as accepted by the

trigger. For example if the prescale factor is 10 on average only every 10-th event

is accepted from events that fired that trigger.

3.3 Monte Carlo Samples

A Monte Carlo (MC) sample of five million anti-baryon Λ̄b events is used to study

systematic effects and to correct for the efficiency and acceptance of the detector.
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average prescales (right)
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Table 3.1: List of the used triggers

Single muon triggers Di-muon triggers J/ψ triggers

EF mu4 EF 2mu10 EF mu4 Jpsimumu

EF mu6 EF 2mu4 EF mu4T Jpsimumu

EF mu13 EF 2mu4T EF mu6 Jpsimumu tight

EF mu15 EF 2mu6 EF mu10 Jpsimumu

EF mu18 EF 2mu4 Jpsimumu

EF mu20 EF 2mu4T Jpsimumu

EF mu22 EF mu4mu6 Jpsimumu

EF mu4Tmu6 Jpsimumu

The sample is generated using the Pythia 6 MC generator [27] with the 2011

ATLAS AUET2B L0∗∗ tune [28] and the events are filtered so that each accepted

event has a decay Λ̄b → J/ψ(µ+µ−)Λ̄(p̄π+) with the muons having transverse

momenta of at least 2.5 GeV. The MC sample is generated with a Λb lifetime of

τMC
Λb

= 1.391 ps.

In addition to the Λb and B
0
d Monte Carlo samples, 4 background samples are

used to determine the selection cuts. The Monte Carlo samples are listed in Ta-

ble 3.2. Since the Monte Carlo samples are not disjoint, events containing a signal

decay are removed from the background samples to avoid double counting. Events

containing b→ J/ψX decays are removed from the direct J/ψ sample and events

containing J/ψ are removed from bb̄ → µ+µ−X and cc̄ → µ+µ−X. The individ-

ual Monte Carlo samples are weighted by the corresponding cross sections. The

bb̄→ J/ψ(µ+µ−)X sample contains too many decays Λb → J/ψ(µ+µ−)Σ0(Λ0γ) as

the branching ratio for this decay has the same value as Λb → J/ψ(µ+µ−)Λ(pπ−)

in the Monte Carlo simulation. Though the real branching ratio is unknown, this

clearly does not reflect reality. Therefore, the weight of these candidates is scaled

down by an arbitrary factor 0.1.

3.3.1 Residual Misalignment and Extra Material Geome-

tries

Before the Inner Detector can be used for a precise momentum measurement,

positions of the detector modules have to be determined with a good accuracy.

This procedure is called detector alignment. Approximate positions of the modules
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Table 3.2: Signal and background Monte Carlo samples. σ denotes the cross section
obtained from the MC generator.

Sample Stat. Generator cuts σ (nb)

Λb → J/ψ(µ+µ−)Λ(pπ−) 500k p
µ1,2
T > 2.5 GeV 0.062

B0
d → J/ψ(µ+µ−)K0

S(π
+π−) 500k p

µ1,2
T > 2.5 GeV 5.64

Inclusive direct J/ψ(µ+µ−)X 1M p
µ1,2
T > 2.5 GeV 425

Inclusive bb̄→ J/ψ(µ+µ−)X 1M p
µ1,2
T > 2.5 GeV 55.8

Inclusive bb̄→ µ+µ−X 6M p
µ1,2
T > 2.5 GeV 509

Inclusive cc̄→ µ+µ−X 3M p
µ1,2
T > 2.5 GeV 166

are known from the detector blueprints, however, actual position of individual

modules may be shifted due to manufacturing imperfections and distortions of the

supporting structure. The alignment algorithm [29, 30] uses real data tracks and

adjusts positions of individual modules to minimize the residuals, i.e. distance

between the hit position measured by the detector and the position interpolated

from the track. Although the alignment procedure improves the tracking position

and momentum resolution significantly, there will still be some imperfections in

the knowledge of the detector module positions, given by the fact the the finite

number of tracks is used in the alignment procedure and also that some collective

alignment degrees of freedom are not sensitive to the alignment procedure. The

detector misalignment after the alignment procedure is performed is called residual

misalignment.

To study the effects of the residual misalignment of the Inner Detector, an

additional MC sample of 500k events is used. This sample is generated the same

way as the default one, however, it is reconstructed using a detector geometry

where the position of the individual modules is shifted to model the residual mis-

alignment in the real detector. The detailed description of this distorted geometry

can be found in Ref [31]. To get the distorted geometry the following procedure

is used:

1. Using real data the distributions of the track transverse impact parameter,

d0, are obtained in 25 × 25 bins of η and φ. In each bin the mean shift of

the impact paremeter, δd0, is determined creating an impact parameter bias

map.
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Table 3.3: Detector geometry with additional material

Detector subsystem Extra material (X0)

The whole ID 5%

Pixel services 20%

SCT services 20%

SCT/TRT End-cap 15%

ID endplate 15%

2. The ID alignment algorithm [29, 30] is performed on the Monte Carlo tracks,

where the simulated tracks are refitted with a constraint on the impact

parameter forcing the bias d0+ δd0, with δd0 taken from the map. This way

the tracking detector modules are misaligned to reflect the impact parameter

bias observed in real data.

3. The obtained misaligned geometry is used to re-reconstruct the signal Λ̄b

sample.

To study effects of uncertainty in the amount of ID material, the detector

simulation is performed assuming some additional material in the detector. The

geometry with extra material (see Table 3.3) is used for the simulation, however,

the default matrial map is used in the reconstruction of the sample. This creates

a discrepancy between real and assumed amount of material in the ID. In Ref [32]

the uncertainty on the material amount is measured for the beam pipe, the Pixel

detector and the first layer of the SCT. The cited analysis uses secondary vertices

to estimate rates of hadronic interactions within ID material and compares results

for data and MC. The measured ratio of the hadronic interaction rates in data

and MC differs by less than 6% in the Pixel detector and 9% in the first layer of

SCT. The used extra material geometry contains 20% extra material in Pixel and

SCT sub-systems and one can therefore use this geometry to make a conservative

estimate of the material uncertainty systematic uncertainty.
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3.4 Reconstruction and Signal Selection

3.4.1 Muon Reconstruction

The muon reconstruction uses two sub-detectors: the Inner Detector (ID) and

the Muon Spectrometer (MS). Both are situated in a magnetic field and serve as

tracking detectors. ID tracks are reconstructed by 3 types of detector: silicon pixel

detector (Pixel), silicon micro-strip detector (SCT) and the transition radiation

tracker (TRT). They are reconstructed with pseudorapidity |η| < 2.5 and trans-

verse momentum pT > 400 MeV. Two types of muons are used in the analysis,

known as tagged muons and combined muons. Combined muons are formed from

a MS track which is matched to an ID track. The pseudorapidity coverage of com-

bined muons is |η| < 2.5. Tagged muons consist of ID tracks extrapolated to the

Muon Spectrometer and matched to patterns of MS hits and they cover pseudo-

rapidity range |η| < 2.2. Although both the ID and the MS provide a momentum

measurement, in the pT range relevant for this analysis the MS momentum resolu-

tion is worse than that of the ID due to energy loss in the calorimeters. Therefore

the MS is used only to identify muons, and the momentum measurement is taken

from the ID. The standard muon quality requirements must be satisfied by the

muon tracks:

• The ID track must have a hit in the first layer of the pixel tracker (b-layer)

whenever expected. If the track falls out of the b-layer coverage or if there

is a cluster of dead pixels the presence of the hit is not required;

• The number of pixel hits plus the number of crossed dead pixel sensors must

be greater than one for the ID track;

• The number of SCT hits plus the number of crossed dead SCT sensors must

be greater than five;

• The number of pixel holes plus the number of SCT holes on the track must

be less than two;

• Let nTRT stands for the number of TRT hits on the track, nTRT,out the

number of TRT outliers, and n = nTRT + nTRT,out. Then for tracks with

|η| < 1.9 it is required that n > 5 and nTRT,out < 0.9n. For tracks that have

|η| > 1.9 and n > 5 the number of outliers must be nTRT,out < 0.9n.
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Figure 3.4: Invariant mass distribution of pre-selected J/ψ (left) and Λ (right) candi-
dates. A single run of 77 pb−1 is used to make the plots.

3.4.2 J/ψ and Λ Pre-selection

The decay Λb → J/ψ(µ+µ−)Λ(pπ−) has a cascade topology. The J/ψ decays

instantly at the same point as the Λb (secondary vertex) while the Λ lives long

enough to form a displaced tertiary vertex. There are four final-state particles:

two muons from the J/ψ, and a proton and a pion from the Λ decay.

The di-muon and di-hadron (V 0) pairs are pre-selected by requiring that their

tracks can be successfully fitted to a common vertex satisfying some basic qual-

ity requirements. The J/ψ and V 0 pre-selection is very loose, so that potential

candidates are not excluded at this stage. The di-muon candidates are accepted

if the J/ψ vertex-refitted invariant mass lies in the range 2.8 GeV < mµµ <

3.4 GeV. The di-hadron candidates are accepted if the invariant mass is in the

range 1.08 GeV < mpπ < 1.15 GeV. The masses of a proton and a pion are

assigned to the tracks when the invariant mass is calculated; pπ− and p̄π+ com-

binations are tested so that both Λ and Λ̄ candidates are accepted. J/ψ and V 0

candidates are pre-selected using loose selection criteria so that potential signal

candidates are not lost at this stage. Using one large run from period G of the

2011 data sample the distributions of pre-selected J/ψ and Λ invariant masses are

shown in Figure 3.4.

3.4.3 Reconstruction of Λb → J/ψ(µ+µ−)Λ(pπ−)

The muon and hadron track pairs pre-selected with the criteria described in the

previous section are then refitted with a constraint of a Λb → J/ψ(µ+µ−)Λ(pπ−)
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topology. The muons are constrained to intersect at a single vertex while their

invariant mass is set equal to the known mass of the J/ψ, mJ/ψ = 3096.92 MeV

[15]. The two hadronic tracks are constrained to a second vertex and their invariant

mass is fixed to the mass of the Λ, mΛ0 = 1115.68 MeV [15]. The combined

momentum of the refitted V 0 track pair is constrained to point to the di-muon

vertex in three dimensions. The decay topology is schematically illustrated in

Figure 3.5. The fit is performed on all four tracks simultaneously, taking into

account the constraints described above (cascade topology fit) and the full track

error matrices. The quality of the fit is characterized by the value of χ2/Ndof ,

where a global χ2 involving all four tracks is used. The corresponding number

of degrees of freedom, Ndof , is six. Furthermore, for each track quadruplet, that

can be successfully fitted to the Λb decay topology, a B0
d → J/ψ(µ+µ−)K0

S(π
+π−)

topology fit is attempted (i.e. a pion mass is assigned to the hadronic tracks and

the V 0 mass is constrained to the mass of K0
S, mKS

= 497.65 MeV [15]). This is

to label possible B0
d decays misidentified as Λb.

The Λb candidates are then subjected to the following selections:

• The global χ2/Ndof < 3;

• The transverse momentum of the cascade-refitted V 0, pT,V 0 > 3.5 GeV;

• The transverse decay length of the cascade-refitted V 0 vertex measured from

the Λb vertex, Lxy,V 0 > 10 mm;
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Figure 3.6: Monte Carlo signal and background distributions: χ2/Ndof (top left),
refitted V 0 transverse momentum, pT,V 0 (top right), Λ decay distance (measured from
the Λb vertex), Lxy,Λ0 (bottom left), and the difference between the Λb and B0

d fit
probabilities, PΛ0

b
−PBd

(bottom right). The cut values are indicated by vertical dotted
lines.

• The invariant mass must be in the range 5.38 GeV < mJ/ψΛ0 < 5.90 GeV;

• If the four tracks forming a Λb candidate also result in an acceptable B0
d fit,

the candidate must have a difference of cumulative χ2 probabilities of the

two fits, PΛ0
b
− PBd

> 0.05.

The selection cuts described above are determined using the MC samples.

Distributions of the cut variables for MC signal and background are shown in

Figure 3.6. The contribution of the B0
d decays to the MC background is shown in

Figure 3.7. The figure shows the relative contribution of the MC signal and B0
d

background before and after the B0
d removal. Note that although most of the B0

d

background is removed, the procedure is not 100% efficient.

With these criteria, 4074 Λb and 4081 Λ̄b candidates (including background)

are selected. No track quadruplet is successfully fitted as both a Λb and a Λ̄b
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candidates.

decay. The mass distributions of the selected candidates are shown in Figure 3.8

(left) and the transverse momentum distributions of Λb, the muons, the proton,

and the pions from the decay chain are shown in Figure 3.9. In the rest of this

chapter the Λb and Λ̄b samples are combined, unless explicitly stated otherwise.

The B0
d → J/ψ(µ+µ−)K0

S(π
+π−) channel has the same decay topology as Λb →

J/ψ(µ+µ−)Λ(pπ−) and can be used to cross-check the Λb results and to determine

the ratio of the Λb and B
0
d lifetimes. The B0

d channel is subjected to exactly the

same kinematic cuts as for the Λb channel, with the only difference being the

mass range used for the K0
S pre-selection, 440 MeV < mπ+π− < 570 MeV, the B0

d

invariant mass range, 5.1 GeV < mJ/ψK0
S
< 5.5 GeV, and the Λb contamination

removal criterion, PBd
− PΛ0

b
> 0.05. Using these criteria 27594 of B0

d candidates
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Figure 3.9: Transverse momentum distributions for Λb (top left), muons (top right),
protons (bottom left), and pions (bottom right).

are selected. The invariant mass distribution is shown in Figure 3.8 (right).

3.4.4 Primary Vertex Selection

The distribution of the multiplicity of the reconstructed collision vertices is shown

in Figure 3.10 (left). On average there are 6.8 collision vertices per event in the

selected data resulting from multiple collisions at each LHC bunch crossing (pileup

events). The collision vertex that lies closest to the direction of the reconstructed

Λb momentum is used as the primary vertex. In 95% of the cases the chosen

vertex has the largest sum of squares of transverese momenta of the tracks used

to fit the vertex. This is illustrated in Figure 3.10 (right) where the index of the

collision vertex that is used as the primary vertex is shown. The collision vertices

are ordered by the sum of squares of track transverse momenta, i.e. the vertex

with index 0 has the largest sum-p2T .
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3.5 Mass and Proper Decay Time Fit

The proper decay time of the Λb candidate is calculated from the measured decay

distance and the candidate’s momentum as follows:

τ =
Lxym

PDG

pT
,

where mPDG = 5619.4 MeV [15], pT is the reconstructed Λb transverse momentum,

and Lxy is the Λb transverse decay distance measured from the primary vertex

(PV).

An unbinned maximum likelihood fit is used to determine the Λb mass and

lifetime. The mass and proper decay time are fitted using a likelihood function

defined as follows:

L =
N∏

i=1

[

fsigMs(mi|δmi
)Ts(τi|δτi)ws(δmi

, δτi) +

(1− fsig)Mb(mi|δmi
)Tb(τi|δτi)wb(δmi

, δτi)
]

,

where fsig denotes the fraction of signal candidates; mi is the invariant mass of

the i-th candidate and τi is its proper decay time. The corresponding errors, δmi

and δτi , are estimated on a candidate-by-candidate basis by the cascade topology

fit. Ms and Mb are probability density functions (PDFs) describing the signal

and background mass dependence; Ts and Tb describe the dependence on the

proper decay time. The invariant mass and proper decay time error distributions,
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ws(b)(δm, δτ ) = w′
s(b)(δm)w

′′
s(b)(δτ ), are extracted from data. It has been verified

that using separate PDFs for the signal and background component produces the

same result as when a single PDF is used, i.e. w ≡ ws = wb. For this reason the

latter (simpler) case is used.

The background can be divided into two categories: prompt and non-prompt

background. The prompt background consists of J/ψ candidates produced directly

in the pp collision that are randomly combined with V 0 candidates, which also

include fake combinatorial Λ or K0
S candidates. The prompt background decay

length is only due to the finite resolution of the vertex reconstruction. The non-

prompt background includes events where the J/ψ candidate originates in a decay

of a b-hadron. This type of background has a lifetime due to its origin in long-lived

b-hadrons [e.g. B0
d → J/ψ(µ+µ−)K0

S(π
+π−), with the K0

S meson misidentified as

Λ, forming a non-prompt background for Λb].

The signal component of the mass PDF, Ms, is a Gaussian function with a

mean equal to mΛb
and width Smδm. The mass error scale factor, Sm, determines

how much the errors δmi
are overestimated or underestimated. The background

component is a first order polynomial with a slope b defined as follows:

Mbkg(m|δm) =
1

∆m
[1 + b (m−mC)] , (3.2)

where ∆m = mmax − mmin and mC = (mmax + mmin)/2, with mmax and mmin

being the edges of the invariant mass fit range. In case of B0
d fit an additional

background term is added to the formula (3.2):

Mbkg,4(m|δm) = N 1

e
m−mbkg,4

σbkg,4 + 1

, (3.3)

where mbkg,4 and σbkg,4 are parameters of the fit. This term describes a non-

linear increase of background for mJ/ψK0
S
< 5150 MeV (see Figure 3.8, right). The

factor N normalizes the function to 1 in the fitted mass range. Parameters mbkg,4

and σbkg,4 determine the position and the slope of the non-linear background

component, respectively. This background component can be attributed to the

decays of B0
d with incompletely reconstructed final state (i.e. B0

d → J/ψK0
S +X,

with X being one or more pions).

Using the estimated decay time error, δτ , the proper decay time resolution is
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modeled with a Gaussian function:

R(τ − τ ′|δτ ) =
1√

2πSτδτ
e
−

(τ−τ ′)2

2(Sτ δτ )2 , (3.4)

where Sτ denotes the proper decay time error scale factor, τ and τ ′ stand for the

reconstructed and true proper decay times, respectively.

The signal and non-prompt background proper decay time distributions are

modeled as exponential functions, E(τ ′; τB), for τ
′ > 0; with τB being the fitted

parameter denoting either the Λb lifetime, or the pseudo-lifetime of the long-lived

background. The prompt background component is modeled by a sum of two

functions: a Dirac δ-function, δDirac(τ
′), and a symmetric exponential (Laplace

distribution), Esym(τ
′), to account for the non-Gaussian tails of the prompt back-

ground observed in data.

The functions are convolved with the resolution model (3.4) to obtain the PDFs

of the measured proper decay time:

Ts(τ |δτ ) = ε(τ ′)−1E(τ ′; τΛb
)⊗R(τ − τ ′|δτ ), (3.5)

Tb(τ |δτ ) =
[

f1Tp(τ
′) + (1− f1)Tnp(τ

′)
]

⊗
R(τ − τ ′|δτ ),

with the non-prompt and prompt components defined as

Tnp(τ
′) = f2E(τ

′; τbkg,1) + (1− f2)E(τ
′; τbkg,2),

Tp(τ
′) = f3δDirac(τ

′) + (1− f3)Esym(τ
′; τbkg,3).

The efficiency correction function, ε(τ ′), in Eq. (3.5) accounts for the decay-time-

dependent selection bias, explained in Section 3.5.2.

3.5.1 Parameters Determined from the Fit

The full PDF has 12 free parameters:

• the Λb mass and lifetime, mΛb
and τΛb

;

• the fraction of signal events, fsig;

• the error scale factors, Sm and Sτ ;
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0
d (right). The

MC efficiency is fitted with an exponential function. The y-axis has a suppressed zero.
The displayed error is statistical only.

• the slope of the mass dependence of the background, b;

• the pseudo-lifetimes of the long-lived background, τbkg,1 and τbkg,2; the ex-

ponential slope of the non-Gaussian prompt background, τbkg,3;

• and the relative fractions of the various background contributions, f1, f2,

and f3.

Other quantities are calculated from the fit parameters. The number of signal

and background candidates, Nsig and Nbkg, are calculated as Nsig = fsigN and

Nbkg = (1 − fsig)N , where N is the total number of candidates. The mass and

proper decay time resolutions are calculated from the fit parameters, too. By

analogy with a Gaussian distribution, the mass resolution, σm, is defined as half of

that mass range for which the integral of Ms retains 68.3% of the number of signal

events symmetrically around the fitted Λb mass. The proper decay time resolution,

στ , is determined in the same fashion by integrating the prompt background PDF.

3.5.2 Efficiency Correction

Two sources are responsible for the selection bias in the Λb decay time: the V 0

reconstruction efficiency and the trigger selection. The efficiency correction, ε(τ ′),

is determined using the MC sample which is weighted to reproduce biases ob-

served in data, as explained in the following sections. It is modeled as a simple

exponential,

ε(τ ′) ∝ e−τ
′/cΛb , (3.6)
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where cΛb
denotes the slope of the efficiency correction. The exponential form

is chosen for ε(τ ′) because it describes the MC well and is particularly easy to

convolve with the resolution model. The slope of the exponential, cΛb
, is extracted

from a fit to the MC decay time efficiency plot shown in Figure 3.11. The extracted

value is cΛb
= 113 ± 56 ps for Λb and cBd

= 94 ± 43 ps for B0
d . The Λb and

B0
d lifetimes are biased toward smaller values. In the MC simulation, the bias

correction accounts for a Λb lifetime shift of 26 fs (25 fs for B0
d), which can be

broken into 10 fs due to the V 0 reconstruction efficiency and 16 fs due to the

trigger (for B0
d the corresponding numbers are 11 fs and 14 fs), as explained in the

following sections.

Bias Due to the V 0 Reconstruction Efficiency

The V 0 reconstruction efficiency drops with the distance of the decay vertex from

the center of the detector, Rxy,V 0 , as tracks from displaced vertices have fewer

hits than those decaying close to the center of the detector (see Figure 3.12, left).

This inefficiency in V 0 reconstruction projects directly into the Λb reconstruction

efficiency, because the V 0 and Λb decay distances are correlated. One can easily

imagine this correlation if one assumes that the Λ and Λb momenta are almost

parallel: then the decay distance of Λb can be expressed as Lxy,Λb
≈ Rxy,V 0−Lxy,V 0

(see Figure 3.12, right). If the detector is inefficient for large Rxy,V 0 , it will favour

cases with smaller Lxy,Λb
. Similarly, the cut Lxy,V 0 > 10 mm favours cases where

Lxy,Λb
is small. Under normal circumstances this bias is quite small. However, the

effect can be enhanced by cutting tightly on Rxy,V 0 or by increasing the value of

the Lxy,V 0 cut.

To study the bias due to the V 0 reconstruction separately from the bias caused

by the trigger one has to disable the trigger selection in the MC. As a consequence,

the muon pT distribution will not agree with data. To ensure that the kinematic

distribution of the Λb candidates in the MC sample is similar to the ones in data

the weighting procedure is used. Using the signal MC a 2D histogram of the

muon momenta, pT,µ+ and pT,µ− , is filled. For data, the same histogram is filled

separately for the signal region (5520–5720 MeV for Λb and 5200–5360 MeV for

B0
d) and for the sidebands. It is assumed that the background muon momentum

distribution does not change (or changes linearly) with the b-hadron invariant

mass, i.e. that the pT distribution of background muons in the signal region is the

same as that in the sidebands. Then one can subtract the sideband distributions
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Figure 3.12: Reconstruction and selection efficiency of Λ̄ as a function of the distance
from the center of the detector (left). The cut of pT > 400 MeV was applied on the
generator-level proton and pion tracks to remove the inefficiency caused by the recon-
struction tracking pT threshold. Definition of the Λb and V

0 decay distances (right).

 (GeV)
T

p 

0 10 20 30 40 50 60 70

 C
a

n
d

id
a

te
s

0

2000

4000

6000

8000

10000
MC signal

Sidebands­subtracted data

­1 = 5 fbL
 = 7 TeVs

 (GeV)
d

T,B
 p

0 10 20 30 40 50 60 70

 C
a

n
d

id
a

te
s

0

500

1000

1500

2000

2500

3000

3500

4000

4500
MC signal

Sidebands­subtracted data

­1 = 5 fbL
 = 7 TeVs
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the weighted signal-only MC for Λb (left) and B

0
d (right).

from the signal-region to get an estimate of the pure signal distribution. The

weight of the subtracted histogram is calculated as follows:

wsub = −(1− f ′
sig)

Ncenter

Nsb

, (3.7)

where Ncenter and Nsb are the observed numbers of events in the signal region and

the sidebands, while f ′
sig is the signal fraction in the signal region extracted from

the invariant mass fit. The muon pT weight matrix is obtained by dividing the

data histogram by the MC one. Figure 3.13 shows the comparison of the b-hadron

pT distributions for data and weighted MC.
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Trigger Bias of the Muon Transverse Impact Parameter

It has been observed that the muon trigger biases the transverse impact parameter

of muons, d0, toward smaller values. Since muon tracks are used to determine the

position of the Λb vertex this causes a bias in the measured decay distance of Λb.

This bias is caused by the level-2 muon trigger. Although the trigger is simulated in

the MC, its impact on the muon transverse impact parameter, d0, is not modelled

realistically (the bias is too large in the used MC simulation). Therefore, a tag-and-

probe method using J/ψ is implemented to measure the muon trigger selection

efficiency as a function of d0. The procedure can be described in the following

steps (illustrated in Figure 3.14):

1. The J/ψ sample is collected using the single muon trigger EF mu18. This

is the lowest threshold single muon trigger that was unprescaled in the 2011

data running.

2. The J/ψ candidate is reconstructed in the event using the offline recon-

struction software. One of the J/ψ muons is matched to the trigger object

EF mu18. The matching is done using a ∆R < 0.003 criterion. This muon

is called Tagged muon. The other muon is called Probe muon. If both J/ψ

muons are matched to the EF mu18 then both muons will also be used as

probes. Since no trigger is required to explicitly trigger on the probe muons,

they represent an unbiased sample and can be used to determine the effi-

ciency.

3. A histogram distribution of the transverse impact parameter, d0, of all probe

muons is made. This is used as the denominator of the efficiency plot.

4. Triggered probe muons are selected by requiring that they match the

EF mu4 Jpsimumu trigger object. The other muon of the EF mu4 Jpsimumu

is required to match the tag muon. If the probe muon fires EF mu18, it will

also fire EF mu4 and therefore this matching criterion does not further de-

crease the selection efficiency.

5. The efficiency function is obtained by dividing the d0 distribution of the

trigger-matched probe muons by the denominator plot from step 3. Since

the EF mu4 Jpsimumu trigger performs a vertex fit the efficiency obtained

this way will also include the efficiency of the trigger vertex fit. It is assumed
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Figure 3.14: Tag-and-probe method with J/ψ to measure a single-muon trigger effi-
ciency. The sample is collected by the EF mu18 trigger which is matched to the tag
muon (left). The other J/ψ muon is used as a probe (right) to measure an efficiency of
EF 2mu4 Jpsimumu trigger.

trueτ 

0 1 2 3 4 5 6 7 8 9 10

 C
a

n
d

id
a

te
s

0

1000

2000

3000

4000

5000

6000

7000

 0.009 ps± = 1.127 
b

Λτ

Monte Carlo MC11

 = 7 TeVs
Unweighted

trueτ 

0 1 2 3 4 5 6 7 8 9 10

 C
a

n
d

id
a

te
s

0

1000

2000

3000

4000

5000

6000

7000

 0.010 ps± = 1.393 
b

Λτ

Monte Carlo MC11

 = 7 TeVs
­weighted

0
d

Figure 3.15: MC Λb lifetime fit for the sample selected by the di-muon trigger
EF 2mu4 Jpsimumu. Fit to the unweighted events (left) and d0-weighted events (right).

that vertexing does not have a significant impact on d0, which is confirmed

using the MC simulation.

The trigger selection efficiency as a function of the muon d0 is measured using

the tag-and-probe method in both data and MC samples, in 5 bins of muon pT

separately in the barrel and end-cap regions. A comparison between the data

and MC is shown in Figures A.1 and A.2, where a clear discrepancy is visible.

Therefore, the MC events are weighted to achieve an agreement with the data.

The MC weighting procedure consists of 2 steps: first the MC data are weighted

to remove the d0 bias completely. This is to confirm that the Λb lifetime shift

observed in the MC indeed comes from the d0 bias. Then, the MC is weighted to

achieve an agreement with data and this sample is used to estimate the magnitude

of the shift and corresponding the systematic error.
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From the d0-efficiency plots in Figures A.1 and A.2 the weighting functions are

determined. The weighting function is parametrized as a linear function of d0:

w(d0) = a0(1 + a1d0), (3.8)

where a1 is the magnitude (slope) of the correction. For the “no-bias” weights the

slope, a1, will correspond to the negative value of the slope obtained by fitting

efficiency plots in Figures A.1 and A.2.

For events selected by the di-muon triggers the event weight is determined as

the product of the weights (3.8) for both of the J/ψ muons. In case of events trig-

gered by single-muon triggers, the event is weighted using the impact parameter

of the leading J/ψ muon. Figure 3.15 shows the true Λb proper decay time distri-

bution in the MC sample triggered by EF 2mu4 Jpsimumu before and after the

d0 weighting. The distributions are fitted by an exponential function to extract

the lifetime. While in the unweighted sample (Figure 3.15, left) the fitted lifetime

shows a large shift, the lifetime of the weighted sample (right) agrees with the

generated lifetime, τMC
Λb

= 1.391 ps.

For the single-muon triggers the correction does not work so well, since there

is an ambiguity in which muon has triggered the event (the assumption that it

was the leading one may not be always correct) and also the probability that the

event is triggered by a third, non-J/ψ, muon is larger. Therefore, the weight (3.8)

over-corrects the bias. One has to adjust the slope of the correction a1 for single

muon triggers so that an agreement with the generated Λb lifetime is achieved.

This is done for each trigger item in the menu, so that when the full trigger menu

with appropriate prescale factors is used, the fitted Λb lifetime in the MC agrees

with the generated value.

Once this closure test is concluded, weights that correct d0 to the bias observed

in data are used instead, while using the same adjustment factors for single-muon

triggers that were determined in the previous step. The new weights, w(d0), are

extracted by dividing the data and MC plots in Figures A.1 and A.2 and fitting

the ratio with a linear function. The MC sample weighted this way is used to

determine the lifetime shift due to the trigger selection. Although this method is

data-driven, it still relies on the MC for determination of the adjustment factors

for single-muon triggers.
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Table 3.4: Results of the maximum likelihood fit for Λb. The uncertainties shown here
are statistical only. The number of degrees of freedom used for the χ2 calculation is
Ndof = 61.

Parameter Value Par. Value Par. Value

mΛb
(MeV) 5619.7± 0.7 fsig 0.268± 0.007 Nsig 2184± 57

τΛb
(ps) 1.449± 0.036 f1 0.61± 0.01 Nbkg 5970± 160

b (GeV−1) −0.145± 0.003 f2 0.70± 0.04 σm (MeV) 31.1± 0.8

τbkg,1 (ps) 1.31± 0.06 f3 0.91± 0.02 στ (ps) 0.117± 0.003

τbkg,2 (ps) 0.26± 0.05 Sm 1.18± 0.03

τbkg,3 (ps) 0.36± 0.05 Sτ 1.05± 0.02 χ2/Ndof 1.09

Table 3.5: Results of the maximum likelihood fit for B0
d . The uncertainties shown here

are statistical only. The number of degrees of freedom used for the χ2 calculation is
Ndof = 92.

Parameter Value Par. Value Par. Value

mBd
(MeV) 5279.6± 0.2 fsig 0.635± 0.004 Nsig 17530± 110

τBd
(ps) 1.509± 0.012 f1 0.57± 0.01 Nbkg 10069± 65

b (GeV−1) −0.156± 0.004 f2 0.78± 0.05 σm (MeV) 27.8± 0.2

τbkg,1 (ps) 1.49± 0.06 f3 0.86± 0.02 στ (ps) 0.107± 0.003

τbkg,2 (ps) 0.47± 0.09 Sm 1.11± 0.01

τbkg,3 (ps) 0.32± 0.03 Sτ 1.06± 0.02 χ2/Ndof 1.03

The lifetime shift attributed to the trigger bias estimated using this method is

16 fs for the Λb and 14 fs for B0
d .

3.6 Extraction of the Lifetime and Mass

3.6.1 Results of the Maximum Likelihood Fit

The results of the maximum likelihood fit are listed in Table 3.4 for Λb and Ta-

ble 3.5 for B0
d . The tables show the fitted parameters, quantities calculated from

these parameters, and a χ2/Ndof value which quantifies the fit quality. The χ2/Ndof

value is calculated from the dataset binned in mass and decay time with 61 degrees

of freedom in case of Λb and 92 in case of B0
d . The sizes of the bins are commensu-

rate with the measured mass and decay time resolutions and only bins with more

than 11 entries are used for the χ2 calculation. This requirement is imposed so
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Figure 3.16: Projections of the fitted PDF onto the mass (left) and the proper decay
time (right) axes for Λb candidates. The errors of the listed fit result values are statistical
only. The χ2/Ndof value is calculated from the dataset binned in mass and decay time
with the number of degrees of freedom Ndof = 61.

that the error on the number of entries in each bin can be taken as Gaussian. The

lifetime result is corrected for the selection bias (see Section 3.5.2). An estimate of

the correlation matrix is shown in Table A.1. The estimated correlation between

the mass and lifetime is small, 0.002. Projections of the PDF onto the mass and

proper decay time axes are shown in Figure 3.17 for Λb and Figure 3.17 for B0
d .

3.6.2 Systematic Uncertainties

Systematic uncertainties are estimated by changing various parameters of the anal-

ysis and observing the shift in the extracted mass and lifetime. The shift with

respect to the baseline result is then quoted as a systematic uncertainty. The

non-negligible systematic uncertainties are summarized in Table 3.6. The individ-

ual errors are added in quadrature, yielding total systematic uncertainties of the

Λb lifetime and mass measurements, σsyst
τ = 17 fs and σsyst

m = 1.1 MeV, respec-

tively. The estimated systematic uncertainties of B0
d measurement are σsyst

τ = 18 fs

and σsyst
m = 1.0 MeV. Details of the determination of the systematic uncertainties

follow:

Event Selection and Reconstruction Bias

In this section, a systematic uncertainty due to the selection and reconstruction

bias is discussed. Its impact on the decay time is studied first. Two effects that

lead to a decay time-dependent selection bias have been identified: the dominant
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Figure 3.17: Projections of the fitted PDF onto the mass (left) and the proper decay
time (right) axes for B0

d candidates. The errors of the listed fit result values are statistical
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with the number of degrees of freedom Ndof = 92.

contribution comes from the muon trigger, which slightly biases the transverse

impact parameter of muons, d0, toward smaller values. The second bias comes

from the V 0 reconstruction. The event selection bias is corrected using the MC

simulation, determining the efficiency as a function of the decay time, as described

in Section 3.5.2. Three components of the systematic uncertainty are considered:

1. Uncertainty of the efficiency correction function fit;

2. Uncertainty of the MC re-weighting;

3. Uncertainty of the V 0 selection bias estimation.

The first uncertainty relates to the precision with which the correction function

is determined. The slope of the correction function, cΛb
, is fitted with a statistical

accuracy of about 50% (cΛb
= 113± 56 ps and cBd

= 94± 43 ps). Using standard

error propagation, this statistical uncertainty is propagated to the uncertainty of

the lifetime measurement:

στ,c ≈
(τB
c

)2

σc, (3.9)

where σc is the estimated statistical uncertainty of the correction factor c. For-

mula (3.9) is an approximation assuming that c ≫ τB, which is satisfied in this

case. Plugging the values for Λb and B
0
d into the formula gives the corresponding

lifetime uncertainties, 9 fs and 11 fs, respectively.

To ensure that the MC trigger simulation describes the data well, the MC is re-

weighted using the output from the tag-and-probe measurements of single-muon
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Table 3.6: Summary of the systematic uncertainties of the lifetime measurement, σsystτ ,
and the mass measurement, σsystm , for Λb and B

0
d .

Syst. uncertainty Lifetime (fs) Mass (MeV)

Λb B0
d

Λb B0
d

Selection/reco. bias 12 15 0.9 0.9

Background fit models 9 10 0.2 0.1

Physics background 7 0 0.2 0.0

Residual misalignment 1 1 0.0 0.0

Extra material 3 3 0.2 0.2

Tracking pT scale 0 0 0.5 0.5

Total systematic error 17 18 1.1 1.0

trigger efficiencies. The second uncertainty in the list quantifies the precision

of this re-weighting. The used weighting functions are parameterized as linear

functions of muon impact parameter, w(d0) ∝ 1 + ad0, and their slope, a, is

determined by a linear fit in bins of the muon pT and η. To assess the systematic

uncertainty on the trigger bias correction, the weighting parameters a are varied

by their estimated errors. This produces a lifetime shift of 7 fs (for both Λb and

B0
d), which is used as an estimate of this systematic uncertainty.

Finally, the effect of the V 0 selection is estimated. The V 0 selection bias

is caused by the fact that the Λb and Λ transverse decay distances are correlated

(Figure 3.12, right). As a consequence, selection cuts applied on Λ transverse decay

distance will affect indirectly the Λb distance, too. The transverse decay distance

depends on the particle’s decay time and its transverse momentum, since faster

particles will travel larger distances before decaying. Since the MC simulation is

used to correct for the V 0 selection bias, one has to make sure that the Λb pT

distribution is modeled correctly in MC. The comparison is shown in Figure 3.13.

The mean Λb pT in the MC sample agrees with the mean pT in data within 0.7 GeV.

Using the kinematic weighting, this agreement is made worse by about a factor of

3, which in turn results in a decay time shift of 4 fs for Λb and 7 fs for B0
d . These

values are taken as estimates of the uncertainty of the V 0 bias correction.

Adding these three contributions together, the total systematic uncertainty

due to the selection bias is obtained: 12 fs for Λb and 15 fs for B0
d .
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Reconstruction Bias

Apart from the selection bias, discussed in the previous paragraphs, the mea-

surement can also be affected by the reconstruction bias. This means that the

measured quantities, the proper decay time and the invariant mass, can be sys-

tematically shifted towards larger or smaller values. At the first approximation

this bias can be estimated using the MC simulation by looking at the decay time

and mass resolution plots, however, this test only probes effects modeled in the MC

simulation. Additional, more sophisticated tests aimed to study specific effects are

performed, too, and are described separately in the following paragraphs.

The reconstruction bias is determined using a double-Gaussian fit to the dis-

tributions of ∆τ = τMC − τ and ∆m = mMC − m, where τMC and mMC denote

the generator-level values of the decay time and mass, while τ and m stand for

the reconstructed ones. The bias is determined as a mean of the fitted double-

Gaussian, as shown in Figure 3.18. A shift of −0.9±0.3 MeV is observed, meaning

that the reconstructed mass is slightly overestimated. This mass shift is caused

by the muon trigger pT thresholds: muons with larger pT have higher probability

of being selected than low-pT muons. As a consequence, muons whose pT is mis-

measured larger than the true value have higher probability of being reconstructed

than muons whose pT is mis-measured smaller, which creates a small asymmetry

of the mass peak. By applying cut on true muon pT which is above the muon

trigger efficiency turn-on curve (e.g. 6 GeV for EF 2mu4 Jpsimumu trigger) one

can remove the mass bias in MC, however, such a cut is not possible in data. The

reconstruction bias on the decay time, 2 fs, is negligible compared to the system-

atic uncertainties due to the V 0 and trigger selection, described in the previous

paragraph.

For each candidate, a proper decay time error, δτ , and a mass error, δm, are

estimated by the cascade topology fitter. The MC sample is used to test the

goodness of the error estimate by plotting the pull distributions for the mass and

proper decay time (see Figure 3.19). The pulls are defined as ∆τ/δτ = τMC−τ
δτ

and ∆m/δm = mMC−m
δm

. A Gaussian function is fitted to the distributions. The

value of the decay time pull distribution width, 1.028 ± 0.007, indicates that the

decay time errors are estimated correctly. The width of the mass pull distribution,

1.134 ± 0.008, is slightly larger than one, however, the number is consistent with

the scale factor, Sm (see Table 3.4), which means that the fit is performed correctly.
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Background Fit Models

Alternative background models are used to assess the sensitivity of the results to

the choice of background parameterization. A second-order polynomial and an

exponential mass dependence of the Mb PDF are tested. In addition the decay

time dependence is modified by adding a third exponential into the non-prompt

background component, Tnp. The alternative background PDFs fit the data well.

These changes result in a lifetime shift of 2 fs and a mass shift of 0.2 MeV. In the

background fit model the decay time and mass are assumed to be uncorrelated.

To test this assumption the fit’s mass range limits, mmin and mmax, are varied

independently by 60 MeV (Figure 3.20). This changes the relative contribution

of the background from the left and right sidebands, and the mass and lifetime
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Figure 3.20: Dependence of the fitted lifetime (top) and mass (bottom) on the chosen
value of the mass range, mmin (left) and mmax (right). The baseline result is indicated
by a dotted line.

are extracted again for these new mass ranges. While the change of mmax has a

minimal impact on the extracted mass and lifetime, the change of mmin produces

a lifetime shift of 9 fs. This value is added to the total systematic error due to

background modeling.

Physics Background: B0
d
and Λb Contamination

The number of B0
d candidates misidentified as Λb is estimated by a fit to the

mass distribution of the candidates which fall in the Λb signal region, 5.52 GeV <

mJ/ψΛ0 < 5.72 GeV, under the hypothesis that they areB0
d → J/ψ(µ+µ−)K0

S(π
+π−)

decays (see Figure 3.21, left). A fit to a Gaussian peak on a linear background

yields 82 ± 46 B0
d candidates. Since these candidates are treated as Λb, their

pseudo-lifetime is scaled-up by the ratio of the Λb and B
0
d masses,

τ ∗Bd
= τBd

mPDG
Λb

/mPDG
Bd

= 1617 fs
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Fit to the J/ψ invariant mass distribution (right).

(the decay time change due to the difference in pT reconstructed under the two

hypotheses is negligible). If all such background candidates contributed to the

fitted Λb lifetime, the shift to the Λb lifetime could be estimated using a simple

formula:

τmea =
1

Nmea

((Nmea −NBd
)τΛb

+NBd
τ ∗Bd

),

where Nmea is the measured number of Λb candidates (from the fit), NBd
is the

estimated B0
d contamination, and τΛb

is the Λb lifetime. Using the above formula, a

shift do to the B0
d contamination is estimated 7 fs. This is quoted as a conservative

estimate of the systematic uncertainty. The error on the mass measurement is

estimated by relaxing the PΛ0
b
−PBd

cut to double the estimated B0
d background.

This results in a Λb mass shift of 0.2 MeV.

The Λb contamination in theB0
d sample is negligible, because theB0

d production

cross-section is much larger than that of Λb.

Residual Misalignment of the ID

The distribution of the transverse impact parameter, d0, of tracks originating from

the PV is used to estimate the geometrical distortions due to residual misalign-

ment, as described in Section 3.3.1. The geometry in the MC simulation is dis-

torted by adjusting the positions of the ID modules so that the d0 of tracks coming

from the PV is biased by the same amount as observed in data. The mass-lifetime

fit is performed with simulated data using the default (ideal) geometry and the

sample with geometry distortions. A shift of 1 fs is observed between the two
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Figure 3.22: Proper decay time error distribution of all candidates (left) and distri-
butions modeled separately for background (right, red curve) and signal (right, black
curve).

measurements and is assigned as a systematic error due to residual misalignment.

No significant mass shift is observed.

Uncertainty in the Amount of ID Material

Inaccurate modeling of the amount of material in the ID could affect the mea-

surement since the tracking algorithm estimates the particle energy loss using a

material map. To explore this uncertainty, the MC simulation is repeated with

20% more material in the ID silicon detectors (Pixel and SCT) and their support-

ing services, which is large compared to the estimated uncertainty of 6%(9%) in

the Pixel (SCT) detectors (see Ref. [32]). The resulting shifts of 3 fs in lifetime

and 0.2 MeV in mass are conservative estimates of the systematic uncertainties

from this source.

Uncertainty in the Tracking Momentum Scale

The K0
S mass value is used to estimate the uncertainty in the track momentum

determination. The K0
S mass extracted from a fit to the invariant mass agrees

with the PDG’s world average within 0.03%. Such a shift corresponds to a track

momentum scale shift of 0.05%. The momentum scale can be further tested using

the reconstructed J/ψ mass (Figure 3.21, right). The observed mass shift corre-

sponds to a momentum scale error of −0.03%, in agreement with the assumption

of ±0.05%. The J/ψ selection described in section 3.4 is used, with an additional
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Figure 3.23: Λb lifetime extracted for different ranges of the cut variables. Dependence
on the fit quality, χ2/Ndof (top left), Λ transverse momentum, pT,Λ0 (top right), Λ decay
distance, Lxy,Λ0 (bottom left), and Λb transverse momentum, pT,Λb

(bottom right) is
shown.

cut χ2/Nd.o.f. < 3. Shifting the momenta of all tracks in the MC simulation by this

amount yields a Λb mass shift of 0.5 MeV. No significant lifetime shift is observed.

Choice of the PV

The collision vertex closest in 3D to the reconstructed Λb (B
0
d) direction is used

as the primary vertex. Using the vertex that has the largest sum of squares of its

tracks does not produce any significant change in the lifetime result.

Decay Time Error Distribution Models

In the PDF model it is assumed that the decay time error distribution, w(δτ ), is

the same for signal and background. To test this assumption, the PDF is modified

using separate PDFs for signal and background, wsig(δτ ) and wbkg(δτ ). The back-

ground distribution is taken from the data sidebands, with division between the
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Figure 3.24: Λb mass extracted for different ranges of the cut variables. Dependence
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distance, Lxy,Λ0 (bottom left), and Λb transverse momentum, pT,Λb

(bottom right) is
shown.

sidebands and the signal region at 5520 and 5720 MeV. The signal distribution

is modeled using data in the signal region, with the sidebands distribution sub-

tracted. The subtraction weight is defined as wsub = −NS+B

NB
(1 − f ′

sig), where NB

is the number of candidates in the sidebands, NS+B is the number of candidates

in the signal region, and f ′
sig is the signal fraction in the signal region, determined

from the fit. Figure 3.22 shows the proper decay time error distribution deter-

mined from all candidates (left) and using separate background and signal models

(right). The Λb lifetime and mass are extracted again, however, no significant shift

is observed.
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3.6.3 Cross-checks

B0
d
Lifetime and Mass

Unlike in the case of Λb, the B
0
d lifetime is known with a good precision from

earlier measurements on B-factories. Therefore, the B0
d → J/ψ(µ+µ−)K0

S(π
+π−)

serves as an excellent cross-check for the Λb measurement. The B0
d channel is

subjected to exactly the same kinematic cuts as for the Λb channel, and therefore

suffers from similar systematic effects. The measured values of the B0
d lifetime and

mass, τBd
= 1.509 ± 0.012(stat)± 0.018(syst) ps and mBd

= 5279.6 ± 0.2(stat)±
1.0(syst) MeV, are consistent with the world averages, τPDG

Bd
= 1.519 ± 0.007 ps

and mPDG
Bd

= 5279.50± 0.30 MeV [15].

Checks on the Λb Maximum Likelihood Fit Stability

To check that the result does not depend on the value of the selection cuts (and

other variables) consistency checks are performed. The data sample is divided

into 4 statistically independent sub-samples in bins of cut variables. The ranges

of the bins are chosen so that each sub-sample contains roughly the same number

of signal candidates (based on the invariant mass fit). The maximum likelihood fit

is performed for each sub-sample. If the differences of the obtained fit results are

only due to statistical fluctuations, the standard deviation of these results should

be approximately equal to 2-times the statistical error of the baseline result (the

factor of 2 accounts for the fact that the sub-sample’s statistics is about 4-times

smaller).

The data sample is divided into bins of χ2/Ndof , pT,Λ0 , Lxy,Λ0 , and transverse

momentum of Λb, pT,Λ0
b
. The results of the fits are shown in Figures 3.23 and 3.24.

The standard deviation is calculated for each set of results and is displayed in the

corresponding plots. When scaled down by a factor of 2, all standard deviation

values are smaller than estimated uncertainty of the measurement, which confirms

the consistency of the results.
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to the results of the CDF, DØ and LHCb experiments. The CDF1 measurement uses the
decay Λ0

b → Λcπ, the other measurements use Λb → J/ψ(µ+µ−)Λ(pπ−) decay channel.

3.7 Results and Conclusions of the Λb Measure-

ments

The Λb lifetime and mass are measured to be

τΛb
= 1.449± 0.036(stat)± 0.017(syst) ps,

mΛb
= 5619.7± 0.7(stat)± 1.1(syst) MeV.

These results agree with the world average values of the Λb lifetime, τPDG
Λb

=

1.425±0.032 ps and mass, mPDG
Λb

= 5619.4±0.7 MeV [15], and with a recent deter-

mination of the Λb mass by the LHCb experiment, mLHCb
Λb

= 5619.19±0.70(stat)±
0.30(syst) MeV [16]. A comparison of the ATLAS results with selected measure-

ments of other experiments is shown in Figure 3.25.

The ratio of the Λb and B
0
d lifetimes is determined to be

R = τΛb
/τBd

= 0.960± 0.025(stat)± 0.016(syst).

The statistical and systematic uncertainties are propagated from the uncertain-

ties of the lifetime measurements. The systematic uncertainties are conservatively

assumed to be uncorrelated. This value lies between the recent determination by

DØ, RDØ = 0.864± 0.052(stat)± 0.033(syst) [19], and the measurement by CDF,

RCDF = 1.020± 0.030(stat)± 0.008(syst) [18]. It agrees with the heavy quark ex-

pansion (HQE) calculations with the leading spectator quark contribution, which
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quark effects (LO spectator eff.) and the more recent prediction with the next-to-leading
order spectator effects calculations (NLO spectator eff.)

predict the value between 0.93 and 0.95 [20, 21, 22, 23] and is compatible with

the most recent HQE prediction including next-to-leading-order (NLO) specta-

tor quark contribution and improved pQCD calculations, predicting a ratio of

0.86± 0.05 [24]. The comparison is shown in Figure 3.26.

The ATLAS result suggests that the role of the spectator quarks in the Λb

decay is less significant than it would seem from the latest HQE calculations (which

include the NLO spectator quark contribution) and is in a better agreement with

the previous LO calculations. Given the complicated history of the Λb lifetime

measurements (outlined in Section 3.1.1), one has to wonder whether the current

value of the theoretical prediction is not just a consequence of theorists’ struggle to

achieve agreement with the old LEP and Tevatron measurements, which measured

the value of about 0.8. On the other hand, one should keep in mind that the current

experimental value is compatible with both predictions within a 2-σ error margin.

The framework of HQE is an essential tool in b-physics phenomenology. It

enables theorists to make fairly precise and testable theoretical predictions of var-

ious observables, which in turn allow experimentalists to search for an indirect

evidence of new physics. The great advantage of the indirect searches (e.g. mea-

surements of anomalous CP violation and rare or semi-rare decays) is that they

are sensitive to effects of new particles that couple to the standard model (SM)

sector, even if they are too heavy to be produced directly. These particles manifest

themselves indirectly through the higher-order (loop) corrections to the exclusive
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decay rates, significantly modifying for instance the rate of the SM-suppressed

rare decays Bs → µµ and Bd → µµ.

Although the inclusive decay rates themselves are not sensitive to new physics

(since they are dominated by the tree-level contributions), their measurement pro-

vides an excellent testing ground for the necessary theoretical framework. While

the HQE calculations have been very successful in predicting lifetime ratios of the

B meson lifetimes (i.e. τBu
/τBd

and τBs
/τBd

), it is only with the recent measure-

ments from Tevatron and now ATLAS, that some agreement with the theoretical

prediction is seen also for the Λb to B
0
d ratio. There is no doubt that with increased

data statistics accumulated over the future extended period of the LHC running,

ATLAS and other LHC experiments will be able to further improve the precision

of the Λb lifetime measurement and definitively resolve the Λb controversy.
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Chapter 4

Λ Polarization in Minimum Bias

and Di-jet Events

4.1 Introduction

A large polarization of hyperons observed in inclusive proton-proton and proton-

nucleon collisions below 1 TeV is still one of the largest mysteries of spin physics.

The puzzlement derives from the fact that a single particle like the Λ can emerge

with a large polarization even in the midst of a host of other accompanying final

state particles that could share or dilute the polarization. Furthermore, perturba-

tive QCD (pQCD) calculations predict polarization much smaller than the values

observed in fixed target experiments. This suggests that the polarization, in fact,

originates in a non-perturbative regime of the QCD (fragmentation and hadroniza-

tion) or altogether new physics.

In this analysis, the polarization of the lightest strange hyperon, Λ, is studied.

It’s decay Λ → pπ− is fully reconstructible and the polarization can be extracted

from the angular distribution of the final state particles. An example of a recon-

structed event is shown in Figure 4.1. In the Λ rest frame, the angle θ∗ between

the proton and an analyzing direction n̂ will follow the probability distribution:

w(cos θ∗) =
1

2
(1 + αP cos θ∗) , (4.1)

where α = 0.642 [15] is the decay asymmetry of the parity violating weak decay

Λ → pπ− and P is polarization in the direction of n̂. Therefore, the polariza-

tion can be extracted by analyzing the decay angular distribution. The analysis

54



Figure 4.1: Example of Λ → pπ− decay in the inner tracker in xy and zR projections
(inset). Highlighted tracks are vertex-refitted proton and pion candidate tracks. Three
concentric rings represent 3 sub-detectors of the inner detector: pixel, silicon micro-strip,
and transition radiation trackers.

reported here uses so called Method of moments to extract the value of polar-

ization from the angular distribution. It exploits the fact that the first moment

(i.e. the expectation value) of the distribution is proportional to the polarization.

This method, although trivial in case of theoretical distribution (4.1), becomes

more complicated when the detector effects and background has to be taken into

account. It is explained in details in Section 4.2.

4.1.1 Theoretical Considerations

Derivation of the Decay Angle Distribution

A convenient description of an ensemble of spin 1/2 particles is offered by a density

matrix framework (cf. e.g. Ref [33]). The density matrix describing the spin state

of an ensemble of Λ hyperons in their rest-frame will look as follows:

ρ =
1

2
(I+ ~P · ~σ), (4.2)

where I stands for a 2 × 2 unit matrix, ~P is the polarization vector and ~σ is a

vector of the Pauli matrices, σ1, σ2, and σ3. If the coordinate system is chosen to

have a z-axis aligned with the polarization direction, the density matrix becomes

rather simple:

ρ =
1

2
(I+ Pσ3) =




1 + P 0

0 1− P



 , (4.3)
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where P stands for the magnitude of the polarization vector. Since Λ decays into

a spin-1/2 proton and a spin-less pion, there are only two possible combinations

of final state helicities. Dynamics of the decay can therefore be described in terms

of two helicity amplitudes, hλ, where λ = ±1/2 is the helicity of the final state

proton. The decay amplitude in the Λ rest frame can be obtained by applying the

Wigner-Eckart theorem to the S-matrix element [34]:

Mszλ(φ
∗, θ∗) = 〈sz|S|θ∗, φ∗;λ〉 = hλD

1/2
szλ

(φ∗, θ∗, 0), (4.4)

where 〈sz| denotes the initial state with the spin projection sz and |θ∗, φ∗;λ〉
denotes the final state with the helicity λ where the proton goes off at a polar angle

θ∗ and an azimuthal angle φ∗. D
1/2
szλ

(φ∗, θ∗, 0) stands for the Wigner D-matrix for

spin 1/2. A density matrix for the final state proton can be obtained by applying

similarity transformation to the Λ density matrix (4.3) using the amplitudes (4.4):

ρf (φ
∗, θ∗) = M(φ∗, θ∗) ρM†(φ∗, θ∗). (4.5)

A concrete form of the Wigner matrix can be found e.g. in Ref [15]:

D1/2(φ∗, θ∗, 0) =




e−i

φ∗

2 cos θ
∗

2
−e−iφ

∗

2 sin θ∗

2

e+i
φ∗

2 sin θ∗

2
e+i

φ∗

2 cos θ
∗

2



 , (4.6)

which plugged into the formulas (4.4 and 4.5) gives a concrete form of the final

state density matrix:

ρf (φ
∗, θ∗) =

1

2




|h+1/2|2(1 + P cos θ∗) h1/2h

∗
−1/2Pe

−iφ∗ sin θ∗

h1/2h
∗
−1/2Pe

+iφ∗ sin θ∗ |h−1/2|2(1− P cos θ∗)



 . (4.7)

The probability density function of the decay angles θ∗ and φ∗ can now be calcu-

lated as a trace of this density matrix. It is clear that this probability will not

depend on φ∗, since that appears only in non-diagonal elements:

w(θ∗) = Trρf (θ
∗, φ∗) =

1

2

[
|h1/2|2 + |h−1/2|2 + (|h1/2|2 − |h−1/2|2)P cos θ∗

]
. (4.8)

The formula can be further simplified using the normalization condition for helicity

amplitudes, |h+1/2|2 + |h−1/2|2 = 1, and a definition of the Λ decay asymmetry
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parameter, α = |h+1/2|2 − |h−1/2|2. Plugging in these relations one gets the well-

known formula (4.1) for the decay angle distribution.

Symmetry Under the Parity Transformation

Λ hyperons studied in this analysis are produced via the strong interaction, which

is believed to conserve parity. Since the initial state is symmetric under the parity

operation (two unpolarized protons colliding in a center-of-mass frame), and as-

suming that parity is conserved by a Λ production mechanism, the final state has

to be invariant under the parity operation, too. As a consequence, the longitudinal

polarization has to be zero and only non-zero polarization can be observed in a

direction perpendicular to the Λ momentum. This claim can be understood if one

looks at a behavior of the longitudinal polarization under the parity transforma-

tion: let ~p be a Λ momentum and ~P its polarization vector. Then longitudinal

polarization, L, can be expressed as a projection of the polarization vector into

the direction of Λ:

L =
~p

|p| ·
~P . (4.9)

Under the parity transformation, the Λ momentum changes orientation, however,

the polarization vector does not since it is an axial vector. Consequently, the lon-

gitudinal polarization changes sign. This means that the longitudinal polarization

has to be zero if parity is to be conserved, i.e. product ~p · ~P = 0. This condition

still allows for the transverse polarization to be present.

Polarization in the Beam-Λ Reference Frame

Traditionally, the transverse polarization is measured in the direction of the normal

to the the scattering plane, defined as a cross-product of the beam direction, ~pbeam,

and the Λ momentum: n̂ ∝ ~pbeam × ~p (see Figure 4.2). The same as in the case

of the longitudinal polarization, the transverse polarization, P , is defined as a

projection of the polarization vector, ~P , into the analyzing direction:

P = n̂ · ~P . (4.10)

Since the LHC collides two identical protons in the center-of-mass frame, the choice

of the beam direction is completely arbitrary. This symmetry further constrains

behavior of the transverse polarization. If the opposite beam direction is chosen in
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Figure 4.2: Traditional definition of the decay angle as an angle between the normal
to the scattering plane and the decay proton, measured in the Λ rest frame (left).

definition of n̂, the sign of the numerical value of the polarization, P , will change,

because n̂ is involved in the definition of P (Eqn. 4.10). Since the beam direction

is also used to define rapidity of Λ, y, the alternative choice of the beam direction

will change the sign of rapidity, too. Due to the arbitrariness of the choice of the

positive beam direction, it should not have any impact of the physics result and

therefore the following symmetry has to hold for the transverse Λ polarization:

P (y) = −P (−y), (4.11)

which means that polarization defined in the beam-Λ reference frame has to be an

odd function of Λ rapidity. Since the detector coverage is symmetric in rapidity,

polarization of the sample reconstructed in the entire volume of the detector must

therefore be zero. In order to measure potentially non-zero value, the analyzing

direction definition used in this study depends on the rapidity of the outgoing Λ

hyperon:

n̂ ∝ ẑ × ~p for Λ with positive rapidity and

n̂ ∝ −ẑ × ~p for Λ with negative rapidity.

This definition follows the convention used in the fixed target experiments, where

the incoming beam direction vector always points to the same hemisphere as Λ.

The traditional choice of the analyzing direction (Figure 4.2) assumes that the

polarization is correlated to the Λ transverse momentum, as pT always lies in the

scattering plane and determines orientation of the normal n̂. Such a reference

frame is motivated by measurement of the polarization originating in the hard

scattering process (e.g. qq̄ → ss̄, gg → ss̄, etc.) Polarization of the s quark, and
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Figure 4.3: Dependence of the polarization in inclusive Λ production in p − p and
p−Be collisions at 400 GeV as a function of pT for the two xF bins (left). Figure taken
from Ref. [43]. Polarization of s quark in pQCD calculations [35] (right).

consequently that of Λ, produced in such a process, is calculable in the frame-

work of the pQCD. These calculations were performed e.g. by the authors of

Ref. [35], however, the obtained results are significantly smaller than values mea-

sured experimentally (e.g. Ref. [36, 37, 38, 39, 40, 41, 42]). A comparison between

the experimentally measured Λ polarization in a fixed target experiment [38] and

pQCD prediction of the expected s quark polarization is shown in Figure 4.3,

where a stark disagreement can be seen. One therefore has to look for alternative

explanations of the observed results.

Figure 4.3 shows principal features of the polarization dependence on event

kinematics observed by all the experiments:

• the polarization increases with pT until it reaches a saturation value of about

1 GeV;

• the polarization decreases with decreasing value of Feynman-x variable, xF,

defined as xF = pz/pbeam, where pz is the longitudinal component of the Λ

momentum;

• the polarization does not depend strongly on the beam energy (at least in

the tested range of about 400–800 GeV).

Several models have been proposed to explain these features, including the

polarization plateau at fixed xF seen in the pT-dependence of the polarization.

While some models have been successful in explaining the behavior of one member
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Figure 4.4: Strange quark production through gluon bremsstrahlung [37].

of the hyperon family, no one model has been successful in explaining the behavior

of all. In the static quark model, Λ baryon consists of u, d, and s quarks. The ud

quarks form a spin singlet, and therefore the Λ polarization is assumed given solely

by the polarization of the s quark. Although this assumption is used by many

models describing the origin of the Λ polarization, it is not inherently needed for

the measurements presented in this document.

As pointed out in Ref. [44], the older models have been based either on gluon

bremsstrahlung, the polarization vs. pT distribution of sea quarks, or the produc-

tion of ss pairs in color force fields. An example of the bremsstrahlung picture is

illustrated in Figure 4.4 [37]. Here, just as in the case of electron bremsstrahlung,

the polarization of the final state particles could be significant and dependent on

pT. This model, however, suffers from the lack of definitive predictive ability.

The second class of models assumes that collisions occur involving ss pairs

spontaneously created from the vacuum. The s-quark becomes polarized in the

collision with the incoming beam proton, and then recombines with a singlet (ud)

pair to form the outgoing polarized Λ – polarization of the scattered s quark being

transferred into the Λ hyperon. Although this model does not explain how the

original s quark gets polarized, it allows for cross-comparison of polarization data

for various baryons. Some support for this picture comes from the suggestion of

Neal and de la Cruz Burelo [45] that there is a direct relationship between p − p
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and Λ polarizations, based on an universal relationship between q − q scattering

and polarization.

Another model is that of DeGrand [46, 47]. This model attributes hyperon

polarization to a Thomas precession effect connected with the merging of a sea

s-quark in one of the colliding protons with the (ud) pair from the second colling

proton in a way that the s-quark must be accelerated in order to form the ultimate

Λ. The polarization dependence of pT thus occur because the related s-quark boost

is different for different Λ pT. This model permits an integrated explanation of

the polarization for a number of hyperons, not just the Λ. On the other hand,

some of the assumptions made in the model have been drawn into question in the

literature, see e.g. Ref [48].

A more speculative possibility is that in the new energy regime of the LHC

quark internal structure might be revealed. In that case, the s quark scattering

in the p − p collision could be understood as scattering of individual strongly

bound constituents of the s-quark (the same way as proton elastic scattering can

be understood as a scattering of a single constituent quark which than drags with

itself the rest of the proton). If the single constituent interaction decreases with pT,

for larger values of pT the multiple-constituent interaction may start playing a non-

negligible role. Should this occur, abrupt changes in the polarization magnitude

could occur as a function of pT and could even be visible as a slope change in

the polarization as a function of xF, even near xF = 0. Such a model has been

motivated by the models of Neal and Nielsen [49, 50] who have argued that the

polarization structure in p− p elastic scattering provided retrospectively the first

evidence for the existence of quarks inside protons.

Another explanation is provided by Lund model of the Λ polarization [51].
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Figure 4.5: Lund model of polarization. ss̄ quarks are produced by breaking of the
color tube and they carry transverse momenta ~kT and −~kT. This creates an orbital
momentum L which is than compensated by the alignment of the quarks spins thus
creating polarization.
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This semi-classical model assumes that Λ originates from the ud remnant of the

original proton that gets combined with the s quark from ss̄ pair created by

fragmentation of the color field (color tube) connecting the ud remnant with the

interaction center, as illustrated in Figure 4.5. In the fragmentation process the

s and s̄ gain momenta ~kT and −~kT transverse to the direction of the color tube,

which gives the quarks an orbital momentum L. As the total angular momentum

of the system has to be zero, spins of the s and s̄ quarks get aligned to compen-

sate the orbital momentum (in Figure 4.5 spins of the s-quarks would point into

the paper to compensate L pointing outwards). If the transverse momentum of

the ud remnant is smaller or at least comparable to the transverse momentum of

the s-quark, i.e. kT & qT, then the transverse momentum of the final Λ parti-

cle, pT, will be correlated to the s-quark momentum ~kT. In such a case, the Λ

transverse momentum and the orientation of the spin will be correlated as well

and the transverse polarization can be observed. The reader should note that the

condition kT & qT is essential, because vectors ~kT and ~qT can point in completely

different directions. This condition is satisfied at fixed target experiments, where

the collected Λ candidates have large Feynman-x variable, xF = pz/pbeam (pz is

the longitudinal component of the Λ momentum).

More recent quantum mechanical models have been advanced using the as-

sumption of factorization of scattering amplitudes into components representing

unpolarized parton densities, partonic cross sections, and spin dependent fragmen-

tation functions [52, 53, 54, 55]. The reach of the LHC in terms of energy and

momentum makes the factorization approach seem justified. A interesting feature

of these models is the potential universality of the fragmentation functions across

a variety of interactions.

More details on the various models can be found for instance in Ref. [56, 57, 44].

Polarization in the Di-jet Reference Frame

In the ATLAS experiment, Λ candidates with large xF cannot be reconstructed

because of the limited rapidity acceptance of the detector. On the other hand,

due to a jet reconstruction capability, one can learn additional information about

the parton momenta, which were not accessible in the previous experiments. A

novel scheme has been proposed by Daniel Boer et al. [54] who suggest that the

spin properties of the non-perturbative fragmentation process can be studied in

events where Λ is produced inside one of the jets of a di-jet event. If both jets are
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Figure 4.6: Definition of the scattering plane in the di-jet event with Λ hyperon in
one jet (left). Analogy between the definition of the scattering plane in the fixed target
experiment and inside a jet (right).

reconstructed, the underlying parton momenta are known (neglecting the higher

order correction to the QCD scattering process). Let us denote Kj a 4-momentum

of the jet containing Λ, Kj′ the 4-momentum of the other jet, and ~kj and ~kj′ the

corresponding 3-momenta. One can then define a new analyzing direction using

the jet axis, ~kj, and the Λ momentum, ~p, as a cross-product of the two, n̂ ∝ ~kj×~p,
where both directions are expressed in the di-jet rest frame (Figure 4.6, left).

The reader should note that the jet direction may be thought of as the beam

direction in a fixed target experiment and the angle between the Λ and the jet

direction is similar to the scattering angle, as shown in Figure 4.6, right. Taking

this analogy further, one can imagine that in the limit of large xF the outgoing

parton momentum (jet axis) will be close to the beam axis and two frames will

become identical.

Boer’s paper [54] does not give a dynamical explanation of how the polarization

could arise in the fragmentation process, however, it provides a phenomenological

framework for its description in terms of polarizing fragmentation functions. These

are generic functions of z and k2T, where z is the momentum fraction defined as

z =
K·Kj′

Kj ·Kj′
, withK being the Λ’s 4-momentum, and kT the Λ transverse momentum

relative to the jet axis. The polarizing fragmentation functions parametrize the

probability that unpolarized parton, such as quark or gluon, fragments into a

polarized Λ hyperon. Using the factorization theorem, the Λ polarization can be
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expressed, assuming dominance of gluons, as follows [54]:

Ptheor(z, kT, yj) =
Dg
T (z, kT)

Dg(z, kT)
+ a(yj)

D̃g
T (z, kT)

Dg(z, kT)
, (4.12)

where Dg
T and D̃g

T are polarizing fragmentation functions of gluons, Dg are or-

dinary (unpolarized) fragmentation functions measured by previous experiments,

a(yj) is a function defined as a(yj) = −1
2

1+y2j +(1−yj)
2

1+y4j +(1−yj)4
, and yj =

1

e
ηj−η

j′+1
. The di-

jet variable yj can also be expressed in terms of Mandelstam variables s and t:

yj = − t
s
.

The polarization cannot be experimentally measured fully differential in all

the variables due the lack of statistics, however, it can be measured in bins of

z and kT. To compare the measurement to the theoretical prediction (or fit the

fragmentation functions to the measured results), one has to integrate the function

(4.12) over the Λ phase-space. Let Pmea(zi) is the measured polarization in i-th

bin of z. Then Pmea(zi) should be compared to the following integral:

Ptheor(zi) =

zmax∫

zmin

dz

∫∫

dkTdyj w(z)w(kT)w(yj) Ptheor(z, kT, yj), (4.13)

where w(z), w(kT), and w(yj) are distributions of kinematic variables observed in

the data sample, and zmin and zmax are the limits of the i-th z bin. The kinematic

variables should be corrected to the hadron level so that the detector effects are

not included in the calculations.

Ref [58] gives evaluation of the Λ polarization as a function of z for polarizing

fragmentation functions extracted from the low energy data (see Figure 4.7, taken

from the cited reference). It predicts very small polarization for smaller values of

z. However, the polarizing fragmentation functions were fitted from low energy

data, where only valence quarks matter. At the LHC it does not have to be so, as

the dominant contribution is from sea quarks and gluons.

Some insight into the dynamical process that could cause Λ spin asymmetry

in jets is given in Ref [59] (although the paper focuses on a different topic). The

model outlined there is similar to the Lund model in some aspects. It assumes

the ss̄ quarks are produced in the fragmentation of the uniformly expanding color

tube stretched between the outgoing partons. However, unlike in the Lund model,

the outgoing partons are either quarks or gluons (not the ud singlet). The color
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Figure 4.7: The Λ polarization prediction for
√
s = 14 TeV using the polarizing

fragmentation functions extracted from the low energy data. The result depends on the
choice of the unpolarized fragmentation function parametrization. The results for two
choices of the parametrization are shown. The plot was taken from Ref [58].
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Figure 4.8: Fragmentation of the color tube through creation of ss̄ pair in a vacuum
state 3P0.

tube is broken into two fragments through creation of the ss̄ quark pair which

is in a vacuum state 3P0, with the orbital momentum L = 1 and spins of the

s-quarks pointing in the opposite direction to L. This process is illustrated in

Figure 4.8. The coordinate system is chosen such that the z-axis points in the

direction of the tube, x-axis points in the direction of the s-quark transverse

momentum (transverse w.r.t. the axis of the tube) and y forms an orthogonal basis.

The reference frame is stationary w.r.t. the surface marked “CS” in the drawing

and since the tube is uniformly expanding it means that the hadrons condensing

from the left part of the tube will have longitudinal momentum pz ≤ 0 while

the particles in the right half will have pz ≥ 0. There are two possible scenarios

that can occur, denoted as “Case A” and “Case B” in Figure 4.8. In Case A
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the s quarks have mean longitudinal momentum 〈pz〉 ≤ 0 while in Case B their

momentum is 〈pz〉 ≥ 0. Furthermore, the polarization of the s-quark is opposite

since the spins point in opposite direction in the two cases. If both scenarios have

the same probability the polarization of the Λ hyperon will be zero. This is to be

expected for data where Λ carries a low fraction of the parton momentum, z. For

events with large z, however, Case B will be favored as s quarks in that case have

larger longitudinal momenta. The reader should note, that the assumption that ss̄

pairs are produced in the P-state is crucial for this model. If pairs were produced

for instance in the S-state their orbital momenta would be 0 and there would be

no spin-momentum correlation. Also a pair production through a gluon splitting,

g → ss̄, will create s quarks with small polarization, as predicted by pQCD. Note

that this model, similarly to the Lund model, have some restrictions on values

of s quarks momentum relative to the tube’s axis (denoted px in Figure 4.8). If

the tube was aligned with the jet axis, the value of px would correspond to the

Λ’s transverse momentum relative to the jet axis, kT. However, partons that are

connected by the tube will likely already have some transverse momenta of their

own from the initial parton shower. Therefore, it is important, like in the Lund

model, that pz & kT,part, where kT,part is the relative transverse momentum of the

partons from the parton shower. One can thus expect to see larger polarization

for events with large kT, where it is more likely that directions of px and kT,part are

aligned and the polarization effect is therefore enhanced. This qualitative analysis

suggest that polarization should be zero for small z and increase with growing z

and kT.

Naive Extrapolation of the Previous Results into the Di-jet Frame

Results of fixed-target experiment measurements of inclusive Λ polarization as a

function of the Feynman-x variable, xF, and transverse momentum, pT, is pub-

lished for instance in Ref [43] (see Figure 4.3, left). The analyzing direction in

these measurements is defined in the beam-Λ reference frame, i.e. n̂ ∝ ~pbeam × ~p.

The observed results can be approximated by a simple function

Pold(xF, pT) = 0.392xF

[ pT
1.1 GeV

Θ(1.1 GeV − pT) + Θ(pT − 1.1 GeV)
]

, (4.14)

where Θ is the Heaviside step function. It is assumed that polarization increases

linearly with xF. The pT dependence is also linear until the saturation value of
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Figure 4.9: Naive extrapolation of results of the previous polarization measurement
[43] into the di-jet reference frame.

1.1 GeV is reached beyond which the polarization becomes independent on pT.

The most naive extrapolation of these previous results to the di-jet reference

frame can be done by replacing variable xF by z and pT by kT:

P (z, kT) ≡ Pold(z, kT). (4.15)

This function is visualized in Figure 4.9. One can then use the parametrization

(4.15) to predict values of the polarization expected in ATLAS data, using the

toy MC method to calculate integrals (4.13). Since this simple model does not de-

pend on yj, only integration over z and kT is performed. Histograms of kinematic

distributions of ATLAS data, Figures B.11 and B.12, are used to model distribu-

tions w(z) and w(kT). An uncertainty of the polarization prediction is estimated

by performing 100 pseudo-experiments varying each bin content of the distribu-

tions w(z) and w(kT) by a random shift following a Gaussian distribution with

width corresponding to the bin error. The results are shown in Figure 4.10. The

predicted values of the polarization are too small to be distinguishable from zero

with the current data sample. However, it is conceivable that with the increased

statistics (data collected after the LHC shutdown) precise-enough measurement

will be possible, especially if the z coverage can be extended towards larger values.

4.2 Measurement Strategy

The angular distribution (4.1) can never be seen in real data, since detector accep-

tance, efficiency and resolution will distort the observed distribution. Denoting
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Figure 4.10: Naive extrapolation of the previous polarization results expressed as a
function of the momentum fraction, z (left), and the relative transverse momentum, kT
(right).

cos θ∗true ≡ t′ the real decay angle without the detector distortions, the formula

(4.1) will read w(t′) = (1/2) (1 + αPt′) in this notation. An expectation value

(1st moment) of this distribution is directly proportional to the polarization:

Etrue
P =

∫

dt′ t
1

2
(1 + αPt′) =

1

3
αP, (4.16)

where α = 0.642 [15] is the decay asymmetry of the parity violating weak decay

Λ → pπ−. Unfortunately, in reality detector effects are not negligible and one has

to modify the PDF in terms of the observed decay angle, cos θ∗ ≡ t, as follows:

w(t) =
1

2εT
[(1 + αPt′) ε(t′)]⊗R(t, t′), (4.17)

where ε(t′) is the reconstruction efficiency, R(t, t′) is the resolution function, which

is convolved with the true decay angle distribution, and εT is the total efficiency

normalizing the modified PDF. The expectation value of PDF (4.17) will now look

as follows:

EP =
1

2

∫∫

dt dt′ t R(t, t′) ε(t′) [1 + αPt′] =

=
1

2εT

∫∫

dt dt′ t R(t, t′) ε(t′)
︸ ︷︷ ︸

C0

+P
α

2εT

∫∫

dt dt′ t t′ R(t, t′) ε(t′)
︸ ︷︷ ︸

C1

=

= C0 + C1P. (4.18)
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Note that one simplification was made when deriving the formula (4.18), namely

that the total efficiency does not depend on polarization, i.e. εT(P ) ≡ εT is

constant. This is not generally true, however, it is reasonably well satisfied in the

the analyzed data. An impact of this assumption on the final result is estimated

as a systematic uncertainty. The constants C0 and C1 can be expressed in terms

of the expectation values of the PDFs with known polarization:

C0 = E0,

C1 = E1 − E0,

where E0 and E1 are expectation values of PDF (4.18) for P = 0 and P = 1,

respectively. These values can be estimated using the Monte Carlo (MC) simu-

lation. The MC events used in this analysis are weighted (see following section

for description of the weighting procedure), therefore, the expectation value is

estimated as a weighted average:

EMC
P =

∑
wPi ti

∑
wPj

, (4.19)

where ti is the value of the reconstructed decay angle in the i-th event and wPi is

the weight of that event. The MC samples weighted to polarization P = 0 and

P = 1 are used to determine values of the constants C0 and C1. The final piece

of the polarization extraction is the description of background. The presence of

background in analyzed data modifies the expectation value as follows:

EP = fsig
[
EMC

0 + (EMC
1 − EMC

0 )P
]
+ (1− fsig)Ebkg, (4.20)

where fsig is the signal fraction and Ebkg is the decay angle expectation value of

background events. To determine the value of the background expectation value,

the formula (4.20) is expressed as a function of the invariant mass of the proton-

pion pair. For the invariant mass far from the Λ mass the signal fraction is small

and therefore the expectation value is dominated by background, while in the sig-

nal region the main contribution is from the signal decays. It is assumed, that the

background expectation value changes linearly and can be therefore interpolated

into the central region. Using this assumption, the decay angle expectation value
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as a function of the invariant mass can be expressed as:

EP (mpπ) = fsig(mpπ)
[
EMC

0 + (EMC
1 − EMC

0 )P
]
+[1−fsig(mpπ)][b0+b1(mΛ−mpπ)],

(4.21)

where b0 and b1 describe the mass dependence of the background expectation

value. The formula (4.21) is used to extract the value of polarization from data.

The procedure can be described in the following steps:

• The MC is weighted for polarization P = 0 and P = 1 and the expectation

values EMC
0 and EMC

1 are calculated as a weighted average of the MC decay

angle values;

• Data sample is divided into 7 slices of the invariant mass and the decay

angle expectation value is calculated in each slice as an average of decay

angle values;

• In each mass bin the signal fraction is estimated using the fit to the invariant

mass distribution;

• The χ2 fit method is used to fit the function (4.21) to the the data expec-

tation values in the mass bins, using the signal fraction in each bin from

the previous step. The extracted parameters are polarization, P , and the

background parameters, b0 and b1;

• Systematic uncertainties are estimated by modifying various aspects of the

analysis and observing their impact on the final result.

In this document results of two analyses are presented. Firstly, the Λ polariza-

tion in the beam-Λ reference frame is measured. In this frame the polarization in

direction n̂ ∝ ~pbeam × ~p (where ~pbeam is direction of the beam and ~p is the Λ mo-

mentum) is measured. This measurement is done using inclusive Λ events selected

by the minimum bias trigger. The second measurement is of the Λ polarization in

the di-jet frame, using di-jet events where one of the jets contains Λ. In this case,

the analyzing direction is defined as n̂ ∝ ~kj × ~p, where ~kj is the momentum of the

jet containing Λ, expressed in the di-jet center-of-mass frame.

All the steps mentioned above are described in detail in the following sections.
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4.3 Data Samples and the Trigger Selection

The Λ polarization in the beam-Λ reference frame is measured using the 2010

data. Events that have at least one hit in the minimum bias trigger scintillators are

selected. The 2010 minimum bias data sample selected by this trigger corresponds

to an integrated luminosity of about 762 µb−1. The Λ polarization in the di-

jet reference frame uses data collected in 2011 that correspond to an integrated

luminosity of about 5 fb−1. Single-jet calorimeter triggers are used to select the

di-jet data. ATLAS has a three-layer trigger system, with the first layer being

hardware based, the other two (together called the High-Level Trigger or HLT)

are software based. The jet trigger reads data from electromagnetic and hadronic

calorimeters, performing fast jet calorimeter shower reconstruction (anti-kT jet

algorithm with the distance parameter of 0.4) [11]. Compared to the offline jet

reconstruction it uses a simplified jet energy scale calibration. The level-1 trigger

has access only to the limited granularity of the calorimeter, HLT then uses the full

granularity. The trigger selection is based on the transverse energy cut, ET, that

has to be satisfied by at least one trigger-reconstructed jets in the event. Several

different ET thresholds are available, ranging from 10 GeV to 425 GeV. Since the

output rate of the low-threshold jet triggers is too high for all the events to be

recorded, rate of these triggers has to be reduced by so called prescale factor. For

triggers with the prescale factor of X, on average only every X-th accepted event

is recorded. The triggers used for the di-jet analysis are shown in Figure 4.11. The

left plot shows the number of events accepted by a given trigger, the right plot

shows the corresponding average prescale factor. One event can be accepted by

multiple triggers. Only events after the final selection (described in the following

sections) are counted in Figure 4.11. A single minimum bias trigger, MBTS 1, is

used for the inclusive Λ selection. This trigger was prescaled in the later periods

of 2010 data taking.

4.4 Monte Carlo Samples

For the measurement of the polarization in the beam-Λ reference frame, the 20 M

of MC events1 generated by Pythia [27] are used. For the di-jet analysis, QCD

di-jet Monte Carlo samples are used. The number of events, cross section and

1mc10 7TeV.105001.pythia minbias.merge.AOD.e574 s932 s946 r1649 r1700/
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Figure 4.11: Number of events accepted by a given trigger (left) and the corresponding
average trigger prescale factors (right).

generator-level selection cuts for these samples are listed in Table 4.1. Samples are

generated by MC generator Pythia2 [27] and Herwig3 [60] and the Geant 4 package

[61] is used to simulate propagation of particles through the detector. Geant 4

also simulates decays of long-lived unstable particles, such as pions, kaons, or Λ.

The samples are then reconstructed using the same software as that used for the

data reconstruction. The di-jet samples are generated in slices of the outgoing

parton transverse momentum, ppartT , each sample having the same statistics but

different cross section (also listed in Table 4.1). Before they can be used, each

sample has to be weighted by a factor proportional to the corresponding cross

section. For the inclusive Λ measurement the single minimum bias sample is used

and therefore no such wighting is required. The data and MC events are selected

using the same triggers, however, in the MC all the triggers are unprescaled. That

is not a problem for the minimum bias analysis, where only one trigger is required.

However, the di-jet MC events have to be weighted to simulate the effect of the

prescale factors.

2Pythia samples:
mc11 7TeV.105011.J2 pythia jetjet.merge.AOD.e815 s1273 s1274 r2923 r2900/,
mc11 7TeV.105012.J3 pythia jetjet.merge.AOD.e815 s1273 s1274 r2923 r2900/,
mc11 7TeV.105013.J4 pythia jetjet.merge.AOD.e815 s1273 s1274 r2923 r2900/,
mc11 7TeV.105014.J5 pythia jetjet.merge.AOD.e815 s1273 s1274 r2923 r2900/,
mc11 7TeV.105015.J6 pythia jetjet.merge.AOD.e815 s1273 s1274 r2923 r2900/

3Herwig samples:
mc11 7TeV.113206.HerwigppJetsJ2.merge.AOD.e873 s1349 s1300 r2923 r2900/,
mc11 7TeV.113207.HerwigppJetsJ3.merge.AOD.e873 s1349 s1300 r2923 r2900/,
mc11 7TeV.113208.HerwigppJetsJ4.merge.AOD.e873 s1349 s1300 r2923 r2900/,
mc11 7TeV.113209.HerwigppJetsJ5.merge.AOD.e873 s1349 s1300 r2923 r2900/,
mc11 7TeV.113210.HerwigppJetsJ6.merge.AOD.e873 s1349 s1300 r2923 r2900/
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Table 4.1: Di-jet Monte Carlo samples. An abbreviation “Py.” stands for Pythia and
“Hw.” for Herwing generator.

Name No. of events Cross section Parton momentum cuts

Py. Hw. Py. Hw.

J2 2.8 M 1 M 48.04 mb 46.64 mb 35 < ppartT < 70 GeV

J3 2.8 M 1 M 2.54 mb 2.45 mb 70 < ppartT < 140 GeV

J4 2.8 M 1 M 0.0996 mb 0.0957 mb 140 < ppartT < 280 GeV

J5 2.8 M 1 M 2.29 nb 2.48 nb 280 < ppartT < 560 GeV

J6 2.8 M 1 M 0.0355 nb 0.0341 nb 560 < ppartT < 1120 GeV
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Figure 4.12: Effect of the MC prescale weighting. Comparison between the data and
MC leading jet pT spectrum without the prescale weighting (left) and after the prescale
weighting (right).

Let PSi be the prescale factors of all triggers active in some event. Then the

probability that the event will not be recorded due to the prescale factor is 1− 1
PSi

.

For all the active triggers this probability can be calculated as a product of all the

individual probabilities,
∏

i

(

1− 1
PSi

)

, and therefore probability that the event is

recorded equals to

precorded = 1−
∏

i

(

1− 1

PSi

)

, (4.22)

where i runs over all the active triggers in the event. The probability precorded is

used to weight each MC event using the average prescale factors, PSi, measured in

data (Figure 4.11, right). The effect of the MC prescale weighting on the leading

jet pT spectrum is illustrated in Figure 4.12. The left plot shows the data and MC

distribution without the prescale weighting, while the right plot shows the same

distributions after the MC events were weighted using the prescale weights (4.22).
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The plots show that the agreement between data and MC is much better after the

prescale weighing.

In addition to the QCD samples, 50 million events of single-Λ MC4 are used.

This single-particle sample contains Λ and Λ̄ hyperons uniformly distributed in

transverse momentum, pT, and pseudo-rapidity, η, such that 0.5 GeV< pT <50 GeV

and −2.5 < η < 2.7. It is used to create a Λ reconstruction efficiency map used

for the MC decay angle re-sampling (described in the following sections).

4.5 Event Selection

Events passing the trigger selection described above are analyzed. It is also re-

quired that events contain at least one reconstructed collision vertex built from

at least 3 inner detector tracks. If there are more than one collision vertex in the

event, the one with the largest sum of p2T of its tracks is used as the primary vertex

(PV). For the di-jet analysis it is further required that the event contains at least

two jets, where either a leading or a sub-leading jet contains a Λ hyperon. The

di-jet and Λ reconstruction and selection is described in the following sections.

4.5.1 Λ Reconstruction and Selection

Long-lived 2-prong decay candidates (V 0’s) are reconstructed using the standard

ATLAS V 0 finding tool. It reconstructs decays V 0 → f+f−, where f± are charged

tracks, that are re-fitted with a common vertex constraint. The invariant mass

of the V 0 candidate is calculated using the following hypotheses: Λ → pπ−, Λ̄ →
p−π+, K0

S → π+π−, and γ → e+e−. For example, the Λ → pπ− hypothesis

means that the proton mass is assigned to the positive and the pion mass to the

negative re-fitted track when the V 0 invariant mass is calculated. Since ATLAS

does not have a good particle identification capability, the invariant mass is the

main criterion to distinguish between different V 0 decays. The 2010 data were

reconstructed with the requirement on the track transverse momentum, ptrk >

50 MeV, while in the 2011 reconstruction this cut has been increased to ptrk >

400 MeV. As a consequence, the 2010 Λ reconstruction efficiency is better than

the one in 2011.

4Generator job option: MC11.107156.singlepart Lambda pt0p5-50.py
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Figure 4.13: Two possible vertex solutions for intersecting helicalal trajectories with
the same pseudo-rapidity (left). The definition of the angle between the Λ production
and decay planes, φ∗L (right).

The MC sample is used to determine values of the cuts employed to sepa-

rate signal Λ from the background with a good purity. In the MC simulation,

the signal candidates can be identified using the hit-based matching between the

reconstructed tracks and the generator-level particles. Two types of the Λ back-

ground are conceived: combinatorial and physics background. The combinatorial

background are random combinations of oppositely charged tracks, usually coming

from the primary vertex, that mimic a Λ decay. The physics background consists

of K0
S decays or γ → e+e− conversions that are misidentified as Λ. The same

selection criteria are used for Λ in minimum bias and di-jet events.

The candidates must pass the following criteria:

• Already at the V 0 reconstruction phase the candidates are pre-selected by

requiring that the decay distance, Lxy > 15 mm. The decay distance is

measured from the primary vertex. This cut is superseded by a tighter re-

quirement on the decay distance significance (listed below), however, such a

pre-selection is crucial for reducing immense number of combinatorial back-

ground candidates before they are stored in the output file. The effect of
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Figure 4.14: Distributions of selection variables for MC signal and background can-
didates in minimum bias sample. Plots are normalized to the same area. Plots show
candidates after the final selection safe for the cut on the variable whose distribution
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Figure 4.15: Distributions of selection variables for MC signal and background can-
didates. Plots are normalized to the same area. The top-left plot shows a distribution
of decay distance Lxy for all the MC candidates before any selection. All the remaining
plots show candidates after the final selection, safe for the cut on the variable whose
distribution is being displayed. Cumulative χ2 probability of the vertex fit (top-right), Λ
impact parameter significance (middle-left), decay distance significance (middle-right),
fraction of high-threshold TRT hits (bottom-left), and angle between the Λ production
and decay planes (bottom-right) and distributions of the invariant mass under K0

S mass
hypothesis (bottom-left) and γ hypothesis (bottom-right) are shown. Cuts are indicated
by dashed lines.
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this cut is illustrated in Figure 4.15, top-left, where the distribution of MC

signal and background is shown before any selection is applied.

• The invariant mass under the Λ or Λ̄ hypothesis must lie in the mass range,

1100 MeV < mpπ < 1132 MeV;

• The cumulative χ2-probability of the V 0 vertex fit, Pχ2 > 0.05;

• Both tracks must have at least 3 silicon hits, i.e. hits in the Pixel or SCT

detectors;

• The Λ impact parameter significance, a0/σa0 < 3. The impact parameter is

defined as a distance between the reconstructed Λ trajectory (i.e. straight

line) and the primary vertex. The uncertainty of the impact parameter, σa0 ,

is calculated from the covariance matrices estimated by the primary vertex

and the V 0 vertex fitters. This cut selects Λ’s that originate in the primary

vertex;

• The Λ transverse decay distance significance, Lxy/σLxy
> 15. The decay

distance is measured from the primary vertex.

• The Transition Radiation Tracker (TRT) is used to suppress background

from γ conversions by requiring that the fraction of the high-threshold TRT

hits on both V 0 tracks, fHT < 0.14. Since electrons with the same momen-

tum produce more transition radiation than protons or pions, statistically,

their tracks will have larger fraction of the high-threshold TRT hits;

• Physics background from K0
S decays and γ conversions is removed mainly by

applying a veto cut on the invariant mass under respective mass hypotheses,

i.e. candidate is removed if 480 MeV< mππ < 515 MeV or if mee < 50 MeV;

• Charged particles in the solenoidal magnetic field of the inner detector make

helical trajectories. If two tracks have the same pseudo-rapidity they may,

under right circumstances, intersect in two points (see Figure 4.13, left).

This may cause an ambiguity in the vertex finding procedure, since the

vertex fitter has no way of deciding which of the intersections is the real

decay vertex. As a consequence, pairs of tracks originating in the primary

vertex can be refitted to a fake vertex with a large decay distance and pass the

selection cuts on Lxy and Lxy/σLxy
. These pathological cases are excluded
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Figure 4.16: Distributions of the invariant mass under K0
S mass hypothesis (left) and

γ hypothesis (right) in the di-jet MC sample. Plots show candidates after the final
selection, safe for the cut on the variable whose distribution is being displayed. Cuts
are indicated by dashed lines.

using variable φ∗
L, which is defined as an angle between the Λ production

and decay planes (see Figure 4.13, right). The problematic cases occur when

φ∗
L is close to −π/2 for Λ candidates and +π/2 for Λ̄ and they are rejected

by requiring |φL + π/2| > 0.21 and |φL − π/2| > 0.21, respectively.

• For the di-jet analysis, a distance ∆R =
√

∆η2 +∆φ2 between the leading

or sub-leading jet axis and Λ must be in range 0.06 < ∆R < 0.5. The

lower limit ensures that the analyzing direction, n̂, can be well defined and

is chosen to be 3-times the resolution of ∆R, estimated from MC.

For the selection variables listed above, distributions of the MC signal and

background candidates, together with the selection cuts, are shown in Figures 4.14

for the minimum bias sample and in Figures 4.15 and 4.16 for the di-jet sample.

With these selection criteria 453986 Λ and 401400 Λ̄ candidates have been selected

in the minimum bias data.

Due to the detector acceptance the pT range of the reconstructed Λ candidates

is limited only to ∼200 GeV. This is caused mainly by the limited volume of the

inner detector. The Λ candidate can only be reconstructed if it decays within

a cylinder with ∼ 50 cm radius, where the silicon detectors are located. This

means that candidates with higher momenta will have lower chance of being re-

constructed, since their decay distance is larger due to their Lorentz boost. This

is illustrated in Figure 4.17, left, where a probability of Λ decaying within the

volume of the Inner Detector is shown. In addition, decay candidates with a large

momentum will have small opening angle, ψpπ, again due to their Lorentz boost.
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Figure 4.17: Probability of the Λ decaying withing the volume of the Inner Detector
(left). Reconstruction efficiency as a function of the Λ → pπ− opening angle, ψpπ (right).

If the opening angle is too small, the detector is no longer capable to resolve the

proton and pion tracks, which also leads to a drop of efficiency. This is illustrated

in Figure 4.17, right, where the reconstruction efficiency for small opening angles

is shown.

4.5.2 Jet Reconstruction and Selection

An anti-kT jet reconstruction algorithm with the distance parameter of 0.4 and

the local cluster weighting (LCW) calibration is used to reconstruct jets [62].

The jets are reconstructed from the topologically connected calorimeter cells that

contain certain signal above noise (topo-clusters). Topo-clusters are reconstructed

at the EM scale (with correctly measured energy from electromagnetic showers

in calorimeter) and are then calibrated using the LCW method to account for

the hadronic component of the shower. The LCW-calibrated jets have better

resolution than jets reconstructed at EM scale. In the MC samples, true jets

are reconstructed by running the same jet algorithm on non-decaying MC true

particles.

In this analysis, events that contain at least two calorimeter jets where one of

the two leading jets contains Λ or Λ̄ hyperon are accepted. Both jets must satisfy

ATLAS loose jet quality requirements [63]. Bad jets, i.e. the jets that satisfy the

following criteria, are rejected:

• The jet is rejected if its energy fraction in the hadronic calorimeter end-

cap (HEC), fHEC > 0.5, and the jet quality in HEC, |qHEC| > 0.5, and the

normalized mean jet quality in liquid argon calorimeter (LAr), q̄LAr > 0.8.
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The jet quality variable, q, is calculated as a fraction of the jet energy cor-

responding to the calorimeter cells with a Q-factor larger than 4000, where

the Q-factor measures difference between the measured and predicted pulse

shape that is used to measure the cell energy – the smaller the Q factor,

the better agreement between the measured and predicted pulse shape. The

mean jet quality, q̄, is calculated as the energy-squared mean cell quality.

These criteria remove jets with spikes in HEC;

• The jet is rejected if negative energy in the jet, |Eneg| > 60 GeV;

• The jet is rejected if the energy fraction in electromagnetic (EM) calorimeter,

fEM > 0.95, and the jet quality in the LAr calorimeter, |qLAr| > 0.8, and

the normalized mean jet quality in the LAr calorimeter, q̄LAr > 0.8. These

criteria remove the EM calorimeter coherent noise;

• The jet with pseudo-rapidity, |ηj| < 2, is rejected if the energy fraction in

the EM calorimeter, fEM < 0.05 and the jet charge fraction, fch < 0.05; or if

the maximum energy fraction in one calorimeter layer, fmax > 0.99. The jet

charge fraction is calculated as the ratio of the sum pT of tracks associated to

the jets divided by the calibrated jet pT. These criteria remove non-collision

and cosmic background.

• For the jet with pseudo-rapidity, |ηj| ≥ 2, the non-collision and cosmic back-

ground is removed by requiring only that the energy fraction in electromag-

netic calorimeter, fEM < 0.05.

Furthermore, both jets have to satisfy the following additional requirements:

• The momentum of leading and sub-leading jets, pT,j > 20 GeV. The jet

momentum after the LCW calibration is used;

• Their pseudo-rapidity, |ηj| < 2.8;

• The transverse opening angle between the jets, φj1,j2 > 2. This is to select

jets that are back-to-back in the transverse plane;

• More than 75% of tracks associated to the jets must come from the primary

vertex, fPV > 0.75. This cut reduces contribution of jets coming from the

pile-up events;
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With these selection criteria, together with the Λ selection described in the

previous section, 90472 Λ and 84517 Λ̄ candidates have been selected in the di-jet

data.

4.6 Fit to the Invariant Mass

The invariant mass distribution in range 1100 MeV < m < 1132 MeV is fitted

with a 2-component mass PDF:

M(m) = fsigMsig(m) + (1− fsig)Mbkg(m), (4.23)

where Msig(m) and Mbkg(m) denote the signal and background components, re-

spectively. The signal component is defined as a double asymmetric gaussian,

i.e.:

Msig(m) = f1G(m−mΛ, σ
L
1 , σ

R
1 ) + (1− f1)G(m−mΛ, σ

L
2 , σ

R
2 ), (4.24)

where G(m−mΛ, σ
L, σR) is an asymmetric gaussian with mean, mΛ, and left and

right widths, σL and σR. f1 is the relative contribution of the first gaussian.

The asymmetric gaussian is used in order to model peak asymmetry caused by

the pT cuts imposed on proton and pion tracks by the reconstruction software

(ptrkT > 50 MeV for 2010 and ptrkT > 400 MeV for 2011 data). Since Λ is a long-

living particle, its natural width is negligible and the observed width of the mass

peak is caused solely by the fluctuations of the reconstructed mass due to the

finite detector resolution. Because of the tracking cut, fluctuations towards larger

Λ mass are slightly more probable than fluctuations toward lower Λ mass, causing

a small asymmetry in the mass peak.

The background component is modeled as a second-order polynomial PDF:

Mbkg(m) =
1

∆m+ b2∆m3

3

[
1 + b1(m−mc) + b2(m−mc)

2
]
, (4.25)

where mc = (mmax +mmin)/2, ∆m = mmax −mmin, and ∆m3 = (mmax −mc)
3 −

(mmin−mc)
3, with mmax and mmin being edges of the fitted mass range. The mass

fit PDF has the following free parameters:

• The Λ mass, mΛ;
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Figure 4.18: Result of the fit to the invariant mass distribution for minimum bias data
(left) and MC (right). The fitted function and its components are drawn in blue, red,
and green lines. The mass resolution, σm, is calculated from the fitted parameters.

• The signal fraction, fsig;

• The widths of the double asymmetric gaussian, σL
1,2 and σR

1,2;

• The relative contribution of the first gaussian, f1;

• And the background coefficients, b1 and b2.

An invariant mass resolution can be calculated as a square-root of the variance of

the signal PDF (4.24):

σm =

√

1

2

[

f1

(

σL
1
2
+ σR

1
2
)

+ (1− f1)
(

σL
2
2
+ σR

2
2
)]

. (4.26)

The results of the mass fit are shown in Figure 4.18 for minimum bias data and

in Figure 4.19 for di-jet data. The most important results of the fit are summarized

in Table 4.2. A small discrepancy between data and MC is observed in the fitted

values of the Λ mass, mΛ, and the mass resolution, σm. These values are used to

estimate systematic uncertainty due to the track momentum scale and resolution,

as is discussed in the following sections. A small discrepancy in the value of the

signal fraction between data and MC has no bearing on the final polarization

result since MC background is not used in this analysis.

Fit to the Λ invariant mass is used to determine the signal fraction in mass

bins used for the calculation of the decay angle expectation value, as described in

Section 4.2. The signal fraction in the mass bin of size 2∆ is calculated as a ratio
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Figure 4.19: Result of the fit to the invariant mass distribution for di-jet data (left)
and MC (right). The fitted function and its components are drawn in blue, red, and
green lines. The mass resolution, σm, is calculated from the fitted parameters.

Table 4.2: Selected results of the Λ invariant mass fit. The Λ mass, mΛ, the mass
resolution, σm, and the signal fraction , fsig, are listed. Displayed errors are statistical
only.

Param. Min. bias Di-jet

Data MC Data MC

fsig 0.901± 0.003 0.875± 0.003 0.806± 0.005 0.822± 0.023

mΛ (MeV) 1115.79± 0.02 1115.81± 0.03 1115.75± 0.03 1115.93± 0.14

σm (MeV) 3.35± 0.03 2.82± 0.02 2.93± 0.06 2.90± 0.20

of two integrals:

fsig(m) =

m+∆∫

m−∆

dm′ Msig(m
′)

m+∆∫

m−∆

dm′ M(m′)

, (4.27)

where m is the center of the mass bin. The function (4.27) is visualized in Fig-

ure 4.20 for the mass bin size of 2∆ = 4.57 MeV.

4.7 Monte Carlo Simulation

The method of moments, used to extract polarization (described in Section 4.2)

relies on MC for correction of the efficiency and resolution effects. Therefore,

it is important to have a good agreement between data and MC. Furthermore,

ideally MC statistics should be larger than that of data so that the result is not

84



 (MeV)m

1100 1105 1110 1115 1120 1125 1130

s
ig

f

0

0.2

0.4

0.6

0.8

1

1.2

Simulation

 = 7 TeVs

Min. bias

Bin size: 4.57 MeV

 (MeV)m

1100 1105 1110 1115 1120 1125 1130

s
ig

f

0

0.2

0.4

0.6

0.8

1

1.2

Simulation

 = 7 TeVs

Bin size: 4.57 MeV

Figure 4.20: Signal fraction as a function of center of the mass bin, m. The left plot
shows the signal fraction for minimum bias while the right plots shows the signal fraction
for di-jet data.

dominated by the systematic uncertainty. While the agreement between data and

MC is reasonable good and can be improved by an event weighting, the di-jet MC

sample lacks the statistics needed to achieve desired precision of the measurement.

Therefore, in this analysis Pythia and Herwig di-jet samples are combined to

reduce an uncertainty stemming from the lack of MC statics. Furthermore, the

di-jet MC events are re-sampled using the efficiency map (see Section 4.7.4) to

reduce this uncertainty even further.

Although the Pythia minimum bias MC sample is smaller than one could hope

for, it is large enough to perform the measurement with a reasonable precision of

a few per-cent.

4.7.1 Kinematic and Pile-up Weighting

The aim of the MC weighting is to make distributions of kinematic variables

agree between data and MC. For a single variable, an event weight function can

be calculated as a ratio of the data and MC distributions, normalized to the

same area. The obtained weight function, w(x), can be used to correct the MC

distribution of variable x by assigning weight of w(xi) to each event, where xi

is the value of x in i-th event. If more variables need to be weighted and if the

weights are not correlated, the final weight function can be expressed as a product

of single-variable weight functions (partial weights).

In this analysis the minimum bias MC sample is weighted using the following

variables:
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1. The Λ transverse momentum, pT, to correct the Λ kinematics in MC;

2. The Λ rapidity, y, to correct the Λ kinematics in MC;

3. And the longitudinal position of the PV, zPV, to adjust the beam-spot size

(i.e. the region of intersecting beams where collisions can occur.)

The di-jet MC sample is weighted using the following variables:

1. The leading jet transverse momentum, pT,j1 to remove remaining discrep-

ancies in the jet pT spectra after the prescale weighting (see Figure 4.12,

right);

2. The distance between Λ and jet direction, ∆R, which is not modeled well

by the MC generators;

3. The number of collision vertices, NPV, to adjust the correct amount of pile-up

events in MC;

4. And the longitudinal position of the PV, zPV.

The correlation between the partial weights is assumed to be small, which

is verified in the analyzed data. Figure 4.21 shows the jet transverse momen-

tum vs. distance ∆R distribution and the ∆R distribution in slices of jet pT,

illustrating that the correlation is indeed small. Furthermore, the kinematic (pT,

η, ∆R) and the PV (NPV, zPV) variables are uncorrelated by definition. There-

fore, the final weight function can be expressed as a product of the partial weights,
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w(pT, η, zPV) = w(pT)w(η)w(zPV) for the minimum bias and w(pT,j1 ,∆R,NPV, zPV) =

w(pT,j1)w(∆R)w(NPV)w(zPV) for the di-jet MC. The partial weight functions are

obtained through an iterative procedure, which can be illustrated using the di-jet

MC weighting as an example: in the first iteration weight w(pT,j1) is obtained

as a ratio of the data and MC jet pT distributions. In the second iteration this

weight is applied to the MC events and using this re-weighted sample the function

w(∆R) is calculated. In the third iteration the sample is weighted by a product

w(pT,j1)w(∆R) and the partial weight w(NPV) is obtained. In the fourth iteration,

the partial weight w(zPV) is obtained from the sample weighted by the previously

extracted weights, w(pT,j1)w(∆R)w(NPV). Then the whole procedure is repeated,

always using the product of all the partial weights from the previous steps before

a new partial weight is calculated. The whole procedure is terminated when the

agreement between all the weighted distributions and data is achieved.

Distributions of weighted variables for minimum bias MC sample, pT and y,

are shown in Figures 4.22, top. Distributions of weighted variables for di-jet

MC sample, pT,j1 , ∆R, and NPV, are shown in Figure 4.23, top-left, top-right,

and middle-left, respectively. Distributions of other variables in Figures 4.22–

4.24 illustrate good agreement between MC and data after the MC weighting in

both the minimum bias and di-jet samples. The minimum bias sample variables

are shown in Figure 4.22, which in addition to the weighted variables displays

distributions of the Λ transverse decay distance, Lxy, Feynman-x variable, xF, and

the number of silicon hits on proton and pion tracks, NSi,p and NSi,π. The di-jet

sample variables are shown in Figures 4.23–4.25, which contain distributions of the

Λ transverse momentum, pT, its rapidity, y, and decay distance, Lxy (Figure 4.23);

distributions of proton impact parameter, d0,p, the number of silicon hits on its

track, NSi,p, the same variables for the pion track, i.e. d0,π and NSi,π, the Λ relative

transverse momentum w.r.t. the jet axis, kT, and the jet Λ momentum fraction, z

(Figure 4.24). Finally, in Figure 4.25, the transverse momentum of the sub-leading

jet, pT,j1 , the pseudo-rapidity of both leading and sub-leading jet, ηj1 and ηj2 , and

the difference in their transverse momenta, ∆pT,j1j2 , their pseudo-rapidity, ∆ηj1j2 ,

and the azimuthal angle, ∆φj1j2 , are shown.

The χ2 test probability, Pχ2 , is used to quantify the level of agreement between

the data and MC distributions. The plots show a good agreement between data

and MC, the lowest probability is observed for the Λ rapidity, y, and jets pseudo-

rapidity, ηj1 and ηj2 , distributions. This is taken into account in the systematic
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Figure 4.22: Minimum bias data and MC comparison after MC weighting. Distribu-
tion of the Λ transverse momentum, pT (top-left), the Λ rapidity, y (top-right), the decay
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Figure 4.23: Di-jet data and MC comparison after MC weighting. Distributions of
the leading jet transverse momentum, pT,j1 (top-left), the distance between the Λ and
the jet axis, ∆R (top-right), the number of collision vertices, NPV (middle-left), Λ
transverse momentum, pT (middle-right), its pseudo-rapidity, η (bottom-left), and the
decay distance, Lxy (bottom-right), are shown. Plots are normalized to the same area.
The level of agreement between the MC and data distributions is quantified by the
χ2-test probability value, Pχ2 .
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Figure 4.24: Di-jet data and MC comparison after MC weighting. Distributions of the
proton impact parameter, d0,p (top-left), the number of silicon hits on its track, NSi,p

(top-right), the same variables for the pion track, d0,π (middle-left) and NSi,π (middle-
right), the relative transverse momentum of Λ w.r.t. the jet axis, kT (bottom-left), and
the jet momentum fraction, z (bottom-right), are shown. Plots are normalized to the
same area. The level of agreement between the MC and data distributions is quantified
by the χ2-test probability value, Pχ2 .
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Figure 4.25: Data and MC comparison after MC weighting. Distributions of the
transverse momentum of the sub-leading jet, pT,j1 (top-left), the pseudo-rapidity of both
leading jets, ηj1 (top-right) and ηj2 (middle-left), and the difference in the leading jets
transverse momentum, ∆pT,j1j2 (middle-right), their pseudo-rapidity, ∆ηj1j2 (bottom-
left), and the azimuthal angle, ∆φj1j2 (bottom-right), are shown. Plots are normalized
to the same area. The level of agreement between the MC and data distributions is
quantified by the χ2-test probability value, Pχ2 .

91



uncertainty estimation. Good agreement between data and MC means that MC

models data well and it can be used to quantify the efficiency and resolution effects.

Of particular importance are plots showing the number of silicon hits, NSi on the

on the proton and pion tracks (Figures 4.22 and 4.24), since they confirm that the

tracking performance is modeled well. Also, distributions of the proton and pion

track impact parameters, d0, which have been found to be correlated to the decay

angle cos θ∗, are well reproduced by MC (Figure 4.24, top-left and middle-left).

4.7.2 Pythia and Herwig Comparison
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Figure 4.26: Comparison of kinematic distributions generated by Pythia and Herwig
MC generators. Distributions of the Λ momentum fraction, z, (top left) the transverse
momentum relative to the jet axis, kT, (top right) the Λ transverse momentum, pT,
(bottom left) and the decay angle, cos θ∗, (bottom right) are shown. The modified
χ2-test is used to compare the distributions and the corresponding χ2 probability is
displayed in the plots.

Since both Pythia and Herwig generators are used to generate di-jet MC sam-

ples and the respective samples are combined into a single one it is important to

make sure that both generators produce the same (or similar) kinematic distri-
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butions after re-weighting. Although the Herwig sample has about a third of the

statistics of the Pythia one, there is a good agreement between the two samples,

allowing for the statistical fluctuations. A comparison of distributions of the jet

Λ momentum fraction, z, the Λ transverse momentum relative to the jet axis, kT,

the Λ transverse momentum, pT, and the decay angle, cos θ∗, are shown in Fig-

ure 4.26. The distributions after the kinematic weighting are shown. The figure

shows a good agreement between the distributions within the statistical precision.

4.7.3 Polarization Weighting

The Pythia (Herwig) generator and Geant 4 simulation do not model spin effects.

This means that unstable particles, such as Λ, are decayed with a uniform angular

distribution. To build the polarized MC sample a method of event weighting has

to be used again. Since the original sample is unpolarized, the event weight is

simply

wP (cos θ
∗true
i ) = 1 + αP cos θ∗truei , (4.28)

where cos θ∗truei stands for the true decay angle in the i-th event. True quantities,

i.e. true Λ momentum and true jet momenta, must be used since the distribution

of the reconstructed angle, cos θ∗, is distorted by the detector resolution effects

and no longer follows the theoretical distribution (4.1), from which the weight

is derived. Using the true quantities ensures that the extracted polarization is

already corrected to the true particle level. Figure 4.27 shows that the polarization

weighting does not affect distributions of other weighted variables, pT,j1 and ∆R.

4.7.4 Re-sampling

If the di-jet MC sample was used directly to calculate cos θ∗ expectation values,

EMC
0 and EMC

1 (which are used to correct for the efficiency and resolution effects)

the precision of the di-jet polarization measurement would be quite poor due

to the limited MC statistics. Therefore, a detailed Λ reconstruction efficiency

and resolution map is used to increase the number of signal MC events and thus

improving the measurement’s precision. The idea behind the MC re-sampling is

that since the Λ and jet reconstruction algorithms are independent of each other,

knowing the Λ reconstruction efficiency and resolution functions is sufficient to

model the shape of the cos θ∗ distribution. The advantage of this approach is that
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Figure 4.27: Effect of the polarization weighting on the other weighted variables.
Distributions of leading jet transverse momentum (left) and the distance between Λ and
the jet axis (right) before and after the polarization weighting is shown. The overlaid
distributions agree with the probability, Pχ2 = 1.

while production of the di-jet sample is computationally heavy, production of a

single Λ sample is fast and a large-statistics sample can be created in a couple of

days.

The MC sample of 50 M events of Λ and Λ̄ particles is used to create the

efficiency and resolution map. The MC particles are produced uniformly in pT,

covering the whole volume of the detector, and are reconstructed using the stan-

dard ATLAS reconstruction software. Using this sample, the reconstruction ef-

ficiency is calculated in 30 × 30 bins of true longitudinal decay angles, cos θ∗trueL

and φ∗true
L , defined as an angle between the decay proton and Λ direction in the

Λ rest-frame and an angle between the production and decay planes (see Fig-

ure 4.13, right), respectively. These maps are created in 1 GeV-slices of Λ pT,

separately in the barrel and end-cap regions of the detector, i.e. for |η| < 1.1 and

|η| > 1.1, respectively. Figure 4.28 shows an example of two maps for two pT

ranges, 4.5 GeV < pT < 5.5 GeV and 13.5 GeV < pT < 14.5 GeV, the first one

in the end-cap, the one second in the barrel part of the detector.

Resolution maps are created in the same slices of Λ pT and η. These maps are

two-dimensional distributions of θ∗trueL vs θ∗trueL −θ∗L and φ∗true
L vs φ∗true

L −φ∗
L, where

θ∗L and φ∗
L stand for the reconstructed values of the decay angles. An example is

shown in Figure 4.29. These distributions serve to model θ∗L and φ∗
L resolution

given the true values of these decay angles.

The procedure of the MC re-sampling can be summarized in the following

steps:
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Figure 4.28: Example of the Λ efficiency maps for two ranges of Λ pT, in end-cap (left)
and barrel (right) part of the detector.

• Candidates from the di-jet MC sample are used as seeds for the re-sampling.

For each signal candidate the values of true and reconstructed 4-momenta

are known.

• Taking the seed’s true 4-momentum the corresponding efficiency and res-

olution map is looked up. For example, if the true Λ carried transverse

momentum of 4.7 GeV and pointed to the end-cap region of the detector,

the map shown on Figure 4.28, left, would be used.

• True longitudinal decay angles, cos θ∗trueL and φ∗true
L , are randomly generated

using the chosen efficiency map as the generator’s PDF. This will ensure that

the generated decay angle distribution will correspond to the unpolarized

Λ’s after the reconstruction. For each seed about 200 new candidates is thus

generated.

• Reconstructed longitudinal decay angles, θ∗L and φ∗
L, are then obtained by

smearing the true values by amount extracted from the corresponding reso-

lution map.

• These new candidates are used to calculated the MC decay angle moments,

EMC
0 and EMC

1 .

Since the same reconstruction software is used for both the single-particle and

di-jet MC samples, the reconstruction performance should be the same in both
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Figure 4.29: Example of the Λ resolution map for θ∗L (left) and φ∗L (right) decay angles.
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Figure 4.30: Comparison of distributions of the number of silicon hits for proton (left)
and pion (right) candidates in the single-Λ and di-jet samples.

cases. However, some difference could stem from different track occupancy in the

two samples: while there are virtually no tracks in the single-particle samples, in

the di-jet sample the Λ is reconstructed among a host of jet particles. However, if

there was a significant difference in the tracking performance in these two cases,

one would expect to see a large difference in the number of hits on proton and

pion tracks. Such a comparison is shown in Figure 4.30, where distributions of

the number of silicon hits for proton and pion candidates are shown. The plots

show a good agreement between the single-Λ and di-jet MC distributions. Fig-

ure 4.31 shows a resolution of the proton and pion pT, σrel, as a function of true

pT, determined using the full di-jet and the single-particle MC samples. The σrel
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Figure 4.31: Track pT reconstruction resolution as a function of true transverse mo-
mentum, ptrueT , determined using the full di-jet and single-particle MC samples for proton
(left) and pion (right) tracks.

is calculated as a root mean square of the distribution of normalized pT residuals,

r =
ptrueT − pT
ptrueT

.

The plots do not show any large difference in the pT-dependence of the track

momentum resolution between the two samples.

Using the procedure described above one can generate virtually any number of

candidates, however, the method have some limitations. Firstly, precision of the

MC moments EMC
0,1 is determined by the precision of the efficiency and resolution

map, therefore, even with the infinite number of candidates, one would not get

a perfect value. The re-sampling factor of 200 was determined as a number at

which estimated precision is no longer improving. Secondly, the procedure re-

samples only the decay angles while keeping the original Λ and di-jet kinematics.

Therefore, the final result precision is still affected by the limited statistics of the

original di-jet sample, however, it was observed that this effect is much smaller

than uncertainty due to the statistical fluctuations of the decay angle.

The re-sampling method is validated using the unweighted di-jet MC sample.

If none of the event weights are applied (i.e. no prescale weighting, no kinematic

and pileup weighting, and no polarization weighting) the di-jet MC samples con-

tain together 33276 events. The unweighted MC is used since it provides largest

possible statistics, however, this MC sample does not agree with real data and is

used only to validate the re-sampling method. Using this sample as a seed, cos θ∗

is re-sampled and the distribution is compared to the original one in Figure 4.32.
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Figure 4.32: Comparison of the cos θ∗ distribution created from the unweighted di-jet
MC sample and the re-sampled cos θ∗ distribution.

The χ2-test applied to the overlaid histograms yields probability of 0.51, which

corresponds to a good agreement.

4.7.5 Symmetry Between Λ and Λ̄

Despite the similarity of the Λ and Λ̄ decays, there are differences between Λ and

Λ̄ reconstruction performance. The most important difference is caused by an ori-

entation of the inner detector magnetic field, which causes trajectories of charged

particles to bend and thus enabling measurement of their transverse momenta.

Tracks of the final state particles, pπ− and p̄π+, bend in opposite directions which

causes difference in the reconstruction performance of Λ and Λ̄. There is, how-

ever, a symmetry between Λ and Λ̄ decay topologies given by the orientation of

the z-axis of the coordinate system, since the magnetic field is axially symmet-

ric. This means that Λ kinematic variables calculated in the coordinate system

with the z-axis aligned with the orientation of the magnetic field will correspond

to the Λ̄ kinematic variables calculated in the coordinate system with the z-axis

anti-aligned with the orientation of the magnetic field. In practice, change of the

z-axis orientation will change signs of decay angles, cos θ∗ and φ∗
L. This symmetry

can be exploited to increase the size of the MC sample: Λ and Λ̄ MC samples can

be combined if the orientation of the z-axis is flipped for Λ̄ particles, when the

decay angles are calculated.

This symmetry would be perfect if the detector was perfectly axially symmetric.

However, this is not the case since the pixel and SCT modules in the inner detector

are tilted wrt. the radial direction (Figure 4.33). This means that an angle of
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Figure 4.33: Tilt of the pixel and SCT modules in the inner detector.

impact for positive tracks is different than an angle of impact for negative ones.

This means that positive and negative tracks can have a different pixel or strip

cluster size and therefore a different hit reconstruction efficiency. This effect is

mostly important for low pT tracks that have large curvature. Finally, there is a

difference in cross section for a proton and anti-proton interaction with detector

material. However, this difference will be very small for protons with typical

momentum of few GeV that are used in this analysis.

Despite these differences, the Λ and Λ MC samples can still be combined if

the differences between the particle and anti-particle reconstruction performance

do not affect the decay angle distribution. Figure 4.34 show a comparison of

the decay angle distribution for low-pT and high-pT Λ and Λ̄ candidates. The

plots show a good agreement between the Λ and Λ̄ distribution. The difference

in the expectation values of these distributions, which are used as parameters in

the polarization extraction fit, are smaller than the estimated statistical precision.

The use of the combined Λ and Λ̄ MC sample is hence justified.

4.8 Background

The decay angle expectation value for background is interpolated into the signal

region assuming its linear dependence on mass (cf. Eqn. 4.21). To test this as-

sumption, the expectation value for background events in the MC samples are

plotted in Figure 4.35 for the minimum bias MC (left) and the di-jet MC (right).
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Figure 4.34: Comparison of the Λ and Λ̄ decay angle distributions in the MC sample,
for low-pT (left) and high-pT (right) candidates.
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Figure 4.35: Decay angle expectation value as a function of mass for the minimum
bias MC background (left) and the di-jet MC background (right).

The plots illustrate that the assumption of the linear dependence is justified. Fur-

thermore, the background component in the central mass bin (where the sensitivity

to the value of the polarization is greatest) is quite small (as seen in Figure 4.20)

making the expectation value fit quite insensitive to the choice of the background

parametrization.

4.9 Polarization Extraction

4.9.1 Decay Angle Expectation Value Fit

The decay angle expectation values for MC samples with known polarization, EMC
0

and EMC
1 , are calculated. These values are used in the fit function (4.21) where

they serve as a correction for detector efficiency and resolution effects. The values
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Figure 4.36: The decay angle expectation value fit for the Λ (left) and Λ̄(right) mini-
mum bias data. The data points are fitted with the function (4.21).
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Figure 4.37: The decay angle expectation value fit for the Λ (left) and Λ̄(right) di-jet
data. The data points are fitted with the function (4.21).

EMC
0 and MC

1 are calculated for the whole Λ and Λ̄ sample and separately in bins

of the Λ transverse momentum, pT, and Feynman-x variable, xF, for the minimum

bias MC; and in bins of the transverse momentum w.r.t. the jet axis, kT, and the

jet Λ momentum fraction, z, in case of the di-jet MC sample. The value of the

MC expectation values as well as the definition of the bin ranges are shown in

Table 4.3 for the minimum bias and in Table 4.4 for di-jet MC samples.

In data, the decay angle expectation value is calculated in 7 bins of Λ invariant

mass. The plot is then fitted with the function (4.21) and the value of polariza-

tion is extracted. The expectation value plots together with the fitted function

are shown in Figure 4.36 for the minimum bias and Figure 4.37 for the di-jet

data. To gauge the quality of the fit, the MC samples are weighted using the

extracted polarization values and the decay angle distributions are compared to

data, as shown in Figures 4.38 and 4.39. Only events in the signal mass range,
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Table 4.3: The decay angle expectation values in the minimum bias MC sample.
EMC

0 and EMC
1 are the expectation values calculated using the MC sample weighted

to polarization, P = 0 and P = 1, respectively. The expectation values for the whole
sample and for samples binned in pT and xF are listed. The listed uncertainties are
statistical only.

Sample Exp. values for Λ Exp. values for Λ̄

EMC
0 EMC

1 EMC
0 EMC

1

Whole sample −0.001± 0.001 0.143± 0.001 0.001± 0.001 −0.143± 0.001

pT bins (GeV) EMC
0 EMC

1 EMC
0 EMC

1

pT < 1.3 0.002± 0.002 0.111± 0.002 −0.002± 0.002 −0.111± 0.002

1.3 < pT < 2.03 −0.004± 0.002 0.138± 0.002 0.004± 0.002 −0.138± 0.002

2.03 < pT −0.000± 0.002 0.181± 0.002 0.000± 0.002 −0.181± 0.002

xF bins (10−4) EMC
0 EMC

1 EMC
0 EMC

1

xF < 5 −0.001± 0.002 0.135± 0.002 0.001± 0.002 −0.135± 0.002

5 < xF < 10.5 0.000± 0.002 0.144± 0.002 −0.000± 0.002 −0.144± 0.002

10.5 < xF −0.001± 0.002 0.152± 0.002 0.001± 0.002 −0.152± 0.002

1109.7 < mpπ < 1121.7 MeV, are used to make the decay angle plots. A back-

ground contribution for the MC plots is interpolated from the data invariant mass

sidebands, mpπ < 1105.7 MeV and mpπ > 1125.7 MeV. A modified Pearson’s χ2-

test (see Appendix 5) is used to compare data and MC histograms, a goodness of

the agreement parametrized using the χ2 probability value. The figures show a

good agreement between the data and MC plots.

The polarization is also extracted from samples binned in pT and xF for the

minimum bias data sample and in kT and z for the di-jet samples. A definition

of the bin ranges is shown in Figures 4.3 and 4.4. The fits for the binned samples

are shown in Appendix 5 and the results are listed in Section 4.9.4.

4.9.2 Systematic Uncertainty Estimation

Systematic uncertainties are estimated by modifying various aspects of the analysis

and observing how they affect the extracted value of polarization. The estimated

values are summarized in Table 4.5 for both the minimum bias and di-jet analy-

ses. It is observed, that the dominant contribution to the systematic uncertainty

comes from the limited MC statistics which is typically several times larger than
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Table 4.4: The decay angle expectation values in the di-jet MC sample. EMC
0 and EMC

1

are the expectation values calculated using the MC sample weighted to polarization,
P = 0 and P = 1, respectively. The expectation values for the whole sample and for
samples binned in kT and z are listed. The listed uncertainties are statistical only.

Sample Exp. values for Λ Exp. values for Λ̄

EMC
0 EMC

1 EMC
0 EMC

1

Whole sample 0.001± 0.001 0.205± 0.001 −0.001± 0.001 −0.205± 0.001

kT bins (GeV) EMC
0 EMC

1 EMC
0 EMC

1

kT < 0.07 0.001± 0.001 0.199± 0.001 −0.001± 0.001 −0.199± 0.001

0.7 < kT < 1.5 −0.001± 0.001 0.207± 0.001 0.001± 0.001 −0.207± 0.001

1.5 < kT 0.001± 0.001 0.209± 0.001 −0.001± 0.001 −0.209± 0.001

z bins EMC
0 EMC

1 EMC
0 EMC

1

z < 0.026 −0.001± 0.001 0.213± 0.001 0.001± 0.001 −0.213± 0.001

0.026 < z < 0.1 0.001± 0.001 0.207± 0.001 −0.001± 0.001 −0.207± 0.001

0.1 < z −0.001± 0.001 0.174± 0.001 0.001± 0.001 −0.174± 0.001

any other estimated uncertainty. Therefore, in some cases, an over-conservative

approach can be used to estimate a systematic uncertainty if it turns out to be

small compared to the dominant contribution. The listed systematic uncertainties

are assumed uncorrelated and are added in quadrature to obtain a total systematic

uncertainty.

Details on the individual uncertainties estimation follow.

MC Statistics

Limited MC statistics projects into a precision with which the MC moments EMC
0

and EMC
1 are determined. In case of the di-jet sample the method of the MC

re-sampling is used to greatly reduce uncertainty due to statistical fluctuations in

MC, however, the result still depends on the original MC sample statistics since

the kinematic distributions of Λ and jets are not re-sampled. To estimate what

effect the limited MC statistics has on the polarization measurement, both the

minimum bias and di-jet MC samples are divided into 4 statistically independent

sub-samples. A measurement is then performed with each individual sub-sample

and difference to the baseline result is calculated. The uncertainty is estimated as

a standard deviation of the obtained differences scaled down by a factor of
√
4, to
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Figure 4.38: Comparison of the decay angle distributions for Λ (left) and Λ̄ (right)
in the minimum bias data and MC samples. The MC events are re-weighted using
the extracted value of polarization, P = −0.007 for Λ and , P = 0.008 for Λ̄. The
background contribution for the MC plots is interpolated from the data invariant mass
sidebands.

account for the fact that each sub-sample has 4-times smaller number of events

than the original one.

Histogram Binning

The decay time expectation value is calculated in 7 bins of the invariant mass. A

dependence of the result on the choice of the binning is tested by using alternatively

5 and 9 bins. An uncertainty is taken as a quadratic sum of the obtained differences

w.r.t. the baseline result.

Background

Figure 4.35 shows that the dependence of the expectation value on the invari-

ant mass for the background MC candidates can be treated as linear, however,

background expectation value independent of the invariant mass also seems like a

viable model. It is used as an alternative background model to probe dependence

of the result on the background parametrization. Another source of the back-

ground systematic uncertainty originates in the uncertainty of the signal fraction,

fsig, extracted from the mass fit. Table 4.2 show statistical uncertainties of fsig

determined from the fit, σstat
fsig

= 0.003 for the minimum bias and σstat
fsig

= 0.005

for the di-jet data. Furthermore, a systematic uncertainty of the signal fraction is

estimated as a difference between the signal fraction extracted from the fit and the

true signal fraction determined using the MC truth information: σsyst
fsig

= 0.064 for
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Figure 4.39: Comparison of the decay angle distributions for Λ (left) and Λ̄ (right) in
the di-jet data and MC samples. The MC events are re-weighted using the extracted
value of polarization, P = 0.007 for Λ and , P = −0.009 for Λ̄. The background
contribution for the MC plots is interpolated from the data invariant mass sidebands.

the minimum bias and σsyst
fsig

= 0.014 for the di-jet sample. Applying these varia-

tions to the signal fraction in the fitted function (4.21), new values of polarization

are extracted and the quadratic sum of the differences to the baseline result is

taken as an estimate of the systematic uncertainty due to background.

Track pT Scale

An uncertainty on the track momentum scale can be estimated using the fits to

the Λ invariant mass (see Table 4.2). The difference between the fitted Λ mass

in data and MC is 0.02 MeV for the minimum bias and 0.18 MeV for the di-jet

samples. This difference can be used to estimate uncertainty of the track pT scale.

The Λ mass shift is not directly proportional to the track pT scale uncertainty,

since the mass of the proton is not negligible compared to the mass of Λ. The MC

simulation was used to estimate the track pT shift corresponding to the Λ mass

shift of 0.18 MeV, ∆ptrkT /ptrkT = 0.9995. Scaling track momenta by this amount

does not yield any significant change in the extracted value of the polarization.

Track pT Resolution

The value of mass resolution obtained from the invariant mass fit (see Table 4.2)

can be used to estimate uncertainty due to mis-modeling of the track resolution in

MC. The difference between the data and MC mass resolution is ∆σm = 0.53 MeV

for the minimum bias and ∆σm = 0.03 MeV for the di-jet samples. The MC tracks

momenta were smeared to account for the difference between the mass resolution in
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Table 4.5: Summary of systematic uncertainties. Symbol “–” is used when the uncer-
tainty is not applicable for a given sample.

Systematic uncertainty Min. bias Di-jet

Λ Λ̄ Λ Λ̄

MC statistics 0.012 0.012 0.005 0.005

Binning 0.001 0.001 0.001 0.001

Background 0.002 0.001 0.001 0.002

Track pT scale 0.000 0.000 0.000 0.000

Track pT resolution 0.000 0.000 0.000 0.000

Jet pT scale — — 0.000 0.000

Jet direction — — 0.000 0.001

MC re-sampling — — 0.002 0.002

Trigger — — 0.003 0.003

Kinematic weighting 0.002 0.002 0.001 0.001

Pileup contamination — — 0.000 0.000

Fit non-linearity 0.000 0.000 0.000 0.000

Uncertainty of α 0.000 0.000 0.000 0.000

Total 0.012 0.012 0.007 0.007

data and MC, this momentum smearing, however, does not produce any significant

change in the extracted value of the polarization.

Jet pT Scale

An uncertainty on the jet pT scale was obtained using the standard ATLAS tool

(JetUncertaintyProvider). The uncertainty is provided as a function of the jet

pT, η, the number of collision vertices, and the distance to the closest jet. The

jet momenta are varied by a given jet scale uncertainty and the measurement is

repeated, taking a quadratic sum of the result differences as a final polarization

uncertainty. This systematic uncertainty is only applicable to the di-jet analysis.

Jet Direction

Using the MC sample, mean values of the jet direction shift, ∆ηj = ηtruej − ηj and

∆φj = φtruej − φj, are measured to be -0.0002 and 0.0006, respectively. To allow
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for the mis-modeling of the jet reconstruction in MC, the jet direction is varied by

first ∆ηj, then by ∆φj; and the polarization measurement is performed using these

modified samples. Mis-modeling of the jet direction resolution is probed by smear-

ing jet momenta by 0.014 in η and 0.014 in φ, which are the values corresponding

to the resolutions observed in the MC sample. The systematic uncertainty on po-

larization is again estimated as a quadratic sum of the observed differences to the

baseline result. While assuming 100% uncertainty on jet direction reconstruction

and its resolution might be a bit too pessimistic, it can be justified since the final

polarization uncertainty from this effect is very small compared to the dominant

effect of the MC statistics. This systematic uncertainty is only applicable to the

di-jet analysis.

MC Re-sampling

The precision of the re-sampled MC decay angle expectation values EMC
0,1 is given

by the precision of the efficiency and resolution map, which is binned in Λ pT, η,

cos θ∗L, and φ
∗
L. The size of the bins is chosen so that a reasonable (few hundreds)

number of candidates from the single Λ sample falls into each bin. By enlarging

the bin size, a precision of the efficiency value in each bin is increased, but the

efficiency is integrated over a larger area. By decreasing the bin size, one looses

the precision of the efficiency value. To estimate the effect that the choice of the

map binning has on the final result, 4 alternative maps are created with different

bin sized, both smaller and larger bins are used. The MC decay angle moments

are then calculated with the MC re-sampled using these maps. A quadratic sum

of differences to the baseline result is used as a final systematic uncertainty. This

systematic uncertainty is only applicable to the di-jet analysis.

Trigger

Traditionally, jet triggers are used only in the pT range, where their efficiency

flattens out (so called plateau of the the efficiency curve). However, in this analysis

the entire pT range, including the region where trigger is not yet fully efficient (so

called turn-on region), is used. Although triggers are modeled in the simulation,

it is not guaranteed that the turn-on regions are modeled well, especially at level-1

of the trigger chain. In the turn-on region, the trigger can not only bias pT but

also jet’s η or the size of the jet. To gauge what effect the use of the full range of
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Figure 4.40: Determination of the fraction of of the merged pileup vertices fraction,
fmrg (left). zPV and zpileup are coordinates of the vertex and pileup vertex, respectively.
The data are fitted with a Gaussian function in range |∆z| > 30 mm. The efficiency
for anti-kT jets with R = 0.4 to satisfy Level-1 (L1), Level-2 (L2), and the Event Filter
(EF) inclusive jet trigger for a single L1→L2→EF trigger chain (right).

the trigger acceptance has, the trigger selection is disabled in MC, and the sample

is re-weighted in jet pT to match the data. This means that the pT trigger bias is

reproduced, but all other possible trigger biases are not. Using this alternative MC

sample, the polarization is extracted again and a difference to the baseline result is

taken as a systematic uncertainty. This systematic uncertainty is only applicable

to the di-jet analysis, since the minimum bias analysis use a single trigger which

is found to be nearly 100% efficient.

Kinematic Weighting

Figures 4.23 and 4.25 show that the worst agreement between data and weighted

MC is in distributions of jet pseudo-rapidity, ηj1 , and Λ rapidity, y. The MC

sample is re-weighted including jet and Λ rapidities into the list of weighted vari-

ables to test the result’s sensitivity to residual discrepancies between data and

MC. A difference of the new results to the baseline result is taken as a systematic

uncertainty.

Pileup Contamination

The minimum bias analysis does not distinguish between Λ coming from the pri-

mary vertex or pile-up vertices. However, in case of the di-jet analysis, pile-up

can become a source of systematic uncertainty if Λ and di-jet object originate in

different collision vertices and are therefore uncorrelated. The primary vertex jet
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track fraction cut, fPV, and the Λ impact parameter significance cut, a0/σa0 , are

used to reject these cases. However, if the pileup vertex is too close to the primary

vertex, the two vertices may merge and the removal cuts will become inefficient.

The effect of the vertex merging can be seen in the distribution of difference in

z-coordinate of the two vertices, ∆z = zPV − zpileup, as shown in Figure 4.40, left.

The distribution is fitted with a Gaussian function using only bins in the range

|∆z| > 30 mm. Events where the pileup vertex is merged with the PV can be

seen as a drop in the data distribution w.r.t. the fitted function close to ∆z = 0.

From the difference in the respective areas, it is estimated that 2.6% of the events

have merged pileup and primary vertices. A conservative estimate of systematic

uncertainty is made assuming that every event with the merged vertices contains

fake, and therefore unpolarized, signal (note that in reality this fraction will be

much smaller since not every pileup collision creates a reconstructible jet or Λ). A

modified fit function with 2.6% of unpolarized signal modeling the pileup contam-

ination is used to extract polarization. A difference of the extracted polarization

to the baseline result is used and an estimate of the systematic uncertainty.

Fit Non-linearity

When deriving the fit function (4.21) it was assumed that the total efficiency, εT,

does not depend on polarization. This is, however, only an approximation and

may not be valid, if for instance the differential efficiency, ε(cos θ∗true), is not sym-

metric. In fully general case the 1/εT factors in formula (4.18) must be replaced

by 1/εT(P ), where εT(P ) is a linear function of P . In MC it was verified that the

dependence of the total efficiency on polarization is small, and it can therefore be

approximated by the first two terms of the Taylor expansion:

1

εT(P )
=

1

ε0T + (ε1T − ε0T)P
≈ 1

ε0T

(

1− ε1T − ε0T
ε0T

P

)

, or

1

εT(P )
=

1

ε1T + (ε0T − ε1T)(1− P )
≈ 1

ε1T

[

1− ε0T − ε1T
ε1T

(1− P )

]

,

where ε0T is the total efficiency for polarization P = 0 and ε1T for polarization

P = 1. With this new normalization, the definition of factors C0 and C1 in
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Figure 4.41: MC closure test. The plots show difference between the MC input
polarization, Pin, and the value, P , extracted using the decay angle expectation value
fit. The left plot shows the closure for signal-only MC sample, the right plots is made
using the sample containing both signal and background events.

formula (4.18) will change:

C0(P ) ≈ E0

(

1− ε1T − ε0T
ε0T

P

)

,

C1(P ) ≈ E1

[

1− ε0T − ε1T
ε1T

(1− P )

]

− E0

(

1− ε1T − ε0T
ε0T

P

)

.

Using this new definition of the C0 and C1 factors in the fit function, however,

does not significantly change the extracted value of polarization.

Uncertainty of the α Parameter

The Λ decay asymmetry parameter, α, has been measured with precision σα =

0.013 [15]. Since this value is used in the definition of the fit function (4.21), this

uncertainty will affect the extracted value of the polarization. However, it has

been found negligible compared to other uncertainties.

4.9.3 Cross-checks

MC Closure Test

The di-jet MC sample is used to test the polarization extraction technique. The

sample is divided into two halves: the first half is used to calculate the MC

moments EMC
0 and EMC

1 , the second half is used as a test sample. The test sample

is weighted to polarizations ranging from Pin = −0.2 to 0.2. Polarization is than
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Figure 4.42: An example of the decay angle expectation value fit for MC sample
weighted to Pin = 0.3.

Table 4.6: Division between the plateau and turnon trigger regions for different trigger
items.

Trigger j10 j15 j20 j30 j40 j55

pT,j1(GeV) 29.9 39.8 46.5 53.1 73.0 106.2

Trigger j75 j100 j135 j180 j240

pT,j1(GeV) 139.4 172.6 205.8 265.6 331.9

extracted using the decay angle expectation value fit. Differences between input

and extracted values of polarization are shown in Figure 4.41 for pure MC signal

and the sample containing both signal and background events. The plots show

good closure within the estimated precision. An example of the expectation value

fit for the MC sample weighted to polarization Pin = 0.3 is shown in Figure 4.42.

Trigger Plateau and Turn-on Regions

The systematic uncertainty caused by the trigger selection of di-jet sample was es-

timated using the MC simulation, as described in the previous section. Additional

cross-check is done using data, splitting the data sample into two: the first con-

taining events triggered in the plateau region while the second containing events

triggered in the turn-on region of the lowest threshold trigger firing in the given

event. The discriminating cuts are listed in Table 4.6. Figure 4.40, right, shows an

example of an efficiency curve for the j75 trigger and the chosen division between

the plateau and turn-on regions. The thresholds are chosen so that exactly half

of the events fall into each region.
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Figure 4.43: Λ polarization in the beam-Λ reference frame (minimum bias data) as a
function of the Feynman-x variable, xF (left), and the transverse momentum, pT (right).
Displayed error bars are statistical and systematic uncertainties combined.

Polarization measured in each sub-sample is:

Pp = −0.001± 0.015(stat) in the plateau trigger region and

Pt = 0.009± 0.016(stat) in the turnon trigger region.

These values are consistent with each other and with the baseline results within

their statistical precision, which means that there is no additional significant sys-

tematic effect due to the trigger selection that would make this difference larger.

Pythia vs Herwig MC

To verify that the Pythia and Herwig di-jet MC samples are consistent, the po-

larization is measured using Pythia and Herwig samples independently. Although

the estimated precision of these measurements is smaller (esp. for the Herwig sam-

ple, which has small number of events) both measurements are consistent with the

baseline results and one another within their estimated uncertainty:

PPy = 0.011± 0.011(stat)± 0.009(syst) with the Pythia MC sample and

PHw = −0.009± 0.011(stat)± 0.020(syst) with the Herwig MC sample.
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Table 4.7: Polarization in the beam-Λ reference frame measured for the whole sample
and in bins of xF and pT. x̄trueF and p̄trueT are average values of the true Feynman-
x variable and the true Λ transverse momentum, respectively. The table lists both
statistical and systematic uncertainties.

Sample Polarization in the Λ-beam reference frame

Λ Λ̄

Whole sample −0.007± 0.006± 0.012 0.008± 0.006± 0.012

xF bins (10−4) x̄true
F Λ Λ̄

xF < 5 2.63 −0.004± 0.009± 0.011 0.003± 0.010± 0.012

5 < xF < 10.5 7.50 −0.020± 0.010± 0.018 0.000± 0.011± 0.017

10.5 < xF 18.8 0.001± 0.011± 0.019 0.018± 0.012± 0.019

pT bins (GeV) p̄trueT Λ Λ̄

pT < 1.3 0.980 −0.048± 0.012± 0.022 −0.031± 0.013± 0.024

1.3 < pT < 2.03 1.641 0.011± 0.010± 0.011 0.035± 0.011± 0.011

2.03 < pT 2.837 0.003± 0.009± 0.025 0.009± 0.010± 0.023
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Figure 4.44: Distributions of the true Λ transverse momentum, ptrueT (left), and the
true Feynman-x variable, xtrueF (right), in the minimum bias sample.
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Figure 4.45: Λ polarization in the di-jet reference frame as a function of the jet Λ
momentum fraction, z (left), and the transverse momentum relative to the jet axis, kT
(right). Displayed error bars are statistical and systematic uncertainties combined.

4.9.4 Results

Using the 2010 minimum bias sample, polarization in the beam-Λ reference frame

is measured to be

PΛ = −0.007± 0.006(stat)± 0.012(syst) and

PΛ̄ = 0.008± 0.006(stat)± 0.012(syst).

Polarization in the beam-Λ reference frame is also measured in bins of Λ trans-

verse momentum, pT, and the Feynman-x variable, xF. The results are shown

in Figure 4.43 and are listed in Table 4.7. Distributions of the true kinematic

variables ptrueT and xtrueF for the minimum bias sample are shown in Figure 4.44.

Corresponding distributions for the binned samples are shown in Appendix 5,

Figures B.9 and B.10. No significantly large polarization in the beam-Λ reference

frame is observed.

Using the di-jet sample, polarization in the di-jet reference frame is measured

to be

PΛ = 0.007± 0.011(stat)± 0.007(syst) and

PΛ̄ = −0.009± 0.011(stat)± 0.007(syst).

To probe the dependence on the event kinematics, polarization is also measured

in bins of the Λ transverse momentum relative to the jet axis, kT, and the jet Λ

momentum fraction, z. The results are shown in Figure 4.45 and are listed in
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Figure 4.46: Distributions of the true Λ transverse momentum relative to the jet
axis, ktrueT (top left), the true jet Λ momentum fraction, ztrue (top right), the true jet
momentum fraction, xtruej (middle left), for the jet containing Λ, the true di-jet variable,
ytruej (middle right), and the true jet momentum fraction, xtruej1

(bottom left) and xtruej2
(bottom right), for the leading and sub-leading jets, respectively.
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Table 4.8: Polarization in the di-jet reference frame measured for the whole sample
and in bins of z and kT. z̄

true and k̄trueT are average values of the true jet Λ momentum
fraction and the true Λ transverse momentum relative to the jet axis, respectively. The
table lists both statistical and systematic uncertainties.

Sample Polarization in the di-jet reference frame

Λ Λ̄

Whole sample 0.007± 0.011± 0.007 −0.008± 0.011± 0.007

z bins z̄true Λ Λ̄

z < 0.026 0.0159 0.014± 0.016± 0.015 −0.001± 0.017± 0.016

0.026 < z < 0.1 0.0503 −0.003± 0.017± 0.011 −0.006± 0.017± 0.011

0.1 < z 0.150 0.052± 0.039± 0.026 −0.019± 0.040± 0.019

kT bins (GeV) k̄trueT Λ Λ̄

kT < 0.07 0.041 0.001± 0.022± 0.022 −0.005± 0.023± 0.023

0.7 < kT < 1.5 0.047 0.000± 0.016± 0.015 0.005± 0.016± 0.016

1.5 < kT 0.057 0.033± 0.021± 0.010 −0.023± 0.021± 0.009

Table 4.8. Distributions of the true kinematic variables ktrueT and ztrue for the

minimum bias sample are shown in Figure 4.46, together with the distributions

of the true jet momentum fraction, xtruej , for the jet containing Λ, the true di-jet

variable, ytruej , and the true jet momentum fraction, xtruej1
(bottom left) and xtruej2

(bottom right), for the leading and sub-leading jets. The variable xj is defined as

xj =
2|~kj|√
s
,

where ~kj is the jet momentum and
√
s is the total energy of the colliding beams.

Corresponding distributions for the binned samples are shown in Appendix 5,

Figures B.11–B.16. The plots show distributions of variables calculated at the

true particle level. No significantly large polarization in the di-jet reference frame

is observed.
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Figure 4.47: The ATLAS values of Λ polarization in the beam-Λ reference frame in
context of the other measurements. HERA-B data are taken from Ref [42], E799 data
from Ref [40], and NA48 data from Ref [41]. The ATLAS values show statistical and
systematic uncertainties added in quadrature. The HERA-B experiment uses different
reference frame than the other experiments. In the right plot the HERA-B data points
have been transposed to the reference frame used by ATLAS. E799 and NA48 data
points show a different slope since they cover a different pT range.

4.10 Conclusions of the Λ Polarization Measure-

ments

Results of the first measurement of Λ polarization using a 7 TeV collider have been

reported here. This chapter encompasses two analyses: a measurement of Λ polar-

ization in the beam-Λ reference frame, which is a direct extension of the previous

fixed-target experimental approach, and a new measurement of Λ polarization in

the di-jet frame, following a strategy proposed by Boer et al. in Ref [54]. In the

analysis presented in this thesis, it has been demonstrated that the Λ hyperon

can be clearly identified through its decay into pπ, both in minimum bias events

and also in the high track density environment of a jet. This is a first attempt to

measure polarization of Λ produced inside a jet.

Previous experimental data suggest that polarization in the beam-Λ reference

frame decreases with the value of the Feynman-x variable, xF = pz/pbeam. The

xF reach of the ATLAS experiment is very limited due to its rapidity acceptance:

only Λ hyperons with xF up to about 0.005 can be reconstructed. Therefore, large

polarization could only be observed if some new production mechanism came into

play at collision energy of 7 TeV. However, no significantly large polarization

has been observed in ATLAS, as shown in the summary plot in Figure 4.43 and

Table 4.7. Figure 4.47 shows the ATLAS results in a context of other selected
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experiments, HERA-B [42], E799 [40], and NA48 [41]. The ATLAS result is

consistent with expectations in the absence of the onset of new physics.

Λ polarization in the di-jet frame is not constrained by the xF acceptance of

the detector, since the relevant analyzing direction is defined as a cross-product

of the Λ momentum and an axis of the jet containing Λ, in the di-jet rest frame,

and is therefore decoupled from xF. There are no experimental measurements

prior to this one that would constrain the value of polarization in this frame,

although an extrapolation of the previous (fixed target) data has been performed

using the framework of the polarizing fragmentation functions and is shown in

Ref [54] and Figure 4.7 in this document. This prediction, however, suffers from a

large uncertainty. Furthermore, data used to extract the polarizing fragmentation

functions used for this prediction are at much lower energy than the LHC and are

therefore dominated by the valence quark interactions, whereas at the LHC the

gluon contribution is dominant. The Λ and Λ̄ polarization has been measured in

bins of the jet Λ momentum fraction, z, and the relative transverse momentum,

kT, and the results are shown in Figure 4.45 and Table 4.8. In the analyzed Λ

phase-space all the polarization values are consistent with zero within 2-σ range,

which is in an agreement with the above mentioned prediction. This suggests

that the large gluon component at the LHC does not contribute to the polarizing

fragmentation functions at low values of z.

It is hoped that, with increased statistics accumulated in future years of the

LHC running, researchers will be able to use this technique to explore the spin

properties of the fragmentation process in a way never before possible and extend

the phase-space coverage of the measurement toward larger values of z, where

significant values of the polarization could be observed. The z reach of the exper-

iment is naturally constrained by the detector pT acceptance, which is only able

to reconstruct Λ candidates up to about 200 GeV (with reconstruction efficiency

at these energies being very low). Therefore, it is preferable to analyze events

with as low jet pT as possible, since inside high pT jets only low-z Λ candidates

can be reconstructed. As the pT threshold of the jet triggers will likely increase

in the future years of the ATLAS operation to cope with the larger instantaneous

luminosity of the LHC, it is likely that the number of low-pT jets will form a much

smaller fraction of the future datasets than it was in 2011. However, low-pT jets

should still be present in multi-jet events, where high pT jet is accompanied by

one or more low-pT ones, which can contain Λ hyperons.
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The mystery of the large polarization observed in inclusive hyperon production

is one that has gone unexplained for many decades. The use of the Boer and Sivers

techniques may open a new window that allows the identification and exploration

of the processes that could produce large polarizations even in the TeV energy

domain.
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Chapter 5

Summary and Outlook

This thesis summarizes results of two measurements using the Λ and Λb baryons:

the Λb lifetime and mass measurement (Chapter 3), and the measurement of Λ

polarization in minimum bias and di-jet events (Chapter 4). Each measurement

is described in a separate chapter with its own detailed conclusion section, i.e.

Section 3.7 for the Λb and 4.10 for the Λ measurements.

The Λb lifetime is predictable within a framework of the heavy quark expansion

(HQE) calculations, which is widely and successfully used in b-physics. In past

decade, the Λb lifetime has received some special attention due to a discrepancy

between the theoretical prediction and experimental results. The measurement

presented here improves on the precision of the previous measurements and helps

resolving this discrepancy. The analysis uses a signal sample of about 2200 Λb and

Λ̄b decays and it employs a simultaneous mass and decay time maximum likelihood

fit to extract the lifetime and mass. They are measured to be

τΛb
= 1.449± 0.036(stat)± 0.017(syst) ps, and

mΛb
= 5619.7± 0.7(stat)± 1.1(syst) MeV.

A value of the Λb and B
0
d lifetime ratio is measured, too, with the value of

R = τΛb
/τBd

= 0.960± 0.025(stat)± 0.016(syst),

and it has been compared to the previous results and theoretical predictions in

Figure 3.26. The ATLAS result suggests that the role of the spectator quarks in

the Λb decay is less significant than it would seem from the latest HQE calculations

120



(which include the NLO spectator quark contribution and predict value of 0.86±
0.05) and is in a better agreement with the previous LO calculations, predicting a

value around 0.95. Given the complicated history of the Λb lifetime measurements

(outlined in Section 3.1.1), one has to wonder whether the most recent value of

the theoretical prediction is not just a consequence of theorists’ struggle to achieve

agreement with the old LEP and Tevatron measurements, which measured the

value of about 0.8. On the other hand, one should keep in mind that the current

experimental value is compatible with both predictions within a 2-σ error margin.

The first measurement of the transverse polarization of Λ hyperons produced

in minimum bias and di-jet events at the center-of-mass energy of 7 TeV was re-

ported in this thesis, too. Large hyperon polarization observed at low-energy fixed

target experiments has been puzzling physicists for decades, since their results are

incompatible with perturbative QCD calculations. This suggests that some un-

known mechanism, which cannot be described by pQCD, is responsible for the

hyperon polarization. The measurements describe in this thesis opens up a new

avenue for study of the hyperon polarization, since the measurement of polariza-

tion of the Λ hyperon produced within a jet becomes possible for the first time.

This measurement probes non-perturbative QCD processes, fragmentation and

hadronization, as possible sources of the hyperon polarization. The analysis uses

minimum bias and di-jet events, collected in years 2010 and 2011. The polariza-

tion was measured for all events in the acceptance region of the ATLAS detector.

In addition, measurements in kinematic bins of the Λ transverse momentum, pT,

and the Feynman-x variable, xF, were performed for the minimum bias data. For

di-jet data, polarization was measured in bins of Λ transverse momentum relative

to the jet axis, kT, and the jet Λ momentum fraction, z. In the minimum bias

sample polarization is measured to be −0.007 ± 0.006(stat) ± 0.012(syst) for Λ

and 0.008 ± 0.006(stat) ± 0.012(syst) for Λ̄. In the di-jet sample polarization is

0.007± 0.011(stat)± 0.007(syst) for Λ and −0.009± 0.011(stat)± 0.007(syst) for

Λ̄. Binned results are shown in Figures 4.43 and 4.45. The observed results agree

with the extrapolation of the low-energy data (see Figure 4.47), which suggest

that polarization becomes small as xF approaches zero.

The measurements reported in this thesis (esp. the Λ polarization measure-

ment) represent the first steps toward further studies involving spin and QCD.

Using the method of moments, similar to the one used in the Λ analysis, the

polarization and decay asymmetry of Λb can be measured. This measurement,
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although more challenging than the Λ one due to the complicated final state,

has been shown feasible (Ref [6]) and is currently under way. Physics interest in

this measurement is twofold: firstly, the value of the Λb decay asymmetry, αb, is

predictable by calculations exploiting the factorization theorem in perturbative

QCD [64] or withing the framework of the Heavy Quark Effective Theory [65, 66],

and offers therefore an excellent testing ground for these predictions. Secondly,

measurement of the Λb polarization in the similar kinematic range used for the Λ

measurement will probe the effect that presence of the heavy b quark has on the

baryon polarization. This analysis is challenging due to lack of statistics and may

require more data to achieve desired precision. The LHCb experiment has already

reported its findings in Ref [67], even though for a different rapidity range than

ATLAS.

Although Λ polarization in both the beam-Λ and di-jet reference frames was

measured consistent with zero, there can still be some interesting spin-orbital

effects accessible to the ATLAS experiment, if one looks into correlations between

the Λ spin and other observables in the event. One such avenue is a study of the

correlation between the Λ spin and other particles in a jet containing Λ, proposed

by Sivers in Ref [59]. These studies should probe if the ss̄ are produced in an

orbitally excited state. Similarly, analysis of the Λ-Λ̄ spin correlation may provide

additional insights into the production process of ss̄ pairs (see Ref [68]), since

various production models predict different spin correlation scenarios.

Both the Λ helicity amplitudes measurement and the Λ-Λ̄ correlation analysis

are currently pursued by the University of Michigan group, with a contribution of

the author of this thesis.
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Appendix A

Measurement of the Λb Lifetime

and Mass

A.1 Single-muon Trigger Efficiencies

The trigger selection efficiency as a function of the muon d0 measured using

the tag-and-probe method in both data and MC in 5 bins of muon pT is shown in

Figures A.1 for muons in barrel and A.2 for muons in endcap.

A.2 Λb Lifetime and Mass Fit Correlations

An estimate of the simultaneous Λb lifetime and mass fit correlation matrix is

shown in Table A.1.

Table A.1: Λb fit full correlation matrix

mΛb
τΛb

b τbkg,1 τbkg,2 τbkg,3 fsig f1 f2 f3 Sm Sτ

mΛb
1.000 0.002 -0.056 0.003 -0.007 0.001 0.013 0.003 -0.004 0.001 0.026 0.000

τΛb
0.002 1.000 0.011 0.175 0.010 0.003 0.149 0.048 0.020 0.005 0.040 0.000

b -0.056 0.011 1.000 0.004 0.003 -0.000 0.030 0.012 -0.003 -0.000 0.010 0.000

τbkg,1 0.003 0.175 0.004 1.000 0.289 0.022 0.030 0.026 -0.585 -0.019 0.004 0.000

τbkg,2 -0.007 0.010 0.003 0.289 1.000 -0.062 0.009 0.557 -0.184 0.056 -0.003 0.000

τbkg,3 0.001 0.003 -0.000 0.022 -0.062 1.000 0.002 -0.143 -0.151 0.644 -0.001 0.000

fsig 0.013 0.149 0.030 0.030 0.009 0.002 1.000 0.182 -0.051 0.001 0.366 0.000

f1 0.003 0.048 0.012 0.026 0.557 -0.143 0.182 1.000 0.339 -0.109 0.138 0.000

f2 -0.004 0.020 -0.003 -0.585 -0.184 -0.151 -0.051 0.339 1.000 -0.080 -0.067 0.000

f3 0.001 0.005 -0.000 -0.019 0.056 0.644 0.001 -0.109 -0.080 1.000 -0.002 0.000

Sm 0.026 0.040 0.010 0.004 -0.003 -0.001 0.366 0.138 -0.067 -0.002 1.000 0.000

Sτ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Figure A.1: Trigger selection efficiency as a function of the muon transverse impact
parameter, d0, in barrel.
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Figure A.2: Trigger selection efficiency as a function of the muon transverse impact
parameter, d0, in endcap.
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Appendix B

Measurement of Λ Polarization

B.1 Modified Pearson’s χ2-test

Data and MC histograms are compared using a modified version of the Pear-

son’s χ2-test designed to compare unweighted (data) and wighted (MC) histograms

[69]. It operates under assumption that two compared histograms have the same

number of bins, r, and represent the same distribution. In other words, this means

that there is a set of probabilities, pi, of an event to belong to the i-th bin of ei-

ther histograms such that
∑r

i=1 pi = 1. Observed number of entries in unweighted

(data) histogram, ni, will follow a Poisson distribution:

w(ni|pi) =
1

ni!
(Npi)

ni e−Npi , (B.1)

where N is total number of entries in the histogram, N =
∑r

i=1 ni. On the

other hand, a weight in the i-th bin of the weighted histogram (MC), wi, can be

approximated by the Gaussian distribution:

w(wi|pi) =
1

√

2πσ2
i

e
−

(Wpi−wi)
2

2σ2
i , (B.2)

where W =
∑r

i=1wi is the sum of weights in all the bins and σ2
i is the variance of

the weight wi. This variance is inherently unknown, but it can be approximated

by its estimate, s2i , which is the sum of squares of weights of events in the i-th bin.

The maximum likelihood estimator of the probability in the i-th bin, p̂i, under

assumption that both the histograms represent the same distribution, can be then
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found by maximizing the log-likelihood function:

logL(pi) = logw(ni|pi) + logw(wi|pi)

= ni logNpi −Npi − log ni!−
(Wpi − wi)

2

2s2i
− log

√

2πs2i , (B.3)

which is maximized when

pi = p̂i ≡
Wwi −Ns2i +

√

(Wwi −Ns2i )
2 + 4W 2s2ini

2W 2
. (B.4)

Having the best estimates p̂i one can use the test statistic

χ2 =
r∑

i=1

[
(ni −Np̂i)

2

Np̂i
+

(wi −Wp̂i)
2

s2i

]

(B.5)

as a measure of likeness of the two histograms. It follows approximately χ2
r−1

distribution if some conditions are satisfied. According to Ref. [69] there should

be more than 25 entries in each bin of the histograms, which is satisfied in this

analysis.

B.2 Results of the Polarization Extraction in Kine-

matic Bins

B.2.1 Polarization in the Beam-Λ Reference Frame

Figures B.1 and B.2 show the results of the fits extracting polarization in the

beam-Λ reference frame in bins of Λ transverse momentum, pT. Figures B.3 and

B.4 show the results in bins of the Feynman variable, xF.

B.2.2 Polarization in the Di-jet Reference Frame

Figures B.5 and B.6 show the results of the fits extracting polarization in the

di-jet reference frame in bins of Λ transverse momentum relative to the jet axis,

kT. Figures B.7 and B.8 show the results in bins of the jet Λ momentum fraction z.
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Figure B.1: Results of the fits of Λ polarization in the beam-Λ reference frame in bins
of pT. Plots in the left column show the decay angle expectation value fits, plots in
the right column show the agreement between the decay angle distribution in data and
MC weighted to the extracted polarization. The used pT bin ranges are indicated in the
plots.
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Figure B.2: Results of the fits of Λ̄ polarization in the beam-Λ reference frame in bins
of pT. Plots in the left column show the decay angle expectation value fits, plots in
the right column show the agreement between the decay angle distribution in data and
MC weighted to the extracted polarization. The used pT bin ranges are indicated in the
plots.
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Figure B.3: Results of the fits of Λ polarization in the beam-Λ reference frame in bins
of xF. Plots in the left column show the decay angle expectation value fits, plots in
the right column show the agreement between the decay angle distribution in data and
MC weighted to the extracted polarization. The used xF bin ranges are indicated in the
plots.
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Figure B.4: Results of the fits of Λ̄ polarization in the beam-Λ reference frame in bins
of xF. Plots in the left column show the decay angle expectation value fits, plots in
the right column show the agreement between the decay angle distribution in data and
MC weighted to the extracted polarization. The used xF bin ranges are indicated in the
plots.
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Figure B.5: Results of the fits of Λ polarization in the di-jet reference frame in bins
of kT. Plots in the left column show the decay angle expectation value fits, plots in
the right column show the agreement between the decay angle distribution in data and
MC weighted to the extracted polarization. The used kT bin ranges are indicated in the
plots.
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Figure B.6: Results of the fits of Λ̄ polarization in the di-jet reference frame in bins
of kT. Plots in the left column show the decay angle expectation value fits, plots in
the right column show the agreement between the decay angle distribution in data and
MC weighted to the extracted polarization. The used kT bin ranges are indicated in the
plots.
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Figure B.7: Results of the fits of Λ polarization in the di-jet reference frame in bins
of z. Plots in the left column show the decay angle expectation value fits, plots in the
right column show the agreement between the decay angle distribution in data and MC
weighted to the extracted polarization. The used z bin ranges are indicated in the plots.
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Figure B.8: Results of the fits of Λ̄ polarization in the di-jet reference frame in bins
of z. Plots in the left column show the decay angle expectation value fits, plots in the
right column show the agreement between the decay angle distribution in data and MC
weighted to the extracted polarization. The used z bin ranges are indicated in the plots.

135



B.3 Λ Kinematic Distributions

B.3.1 Kinematic Distributions of Minimum Bias Data

Figures B.9 and B.10 show distributions of the true Λ transverse momentum,

ptrueT , and the true Feynman variable, xtrueF , for the minimum bias sample binned

in pT and xF, respectively.

B.3.2 Kinematic Distributions of Di-jet Data

Figures B.11 and B.12 show distributions of the true Λ transverse momentum

relative to the jet axis, ktrueT , and the true jet Λ momentum fraction, ztrue, for

the di-jet sample binned in pT and xF, respectively. Figures B.13 and B.14 show

distributions of the true jet momentum fraction, xtruej , for the jet containing Λ, and

the true di-jet variable, ytruej . Finally, Figures B.15 and B.16 show distributions

of the true jet momentum fraction, xtruej1
and xtruej2

, for the leading and sub-leading

jets, respectively. The variable xj is defined as

xj =
2|~kj|√
s
,

where ~kj is the jet momentum and
√
s is the total energy of the colliding beams.
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Figure B.9: Distributions of the true Λ transverse momentum, ptrueT (left), and the
true Feynman variable, xtrueF (right), in bins of pT. The used pT bin ranges are indicated
in the plots.
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Figure B.10: Distributions of the true Λ transverse momentum, ptrueT (left), and the
true Feynman variable, xtrueF (right), in bins of xF. The used xF bin ranges are indicated
in the plots.
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Figure B.11: Distributions of the true Λ transverse momentum relative to the jet axis,
ktrueT (left), and the true jet Λ momentum fraction, ztrue (right), in bins of kT. The used
kT bin ranges are indicated in the plots.
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Figure B.12: Distributions of the true Λ transverse momentum relative to the jet axis,
ktrueT (left), and the true jet Λ momentum fraction, ztrue (right), in bins of z. The used
z bin ranges are indicated in the plots.
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Figure B.13: Distributions of the true jet momentum fraction, xtruej (left), for the jet
containing Λ, and the true di-jet variable, ytruej (right), in bins of kT. The used kT bin

ranges are indicated in the plots. The variable xj is defined as xj = 2|~kj|/
√
s, where

√
s

is the total energy of the colliding beams.
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Figure B.14: Distributions of the true jet momentum fraction, xtruej (left), for the jet
containing Λ, and the true di-jet variable, ytruej (right), in bins of z. The used z bin

ranges are indicated in the plots. The variable xj is defined as xj = 2|~kj|/
√
s, where

√
s

is the total energy of the colliding beams.
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Figure B.15: Distributions of the true jet momentum fraction, xtruej1
(left) and xtruej2

(right), for the leading and sub-leading jets, respectively, in bins of kT. The used kT bin
ranges are indicated in the plots. The variable xji is defined as xji = 2|~kji |/

√
s, where√

s is the total energy of the colliding beams.
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Figure B.16: Distributions of the true jet momentum fraction, xtruej1
(left) and xtruej2

(right), for the leading and sub-leading jets, respectively, in bins of z. The used z bin
ranges are indicated in the plots. The variable xji is defined as xji = 2|~kji |/

√
s, where√

s is the total energy of the colliding beams.
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