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PREFACE 
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channels of intracellular membranes. J. Neurochem. 113, 313-328 (2010)).  Chapter 2 and 

chapter 3 are reprinted from a published paper (Wang*, Zhang* et al. TPC proteins are 

phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 

151(2):372-83 (2012), with minor modifications. Xiang Wang and Dr. Xiaoli Zhang performed 

some electrophysiology experiment together. The content of Chapter 4 is modified from a 

published paper (Dong*, Shen*, Wang*, et al. PI(3,5)P2 controls membrane trafficking by direct 

activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun. 1:38 doi: 

10.1038/ncomms1037 (2010)). The content of Chapter 5 is from a submitted manuscript (Samie, 

Wang, et al. A Ca2+ channel in the lysosome regulates large particle phagocytosis via focal 

exocytosis.) and a published paper  (Dong*, Wang*, et al. Activating mutations of the TRPML1 

channel revealed by proline scanning mutagenesis. J. Biol. Chem. 284, 32040–32052 (2009). Fig. 

3.1 and Fig. 3.2 were prepared by Dr. Xianping Dong, Dr. Xiaoli Zhang and Xiang Wang. Fig. 

2.4B, F; Fig. 2.10A; Fig. 3.3A; Fig. 3.5A were prepared by Dr. Xiaoli Zhang; Fig. 2.4C-E; Fig. 
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ABSTRACT 

Lysosomes primarily serve as the cell’s “garbage disposal and recycling center”, and are recently 

found to be involved in many important cellular functions. Lysosomes are also ion stores 

enriched with H+, Ca2+, and Na+. While it’s well known that the lysosomal ionic homeostasis is 

essential for its proper functions, the properties of ion transporters and channels residing on 

lysosomal membranes are barely understood, largely due to the lack of a reliable functional assay. 

Recently our lab has established a unique lysosomal patch-clamp method to directly record from 

native lysosomal membrane. Taking advantage of the technique, I discovered two novel 

lysosomal Na+-selective channels (Two-Pore-Channels TPC1 and TPC2), which are previously 

thought to be Ca2+ 
release channels, triggered by the second messenger NAADP. Using an 

integrative approach, I further demonstrated that TPCs are not activated by NAADP, but instead 

by PI(3,5)P2, a lysosome-specific phosphoinositide that regulates lysosomal ion homeostasis and 

membrane trafficking. TPCs represent the first intracellular Na+-selective channels, although 

their functions are not characterized. In addition, my colleagues and I found that PI(3,5)P2 also 

activates TRPML1, a principle lysosomal Ca2+ 
channel. Loss-of-function mutations in human 

TRPML1 cause type IV Mucolipidosis (ML4), a childhood neurodegenerative disease. My 

results showed that increasing TRPML1’s activity alleviated lysosomal trafficking defects in 

PI(3,5)P2-deficient cells, suggesting that PI(3,5)P2 controls Ca2+-dependent membrane 

trafficking by regulating TRPML1. To study the role of TRPML1 in membrane trafficking, I 

focused on the involvement of TRPML1 in Ca2+-dependent lysosomal exocytosis, a universal 

process important for many cellular functions, including cellular clearance, plasma membrane 

repair and phagocytosis. I found that gain-of-function mutations of TRPML1 caused a dramatic 

increase in lysosomal exocytosis. During particle uptake in macrophages, lysosomal exocytosis 

is required to provide membrane supplies to facilitate phagosome formation. By whole-cell 

recordings and newly developed whole-phagosome recordings, I found that upon particle binding, 

TRPML1-associated lysosomes are delivered to the newly-formed phagosomes via lysosomal 

exocytosis in a Ca2+-dependent manner. Overall, my thesis work has characterized two types of 

important channels (TPCs and TRPMLs) in the lysosome, identified their first endogenous 

activator PI(3,5)P2, and explored their functions in lysosomal biology. 

KEY WORDs: PI(3,5)P2, NAADP, lysosomes, patch-clamp technique, TPCs, TRPML1, Na+ 

channel, Ca2+ channel, membrane trafficking, lysosomal exocytosis 
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CHAPTER 1 

Introduction 

 
1.1 Lysosomes: cellular clearance and recycling center 
Lysosomes are ubiquitous intracellular organelles, primarily serving as the cell’s “garbage 

disposal and recycling center”. Consistently lysosomes are enriched with a variety of acidic 

hydrolase, and mediate the degradation and recycling of biomaterials. Recent studies have 

revealed that lysosomes have much broader functions, including membrane trafficking, signal 

transduction, plasma membrane repair, cholesterol homeostasis and cell-death (Saftig and 

Klumperman, 2009). The diverse functions and the dynamic interactions with endocytic, 

autophagic, phagocytic and exocytosis pathways have placed the lysosome at a center point of 

cellular catabolism.  

      The study on lysosomes can be traced back to over one century ago. In 1893, 

Metchnikoff (Nobel laureate in 1908) first discovered that during phagocytosis, the engulfed 

particles can be digested by an acidic intracellular compartment (reviewed in (Tauber, 2003)). In 

the 1950s, Christian de Duve identified the “lysosome” as a membrane-enclosed compartment 

containing acidic hydrolases (De Duve, 1963; De Duve, 1966), and was awarded with a Nobel 

Prize in 1974. The next milestone for lysosomal research was the discovery of the first lysosomal 

storage disease (LSD). In 1963, Hers revealed that Pompe disease was caused by genetic defects 

in a lysosomal enzyme α-glucosidase, which is involved in glycogen catabolism (Hers, 1963). 

LSDs describe a group of inherited metabolic disorders that result from lysosomal enzyme 

deficiencies or defects in lysosomal membrane proteins (Platt et al., 2012), including 

Niemann-pick disease and Mucolipidosis type IV (mutations in TRPML1, discussed below). 

Thus far, there are more than 50 types of LSDs identified with a combined birth frequency of 

about 1 in 7500 (Poupetova et al., 2010). Numerous studies into these diseases have provided 

valuable insights into the complex and fundamental functions of lysosomes. The 

lysosome-related storage have also been recognized as a pathological feature contributing to 

other commonly acquired neurodegenerative diseases, such as Alzheimer’s disease, Huntington’s 

disease, and Parkinson’s disease (Giacomello et al., 2011; Harris and Rubinsztein, 2012; 

Mazzulli et al., 2011; Tofaris, 2012). 

      The lysosome performs its function through dynamic membrane fusion and fission (i.e. 
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membrane trafficking) (See Fig. 1.1). During endocytosis, the extracellular macromolecules and 

plasma membrane proteins are first delivered to early endosomes, where they are either sorted to 

recycling endosomes to be trafficked back onto the plasma membrane or further transported into 

late endosomes and lysosomes for degradation (Maxfield and McGraw, 2004). Late endosomes 

and lysosomes are hard to be distinguished by common molecular markers, e.g. Lamp1 

(lysosome-associated membrane protein 1). Thus in this introduction, they may collectively be 

called endolysosomes. In endolysosomes, the recycled materials are either released into the 

cytosol via membrane transporters/channels, or delivered to the trans-Golgi network via 

retrograde trafficking (a membrane fission event) (Huotari and Helenius, 2011). In phagocytosis, 

phagosomes are fused with lysosomes to degrade invading pathogens or apoptotic cells (Luzio et 

al., 2007b). Beyond the degradation and recycling function, lysosomes also undergo 

Ca2+-dependent exocytosis (fusion with the plasma membrane) in most, if not all cells (Andrews 

and Chakrabarti, 2005; Reddy et al., 2001) (Discussed in section 1.7.). This process serves 

various functions, such as the plasma membrane repair (Reddy et al., 2001), neurite outgrowth 

(Arantes and Andrews, 2006), and phagosome formation (Czibener et al., 2006). Recent studies 

also showed that following the starvation-induced autophagy, proto-lysosomes bud off from 

reformation tubules of autolysosomes, and go through a maturation process to become functional 

lysosomes. This process, termed as autophagic lysosome reformation, is used to recycle 

lysosomes and to maintain lysosomal homeostasis (Chen and Yu, 2013; Yu et al., 2010).  

 

1.2 Lysosomal ionic homeostasis 
Lysosomes are enriched with H+, Ca2+, and Na+, and it has long been known that lysosome ion 

homeostasis is essential for the proper functioning of lysosomes (Luzio et al., 2007a; Mindell, 

2012; Morgan et al., 2011; Scott and Gruenberg, 2011) (See Fig. 1.2). However, our 

understanding about the flux and functions of luminal ions are primitive.  

Along the endocytic pathway, progressive acquisitions of different ion channels and 

transporters considerably change the luminal ionic nature of endosomes and lysosomes. Gradual 

acidification happens from early endosomes (pH 6.0), late endosomes (pH 5.5) to mature 

lysosomes (pH 4~5) (Demaurex, 2002; Luzio et al., 2007a; van der Goot and Gruenberg, 2006). 

In contrast, luminal Ca2+ concentration first drops significantly from the newly formed endocytic 

vesicles (2 mM in the extracellular milieu) to mature early endosomes (~0.003 mM, 20 min after 

endocytosis) (Gerasimenko et al., 1998); then the Ca2+ concentration gradually increase to ~0.5 
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mM in lysosomes (Christensen et al., 2002). Like Ca2+ ions, the Cl- concentration also decreases 

from ~130 mM in extracellular fluid to ~20 mM in the early endosomes (Hara-Chikuma et al., 

2005), and then increases when early endosomes mature into late endosomes, although no 

reliable estimation has been made (Weinert et al., 2010). The luminal concentrations of K+ and 

Na+ in late endosomes and lysosomes are reported to be ~60 mM and 20 mM, respectively, but 

later section will discuss the problems with this estimation (Ohkuma et al., 1983; Steinberg et al., 

2010). Considering nature of lysosomes, The trace metal ions Fe2+/Fe3+ and Zn2+ are also very 

important for the degradation and recycling functions of lysosome (Dong et al., 2008; Kiselyov 

et al., 2011), although this thesis will not focus on these ions.  

 

1.2.1 The prominent feature of lysosomes: acidic lumen 

The primary functions (degradation and recycling) of lysosomes are highly dependent on 

maintaining an acid luminal environment (pH ~4-5), which is established by a vacuolar (V)-type 

H+-ATPase (Mindell, 2012; Ohkuma et al., 1982). In translocating H+ into the lumen, the 

V-ATPase is electrogenic, and thus generates membrane potential (lumen-positive potential) that 

may inhibit further acidification (Harikumar and Reeves, 1983; Ohkuma et al., 1983). For the 

V-ATPase to fully acidify the lysosome lumen, counterion flux is necessary to dissipate the 

membrane potential. Theoretically, this counterion pathway can be accomplished by anion influx 

into lysosomes, cation efflux from lysosomes, or both. The role of counterion flux for the 

lysosomal acidification has long been established (Cuppoletti et al., 1987; Ohkuma et al., 1983; 

Van Dyke, 1993). However, the carrying ions and the channels/transporters responsible for ion 

flux are still illusive. The current view for dissipating the lumen-positive potential is K+ efflux 

through a cation channel/transporter (Steinberg et al., 2010) or by Cl- influx through ClC-7, a 

Cl-/H+ antiporter (Graves et al., 2008; Kornak et al., 2001; Weinert et al., 2010). This issue will 

be further discussed in this section and section 1.3. 

      Besides being required for digestive functions of hydrolases, the establishment of acidic 

lumen is also essential for endosomal trafficking, such as the maturation from endosomes to 

lysosomes (Clague et al., 1994), and cargo sorting, including the dissociation of internalized 

receptor-ligand complexes in endosomes (Marshansky and Futai, 2008). In addition, the 

formation of intraluminal vesicles in multivesicular bodies (MVB)/late endosomes is also 

dependent on the luminal low pH (Falguieres et al., 2008).  
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1.2.2 Cl-: not just supporting lysosomal acidification 

The primary role of Cl- ions is traditionally thought to establish the counterion flux to support 

lysosomal acidification, probably through ClC-7 (Kasper et al., 2005a; Kornak et al., 2001). 

ClC-7 belongs to the ClC chloride channel/transporter family. The ClC family has nine known 

members, including four Cl- channels functioning on the plasma membrane, and the other five 

(ClC-3-7) 2Cl-/H+ antiporters residing on the intracellular membranes (Jentsch et al., 2005; 

Planells-Cases and Jentsch, 2009). Among these, ClC-3, ClC-4 and ClC-5 are localized on 

endosomes, and are reported to mediate counterion flux, since disruptions of their activities 

cause increased pH in endosomes. But these transporters are not broadly expressed (Gunther et 

al., 1998; Hara-Chikuma et al., 2005; Mohammad-Panah et al., 2003; Piwon et al., 2000).  

      ClC-7 is the only member in ClC family localized on the lysosome (Kasper et al., 2005a), 

and is ubiquitously expressed (Brandt and Jentsch, 1995). ClC-7 is responsible for the Cl-/H+ 

antiporter activity in the lysosome (Graves et al., 2008), but it’s still controversial whether ClC-7 

is essential for maintaining lysosomal pH. siRNA-knockdown of ClC-7 in some cell lines 

resulted in increased lysosomal pH (Graves et al., 2008). However, other results from ClC-7 

knockout mice showed normal lysosomal pH (Kasper et al., 2005a; Lange et al., 2006; Steinberg 

et al., 2010). Although lysosomal acidification is intact, deletions of ClC-7 or its β-subunit 

Ostm1 cause severe lysosomal storage disease and osteopetrosis in mice and humans. Therefore, 

ClC-7 mediated Cl- flux must be actively serving some other functions beyond just providing a 

counterion pathway.  

Since either Cl-/H+ antiporters or simple Cl- channels can provide a counterion pathway to 

support acidification, the next interesting question is whether the energy-expensive electrogenic 

antiporter provides functional advantages over a simple Cl- channel? Studies from Jentsch lab 

(Weinert et al., 2010) were aimed to address this question. They generated knock-in mice with 

ClC-7 carrying a point mutation that converts the Cl-/H+ antiporter to an uncoupled Cl- channel. 

Although the Cl- conductance and low pH of lysosomes were maintained in mice carrying the 

uncoupled ClC-7, these mice still recapitulated much of the phenotypes seen in ClC-7 knockout 

mice with milder severity (Weinert et al., 2010). A similar experiment of ClC-5 conducted also 

in Jentsch lab (Novarino et al., 2010) has showed similar results. Although for ClC-5, the 

uncoupled mutant rescued the acidification defects in lysosomes from total knockout mice, 

proximal tubular endocytosis was still impaired in the uncoupled ClC-5 mice, as seen in 

knockout mice (Novarino et al., 2010). These experiments clearly showed that the 
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Cl-/H+-coupling of ClC-7 is essential for maintaining lysosomal functions, probably due to the 

higher level of Cl- in lysosomes from wild-type mice, compared with uncoupled mutant (Weinert 

et al., 2010). 

What are the possible functions of Cl- ions beyond lysosomal acidification? First, besides 

maintaining the acidic pH in lysosomes, Cl- ions may actively regulate lysosomal pH. Majumdar 

et al. (Majumdar et al., 2011; Majumdar et al., 2008; Majumdar et al., 2007) found that 

lysosomes in the quiescent microglia are incompletely acidified (pH ~6) and fail to degrade 

amyloid Aβ peptides. Upon activation, CLC-7 is recruited to lysosomes to promote the 

acidification (pH~5) and thus facilitate the degradation of Aβ peptides. Second, Cl- ions may be 

involved in endolysosomal trafficking and sorting processes. For example, Cl- has been shown to 

regulate receptor-ligand interactions for transferrin (Byrne et al., 2010). Third, Cl- may 

participate in lysosomal degradation by modulating the activity of lysosomal hydrolases, such as 

cathepsin C (Wartosch et al., 2009). Last but not the least, the flux of Cl- or coupled Cl-/H+ may 

exert local secondary effects on other ions (Steinberg et al., 2010) which may have direct 

impacts on the lysosomal functions.  

 

1.2.3 Basic monovalent cations: K+ and Na+ 

In the physiological context, K+ and Na+ are the major and essential monovalent ions, with K+ as 

the primary ion intracellularly, while Na+ as the primary ion extracellularly. K+ and Na+ are 

involved in numerous fundamental functions via a variety of K+/Na+ ion channels and 

transporters. For example, K+ and Na+ are the principle ions mediating action potentials across 

the cell membrane in the nervous system: Na+ entry into cells causes membrane depolarization, 

while K+ efflux from cells causes membrane repolarization.  

However, compared with the essential roles of K+/Na+ homeostasis across the cell 

membrane, our understandings about the two cations across the lysosomal membrane are very 

limited. Although it has been long speculated that cation counterflux may function to shunt 

proton-pumping currents, the supporting evidence does not appear until recently (Steinberg et al., 

2010). Steinberg et al. performed experiments in living macrophages, and revealed that 

lysosomal acidification is supported by the efflux of the luminal cation, presumably K+ (Mindell, 

2012; Steinberg et al., 2010). This lead to the next more basic question: is there suitable K+ 

electrochemical gradient across the lysosome membrane? The same group (Steinberg et al., 2010) 

also measured [K+]luminal and [Na+]luminal to be ~60 mM and 20 mM, respectively, based on 
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null-point titration, indicating the major cation in lysosomes is K+. However, with this 

measurement, the electrochemical gradients for both K+ and Na+ across the lysosomal membrane 

are quite small, due to the high [K+]cytosol and low [Na+]cytosol. More importantly, down the 

electrochemical gradient, what happens is K+ influx into lysosomes, rather than the hypothesized 

efflux of K+ in the counterion pathway. On the other hand, my thesis work has provided the first 

direct measurement from isolated lysosomes with atomic absorption spectrometry, and found 

that Na+ is the major cation in the lysosomal lumen. This result leads to a more reasonable 

working model that the Na+ efflux facilitates lysosomal acidification due to the large Na+ 

gradient. In addition, the nature of lysosomal lumen is still unknown. For example, is it 

water-based, matrix-based, or a combination of both? These questions need to be taken into 

consideration when we discuss lysosomal ionic composition and flux. Therefore, more extensive 

and thorough work is needed to better understand the basic properties of lysosomes, which 

would have a huge impact on lysosomal biology. Meanwhile, identification of possible 

lysosomal K+/ Na+ channels/transporters certainly would facilitate our understanding of 

lysosomal ion stores. My thesis work has identified the first intracellular Na+ channels two-pore 

channels (TPCs). Together with the measurement that Na+ is the major cation in lysosomes, the 

discovery has provided the opportunity to study Na+ homeostasis and its functions.  

 

1.2.4 Lysosomal Ca2+ signaling 

ER (endoplasmic reticulum) is an established Ca2+ store mediating intracellular Ca2+ signaling 

through IP3 receptors (IP3Rs) and ryanodine receptors (RyRs). [Ca2+] in the ER lumen is 

estimated to be ~0.5-2 mM (Miyawaki et al., 1997), compared with well maintained low level of 

cytosolic Ca2+ (~100 nM) (Tsien et al., 1982). Endosomes and lysosomes have recently emerged 

as new intracellular Ca2+ stores, because of appreciable amounts of Ca2+ in these compartments 

(endosomes: ~ 3-600µM (Gerasimenko et al., 1998), lysosomes: ~ 400-600 µM, (Christensen et 

al., 2002; Lloyd-Evans et al., 2008)), and the essential roles of endolysosomal Ca2+ in membrane 

trafficking and Ca2+ signal transduction (Galione and Churchill, 2002).  

   

Ca2+-dependence of membrane traffic 

Ca2+ is a key regulator of synaptic vesicle fusion with the plasma membrane during 

neurotransmission (see Fig. 1.1). Upon membrane depolarization, Ca2+ ions enter cells through 

the voltage-gated Ca2+ channels and bind to the Ca2+ sensor synaptotagmin (Syt)-Ⅰ. The Ca2+ 
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binding of Syt-Ⅰ causes its conformational change and finally triggers SNARE (Soluble 

N-ethylmaleimide-sensitive factor Attachment protein REceptor) complex mediated membrane 

fusion. Similarly, Ca2+ is also considered to regulate intracellular membrane trafficking (Hay, 

2007), although the regulation mechanisms are barely understood. The basic steps of fusion 

(tethering, docking, priming, and bilayer fusion) and the fusion machinery (SNAREs, 

phosphoinositides, and Rabs) involved are similar for intracellular membrane trafficking and 

neurotransmitter release (Martens and McMahon, 2008; Suudhof, 2008; Tsien et al., 1982), but 

the molecular players are distinct.  

      Both in vitro and in vivo studies suggest that the luminal Ca2+ release is critical for 

endolysosomal membrane trafficking. In vitro fusion assays using cell extracts from yeast or 

mammalian cells have shown that both homotypic and heterotypic fusions between 

endolysosomes are inhibited by BAPTA, but not EGTA. Although both are strong Ca2+ chelators, 

BAPTA binds Ca2+ ions at least one hundred times faster than EGTA (Chen et al., 2002; Hay, 

2007). The increased sensitivity of endolysosomal fusion to BAPTA versus EGTA has been 

widely interpreted as evidence to support that local Ca2+ release from luminal store is essential, 

and that the putative action site is extremely close (estimated to be < 20 nm) to the Ca2+ release 

site (Chen et al., 2002; Hay, 2007; Pryor et al., 2000). In vivo experiments using membrane 

permeable forms of chelators, i.e., BAPTA-AM and EGTA-AM in intact cells, have further 

demonstrated that intraluminal Ca2+ release is required for many steps of intracellular transport, 

such as retrograde trafficking from endolysosomes to trans-Golgi-network (TGN) (Burgoyne 

and Clague, 2003; Chen et al., 2002; Hay, 2007). Upon localized juxta-organellar Ca2+ elevation, 

distinct Ca2+ sensors are employed to trigger different membrane fusion and fission events. For 

example, the exocytosis of lysosomes is mediated by Syt-Ⅶ with C2-type Ca2+ binding sites 

(Reddy et al., 2001). Calmodulin (CaM), an EF-hand cytosolic protein, has been shown to play 

important roles in fusions between endocytic compartments (Hay, 2007; Peters and Mayer, 1998; 

Pryor et al., 2000), although how CaM is recruited to various intracellular vesicles is still not 

clear. 

      Juxta-organellar luminal Ca2+ release also regulates membrane fission/budding events 

(Hay, 2007; Luzio et al., 2007a; Luzio et al., 2007b). Membrane fissions actually share many 

common mechanisms with fusions. For example, Ca2+, Rab proteins and phosphoinositides (PIPs) 

can regulate both membrane fission and fusion (Hay, 2007; Luzio et al., 2007a; Luzio et al., 

2007b; Roth, 2004). Luminal Ca2+ dependence of membrane fission is supported by that 
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BAPTA-AM, but not EGTA-AM, inhibited vesicle budding in vitro (Ahluwalia et al., 2001). The 

Ca2+ effector protein involved in the fission process is not known.  

 

Role of Ca2+ in signal transduction and organellar homeostasis 

The Ca2+ signaling of endolysosomes is involved in many important cellular functions such as 

autophagy and pancreatic hormone release (Gomez-Suaga et al., 2012; Zhao et al., 2012). The 

best characterized pathway for mobilizing lysosomal Ca2+ stores is via intracellular second 

messenger NAADP (Nicotinic Acid Adenine Dinucleotide Phosphate) in many cell types 

[(Galione et al., 2010), more discussion in section 1.4]. NAADP induces lysosomal (acidic store) 

Ca2+ release initially, and then trigger further Ca2+ release from ER, a process referred to as 

Ca2+-induced Ca2+ release (CICR) (Cancela et al., 1999; Guse and Lee, 2008). This interesting 

observation has brought up a question: whether there is universal communications between ER 

and endolysosomal Ca2+ stores. For example, ER and mitochondria as Ca2+-storing organelles 

have close contacts and Ca2+-signaling coupling (de Brito and Scorrano, 2008; Rizzuto et al., 

2009). Although long speculated, three recent studies have revealed a close bidirectional 

communication of Ca2+ signaling between ER and lysosomes (Friedman et al., 2013; Kilpatrick 

et al., 2013; Lopez-Sanjurjo et al., 2013). Extensive and dynamic ER-lysosome contacts are also 

observed using 3D EM and live imaging (Friedman et al., 2013; Kilpatrick et al., 2013; 

Lopez-Sanjurjo et al., 2013). Besides signal transduction, another consequence of endolysosomal 

Ca2+ release is a reduction of [Ca2+]lumen, which may also modulate the ionic homeostasis, such as 

luminal pH (Cosker et al., 2010; Morgan, 2011).  

      In summary, endolysosomal Ca2+ signaling has multiple cellular functions. Accumulated 

evidence has connected dysfunction of the Ca2+ stores with lysosomal storage disorders (Cheng 

et al., 2010; Lloyd-Evans et al., 2008; Shen et al., 2012), acute pancreatitis (Gerasimenko et al., 

2009), Alzheimer’s disease (Coen et al., 2012) and Huntington’s disease (Giacomello et al., 

2011). However, many questions regarding endolysosomal Ca2+ signaling remain: What proteins 

mediate the Ca2+ release? Which trafficking cues activate the release channels? What proteins are 

the Ca2+ sensors? The mucolipin subfamily of transient receptor potential (TRPMLs) proteins 

serve as candidates for endolysosomal Ca2+ release channel, since TRPMLs are Ca2+ permeable 

channels localized on the endolysosomal membranes, and activated by a key regulator in 

membrane trafficking- PI(3,5)P2. The role of TRPMLs in endolysosomal Ca2+ release will be 

further discussed in section 1.5, 1.6 and chapter 4 and 5. 
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1.2.5 Electrical properties of lysosomes 

The electrical potentials across the endolysosomal membranes are not precisely known. Based on 

studies of synaptic vesicles (Van der Kloot, 2003) and phagosomes (Steinberg et al., 2007), the 

transmembrane potentials are presumed to be positive in the lumen (relative to the cytosol) and 

are likely to be between +30 and +110 mV (see Fig. 1.2). A recent measurement found the 

lysosomal potential is ~19 mV using FRET-based indicators (Koivusalo et al., 2011). The 

positive potential of lysosomes provides a driving force for Ca2+ release into the cytosol.  

 

1.3 Diverse ion channels and transporters residing on the endosomes and 

lysosomes 
The maintenance of ionic homeostasis and the accomplishment of ionic functions require a 

collection of ion channels and transporters. The intense studies of these ion channels/transporters 

have been greatly prompted by the recognition of lysosomal ionic functions, the discovery of 

new lysosomal ion channels/transporters, together with the linking between lysosomal 

transmembrane proteins with a number of diseases. However, our understandings about 

endolysosomal ion channels/transporters are still preliminary. Molecular identities underlying a 

lot of lysosomal conductance are still lacking (see Fig. 1.2). Moreover, the functions of known 

lysosomal ion transporters/channels are barely understood, largely due to the lack of a reliable 

functional assay for the intracellularly-localized membrane channels, as the patch-clamp 

technique that has been extensively employed for ion channel studies is mostly limited to the 

plasma membrane channels. Recently our lab established a modified patch-clamp method (see 

Fig. 1.3) (Dong et al., 2008), which allows us to perform electrophysiological recordings directly 

on native lysosomal membranes. This technique, referred to as lysosome patch-clamp, has 

opened a new avenue for the study of ion channels/transporters in the lysosome (see chapter 2 for 

further discussion). Below is a summary of our current understandings about these “gateways” to 

lysosomes. 

 

1.3.1 Ion transporters involved in endolysosomal acidification 

Primary driver of acidification: V-ATPase 

As mentioned above, the V-ATPase is the primary driver along the endocytic pathway that 

pumps H+ into the lumen against the electrochemical gradient at the expense of ATP (with a 

stoichiometry of 2~4 H+/ATP) (Forgac, 2007; Johnson et al., 1982; Kettner et al., 2003; 
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Marshansky and Futai, 2008). In transporting H+, V-ATPase is electrogenic, resulting in 

accumulation of positive potential at the luminal side.  

The V-ATPase is composed of 14 subunits, including a soluble ATP-hydrolysing 

complex (V1) and a transmembrane H+-translocaing complex (V0). The proton pump is 

structurally and functionally similar to the mitochondrial F0F1 ATP synthase (Forgac, 2007; 

Marshansky and Futai, 2008). As an essential player in organellar acidification, V-ATPase is 

regulated in different ways. For example, different subunits compositions are found in different 

tissues or subcellular organelles (Toei et al., 2010). Yeast Studies showed that the isoform of 

V-ATPase targeting to vacuoles is 4~5 folds more efficient than the one on the Golgi, which is 

consistent with the less acidic lumen of the Golgi (pH 6.0-6.7) (Kawasaki-Nishi et al., 2001; 

Manolson et al., 1994). In addition, V-ATPase is reported to undergo reversible dissociation of 

its V1 and V0 subcomplex in response to different metabolic status (Kane, 1995; Wieczorek et al., 

2000). Moreover, V-ATPase is also regulated by cytosolic pH (Forgac, 2007) and regulatory 

proteins, including protein kinase A (PKA) and protein kinase C (PKC) (Alzamora et al., 2010; 

Nanda et al., 1992). Besides providing an acidic environment, emerging evidence has also 

indicated that V-ATPase is directly involved in membrane trafficking during endocytosis and 

exocytosis. Interestingly, a recent study has identified V-ATPase as a component of mTOR 

complex (a master growth regulator) pathway by showing that the luminal amino acids are 

sensed by V-ATPase, which is necessary for amino acid-mediated activation of mTOR1 (Zoncu 

et al., 2011). It is worth noting that despite the essential roles of V-ATPase, no direct functional 

assays (patch-clamp recording) on V-ATPase have been reported in mammalian cells yet, with 

only a few electrophysiological analysis for the V-ATPase in plant and yeast cells (Kettner et al., 

2003; Rienmuller et al., 2012; Yabe et al., 1999). 

 

Modulators of organellar pH: NHEs 

Na+/H+ exchangers (NHE) represent a family of electroneutral monovalent cation-proton 

transporters. In the family, NHE 6-9 are primarily present on endosomes and the trans-Golgi 

network (Nakamura et al., 2005; Orlowski and Grinstein, 2007), but there are no NHEs in 

lysosomes. Although direct electrophysiology measurements are lacking, the intracellular NHEs 

are thought to dissipate the organellar pH gradient to transport Na+ or K+, and thereby contribute 

to the adjustment of both pH and salt concentrations (Nakamura et al., 2005; Orlowski and 

Grinstein, 2007). Experimentally, intracellular NHEs are shown to be involved in vacuole fusion 
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(Qiu and Fratti, 2010), cytosolic pH regulation (Rodriguez-Rosales et al., 2009) and vesicle 

trafficking (Bassil et al., 2011). For example, NHE8 is reported to regulate late endosomal 

morphology and function (Lawrence et al., 2010).  

 

Counterion flux: what are the underlying molecular pathways? 

The luminal-positive-potential generated by the V-ATPase needs to be dissipated by counterion 

flux to facilitate further acidification. As discussed above, the efflux of K+ or Na+, and/or the 

influx of Cl- can fulfill this function. For the molecular identities of the Cl- pathway, the CFTR 

(cystic fibrosis transmembrane conductance regulator) represents a long debated candidate 

(reviewed in (Haggie and Verkman, 2009a)) and now is thought unlikely to be a key component 

in the organellar acidification, especially in lysosomes (Haggie and Verkman, 2009b). On the 

other hand, the intracellular ClC antiporters appear to be promising (Edwards and Kahl, 2010), 

although lysosomal acidification seemed to be normal in ClC-7-/- cells (see above discussion, 

(Kasper et al., 2005a; Lange et al., 2006; Steinberg et al., 2010; Weinert et al., 2010)). Thus far, 

no K+ or Na+ channels on the lysosome have been identified yet. My thesis work has provided 

the first Na+ channel candidate (TPC proteins) for cation counterflux. 

 

H+ leaks: uncharacterized conductance 

V-ATPase inhibitors (such as bafilomycin A1) cause alkalization of acidic organelles, which 

indicates the existence of H+ leaks, and reveals that the H+-leak rates are different in distinct 

acidic compartments (Paroutis et al., 2004). The current model is that the luminal pH set point is 

primarily determined by the H+ pump/H+ leak balance, and the ratio of H+ pump/H+ leak is 

higher in organelles with the more acidic luminal environments (Demaurex, 2002; Paroutis et al., 

2004). Our understandings about the H+ leaks are at very preliminary stage, and both the 

conductance properties and molecular identities need to be further investigated. 

 

Mysterious ion transporters for Ca2+ uptake in endolysosomes 

It is well known that Ca2+ uptake in the ER is primarily by the SERCA (sacro-endoplasmic 

reticulum Ca2+-ATPase) pump, and Ca2+ leaks out through RyRs (Laporte et al., 2004). In stark 

contrast, the machinery for Ca2+ filling in endolysosomes is barely understood, particularly in the 

animal kingdom. 
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      Regarding the ionic flux in the acidic stores, far more is known in plants, yeast and protist 

vacuoles. In these organisms, the Ca2+-refilling in the acidic stores is accomplished by a higher 

affinity vacuolar Ca2+-ATPase and a lower affinity Ca2+/H+ exchanger (CAXs) with a 

stoichiometry of 2-3H+/Ca2+ (Cunningham, 2011; Pittman, 2011). As for endolysosomal Ca2+ 

pump, there are a few reports proposing that a P-type Ca2+-ATPase (Ezaki et al., 1992; 

Goncalves et al., 2000; Hicks and Parsons, 1992) or SERCA3-like pump (Lopez et al., 2005; 

Lopez et al., 2006; Papp et al., 1992) might be on some types of acidic stores based on 

pharmacological studies, however, it’s far from clear yet. What we do know about 

endolysosomal Ca2+ store is that the H+ gradient helps in establishing the Ca2+ gradient, because 

disruption of H+ gradient by NH4Cl or the V-ATPase inhibitor bafilomycin A1 leads to depletion 

of the Ca2+ store (Christensen et al., 2002; Lloyd-Evans et al., 2008; Luzio et al., 2007a; 

Yamasaki et al., 2004). By analogy with the vacuolar machinery, the simplest explanation for the 

above observations is the presence of a Ca2+/H+ exchanger. Since the CAX proteins are absent 

from higher vertebrates (Pittman, 2011), the new proteins acting as Ca2+/H+ exchangers in 

mammals need to be identified. Another plausible scenario for Ca2+ refilling is Na+/H+ 

exchangers coupled with Na+/Ca2+ exchangers, i.e., a Na+ gradient is first established by the 

dissipation of H+ gradient (e.g. by a reverse action of NHE), which in turn drives Ca2+ uptake. In 

mammals, there are three families of CaCAs (Ca2+/cation antiporters), including NCX (Na+/Ca2+ 

exchangers), NCKXs (Na+/Ca2+-K+ exchangers) and CCX (Ca2+/cation exchangers) (Altimimi 

and Schnetkamp, 2007; Lytton, 2007). Although some reports showed that NCKX might 

contribute to Ca2+ refilling in chromaffin granules (Pan et al., 2008) and melanosomes (Lamason 

et al., 2005), more work remains to be done to clarify the putative roles of Ca2+/cation antiporters. 

In addition, the potential functions of Ca2+ pumps/exchangers need to be cautiously explained by 

considering the their interactions with the positive luminal potential and high H+ gradient. 

      In summary, the machinery for endolysosomal Ca2+ uptake in mammalian cells remains 

in the hypothetical stage. Detailed and more specific pharmacological characterization is needed 

to probe potential Ca2+ pumps or exchangers. Also, the Ca2+ refilling mechanisms may not be 

universal for endolysosomes in different tissues.  

 

1.3.2 Ion channels residing on the endosomes and lysosomes – a growing community 

An increasing number of ion channels are found to be localized on intracellular vesicles along 

the endocytic pathway. Functional studies suggest that many of those channels are not simply 



 13	
  

passive cargo, but instead play active roles in membrane fusion and fission, signal transduction, 

and vesicular homeostasis. The two established ion channel families on endolysosomes are 

TRPMLs (Dong et al., 2008) and TPCs (two pore channels) (Calcraft et al., 2009). Unlike other 

channels localized both at the plasma membrane and intracellularly, these two types of channels 

are primarily expressed on the endolysosomes, and are the focus of my thesis work, which will 

be discussed in detail later. 

  

TRPV2  

Initially reported to be a temperature-activated Ca2+-permeable non-selective cation channel in 

somatosensory neurons (Caterina et al., 1999), TRPV2 is also localized to intracellular vesicles 

(Kanzaki et al., 1999). Based on a proteomic study revealing the presence of TRPV2 in the early 

endosome, Saito et al. (Saito et al., 2007) tested the hypothesis that TRPV2 is an endosomal Ca2+ 

channel for Ca2+-dependent membrane fusion. Using an elegantly modified patch-clamp 

technique, Saito et al. successfully measured endogenous ionic currents (IEE) in the isolated 

enlarged early endosome, which was made possible after endosomal fusion was genetically 

promoted. IEE is activated by reductions in the luminal pH and Cl- concentration, which usually 

occur within 20 min post-endocytosis (Gerasimenko et al., 1998). The pharmacological 

properties of IEE resemble those of ITRPV2 studied in heterologous systems. To ultimately prove 

the hypothesis, however, more experiments are necessary to show that TRPV2 is the underlying 

channel for the endogenous IEE. 

 

TRPM2  

Initially characterized as a plasma membrane Ca2+-permeable channel gated by free cytosolic 

ADP-ribose (ADPR) (Perraud et al., 2001), recent evidence suggests that TRPM2 is also 

localized in the LEL compartment (Fig. 1.4) (Lange et al., 2009). Rather than simply being a 

cargo in the degradative pathway, TRPM2 can function as a lysosomal Ca2+ release channel in 

response to cytosolic ADP-ribose in pancreatic ß cells (Lange et al., 2009) and dendritic cells 

(Sumoza-Toledo et al., 2011). TRPM2-deficient dendritic cells were found to show impaired 

maturation and severely compromised chemotaxis (Sumoza-Toledo et al., 2011). Plasma 

membrane TRPM2 is reportedly activated by high concentration (µM) of NAADP (Beck et al., 

2006) or by increases in [Ca2+]i (Du et al., 2009), it is conceivable that TRPM2 might also has a 

role in lysosomal NAADP (working at nM range) signaling or in Ca2+-induced Ca2+ release 
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(CICR). 

 

P2X4 

Initially identified as a plasma membrane non-selective cation channel activated by ATP and 

other nucleotides, P2X4 is also expressed in lysosomes (Qureshi et al., 2007). Studies showed 

that P2X4 is upregulated at the cell surface through the exocytosis of lysosomal P2X4. However, 

it is not clear that whether P2X4 functions as a lysosomal channel.  

 

Summary 

An increasing number of putative ion channels/transporters primarily expressed on the 

endolysosomes are found to be involved in many physiological processes or disease conditions, 

such as DIRC2 (disrupted in renal carcinoma 2) (Savalas et al., 2011) and LAPTM4B 

(lysosomal-associated transmembrane protein 4B) (Kasper et al., 2005b; Li et al., 2010; Shao et 

al., 2003), although their intracellular functions are far from clear yet. In the future, the 

advancement in understanding endolysosomal ion channels/transporters is expected in the 

following areas:  

(1) Tissue and organellar expression pattern will be defined for most endolysosomal channels. 

(2) The intracellular activities of the putative ion channels/transporters will be characterized by 

extensive functional assays (including patch-clamp recordings and Ca2+ imaging). Agonists 

and antagonists of intracellular channels may provide useful tools for measuring their 

functions and dissecting their cellular roles.  

(3) Real-time live imaging methods will be used to investigate the roles of intracellular channels 

in lysosomal physiology. Local Ca2+ transients may be capture by endosome-targeted Ca2+ 

sensors (such as a genetically-encoded Ca2+ indicator GCaMP3 fused with lysosomal channel 

TRPML1, GCaMP3-TRPML1 (Shen et al., 2012)), and may be correlated with membrane 

trafficking events. 

(4) More information will be revealed for the electric properties of intracellular compartments 

and vesicles. Ion imaging methods will be applied to accurately measure luminal ion 

concentrations at both basal and stimulated states. 

(5) Molecular identities underlying the ionic conductance will be discovered in the lysosomes 

and their activation and functions will be further investigated.  
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Last but not least, recent studies have blurred the boundaries between the plasma and 

intracellular ion channels. For example, some plasma membrane channels are found in 

intracellular organelles (e.g. TRPV1) (Dong et al., 2010b), and intracellular channels, e.g. IP3 

receptor in the ER (Dellis et al., 2006)) can be detected at the plasma membrane. These 

observations have brought up an important question: how to prevent channels from being active 

at the wrong subcellular location? One plausible hypothesis is that the channel activities at 

different subcellular locations are dependent on compartment-specific lipid compositions. For 

example, PI(4,5)P2 is required for the functioning of many plasma membrane ion channels (Suh 

and Hille, 2008), but this lipid is usually excluded from endocytic vesicles (Poccia and Larijani, 

2009; Roth, 2004), which may serve as a mechanism to keep the plasma membrane channels 

inactive intracellularly. On the other hand, TRPML1 as an endolysosomal channel, is shown to 

be activated by endolysosome-specific PI(3,5)P2 (part of my thesis work (Dong et al., 2010a)), 

while inhibited by PI(4,5)P2 (Zhang et al., 2012a) and sphingomyelin (Shen et al., 2012) at the 

plasma membrane.  

 

1.4 NAADP signaling and Two-pore channels 
1.4.1 NAADP mediates Ca2+ release from intracellular acidic compartments. 

Ca2+ release from intracellular stores induced by second messengers upon extracellular stimuli 

represents an important mechanism for Ca2+ signaling. It is well known that the second 

messengers inositol trisphosphate (IP3) and cyclic ADP-ribose (cADPR) mobilize Ca2+ release 

from the S/ER store, targeting IP3 receptors (IP3Rs) and ryanodine receptors (RyRs), respectively 

(Berridge et al., 2000). It was until a decade ago that nicotinic acid adenine dinucleotide 

phosphate (NAADP) was identified as the most potent Ca2+ mobilizing messenger (acting at < 1 

nM concentration) (Lee and Aarhus, 1995), which evokes Ca2+ release from a completely novel 

intracellular compartments, acidic stores (Churchill et al., 2002). This discovery has not only 

recognized acidic organelles as indispensible Ca2+ stores, but has also provided a critical probe to 

dissect this unknown Ca2+ store-associated signaling pathway. 

      The Ca2+-releasing phenomenon by pyridine nucleotide metabolites in sea urchin egg 

homogenates was first described by Lee and his colleagues in 1987 (Clapper et al., 1987). Their 

follow-up work further identified that the Ca2+-mobilizing molecule, whose targeting and 

properties are distinct from IP3 and cADPR, is NAADP (Lee and Aarhus, 1995). Then in 2002, 

the studies from Churchill et al. demonstrated that NAADP mobilizes calcium release from the 
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reserve granule, a lysosome-related organelle in sea urchin eggs (Churchill et al., 2002). To 

identify the NAADP-sensitive compartments, Churchill et al. used bafilomycin A1 (the 

V-ATPase inhibitor) and GPN (a substrate of cathepsin C, causing osmotic disruption of 

lysosomes) to deplete acidic organelles without affecting S/ER Ca2+ stores (thapsigargin 

sensitive). Bafilomycin A1 and GPN have subsequently been found to disrupt NAADP-sensitive 

stores in many mammalian cell types (Brailoiu et al., 2006; Kinnear et al., 2004; Macgregor et al., 

2007; Yamasaki et al., 2004), strengthening the concept that NAADP induces Ca2+ release from 

acidic stores. The nature of the acidic stores is generally assumed to be lysosomes, although 

some studies indicated that endosomes (Menteyne et al., 2006) and dense core vesicles (Mitchell 

et al., 2003) may also be included.  

      NAADP triggered local Ca2+ release from lysosomes is hypothesized to be coupled with 

ER Ca2+ release, a process referred to as calcium-induced calcium release (CICR) (Cancela et al., 

1999). The NAADP-induced Ca2+ signaling has been linked with a variety of physiological 

processes. For example, in pancreatic acinar cells, the brain gut peptide cholecystokinin (CCK) is 

shown to recruit the NAADP pathway (Yamasaki et al., 2005); while in pancreatic β cells, 

NAADP is thought to mediate the Ca2+ signaling in the insulin secretion (Arredouani et al., 2010; 

Masgrau et al., 2003). In addition, the roles of NAADP signaling have also been suggested in 

cardiac (Macgregor et al., 2007) and smooth muscle contractions (Boittin et al., 2002; Kinnear et 

al., 2004), neurotransmitter release and neurite outgrowth (Brailoiu et al., 2006; Brailoiu et al., 

2003), and activation of platelets (Lopez et al., 2006) and T-lymphocytes (Berg et al., 2000).  

      Since the discovery of the Ca2+-mobilizing messenger NAADP, there has been a natural 

interest to search for the putative NAADP receptor(s). This receptor is hypothesized to be a 

NAADP-activated Ca2+ channel, located on the endolysosomes (acidic stores). Several candidate 

ion channels have been implicated (Guse and Lee, 2008), including TRPM2 (Beck et al., 2006; 

Lange et al., 2009) and TRPML1 (Zhang and Li, 2007), although the evidence was not strong. 

Separate studies have also indicated that thapsigargin-sensitive stores and RyRs are involved in 

NAADP signaling in some cell types (Dammermann and Guse, 2005; Gerasimenko et al., 2003). 

Then in 2009 three groups (Brailoiu et al., 2009; Calcraft et al., 2009; Zong et al., 2009) 

independently reported that a new family of ion channels, termed two-pore channels (TPCs), 

might be the underlying molecules mediating NAADP signaling, which appeared to be a 

hallmark discovery. This finding was immediately discussed in a number of review articles 

(Galione et al., 2009; Guse, 2009; Guse and Lee, 2008; Patel et al., 2010; Zhu et al., 2010a; Zhu 
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et al., 2010b), and many of the physiological functions previously ascribed to the NAADP 

signaling were thought to be mediated by TPCs (Arredouani et al., 2010; Rybalchenko et al., 

2012). But the conclusion is challenged by follow up studies (Lin-Moshier et al., 2012; Walseth 

et al., 2012), and definitive evidence that TPCs are directly activated by NAADP is still lacking. 

Surprisingly, using lysosomal patch-clamp techniques, my thesis work has demonstrated that 

TPCs are Na+-selective channels with little Ca2+ permeability and they can be activated by 

PI(3,5)P2, but not NAADP. Ca2+ imaging results have further demonstrated that NAADP 

signaling is intact in TPCs-knock out cells. Below our current knowledge and results regarding 

TPCs will be summarized and discussed. 

 

1.4.2 Two-pore channels- the long-sought NAADP receptors? 

The family of two-pore channels contains three members (TPC1-3). In 2000 the first member 

TPC1 was cloned by homology screening a rat kidney cDNA library based on the voltage-gated 

cation channel superfamily, to which TPCs belong (Ishibashi et al., 2000). The founding 

members of this superfamily are the voltage-gated Na+ (Nav) and Ca2+ channels (Cav) (Yu and 

Catterall, 2004). Their primary α subunits are composed of four homologous repeats of 6 

transmembrane domains (6TMD, i.e. segments S1 to S6, 24 TMD in total). α subunits of 

voltage-gated K+ channels (Kv), on the other hand, contains only one repeat of 6TMD, and 

tetrameric assemblies are required for functional channels. For a 6TMD channel, S4 region 

usually containing multiple positively charged amino acid residues, is thought to serve as voltage 

sensor, while S5 and S6, together with a membrane-reentrant loop between the two segments 

(called the pore-loop) form the ion conducting pore. The 6TMD channels (e.g. Kv) appear to be 

the basic pore-forming structural unit, and the 24TMD channels (e.g. Cav and Nav) are 

generated from the basic unit by gene duplications during evolution. This hypothesis 

immediately raised an interesting question: do the intermediate duplication of 12 TMD channels 

exist in the genome? The newly cloned two-pore channels have perfectly answered the question, 

with two predicted repeats of 6TMD (12TMD in total), homologous to the pore-forming domains 

of Cav and Nav. TPC genes exist in most species from plant to animal, although they are absent 

in the well studied model organisms of C. elegans and Drosophila. Present in some mammals 

(e.g. cows and horses), TPC3 appears to be absent in rats, mice and humans (Patel et al., 2010; 

Zhu et al., 2010c) (This thesis will mainly focus on mammalian TPC1 and TPC2). Ever since the 

first report of TPC proteins in rat, the channel functions in animals have been enigmatic. For a 
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long time, the plant TPC1 was the only TPC protein that has been functionally characterized 

(Peiter et al., 2005). 

Mammalian TPC1 and TPC2 are probably expressed in most tissues as revealed by 

Northern blot, with higher levels in the liver and kidney (Calcraft et al., 2009; Ishibashi et al., 

2000; Zong et al., 2009). Early efforts failed to detect channel functions using electrophysiology 

in various heterologous expression systems (Ishibashi et al., 2000). A turning point was when the 

three broadly consistent reports came out in 2009, proposing that TPCs might mediate 

NAADP-evoked Ca2+ release from acidic stores (lysosomes) (Brailoiu et al., 2009; Calcraft et al., 

2009; Zong et al., 2009). Unlike their homologs of the plasma-membrane-localized Cav and Nav, 

TPCs are actually localized in intracellular endosomes and lysosomes (Calcraft et al., 2009; 

Morgan et al., 2011), although their individual localizations are generally not overlapped with 

each other. TPC2 is mainly expressed in late endosomes and lysosomes (Fig. 1.4), while TPC1 is 

more broadly distributed across the endosomes, and chicken TPC3 may be largely in recycling 

endosomes. The intracellular localizations and their sequence homology to Cav made TPCs 

promising candidates as NAADP receptors. These work represent a major step forward in our 

understandings of TPC expressions and functions, and have provided evidence supporting the 

intriguing idea that TPCs are the long-sought NAADP receptors. The difference between the 

three reports focused on whether the ER store is coupled with TPC-mediated Ca2+ release. It was 

suggested that the difference might be due to different cell types and variations in the levels of 

heterologous expression (Morgan et al., 2011). But it needs to be pointed out that the studies 

were largely based on indirect measurements, and the definitive assay that NAADP directly 

activates the specific conductance of TPC channels was lacking. 

The intracellular localization of TPCs hindered the application of electrophysiology to 

examine their channel properties, however three subsequent reports (Brailoiu et al., 2010; Pitt et 

al., 2010; Schieder et al., 2010) made efforts to overcome the difficulties. All three studies 

suggested TPC2 is activated by NAADP, although the TPC2 currents were shown to be 

K+-permeable (Pitt et al., 2010), Cs+-permeable (Brailoiu et al., 2010), or Ca2+-selective 

(Schieder et al., 2010), which were inconsistent with each other.  

In summary, the hypothesis that TPCs serve as NAADP receptors was quickly accepted, 

although the direct measurements of NAADP-activated TPC currents remain to be elucidated. 

Therefore, TPCs are proposed to mediate NAADP-evoked Ca2+ signaling in many physiological 

processes, including NAADP-regulated plasma membrane excitability (Calcraft et al., 2009; 
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Moccia et al., 2004), muscle contraction (Tugba Durlu-Kandilci et al., 2010), insulin secretion 

(Arredouani et al., 2010) and muscle differentiation (Aley et al., 2010). Assumed to be 

endolysosomal Ca2+ channels, TPCs are also hypothesized to be involved in luminal pH 

regulation of endolysosomes (Morgan et al., 2011), and intracellular membrane trafficking (Ruas 

et al., 2010). It is worth mentioning that human genetic studies have identified TPC2 as a 

regulator of pigmentation in North Europeans, which is consistent with TPC2 functions in the 

melanosome (Sulem et al., 2008). Melanosomes are lysosomal-related organelles in melanocytes, 

which produce and release melanin to keratinocytes for pigmentation. 

In stark contrast with the popular views, my thesis work has discovered that TPCs are 

Na+-selective channels with little Ca2+ permeability and they can be activated by PI(3,5)P2, but 

not NAADP, using established lysosomal-patch clamp recordings (Dong et al., 2008; Dong et al., 

2010a), Ca2+ imaging and mouse genetics. In my view, this work may represent a critical 

correction to this field, and has established a new dimension for TPC studies as the first 

intracellular Na+ channels.  

 

1.5 TRPML1: a principle Ca2+ channel in endolysosomes 
The mucolipin subfamily of transient receptor potential (TRP) cation channels (TRPMLs) 

includes three members in mammals, i.e., TRPML1-3 (also called MCOLN1-3). 

Loss-of-function mutations of human TRPML1 cause type IV Mucolipidosis (ML4), a childhood 

neurodegenerative lysosomal storage disorder (LSD) manifested by psychomotor retardation and 

retinal degeneration (Bargal et al., 2000; Bassi et al., 2000; Sun et al., 2000). At the cellular level, 

membranous lipids are accumulated in enlarged vacuolar structures (lysosomes), suggesting 

defective lysosomal biogenesis and trafficking. Disruption of mouse TRPML1 (Venugopal et al., 

2007), C. elegans TRPML (Cup-5) (Fares and Greenwald, 2001; Hersh et al., 2002) and 

Drosophila TRPML (Venkatachalam et al., 2008) all result in behavior defects and cellular 

defects that are reminiscence of ML4.  

      Unlike other plasma membrane TRP channels, TRPMLs are mainly localized in 

intracellular endosomes and lysosomes (Abe and Puertollano, 2011; Cheng et al., 2010), 

consistent with the defective endolysosomal functions shown in TRPML1-deficient cells. 

However, the mechanisms of TRPML1’ essential roles in endolysosomal functions remain 

elusive. Fortunately, the recent development of the whole-endolysosome patch-clamp technique 

from our lab (Dong et al., 2008) has conquered the difficulties in assessing intracellular channels, 
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and provided insights in channel properties and their activation mechanisms (Dong et al., 2008; 

Dong et al., 2010a; Shen et al., 2012). Moreover, the newly identified activating or 

surface-expressing trafficking mutants (Grimm et al., 2007; Kim et al., 2007; Nagata et al., 2008; 

Shen et al., 2012; Xu et al., 2007) of TRPMLs have allowed the use of whole-cell recordings to 

study channel functions. Taken together, these studies have revealed that TRPML1 is an 

inwardly rectifying Ca2+/Fe2+/Zn2+-permeable cation channel that is activated by an 

endolysosomal-specific phosphoinositide, PI(3,5)P2 (part of my thesis work, please see chapter 

4). Therefore, TRPML1 represents an ideal candidate channel mediating cation/heavy metal ions 

release from endolysosomes, in response to PI(3,5)P2 elevation or other unidentified cellular 

cues. 

      Studies using animal models and cell lines with the disruption of TRPML1 have uncover 

critical roles of TRPML1 in multiple cellular functions including endocytosis, endolysosomal 

membrane trafficking, lysosomal ion homeostasis, lysosomal exocytosis, and autophagy (Cheng 

et al., 2010; Grimm et al., 2012). Moreover, recent identification of several small-molecule 

activators of TRPMLs has made it possible to dissect the role of TRPML1 in those cellular 

functions (Grimm et al., 2012; Grimm et al., 2010; Shen et al., 2012). The development of an 

endolysosomal-targeted genetically-encoded Ca2+ indicator, GCaMP3-TRPML1 may allow one 

to correlate the local, transient Ca2+ release to membrane fusion/fission (Shen et al., 2012). In 

addition, molecular and biochemical analyses have indicated several potential proteins that 

interact with TRPML1, defining its molecular signaling context. For example, two-pore channel 

(TPC) proteins might form heteromeric channels with TRPML1. Several Ca2+ sensors are 

indicated to function downstream of TRPML1, including ALG-2, Synaptotagmin VII and 

calmodulin. Lysosome associated protein transmembrane (LAPTM) proteins are found to 

interact with TRPML1 by a yeast two-hybrid screen (Vergarajauregui et al., 2011). Last but not 

least, dynamic interactions with other intracellular organelles have ensured that the lysosome is a 

central point of convergence in diverse cellular processes and a variety of diseases. As the 

principle Ca2+ release channel in endolysosomes, TRPML1 may serve as a gateway to 

understand lysosomal functions and disease mechanisms, including ML4 and LSDs.  

 

1.5.1 Structural aspects and expression patterns of TRPML1 

TRPMLs contain six putative transmembrane domains (S1-S6) with the amino (NH2)- and 

carboxyl (COOH)-terminus facing the cytosol, and are predicted to form tetramers as functional 
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channels. S5 and S6 are presumed to form the channel pore and gate. By proline-substitution 

screening around this region, I have identified several gain-of-function mutations that lock the 

channel at a non-gated open stage (please refer to chapter 5). My colleagues and I have also 

identified the poly-basic domain in the N terminus of TRPML1 as the PIP2-binding domain, 

mediated by seven positively-charged amino acids. My colleagues Zhang et al. have further 

found this domain is also involved in the inhibitory effects of PI(4,5)P2 on TRPML1, and 

proposed that Arg41-43 mainly mediate the PI(4,5)P2 binding, while Arg61 and Lys 62 

mediating the PI(3,5)P2 binding (Zhang et al., 2012a).  

      TRPML1 is ubiquitously expressed in every tissue (Cheng et al., 2010; Slaugenhaupt, 

2002) and mainly co-localizes with late endosomal and lysosomal (LEL) markers (> 80%, see 

Fig. 1.4) (Cheng et al., 2010; Dong et al., 2009; Puertollano and Kiselyov, 2009). The LEL 

localization is also supported by gradient fractionation studies on both endogenous and 

heterologously-expressed proteins (Kim et al., 2009; Zeevi et al., 2009). Although primarily 

localized in LELs, TRPML1-GFP is also detected in EEA-1 positive early endosomes (Cheng et 

al., 2010), and TRPML-specific channel activity can be measured in inside-out patches derived 

from the plasma membrane in TRPML1-GFP-overexpressing HEK 293 cells (Zhang et al., 

2012a). Two di-leucine (LL) motifs, situated separately with one each at the N- and C- terminus, 

are shown to mediate the trafficking of TRPML1 to the LEL (Vergarajauregui and Puertollano, 

2006). Mutations in both di-leucine motifs (L15L/AA-L577L/AA) result in a significant increase 

in the surface expression of TRPML1 and whole-cell TRPML1 currents (Shen et al., 2012; 

Zhang et al., 2012a).  

 

1.5.2 Pore properties of TRPML1 channels 

The first electrophysiologically characterized wild-type TRPML channel was TRPML3 (Kim et 

al., 2007; Kim et al., 2008; Xu et al., 2007). Although the majority of heterologously-expressed 

TRPML3 proteins are vesicular, a small portion of them are able to traffic to the plasma 

membrane and give rise to whole-cell currents (ITRPML3) (Cuajungco and Samie, 2008; Grimm et 

al., 2007; Kim et al., 2007; Martina et al., 2009; Nagata et al., 2008; Puertollano and Kiselyov, 

2009; Xu et al., 2007). ITRPML3 is an inwardly-rectifying Ca2+permeable cation current. Mutations 

in the mouse TRPML3 (A419P) result in the varitint-waddler (Va) phenotype (Cuajungco and 

Samie, 2008; Puertollano and Kiselyov, 2009). Va mice are deaf, exhibit circling behavior and 

have pigmentation defects. Compared with the wild-type, much larger currents are seen in cells 
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expressing TRPML3A419P (TRPML3Va). The TRPML3Va channel exhibits similar pore properties 

as wild-type TRPML3, but with altered gating behavior, suggesting that Va is a channel 

gain-of-function mutation (Cuajungco and Samie, 2008; Grimm et al., 2007; Kim et al., 2007; 

Martina et al., 2009; Nagata et al., 2008; Puertollano and Kiselyov, 2009; Xu et al., 2007). 

Similarly, the proline substitution at the homologous position in TRPML1 (V432P or TRPML1Va) 

leads to large inwardly rectifying non-selective whole-cell currents that is permeable to both 

monovalent (Na+, K+, Cs+) and divalent (Ca2+, Mg2+) cations (Dong et al., 2008; Xu et al., 2007). 

Recently, our lab (Dong et al., 2008) has developed an endolysosomal patch-clamp 

method to record directly from isolated LELs which were pharmacologically enlarged (from 

0.1-0.5 to 2-3 µm) with the small compound vacuolin-1. With this method, lysosomal ITRPML1 

largely resembles ITRPML1-Va, suggesting that although TRPML1 is likely to be locked at 

non-gated open state, the activating mutation is still a valid approach for characterizing the pore 

properties of TRPML1. TRPML1 exhibits significant permeability to Ca2+, serving as a potential 

conduit for Ca2+ release from LELs (Cheng et al., 2010). In addition, ITRPML1 is also permeable to 

divalent heavy trace metals, such as Fe2+, Zn2+, Cu2+ (Dong et al., 2008), which may have 

important implications in lysosomal functions and ML4 disease (Altarescu et al., 2002; 

Eichelsdoerfer et al., 2010). It is worth noting that although TRPML1 appears to be important for 

LEL pH regulation (Martina et al., 2009; Soyombo et al., 2006; Venkatachalam et al., 2008), 

none of the TRPMLs is H+-permeable (Cheng et al., 2010; Xu et al., 2007), suggesting that the 

effect of TRPMLs on the luminal pH is most likely to be secondary.  

 

1.5.3 TRPML1 in membrane trafficking   

The roles of TRPML1 in intracellular membrane trafficking associated with the LELs have been 

extensively studied both in vitro and in vivo (reviewed in Refs. (Abe and Puertollano, 2011; 

Cheng et al., 2010; Puertollano and Kiselyov, 2009)). As discussed above, accumulating 

evidence supports the essential role of Ca2+ release from endososmes and lysosomes in 

membrane trafficking (Morgan et al., 2011). However, the channels responsible for the Ca2+ 

release remain mysterious. TRPML1 (or TRPMLs), the principle Ca2+ channel(s) localized on 

LELs, are natural candidates for endolysosomal Ca2+-release channels . 

      TRPML1 may be involved in multiple processes in membrane trafficking, including 

endosome maturation, lysosome reformation, LEL-to TGN retrograde trafficking, autophagy and 

lysosomal exocytosis. Studies showed that both the transport of fluid-phase markers to 
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lysosomes, and the lysosomal degradation of internalized growth factor receptors (e.g. PDGFR) 

were delayed in TRPML1-/- cells (Thompson et al., 2007; Vergarajauregui et al., 2008), 

suggesting a role of TRPML1 in the maturation process from endosomes to LELs via membrane 

fusion.  

    TRPML1 may participate in lysosome reformation, a process also referred to as lysosome 

biogenesis. Loss-of-function of Cup-5 (the orthologue of TRPML1) in C. elegans causes 

enlarged vacuoles containing both endosome and lysosome markers (Fares and Greenwald, 

2001). Similar observations were also found in ML4 cells (Cheng et al., 2010). These enlarged 

vacuoles were considered to be the hybrids of endosomes and lysosomes, suggesting that 

TRPML1 is necessary for lysosomal reformation. Recent studies also reported that lysosome 

biogenesis is under the regulations of mTOR (Zoncu et al., 2011), a master regulator of cell 

growth and metabolism, and TFEB (Roczniak-Ferguson et al., 2012; Sardiello et al., 2009), a 

lysosome-associated transcription factor. While TFEB is shown to transcriptionally regulate 

TRPML1 (Medina et al., 2011; Sardiello et al., 2009), Drosophila trpml is shown to be required 

for TORC1 activation (Wong et al., 2012), suggesting TRPML1 may interact with mTOR/TFEB 

signaling to regulate lysosome biogenesis.  

      Retrograde trafficking from the LEL to the TGN is used to reutilize the products from 

lysosomal degradation or recycle the shuttle proteins, such as M6PR (Luzio et al., 2007b). It has 

been shown that in ML4 cells, the retrograde trafficking of LacCer from TGN to LELs is delayed 

or blocked (Chen et al., 1998; Pryor et al., 2006). Similar trafficking defects are also seen in 

PI(3,5)P2-deficient cells, suggesting the physiological relevance of PI(3,5)P2 and TRPML1 

(Zhang et al., 2007b). Interestingly Niemann-Pick type C (NPC) cells also exhibits similar 

LEL-to-TGN trafficking defects, which can be attenuated by increasing TRPML1 activity (Shen 

et al., 2012). 

      Autophagy is a lysosome-mediated degradation process for damaged organelles and 

unnecessary macromolecules. The cytosolic components are first sequestered into 

autophagosomes, which then fuse with lysosomes to form autolysosomes, where autophagic 

substrates are degraded (He and Klionsky, 2009). TRPML1 deficiency is shown to cause 

accumulation of autophagosomes, which are due to either increased autophagic flux or impaired 

fusion with lysosomes (Vergarajauregui et al., 2008). Decreased degradation of autophagy is also 

observed in TRPML-deficient Drosophila and mouse neurons (Curcio-Morelli et al., 2010; 
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Micsenyi et al., 2009; Vergarajauregui et al., 2008). The impaired autophagy might underlie the 

neuronal cell death and neurodegeneration in ML4 (Cheng et al., 2010).  

      In addition, TRPML1 may also mediate Ca2+-dependent lysosomal exocytosis. My thesis 

work has provided evidence to support this hypothesis.   

 

1.5.4 TRPML1 in vesicular ion homeostasis 

In the endo-lysosome system, H+, Ca2+ and membrane fusion have been found to be 

interconnected (Luzio et al., 2007a; Luzio et al., 2007b). In addition to Ca2+, TRPML1 is also 

permeable to other cations in the LEL lumen and thus may have functions distinct from Ca2+ 

signaling. ML4 or TRPML1 knockdown cells appear to have an overly acidified pH in LEL 

compartments，though these findings are highly controversial (Miedel et al., 2008; Soyombo et 

al., 2006). Given that TRPML1 exhibits no permeability to protons, the defects in lysosomal pH 

regulation must be secondary to the absence of TRPML1 (Cheng et al., 2010).  

      TRPML1 is also permeable to Fe2+, Zn2+ and other heavy trace metals (Dong et al., 2008). 

ML4 mutant cells exhibit a cytosolic Fe2+ deficiency and a concurrent lysosomal Fe2+ overload, 

suggesting that the iron efflux pathway is blocked in ML4 cells and that TRPML1 is essential for 

lysosomal Fe2+ release (Dong et al., 2008). Under oxidative conditions, lysosomal Fe2+ overload 

may dramatically increase the production of reactive hydroxyl radicals (OH, Fenton reaction), 

which in turn facilitates the formation of lipofuscin (also called aging pigment) (Kurz et al., 

2008). 

      In summary, TRPML1 participate in multiple endolysosome-mediated functions 

including signal transduction, ionic homeostasis, and more than one aspect of membrane 

trafficking. A major challenge of TRPML research is to understand how one single TRPML 

protein can play such diverse roles. Multiple ionic conductances in a single membrane channel 

may certainly contribute to multifaceted functions. In addition to their divalent permeability, 

TRPML1 is also permeable to Na+ and K+ (Xu et al., 2007). TRPML1 may therefore regulate 

organelle dynamics by regulating endolysosomal membrane potentials. Rabs and PIPs exist in 

‘microdomains’ in the membranes of endolysosomes, participating in multiple functions by 

recruiting distinct effector proteins (Poccia and Larijani, 2009) ((Poccia and Larijani, 2009; 

Stenmark, 2009). TRPML1 may differentially associate with Rabs, PIPs, and Ca2+ sensors (for 

example, CaM, Syt, and ALG-2), affording TRPML1 the ability to generate multiple cellular 

outputs. 
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1.6 PI(3,5)P2, a signature lipid in endolysosomes. 
Phosphoinositides (PIs) function as signaling molecules, and determine the identities of different 

intracellular membranes. In mammalian cells, phosphoinositides can be reversibly 

phosphorylated at three hydroxyl groups, in total, generating seven members (Di Paolo and De 

Camilli, 2006). These phosphoinositides are all concentrated on the cytosolic side of membrane 

bilayers with distinct localizations. While PI(3)P is mainly found on early and late endosomes, 

newly formed phagosomes and autophagosomes (Poccia and Larijani, 2009; Roth, 2004), PI(4)P 

is mainly localized on the Golgi (Levine and Munro, 1998). While PI(3,4)P2 and PI(3,4,5)P3 are 

generated transiently upon activation of plasma membrane receptors (Dewitt et al., 2006), 

PI(4,5)P2 is relatively abundant on the plasma membrane and is the best characterized PI 

involving in a variety of plasma membrane specific functions. Finally, PI(3,5)P2, the most 

recently identified phosphoinositide, is produced in late endosomes and lysosomes (LELs) using 

PI(3)P as the substrate (see Fig. 1.1, Fig. 1.4) (Zhang et al., 2012b; Zolov et al., 2012).  

      PI(3,5)P2, a low abundance PI, makes up only ~ 0.04% of total cellular PIs in 

non-stimulated conditions (Dove et al., 2009; Zolov et al., 2012), which is ~1% of PI(4,5)P2, and 

~20% of PI3P. The level of PI(3,5)P2 is tightly regulated spatially and temporally by the action 

of the specific kinase and phosphatases. Mammalian PIKfyve (Fab1 in yeast), a PI 5-kinase, 

converts PI3P to PI(3,5)P2, and is the only enzyme shown to generate PI(3,5)P2 (Ho et al., 2012; 

Sbrissa et al., 1999; Zolov et al., 2012). Generation of PI(3,5)P2 requires a protein complex 

composed of PIKfyve, the scaffolding protein Vac14 (Dove et al., 2002; Jin et al., 2008), the 

PI(3,5)P2 5-phosphatase Fig4 (Duex et al., 2006a; Rudge et al., 2004), a PIKfyve activator Vac7 

(Bonangelino et al., 1997; Gary et al., 2002) and a negative regulator Atg18 (Dove et al., 2004; 

Efe et al., 2007). Since PIKfyve is mainly localized in late endosomes and lysosomes (Ikonomov 

et al., 2001; Zhang et al., 2012b), PI(3,5)P2 is likely to have the similar LEL localization (Dove 

et al., 2009; Ho et al., 2012; Zhang et al., 2007b). Although the overall level of PI(3,5)P2 is low, 

upon stimulation, the concentration in microdomains where PIKfyve is enriched may rapidly and 

transiently increase up to ~10 µM, similar level to those of PI(4,5)P2 on the plasma membrane 

(Botelho et al., 2008; Ikonomov et al., 2009).  

      Mutations in Vac14 and Fig4 genes in mice, which result in roughly a 50% decrease in 

total PI(3,5)P2 level, lead to profound neurodegeneration (Chow et al., 2007; Jin et al., 2008; 

Zhang et al., 2007a). Moreover, mutations in human Fig4 underlie Charcot-Marie-Tooth type 4J 

neuropathy and are present in selected cases of amyotrophic lateral sclerosis (Chow et al., 2007). 
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Global knockout of PIKfyve causes preimplantation lethality (Ikonomov et al., 2011), however, a 

newly generated mouse model carrying a hypomorph of PIKfyve (~10% of the wild type 

PIKfyve protein) may provide more insights in the role of PIKfyve (Zolov et al., 2012). Yeast 

Fab1 and its regulators are localized in the vacuole and late endosomes (Bonangelino et al., 1997; 

Cooke et al., 1998; Duex et al., 2006a; Duex et al., 2006b; Gary et al., 2002). Consistent with 

this localization, the loss of Fab1 causes defects in retrograde traffic from vacuoles to the Golgi 

(Dove et al., 2004), vacuole membrane fission (Duex et al., 2006b) and vacuole acidification 

(Bonangelino et al., 2002). Similarly, mammalian PI(3,5)P2-deficient cells from Fig4- or 

Vac14-knockout mice, exhibit defects in multiple LEL-associated cellular processes, including 

enlarged vacuoles/LELs (de Lartigue et al., 2009; Jefferies et al., 2008; Zhang et al., 2012b; 

Zhang et al., 2007a), defects in retrograde traffic from early endosomes to trans-Golgi network 

(Rutherford et al., 2006), impaired degradation of EGF receptor (de Lartigue et al., 2009), 

defects in autophagy (Ferguson et al., 2009; Rusten et al., 2007) and disrupted ionic homeostasis 

in LELs (Shen et al., 2011). These phenotypes are reminiscent of the cellular defects observed in 

TRPML1-deficient cells (Cheng et al., 2010), suggesting TRPML1 may functionally interact 

with the PI(3,5)P2 signaling pathway and mediate LEL-associated functions, which would be 

discussed later as part of my thesis work. 

PI(3,5)P2 is proposed to perform its functions through at least three mechanisms (Di 

Paolo and De Camilli, 2006; Dove et al., 2009; Ho et al., 2012). First, as the signature 

phospholipid in LELs, PI(3,5)P2 determines the physical properties and the fusogenic potential of 

endolysosomal membranes. Second, PI(3,5)P2 may function as co-receptors together with 

membrane proteins in the recruitment of downstream cytosolic effectors. For example, Atg18 is 

the first identified PI(3,5)P2 effector protein, that may mediate retrograde trafficking after its 

binding with PI(3,5)P2 in yeast (Obara et al., 2008). Third, PI(3,5)P2 may directly regulate the 

activity of membrane proteins, such as ion channel and transporters. The plasma membrane 

isoform PI(4,5)P2 has been shown to be required for the activation or regulations of many plasma 

membrane ion channels, including TRP channels and voltage-gated Na+/K+/Ca2+ channels (Suh 

and Hille, 2008). Similarly, my thesis work has shown that PI(3,5)P2 activates both TPC 

channels and TRPML channels on the endolysosomes, regulating Na+ and Ca2+release through 

these channels, respectively. 
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1.7 Ca2+-dependent lysosomal exocytosis 

Lysosomes have been traditionally regarded as terminal compartments along the endocytic 

pathway. However it was recently shown that lysosomes undergo exocytosis in response to an 

increase of intracellular Ca2+ in most, if not all cell types (Andrews, 2000; Coorssen et al., 1996; 

Ninomiya et al., 1996; Rodriguez et al., 1999; Rodriguez et al., 1997) . This discovery has 

immediately attracted considerable interest to study the molecular mechanisms and physiological 

roles of this ubiquitous, Ca2+-regulated lysosomal exocytosis pathway.  

Similar to the exocytosis of synaptic vesicles, lysosomal exocytosis has two sequential 

steps. First, lysosomes are recruited to the close proximity of the cell surface in a 

Ca2+-independent manner (Jaiswal et al., 2002). Then in response to intracellular Ca2+ elevation, 

the pool of docked lysosomes fuse with the plasma membrane via SNARE proteins in a few 

seconds (Andrews, 2000; Jaiswal et al., 2002; Tucker et al., 2004). During this step, 

synaptotagmin VII (Syt VII) is identified as the Ca2+ sensor (Gao et al., 2000; Gut et al., 2001; 

Martinez et al., 2000), while VAMP7 is the lysosomal v-SNARE interacting with the plasma 

membrane t-SNAREs SNAP-23 and syntaxin 4 (Rao et al., 2004). Syt VII, localized in 

lysosomes, is a ubiquitously expressed member of the synaptotagmin family, and contains two 

high-affinity Ca2+-binding C2 domains (C2A and C2B) (Andrews, 2005; Sudhof and Rizo, 1996). 

Syt VII-deficient mice developed a form of autoimmune myopathy similar to the human diseases 

polymyositis/dermatomyositis. Cells from those mice showed defects in lysosomal exocytosis, 

phagocytosis and membrane resealing (Chakrabarti et al., 2003; Czibener et al., 2006; Roy et al., 

2004; Zhao et al., 2008). Accumulating studies have identified essential roles of lysosomal 

exocytosis in numerous physiological processes, including plasma membrane repair (Andrews, 

2005; Reddy et al., 2001), bone resorption (Zhao et al., 2008), neurite outgrowth (Arantes and 

Andrews, 2006), neurotransmitter release (Chen et al., 2005; Dou et al., 2012; Liu et al., 2011; 

Zhang et al., 2007b), axonal remyelination (Chen et al., 2012), phagocytosis (Czibener et al., 

2006) and cellular clearance (Medina et al., 2011). 

Lysosomal exocytosis can be monitored by Lamp1 (Lysosomal-associated membrane 

protein 1) surface staining using an antibody against a luminal epitope of Lamp1, or by 

measuring the activity of released lysosomal-specific enzymes (e.g. β-hexosaminidase) (Reddy et 

al., 2001). The critical trigger for lysosomal exocytosis is the local Ca2+ increase, presumably 

from lysosomal Ca2+ release under physiological conditions (Czibener et al., 2006; Liu et al., 

2011; Tapper et al., 2002). However, definitive evidence to support this hypothesis is still 
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lacking, and more essentially, the ion channel(s) responsible for Ca2+ release from lysosomes 

remains elusive. TRPML1, as a lysosomal Ca2+-permeable channel, may serve a perfect 

candidate for this job. Defects in lysosomal exocytosis were reported in TRPML1-deficienct 

cells, although the application of ionomycin (a Ca2+ ionophore, causing Ca2+ influx from 

extracellular space) to induce exocytosis may mask the function of TRPML1 as a potential 

lysosomal Ca2+ release channel. In addition, a very recent study showed that TFEB, a 

transcription factor and master regulator for lysosomal biogenesis, increases lysosomal 

exocytosis in a TRPML1-dependent manner (Medina et al., 2011). My thesis work has provided 

evidence to support that TRPML1-mediated Ca2+ release may induce lysosomal exocytosis. I 

screened several gain-of-function mutations in TRPML1 with constitutive Ca2+ permeability, and 

found that cells expressing these gain-of-function mutants of TRPML1 showed increased 

lysosomal exocytosis. To directly test the involvement of TRPML1, I also developed a 

whole-cell patch-clamp method to “detect” the plasma membrane insertion of TRPML1 during 

particle uptake-induced exocytosis, and further confirmed the prominent role of TRPML1 in this 

fundamental process. 
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Figure 1.1. PI(3,5)P2 and TRPML1 in endolysosomal membrane trafficking 

Intracellular compartments in the endocytic pathways undergo cargo-dependent maturation 

(indicated by black arrows), membrane fusion (white arrows), and fission/budding (red arrows). 

PI(3)P is localized in early endosomes. PI(3,5)P2 is presumed to be produced in late endosomes 

and lysosomes (LELs) . Endolysosomes are Ca2+ stores, with a luminal Ca2+ concentration 

estimated to be approximately 0.5 mM. Lysosomal pH is ~ 4.6. In endolysosomes, 

TRPML-mediated intra-endosomal Ca2+ release may trigger homotypic and heterotypic fusion. 

Early endosomes (pH 6.0; PI(3)P;) are derived from the primary endocytic vesicles after 

endocytosis. Early endosomes can undergo maturation through membrane trafficking to become 

late endosomes (pH 5.5; PI(3)P + PI(3,5)P2). Late endosomes can fuse with lysosomes (pH 4.5; 

PI(3)P+PI(3,5)P2 to form the hybrids. Lysosomes can be reformed from the hybrids in a 

fission-dependent mechanism. Besides fusion with late endosomes, lysosomes also fuse with 
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autophagosomes to form autolysosomes, or fuse with the plasma membrane in exocytosis. 

TRPML1-3 channels are predominantly localized in LELs. Activation of TRPML channels by 

PI(3,5)P2 may induce intralysosomal Ca2+ release. Retrograde transport vesicles, derived from 

LELs upon membrane fission, transport lipids and proteins in a retrograde direction to the 

trans-Golgi Network (TGN). Stars indicate membrane fusion and fission processes that are 

reportedly defective in both TRPML1-deficient and PI(3,5)P2-deficient cells. Adapted from 

reference (Dong et al., 2010a). 

 

 

 

Figure 1.2. Ion channels and transporters in endolysosomes. 

The prominent feature of endolysosomes is their acidic lumen (lysosomal pH: 4~5), which is 

established by the V-type ATPase. The existence of H+ leak is supported by the luminal 

alkalization caused by inhibiting V-ATPase function, although the conductance is not 

characterized. The [Ca2+] in lysosomes is ~0.5 mM, which presumably is maintained by an 

unidentified H+-Ca2+ exchanger, due to the sensitivity of the Ca2+ store to the H+ gradient. 

NAADP is a newly identified second messenger, and is reported to trigger lysosomal Ca2+ 

release via unknown receptors. TPCs are proposed to be the NAADP receptors. The Cl- 

conductance in endolysosomes is mediated by ClC Cl-/H+ antiporters (ClC3-6 in endosomes; 

ClC-7 in lysosomes). The Cl- flux was thought to mediate counterion flux to support lysosomal 
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acidification, but emerging evidence has demonstrated that the ClC-mediated Cl- flux is actively 

serving some other important functions beyond just pH regulation. A putative lysosomal K+ 

release channel was also proposed to provide counterion flux to facilitate lysosomal acidification, 

although the electrochemical gradient of K+ across the lysosome membrane might be low, or 

opposite. The Fe2+ release conductance is important for lysosomal functions, which may be 

mediated by the Fe2+-permeable channel TRPML1. TRPML1 is also the principle 

Ca2+-permeable channel primarily localized in late endosomes and lysosomes. The role of 

TRPML1-mediated Ca2+ signaling has been studied in vesicular ion homeostasis and 

intracellular membrane trafficking, including lysosome biogenesis, lysosomal exocytosis and 

autolysosome formation.  

 

 

 

 

 

 

 

 

 

Fig.1.3. Illustration of a whole-lysosome recording configuration on an isolated lysosome. 

The mCherry–TRPML1 and EGFP–Lamp1 (lysosomal marker) are co-localized on the 

membrane of an isolated enlarged lysosome. The patch pipette is filled with rhodamine B dye 

(shown in blue for clarity). Adapted from reference (Dong et al., 2008). 
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Figure 1.4. The distribution of ion channels (TRPMLs and TPCs) and phosphoinositide 

(PI3P, PI(3,5)P2) along the endocytic pathway.  

PI3P mainly resides in early and late endosomes, while PI(3,5)P2 is on late endosomes and 

lysosomes. TRPML channels (TRPML1-3) are primarily expressed in late endosomes and 

lysosomes (LELs), while TRPML2 and TRPML3 are also associated with recycling and early 

endosomes, respectively. TPC2 is mainly localized in the LELs, and TPC1 is mainly associated 

with early and late endosomes. TRPM2 is expressed in specific cell types, and resides in LELs as 

well as the plasma membrane. The concentration of Ca2+ stores associated with each vesicle type 

is also indicated. Figure is adapted from reference (Shen et al., 2011). 
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 CHAPTER 2 

TPC proteins are phosphoinositide-activated sodium-selective 

 ion channels in endosomes and lysosomes   

 

 

Abstract 
Mammalian Two-Pore-Channels (TPC1, 2; TPCN1, TPCN2) encode ion channels in 

intracellular endosomes and lysosomes and were proposed to mediate endolysosomal 

calcium release. By directly recording TPCs in endolysosomes from wild-type and TPC 

double knockout mice, here we show that, in contrast to previous conclusions, TPCs are in 

fact sodium-selective channels activated by PI(3,5)P2. Moreover, the primary endolysosomal 

ion is Na+, not K+, as had been previously assumed. These findings suggest that the 

organellar membrane potential may undergo large regulatory changes, and may explain the 

specificity of PI(3,5)P2 in regulating the fusogenic potential of intracellular organelles.   
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Introduction 

Two pore channel proteins (TPC1, 2; TPCN1, TPCN2) (Calcraft et al., 2009; Morgan et al., 

2011) are localized in intracellular endosomes and lysosomes (collectively endolysosomes) 

previously inaccessible to conventional patch clamp assays. Consistent with this localization, 

human genetic studies have identified TPC2 as a regulator of pigmentation (Sulem et al., 

2008) and a number of recent studies suggest that TPCs mediate Ca2+ release from 

endolysosomes in response to an elevation of the potent Ca2+-mobilizing second messenger, 

nicotinic acid adenine dinucleotide phosphate (NAADP) (Brailoiu et al., 2009; Calcraft et al., 

2009; Ruas et al., 2010; Zong et al., 2009) (but also see ref. (Guse, 2009)). Unlike plasma 

membrane localized NaV and CaV channels, the primary structures of TPCs contain two, 

instead of four, 6 transmembrane (6TM) domains (Yu and Catterall, 2004). Like NaV and 

CaV channels, they contain multiple positively charged amino acid residues in their voltage 

sensor domains and negatively-charged amino acid residues in their pore domains, but their 

intracellular localization has prevented characterization of basic channel properties such as 

selectivity and gating.   

 PI(3,5)P2 is an endolysosome-specific phosphoinositide (PIP) of low abundance (Dove et 

al., 2009; Shen et al., 2011). Upon cellular stimulation, PI 5-kinase PIKfyve/Fab1 

phosphorylates PI(3)P to increase PI(3,5)P2 from low nM to µM concentrations (Dove et al., 

2009; Shen et al., 2011). Human mutations in PI(3,5)P2-metabolizing enzymes and their 

regulators result in muscle and neurodegenerative diseases such as amyotrophic lateral 

sclerosis (ALS) and Charcot-Marie-Tooth (CMT-4B, CMT-4J) disease (Chow et al., 2007).  

PI(3,5)P2-deficient cells have enlarged endolysosomes/vacuoles, suggestive of impaired ion 

homeostasis and/or defective membrane trafficking (Chow et al., 2007; Dove et al., 2009; 

Kerr et al., 2010; Shen et al., 2011). We recently found that TRPML1 mediates 

PI(3,5)P2-dependent Ca2+ release from endolysosomes (Dong et al., 2010a). However, 

PI(3,5)P2 deficiency results in a much more severe phenotype than TRPML1 mutations, 

suggesting that there are additional PI(3,5)P2 effectors (Shen et al., 2011). Here, we find by 

direct patch-clamp of endolysosomal membranes, that PI(3,5)P2 specifically activates TPCs.  

TPC-mediated currents are selective for Na+, which we demonstrate is the predominant 

cation in the lysosome. TPCs represent the first intracellular Na+-selective channels and 

suggest a new model for ion channel control of endolysosomal fusion.    
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Results 
PI(3,5)P2 activation of a large endogenous current in the endolysosome.  

Cells were pretreated with vacuolin-1, a lipid-soluble polycyclic triazine (Huynh and 

Andrews, 2005) that can selectively increase the size of endosomes and lysosomes from < 

0.5 µm to up to 5 µm (Dong et al., 2010a). The enlarged endolysosomes were manually 

isolated and then patch clamped in the whole-endolysosome configuration (Fig. 2.1A; Fig. 

2.2). We previously reported that TRPML1 was the primary PI(3,5)P2-activated conductance 

(reversal potential, Erev ~ 0 mV) in the endolysosomes of human fibroblast (Dong et al., 

2010a). However, in several other cell types including skeletal muscles (data not shown) and 

macrophages, we observed that bath (cytoplasmic) application of diC8 PI(3,5)P2 (abbreviated 

as PI(3,5)P2) , a water-soluble analog of PI(3,5)P2 (Dong et al., 2010a), activated a distinct 

whole-endolysosome conductance with an Erev > + 60 mV (defined as IX; Fig. 2.1B). 

Strongly inwardly-rectifying TRPML-like currents (ITRPML-L; (Dong et al., 2010a)) were also 

present in macrophages, but PI(3,5)P2-activated ITRPML-L was often masked by IX due to its 

positive Erev. ITRPML-L could be activated by SF-51 (100 µM (Grimm et al., 2010); Fig. 2.1B). 

ITRPML-L, but not IX, was dramatically reduced in TRPML1−/− macrophages (Fig. 2.1C). In 9 

out of 23 enlarged endolysosomes isolated from non-transfected COS-1 cells, high 

concentrations of PI(3,5)P2 (10 µM) activated IX, which was distinct from ITRPML-L activated 

by 1 µM PI(3,5)P2 (Dong et al., 2010a) or SF-51 (Fig. 2.1D).   

 

PI(3,5)P2 activates recombinant TPC1 and TPC2 channels in the endolysosome.  

To search for the identity of the protein mediating IX, a number of fluorescently-tagged 

putative intracellular channels or transporter-like lysosomal membrane proteins were 

transfected into COS-1 cells. As described below, endolysosomes from TPC1- and 

TPC2-transfected cells exhibit large IX. The majority (> 80%) of vacuolin-1-treated 

TPC2-positive vacuoles were Lamp-1+ (Fig. 2.3A), confirming that TPC2-positive vacuoles 

were enlarged late endosomes and lysosomes (LELs). In TPC2 (hTPC2)-positive enlarged 

LELs isolated from transfected COS1 cells, little or no basal currents were detected in the 

whole-endolysosome configuration (Fig. 2.3B). Bath application of PI(3,5)P2 rapidly 

activated hTPC2-mediated currents (ITPC2; Erev = + 83 ± 3 mV; Fig. 2.3B), but not those that 

expressed a mutant hTPC2 carrying a charge-reversal mutation in the putative pore domains 
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(D276K; Fig. 2.4A, B); ITPC2 gradually declined upon the washout of PI(3,5)P2 (Fig. 2.3B) 

with variable time courses (depending on treatment time). The I-V and Erev of ITPC2 are 

similar to the endogenous PI(3,5)P2-activated IX. 

    PI(3,5)P2-dependent activation of ITPC2 was dose-dependent (EC50= 390 ± 94 nM; Fig. 

2.3C). IhTPC2 was inhibited > 80% by the PI(3,5)P2 chelators (Nilius et al., 2008; Suh and 

Hille, 2008) poly-L-lysine and anti-PI(3,5)P2 antibody (Fig. 2.4C, D). Other 

phosphoinositides, PI(3)P, PI(5)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, did not activate ITPC2 

(10 µM; Fig. 2.3D; Fig. 2.4E). Thus PI(3,5)P2 activated ITPC2 with striking specificity. In 

contrast, 1 µM PI(3,5)P2 failed to activate the lysosome-localized (Lange et al., 2009) 

recombinant TRPM2 channel (Fig. 2.4F) or modulate the endogenous outward currents that 

were present in a subset of endolysosomes isolated from INS1 pancreatic β-cells (Fig. 2.4G). 

TPC1, also localized in the endolysosome (Calcraft et al., 2009) (but primarily in 

Lamp-1-negative compartments; Fig. 2.4A), was also activated by PI(3,5)P2 (Fig. 2.3E).   

 

TPC-mediated currents are Na+-selective. 

The measured Erev of ITPC under standard recording conditions (with a low pH modified 

Tyrode’s solution in the pipette/lumen and a K+-based solution in the bath/cytosol) dictates 

that the channels are selective for Na+, Ca2+, or H+, but not K+. Increasing the luminal pH 

from 4.6 to 7.4 had minimal effects on ITPC2 (Fig. 2.5A; Fig. 2.6A) and ITPC1. Conversely, 

replacement of luminal cations (Na+, K+, Mg2+, and Ca2+) with NMDG+ at pH 4.6 completely 

abolished inward ITPC2 ( Fig. 2.6B), suggesting that ITPC2 is impermeable to H+ or NMDG+. 

Under bi-ionic conditions (luminal Na+, pH 7.4; cytoplasmic K+), the Erev of ITPC2 was + 89 ± 

5 mV (n=8; see Fig. 2.5A). In contrast, under reversed bi-ionic conditions (luminal K+, pH 

7.4; cytoplasmic Na+), the Erev of ITPC2 was -68 ± 3 mV (n = 5; see Fig. 2.5B). These results 

indicated that ITPC2 was selective for Na+ over K+. Consistent with this conclusion, switching 

cytoplasmic K+ to Na+ in the presence of luminal Na+ resulted in a leftward shift of the Erev 

and the appearance of large outward currents (Fig. 2.5A). Addition of 2 mM Ca2+ to the 

luminal side of the symmetric Na+ solutions did not result in any significant change of the 

Erev or the amplitude of the inward currents (Fig. 2.6C), suggesting that luminal Ca2+ 

contributed insignificantly to inward ITPC2. Consistently, under bi-ionic conditions (luminal 

isotonic Ca2+, pH 4.6 or 7.4; cytoplasmic Na+), the Erev of ITPC2 was -68 ± 2 mV (n = 12; Fig. 

2.6D), in dramatic contrast to the Erev of ITRPML1 (+ 47 ± 2 mV, n = 3; Fig. 2.6E). With 
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cytoplasmic K+, however, a small inward ITPC2 could be resolved with luminal isotonic Ca2+ 

(105 mM), but not NMDG+ (Fig. 2.6B, D), suggesting a very limited Ca2+ permeability for 

TPC2. By estimating the permeability ratios based on Erev measurements, we determined the 

sequence of ion permeability or selectivity of ITPC2 as Na+>Li+>>Ca2+>>K+ ~ Cs+ (Fig. 2.5C 

& Fig. 2.6F). PCa/PNa and PK/PNa were about 0.10 and 0.03, respectively, which are similar to 

the values for canonical NaV channels (0.08-0.11) (Favre et al., 1996; Hille, 1972). 

Consistent with the low PK/PNa, with a mixture of K+ and Na+ at both luminal and 

cytoplasmic sides, the Na+-dependence of Erev was fit with a Nernstian slope of 57 mV per 

10-fold change of [Na+]cyto (Fig. 2.5D). Taken together, these ion substitution analyses 

demonstrate that TPC2 is a highly Na+-selective channel in the endolysosome.    

    Because the S4 segments of TPC1 and TPC2 contain several positively-charged amino 

acid residues, we investigated the voltage-dependence of ITPC. Unlike canonical NaV and CaV 

channels, ITPC was not directly activated by membrane depolarization. Instead, in response to 

a step voltage protocol, PI(3,5)P2-activated ITPC inactivated at negative voltages (Fig. 2.6G), 

with ITPC1 exhibiting faster inactivation than ITPC2 (Fig. 2.5E). Inactivation recovered rapidly 

after a brief pulse to positive voltages (Fig. 2.6H). Although being Na+ selective, ITPC2 was 

insensitive to the NaV blocker, TTX ( Fig. 2.6I), but was sensitive to low concentrations of 

the nonselective CaV blocker, verapamil, in a voltage-dependent manner (Fig. 2.5F).   

 

Na+ is the major cation in the lysosome.   

The existence of Na+-selective channels in the lysosome was unexpected because the 

lysosomal lumen, like the cytosol and the ER lumen (Morgan et al., 2011), has been 

presumed to contain high K+ and low Na+ (Morgan et al., 2011; Steinberg et al., 2010), 

suggesting the lack of a significant Na+ or K+ concentration gradient across the lysosomal 

membrane. To directly measure the ionic composition of the lysosome lumen, we enriched 

the lysosome fraction of HEK293T cells using density gradient centrifugation (Dong et al., 

2010a; Graves et al., 2008) (Fig. 2.8A; Fig. 2.7A), and then determined the ratios of major 

cations (Na+, K+, Ca2+, and Mg2+) using Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) analysis. All centrifugation steps were performed at 4 ºC (1 h in the sucrose 

gradient + 2.5 h in the iodixanol gradient; see Fig. 2.8A). At this temperature, the rate of ion 

transport across the lysosomal membrane is expected to be extremely low. In addition, the 

sucrose -based homogenization buffer contains few ions. Thus, lysosomal ion 
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transporters/exchangers are not likely to be operative. Hence, we presume that the lysosomal 

ion composition is largely maintained during the isolation procedure. Similar approaches 

have been used to determine ionic compositions in a number of intracellular organelles, 

including mitochondria and synaptic vesicles (Cohn et al., 1968; Schmidt et al., 1980). 

Although the absolute concentrations of ions could not be accurately measured due to the 

lack of information about lysosome volume, this approach allowed us to determine the 

relative abundance/ratios of the total, but not free ions in the lumen. Interestingly, the K+/ 

Na+ and Ca2+/ Na+ ratios were only about 0.01 (Fig. 2.7B), which were not significantly 

affected by the trace amount of ions in the buffer (Fig. 2.8B). Similar results were obtained 

from human fibroblasts and mouse macrophages. Thus Na+ is the predominant cation in the 

lumen of the lysosome (estimated to be ~ 140-150 mM, assuming that its lumen is 

iso-osmotic relative to the cytosol, and all the cations are osmotically-active) (Fig. 2.7B), 

indicating that in contrast to previous indirect measurements (Morgan et al., 2011; Steinberg 

et al., 2010), a large Na+ concentration gradient is present across the lysosomal membrane.   

 To directly test whether the lysosomal lumen is a high Na+-compartment, isolated 

lysosomes were treated with TPC agonists. Application of PI(3,5)P2, but not PI(4,5)P2, 

significantly increased the K+/ Na+ ratios (Fig. 2.7C). Similarly, in isolated TPC2-mCherry 

lysosomes loaded with Sodium Green (Fig. 2.8C), a Na+-sensitive dye (Carrithers et al., 

2007), PI(3,5)P2, but not PI(4,5)P2 application significantly decreased Sodium Green 

fluorescence (Fig. 2.7D). These results suggest that sustained activation of TPCs may reduce 

luminal Na+ content. Consistent with the lysosome being a high Na+ compartment rather than 

high K+, when PI(3,5)P2 was included in the pipette solution, a large ITPC2 was observed 

under the lysosome-attached configuration (Fig. 2.7E) in which the lysosomal content and 

hence the Na+ gradient were maintained. Collectively, these results suggest that 

TPC-mediated Na+ flux in response to a localized increase in PI(3,5)P2 may rapidly 

depolarize endolysosomal membranes (luminal-side positive ~ + 30-110 mV at rest (Dong et 

al., 2010b; Morgan et al., 2011)), and facilitate membrane fusion (Fig. 2.8D). Consistently, 

TPC2-positive compartments were significantly enlarged in COS1 cells transfected with WT, 

but not D276K mutant hTPC2 (Fig. 2.8E, E’), suggesting that TPC2-expressing 

endolysosomes might have increased fusogenic potentials.    
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TPC1 and TPC2 underlie endogenous TPC-like currents in the endolysosome.   

Mice lacking TPC1 or TPC2 were generated and crossed to make double knockout 

(TPC1−/−/TPC2−/−) mice (Fig. 2.9A). In our targeting strategy, the first exons of the TPC1 

and TPC2 genes were deleted, and the resulting recombinant transcripts failed to generate 

ITPC (Fig. 2.10A). In vacuoles isolated from TPC1−/−/TPC2−/− primary macrophages, 

PI(3,5)P2 activated ITRPML-L, but Na+-selective (ITPC-like; ITPC-L) currents were absent (Fig. 

2.9B). In contrast, PI(3,5)P2 activated ITPC-L in the majority (> 90%) of vacuoles in WT (Fig. 

2.9C) and TRPML1−/− (Fig. 2.1C) macrophages. The current amplitudes of ITRPML-L were not 

significantly different in TPC1−/−/TPC2−/− compared to WT macrophages (Figs. 2.1B, 2.9B, 

D), but were dramatically reduced in TRPML1−/− macrophages (Figs. 2.1C, 2.9D). Although 

ITRPML-L and ITPC-L are both activated by PI(3,5)P2, their I-V’s and Erev’s differed significantly 

from each other. When we analyzed PI(3,5)P2-activated currents at – 30 mV, large 

differences were noted between WT, TRPML1−/−, and TPC1−/−/TPC2−/− macrophages (Fig. 

2.9E). Consistently, the PI(3,5)P2-activated current was selective for Na+ over Ca2+ (Fig. 

2.10B). Collectively, these results suggest that ITPC-L is mediated by TPC2 and/or TPC1. 

 

Discussion 
The lysosomal lumen has been presumed to contain high K+ and low Na+ (Morgan et al., 

2011; Steinberg et al., 2010), which would suggest the lack of a significant Na+ or K+ 

concentration gradient across the lysosomal membrane. These conclusions contrast directly 

with the high Na+/low K+ (like that of the extracellular media) we have found here using 

subcellular fractionation of organelles, which has been successfully applied to measure ionic 

compositions in a number of intracellular organelles, including mitochondria and synaptic 

vesicles (Cohn et al., 1968; Schmidt et al., 1980). Because the isolation procedures were 

performed at 4 ºC using a homogenization buffer that limits ion exchange, the lysosomal ion 

composition is presumed to be largely maintained. Indeed, lysosome fractions prepared using 

this protocol are of relatively normal size (lysosome swelling could be caused by the loss of 

luminal ions) and are functional (Graves et al., 2008; Radhakrishnan et al., 2008). Finally, the 

significant Na+-selective current observed in the lysosome-attached configuration provides an 

independent verification that the lysosome lumen contains high concentrations of Na+. It is 

worth mentioning that although a putative lysosomal K+ release channel was proposed to 

provide counter ion flux for lysosomal acidification (Steinberg et al., 2010), such a scenario 
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is unlikely to occur due to the high cytosolic K+, hence the low or opposite electrochemical 

gradient of K+ across the lysosome membrane. Instead, the existence of a large Na+ gradient 

and lysosomal Na+ channels are more likely to fulfill this function (counter-ion flux).   

      What is the purpose of Na+ selective, PI(3,5)P2-activated TPC channels? Increases in 

PI(3,5)P2 will allow Na+ to move down its concentration gradient, rapidly reducing and 

reversing (Fig. 2.8D) the endolysosomal potential, which is presumed to be luminal-side 

positive at rest (estimated to be + 30 to + 110 mV) (Dong et al., 2010b). In model membranes, 

it has been demonstrated that Na+ and K+ exhibit differential effects on membrane curvature 

(Kraayenhof et al., 1996). While oppositely-charged lipid bilayers tend to fuse (Anzai et al., 

1993), Na+ influx into the cytoplasm reportedly affects membrane fusion during exocytosis 

(Parnas et al., 2000). Thus, TPC-mediated Na+ flux in response to a localized increase in 

PI(3,5)P2 may rapidly depolarize endolysosomal membranes and promote fusion (Fig. 2.8D). 

Consistent with a previous study (Ruas et al., 2010), we found that TPC overexpression 

results in enlarged endolysosomes; this might be caused by enhanced endolysosomal fusion, 

decreased fission, or both. Finally, in addition to defining organelle specificity and 

determining the fusogenic potential of endolysosomes, the proposed cellular functions of 

PI(3,5)P2 also include regulating endolysosomal ion homeostasis, especially H+ homeostasis 

(Kerr et al., 2010; Shen et al., 2011). The proposed role of a putative monovalent cation (K+ 

or Na+) conductance in lysosomal acidification (Steinberg et al., 2010), together with our 

demonstration of a large Na+ gradient across the endolysosomal membrane, suggest that 

PI(3,5)P2-sensitive Na+-permeable TPCs, but not K+ release channels (see above), may 

participate in endolysosomal pH regulation in a transient and localized manner.  

 

Experimental Procedures 

Molecular biology and biochemistry 

Full-length mouse and human TPC1 and TPC2 were cloned into the EGFP-C2 vector 

(Clontech) or a similar vector allowing mCherry to be fused at the C terminus. TPC pore 

mutants were constructed using the Qiagen site-directed mutagenesis kit. All constructs were 

confirmed by sequencing, and protein expression was verified by Western blot and 

fluorescence imaging. COS-1 or HEK293T cells, used for all the heterologous expression 

experiments, were transfected using Lipofectamine 2000 (Invitrogen) with human TPC1, 

mouse TPC1, human TPC2, or mouse TPC2 fused with either EGFP or mCherry. Confocal 



 41	
  

images were taken using a Leica (TCS SP5) microscope and an Olympus Spinning-disk 

confocal system.  

 

Targeted deletion of TPC1 and TPC2 in mice  

Generation of TPC1 and TPC2 double knockout mice. Briefly, LoxP sites were introduced in 

the 5’UTR and the intron after the first exon encoding the translational start site (ATG) of 

TPC1 and TPC2, separately. Heterozygotes were mated with CRE recombinase mice to 

generate mice with the region flanked by the LoxP sites deleted. The deletions are predicted to 

produce transcripts encoding channels lacking the first 69 amino acids (TPC1) or 49 amino 

acids (TPC2). Mouse and human TPCs truncated at corresponding positions do not generate 

functional channels when expressed in COS1 cells (Fig. 2.10A). The TRPML1 KO mouse was 

a kind gift from Dr. Susan Slaugenhaupt (Venugopal et al., 2007).    

 

Endolysosomal electrophysiology   

Endolysosomal electrophysiology was performed in isolated enlarged endolysosomes using a 

modified patch-clamp method (Dong et al., 2010a). Cells were treated with 1 µM vacuolin-1, a 

lipid-soluble polycyclic triazine that can selectively increase the size of endosomes and 

lysosomes (Huynh and Andrews, 2005), for at least 1h or up to 12h. Large vacuoles (up to 5µm; 

capacitance = 1.1 ± 0.1 pF, n= 29 vacuoles) were observed in most vacuolin-treated cells.  

Occasionally, enlarged vacuoles were also seen in non-treated cells; no significant difference in 

TPC channel properties were seen for enlarged vacuoles obtained with or without vacuolin-1 

treatment. Whole-endolysosome recordings were performed on manually isolated enlarged 

endolysosomes (Dong et al., 2010a). In brief, a patch pipette was pressed against a cell and 

quickly pulled away to slice the cell membrane. Enlarged endolysosomes were released into a 

dish and identified by monitoring EGFP-TPC1/2, the mCherry-TPC1/2, or 

EGFP-Lamp1/mCherry-Lamp1 fluorescence. After formation of a gigaseal between the patch 

pipette and the enlarged endolysosome, capacitance transients were compensated. Voltage 

steps of several hundred mVs with ms duration were then applied to break into the vacuolar 

membrane (Fig. 2.2). The whole-endolysosome configuration was verified by the 

re-appearance of capacitance transients after break-in (Fig. 2.2).     

 Unless otherwise stated, bath (internal/cytoplasmic) solution contained (in mM) 140 

K-gluconate, 4 NaCl, 1 EGTA, 2 MgCl2, 0.39 CaCl2 , 20 HEPES (pH adjusted with KOH to 
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7.2; free [Ca2+]i ~ 100 nM). In a subset of experiments, 2 mM Na2-ATP and 0.1 mM GTP were 

added to the bath solution, and pH was re-adjusted. Pipette (luminal) solution was standard 

extracellular solution (modified Tyrode’s; in mM): 145 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 

HEPES, 10 MES, 10 glucose (pH adjusted with NaOH to pH 4.6). In a subset of experiments, a 

low Cl- pipette solution containing Na-gluconate replaced NaCl. All bath solutions were 

applied via a perfusion system that allowed us to achieve complete solution exchange within a 

few seconds. Data were collected using an Axopatch 2A patch clamp amplifier, Digidata 1440, 

and pClamp 10.2 software (Axon Instruments). Whole-endolysosome currents were digitized at 

10 kHz and filtered at 2 kHz. All experiments were conducted at room temperature (21-23ºC), 

and all recordings were analyzed with pClamp 10.2, and Origin 8.0 (OriginLab, Northampton, 

MA). All PIPs were from A.G. Scientific; water-soluble diC8-PIPs, prepared in 

high-concentration stock solutions, were dissolved in the bath solutions, and delivered via the 

perfusion system at low concentrations (0.1-1 µM), and direct bath application at higher 

concentrations (10 µM).   

 

Cationic Permeability of TPC Channels   

The permeability to cations (relative to PNa) was estimated according to Eqn. 1 (for 

monovalents) and Eqn. 2 (for Ca2+) based on Erev measurement under bi-ionic conditions 

(Lewis, 1979). The monovalent solutions contained 160 mM XCl (X=Na+, K+, Cs+, or Li+), 20 

mM HEPES, 10 mM glucose, pH adjusted to pH 7.4 using XOH.  Isotonic Ca2+ solution 

contained (in mM) 105 Ca2+, 20 glucose, 20 HEPES (pH 7.4) or 20 MES (pH 4.6). The 

permeability ratios of cations were estimated from the following equations: 

Equation 1 

PX/PNa = γNa /γX { [Na+]Luminal / [X]Cytoplasmic }{exp(ErevF/RT)}                                 

Equation 2 

PCa/PNa = γNa/ γCa {4[Ca2+]Luminal/[Na+]Cytoplasmic}{exp(ErevF/RT)}{1 + exp(ErevF/RT)}  

where R, T, F, Erev, and γ are, respectively, the gas constant, absolute temperature, Faraday 

constant, reversal potential, and activity coefficient. The liquid junction potentials were 

measured and corrected as described (Neher, 1992). 
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Lysosome isolation by subcellular fractionation  

Lysosomes were isolated as described previously (Dong et al., 2010a; Graves et al., 2008).  

Briefly, cell lysates were obtained by Dounce homogenization in a homogenizing buffer (HM 

buffer; 0.25 M sucrose, 1 mM EDTA, 10 mM HEPES, and pH 7.0), and then centrifuged at 

1900 g (4, 200 rpm) at 4°C for 10 min to remove the nuclei and intact cells. Post-nuclear 

supernatants then underwent ultracentrifugation through a Percoll density gradient using a 

Beckman L8-70 ultracentrifuge. An ultracentrifuge tube was layered with 2.5 M sucrose, 18% 

Percoll in HM buffer. Centrifugation speed was 67,200 g (14,000 rpm) at 4°C for 1 h using a 

Beckman Coulter 70.1 Ti Rotor. Samples were fractionated into light, medium, and heavy 

membrane fractions. Heavy membrane fractions contained concentrated bands of cellular 

organelles and were further layered over a discontinuous iodixonal gradient. The iodixonal 

gradient was generated by mixing iodixonal in the HM buffer with 2.5 M glucose (in v/v; 27%, 

22.5%, 19%, 16%, 12%, and 8%); the osmolarity of all solutions was ~ 300 mOsm. After 

centrifugation at 4°C for 2.5 h, the sample was divided into 10 fractions (0.5 ml each) for 

biochemical and atomic absorption analyses. Note that the ionic composition of the lysosome 

was largely maintained due to the low rate of ion transport across the lysosomal membrane at 

4°C.  Antibodies used for Western blots: anti-Lamp1 (Iowa Hybridoma bank), 1:5000 dilution; 

anti-Annexin V (Abcam), 1:2000 dilution; anti-GM130 (Abcam), 1:2000 dilution; anti-EEA1 

(Santa Cruz Biotechnology), 1:500 dilution; anti-Complex II (Abcam), 1:5000 dilution; 

anti-GFP (Covance), 1:5000 dilution. 

 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

Lysosomal fractions were prepared for atomic absorption by diluting the samples at a 1:1 ratio 

with concentrated nitric acid. After digestion (10min, 60ºC), the ionic composition was 

measured using a Thermo Scientific Finnigan Element inductively coupled with a plasma-high 

resolution mass spectrometer (ICP-HRMS)(Seby et al., 2003).   

 

Lysosome Flow Cytometry  

hTPC2-mCherry stable cell lines were homogenized and lysosomal fractions were kept in the 

HM buffer at 4°C, and loaded with Sodium Green (SG) tetraacetate (5 µM ) for 30 min 

(Carrithers et al., 2007). After two washes at 14,000 rpm, the samples were re-suspended in the 

HM buffer and analyzed by a Flow Cytometer (Synergy, iCyt). The lysosome gate was 
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determined with 0.5 µm and 1 µm beads; 90% of the vesicles/sample were mCherry-positive.  

The samples were treated with DiC8-PI(3,5)P2 or PI(4,5)P2 (20 µM) for 5 min before FACS 

analysis. Total counts were > 10,000 events. Data were analyzed using the Winlist 3D 

software. 

 

Preparation and culture of mouse macrophages 

Murine bone marrow-derived macrophages were prepared and cultured as described previously 

(Link et al., 2010). Briefly, bone marrow cells from femurs and tibias were harvested and 

cultured in macrophage differentiation medium (RPMI-1640 medium with 10% FBS and 100 

unit/ml recombinant colony stimulating factor from PeproTech). After 7d in culture at 37°C 

with 5% CO2, the adherent cells (> 95% macrophages) were harvested for assays. 

 

Data analysis.  

Data are presented as the mean ± standard error of the mean (SEM). Statistical comparisons 

were made using analysis of variance (ANOVA). A P value < 0.05 was considered statistically 

significant. 
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Figure 2.1. PI(3,5)P2 activates endogenous TRPML1-independent inward currents in 

endolysosomes.  

(A). Illustration of the whole-endolysosome recording configuration. Pipette (luminal) solution 

was a standard external (modified Tyrode’s) solution adjusted to pH 4.6 to mimic the acidic 

environment of the lysosomal lumen. Bath (internal/cytoplasmic) solution was a K+-based 

internal solution (140 mM K+-gluconate). Note that the inward current indicates cations flowing 

out of the endolysosome (arrow). (B). Bath application of PI(3,5)P2 (diC8, 1 µM) to the 

cytoplasmic side of enlarged endolysosome/vacuoles isolated from vacuolin-treated WT primary 

macrophage cells activated whole-endolysosome currents (296 ± 28pA/pF at -120mV, n = 24 

vacuoles/endolysosomes) with positive Erev (79 ± 2.4mV, n = 20). K+-based cytoplasmic/bath 

solution contained (in mM) 140K+/4Na+/2Mg2+ (pH 7.2, free Ca2+ ~ 100 nM); luminal/pipette 

solution was a pH 4.6 modified Tyrode solution, which contained (in mM) 145Na+/5K+/1Mg2+/2 

Ca2+ (pH 4.6); the equilibrium potential of Na+ (ENa) was estimated to be ~ +90mV. Inwardly 

rectifying TRPML-like currents (ITRPML-L) with Erev = 3.7 ± 1.7 mV (n = 20) were induced by a 

TRPML-specific small molecule agonist (SF-51) in the same vacuoles (blue trace). (C). 

PI(3,5)P2 activated a current with a positive Erev in an enlarged endolysosome/vacuole isolated 

from a TRPML1−/− primary macrophage cell. (D). PI(3,5)P2 (10 µM) activated 

whole-endolysosome current (from 30 to 420 pA measured at -120 mV) with positive Erev in 

enlarged endolysosome/vacuoles isolated from non-transfected COS-1 cells. Note the small 

ITRPML-L (Erev ~ 0mV) activated by SF-51 in the same vacuoles.  
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Figure 2.2. Experimental protocols for the whole-endolysosome patch-clamp technique 

(A). Membrane test (the lower panel) before (black) and after (red) break-in using a voltage 

protocol (upper panel).     

(B). Membrane test before (middle panel, black) and after (lower panel, red) break-in using a 

seal-test voltage protocol (upper panel).   
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Figure 2.3. PI(3,5)P2 activates recombinant TPCs in endolysosomes.  

(A). TPC2 proteins are localized in Lamp1-positive late endosomes and lysosomes in COS-1 

cells that were transfected with TPC2 and Lamp-1 fusion proteins and treated with vacuolin-1.  

(B). PI(3,5)P2 activated a large whole-endolysosome current with Erev > + 80mV in an EGFP 

(hTPC2)-positive endolysosome isolated from an hTPC2-EGFP-transfected COS-1 cell.  

Whole-endolysosome currents were elicited by repeated voltage ramps (-140 to +140 mV; 400 

ms) with a 4s interval between ramps; current amplitudes measured at -140 mV were used to plot 

the time course of activation. The right panel shows representative I-V traces of hTPC2-mediated 

whole-endolysosome currents (IhTPC2) before (red; -20 ± 4pA/pF at -120 mV, n = 9) and after 

(black and blue) PI(3,5)P2 bath application at 3 different time points, as indicated in the left panel 

(red, blue and black circles). Only a portion of the voltage protocol is shown; holding potential 

(HP) = 0 mV. (C). Dose-dependence of PI(3,5)P2-dependent activation (EC50 = 390 ± 94 nM, 

Hill slope (n) = 0.9, n= 13 vacuoles). (D). Specific activation of mTPC2 by PI(3,5)P2 ( in 1 µM), 

but not other PIPs (all in 10 µM). On average, IhTPC2 in the presence of 1 µM PI(3,5)P2 was  1410 

± 360pA/pF at -120mV (n = 7). (E). Activation of IhTPC1 by 1 µM PI(3,5)P2.  
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Figure 2.4. PI(3,5)P2 specifically activates TPCs. 

(A). Human TPC1 and TPC2 pore-mutant proteins were localized in endosomes and lysosomes.  

COS-1 cells were transfected with TPC and Lamp-1 fusion proteins and treated with vacuolin-1. 

(B). A mutation of a negatively-charged amino acid residue in the first putative pore region of 

TPC2 abolishes IhTPC2. PI(3,5)P2 (1 µM) activated a small TRPML-like current, but not IhTPC2, in 

an enlarged endolysosome/vacuole isolated from an hTPC2-D276K-transfected COS-1 cell. (C). 

PI(3,5)P2 –activated ImTPC2 was inhibited by bath (cytoplasmic) application of poly-L-lysine (500 

µg/ml) to an enlarged endolysosome isolated from an mTPC2-EGFP-expressing COS-1 cell. (D). 

ImTPC2 (post PI(3,5)P2 application) was inhibited by 80- 90% by bath application of poly-L-lysine 

(500 µg/ml) or anti-PI(3,5)P2 antibody (5 µg/ml).  The inhibition was irreversible (within 

several minutes), but ImTPC2 could be re-activated by PI(3,5)P2 upon washout of poly-L-lysine or 

anti-PI(3,5)P2 antibody. (E). Specific activation of hTPC2 by PI(3,5)P2 ( in 0.1 µM), but not 

other diC8 PIPs (all in 10 µM). The right panel shows representative traces of IhTPC2 with 

different PIPs applied at different time points, as shown in the left panel. (F). Bath application of 

ADPR (100 µM), but not PI(3,5)P2 (1 µM), activated a current with a linear I-V in an inside-out 

patch excised from a TRPM2-transfected HEK293T cell. (G). PI(3,5)P2 (10 µM) selectively 

activated the inward, but not the outward current, in an endolysosome isolated from an INS1 

pancreatic β-cell.   
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Figure 2.5. PI(3,5)P2-activated TPC currents are Na+-selective.  

(A). PI(3,5)P2-activated ITPC2 (Erev= + 89 mV ± 5mV, n = 8) under bi-ionic conditions with 

luminal/pipette Na+ and cytoplasmic/bath K+.  Large outward IhTPC2 was observed in 

cytoplasmic Na+. (B). ImTPC2, Erev (-68 ± 3mV, n = 5) under bi-ionic conditions with luminal K+ 

and cytoplasmic Na+. (C). Relative cationic permeability ratios of IhTPC2 based on Erev 

measurement under bi-ionic conditions. (D). Na+-dependence of IhTPC2 Erev. The left panel shows 

I-V relations of IhTPC2 with cytoplasmic solutions containing various concentrations of Na+ and 

K+. (E). Distinct inactivation kinetics of IhTPC2 and IhTPC1 at -120 mV. (F). Verapamil inhibited 

outward and inward IhTPC2 with different dose-dependencies under luminal and cytoplasmic 

symmetric Na+ (luminal pH 7.4). 
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Figure 2.6. Whole-endolysosome IhTPC2 is selective for Na+  

(A). ITPC2 is selective for Na+ over K+ at both acidic and neutral luminal pH. Left panel: large 

outward IhTPC2 was seen with cytoplasmic Na+, but not K+, in the presence of luminal Na+ at low 

pH (pH 4.6); Right panel: the current amplitudes of PI(3,5)P2-activated ITPC2 were similar at 

neutral and acidic luminal pH. (B). ImTPC2 is impermeant to NMDG+ or H+; ImTPC2 exhibited no 

significant inward current in the presence of luminal NMDG+ (150 mM; pH4.6), and 

cytoplasmic K+ (160 mM) or Na+ (160 mM). (C). Little or no effect of luminal Ca2+ on the 

inward current and Erev of IhTPC2. (D). ImTPC2 is selective for Na+ over Ca2+ at acidic and neutral 

luminal pH. Left panel: in luminal isotonic Ca2+ (105 mM; pH 7.4) and cytoplasmic Na+, Erev for 
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IhTPC2 was < -60mV. Middle and right (an expanded view) panels: low ImTPC2 permeability to 

luminal Ca2+ under bi-ionic conditions (luminal isotonic Ca2+ versus cytoplasmic Na+), the Erev of 

ITPC2 was -68 ± 2mV (n = 12). (E). ITRPML1 is highly Ca2+-permeable; ITRPML1 with luminal 

isotonic Ca2+ and cytoplasmic Na+ or K+ exhibited a positive Erev (+ 47 ± 2mV, n = 3). (F). IhTPC2 

is selectively permeable to Na+, and to a lesser degree Li+, but not K+ or Cs+; IhTPC2 was recorded 

in the presence of cytoplasmic monovalent cations and luminal Na+. Right panel shows an 

expanded view of Erev in the presence of different cytoplasmic monovalent cations. (G). IhTPC2 

and IhTPC1 elicited by a voltage-step protocol. HP = + 80 mV. (H). Time-dependent recovery of 

ITPC1 from inactivation at negative voltages. Removal of voltage-dependent inactivation (at -140 

mV) by a short pre-pulse to positive membrane potential (+ 80 mV). Right panel shows the 

voltage protocol used to study the time-dependent recovery of IhTPC1 from inactivation. (I). 

Insensitivity of IhTPC2 to TTX (included in the luminal/pipette solution; pH 7.4). 
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Figure 2.7. Na+ is the major cation in the lysosome. 

(A). Western blotting was performed for each fraction (A-G) using various organelle 

markers: Lamp-1 for the lysosome; annexin-V for the plasma membrane; complex II for 

the mitochondria; GM-130 for the Golgi; EEA1 for the early endosome. Cellular 

fractionation protocol is described in Fig. 2.8. Centrifugation of cell homogenate 

(fraction A) of HEK293T cells resulted in a pellet (fraction B) and a supernatant (fraction 

C). The supernatant was then layered over a discontinued gradient containing a cushion 

of 2.5 M sucrose and 18% Percoll in the HM buffer. Further centrifugation of the 

gradient resulted in the light membrane fraction (fraction D), the medium membrane 

fraction (fraction E), and the heavy membrane fraction (fraction G). Lower panel: 

fraction G was then layered over a discontinuous iodixonal (8-27%) gradient (fractions 

1-11); Western blotting was performed for each fraction using Anti-Lamp-1 and Anti- 

complex II. (B). Ionic composition (Na+, K+, and Ca2+) in the lysosomal lumen of 

HEK293T cells determined by Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS). Right panel: estimated concentrations of Na+, K+, and Ca2+ in the lysosome 

lumen; estimates were based on the assumptions that the lysosome lumen is iso-osmotic 

relative to the cytosol, and all the cations are osmotically-active. (C). Luminal K+/Na+ 

ratios were significantly increased for isolated lysosomes that were treated with PI(3,5)P2 

(20 µM), but not PI(4,5)P2 (20 µM). (D). Left panel: application of PI(3,5)P2 (red), but not 

PI(4,5)P2 (blue) to isolated lysosomes decreased Sodium Green, but not mCherry 

fluorescence. Lysosomes were isolated from TPC2-mCherry-expressing HEK293 cells 

and loaded with Sodium Green dyes. “Control” and “Negative” indicate fluorescence 

levels in isolated lysosomes with and without Sodium Green dye loading, respectively.  

Right panel: decreased Sodium Green fluorescence intensity (reflecting luminal Na+ 

concentration) from PI(3,5)P2-treated lysosomes; data are presented as the percentage of 

lysosomes that were Sodium Green-positive. mCherry fluorescence remained constant 

upon PI(3,5)P2/PI(4,5)P2 application. (E). ITPC2 measured in lysosome-attached 

configuration. ITPC2 was activated in the lysosome-attached configuration with PI(3,5)P2 

(10 µM) in the K+ pipette solution. ITPC2 was detected with luminal Na+, but not K+ upon 

excision into the luminal-side-out configuration. Note that the indicated voltages in the 

lysosome-attached configuration contained a contribution from the lysosomal membrane 
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potential, for which no accurate measurement is available. The smaller current amplitude 

seen in the lysosome-attached configuration might be due to luminal [Na+] lower than 

160 mM, relief from luminal inhibition, or both.    
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Figure 2.8. Ionic composition in the lysosomes of HEK293T cells isolated by cellular 

fractionation  

(A). Centrifugation of cell homogenate (fraction A) of HEK293T cells resulted in a pellet 

(fraction B) and a supernatant (fraction C). The supernatant was then layered over a 

discontinued gradient containing a cushion of 2.5 M sucrose and 18% Percoll in the HM 

buffer. Further centrifugation of the gradient resulted in the light membrane fraction 

(fraction D), the medium membrane fraction (fraction E), and the heavy membrane 

fraction (fraction G). (B). Luminal K+/Na+ ratios under various homogenizing buffer 

conditions. (C). TPC2-mCherry-positive isolated vesicles/lysosomes were loaded with 

Sodium Green dye. Scale bar = 2 µm. (D). An electrostatic model for the potential role of 

TPC-mediated Na+ flux in endolysosomal dynamics. Endolysosomes have a luminal-side 

positive transmembrane potential at rest (estimated to be +30 to +110 mV; see ref. (Dong 

et al., 2010b)). Charge repulsion may prevent docking and fusion of alike endolysosomes. 

Upon PIKfyve recruitment/activation, rapid and localized generation of PI(3,5)P2 triggers 

TPC-mediated Na+ efflux and subsequent depolarization of the endolysosomal membrane 

toward ENa. This rapid and localized reversal of charge may permit the fusion of the 

PI(3,5)P2-enriched microdomain. (E). Vacuole size measurement in COS1 cells 

transfected with either hTPC2-mCherry or hTPC2-D276K-mCherry constructs. Images 

were taken using an Olympus Spinning-Disk confocal with 0.2 µm Z-steps. Vacuole size 

was measured using the 4D viewer and object measurement functions of Metamorph 

(Olympus) software. Scale bar = 10 µm (2 µm for the inset). (E’). Over-sized vacuoles 

(radius > 1 µm) were analyzed for number of vacuoles per cell, volume per vacuole, and 

total vacuole volume/cell. For each group, cells (n =49) were randomly selected from 3 

independent transfections.    
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Figure 2.9. Genetic inactivation of TPC1 and TPC2 abolishes TPC currents in the 

endolysosome.  

(A). PCR genotyping of TPC1 KO (TPC1−/−) and TPC2 KO (TPC2−/−) mice. (B). Lack 

of significant PI(3,5)P2-activated TPC-like current (ITPC-L) in vacuoles isolated from a 

TPC1−/−/ TPC2−/− mouse macrophage. Instead, in 15/15 vacuoles, PI(3,5)P2 activated 

ITRPML-L that was further potentiated by SF-51. (C). An endogenous ITPC-L activated by 

PI(3,5)P2 (1 µM) in a vacuole isolated from a WT mouse macrophage cell. Switching the 

cytoplasmic solution from K+ to Na+ resulted in a leftward shift of Erev, and an increase of 

the current at the outward direction. (D). Summary of ITPC-L and ITRPML-L in WT, TPC1−/−/ 

TPC2−/−, and TRPML1−/− macrophages. (E). Summary of PI(3,5)P2-activated 

whole-endolysosome inward currents in WT, TPC1−/−/ TPC2−/−, and TRPML1−/− 
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macrophages at -30mV. IPIP2 was 107 ± 23pA/pF (n= 18) and 0.7 ± 0.4pA/pF (n=10) for 

WT and TPC1−/−/TPC2−/− macrophages, respectively.   

 

 

 

 

Figure 2.10. N-terminal truncations of TPC1 and TPC2 abolish TPC currents in the 

endolysosome  

(A). N terminal truncations in hTPC1, hTPC2, and mTPC2 abolished ITPC. PI(3,5)P2 (1 

µM ) activated small currents in enlarged vacuoles isolated from hTPC1-ΔN (the left 

panel), hTPC2-ΔN (the middle panel), or mTPC2-ΔN (the right panel) -transfected 

COS-1 cells. (B). PI(3,5)P2 –activated whole-endolysosome currents in macrophages are 

Na+ selective over Ca2+. Erev was negative for an endogenous whole-endolysosome 

PI(3,5)P2-activated current of a macrophage in the presence of luminal isotonic Ca2+ and 

cytoplasmic Na+.  
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CHAPTER 3 

Two-pore channels are not NAADP receptors 
 

 

Abstract 
 

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent intracellular 

Ca2+ mobilizing messenger. NAADP triggers Ca2+ release from lysosome-related acidic 

stores in many cell types, although the molecular identities for NAADP receptors are still 

controversial. Two-pore channels (TPCs) have recently been reported to underlie the 

NAADP-induced Ca2+ release, however, a direct demonstration that NAADP activates 

TPC channels is not established. In chapter 2, we have discovered that TPC proteins form 

a Na+-selective ion channels activated by PI(3,5)P2. Here using whole-endolysosome 

patch clamp recordings, we surprisingly find that TPCs are not activated by NAADP. The 

calcium imaging results also show that NAADP-induced Ca2+ signaling is intact in 

TPCs-knockout cells. Taken together, our results suggest that TPCs are unlikely to be 

NAADP receptors.  
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Introduction 
Ca2+ mobilization from intracellular stores induced by second messengers upon extracellular 

stimuli represents an important mechanism for Ca2+ signaling. Inositol trisphosphate (IP3) and 

cyclic ADP-ribose (cADPR) are known to cause Ca2+ release from the Sacro/Endoplasmic 

Reticulum (S/ER) store by activations of IP3 receptors (IP3Rs) and ryanodine receptors (RyRs), 

respectively (Berridge et al., 2000). Nicotinic acid adenine dinucleotide phosphate (NAADP) is 

another intracellular messenger (Lee and Aarhus, 1995) mobilizing Ca2+ from acidic 

compartments (lysosomes) (Churchill et al., 2002; Morgan et al., 2011). NAADP is shown to 

induce lysosomal Ca2+ release initially, and then trigger further Ca2+ release from ER, a process 

referred to as Ca2+-induced Ca2+ release (CICR) (Cancela et al., 1999; Guse and Lee, 2008). 

NAADP signaling has been linked with a variety of physiological processes, including insulin 

secretion in pancreatic β cells (Arredouani et al., 2010; Masgrau et al., 2003), digestive enzyme 

release in pancreatic acinar cells (Yamasaki et al., 2005), cardiac (Macgregor et al., 2007) and 

smooth muscle contraction (Boittin et al., 2002; Kinnear et al., 2004), neurotransmitter release, 

and neurite outgrowth (Brailoiu et al., 2006; Brailoiu et al., 2003). However, the molecular 

mechanism underlying NAADP-induced Ca2+ signaling remains unclear.  

Two-pore channel (TPC) proteins are newly cloned members of the voltage-gated cation 

channel superfamily, which include voltage-gated Na+ and Ca2+ (NaV and CaV) channels. NaV 

and CaV channels are expressed at the plasma membrane of excitable cells, and are very well 

characterized. In contrast, TPC proteins are localized in intracellular endosomes and lysosomes, 

and their functions have remained enigmatic. A number of recent studies suggested that TPCs 

may be the NAADP receptors, mediating lysosomal Ca2+ release triggered by NAADP (Brailoiu 

et al., 2009; Calcraft et al., 2009; Zong et al., 2009), although the direct measurements of TPC 

channel activities evoked by NAADP are not clear (Brailoiu et al., 2010; Pitt et al., 2010; 

Schieder et al., 2010). Previously we discovered that TPC proteins form Na+-selective ion 

channels in endosomes and lysosomes, activated by an endolysosome-specific phosphoinositide 

PI(3,5)P2. Here by direct patch-clamping of the endolysosomal membrane, we surprisingly find 

that NAADP can not activate TPC channels in either heterologous expression or endogenous 

systems, neither does NAADP modulate PI(3,5)P2-activated TPC currents. In pancreatic β cell 

lines, NAADP-induced Ca2+ signaling is present, but endogenous TPC currents are absent. 

Finally, we show that the NAADP-evoked Ca2+ response is largely intact in TPCs-knockout 

islets. Since TPCs are NAADP-insensitive Na+-selective channels, and loss of TPCs has little 
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effects on NAADP-Ca2+ signaling, TPCs are unlikely to be the NAADP receptors.  

 

Results 
TPCs are not activated by NAADP. 

Since TPC1 and TPC2 were reportedly activated by NAADP in endolysosomes (Calcraft et al., 

2009; Morgan et al., 2011; Ruas et al., 2010; Zong et al., 2009), we measured endolysosomal 

currents after direct application of NAADP. Surprisingly, in TPC2-positive enlarged vacuoles, 

no significant current activation was seen with varying concentrations of NAADP (Fig. 3.1A; 

Fig. 3.2A). In contrast, PI(3,5)P2 (10 µM) reliably (> 90%) and robustly activated ITPC2 in the 

same vacuoles. NAADP (1-10µM) also failed to modulate or desensitize ITPC2 that was activated 

by a low concentration of PI(3,5)P2 (100 nM; Fig. 3.1B). Similar results were seen with two 

NAADP analogs (4-methyl NAADP and 5-methyl NAADP) that induce Ca2+ release from sea 

urchin egg homogenates (Jain et al., 2010). ITPC1 was also insensitive to NAADP (Fig. 3.2A). To 

exclude the possibility that NAADP responsiveness was impaired in vacuolin-enlarged 

endolysosomes, we also tested NAADP on surface-expressed mutant hTPC2 channels (i.e. 

hTPC2-L11L12/AA; see ref. (Brailoiu et al., 2010)). However, plasma membrane ITPC2, which 

exhibited no notable difference in channel properties to lysosomal ITPC2, was also insensitive to 

NAADP in inside-out patches and in the whole-cell configuration (Fig. 3.1C, D). In contrast, 

NAADP (100 µM) activated the NAADP-sensitive plasma membrane ITRPM2 (see ref. (Toth and 

Csanady, 2010)) (Fig. 3.2B, C), demonstrating that NAADP was active.   

      Pancreatic β-cells exhibit robust NAADP-mediated Ca2+ responses and have been 

commonly used as a cellular model to study endogenous NAADP signaling (Morgan et al., 2011). 

In INS1 pancreatic β-cell lines, intracellular perfusion with 100 nM NAADP in the whole-cell 

current-clamp configuration induced membrane depolarization and spike generation (Fig. 3.3A). 

It has been reported that Ned-19, a membrane-permeable inhibitor of the NAADP receptor, 

completely inhibits NAADP- or glucose-induced Ca2+ responses at high µM concentrations 

(Naylor et al., 2009b). However, Ned-19 had only a weak inhibitory effect on IhTPC2, even at very 

high concentrations (1 mM; Fig. 3.2D). Together with the fact that TPCs have limited Ca2+ 

permeability, these results suggest that TPCs do not contribute directly to NAADP-induced 

endolysosomal Ca2+ release.  
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TPC currents are absent in pancreatic β-cell lines that exhibit NAADP-induced lysosomal 

Ca2+ release.   

Consistent with the results obtained from the pipette dialysis experiments (Fig. 3.3A), 

cell-permeant NAADP-AM (1-100 µM) (Parkesh et al., 2007) induced Ca2+ transients in INS1 

(Fig.3.3B, C; Fig. 3.4A, B) and MIN6 (Fig. 3.4D) pancreatic β-cell lines, in the absence or 

presence of external Ca2+. NAADP-AM-induced Ca2+ responses in INS-1 cells were abolished 

by the NAADP receptor blocker, Ned-19 (Fig. 3.3B, C & Fig. 3.4A), or by pretreatment with 

Bafilomycin A1, which inhibits the V-ATPase to deplete acidic Ca2+ stores (Morgan et al., 2011) 

(Fig. 3.3C; Fig. 3.4C). These results suggest that, consistent with previous studies, NAADP 

induces Ca2+ release from lysosomal stores. Surprisingly, no measurable NAADP-activated 

whole-endolysosomal current was seen in INS1 (Fig. 3.3D; Fig. 3.4E) or MIN6 (Fig. 3.4F) cells. 

Furthermore, PI(3,5)P2 (10 µM) activated ITRPML-L in 14/14 vacuoles, but IX or ITPC-L were not 

detected (Fig. 3.3D & Fig. 3.4E, F). Collectively, NAADP-mediated responses appeared to be 

distinct from ITPC-L in pancreatic β-cell lines, suggesting that TPCs do not contribute to the 

NAADP-mediated response. 

 

TPC1 and TPC2 are not required for NAADP- or glucose- induced Ca2+ responses in 

pancreatic islets.   

Glucose induces robust Ca2+ responses in pancreatic β-cells mediated via NAADP and its 

receptor localized in the endolysosome (Morgan et al., 2011). However, in WT primary 

pancreatic β-cells, we did not observe significant whole-endolysosome ITPC-L (Fig. 3.5A). 

Glucose (5, 8, and 15 mM) induced significant increases of intracellular [Ca2+] (measured with 

Fura-2 Ca2+-sensitive dyes) in pancreatic islets (Fig. 3.5B,C), which was dramatically inhibited 

by Ned-19 (100 µM; Fig. 3.5D), but the glucose-induced Ca2+ response was still largely intact in 

TPC1−/−/TPC2−/− islets (Fig. 3.5B-D). Finally, the NAADP-AM-induced Ca2+ response was not 

significantly reduced in TPC1−/−/TPC2−/− pancreatic islets (Fig. 3.5E). These results demonstrate 

that TPCs are not essential for NAADP- and glucose-induced Ca2+ responses in pancreatic 

β-cells.    

 

Discussion 
TPCs have been reported to serve as the receptors (Brailoiu et al., 2009; Calcraft et al., 2009; 

Ruas et al., 2010; Zong et al., 2009) or co-receptors (Lin-Moshier et al., 2012) for NAADP. 
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NAADP-activated TPC currents have been shown to be K+-permeable (Pitt et al., 2010), 

Cs+-permeable (Brailoiu et al., 2010), or Ca2+-selective (Schieder et al., 2010). Those studies 

contrast drastically with our direct measurements of TPCs as NAADP-insensitive 

PI(3,5)P2-activated Na+ selective channels using whole-endolysosome patch-clamp recordings. 

Because NAADP-induced Ca2+ responses are robust in cells that lack ITPC-L and are largely intact 

in TPC1−/−/TPC2−/− cells, and because our direct measurements of TPCs show that they are 

insensitive to NAADP, it should be clear that TPCs are not the NAADP receptor. Supporting this 

argument, recent studies using photoaffinity labeled NAADP suggested that TPCs are unlikely to 

be the genuine NAADP binding sites (Lin-Moshier et al., 2012) (More discussion in Chapter 6, 

6.2 and 6.3) 

 

Experimental procedures 
Molecular biology and biochemistry.  

The TPC constructs were generated as stated in Chapter 2. HEK293T cells were transfected 

using Lipofectamine 2000 (Invitrogen). Confocal images were taken using a Leica (TCS SP5) 

microscope and an Olympus Spinning-disk confocal system.   

 

Targeted deletion of TPC1 and TPC2 in mice  

TPC1 and TPC2 double knockout mice were generated as described in Chapter 2. 

 

Endolysosomal electrophysiology.    

Endolysosomal electrophysiology was performed as described in Chapter 2.  

 

Pancreatic β-cell lines and mouse islets.  

Mouse pancreatic islets were isolated from the pancreas (Li et al., 2009) and cultured in 

RPMI-1640 medium (10 mM glucose) for 3d before Ca2+ imaging experiments (Zhang et al., 

2003). INS1 cells were cultured in RPMI-1640 medium (11 mM glucose) supplemented with 10% 

FBS and 50 µM β-mercaptoethanol (Colombo et al., 2008). MIN6 cells were cultured in 

Dulbecco’s modified Eagle’s medium (25 mM glucose) supplemented with 10% FBS and 140 

µM β-mercaptoethanol (Yamasaki et al., 2004). 1-4h before Ca2+ imaging and electrophysiology 

experiments, cells were placed in a low-glucose (5.5 mM) Dulbecco’s modified Eagle’s medium.   
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Pancreatic β-cell electrophysiology. 

Current-clamp recordings were performed in INS1 pancreatic β-cells in the whole-cell 

configuration. The bath solution was a standard extracellular solution (Tyrode’s; mM) 145 NaCl, 

5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose (pH adjusted to pH 7.4 with NaOH). Pipette 

solution contained (in mM):140 KCl, 2 MgCl2, 2 Na2-ATP, 0.05 EGTA, 10 HEPES (pH adjusted 

with KOH to 7.2). NAADP was dissolved in the pipette solution and applied through patch 

electrodes.  

 

Ca2+ imaging 

INS1, MIN6, and primary pancreatic β-cells were loaded with 5 µM Fura-2-AM in culture 

medium at 37oC for 60 min. Cells were then washed in a low-glucose modified Tyrode’s solution 

(in mM; 140 NaCl, 4.75 KCl, 5 NaHCO3, 2.54 CaCl2, 1.2 MgSO4, 1.18 KH2PO4, 2.8 glucose, 

and 20 HEPES) for 10–30 min. ‘Zero’ Ca2+ low-glucose solution contained 1 mM EGTA with 

no added (nominal) CaCl2. Ca2+ imaging of pancreatic islets was performed using the perfusion 

medium containing (in mM): NaCl 120, KCl 4.8, CaCl2 2.5, MgCl2 1.2, NaHCO3 24, BSA 

1mg/ml, gassed with O2/CO2 (95:5). Fluorescence at different excitation wavelengths was 

recorded using an EasyRatioPro system (PTI). Fura-2 ratios (F340/F380 ; the ratio of fluorescence 

intensity following excitation at 340 and 380 nm) recorded changes in intracellular [Ca2+] upon 

stimulation. GPN (Glycyl-L-phenylalanine 2-naphthylamide; 200 µM, a lysosome-disrupting 

agent) and Bafilomycin A1 (500 nM, a V-ATPase inhibitor) were used as positive controls to 

induce Ca2+ release from lysosome stores and acidic stores, respectively (Calcraft et al., 2009). 

Ionomycin (1 µM) was added at the conclusion of all experiments to induce a maximal response 

for comparison. NAADP-AM was synthesized according to ref (Parkesh et al., 2007).     
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Figure 3.1. NAADP does not activate TPCs.   

(A). NAADP (100 nM or 1 µM) failed to activate whole-endolysosome IhTPC2. In contrast, 

PI(3,5)P2 robustly activated IhTPC2 in the same vacuole. The right panel shows representative I-V 

traces of whole-endolysosome currents at 4 different time points (indicated by color-coded 

circles) shown in the left panel. (B). NAADP (1 µM) failed to modulate PI(3,5)P2–activated 

IhTPC2. (C). Pipette dialysis of PI(3,5)P2 (200 µM) or NAADP (500 nM) failed to elicit whole-cell 

current in HEK293T cells transfected with WT hTPC2. In contrast, pipette dialysis of PI(3,5)P2 

(200 µM), but not NAADP (500 nM) activated whole-cell ITPC2 in HEK293T cells transfected 

with mutant (hTPC2-L11L12/AA). (D). PI(3,5)P2, but not NAADP, activated ITPC2-LL-AA in 

inside-out macro-patches isolated from hTPC2-L11L12/AA -transfected HEK293T cells. 
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Figure 3.2. NAADP activates TRPM2, but not TPC1 or TPC2.  

(A). NAADP (10 nM or 10 µM) failed to activate whole-endolysosome IhTPC2. In contrast, 

PI(3,5)P2 robustly activated IhTPC2 in the same vacuole. Likewise, NAADP (100 nM or 1 µM) 

failed to activate whole-endolysosome IhTPC1. In contrast, PI(3,5)P2 robustly activated IhTPC1 in 

the same vacuole. (B). NAADP (100 µM) or ADPR (50 µM) activated a current with a linear I-V 

in an inside-out patch excised from a TRPM2-transfected HEK293T cell. (C). Activation of 

whole-cell ITRPM2 by pipette dialysis of NAADP. Inclusion of NAADP (100 µM) into the pipette 

solution under the whole-cell configuration induced ITRPM2 in a TRPM2-transfected HEK293T 

cell. (D). IhTPC2 was relatively insensitive to Ned-19, a blocker of the endogenous NAADP 

receptor; PI(3,5)P2-activated IhTPC2 was weakly inhibited by Ned-19 (100 µM or 1mM). 
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Figure 3.3. NAADP induces lysosomal Ca2+ release in pancreatic β-cell line that lack TPC 

currents. 

(A). Pipette dialysis of NAADP (100 nM) induced membrane depolarization and spike 

generation in an INS1 pancreatic b-cell line under the whole-cell current-clamp configuration.  

(B). In the absence of external Ca2+ (free [Ca2+] < 10 nM), NAADP-AM (100 µM) induced Ca2+ 

release measured with Fura-2 (F340/F380) ratios from intracellular stores in INS1 cells; Ned-19 

(50 µM) abolished the majority of the NAADP-induced response. (C). Average peak Ca2+ 

responses induced by NAADP-AM (1, 10, 100 µM) with and without Ned-19 and Baf-A1 (500 

nM). Percentage (% from a total of 100-400 cells) of responding (DFura-2> 0.02) cells; the 

number of the responding cells are indicated.   
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Figure 3.4. Pancreatic β-cell lines exhibit NAADP-induced lysosomal Ca2+ release but lack 

TPC currents.  

(A). In the absence of external Ca2+ (free [Ca2+] < 10 nM), NAADP-AM (100 µM) induced Ca2+ 

release measured with Fura-2 (F340/F380) ratios from intracellular stores in INS1 cells. Ned-19 (50 

µM) abolished the majority of the response. (B). NAADP-AM (1 µM) induced small Ca2+ 

transients in a subset of INS1 cells in the absence of external Ca2+ (‘0’ Ca2+); NAADP-AM (10 

µM) induced and desensitized Ca2+ release in INS1 cells. After NAADP-AM (10 µM) induced 

small Ca2+ transients in a subset of INS1 cells in the absence of external Ca2+ (‘0’ Ca2+), a higher 

concentration of NAADP-AM (100 µM) failed to further induce Ca2+ responses in the same cells. 

(C). Bafilomycin A1 pretreatment abolished NAADP-induced Ca2+ release in INS1 cells; 

thapsigargin (TG; 1 µM) induced Ca2+ responses in the same cells. (D). NAADP-AM (100 µM) 

induced small Ca2+ transients in MIN6 pancreatic β-cell. (E). NAADP (100 nM or 10 µM) failed 

to elicit whole-endolysosome current in INS1 cells. In contrast, PI(3,5)P2 activated TRPML-like 

currents in the same vacuole. Note that the outward current present in this vacuole was 

insensitive to PI(3,5)P2. (F). PI(3,5)P2 activated predominantly TRPML-like inward currents in 

MIN6 cells. NAADP (100 nM or 1 µM) failed to elicit any measureable whole-endolysosome. 
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Figure 3.5. TPCs are not required for NAADP-Ca2+ responses 

(A). PI(3,5)P2 activated ITRPML-L in a vacuole from a WT primary pancreatic b-cell. (B). TPC1−/−/ 

TPC2−/− primary pancreatic islets exhibit normal concentration-dependent glucose-induced Ca2+ 

responses. Cytosolic [Ca2+] increased significantly in both WT and TPC1−/−/ TPC2−/− pancreatic 

islets in response to elevations of the glucose concentration (in mM; 1, 5, 8, 15; G1, G5, G8, and 

G15) in the perfusion solution (2.5 mM Ca2+). The traces shown are representatives from 19 WT 

and 16 TPC1−/−/ TPC2−/− islets, respectively. (C). shows the average peak of Ca2+ responses 

induced by 15 mM glucose (G15) in WT and TPC1−/−/ TPC2−/− pancreatic islets. (D).  

Glucose-induced Ca2+ responses in WT and TPC1−/−/ TPC2−/− pancreatic islets were inhibited by 

Ned-19 (100 µM). The traces shown are representative of the results obtained in 7 WT and 7 

TPC1−/−/ TPC2−/− islets, respectively. (E). NAADP-AM (200 µM) induced bi-phasic Ca2+ 

increases in the presence of 3 mM glucose (Yamasaki et al., 2004) in both WT and TPC1−/−/ 

TPC2−/− islets. Traces shown are representatives of the results obtained in 2 WT and 3 TPC1−/−/ 

TPC2−/− islets, respectively.  
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CHAPTER 4 

PI(3,5)P2 controls membrane trafficking by direct activation of 

mucolipin Ca2+ release channels in the endolysosome 
 

 

Abstract 
 

Ca2+ is a key regulator of synaptic vesicle fusion during neurotransmission. Similarly, Ca2+ is 

thought to regulate other, more general membrane trafficking pathways. However, in these cases, 

the source of Ca2+ is unknown. For these general pathways, it has been postulated that Ca2+ is 

released through unidentified Ca2+ channels from the lumen of vesicles and organelles. 

Mucolipin transient receptor potential channels (TRPMLs) are a family of Ca2+-permeable cation 

channels in endolysosomes. Mutations in the human TRPML1 gene cause Mucolipidosis type IV 

(ML4) neurodegenerative disease. Cells lacking TRPML1 exhibit defects in membrane traffic in 

the late endocytic pathway. Intracellular traffic also requires phosphoinositides, but their mode of 

action is poorly understood. PI(3,5)P2 is an endolysosome-specific phosphoinositide; human 

mutations in PI(3,5)P2-metabolizing enzymes cause a variety of neurodegenerative diseases. 

Here we show by direct patch-clamping of the endolysosomal membrane, that PI(3,5)P2 binds 

and activates TRPMLs with specificity and potency. Furthermore the enlarged vacuole 

phenotype observed in PI(3,5)P2-deficient mouse fibroblasts , is suppressed by overexpression of 

TRPML1. We propose that TRPMLs regulate membrane trafficking by transducing information 

about PI(3,5)P2 levels into changes in juxtaorganellar Ca2+, thereby triggering membrane fusion/ 

fission events. 

 

 

 

 

 

 

 

 



 71	
  

Introduction 
Membrane fusion and fission in intracellular trafficking is controlled by both intraluminal Ca2+ 

release (Hay, 2007; Luzio et al., 2007a) and phosphoinositide (PIP) signaling (Di Paolo and De 

Camilli, 2006). Cells that lack TRPML1 exhibit enlarged endolysosomes and trafficking defects 

in the late endocytic pathway (reviewed in Refs. (Cheng et al., 2010; Puertollano and Kiselyov, 

2009)). Notably, these phenotypes are similar to those observed in PI(3,5)P2-deficient cells 

(reviewed in Ref. (Poccia and Larijani, 2009)). Therefore, we hypothesized that TRPML1 may 

act as an endolysosomal Ca2+-release channel that is regulated by PI(3,5)P2. 

 

Results 
Activation of endolysosomal TRPML channels by PI(3,5)P2 

TRPML1 is primarily localized on membranes of late endosomes and lysosomes (LELs) (Cheng 

et al., 2010; Pryor et al., 2006; Puertollano and Kiselyov, 2009), which are inaccessible to 

conventional electrophysiological approaches. Using our recently established modified 

patch-clamp method (Dong et al., 2008; Dong et al., 2009), we performed recordings directly on 

native LEL membranes. Cos-1 cells were transfected with either EGFP-TRPML1 alone, or 

co-transfected with mCherry-TRPML1 and EGFP-Lamp1 (a marker for LEL). 

Whole-endolysosome recordings were performed on enlarged vacuoles manually isolated from 

cells pre-treated with vacuolin-1 (Dong et al., 2008), which caused an increase in the diameter of 

the vacuoles from < 0.5 µm to up to 5 µm (mean capacitance = 0.68 ± 0.05 pF, N = 44 vacuoles) 

(Fig. 4.1A). The majority (> 85%) of mCherry-TRPML1-positive vacuoles were also 

EGFP-Lamp1-positive, confirming that the TRPML1-positive vacuoles were enlarged LELs 

(Dong et al., 2008). In the TRPML1-positive enlarged LELs, small basal inwardly rectifying 

currents (72 ± 12 pA/pF at -140 mV, N = 65 vacuoles) were seen under the whole-endolysosome 

configuration (Fig. 4.1B,C). Bath application of 100 nM PI(3,5)P2 in a water-soluble diC8 form, 

rapidly and dramatically activated TRPML1-mediated current (ITRPML1; t = 15  ± 4 s at -140 mV, 

N = 8 vacuoles; 18.3 ± 2.7-fold increase over basal activity, N = 20 vacuoles) (Fig. 4.1B,C). 

PI(3,5)P2 activation was dose-dependent (EC50= 48 ± 14 nM, hill slope (n) = 1.9, N = 7 

vacuoles). On average, ITRPML1 in the presence of 100 nM diC8 PI(3,5)P2 was  982 ± 150 pA/pF 

at -140 mV (N = 23 vacuoles) (Fig. 4.1D).  
      In yeast, PI(3,5)P2 is exclusively produced from PI(3)P by the PIKfyve/Fab1 PI 5-kinase 

(Bonangelino et al., 2002; Cooke et al., 1998; Gary et al., 1998). PI(3,5)P2 can be quickly 
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metabolized into PI(3)P by Fig4, or to PI(5)P by MTMR-family phosphatases (Dove et al., 2009; 

Duex et al., 2006a; Rudge et al., 2004; Shen et al., 2009). Neither PI(3)P (1 µM; Fig. 4.1E) nor 

PI(5)P (1 µM) activated ITRPML1. PI(3)P and PI(3,5)P2 are localized in the endolysosome system. 

Other PIPs such as PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, are localized in the plasma membrane, 

or in other intracellular organelles, and are sequestered from endolysosomes (Poccia and Larijani, 

2009). ITRPML1 was not activated by these other PIPs (Fig. 4.1E). TRPML2 and TRPML3 are 

also localized in the endolysosome (Cheng et al., 2010). PI(3,5)P2, but not PI(3)P, activated 

whole-endolysosome ITRPML2 and  ITRPML3 (data not shown). Thus, PI(3,5)P2 activated TRPMLs 

with a striking specificity. Since PI(3,5)P2 and TRPMLs are both primarily localized in the LEL, 

(Cheng et al., 2010; Dove et al., 2009; Pryor et al., 2006; Puertollano and Kiselyov, 2009), the 

insensitivity of ITRPML1 to PI(3)P or PI(5)P, and its robust activation by PI(3,5)P2 suggested that 

TRPML1 might be acutely regulated by the activities of PIKfyve/Fab1, or by Fig4 or MTMR 

phosphatases in the LEL.     

 

Suppression of ITRPML1 by a decrease in PI(3,5)P2 

To test that PI(3,5)P2 is an endogenous activator of TRPML1, we recorded basal ITRPML1 after 

depleting the PI(3,5)P2 level by overexpressing MTM1, a PI-3 phosphatase that can convert 

PI(3,5)P2 and PI(3)P into PI(5)P and PI, respectively (Dove et al., 2009; Poccia and Larijani, 

2009). A Rapamycin-dependent heterodimerization system was used to recruit the otherwise 

cytosolic MTM1 (Zoncu et al., 2009) (see Fig. 4.2A). In cells expressing both RFP-FRB-MTM1 

and EGFP-2*FKBP-Rab7, Rapamycin induced a rapid recruitment of MTM1 to Rab7-positive 

LEL membranes (Fig. 4.2B). We noticed that the basal ITRPML1was consistently larger for 

vacuoles isolated from Cos-1 cells with longer (> 5h) pretreatment of vacuolin-1 (data not 

shown). Following recruitment of MTM1, but not the inactive mutant (C375S) MTM1, a large 

suppression of basal whole-endolysosome ITRPML1 was seen (Fig. 4.2C-F). Collectively, these 

results suggested that PI(3,5)P2 levels were the primary determinant of TRPML1 channel activity 

in the endolysosome. 

 

Binding of PI(3,5)P2 to the N terminus of TRPML1 in vitro. 

Phosphoinositides are known to bind with high affinity to PI-binding modules such as PH or 

FYVE domain, or to a poly-basic region with unstructured clusters of positively-charged amino 

acid residues, such as Arg and Lys, in an electrostatic manner (Suh and Hille, 2008). PI(4,5)P2 
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can bind directly to the intracellular N- and C- termini of several plasma membrane TRPs (Kwon 

et al., 2007; Nilius et al., 2008). Notably, the intracellular N terminus of TRPML1 has a 

predicted PH-like domain (Nilius et al., 2008) (Fig. 4.2A). To test whether PI(3,5)P2 binds 

directly to TRPML1, we fused GST to the entire N-terminus of mouse TRPML1, up to residue 

69 (membrane topology, Fig. 4.3A). The protein, GST-ML1-N, was used to probe 

phosphoinositides immobilized on a nitrocellulose membrane (Kwon et al., 2007; Nilius et al., 

2008; Suh and Hille, 2008). GST-ML1-N, but not GST alone, bound to PIP3 and PIP2s, but not to 

other PIPs or phospholipids (Fig. 4.3B), suggesting that PI(3,5)P2 bound directly in vitro to the 

cytoplasmic N-terminus of TRPML1.    

      To further map the PI(3,5)P2-binding sites, we systematically replaced positively charged 

amino-acid residues (Arg and Lys) within and adjacent to the poly-basic region with 

non-charged Gln residues and assayed Gln-substituted, purified GST fusion proteins for 

PI(3,5)P2 binding. We also tested whether PI(3,5)P2 activated Gln-substituted TRPML1 channels 

using whole-endolysosome recordings. A dramatic decrease in PI(3,5)P2 binding and activation 

(Fig. 4.3C,D) was observed in a 7Q mutant, with seven substitutions (R42Q/R43Q/R44Q/ 

K55Q/R57Q/R61Q/K62Q; Fig. 4.3A). In contrast to GST-ML1-N, GST-ML1-7Q-N failed to 

bind significantly to PI(3,5)P2 or to other PIPs in the PIP strip (Fig. 4.3B). Considering the 

specificity of PI(3,5)P2 for TRPML1 activation, one plausible explanation for the apparent 

discrepancy between our biochemical assays (see Fig. 4.3B) and electrophysiological 

measurements is that the purified GST-ML1-N protein fragment did not recapitulate the 

specificity of PIP binding of full-length TRPML1 in the endolysosomal membrane. Nevertheless, 

the binding affinity of ML1-N to PI(3,5)P2 was dramatically reduced by removing the charges 

with the 7Q mutations (Fig. 4.3B), suggesting that multiple positively charged amino-acid 

residues are critical for PI(3,5)P2 binding. 

      Compared with WT TRPML1, TRPML1-7Q was only weakly activated by high 

concentrations of PI(3,5)P2, with a maximal response (efficacy) that was approximately 20% of 

ITRPML1 (EC50 = 2.2 ± 2 µM, Hill slope (n) = 0.8, N = 6 vacuoles) (Fig. 4.3C,D). Similar to 

TRPML1Va, TRPML1Va-7Q also exhibited large basal currents (Fig. 4.3E), suggesting a relatively 

specific effect of 7Q mutations on PI(3,5)P2-dependent activation. Collectively, our results 

suggest that PI(3,5)P2 bound directly to the cytoplasmic N terminus of TRPML1, resulting in 

conformational changes that favor the opening of TRPML1. 
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TRPML1 and PI(3,5)P2 in endolysosomal trafficking 

The data presented here suggest that TRPMLs might be activated down- stream of the PI(3,5)P2 
increase to trigger membrane fusion and fission. If this hypothesis is correct, expression of 

TRPML1, which often exhibits substantial basal activity in heterologous systems (Cheng et al., 

2010), might alleviate trafficking defects in PI(3,5)P2-deficient cells. In cultured Vac14-/- 

fibroblast cells, the trafficking defects from PI(3,5)P2 deficiency were reflected by enlarged 

vacuoles/LELs ( > 3 up to 12 µm in diameter) in 79 ± 7% of cells (N = 3 experiments with > 100 

cells) (Fig. 4.4A; (Zhang et al., 2007a)). Only approximately 5-10% of WT cells were 

vacuolated ( < 4 µm; data not shown). Transfection of a WT Vac14 construct was sufficient to 

restrict vacuoles to 15 ± 2% of cells (N = 3 experiments; Fig. 4.4A). Interestingly, we were able 

to rescue the vacuolar phenotype by transfection of TRPML1, which showed vacuolation in 18 

± 1% cells (N = 6), but not pore-mutant TRPML1 (ML1-KK) with 69 ± 6% vacuolation (N = 3), 

or the PI(3,5)P2-insensitive mutant TRPML1 (ML1-7Q) with 75 ± 7% vacuolation (N = 3) (Fig. 

4.4A-D). Although ML1-7Q still localized to Lamp1-positive compartments (Fig. 4.4B,E), large 

vacuoles were seen in the majority of ML1-7Q-transfected Vac14-/- fibroblasts (Fig. 4.4A-D). 

Collectively, these results suggested that TRPML1 channel activity and PI(3,5)P2 sensitivity had 

important roles in controlling vacuole size. 

 

Discussion 
Using biochemistry and whole-endolysosomal patch-clamp recordings, we showed that PI(3,5)P2 

directly binds and activates TRPML1 in the endolysosome with potency and specificity. 

Moreover we showed that overexpression of WT, but not the PIP2-insensitive variant of 

TRPML1, was sufficient to rescue the trafficking defects in PI(3,5)P2-deficient mammalian cells, 

as demonstrated by observation of enlarged vacuoles. Our identification of an 

endolysosome-localizing Ca2+ channel that is activated by the endolysosome-specific PI(3,5)P2 

provides a previously unknown link between these two important regulators of intracellular 

membrane trafficking.   

 Similar trafficking defects are seen in both TRPML1−/−, and PI(3,5)P2-deficient cells. For 

example, LEL-to-Golgi retrograde trafficking, a process requiring membrane fission, is defective 

in both TRPML1−/− cells (Chen et al., 1998; Cheng et al., 2010; Pryor et al., 2006; Puertollano 

and Kiselyov, 2009; Thompson et al., 2007) and in PI(3,5)P2-deficient cells (Botelho et al., 2008; 

Dove et al., 2009; Duex et al., 2006a; Duex et al., 2006b; Poccia and Larijani, 2009; Zhang et al., 
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2007a). Furthermore, both TRPML1 and PI(3,5)P2-metabolizing enzymes are implicated in 

membrane-fusion processes like exocytosis (Dong et al., 2009; Dove et al., 2009; Poccia and 

Larijani, 2009) and lysosomal fusion with autophagosomes (Dove et al., 2009; Ferguson et al., 

2009; Puertollano and Kiselyov, 2009). Thus, both TRPML1 and PI(3,5)P2 play active roles in 

membrane fission and fusion. However, the cellular defects of PI(3,5)P2-deficient cells are 

generally more severe than TRPML1−/− cells. Activation of TRPML1 might define a subset of 

the multiple functions of PI(3,5)P2. Such activation, however, may provide an essential spatial 

and temporal regulation of endolysosomal dynamics. Membrane fusion and fission are highly 

coordinated processes requiring an array of cytosolic and membrane-bound proteins and factors. 

A local increase in PI(3,5)P2 likely recruits protein complexes required to generate the membrane 

curvature necessary for membrane fusion and fission (Poccia and Larijani, 2009). A local 

increase in PI(3,5)P2 could also activate TRPML1 to elevate juxtaorganellar Ca2+, which binds to 

a putative Ca2+ sensor protein such as Syt/CaM (Luzio et al., 2007a) or ALG-2 (Vergarajauregui 

et al., 2009), to exert effects on SNARE proteins or lipid bilayer fusion (Poccia and Larijani, 

2009; Roth, 2004).   

      The remarkable specificity of PI(3,5)P2 in activating TRPML1 is consistent with the role 

of Ca2+ in controlling the direction and specificity of membrane traffic (Hay, 2007; Luzio et al., 

2007a). Although we identified several positively charged amino acid residues as potential 

PI(3,5)P2 binding sites, electrostatic interaction alone is unlikely to provide a high affinity 

PI(3,5)P2 binding pocket (Nilius et al., 2008; Suh and Hille, 2008). Thus, additional structural 

determinants such as hydrophobic amino acid residues must also contribute to specificity, by 

interacting with the lipid portion of PI(3,5)P2. Because of the low abundance of PI(3,5)P2 (Dove 

et al., 2009), such specificity might be a pre-requisite for PI(3,5)P2 and TRPML1 to control the 

trafficking direction in the late-endocytic pathway. In other organelles, however, other PIPs and 

intracellular Ca2+ channels are likely to provide machinery necessary for Ca2+-dependent 

membrane fission and fusion. Within LELs, membrane fusion and fission are likely to occur in 

sub-organellar compartments that are enriched for both TRPMLs and PIKfyve. While 

TRPML-mediated juxtaorganellar Ca2+ transients might be captured using real-time live-imaging 

methods, these seemingly “spontaneous” events may correlate with membrane fusion and fission 

events that can be simultaneously monitored with fluorescence-imaging approaches.   
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Experimental procedure  
Molecular biology and biochemistry.  

Full-length mouse TRPML1, 2, and 3 were cloned into the EGFP-C2 (Clontech) or mCherry 

vector as described previously (Dong et al., 2008; Dong et al., 2009; Xu et al., 2007). TRPML1 

non-conducting pore mutant (D471K/D472K; abbreviated TRPML1-KK) and PIP2-insensitive 

mutant (R42Q/R43Q/R44Q/K55Q/R57Q/R61Q/K62Q; abbreviated TRPML1-7Q) were 

constructed using a site-directed mutagenesis kit (Qiagen). For glutathione S-transferase (GST) 

fusion constructs, DNA fragments corresponding to the N- (amino acid residues 1-69) terminal 

regions of mouse TRPML1 were generated by PCR amplification and cloned into the EcoRI and 

XhoI site of pGEX4T1, in frame to generate GST-fusion protein plasmids (pGEX-ML1-N). 

FKBP*2 fragment was PCR-amplified from eGFP-FKBP12-Rab5 and inserted into the HindIII 

and XhoI site of EGFP-Rab7 vector. RFP-FRB-MTM1 and EGFP-FKBP*2-Rab5 were kind gift 

from Dr.Banasfe Larijani. All constructs were confirmed by sequencing, and protein expression 

was verified by Western blot. Cos-1, or mouse primary fibroblast cells were transiently 

transfected with TRPML1-3 and the TRPML1 mutants for electrophysiology, biochemistry, 

live-cell imaging, and confocal imaging. TRPML1 Western blot analyses were performed with 

an anti-GFP monoclonal antibody (Covance).  

 

Endolysosomal electrophysiology.  

Endolysosomal electrophysiology was performed as described previously (Dong et al., 2008; 

Dong et al., 2009). Briefly, Cos-1 cells were transfected using Lipofectamine 2000 (Invitrogen) 

with TRPML1 or mutants fused to GFP or mCherry. LEL size is usually < 0.5 µm, which is 

suboptimal for patch clamping. We therefore treated cells with 1 µM vacuolin-1, a small 

chemical known to selectively increase the size of endosomes and lysosomes, for ~1h (Huynh 

and Andrews, 2005). Large vacuoles (up to 5 µm; capacitance = 0.68 ± 0.05 pF, N = 44 vacuoles) 

were observed in most vacuolin-treated cells. Occasionally, enlarged LELs were obtained from 

TRPML1-transfected cells without vacuolin-1 treatment. No significant difference in TRPML 

channel properties were seen for enlarged LELs obtained with or without vacuolin-1 treatment. 

Vacuoles positive for both mCherry-TRPML1 and EGFP-Lamp1 were considered enlarged 

LELs. Whole-endolysosome recordings were performed on isolated enlarged LELs. In brief, a 

patch pipette (electrode) was pressed against a cell and quickly pulled away to slice the cell 

membrane. Enlarged LELs were released into a dish and identified by monitoring 
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EGFP-TRPML1, the mCherry-TRPML1 or EGFP-Lamp1 fluorescence. Unless otherwise stated, 

bath (internal/cytoplasmic) solution contained 140 mM K-Gluconate, 4 mM NaCl, 1 mM EGTA, 

2 mM Na2-ATP, 2 mM MgCl2, 0.39 mM CaCl2, 0.1 mM GTP, 10 mM HEPES (pH adjusted with 

KOH to 7.2; free [Ca2+]i approximately 100 nM). Pipette (luminal) solution was pH 4.6 standard 

extracellular solution (modified Tyrode’s) with 145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM 

MgCl2, 20 mM HEPES, 10 mM glucose (pH adjusted with NaOH). All bath solutions were 

applied via a fast perfusion system to achieve a complete solution exchange within a few seconds. 

Data were collected using an Axopatch 2A patch clamp amplifier, Digidata 1440, and pClamp 

10.0 software (Axon Instruments). Whole-endolysosome currents were digitized at 10 kHz and 

filtered at 2 kHz. All experiments were conducted at room temperature (21-23ºC), and all 

recordings were analyzed with pCLAMP10 (Axon Instruments, Union City, CA), and Origin 8.0 

(OriginLab, Northampton, MA). All PIPs are from A.G. Scientific, Inc. 

 

GST fusion proteins.  

To purify GST-tagged proteins, Escherchia coli BL21DE3 was transformed with empty pGEX 

vectors, pGEX-ML1-N, and pGEX-ML1-C. After growth to approximately OD600 = 0.6 in 

SuperBroth media supplemented with ampicillin, expression was induced with IPTG (1 M) for 7 

h at 37°C. Cells were collected and resuspended in 30 ml of ice-cold PBS supplemented with 

protease inhibitor cocktail, 0.5 mM EDTA, and deoxytibonuclease, and lysed with a French 

press. Cell lysates in 1% Triton-X100 were incubated with 2 mL mixed glutathione Sepharose 

(GE Healthcare) for 1 h at 4°C. After three washes with 30 mL PBS, proteins were eluted with 7 

mL elution buffer (10 mM Glutathinone, 50 mM Tris, pH 8).  

 

Lipid Strip Binding Assay.   

Lipid binding analysis of GST-ML1-N and GST-ML1-7Q-N fusion proteins was conducted 

using PIP Strips (Echelon Biosciences Inc.), with each spot containing 100 pmol active lipids. 

Membranes were blocked with PBST solution (supplemented with 3% fatty acid-free BSA) for 1 

h at room temperature, and incubated with 0.5-3 µg GST-fusion protein in blocking buffer 

overnight. After six washes, the membranes were incubated with a mouse anti-GST antibody 

(1:5000, Sigma) for 1 h at room temperature, and secondary antibody HRP-labeled goat 

anti-mouse (1:5000) was added before detection by enhanced chemiluminescence.  
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Mouse fibroblast vacuole assay.  

Vac14−/− mouse fibroblast cells were isolated and cultured as described previously (Zhang et al., 

2007a). Briefly, fibroblasts were transiently transfected by electroporation (260 V, 950 µF) with 

100 µg of the following expression constructs: mCit, mCit-Vac14, GFP-ML1, GFP-ML1-KK, or 

GFP-ML1-7Q. Cells were grown on 100-mm plates to 90% confluence and distributed to six 

35-mm plates after electroporation. Cells were fixed with 4% PFA 24 h after electroporation. 

Fibroblasts were considered to be vacuolated if they had at least one enlarged (> 3 µm) 

cytoplasmic vacuole.   

 

Cellular fractionation.  

Lysosomal fractionation studies were performed as described previously (Kim et al., 2009). 

Briefly, cell lysates were obtained by dounce homogenization in a homogenizing buffer (0.25 M 

sucrose, 1 mM Na2EDTA, 10 mM HEPES, pH 7.0). Lysates were centrifuged at 1900 x g at 4°C 

for 10 min to remove the nuclei and intact cells. Post-nuclear supernatants underwent 

ultracentrifugation through a Percoll density gradient using a Beckman L8-70 ultracentrifuge. An 

ultracentrifuge tube was layered with 2.5 M sucrose, 18% Percoll in homogenizing buffer, and 

the post-nuclear supernatant on top. Centrifugation was 67,200 x g at 4°C for 1.5 h in a Beckman 

Coulter 70.1 Ti Rotor. Samples were fractionated into 16 samples of unequal volume. Top 

fractions contained minimal cellular components; bottom fractions contained concentrated bands 

of cellular organelles and were separated into smaller fraction volumes. 

 

Confocal imaging.  

All images were taken using a Leica (TCS SP5) confocal microscope. Lamp1 antibody was 

from the Iowa Hybridoma Bank.   

 

Data analysis.   

Data are presented as the mean ± standard error of the mean (SEM). Statistical comparisons were 

made using analysis of variance (ANOVA). A P value < 0.05 was considered statistically 

significant. 
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Figure 4.1. PI(3,5)P2 activates TRPML channels in the endolysosomal membranes. 

(Contributed by Dr. Xianping Dong) 

(A.) Illustration of a whole-endolysosome recording configuration. Pipette (luminal) solution 

was a standard external (Tyrode’s) solution adjusted to pH 4.6 to mimic the acidic environment 

of the lysosome lumen. Bath (internal/cytoplasmic) solution was a K+-based solution (140 mM 

K+-gluconate). Note that the inward current indicates cations flowing out of the endolysosome. 

(B). Bath application of PI(3,5)P2 (diC8, 100 nM) activated inwardly rectifying 

whole-endolysosome TRPML1-mediated current (ITRPML1) in an enlarged endolysosome/vacuole 

from a TRPML1-EGFP-expressing Cos-1 cell that was pre-treated with vacuolin-1. ITRPML1was 

elicited by repeated voltage ramps (-140 to +140 mV; 400 ms) with a 4-s interval between ramps. 

ITRPML1 exhibited a small basal current prior to PI(3,5)P2 application; bath application of 

PI(3,5)P2 to the cytoplasmic side of the endolysosome resulted in maximal activation of 18-fold 

over baseline within a minute, measured at -140 mV of ITRPML1. (C). Representative traces of 

ITRPML1 before (black) and after (red) PI(3,5)P2 at two time points, as shown in a (black and red 

circles). Only a portion of the voltage protocol is shown; holding potential = 0 mV. (D). 

Dose-dependence of PI(3,5)P2 activation (EC50 = 48 nM, n = 1.9). (E). Specific activation of 

TRPML1 by PI(3,5)P2, but not other PIPs in diC8.  
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Figure 4.2. A decrease in PI(3,5)P2 suppresses TRPML1 channel activity in the 

endolysosomal membrane.  

(A). Recruitment of MTM1 to endolysosomal membranes by rapamycin-dependent 

heterodimerization of RFP-FRB-MTM1 and EGFP-2*FKBP-Rab7. Rab7 is a LEL-specific Rab 

protein. MTM1 is a PI-3 phosphatase that can convert PI(3,5)P2 and PI(3)P into PI(5)P and PI, 

respectively. (B). Rapamycin-dependent heterodimerization of RFP-FRB-MTM1 and 

EGFP-2*FKBP-Rab7 alters subcellular localization of MTM1. Cos-1 cells were transfected with 

both RFP-FRB-MTM1 and EGFP-2*FKBP-Rab7. Rapamycin (500 nM; 20 min) treatment 

promotes co-localization of MTM1-RFP with Rab7-EGFP. Scale Bar = 10 µm. (C-F). The 

effects of MTM1 on ITRPML1. Cos-1 cells were co-transfected with human TRPML1-myc, 

RFP-FRB-MTM1 or RFP-FRB-MTM1-C375S, and EGFP-2*FKBP-Rab7. MTM1 was recruited 

to LEL membranes by rapamycin (500 nM)-dependent heterodimerization of RFP-FRB-MTM1 

and EGFP-2*FKBP-Rab7. (C). ITRPML1 in MTM1-transfected cells before rapamycin treatment. 

(D). ITRPML1 in MTM1-transfected cells after rapamycin treatment. (E). ITRPML1 in 

MTM1-C357S-transfected cells after rapamycin treatment. (F). Differential effects of WT and 

inactive mutant (C375S) MTM1 on basal whole-endolysosome ITRPML1. Data are presented as the 

mean ± s.e.m.; the n numbers are in parentheses. Statistical comparisons were made using 

analysis of variance: *P < 0.05; **P < 0.01. 
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Figure 4.3. Direct binding of PI(3,5)P2 to the TRPML1 N terminus requires multiple 

positively charged amino-acid residues.  

(A). The cytoplasmic N terminus of TRPML1 contains a poly-basic region and clusters of 

positively charged amino-acid residues as potential PI(3,5)P2-binding sites. The positively 

charged amino-acid residues (Arg and Lys) that were mutated into neutral amino acids Gln (Q) 

in this study are shown with enlarged circles and their amino-acid residue numbers. (B). 

Protein-lipid overlays. The strip contained 15 different types of lipids. PA, phosphatidic acid; 

S1P, sphingosine-1-phosphate. Three purified proteins were used to probe the strip: GST alone 

(left panel), GST-fused to the N-terminal fragment of TRPML1 (ML1-NGST; right panel), and 

Gln-substituted mutant of ML1-N-GST (ML1-7Q-N-GST; middle). Proteins were detected with 

anti-GST antibodies. (C). Whole-endolysosome ITRPML1-7Q was weakly activated by high 

concentrations of PI(3,5)P2. (D). PI(3,5)P2 dose dependence of ITRPML1-7Q. Dotted line indicates 

the dose dependence of ITRPML1 (replotted from Fig. 4.1.D). (E). Large basal 

whole-endolysosome ITRPML1-Va-7Q. Charge-removing Gln substitutions (7Q) were introduced into 

the gain-of-function Va background. Data are presented as the mean ± s.e.m.; the n numbers are 

in parentheses. Statistical comparisons were made using analysis of variance: * * * P < 0.001. 
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Figure 4.4. Overexpression of TRPML1 rescues the enlarged endolysosome phenotype of 

PI(3,5)P2-deficient mouse fibroblasts.  

(A,B). The effects of overexpression of WT TRPML1 and pore (ML1-KK) or 

PI(3,5)P2-insensitive (ML1-7Q) mutant TRPML1 on the number and size of the vacuoles in 

Vac14-/- fibroblasts. Cultured Vac14-/- mouse fibroblast cells exhibited variable numbers (1-20) 

of large ( > 3 µm) vacuoles / endolysosomes. Left, differential interference contrast image, right 

epifluorescence. Green fluorescence, mCit (vector only), mCit-Vac14, GFP-ML1, 

GFP-ML1-KK, GFP-ML1-7Q. Non-vacuolated cells are indicated by asterisk. Scale bar, 20 µm. 

(B). TRPML1, ML1-KK and ML1-7Q proteins were co-localized in Lamp1-positive 

compartments of Vac14-/- fibroblast cells. (C). Histogram analysis of the vacuole size/number in 

Vac14-/- fibroblasts transfected with indicated constructs. (D). Large vacuoles in 75 % of vector 

(mCit)-transfected Vac14-/- fibroblast cells. Overexpression of Vac14-mCit or EGFP-ML1 

reduced the percentage (of enlarged vacuoles) to approximately 15%, whereas the 75% of 

EGFP-ML1-KK or EGFP-ML1-7Q-transfected cells contained enlarged vacuoles. Data are 

presented as the mean ± s.e.m.; the n numbers are in parentheses. Statistical comparisons were 

made using analysis of variance: * * * P < 0.001. (E). Cellular organelle fractionation analysis 

reveals co-localization of TRPML1 and TRPML1-7Q with Lamp-1. Gradient cellular 

fractionations were obtained using ultracentrifugation. Both TRPML1 and TRPML1-7Q proteins 

were concentrated in Lamp1-rich fractionations. Arrow shows full-length TRPML1-EGFP.
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CHAPTER 5 

The role of TRPML1 in Ca2+-dependent lysosomal exocytosis 
 

 

Abstract 
 

Lysosomes undergo exocytosis in response to an increase of intracellular Ca2+. This process has 

important roles in a variety of cellular functions, including phagocytosis and plasma membrane 

repair. Lysosomes are considered to provide Ca2+ required for the exocytosis, however, the 

molecular identity mediating the Ca2+ release remains elusive. The mucolipin-1 (TRPML1) is a 

Ca2+-permeable channel primarily localized in late endosomes and lysosomes. Here we identified 

several gain-of function mutations of TRPML1 with constitutive Ca2+ permeability. Cells 

expressing these gain-of-function mutants of TRPML1 have dramatically increased lysosomal 

exocytosis. Particle binding in macrophages is a physiological stimulus to evoke lysosomal 

exocytosis. Upon particle binding, lysosomal exocytosis is shown to be required to provide 

membrane supplies to engulf particles to facilitate phagosome formation. By direct 

patch-clamping of phagosomal membranes and whole-cell recordings, we found that upon 

particle binding, TRPML1-associated lysosomes are delivered to the newly-formed phagosomes 

via lysosomal exocytosis in a Ca2+-dependent manner, suggesting a role of TRPML1 in 

lysosomal exocytosis and phagosome formation. 
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Introduction 
TRPML1 belongs to the mucolipin subfamily of transient receptor potential (TRPML) proteins, 

which contain three members (TRPML1-3). TRPML1 is primarily localized on the late 

endosome and lysosome (Cheng et al., 2010). Human mutations of TRPML1 cause 

Mucolipidosis type IV (ML4), a childhood neurodegenerative disorder (Bargal et al., 2000; Bassi 

et al., 2000; Cheng et al., 2010; Puertollano and Kiselyov, 2009; Sun et al., 2000). Cells that lack 

TRPML1 exhibit enlarged endolysosomes and trafficking defects in the late endocytic pathway 

(Cheng et al., 2010). Previous work form our lab has demonstrated that TRPML1 is a major 

Ca2+-permeable channel in lysosomes (Dong et al., 2008; Dong et al., 2010a; Dong et al., 2009) 

and is specifically activated by PI(3,5)P2 (Dong et al., 2010a). Spontaneous mutations in the 

mouse TRPML3 (A419P) result in the varitint-waddler (Va) phenotype (Cuajungco and Samie, 

2008; Puertollano and Kiselyov, 2009). Compared with wild-type TRPML3, much larger 

TRPML3-mediated currents are seen in cells expressing TRPML3A419P (TRPML3Va). The 

TRPML3Va channel exhibits similar pore properties as wild-type TRPML3, but with altered 

gating behavior, suggesting that Va is a channel gain-of-function mutation (Cuajungco and 

Samie, 2008; Grimm et al., 2007; Kim et al., 2007; Martina et al., 2009; Nagata et al., 2008; 

Puertollano and Kiselyov, 2009; Xu et al., 2007). Furthermore, because proline introductions 

into a transmembrane α-helix often cause kinks, hinges, or swivels (Tieleman et al., 2001), the 

“helix-breaking effect” of proline was proposed to lock the TRPML3Va channel in an unregulated 

and “open” state (Cuajungco and Samie, 2008). Similarly, the proline substitution at the 

homologous positions in TRPML1 (V432P or TRPML1Va) leads to large inwardly rectifying 

whole-cell currents (Dong et al., 2008), although it’s unclear how the Va mutation causes the 

surface expression of TRPML1. 

      Accumulated evidence has shown that lysosomes undergo exocytosis in response to an 

increase of intracellular Ca2+ in most, if not all cell types (Andrews, 2000; Coorssen et al., 1996; 

Ninomiya et al., 1996; Rodriguez et al., 1999; Rodriguez et al., 1997). Lysosomal exocytosis 

plays important roles in numerous physiological processes, including phagocytosis (Czibener et 

al., 2006), plasma membrane repair (Andrews, 2005; Reddy et al., 2001), bone resorption (Zhao 

et al., 2008), neurite outgrowth (Arantes and Andrews, 2006), neurotransmitter release (Chen et 

al., 2005; Dou et al., 2012; Liu et al., 2011; Zhang et al., 2007b), axonal remyelination (Chen et 

al., 2012) and cellular clearance (Medina et al., 2011). The critical trigger for lysosomal 

exocytosis is the proximal Ca2+ increase, presumably from lysosomal Ca2+ release under 
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physiological conditions (Czibener et al., 2006; Liu et al., 2011; Tapper et al., 2002). However, 

definitive evidence to support this hypothesis is still lacking, and more essentially, the ion 

channel(s) responsible for Ca2+ release from lysosomes remains elusive. TRPML1 represents a 

natural candidate for the Ca2+ release channel in the endolysosome.  

      In macrophages, phagocytosis of large extracellular particles such as apoptotic bodies is 

required for cellular clearance and tissue remodeling (Flannagan et al., 2012). Particle binding to 

the plasma membrane triggers a localized signaling cascade to orchestrate focal cytoskeleton 

reorganization and delivery of membranes from intracellular pools, resulting in the formation of 

plasmalemmal pseudopods. The lysosome is a major source of intracellular membranes required 

for particle ingestion, and is delivered to phagocytic cups via Ca2+-dependent lysosomal 

exocytosis (Braun et al., 2004; Czibener et al., 2006; Huynh et al., 2007). The process of particle 

uptake has provided an opportunity to study lysosomal exocytosis in physiological conditions.  

In the current study, firstly, to understand the mechanisms of the Va mutation in 

TRPML1, we performed systemic proline substitutions and obtained several gain-of function 

mutations of TRPML1 with constitutive Ca2+ permeability. These gain-of-function mutants of 

TRPML1 lead to dramatically increased lysosomal exocytosis. We further tested the role of 

TRPML1 in lysosomal exocytosis-mediated particle uptake in macrophages. By direct 

patch-clamping of phagosomal membranes, we found that TRPML1 is rapidly recruited to 

nascent phagosomes upon particle binding. Using whole-cell recordings, we detected the plasma 

membrane insertion of TRPML1 in a Ca2+-dependent manner during particle uptake, suggesting 

TRPML1-associated lysosomes are delivered to nascent phagosomes via TRPML1-mediated 

lysosomal exocytosis. 

 

Results 
Va-like gain-of-function mutations 

To identify additional Va-like mutations in TRPML1 that lead to measurable whole-cell currents, 

we constructed 20 Pro substitutions near the Va locus in the S4-S5 linker and the bottom half of 

TM5 (transmembrane 5) (Fig. 5.1A). This region was previously implicated in the channel 

gating of various 6TM channels, including TRP channels (Cuajungco and Samie, 2008; Long et 

al., 2005). Proline-substituted TRPML1 channels were then transiently expressed in HEK-293T 

cell lines. To monitor expression, TRPML1 was fused to enhanced green fluorescent protein 

(EGFP) at its N-terminus (Dong et al., 2008; Xu et al., 2007). Cells transfected with TRPML1Va 
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or TRPML3Va exhibit elevated intracellular Ca2+ levels, i.e., Ca2+ overload (Grimm et al., 2007; 

Xu et al., 2007). Therefore, our initial screening of Pro substitutions was conducted using 

Fura-2-based Ca2+ imaging. The expressions of TRPML1 and the Pro mutations were confirmed 

by measuring EGFP fluorescence (F470; Fig. 5.1B).  

      The basal intracellular Ca2+ ([Ca2+]i) levels of WT TRPML1-transfected HEK293T cells 

were similar to those of non-transfected cells (Fig. 51B,E). In contrast, elevated [Ca2+]i levels 

were seen in most TRPML1Va-transfected cells (Fig. 5.1C,F) in the standard extracellular Tyrode 

solution (2 mM Ca2+). Removal of Ca2+ from the bath (0 mM Ca2+) rapidly decreased the Fura-2 

ratios in most TRPML1Va-transfected cells. However, in a subpopulation of 

TRPML1Va-transfected cells with high basal [Ca2+]i levels (fura-2 ratio> 2), Ca2+ removal only 

slightly decreased the Fura-2 ratios (Fig. 5.1F). These cells might have entered an irreversible 

apoptotic program that was triggered by Ca2+ overload (Grimm et al., 2007; Nagata et al., 2008; 

Xu et al., 2007). Nevertheless, even with TRPML1Va-transfected cells with low basal [Ca2+]i 

levels (Fura-2 ratio < 2), Fura-2 ratios never dropped to nontransfected cell levels upon Ca2+ 

removal. These results suggest that TRPML1Va might also have increased basal [Ca2+]i levels by 

mobilizing intracellular Ca2+ stores. High basal [Ca2+]i levels were also seen in two other 

TRPML1 Pro substitutions, TRPML1C430P and TRPML1C431P (Fig. 5.1H). Intermediate [Ca2+]i 

levels were observed in another proline substitution, TRPML1R427P (Fig. 5.1D,G). In contrast, no 

significant alterations in the basal [Ca2+]i levels were observed in other Pro substitutions (Fig. 

5.1H). Thus, the Va locus and its vicinity at the cytosolic side may be the only areas susceptible 

to Pro substitutions. Together, these results indicate that TRPML1R427P, TRPML1C430P, and 

TRPML1C431P were also TRPML1Va-like GOF mutations. These GOF mutations were also 

shown to result in large whole-cell inwardly-rectifying currents (Fig 5.2). 

 

GOF mutations lead to increased lysosomal exocytosis 

One possible route by which the GOF mutations could get to the plasma membrane is by 

enhanced fusion of lysosomes with these mutant TRPML1 channels, i.e. increased lysosomal 

exocytosis. To probe this possibility, we used Lamp-1 surface staining to monitor lysosomal 

exocytosis (Reddy et al., 2001). Non-transfected or TRPML1-transfected cells did not exhibit 

significant Lamp-1 surface staining (Fig. 5.3A), suggesting a low rate of lysosomal exocytosis. 

However, in cells transfected GOF Pro mutants, evident punctuate Lamp-1 staining was seen in 

most transfected cells (Fig. 5.3B-E). TRPML1R427P exhibited an intermediate level of Lamp-1 
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surface staining (Fig. 5.3B,H). The Lamp-1 staining appeared to be in the cell surface based on 

its colocalization with a plasma membrane marker DilC18 (Fig. 5.3F). Pro substitutions 

increased both whole cell and whole lysosome currents, resulting in increases of both 

intralysosomal Ca2+ release and Ca2+ entry (data not shown). To separate these two potential 

distinct effects on lysosomal exocytosis, we performed the experiments under Ca2+-free 

conditions by removing external Ca2+ in the culture medium. Under this condition, the global 

Ca2+ level of TRPML1Va-transfected cells was only slightly above the resting Ca2+ level of 

non-transfected cells (Fig. 5.3G). Interestingly, Lamp-1 surface staining in 

TRPML1V432P-transfected cells was even enhanced under Ca2+-free conditions (Fig. 5.3H). 

These results indicate that GOF Pro mutations induce a high level of lysosomal exocytosis via a 

mechanism that is dependent on lysosomal Ca2+ release, and suggest that TRPML1-mediated 

Ca2+ release may trigger lysosomal exocytosis. 

 

Particle binding induces lysosomal exocytosis in a Ca2+- and TRPML1-dependent manner 

To probe the role of TRPML1 under physiological condition, we tested the involvement of 

TRPML1 in the process of particle uptake in macrophages. Particle uptake requires the 

Ca2+-dependent lysosome fusion with the plasma membrane to provide the additional membrane. 

We hypothesized that particle binding triggers TRPML1-mediated lysosomal Ca2+ release, 

rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via 

lysosomal exocytosis. To study particle uptake/ingestion, we isolated bone marrow macrophages 

(BMMs) (Chow et al., 2004) from wild-type (WT) and TRPML1 knockout (KO) (Venugopal et 

al., 2007) mice, and exposed BMMs to IgG-opsonized sheep red blood cells (IgG-RBCs) (all 

about 5 µm in size). We first investigated the insertion of TRPML1 onto the plasma membrane 

during particle uptake. Because current antibodies are inadequate for detecting endogenous 

TRPML1 proteins, we developed a whole-cell patch-clamp method to “detect” the plasma 

membrane insertion of TRPML1 during particle uptake. This electrophysiology-based 

“exocytosis assay” provides temporal resolution far superior to other exocytosis/secretion assays. 

In order to facilitate detection (by decreasing the turnover time of TRPML1 at the plasma 

membrane), we used a cell-permeable dynamin inhibitor, dynasore (Macia et al., 2006), to block 

endocytosis that is presumed to be coupled with focal exocytosis (Lee et al., 2007; Tam et al., 

2010). TRPML1-specific activator ML-SA1 (Shen et al., 2012) induced large whole-cell 

TRPML1-like currents upon exposure of WT BMMs to IgG-RBCs for 10 min in the presence of 
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dynasore (Fig. 5.4 B,D). In contrast, no significant ML-SA1-induced whole-cell currents were 

observed in RBC-treated TRPML1 KO BMMs, or WT BMMs treated with dynasore alone (Fig. 

5.4 A,C,D). IgG-RBC-induced whole-cell ITRPML1 was completely inhibited by BAPTA-AM 

pretreatment (Fig. 5.4D), suggesting that membrane insertion during phagocytosis is a 

Ca2+-dependent process. 

 

TRPML1 is rapidly recruited to nascent phagosomes. 

To further determine whether TRPML1-associated lysosomes contribute to the phagosome 

formation via lysosomal exocytosis, we developed a patch-clamp method to directly record from 

phagosomal membranes (Fig. 5.5A,B). Phagosomes were isolated from Lamp1-GFP or 

TRPML1-GFP-transfected RAW 264.7 cells (macrophage cell lines) after exposure to 

IgG-RBCs or beads for 5 min. In Lamp1-GFP-transfected RAW cells, bath application of 

PI(3,5)P2 (100 nM) or ML-SA1 (25 µM) readily activated endogenous whole-phagosome 

TRPML1-like currents (Fig. 5.5C); much larger whole-phagosome ML-SA1-activated currents 

were seen in TRPML1-GFP-transfected RAW cells. In WT BMMs, whole-phagosome IML1 was 

activated by ML-SA1, but inhibited by TRPML1 antagonist ML-SI1 (Fig. 5.5D); no significant 

whole-phagosome ITRPML1 was seen in TRPML1 KO BMMs (Fig. 5.5D). In contrast, 

PI(3,5)P2-activated ITPC (see chapter 2) was present in both WT and TRPML1 KO BMMs (Fig. 

5.5D). These results have thus provided functional evidence that TRPML1 is recruited to nascent 

phagosomes. Taken together, our functional analysis has provided definite evidence for that upon 

particle binding, TRPML1-associated lysosomes are delivered to the newly-formed phagosomes 

via lysosomal exocytosis, and has suggested a role of TRPML1 in lysosomal exocytosis and 

phagosome formation.  

 

Discussion 
In this study, by performing systemic Pro substitution on 20 amino acids residues around the Va 

spot, we obtained several additional GOF Va-like mutations that displayed constitutive Ca2+ 

permeability and increased surface expression reflected by their large whole-cell currents. 

Consistent with the role of TRPML1 in a Ca2+-dependent lysosomal exocytosis, Lamp-1 surface 

staining was dramatically increased in cells expressing GOF TRPML1 channels. Thus the 

simplest model is that GOF channel activities cause TRPML1-mediated lysosomal Ca2+ release, 

and lead to the appearance of TRPML1 and Lamp-1 at the plasma membrane via lysosomal 
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exocytosis. The helix-breaking effect of Pro introduction may have interfered the conformational 

changes that normally occurred during channel activation gating. GOF Pro substitutions could 

have locked the TRPML1 channel in an unregulated and open state. Such mechanisms have been 

demonstrated in several other 6TM cation channels (Cuajungco and Samie, 2008; Grimm et al., 

2007; Zhao et al., 2004). All GOF Pro substitutions are located in the cytoplasmic face of TM5. 

Thus, it is possible that unidentified cellular mechanisms may activate wt TRPML1 via a 

conformational change in this S4-S5 linker region, which has been previously implicated in the 

gating of various 6TM cation channels (Cuajungco and Samie, 2008; Long et al., 2005).  

      Lysosomes containing TRPML1 channels with constitutive Ca2+ permeability may 

undergo un-regulated exocytosis. Although intralysosomal Ca2+ release is the proposed initiative 

step, the triggering mechanism for lysosomal Ca2+ release remains unknown. A previous study 

suggested TRPML1 may be involved in lysosomal exocytosis (LaPlante et al., 2006), and our 

results further indicated that activating mutant of TRPML1 causes increased lysosomal 

exocytosis. It is hypothesized that upon unidentified cellular stimulus, TRPML1 mediates 

intralysosomal Ca2+ release to trigger lysosomal exocytosis. Lysosomal exocytosis is well 

studied in plasma membrane repair (Idone et al., 2008), however, during this process, the 

extracellular Ca2+ entry from the wounded areas is proposed to trigger lysosomal exocytosis, 

which may mask the role of TRPML1-mediated lysosomal Ca2+ release. To study 

TRPML1-mediated lysosomal exocytosis under physiological stimuli, we employed the process 

of the particle binding in macrophages, in which intralysosomal Ca2+ is indicated to be involved 

(Czibener et al., 2006). Using whole-cell recordings and phagosome-recordings, we have 

demonstrated that upon particle binding, TRPML1-associated lysosomes are delivered to the 

plasma membrane via lysosomal exocytosis and then subsequently recruited into nascent 

phagosomes. It’s worth mentioning that the phagosome recording developed in this study has 

provided a nice assay to study functions of TRPML1 and other ion channels (such as Hv1) (El 

Chemaly and Demaurex, 2012) on the phagosomes. Furthermore, recent identification of 

TRPML1 activators (Grimm et al., 2010; Shen et al., 2012) and inhibitors (Samie et al., 

unpublished), combined with lysosomal Ca2+ imaging and live imaging, would greatly facilitate 

the study to dissect the role of TRPML1 in lysosomal exocytosis (Samie et al., unpublished).  

      TRPML1-dependnet lysosomal exocytosis is implicated to promote cellular waste 

clearance. TFEB, a transcription factor that regulates lysosomal genes, is reported to reduce the 

lysosomal pathological storage in several lysosomal storage diseases. The rescue effects were 
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proposed to be caused by induction of lysosomal exocytosis in a TRPML1-dependent manner. 

Consistent with this result, our lab has previously shown that increasing TRPML1 activity by 

small activator ML-SA1 alleviated the lysosomal lipid storage in Niemann-pick C disease cells 

(Shen et al., 2012), possibly also through promoting lysosomal exocytosis. Thus TRPML1 may 

serve as an important therapeutic target for disorders associated with intracellular storage, 

including Lysosomal Storage diseases (LSDs) and other commonly-acquired neurodegeneration 

diseases, such as Alzheimer's disease, Parkinson's disease and Huntington's disease.  

 

Experimental procedure 
Molecular biology, biochemistry, and histocytochemistry.  

Full length mouse TRPML1 was cloned into the EGFP-C2 vector (Clontech) or mCherry as 

described previously (Dong et al., 2008; Xu et al., 2007). Proline mutations were constructed 

using a site-directed mutagenesis kit (Qiagen). All constructs were confirmed by sequencing 

analysis, and protein expression was verified by Western blotting. HEK293T cells were 

transiently transfected with WT TRPML1 or Pro-substituted TRPML1 channels for 

electrophysiology, Ca2+ imaging. The Lamp-1 antibody was from the Iowa Hybridoma Bank. 

The surface expression of Lamp-1 was detected using a mouse monoclonal antibody (H4A3) 

against the luminal epitope of human Lamp-1 on non-permeabilized cells (Reddy et al., 2001). 

 

Ca2+ imaging.  

HEK293T cells were loaded with 5 µM Fura-2 AM (Molecular Probes) in culture medium at 

37oC for 60 min. Cells were washed in Tyrode solution for 10-30 min and the fluorescence 

intensities at 340 nm (F340) and 380 nm (F380) were recorded on an EasyRatioPro system 

(Photon Technology International, Birmingham, NJ). Fura-2 ratios (F340/F380) were used to 

determine [Ca2+]i. The EGFP-positive cells were identified by monitoring fluorescence intensity 

at 470 nm (F470). 

 

Mouse lines.  

The generation and characterization of TRPML1 (Venugopal, Browning et al. 2007) has been 

described previously. Animals were used under approved animal protocols and Institutional 

Animal Care Guidelines at the University of Michigan. 
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Macrophage cell culture.  

Murine BMMs were prepared and cultured as described previously (Link et al., 2010). Briefly, 

bone marrow cells from femurs and tibias were harvested and cultured in macrophage 

differentiation medium (RPMI-1640 medium with 10% fetal bovine serum (FBS) and 100 

unit/ml recombinant colony stimulating factor (PeproTech, Rocky Hill, NJ). After 7 days in 

culture at 37 °C with 5% CO2, the adherent cells (> 95% are expected to be macrophages) were 

harvested for assays. RAW 264.7 cells are cultured in DMEM/F12 media supplemented with 10% 

FBS at 37°C and 5% CO2. 

 

Whole-phagosome electrophysiology.  

RAW macrophages and BMMs were transfected with Lamp1-GFP or ML1-GFP using Neon 

transfection system (Invitrogen, MPK 5000). IgG-RBCs were first incubated with macrophages 

at 4°C for 20 min to synchronize the binding of IgG-RBCs to cells. Phagocytosis does not 

happen at this temperature. After several gentle washes, cells were placed at 37°C and 5% CO2 

for 5 min to initiate the phagocytosis, and then transferred to room temperature to slow down the 

phagocytosis (Holevinsky and Nelson, 1998). Since the duration of phagocytosis is only 5 min, 

the phagosomes formed at this stage were not fused with endo-lysosomes (Vieira et al., 2002), 

and were considered as newly-formed or nascent phagosomes. Because the majority of 

RBC-containing phagosomes (~5 µm, roughly as the size of RBCs) were also Lamp1-GFP or 

ML1-GFP-positive (see Fig. 5.5A,B), the GFP-positive vesicles (~ 5 µm) were identified as 

nascent phagosomes. To isolate phagosomes, a patch pipette was used to open the cell by slicing 

the cell membrane. Then phagosomes were released into the dish and recognized by GFP 

fluorescence. The bath (cytoplasmic) solution contained 140 mM K-gluconate, 4 mM NaCl, 1 

mM EGTA, 2 mM MgCl2, 0.39 mM CaCl2, and 10 mM HEPES (pH adjusted with KOH to 7.2; 

free [Ca2+] ~100 nM). The pipette (luminal) solution contained 145 mM NaCl, 5 mM KCl, 2 

mM CaCl2, 1 mM MgCl2, 10 mM HEPES, 10 mM MES, and 10 mM glucose (pH 6.5, adjusted 

with NaOH). 

 

Whole-cell electrophysiology.  

Whole-cell recordings were performed as described previously (Dong et al., 2008; Dong et al., 

2009). The pipette solution contained 147 mM Cs+, 120 mM methane-sulfonate, 4 mM NaCl, 10 

mM EGTA, 2 mM Na2-ATP, 2 mM MgCl2, and 20 mM HEPES (pH 7.2; free [Ca2+]i< 10 nM). 



 92	
  

The standard extracellular bath solution (modified Tyrode’s solution) contained 153 mM NaCl, 5 

mM KCl, 2 mM CaCl2, 1 mM MgCl 2, 20 mM HEPES, and 10 mM glucose (pH 7.4). BMMs 

were incubated with IgG-RBCs at 4 °C for 20 min and then were placed at 37°C and 5% CO2 for 

5~10 min before whole-cell recordings. Dynasore (100 µM) was added when the RBCs were 

applied to BMMs. 

 

Data analysis   

Data are presented as the mean ± SEM. Statistical comparisons were made using analysis of 

variance (ANOVA). A P value < 0.05 was considered statistically significant. 
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Figure 5.1. Elevated intracellular Ca2+ in HEK293T cells expressing several Pro 

substitutions of TRPML1 channels.   

(A). Alignment of TRPML (TRPML1, TRPML2, and TRPML3) protein sequences in the S4-S5 

linker and the bottom half of the TM5. Stars (red) indicate the locations of the amino acids that, 

when mutated into Pro, resulted in gain-of-function (GOF) channel activity. TM5 (S5), putative 

transmembrane domain 5. (B-D). Elevated intracellular [Ca2+] ([Ca2+]i) in two Pro substitutions 

of TRPML1. The effect of extracellular Ca2+ ([Ca2+]o, 2 mM) on [Ca2+]i was investigated in 

HEK293T cells transfected with EGFP-tagged wild-type (WT) TRPML1 and two Pro 

substitutions (V432P, TRPML1V432P; R427P, TRPML1R427P). TRPML1 protein expression was 

monitored by the presence of an EGFP signal measured at an excitation of 470 nm (F470). 

[Ca2+]i was monitored with Fura2 ratios (F340/F380). Basal [Ca2+]i in WT TRPML1-transfected 

cells was similar to nontransfected cells (B). In contrast, [Ca2+]i was significantly elevated in 

TRPML1V432P (C)- and TRPML1R427P (D)- transfected cells in the presence of 2 mM 

extracellular Ca2+. Results are representative of several (n = 4-8) independent experiments. 

Arrows indicate the representative cells. (E-G). In TRPML1V432P- and TRPML1R427P- transfected 

cells (F&G), the Fura-2 ratios dropped significantly when [Ca2+]o was reduced from 2 mM 

(Tyrode) to 0 mM (nominal Ca2+ plus 1 mM EGTA), and gradually recovered with addition of 2 

mM Ca2+ (Tyrode; washout). The Fura-2 ratios for WT TRPML1 (E) did not change 

significantly after extracellular Ca2+ was removed. Note that for TRPML1V432P, cells with Fura-2 

ratios >2 (in empty triangle) and < 2 (in solid square) were plotted separately. (H). Average basal 

[Ca2+]i
 in cells transfected with TRPML1 and 20 Pro substitutions in the S4-S5 linker and the 

bottom half of TM5. Data represent the averaged responses of total 40-120 cells from 3-5 

independent experiments.   

 

 

 

 

 

 

 

 

 



 95	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Gain-of-function Pro substitutions of TRPML1 channels generated inwardly 

rectifying whole-cell currents (Contributed by Dr. Xianping Dong).   

Average current densities (pA/pF) of 20 Pro substitutions of TRPML1 channels. Only 4 

(ITRPML1-R427P, ITRPML1-C430P, ITRPML1-C431P, and ITRPML1-V432P) were significantly larger than ITRPML1, 

which was not significantly different from the nontransfected cell currents. Currents were 

measured at -80 mV in the standard extracellular (Tyrode) bath solution and normalized to the 

size of the cells (capacitance; pF). The number of cells for each Pro substitution is shown in 

parenthesis. 
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Figure 5.3. High levels of lysosomal exocytosis in HEK cells expressing GOF Pro 

substitutions of TRPML1.  

(A-E). TRPML1 and Pro substitutions were transiently transfected in HEK293T cells. To reduce 

the cellular toxicity of GOF mutations due to Ca2+ overload, these experiments were performed 

17–20 h after transfection. Before immunostaining analysis, cells were kept inCa2+-free medium 

(nominal 0 mM Ca2+, 1 mM EGTA) for 2-6 h. The exocytosis of lysosomal content (lysosomal 

exocytosis) was monitored by immunostaining of Lamp-1 in non-permeabilized cells using a 

Lamp-1 antibody whose epitope is located on the luminal side. (A). No significant Lamp-1 

staining was seen in TRPML1-trasnfected cells. (B). For TRPML1R427P-transfected cells, some 

exhibited significant Lamp-1 surface staining (see arrows for examples), whereas others didn’t 

(see arrowheads for examples). Lamp-1 staining in cells transfected with TRPML1C430P (C), 

TRPML1C431P (D), and TRPML1V432P (E). (F). Lamp-1 surface staining in 

TRPML1V432P-transfected cells was colocalized with the plasma membrane marker DilC18. (G). 

Slightly elevated [Ca2+]i in TRPML1V432P-transfected cells that were preincubated in Ca2+-free 

medium for 2-6 h. (H). Percentage of EGFP-positive cells with Lamp-1 surface staining under 

standard (2 mM external Ca2+) and Ca2+-free conditions. 
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Figure 5.4. Particle binding induces TRPML1-dependent lysosomal exocytosis in 

macrophages.  

(A-C). Whole-cell TRPML1-like currents in WT BMMs that were exposed to IgG-RBCs for 10 

min. Dynasore (Dyn, 100 µM) was used to block Dynamin-dependent endocytosis to facilitate 

the detection of whole-cell ITRPML1. No significant whole-cell ITRPML1 was detected in TRPML1 

KO BMMs (IgG-RBCs for 10 min). (D) Summary of whole-cell ITRPML1 under different 

experimental conditions. 
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Figure 5.5. Particle binding to macrophages rapidly recruits TRPML1 to the nascent 

phagosomes. 

(A-B). An illustration of whole-phagosome configuration. Cells were transfected with 

Lamp-1-GFP or TRPML1-GFP and then exposed to IgG-coated beads on ice for 20 min; after 

phagocytosis was induced by transferring the cells to 37°C for 5 min, the newly formed 

phagosomes were isolated for electrophysiology. (C). ML-SA1- or PI(3,5)P2-activated 

endogenous whole-phagosome TRPML-like currents in RAW 246.7 cells.   

(D). Whole-phagosome ITRPML1 in WT, but not TRPML1 KO BMMs. ML-SA1 (25 µM) - 

activated ITRPML1 was inhibited by ML-SI1 (50 µM) in WT phagosomes (left panel). No 

ML-SA1- activated ITRPML1 was seen in TRPML1 KO phagosomes, in which PI(3,5)P2 (1 µM) 

robustly activated ITPC. 
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CHAPTER 6  

Discussion 
6.1 Summary  

Lysosomes are intracellular organelles primarily serving as the cell’s “garbage disposal and 

recycling center”. Recent compelling evidence has revealed that lysosomes have a range of 

functions, including membrane trafficking, signal transduction, plasma membrane repair and 

phagocytosis. Dysfunction of lysosomes contributes to more than 50 types of Lysosomal Storage 

Diseases (LSD), as well as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth (CMT) 

disease, and common neurodegenerative diseases, such as Alzheimer’s disease, Huntington’s 

disease and Parkinson’s disease (Settembre et al., 2013).  

      Lysosomes are newly recognized ion stores enriched with H+, Ca2+, and Na+, and it is 

established that lysosomal ion homeostasis is essential for the proper functioning of lysosomes. 

However, until recently the functions of ion transporters and channels residing on lysosomal 

membranes were barely understood, largely due to the lack of a reliable functional assay for the 

intracellularly-localized membrane channels, as the conventional patch-clamp technique that has 

been extensively employed for ion channel studies is mostly limited to the plasma membrane 

channels. Recently our lab established a modified patch-clamp method (Dong et al., 2008), 

which allows us to perform electrophysiological recordings directly on native lysosomal 

membranes. This technique, referred to as lysosome patch-clamp, has opened a new avenue for 

the study of ion channels/transporters in the lysosome. 

My dissertation research has taken advantage of both conventional and lysosomal 

patch-clamp techniques to study ion channels in the lysosome. Using an integrative approach by 

combining electrophysiology with molecular biology, Ca2+ imaging, immunochemistry, confocal 

microscopy, and mouse genetics, my goal was to understand how lysosomal channels are 

regulated by phospholipid signaling, and how this regulation contributes to the function of 

lysosomes under physiological and pathological conditions. Using lysosome patch-clamp, I have 

discovered and characterized two novel lysosomal Na+-selective channels (Two-Pore channels 

TPC1 and TPC2), and demonstrated that the channels are activated by PI(3,5)P2, an 

endolysosome-specific phosphoinositide of low-abundance. In collaboration with my colleagues, 

we have also identified PI(3,5)P2 as the endogenous activator of a Ca2+ release channel in the 

lysosome (mucolipin-1, TRPML1). PI(3,5)P2 signaling is essential for the normal function of the 
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lysosome, and human mutations in PI(3,5)P2-metabolizing enzymes cause various 

neurodegenerative diseases, including ALS and CMT diseases (Chow et al., 2007). My results 

showed that increasing TRPML1 activity alleviated the cellular defects in PI(3,5)P2 deficient 

cells, which may help develop therapeutic approaches for various neurological diseases 

associated with the impaired signaling of PI(3,5)P2. Overall, my thesis work has characterized 

two important channels (TPCs and TRPMLs) in the lysosome, and successfully bridged two 

separate fields: membrane traffick/ lipid signaling and ion channels (two areas rarely studied 

together).  

 

TPC proteins form phosphoinositide-activated sodium-selective ion channels in endosomes 

and lysosomes (Chapter 2 and Chapter 3) 

Mammalian Two-Pore Channel proteins (TPC1 and TPC2) are newly cloned members of the 

voltage-gated cation channel superfamily, which include voltage-gated Na+ and Ca2+ (NaV and 

CaV) channels. NaV and CaV channels are expressed at the plasma membrane of excitable cells 

(i.e., muscle cells and neurons), and are very well characterized. In contrast, TPC proteins are 

localized in the intracellular endosomes and lysosomes, and their functions have remained 

enigmatic. A number of recent studies suggest that TPCs might mediate lysosomal Ca2+ release 

triggered by the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) 

(Calcraft et al., 2009). By directly recording TPCs in endolysosomes from wild-type and TPC 

double knockout mice, I found that, in contrast to previous studies, TPCs are in fact 

Na+-selective channels. Moreover, TPCs are not activated by NAADP, but specifically activated 

by PI(3,5)P2, an endolysosome-specific phosphoinositide that regulates lysosomal ion 

homeostasis and membrane potential (See Fig. 6.1; Fig. 6.2). Additionally, by combining the 

lysosomal fractionation and atomic absorption, my colleagues and I found that the primary 

endolysosomal ion is Na+, not K+, as had been previously assumed (Steinberg et al., 2010). The 

significance of my discovery is multifaceted. First, I have identified TPCs as the first 

intracellular Na+-selective channels. Second, it has provided important corrections to the ion 

channel field. Third, it has revealed a novel mechanism to regulate membrane trafficking: 

membranous lipids directly regulate ion flux, causing rapid changes in the membrane potential 

and the fusogenic potential of intracellular organelles. 
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PI(3,5)P2 controls membrane trafficking by regulating TRPML Ca2+ release channels 

(Chapter 4). 

Membrane fusion and fission events in lysosomal membrane trafficking are controlled by both 

intraluminal Ca2+ release and phospholipids, such as PI(3,5)P2. However, the molecular identities 

of the Ca2+ release channels and the target proteins of PI(3,5)P2 are elusive (See Fig. 6.2). Using 

lysosomal recordings, my colleagues and I demonstrated that TRPML1 is the principle Ca2+ 

channel in late endosomes and lysosomes (Dong et al., 2008; Dong et al., 2009). Human 

mutations in TRPML1 result in type IV Mucolipidosis (ML4) neurodegenerative diseases, and at 

the cellular level, lysosomal trafficking defects and lysosome storage. Similar trafficking defects 

and lysosome storage are also seen in PI(3,5)P2-deficient cells, (for example, cells from 

amyotrophic lateral sclerosis (ALS) patients carrying mutations in the PI(3,5)P2-synthesizing 

enzyme complex, i.e. Fig4 gene (Chow et al., 2007)). Using the patch-clamp technique, my 

colleagues and I found that PI(3,5)P2 directly activates TRPML1 channels (Fig. 6.2). Importantly, 

I found that the introduction of TRPML1 into fibroblasts with impaired PI(3,5)P2 signaling (from 

mouse models of ALS) is able to rescue the enlarged vacuole phenotype associated with 

PI(3,5)P2-deficiency. This work has established a link between PI(3,5)P2 signaling, 

TRPML1-mediated Ca2+ release, and lysosomal membrane trafficking (see Fig. 1.1). A novel 

concept can be developed: lysosome enhancement by stimulating TRPML1’s channel activity to 

speed membrane trafficking may break the vicious cycle between membrane trafficking defects 

and lysosomal storage, providing a new therapeutic approach for PI(3,5)P2-deficient diseases and 

many other Lysosomal Storage diseases. 

 

TRPML1-mediated lysosomal Ca2+ release induces lysosomal exocytosis (Chapter 5) 

The contents of lysosomes undergo exocytosis (lysosomal exocytosis) in response to an increase 

of intracellular Ca2+ (See Fig. 1.1). Lysosomal exocytosis has been implicated in a variety of cell 

biological functions, including neurotransmitter release and plasma membrane repair. The source 

of Ca2+ required in these processes, however, is unclear. By performing mutagenesis screening, I 

have identified several gain-of-function mutants of TRPML1 that exhibit constitutive Ca2+ 

permeability. Interestingly, using a lysosome protein (Lamp-1) cell surface-staining assay, I 

found that lysosomal exocytosis is dramatically increased in cells expressing gain-of-function 

mutants of TRPML1, indicating that TRPML1-mediated Ca2+ release may trigger lysosomal 

exocytosis (Dong et al., 2009). Particle binding in macrophages is a physiological stimulus to 
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evoke lysosomal exocytosis. Upon particle binding, lysosomal exocytosis is necessary to provide 

the membrane supplies to engulf particles and facilitate phagosome formation. By 

whole-phagosome recordings and whole-cell recordings, I found that upon particle binding, 

TRPML1-associated lysosomes are delivered to the newly-formed phagosomes via lysosomal 

exocytosis in a Ca2+-dependent manner, suggesting a role of TRPML1 in lysosomal exocytosis 

and phagosome formation (Fig 6.2.). This result, together with recent studies indicating that the 

induction of lysosomal exocytosis promotes cellular waste clearance (Medina et al., 2011; 

Settembre et al., 2013), suggests that TRPML1 may serve as an important therapeutic target for 

disorders associated with intracellular storage, for example, Lysosomal Storage diseases.   

 

6.2 The missing piece in the puzzle-what’s the NAADP receptor? 
Ever since the discovery of NAADP signaling, intense efforts have been made to search for the 

NAADP receptor(s). Recently a large body of literature have claimed that TPCs are NAADP 

receptors, which appeared to be a breakthrough. However, the conclusion was largely based on 

indirect measurements, and the reported properties of TPC channels are inconsistent among the 

studies. In sharp contrast, our direct measurements have demonstrated that TPCs are 

NAADP-insensitive PI(3,5)P2-activated Na+-selective channels. How should we perceive the 

dramatically different conclusions? 

Let’s take a look at their results first. Although different in details, three major lines of 

evidence for TPCs as NAADP receptors can be summarized from the initial reports in 2009 

(Brailoiu et al., 2009; Calcraft et al., 2009; Zong et al., 2009). First, membrane prepared from 

TPC-overexpressing cells exhibited higher affinity binding to [32P]NAADP compared to those 

from wild-type HEK293 cells. However, this result was challenged by more recent photoaffinity 

labeling studies (Lin-Moshier et al., 2012; Walseth et al., 2012), which suggested that TPCs are 

unlikely to be the bona fide NAADP binding sites. Although the photolabeled NAADP 

recapitulated the essential properties of NAADP as a Ca2+-mobilizing messenger, surprisingly, 

there was no direct labeling of either endogenous or overexpressed TPC channels in the sea 

urchin egg (Walseth et al., 2011), mammalian cell lines (HEK293 and SKBR3) or mouse 

pancreas (Lin-Moshier et al., 2011). Moreover, labeling of high affinity NAADP-binding sites 

was preserved in pancreatic samples from TPC1 and TPC2 knockout mice. Instead, a 22- and 

23-KD pair of proteins was identified as NAADP-binding proteins in mammalian cells.  

The second evidence came from Ca2+ imaging results showing that the NAADP-induced 
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intracellular Ca2+ response was increased in TPC-overexpressing cells, while disrupting 

TPC-expressions attenuated the effect. This evidence can be challenged from three aspects. First, 

the enhance NAADP response caused by TPC overexpression may be explained by indirect 

mechanisms, for example those that are secondary to endolysosomal enlargement associated with 

TPC overexpression (Fig. 6.1). Second, since NAADP is membrane-impermeable, this chemical 

is usually delivered into intact cells by microinjection/intracellular dialysis (Brailoiu et al., 2009; 

Calcraft et al., 2009; Zong et al., 2009). The operation itself may cause some artifacts, for 

example, it may induce mechanically-sensitive Ca2+ response. Some other groups, including ours, 

employed NAADP-AM, a membrane-permeable form of NAADP (Aley et al., 2010; Ruas et al., 

2010), although this chemical is not very stable and tends to get hydrolyzed (Parkesh et al., 

2008). Third, in our hands, although we observed NAADP-evoked Ca2+ response in pancreatic 

β-cell lines (INS1 and MIN6), surprisingly, TPC currents were absent in the endolysosomes from 

these cells.  

The third and apparently most convincing evidence was from TPC2 knockout studies. 

Whole-cell patch clamp recordings showed that a NAADP-induced plasma membrane cation 

conductance was lost in TPC2 knockout pancreatic β cells (Calcraft et al., 2009). However, this 

plasma membrane conductance is uncharacterized and the molecular mechanism is unidentified. 

Also, there was no evidence that this conductance is specifically dependent on NAADP-induced 

intracellular Ca2+ release. In contrast, we observed largely comparable NAADP Ca2+ response in 

TPC1/TPC2 KO pancreatic islets, compared with that in WT islets, suggesting that NAADP Ca2+ 

response may not be dependent on TPCs. 

The NAADP-activated TPC currents were subsequently reported by three groups 

(Brailoiu et al., 2010; Pitt et al., 2010; Schieder et al., 2010), by employing different ways to 

examine the intracellularly-localized TPC channels using electrophysiology. The first group 

(Schieder et al., 2010) used a planar patch-clamp technique to record from isolated lysosomes 

enlarged by vacuolin-1, a method similar to ours. Lysosomes from TPC2-overexpressing cells 

displayed NAADP-evoked currents with a Ca2+ selectivity over K+ by >1000 folds, and the 

currents were only observed with intraluminal low pH, but not neutral pH. However, K+ and 

Ca2+ were the only cations included in the recording solution, and the current size might be too 

small for the TPC-overexpressing system (at least 50 folds smaller compared with our results). 

Based on the small current size, it would be difficult to distinguish the NAADP-induced 

response and possible endogenous background currents. Another group (Pitt et al., 2010) 



 105	
  

incorporated immunopurified TPC2 into artificial planar lipid bilayer membranes, an approach 

traditionally used to study IP3 and RyRs. Results from single channel recordings indicated that 

the NAADP-evoked TPC2 current is K+-permeable, and the luminal pH has little effects on the 

current size. While the artificial lipid bilayer technique may provide advantages to show that 

TPC2 itself is the pore-forming channel without contaminating from other membrane proteins, 

although it requires a series of control experiments to verify the purity of the incorporated 

proteins. Further, more control experiments are required to establish that TPC2 protein is 

responsible to the single channel conductance, such as pore mutations causing the changes of 

conductance or selectivity. The third group (Brailoiu et al., 2010) found that deletion of a 

di-leucine motif in the N terminus of TPC2 resulted in its mistargeting to the plasma membrane, 

where the traditional whole-cell patch clamp technique could be applied. Results from this study 

concluded that TPC2 is a Cs+-permeable channel, although the experiments raised a few 

concerns, including the possible changes of channel properties in the non-native location, and 

using an inappropriately-controlled pipette solution, i.e., with no Ca2+ buffer, which may induce 

endogenous Ca2+-sensitive currents. In summary, all three channel studies suggested TPC2 is 

activated by NAADP, although the TPC2 currents were shown to be K+-permeable (Pitt et al., 

2010), Cs+- permeable (Brailoiu et al., 2010), or Ca2+-selective (Schieder et al., 2010). 

Using our established lysosome-recording method, we directly measured that TPCs are 

PI(3,5)P2 activated Na+-selective channels. However, we found that NAADP failed to induce or 

modify TPC currents in either endogenous or overexpression systems, although NAADP 

activated the plasma membrane TRPM2 at µM level, suggesting that TPC2 is not activated by 

NAADP. One concern about our approach is that the NAADP- sensitive conductance might be 

lost due to vacuolin-1 treatment. However, we have also tested a plasma membrane expressed 

TPC2 mutant, which underwent no vacuolin-1 treatment. The plasma membrane TPC2 mutant 

has the same electrophysiological properties as WT TPC2 (lysosomal TPC2), and consistently, 

this mutant was only activated by PI(3,5)P2, but not NAADP. Thus our results showed that TPCs 

are PI(3,5)P2-activated Na+-selective channels, and they are unlikely to be NAADP receptors, 

although they may be involved in NAADP signaling indirectly. 

Thus the molecular identity of NAADP receptor(s) remains elusive. Besides TPCs, 

TRPML1, TRPM2 and RyRs have been proposed to be involved in NAADP signaling, however, 

none of them has been conclusively proved to be NAADP receptors. Recently, Lin-Moshier et al. 

discovered an NAADP-bound 22-23-kDa lysosomal proteins (Lin-Moshier et al., 2011) which 
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may be involved in NAADP signaling or serve as the NAADP receptor, but the molecular 

identity of the protein remains enigmatic. Putative NAADP receptors may be lysosomal 

Ca2+-permeable channels activated by NAADP, and can be blocked by Ned-19 (Naylor et al., 

2009a; Rosen et al., 2009; Thai et al., 2009). Further, the dose-dependence curve for NAADP 

response was proposed to be “bell-shaped” (Galione, 2011), with maximal responses at ~ 100 

nM of NAADP, whereas no response at > 1 µM. It’s also possible that NAADP might target 

other non-Ca2+ conductances (e.g. anion conductance), and indirectly induces lysosomal Ca2+ 

release.  

      Since we have not been able to detect any NAADP-activated whole-endolysosome 

current, it is also possible that NAADP, like Bafilomycin-A1 and Glycyl-L-phenylalanine 

2-naphthylamide (GPN) (Morgan et al., 2011), might act via non- channel-mediated Ca2+ release 

mechanisms. Or NAADP might inhibit putative Ca2+ pump responsible for lysosomal Ca2+ 

refilling and cause Ca2+ leak. In addition, NAADP might also induce Ca2+ release from 

non-lysosomal Ca2+ stores, but in a lysosome-dependent manner. Molecular identification of the 

NAADP-bound 22-23-kDa lysosomal proteins (Lin-Moshier et al., 2011) may prove helpful 

distinguishing these possibilities.  

 

6.3 TPC proteins mediated Na+-efflux from lysosomes  
We have demonstrated that TPC proteins form PI(3,5)P2-activated Na+-selective ion channels in 

the lysosome, However, the in vivo function of PI(3,5)P2 – TPCs pathway is still largely 

unknown. Here I will discuss its potential roles in regulating lysosomal Na+ dynamics and 

lysosomal membrane depolarization.  

      Lysosomes are abundant with Na+ ions. Using cellular fractionation combined with 

atomic absorption spectroscopy, we measured that the major cation in the lysosomal lumen is 

Na+, with the K+/Na+ ratio around 0.01. Assuming that lysosome lumen is water-based, 

iso-osmotic relative to the cytosol, and all the cations are osmotically active (free ions), we 

estimated the luminal Na+ concentration to be ~150 mM. If we assume the average lysosome size 

is 0.5 µm - the lysosome size varies from 0.1 µm to 1.2 µm (Luzio et al., 2007b) - then each 

lysosome may contain ~ 10-17 mol of Na+, i.e. 6×106 of Na+ ions per lysosome.  

      Is PI(3,5)P2 level high enough in vivo to activate TPCs? Very likely, especially under the 

stimulated condition. PI(3,5)P2 makes up ~0.04% of total cellular PIs in non-stimulated 

condition (Dove et al., 2009; Zolov et al., 2012), and is ~0.2-1% of PI(4,5)P2, whose 
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concentration is estimated to be 4~10 µM on the plasma membrane. (Lemmon, 2008; Zolov et al., 

2012). In a 10 µm-diameter cell with 200 late endosomes/lysosomes (0.5 µm- diameter), the total 

surface area of late endosomes/ lysosomes where PI(3,5)P2 localized, is roughly half of the 

surface area of plasma membrane where PI(4,5)P2 localized. Thus in such modal cell, PI(3,5)P2 

concentration in the LELs under resting condition could range from 4 nM (4 µM × 1/2 × 0.2% ) 

to 50 nM (10 µM × 1/2 × 1%). This estimation assumed the even distribution of PI(3,5)P2 in 

endolysosomes. However, PI(3,5)P2 is enriched in microdomains where PIKfyve complex is 

localized (Dove et al., 2009). Further, PI(3,5)P2 level can rapidly increase by 2-20 folds upon 

stimulation in mammalian cells or yeast cells (Lemmon, 2008; Suh and Hille, 2008). Thus upon 

stimulation, PI(3,5)P2 concentration enriched in microdomains may reach ~µM range, a 

concentration high enough to induce appreciable TPCs-mediated Na+ efflux from lysosomes. 

      PI(3,5)P2-dependent Na+ efflux through TPCs may cause a rapid lysosomal membrane 

depolarization, at a time course of milliseconds range. Based on the lysosomal recordings results, 

1 µM PI(3,5)P2 activated ~100 pA of endogenous ITPC at -50 mV (see Fig. 2.5) in macrophages 

(the transmembrane potential is estimated to be +30 ~ +110 mV relative to the cytosol, and here 

50 mV was simply picked as an example). Thus the channel conductance is g = 2 × 10-9 S. The 

average capacitance of enlarged endolysosomes we recorded is ~ 1 pF. Based on the membrane 

specific capacitance CM = 1 µF/cm2, we can calculate the specific conductance of a 1-cm2 area of 

membrane gM, and further get the membrane time constant τM = CM/gM = 0.5 ms. Thus, upon the 

opening of TPCs, and along an exponential time course with a time constant of 0.5 ms (τM): 

E = [1 – exp (-t / 0.5 ms)] · (-50 mV) 

A membrane potential change from -50 mV to 0 mV takes only a few milliseconds (t). During 

this process, an excess charge of Q = ECM = 50 × CM = 5 ×10-8 C/cm2 has been separated across 

the membrane. Assuming this charge is all carried by Na+ ions, this amount is equivalent to an 

efflux of Q/F = 5 ×10-13 mole of Na+ ions per cm2 of membrane. As calculated above, each 

lysosome contains roughly 10-17 mole of Na+, which, if divided by the lysosomal surface area (4π 

(0.5 µm)2), give us an estimate of 5 ×10-9 mole of Na+ per cm2 of lysosomal membrane. 

Therefore, in a few milliseconds, TPCs –mediated membrane depolarization (50 mV) might 

move 5 ×10-13 mole/ 5 ×10-9 mole = 0.01% of the Na+ ions out of the lysosomal lumen.  

 

Downstream effects of TPCs-mediated Na+ efflux 

The above discussions demonstrate that the activation of the Na+-selective channels (TPCs) may 
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also activate other unidentified voltage-sensitive proteins in the lysosome, such as 

voltage-dependent ion channels or voltage-dependent phosphatases (Schroder et al., 2010), and 

thus regulate endolysosomal functions. 

Further, since TPCs barely have voltage-dependent inactivation (especially at -50 mV for 

TPC2, see Fig 2.6), and are not desensitized with constant presence of PI(3,5)P2, in the absence 

an rapid “shut down” mechanism, the opening of TPCs may cause massive Na+ efflux, and 

thereby dramatically changing of the local ionic milieu. It is possible that a substantial amount of 

Na+ efflux into the cytosol from a pool of lysosomes in the close vicinity of the plasma 

membrane (including dendrites and axons) in excitable cells may induce or modulate the 

formation of action potentials. The identification of membrane-permeable activators of TPCs 

may prove helpful to test this possibility.  

      The change in Na+ composition may also have impacts on other luminal ions through 

different transporters, e.g. pH regulation (see the discussion below). It’s also conceivable that a 

large Na+ efflux may cause the local decrease the luminal osmolality and subsequent change in 

endolysosome morphology, and potentially influence their functions (Manneville et al., 2008).  

 

“Shut down” mechanism of TPC proteins 

Because of the rapid membrane depolarization and the lack of efficient inactivation mechanisms, 

TPCs need to be turned on or turned off in a rapid and tightly regulated manner. One possible 

regulatory mechanism is through the fast turnover of activation signals. The level of PI(3,5)P2 is 

tightly regulated both spatially and temporally by a protein complex enriched in microdomains, 

including the PI 5-kinase PIKfyve, the scaffolding protein Vac14, the phosphatase Fig4 and 

regulators Vac7 and Atg18 (Dove et al., 2009; Ho et al., 2012). It is likely that constitutive 

signals or acute stimuli may recruit or activate PIKfyve present in microdomains, result in a 

rapid and transient increase in PI(3,5)P2 level, and thereby induce TPCs-mediated Na+ efflux. It 

is worth mentioning that when we assay TPC channel activities using lysosomal recordings, a 

water soluble form of PI(3,5)P2 (diC8) is applied globally, while in vivo form of PI(3,5)P2 

(diC16-PI(3,5)P2) might be less potent compare to the diC8-PI(3,5)P2 (Dong et al., 2010a). 

Therefore higher concentration of PI(3,5)P2 may be needed to activate TPCs in physiological 

condition. Alternatively TPCs may be negatively regulated by either cytosolic factors or 

lysosomal luminal factors. For example, ATP is proposed to inhibit TPC activities related with 

metabolic status (Cang et al., 2013). It remains to be tested whether other signal lipids/proteins 
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can inhibit TPCs.  

 

PI(3,5)P2: an activator or a permissive factor 

The precise concentration of local PI(3,5)P2 in endolysosomes under basal or stimulated 

conditions is not known. Therefore the PI(3,5)P2 regulation mechanism for TPCs remains 

unclear. A rapid increase of PI(3,5)P2 up to µM range may transiently induce large TPC 

conductance, or a high nM basal level of PI(3,5)P2 may cause constitutive small Na+ leak 

through TPCs (Cang et al., 2013). Moreover, it is also possible that PI(3,5)P2 may play a 

permissive role to sensitize, yet not fully activate TPCs, and other activation mechanisms may be 

exist. As an example, the plasma membrane isoform PI(4,5)P2 has been shown to be a permissive 

factor for the activation of voltage-gated Ca2+ channels in response to depolarization (Suh and 

Hille, 2008; Wu et al., 2002).  

 

6.4 The potential functions of TPCs  
Based on our studies, the large Na+ gradient across the endolysosomal membrane, together with 

the presence of Na+-selective channels have clearly suggested important roles of the Na+ efflux 

conductance, although our knowledge about the regulations and functions of TPCs are very 

primitive. Here are some speculations on the possible cellular functions of TPCs (see Fig. 6.1). 
 

TPCs may regulate membrane trafficking  

First, TPCs-mediated Na+ influx may be involved in defining compartmental specificity and 

determining the fusogenic potential of endolysosomes. A bold hypothesis is that, similar to the 

scenario on the plasma membrane, the efflux of Na+ may cause lysosomal membrane 

depolarization, and act as intracellular signals, since lysosomes are presumed to be luminal-side 

positive at rest (estimated to be +30 to +110 mV) (Dong et al., 2010b; Morgan et al., 2011). In 

addition, the local, transient Na+ efflux in response to the PI(3,5)P2 increase may rapidly reduce 

and reverse the endolysosomal potential, and promote its fusion with the oppositely charged lipid 

bilayer of another vesicle in contact (Anzai et al., 1993; Epand and Hui, 1986). Indeed, 

consistent with a previous report (Ruas et al., 2010), we found that TPC overexpression results in 

enlarged endolysosomes, which might be caused by enhanced endolysosomal fusion, decreased 

fission, or both. Second, TPCs may contribute to the formations of special membrane structures. 

It has long been known that Na+ and K+ exhibit differential effects on membrane curvature in 
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vitro (Kraayenhof et al., 1996). If this is also true in vivo, it’s conceivable that the enrichment of 

Na+ channels in microdomains and the resultant Na+ flux may help the formation or maintenance 

of tubular structures for sorting or intraluminal vesicles for degradation. Third, as we discussed 

in section 6.3, PI(3,5)P2 may play a permissive role to prepare TPCs for opening. In that case, 

TPCs may integrate multiple trafficking cues, together with PI(3,5)P2 to regulate membrane 

trafficking. For example, TPCs might be activated by mechanical force generated by the 

membrane curvature. Finally, unlike TRPML1 (Shen et al., 2011), TPCs are not expressed in 

every cell type, suggesting that their role in membrane trafficking is more specific. Furthermore, 

because membrane fusion could occur even in in vitro reconstitution systems, neither TPCs nor 

TRPMLs might be required as direct participants in the basic membrane fusion machinery (Shen 

et al., 2011). However, they may regulate the direction and specificity of lysosomal trafficking in 

vivo. Indeed, lysosomal trafficking is significantly delayed, although not blocked in cells lacking 

TRPML1 (Shen et al., 2011). Future research may reveal the relative importance of Na+ versus 

Ca2+, and TRPMLs versus TPCs in spatial and temporal regulation of lysosomal trafficking.   

 

TPCs may participate in luminal pH regulations in endolysosomes 

A putative efflux of monovalent cation (K+ or Na+), together with our demonstration of a large 

Na+ gradient across the endolysosomal membrane, suggests that Na+-permeable TPCs, but not 

K+ release conductance, may contribute to endolysosomal pH regulation at rest condition or in a 

transient and localized manner. In addition, rapid changes in Na+ content will drive Na+/H+ 

exchangers (NHEs, expressed in endosomes but not in lysosomes) in the organelle membrane, 

thus changing organellar pH. To understand the exact sequence of events, it is crucial to identify 

the putative transporters in endolysosomal membranes and devise more accurate methods to 

measure endolysosomal potentials in intact cells.  

 

TPCs are ATP-sensitive channels regulated by mTOR 

A follow up study from Cang et al. (Cang et al., 2013) agreed with our demonstration that TPC 

proteins form NAADP-insensitive PI(3,5)P2 activated Na+-selective channels. Moreover they 

proposed that TPCs may associate with mTOR complex to sense cellular nutrient level. They 

hypothesized that TPCs have a basal channel activity, and are inhibited by sub-mM level of ATP. 

The inhibitory effect requires the mTOR complex. Their working model is that at nutrient replete 

status, TPCs are inhibited, while during cell starvation, ATP level falls, mTOR dissociates from 
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the lysosomal membrane, and TPCs are released from inhibition. Interestingly, TPCs-knockout 

mice are found to have severely reduced endurance after fasting. However, the involvement of 

TPCs in mTOR signaling at cellular and animal level remains to be uncovered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. TPC-mediated Na+ flux may be involved in membrane trafficking and pH 

regulation in endolysosomes 

TPC proteins are Na+-selective channels in lysosomes, specifically activated by PI(3,5)P2. 

TPC-mediated Na+ flux in response to a localized increase in PI(3,5)P2 may rapidly depolarize 

endolysosomal membranes and promote fusion, since lysosomes are presumed to be luminal-side 

positive at rest (estimated to be +30 to +110 mV). In addition, the TPC mediated Na+ efflux may 

serve as cation counterflux to support the maintenance of lysosomal acidification, and may also 

actively participate in pH regulation in a transient and localized manner.  
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Figure. 6.2. TRPML1 and TPCs in the endolysosome 

My thesis work has identified that Two-Pore Channels (TPCs) are Na+-selective channels, 

activated by PI(3,5)P2, but not by NAADP, although the function of TPCs remains uncovered. 

Since TPCs are unlikely to be the NAADP receptors, the proteins mediating NAADP-evoked 

Ca2+ signaling remain enigmatic. In addition, my work has contributed to the discovery that 

PI(3,5)P2 controls membrane trafficking by directly activating the lysosomal Ca2+-release 

channel TRPML1. Also, I found that TRPML1 is involved in Ca2+-dependent lysosomal 

exocytosis, a fundamental process important for cellular clearance, phagocytosis and plasma 

membrane repair.  
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