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CHAPTER I

Introduction

The fundamental objects of study in algebraic geometry are algebraic varieties,

that is, sets of points defined by systems of polynomial equations. A large class of

algebraic varieties are smooth varieties, such as projective complex manifolds. In

order to study even the smooth varieties, we have to extend the category of smooth

projective varieties to the one consisting of varieties with some specified singularities.

The study of singularities got a prominent role starting with the so-called Minimal

Model Program (MMP), a program initiated in the beginning of the 1980s, and which

aims at a classification of algebraic varieties of higher dimension. It has been noticed

already in the early stages of this program that in order to study smooth algebraic

varieties, one has also to allow varieties with mild singularities. One distinguishes in

this process several classes of singularities, such as terminal, rational, canonical, log

terminal and log canonical, which are defined as follows.

If f : Y → X is a birational morphism of normal varieties, then there is a

divisor supported on the exceptional locus of f , denoted by KY/X , called the relative

canonical divisor. If X and Y are smooth varieties, then KY/X is an effective divisor,

locally defined by the Jacobian determinant of f . For every exceptional divisor E

on Y , ordE(KY/X) is the coefficient of E in KY/X .
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We say X has terminal, canonical, log terminal, log canonical singularities if the

coefficient of E in KY/X is greater than (or equal to) some specified constants for

all exceptional divisors E of all birational morphisms f : Y → X. For details,

see Definition II.1. The category of Q-factorial projective varieties with terminal

singularities is the smallest category that contains the category of smooth projective

varieties and in which MMP works. Canonical singularities appear on canonical

models of varieties of general type. More generally, such singularities can be defined

for pairs (see chapter II). Given a pair (X, Y ), where Y is a subscheme of X, there

is a numerical invariant, called log canonical threshold and denoted lct(X, Y ), which

measures how far (X, Y ) is from being log canonical.

In this dissertation, we study such singularities, and in particular, invariants such

as the log canonical threshold, via jet schemes and spaces of arcs. The jet schemes

Xm are higher order analogue of tangent spaces. (The familiar case is m = 1, when

X1 parametrizes tangent vectors to X). The arcs space parameterizes germs of formal

arcs on X.

We now describe the setting for jet schemes and arc spaces. Let k be a field of

arbitrary characteristic. If X is a scheme of finite type over k and m is a non-negative

integer, then the jet scheme Xm of X parameterizes m-jets on X, that is, morphisms

Spec k[t]/(tm+1) → X. Note that X0 = X and X1 is the total tangent space of X.

For every m ≥ i, we have a canonical projection ρmi : Xm → Xi induced by truncation

of jets. We denote by πm the projection ρm0 : Xm → X. For every point x ∈ X, we

write Xm,x for the fiber of πm at x, the m–jets of X centered at x. If f : X → Y

is a morphism of schemes, then we get a corresponding morphism fm : Xm → Ym,

taking γ : Spec k[t]/(tm+1)→ X to f ◦ γ.

The space of arcs X∞ is the projective limit of the Xm, equipped with projection
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morphisms

ψm : X∞ → Xm.

It parameterizes all formal arcs on X, that is, morphisms Spec k[[t]] → X. If f :

X → Y is a morphism of schemes, by taking the projective limit of the morphisms

fm, we get a morphism f∞ : X∞ → Y∞. X∞ is in general an infinite-dimensional

space, but one is typically interested in subsets that are given as inverse images

of constructible subsets by the canonical projections X∞ → Xm; these are called

cylinders. Interesting examples of such subsets arise as follows. Consider a non-zero

ideal sheaf a ⊂ OX defining a subscheme Y ⊂ X. If γ : Spec k[[t]] → X is an arc

on X, then the inverse image of Y by γ is defined by an ideal in k[[t]]. If the ideal

is generated by te, then we put ordγ(Y ) = ordγ(a) = e. If the ideal is zero, then we

put ordγ Y = ordγ a = ∞. For every p ≥ 0, the contact locus of order p of a is the

cylinder

Contp(Y ) = Contp(a) := {γ ∈ X∞ | ordγ(a) = p} .

An irreducible cylinder C ⊂ X∞ that does not dominate X determines a nontrivial

valuation ordC on the function field k(X), given by the order of vanishing along a

general element in C. We will refer below to these valuations as cylinder valuations.

Jet schemes and arc spaces have recently attracted a lot of attention in connec-

tion with both motivic integration, due to Kontsevich [Kon] and Denef and Loeser

[DL], and applications to singularities. Work of Denef, Loeser, Ein, Ishii, Lazars-

feld, Mustaţǎ, and others allows the translation of geometric properties of the jet

schemes Xm (such as dimension or number of irreducible components) into proper-

ties of the singularities of X. Roughly speaking, X has “worse” singularities when

the corresponding jet schemes Xm have larger dimensions or have more irreducible

components. Furthermore, using the central result of this theory, the Change of Vari-
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able formula, one can show that there is a close link between certain invariants of

singularities defined in terms of divisorial valuations and the geometry of the contact

loci in arc spaces. This link was first explored by Mustaţǎ in [Mus1] and [Mus2], and

then further studied in [EMY], [Ish], [ELM] and [FEI].

In this dissertation, we prove results in two directions. The first one is concerned

with the study of singularities of Brill-Noether loci W r
d (C) (in particular, the theta

divisor Θ) in terms of their jet schemes. The other concerns the generalization of

the correspondence between divisorial valuations and closed irreducible cylinders in

the arc space in [ELM] to arbitrary characteristics.

We now describe the setting for our study of Brill-Noether loci. Let k be an

algebraically closed field of characteristic zero and C a smooth projective curve of

genus g over k. Recall that Picd(C) parameterizes line bundles of degree d on C and

W r
d (C) is the subscheme of Picd(C) parameterizing line bundles L of with h0(L) ≥

r + 1. The theta divisor Θ is W 0
g−1(C). Riemann’s Singularity Theorem says that

for every line bundle L of degree g − 1 in the theta divisor Θ, the multiplicity of Θ

at L is h0(C,L).

Kempf [Kem] described the tangent cone of W 0
d (C) at every point. In particular,

he generalized Riemann’s multiplicity result to the W 0
d (C) locus. In his paper, he

described the singularities of W 0
d (C) and its tangent cone as follows. Let L be a point

of W 0
d (C), with d < g and l = dimH0(L). The tangent cone TL(W 0

d (C)) has rational

singularities and therefore W 0
d (C) has rational singularities. One can identify the

tangent space of Picd(C) at L with the vector space H0(C,K)∗. Kempf showed that

the multiplicity of W 0
d (C) at L, which is equal to the degree of PTL(W 0

d (C)) as a

subscheme of PH0(C,K)∗, is the binomial coefficient(
h1(L)

l − 1

)
=

(
g − d+ l − 1

l − 1

)
.
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Following the work of Riemann and Kempf, there has been much interest in the

singularities of general theta divisors. For instance, using vanishing theorems, Ein

and Lazarsfeld [EL] showed that if Θ is an irreducible theta divisor on an abelian

variety A, then Θ is normal and has rational singularities.

Our first main result in this direction is on the study of the singularities of the

theta divisor from the point of view of its jet schemes. Using a similar idea to that

used by Kempf, we reprove Riemann’s Singularity Theorem using jet schemes. We

also compute the dimension of the space of m–jets centered at the singular locus

of Θ for each m. Recall that for every m ≥ 1, we have a truncation morphism

πΘ
m : Θm → Θ. We denote by Θsing the singular locus of the theta divisor.

Theorem I.1. For every smooth projective curve C of genus g ≥ 3 over k, and every

integer m ≥ 1, we have dim(πΘ
m)−1(Θsing) = (g− 1)(m+ 1)− 1 if C is a hyperelliptic

curve. For nonhyperelliptic curves, we have dim(πΘ
m)−1(Θsing) = (g − 1)(m+ 1)− 2.

Applying [EMY, Theorem 3.3] and [Mus1, Theorem 3.3] to the theta divisor, we

obtain the following result concerning the singularities of the theta divisor.

Corollary I.2. Let C be a smooth projective curve of genus g ≥ 3 over k. The

theta divisor has terminal singularities if C is a nonhyperelliptic curve. If C is

hyperelliptic, then the theta divisor has canonical non-terminal singularities.

A result of Elkik in [Elk] implies that for a divisor D in a smooth variety, D has

rational singularities if and only if D has canonical singularities. One thus recovers

the classical result that the theta divisor has rational singularities.

Using similar ideas, we are able to estimate the dimensions of the jet schemes of the

Brill-Noether locus W r
d (C) for generic curves. Using Mustaţǎ’s formula from [Mus2]

describing the log canonical threshold in terms of dimensions of jet schemes, we obtain
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the following formula for the log canonical threshold of the pair (Picd(C),W r
d (C)).

Theorem I.3. For a general projective smooth curve C of genus g, let L be a line

bundle of degree d with d ≤ g − 1 and l = h0(L). The log canonical threshold of

(Picd(C),W r
d (C)) at L ∈ W r

d (C) is

lctL(Picd(C),W r
d (C)) = min

1≤i≤l−r

{
(l + 1− i)(g − d+ l − i)

l + 1− r − i

}
.

Recall that one can locally define a map from Picd(C) to a matrix space such

that W r
d (C) is the pull back of a suitable generic determinantal variety. It follows

from the above theorem that for generic curves, the local log canonical threshold of

(Picd(C),W r
d (C)) at L is equal to the local log canonical threshold of that generic de-

terminantal variety at the image of L (for the formula for the log canonical threshold

of a generic determinantal variety, see Theorem 3.5.7. in [Doc]).

As we alluded in the previous paragraphs, there is a formula relating the log

canonical threshold of a pair to the asymptotic behavior of the dimension of the jet

schemes, see [Mus2] and [ELM]. The key ingredients in the proofs are the Change

of Variable formula developed in the theory of motivic integration and the existence

of log resolutions. While a version of the Change of Variable formula also holds

in positive characteristic, the use of log resolutions in the proofs in [Mus2] and

[ELM] restricted the result to ground fields of characteristic zero. More generally,

the approach in [ELM] gave a general correspondence between cylinders in the space

of arcs of X and divisorial valuations of the function field of X, which takes a cylinder

to the corresponding cylinder valuation. Via this correspondence, the codimension of

the cylinder is related to the log discrepancy of the corresponding divisorial valuation,

the key invariant that appears, for example, in the definition of the log canonical

threshold.
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In chapter V, we show by induction on the codimension of cylinders and only

using the change of variable formula for blow-ups along smooth centers, that the

above mentioned correspondence between divisorial valuations and cylinders holds

in arbitrary characteristic. Furthermore, via this correspondence the log discrepancy

of the valuation corresponds to the codimension of the cylinder.

Recall that a prime divisor E on a normal variety X ′, having a birational morphis-

m to X, is called a divisor over X. We identify such divisors if they give the same

valuation. It is easy to see that ordE(KX′/X) does not depend on a particular choice

of X ′, hence we write it as ordE(K−/X) instead. Given a cylinder C = (ψm)−1(S) for

some m and some constructible subset S ⊆ Xm, we define codimC := codim(S,Xm),

which is independent of the choice of S and m.

Theorem I.4. Let X be a smooth variety of dimension n over a perfect field k.

There is a correspondence between irreducible closed cylinders C ⊂ X∞ that do not

dominate X and divisorial valuations, as follows:

(1) If C is an irreducible closed cylinder which does not dominate X, then there is

a divisor E over X and a positive integer q such that

ordC = q · ordE .

Furthermore, we have codimC ≥ q · (1 + ordE(K−/X)).

(2) To every divisor E over X and every positive integer q, we can associate an

irreducible closed cylinder C that does not dominate X such that

ordC = q · ordE and codimC = q · (1 + ordE(K−/X)).

We thus are able to prove the log canonical threshold formula avoiding the use of



8

log resolutions. We recall that log canonical threshold is defined by

lct(X, Y ) = inf
E/X

ordE(K−/X) + 1

ordE(Y )

where E varies over all divisors over X. If the field k is of characteristic zero, then

lct(X, Y ) can be determined by the divisors on a single birational morphism to X,

namely on a so-called log resolution of the pair (X, Y ). If the field is of characteristic

p, in the absence of a result giving existence of log resolutions, we have to deal with

divisors on all birational morphisms.

Theorem I.4 easily implies the following formula for the log canonical threshold

of (X, Y ).

Theorem I.5. Let X be a smooth variety of dimension n defined over a perfect field

k, and Y be a closed subscheme. Then

lct(X, Y ) = inf
C⊂X∞

codimC

ordC(Y )
= inf

m≥0

codim(Ym, Xm)

m+ 1

where C varies over the irreducible closed cylinders which do not dominate X.

We now turn to a more detailed overview of the content of the different chapters

and of the proofs of the main results. In Chapter II, we recall the formalism of

log singularities and divisorial valuations. We proceed to review various classes of

singularities in birational geometry, such as log terminal, log canonical, and canonical

singularities.

Jet schemes and arc spaces are defined in Chapter III. We refer the reader to

[EM] for a more detailed introduction to these spaces. Since Theorem I.5 is proved

for pairs with smooth ambient varieties, we recall some basic results on cylinders in

arc spaces of smooth varieties over a perfect field. The remainder of Chapter III is

devoted to reviewing some results on jet schemes and singularities that we will use

in the last two chapters.



9

Chapter IV is entirely devoted to singularities of Brill-Noether loci. Let us preview

the techniques and terminology used there. In this chapter, k is an algebraically

closed field of characteristic 0. Let C be a smooth projective curve over k. Our goal

is to estimate the dimension of the jet schemes of W r
d (C). Here we take Θm as an

example and briefly describe the proof of Riemann’s Singularity Theorem that we

give using jet schemes (see proof of Theorem IV.5). Let L be a point in Θ. Recall

that Θm,L is the fiber of πm : Θm → Θ at L. By the definition of Picg−1(C), an

element Lm ∈ Picg−1(C)m is identified with a line bundle on C × Spec k[t]/t(m+1).

Using the description of the theta divisor as a determinantal variety, we partition

the scheme Θm,L into constructible subsets Cλ,m, indexed by partitions λ of length

h0(C,L) with sum ≥ m+ 1. Several invariants of Lm ∈ Θm,L are determined by the

corresponding partition λ. For instance, λ determines the dimension of the kernel

of the truncation map H0(C × Spec k[t]/t(m+1),Lm) → H0(C,L). In this way, λ

determines for each j ≤ m the dimension of the subspace of sections in H0(L) that

can be extended to sections of Lj, where Lj is the image of Lm under the truncation

map Picd(C)m → Picd(C)j. Since the inequality multL Θ ≥ l := h0(L) follows from

the determinantal description of Θ, we focus on the opposite inequality. In order to

show that multL Θ ≤ l, it is enough to prove that Θl,L 6= Picg−1(C)l,L. If this is not

the case, then the image of Θl,L in Θ1,L = Picg−1(C)1,L is Θ1,L. Using the partition

associated to any Ll ∈ Θl,L, we show that the restriction map H0(L1) → H0(L) is

nonzero. On the other hand, we can identify L1 in Picg−1(C)1,L to a C̆ech cohomolgy

class in H1(C,OC). Furthermore, the obstruction to lifting a section s ∈ H0(C,L)

to a section of L1 can be described using the pairing

H0(C,L)⊗H1(C,OC)
ν−→ H1(C,L),

that is, s lifts if and only if ν(s ⊗ L1) = 0. Since the set of elements in H1(C,OC)
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for which there is a nonzero such s is of codimension one, this gives a contradiction,

proving that multL Θ ≤ l.

The remainder of Chapter IV is largely devoted to the proof of Theorems I.1

and I.3. Let L be a point in W r
d (C). Using the local description of W r

d (C) as a

determinantal variety, we partition the scheme W r
d (C)m,L into constructible subsets

Cλ,m indexed by partitions λ. We give a criterion on the partition λ associated to

Lm ∈ Picd(C)m to have Lm ∈ W r
d (C)m. We also prove a formula for h0(Lm) in terms

of the partition λ associated to Lm. Recall that Gieseker and Petri proved that if C

is general in the moduli space of curves, then the natural pairing

µL : H0(C,L)⊗H0(C,KC ⊗ L−1)→ H0(C,KC)

is injective for every line bundle L on C. For general curves in the sense of Gieseker

and Petri, we use the injectivity of the morphism µL to prove Theorems I.1 and I.3

by estimating the dimensions of Cλ,m for every L ∈ W r
d (C).

Chapter V concerns the aforementioned correspondence between divisorial valua-

tions and irreducible closed cylinders. In this chapter, k is a perfect field of arbitrary

characteristic. Our techniques build upon the work of Ein, Lazarsfeld and Mustaţǎ

in [ELM], which establishes such correspondence for smooth varieties over a field of

characteristic zero. Let us briefly explain the techniques we use. Given a divisorial

valuation ν, it is known that ν = q · ordE for a positive integer q and a prime divisor

E on Y , where Y
π−→ X is the composition of a sequence of blow ups along smooth

centers. ( Strictly speaking, we need to restrict to an open subset before each blow

up. We leave the details to the proof in Chapter V.) This was first observed by

Artin, and is also proved in [KM, Lemma 2.45]. Let C be the closure of the image of

Contq(E) via the map π∞ : Y∞ → X∞. It is easy to check that ordC = q · ordE = ν.

In order to prove the relation between the codimension of C and the discrepancy
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q · (1 + ordE(KY/X)), we need a version of the Change of Variable Theorem. This

theorem, due to Kontsevish [Kon] and Denef and Loeser [DL], plays an important

role in Motivic Integration. We only need a version for blow ups along smooth cen-

ters that we state below. Although the proof is well known, since it is so elementary,

we give a proof in Chapter V for completeness,.

Lemma I.6. Let X be a smooth variety of dimension n over k and Z a smooth

irreducible subvariety of codimension c ≥ 2. Let f : X ′ → X be the blow up of X

along Z and E the exceptional divisor.

(a) For every nonnegative integer e and every m ≥ 2e, the induced morphism

ψX
′

m (Conte(KX′/X))→ fm(ψX
′

m (Conte(KX′/X)))

is a piecewise trivial Ae–fibration.

(b) For every m ≥ 2e, the fiber of fm over a point γm ∈ fm(ψX
′

m (Conte(KX′/X))) is

contained in a fiber of X ′m → X ′m−e.

In particular, part (b) of Lemma I.6 implies that if C ′ is an irreducible cylinder

in X ′∞ dominating a cylinder C in X∞, then codimC − codimC ′ = ordC KX′/X .

Applying part (b) iteratively in the above settting, we are able to relate codimC to

ordC(KY/X). The other direction of the proof is similar. Given an irreducible closed

cylinder C which does not dominate X, we consider the center of ordC . If the center

is already a divisor E, then we can check that E is the desired divisor. Otherwise,

after possibly replacing X by an open subset, we blow up X along the center and

find a cylinder C ′ in X ′∞ which dominates C. It follows from the construction of C ′

that ordC′ = ordC and codim(C ′) < codim(C). We may and will replace X and C

by X ′ and C ′ and run the above argument again. The upshot is that after finitely
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many blow ups, since the codimension of a cylinder is a positive integer, the center

of ordC is a divisor E. Therefore ordC = q ordE for some positive integer q, hence

the cylinder valuation ordC is a divisorial valuation.

We conclude Chapter V by giving some applications of this correspondence. The

log canonical threshold formula in Theorem I.5 easily follows from Theorem I.4. We

apply this formula and obtain a comparison theorem via reduction modulo p, as well

as a version of Inversion of Adjunction in positive characteristic.



CHAPTER II

Divisorial Valuations and Singularities

2.1 Log Resolutions and Discrepancies

In this section, we work with pairs (X, cZ), whereX is a normal scheme over a field

k, Z is a proper closed subscheme of X and c is a nonnegative real number. Assume

that X is a smooth variety and Di are prime divisors on X. We say that E =
∑
Di

has simple normal crossings (abbreviated as snc) if E is reduced, each Di is smooth

and they intersect everywhere transversally, i.e. E is defined in a neighborhood of any

point by an equation of type x1·x2 · · ·xk = 0 for some k ≤ dimX, where x1, x2, . . . , xn

are local coordinates. A divisor D =
∑
i

diDi has simple normal crossing support (snc

support for short) if the underlying reduced divisor
∑
Di has simple normal crossings.

Suppose f : Y → X is a birational morphism between varieties. Let U be the

largest open subset of X such that f is an isomorphism over U . The closed subset

Y \ f−1(U) is the exceptional locus of f , denoted by Exc(f). We say that a Weil

divisor on Y is exceptional if its support is contained in Exc(f).

If (X, cZ) is a pair, a log resolution of (X, cZ) is a proper birational morphism

f : Y → X such that

(1) Y is smooth exceptional locus Exc(f) is a divisor.

(2) f−1(Z) is a divisor and f−1(Z) ∪ Exc(f) is a divisor with snc support.

13
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Log resolutions exist for pairs over a field of characteristic zero by the main

Theorems of [Hir]. One can construct map f such that it is isomorphism over

X \ (Xsing ∪ Z).

If X is a smooth variety, the canonical line bundle of top differentials is denoted by

ωX . If ωX ∼= OX(KX), KX is called a canonical divisor of X. Given a normal variety

X, we have a Weil divisor KX on X, uniquely defined up to linear equivalence, such

that its restriction to the smooth locus U = X \Xsing of X is equal to a canonical

divisor on U . X is called Q–Gorenstein if there is a positive integer m such that

mKX is Cartier. From now on, we always assume that X is Q–Gorenstein for any

pair (X, cZ). Moreover, we may and will fix an integer m such that mKX is a Cartier

divisor.

We now review some definitions in the theory of singularities of pairs (X, cZ).

We refer the reader to [KM, Section 2.3] for a more detailed introduction. Suppose

that X ′ is a normal variety over k and f : X ′ → X is a birational (not necessarily

proper) map. Let E be a prime divisor on X ′. Any such E is called a divisor over X.

The local ring OX′,E ⊂ k(X ′) is a DVR which corresponds to a divisorial valuation

ordE on k(X) = k(X ′). The closure of f(E) in X is called the center of E, denoted

by cX(E). If f ′ : X ′′ → X is another birational morphism and F ⊂ X ′′ is a prime

divisor such that ordE = ordF as valuations of k(X), then we consider E and F to

define the same divisor over X.

Let E be a prime divisor over X as above. If Z is a closed subscheme of X,

then we define ordE(Z) as follows. We may assume that E is a divisor on X ′ and

that the scheme-theoretic inverse image f−1(Z) is an effective Cartier divisor on X ′.

Then ordE(Z) is the coefficient of E in f−1(Z). Recall that the relative canonical

divisor KX′/X is the unique Q–divisor supported on the exceptional locus of f such
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that mKX′/X is linearly equivalent with mKX′ − f ∗(mKX). When X is smooth, we

can alternatively describe KX′/X as follows. Let U be a smooth open subset of X ′

such that U ∩ E 6= ∅. The restriction of f to U is a birational morphism of smooth

varieties that we denote by g. In this case, the relative canonical divisor KU/X is the

effective Cartier divisor defined by det(dg) on U .

We also define ordE(K−/X) as the coefficient of E in KU/X . Note that both

ordE(Z) and ordE(K−/X) do not depend on the particular choice of f , X ′ and U .

For every real number c > 0, the log discrepancy of the pair (X, cZ) with respect

to E is

a(E;X, cZ) := ordE(K−/X) + 1− c · ordE Z.

Similarly, the discrepancy of the pair (X, cZ) with respect to E is

b(E;X, cZ) := ordE(K−/X)− c · ordE Z.

It is clear that a(E;X, cZ) = b(E;X, cZ) + 1 for every E.

2.2 Singularities and Log Canonical Threshold

Definition II.1. Let X be a normal Q–Gorenstein n–dimensional variety and let Z

be a proper closed subscheme of X. If Y is a closed subset of X, then the discrepancy

of (X, cZ) along Y is defined by

discrep(Y ;X, cZ) := inf{b(E;X, cZ) | E is an exceptional divisor over X, cX(E)∩Y 6= ∅}.

The total discrepancy of (X, cZ) along Y is defined by

totaldiscrep(Y ;X, cZ) := inf{b(E;X, cZ) | E divisor over X, cX(E) ∩ Y 6= ∅}.

If Y = X, we write discrep(X, cZ) and totaldiscrep(X, cZ) for simplicity. If

Z = ∅, we simply write discrep(X) and totaldiscrep(X).
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Remark II.2. If X is smooth and E is a prime divisor on X such that it is not

contained in Z, then b(E;X, cZ) = 0. Hence totaldiscrep(X, cZ) ≤ 0. Similarly, if E

is the exceptional divisor obtained by blowing up a codimension 2 smooth subvariety

which is not contained in Z, then b(E;X, cZ) = 1. Therefore discrep(X, cZ) ≤ 1 if

dimX ≥ 2. One can show that if totaldiscrep(Y ;X, cZ) < −1, then

totaldiscrep(Y ;X, cZ) = discrep(Y ;X, cZ) = −∞,

see [KM, Corollary 2,31]. Hence discrep(X, cZ) = −∞ or −1 ≤ discrep(X,Z) ≤ 1

and totaldiscrep(X, cZ) = −∞ or −1 ≤ totaldiscrep(X, cZ) ≤ 0.

Definition II.3. Let X be a Q-Gorenstein normal scheme. We say that X has

terminal singularities (respectively canonical singularities) if discrep(Y ;X) > 0 (re-

spectively discrep(Y ;X) ≥ 0).

A pair (X, cZ) has Kawamata log terminal singularities along Y (or klt for short)

if

totaldiscrep(Y ;X, cZ) > −1.

We say that (X, cZ) has log canonical (or lc for short) singularities if

totaldiscrep(Y ;X, cZ) ≥ −1.

We say that X has log terminal (respectively log canonical) singularities if the

pair (X, ∅) is klt (respectively lc).

If a pair (X,Z) is not log canonical, then Remark II.2 implies that

totaldiscrep(X,Z) = −∞.

Hence in this case the discrepancy does not provide much information about the the

singularities of the pair. We recall the definition of another invariant that describes
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how far the pair (X,Z) is from being log canonical. The log canonical threshold

of (X,Z) at Y , denoted by lctY (X,Z), is defined as follows: if Z = X, we set

lctY (X,Z) = 0, otherwise

lctY (X,Z) = sup{c ∈ R≥0 | (X, cZ) is klt around Y }.

In particular, lctY (X,Z) = ∞ if and only if Z ∩ Y = ∅. If Y = X, we simply write

lct(X,Z) for lctY (X,Z).

By the definition of a(E;X,Z), we obtain that

lctY (X,Z) = sup
{
c ∈ R≥0 | c · ordE(Z) < ordE(K−/X) + 1 for every E

}
= inf

E/X

ordE(K−/X) + 1

ordE Z

where E varies over all divisors over X such that cX(E) ∩ Y 6= ∅.

Remark II.4. The definition of the above classes of singularities and of the log canon-

ical threshold involves all divisors over X. If the ground field k is of characteristic 0,

they are determined by those primes divisors on a single log resolution. For example,

see [Kol, Corollary 3.12 and Proposition 8.5] or [EM, Proposition 7.2]. In particular,

log canonical thresholds are positive rational numbers if X has klt singularities. Log

canonical thresholds can also be described as the first jumping number of multiplier

ideals. We refer to [Lar] for the study of the log canonical threshold in connection

with multiplier ideals.

For varieties over a field of positive characteristic, one has to use all proper bi-

rational morphisms to obtain the log canonical threshold. We will see in Chapter

V, as a corollary of inversion of adjunction that we have, as in characteristic zero,

for smooth varieties X, lctx(X,Z) ≥ 1/ordx(Z) > 0, for every point x ∈ Z. Here

ordx(Z) is the maximal integer value q such that IZ,x ⊆ mq
X,x, where IZ,x is the ideal
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of Z at x and mX,x the ideal defining x. However, we still don’t know whether the

log canonical threshold is a rational number in positive characteristics.



CHAPTER III

Jet schemes and arc spaces

3.1 Jet Schemes

In this section, we first recall the definition and basic properties of jet schemes

and arc spaces. For a more detailed discussion of jet schemes, see [EM] or [Mus1].

We start with the absolute setting and explain the relative version of jet schemes

later. Let k be a field of arbitrary characteristic. A variety is an integral scheme,

separated and of finite type over k. Given a scheme X of finite type over k and an

integer m ≥ 0, the mth order jet scheme Xm of X is a scheme of finite type over k

satisfying the following adjunction

(3.1) HomSch /k(Y,Xm) ∼= HomSch /k(Y × Spec k[t]/(tm+1), X)

for every scheme Y of finite type over k. It follows that if Xm exists, then it is unique

up to a canonical isomorphism. We will show the existence in Proposition III.5.

Let L be a field extension of k. A morphism SpecL[t]/(tm+1) → X is called an

L–valued m–jet of X. If γm is a point in Xm, we call it an m–jet of X. If κ is the

residue field of γm, then γm induces a morphism (γm)κ : Specκ[t]/(tm+1)→ X.

It is easy to check that X0 = X. For every j ≤ m, the natural ring homomorphism

k[t]/(tm+1)→ k[t]/(tj+1) induces a closed embedding

Spec k[t]/(tj+1)→ Spec k[t]/(tm+1)

19
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and the adjunction (3.1) induces a truncation map ρmj : Xm → Xj. For simplicity, we

usually write πXm or simply πm for the projection ρm0 : Xm → X = X0. A morphism

of schemes f : X → Y induces morphisms fm : Xm → Ym for every m. At the level

of L–valued points, this takes an L[t]/(tm+1)–valued point γ of Xm to f ◦ γ. For

every point x ∈ X, we write Xm,x for the fiber of πm at x, the m–jets of X centered

at x.

Example III.1. X1 is the total tangent space TX = Spec(Sym(ΩX/k)). By Lemma

III.6, we will see that it is enough to show the assertion when X is affine. Let

X = SpecA, where A is a k–algebra. We show that for every k–algebra B,

(3.2) Homk−alg(Sym(ΩA/k), B) ∼= Homk−alg(A,B[t]/(t2)).

Recall that a k–algebra morphism f : Sym(ΩA/k) → B is equivalent to a k–algebra

morphism g : A→ B and a k–module morphism ΩA/k → B, which corresponds to a

k-derivation d : A→ B. Note that giving g and d is equivalent to giving a k–algebra

morphism ψf : A→ B[t]/(t2) where ψf (a) = g(a)+ t ·d(a), we obtain equation (3.2).

Example III.2. If X = An = Spec k[x1, . . . , xn], then Xm is isomorphic to

An(m+1) = Spec k[ai,j]

for 1 ≤ i ≤ n and 0 ≤ j ≤ m. Furthermore, for m ≥ j ≥ 0, the truncation morphism

ρmj : An(m+1) → An(j+1) is the projection onto the first n(j + 1) coordinates. To

see this, we may assume Y = SpecB for some k–algebra B and check that An(m+1)

satisfies the adjunction (3.1) for every m ≥ 0. Indeed, a B–valued point γ of Xm

corresponds to a k–algebra homomorphism γ∗ : k[x1, . . . , xn]→ B[t]/(tm+1), which is

uniquely determined by the image of xi. We write γ∗(xi) =
m∑
j=0

bi,jt
j for each i, with

bi,j ∈ B. It is clear that γ corresponds to the B–valued point of An(m+1) = Spec k[ai,j]

which maps ai,j to bi,j.
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More generally, if X is a smooth variety of dimension n, then all projections

ρmm−1 : Xm → Xm−1 are locally trivial with fiber An. In particular, Xm is a smooth

variety of dimension n(m+ 1).

In Chapter V, we will use the relative version of jet schemes. We now recall some

basic facts about this context.

We work over a fixed separated scheme S of finite type over a noetherian ring R.

Let f : W → S be a scheme of finite type over S. If s is a point in S, we denote by

Ws the fiber of f over s.

Definition III.3. The mth relative jet scheme (W/S)m satisfies the following ad-

junction

(3.3) HomSch /S(Y ×R SpecR[t]/(tm+1),W ) ∼= HomSch /S(Y, (W/S)m),

for every scheme of finite type Y over S.

As in the absolute setting, we have (W/S)0
∼= W . If (W/S)m and (W/S)j exist

with m ≥ j, then there is a canonical projection ρmj : (W/S)m → (W/S)j. For

simplicity, we usually write πm for the projection ρm0 : (W/S)m → W .

Example III.4. If W = An
S with the natural projection f : W → S, then for every

m ≥ 0, (W/S)m ∼= A
n(m+1)
S . Furthermore, for every m ≥ j, the truncation morphism

ρmj : (An
S)m → (An

S)j is the projection onto the first n(j + 1) coordinates. The proof

is similar to that of the absolute case in Example III.2.

We now prove the existence of the relative jet schemes, which is similar to that

of the absolute case. For details, see [Mus2].

Proposition III.5. If f : W → S is a scheme of finite type over S, the mth order

relative jet scheme (W/S)m exists for every m ∈ N.
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Before proving the proposition, we first show that the construction of relative jet

scheme is compatible with open embeddings.

Lemma III.6. Let U be an open subset of a scheme W over S. If (W/S)m exists,

then (U/S)m exists and (U/S)m ∼= (πWm )−1(U).

Proof. We denote by g : U → S the composition of the open embedding U ↪→ W

and f : W → S. We have to show that for every S–scheme Y ,

(3.4) HomSch /S(Y ×R SpecR[t]/(tm+1), U) ∼= HomSch /S(Y, (πWm )−1(U)).

We first assume that S = SpecA, where A is a finitely generated R–algebra. It

is enough to show that the above adjunction holds for every affine scheme Y . Let B

be an A–algebra and Y = SpecB. If γ : SpecB[t]/(tm+1)→ W is a B–valued jet of

W , let γ0 = πm(γ) be the induced morphism SpecB → W . It is clear that γ factors

through U if and only if γ0 factors through U . Applying adjointness of (W/S)m in

(3.3), we deduce that (πXm)−1(U) satisfies (3.4).

Given an arbitrary scheme S of finite type over R, let (Sα)α∈I be an affine covering

of S. Let Wα = f−1(Sα) and Uα = g−1(Sα). For each α, β ∈ I, let Sαβ = Sα ∩ Sβ,

Wαβ = f−1(Sαβ) and Uαβ = g−1(Sαβ). Since S is separated, each Sαβ is affine.

The above argument showed that for every α, there is a canonical isomorphism

(Uα/Sα)m ∼= (πWα
m )−1(Uα). Furthermore, these isomorphisms agree on the overlaps

Sαβ. We conclude that (U/S)m = (πWm )−1(U).

We now prove Proposition III.5 by first constructing the relative jet scheme locally

and gluing the schemes along overlaps.

Proof. By covering S by affine open subschemes, we may and will assume S is an

affine scheme. Let S = SpecA, where A is a finitely generated R–algebra. We first
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construct (W/S)m when W is an affine scheme over S. Let W = SpecB for some

A–algebra B. Consider a closed embedding W → An
S such that W is defined by the

ideal I = (f1, . . . , fr) ⊆ A[x1, . . . , xn]. An S–morphism ϕ : SpecB[t]/(tm+1) → W

is given by ϕ∗(xi) =
m∑
j=0

bi,jt
j with bi,j ∈ B such that fl(ϕ

∗(x1), . . . , ϕ∗(xn)) = 0 in

B[t]/(tm+1) for every l.

Given any ui =
m∑
j=0

ai,jt
j in A[t]/(tm+1) for 1 ≤ i ≤ n, we can write

(3.5) fl(u1, . . . , un) =
m∑
p=0

gl,p(ai,j)t
p,

for some polynomials gl,p in A[ai,j] with 1 ≤ i ≤ n and 0 ≤ j ≤ m. Let Z be

the closed subscheme of A
n(m+1)
S = SpecA[ai,j] defined by (gl,p) for 1 ≤ l ≤ r and

0 ≤ p ≤ m. It is clear that ϕ is a B[t]/(tm+1)–valued point of (W/S) if and only if

the corresponding (bi,j) defines a B–valued point of Z. Hence (X/S)m ∼= Z.

Given W an arbitrary S–scheme of finite type, we consider an affine open cov-

er W =
⋃
α

Wα. We have seen that (Wα/S)m exists for every m ≥ 0. Let παm :

(Wα/S)m → Wα be the canonical projection. For every α and β, we write Wαβ =

Wα ∩ Wβ. The inverse image (παm)−1(Wαβ) and (πβm)−1(Wαβ) are canonically iso-

morphic since they are isomorphic to (Wαβ/S)m. Hence we can construct a scheme

(W/S)m by gluing the schemes (Wα/S)m along their overlaps. Moreover, the projec-

tions παm glue to give an S–morphism

πm : (W/S)m → W.

It is clear that (W/S)m is the mth relative jet scheme of W over S.

For every scheme morphism S ′ → S and every W/S as above, we denote by W ′

the fiber product W ×S S ′. By the functorial definition of relative jet schemes, we

can check that

(W ′/S ′)n ∼= (W/S)n ×S S ′
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for every n. In particular, for every s ∈ S, we conclude that the fiber of (W/S)n → S

over s is isomorphic to (Ws)n.

Recall that πn : (W/S)n → W is the canonical projection. We now show that

there is an S–morphism, called the zero-section map, σn : W → (W/S)n such that

πn◦σn = idW for every n. We have a natural map gn : W×SpecR[t]/(tn+1)→ W , the

projection onto the first factor. By (3.3), gn induces a morphism σWn : W → (W/S)n,

the zero-section of πn. For simplicity, we usually write σn for σWn . Note that for every

n and every scheme W over S, there is a natural action:

Γn : A1
S ×S (W/S)n → (W/S)n

of the affine group A1
S on the jet schemes (W/S)n defined as follows. For an A–valued

point (a, γn) of A1
S ×S (W/S)n where a ∈ A and γn : SpecA[t]/(tn+1) → W , we

define Γn(a, γn) as the composition map SpecA[t]/(tn+1)
a∗−→ SpecA[t]/(tn+1)

γn−→ X,

where a∗ corresponds to the A–algebra homomorphism A[t]/(tn+1) → A[t]/(tn+1)

mapping t to at. One can check that the image of the zero section σn is equal to

Γn({0} × (W/S)n).

Lemma III.7. Let f : W → S be a family of schemes and τ : S → W a section of

f . For every m ≥ 1, the function

d(s) = dim(πWs
m )−1(τ(s))

is upper semi-continuous on S.

Proof. Due to the local nature of the assertion, we may assume that S = SpecA is

an affine scheme. Given a point s ∈ S, we denote by w = τ(s) in W . Let W ′ be

an open affine neighborhood of w in W . Consider the restriction map f ′ : W ′ → S

of f , one can show that there is an nonzero element a ∈ A such that such that
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τ maps the affine neighborhood S ′ ∼= SpecAh of s into W ′. Let W ′′ be the affine

neighborhood g−1(S ′) of w and f ′′ : W ′′ → S ′. The restriction of τ defines a section

τ ′ : S ′ → W ′′. Replacing f by f ′′ and τ by τ ′, we may and will assume that both

W and S are affine schemes. Let W = SpecB, where B is a finitely generated A–

algebra. The section τ induce a ring homomorphism τ ∗ : B � A. Choose A–algebra

generators ui of B such that τ ∗(ui) = 0. Let C be the polynomial ring A[x1, . . . , xn].

We define a ring homomorphism ϕ : C → B which maps xi to ui for every i. Let

I = (f1, . . . , fr) be the kernel of ϕ. One can check that fl ∈ (x1, . . . , xn) for every l

with 1 ≤ l ≤ r. Hence W is a closed subscheme of An
S = SpecA[x1, . . . , xn] defined

by the system of polynomials (fl) and the zero section o : S → An
S factors through

τ . It is clear that (An
S)m = SpecA[ai,j] ∼= A

n(m+1)
S for 1 ≤ i ≤ n and 0 ≤ j ≤ m and

σ
An
S

m ◦ o : S → A
n(m+1)
S is the zero-section.

We thus obtain an embedding (W/S)m ⊂ A
(m+1)n
S which induces an embedding

(πWm )−1(τ(S)) ⊂ (π
An
S

m )−1(o(S)) ∼= Amn
S such that σWm ◦ τ corresponding to the zero-

section of Amn
S = SpecA[ai,j] for 1 ≤ i ≤ n and 1 ≤ j ≤ m . Recall that (W/S)m

as a subscheme of A
n(m+1)
S is defined by the polynomials gl,p in equation (3.5). Let

deg ai,j = j. Since fl has no constant terms, we can check that each gl,p is homogenous

of degree p. Hence the coordinate ring of (πWm )−1(τ(S)), denoted by T , is a graded

A–algebra.

For every s ∈ S corresponding to a prime ideal p of A, we obtain that

d(s) = dim(πWs
m )−1(τ(s)) = dim(T ⊗A A/p).

Our assertion follows from a semi-continuity result on the dimension of fibers of a

projective morphism (see [Eis, Theorem 14.8]).

Remark III.8. Let X be a smooth variety over a field k and Y a closed subscheme
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of X. If T is an irreducible component of Ym for some m, then T is invariant under

the action of A1. Since πm(T ) = σ−1
m (T ∩ σm(X)), it follows that πm(T ) is closed in

X.

3.2 Arc Spaces and Contact Loci

We now turn to the projective limit of jet schemes. It follows from the description

in the proof of Proposition III.5 that the projective system

· · · → Xm → Xm−1 → · · · → X0

consists of affine morphisms. Hence the projective limit exists in the category of

schemes over k. This is called the space of arcs of X, denoted by X∞. Note that

in general, it is not of finite type over k. There are natural projection morphisms

ψm : X∞ → Xm. It follows from the projective limit definition and the functorial

description of the jet schemes that for every k–field extension A we have

Hom(Spec(A), X∞) ' Hom←−−(Spec A[t]/(tm+1), X) ' Hom(Spec A[[t]], X)

In particular, for every field extension L of k, an L–valued point of X∞, called an

L–valued arc, corresponds to a morphism from Spec L[[t]] to X. We denote the closed

point of SpecL[[t]] by 0 and by η the generic point. A point in X∞ is called an arc

in X. If γ is a point in X∞ with residue field κ, γ induces a κ–valued arc, i.e. a

morphism γκ : Spec κ[[t]]→ X. If f : X → Y is a morphism of schemes of finite type,

by taking the projective limit of the morphisms fm : Xm → Ym we get a morphism

f∞ : X∞ → Y∞.

For every scheme X, a cylinder in X∞ is a subset of the form C = ψ−1
m (S), for

some m and some constructible subset S ⊆ Xm. If X is a smooth variety of pure

dimension n over k, then all truncation maps ρmm−1 are locally trivial with fiber An.

In particular, all projections ψm : X∞ → Xm are surjective and dimXm = (m+ 1)n.



27

From now on, we will assume that X is smooth and of pure dimension n. We say

that a cylinder C = ψ−1
m (S) is irreducible (closed, open, locally closed) if so is S. It

is clear that all these properties of C do not depend on the particular choice of m

and S. We define the codimension of C by

codimC := codim(S,Xm) = (m+ 1)n− dimS.

Since the truncation maps are locally trivial, codimC is independent of the particular

choice of m and S.

For a closed subscheme Z of a scheme X defined by the ideal sheaf a and for an

L–valued arc γ : SpecL[[t]]→ X, the inverse image of Z by γ is defined by a principal

ideal in L[[t]]. If this ideal is generated by te with e ≥ 0, then we define the vanishing

order of γ along Z to be ordγ(Z) = e. On the other hand, if this is the zero ideal, we

put ordγ(Z) =∞. If γ is a point in X∞ with residue field L, then we define ordγ(Z)

by considering the corresponding morphism SpecL[[t]] → X. The contact locus of

order e with Z is the subset of X∞

Conte(Z) = Conte(a) := {γ ∈ X∞ | ordγ(Z) = e}.

We similarly define

Cont≥e(Z) = Cont≥e(a) := {γ ∈ X∞ | ordγ(Z) ≥ e}.

For m ≥ e, we can define constructible subsets Conte(Z)m and Cont≥e(Z)m of Xm

in the obvious way. (In fact, the former one is locally closed, while the latter one is

closed.) By definition, we have

Conte(Z) = ψ−1
m (Conte(Z)m) and Cont≥e(Z) = ψ−1

m (Cont≥e(Z)m).

This implies that Cont≥e(Z) is a closed cylinder and Conte(Z) is a locally closed

cylinder in X∞.



CHAPTER IV

Singularities of Brill-Noether Loci

4.1 Introduction to varieties of special linear series on a curve

In this section, k is an algebraically closed field of characteristic 0. Let C be

a smooth projective curve of genus g over field k. We now recall the definition of

Picd(C). For every scheme S, let p and q be the projections of S × C onto S and

C respectively. A family of degree d line bundles on C parameterized by a scheme S

is a line bundle on C × S which restricts to a degree d line bundle on C × {s}, for

every s in S. We say that two such families L and L′ are equivalent if there is a line

bundle R on S such that L′ ∼= L⊗ q∗R. Picd(C) parameterizes degree d line bundles

on C; more precisely, it represents the functor

F : Sch /k → Set

where F (S) is the set of equivalence classes of families of degree d line bundles on

C parameterized by S. A universal line bundle P on C ×Picd(C) is a Poincaré line

bundle of degree d for C.

Recall now that W r
d (C) is the closed subset of Picd(C) parameterizing line bundles

L of degree d with dim |L| ≥ r:

W r
d (C) = {L ∈ Picd(C) : degL = d, h0(L) ≥ r + 1}.

28
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In particular, we have the theta divisor

Θ := {L ∈ Picg−1(C) : h0(C,L) 6= 0} = W 0
g−1(C).

Each W r
d (C) has a natural scheme structure as a degeneracy locus we now describe.

Let E be any effective divisor on C of degree e ≥ 2g − d − 1 and let E = O(E).

The following facts are standard (see [ACGH, §IV.3]. For every family of degree d

line bundles L on S × C, the sheaves p∗(L ⊗ q∗(E)) and p∗(L ⊗ q∗(E) ⊗ Oq−1E) are

locally free of ranks d + e + 1 − g and e, respectively. Moreover, there is an exact

sequence on S

(4.1) 0→ p∗L → p∗(L ⊗ q∗(E))
ΦL−→ p∗(L ⊗ q∗(E)⊗Oq−1E)→ R1p∗(L)→ 0.

With the above notation, W r
d (C) represents the functor Sch /k → Set given by

S 7→

 equivalence classes of families L of degree d line bundles on

S × C p−→ S such that rank(ΦL) ≤ d+ e− g − r

 .

It can be shown that the above condition rank(ΦL) ≤ d+ e− g− r does not depend

on the particular choice of e and E.

In particular, the line bundle L ∈ Picd(C) is in W r
d (C) if and only if locally all the

e+ d+ 1− g − r minors of ΦL vanish. Therefore W r
d (C) is a determinantal variety.

Let Tm be the scheme Spec k[t]/(tm+1). We now discuss the jet schemes of the

theta divisor Θm for all m. By the definition of Θ, we have Θm consists of line

bundles Lm ∈ Pic(Tm × C) such that deg(Lm|{0}×C) = g − 1 and det(ΦLm) = 0 in

k[t]/(tm+1).

Given a positive integer n, we recall that a partition of n is a weakly increasing

sequence 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λl such that λ1 + · · · + λl = n. The number l of
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integers in the sequence is called the length of the partition, and the value λl is the

largest term. The set of partitions with length l is denoted by Λl, and the set of

partitions with length l and largest term at most m is denoted by Λl,m. For every i

with 1 ≤ i ≤ m, if λ ∈ Λl,m, we define λ ∈ Λl,i by putting λk = min{λk, i} for every

k with 1 ≤ k ≤ l. We thus obtain a natural map Λl,m → Λl,i.

Fix an effective divisor E of degree e ≥ 2g − d − 1 on C. We now associate

a partition to every Lm ∈ Picd(C)m. p∗(Lm ⊗ q∗(E)) and p∗(Lm ⊗ q∗(E) ⊗ Oq−1E)

are locally free sheaves on Tm, hence they are finitely generated free modules over

k[t]/(tm+1).

Definition IV.1. A family of line bundles Lm of degree d on C over Tm is called of

type λ ∈ Λl,m+1 if there are bases of p∗(Lm ⊗ q∗(E)) and p∗(Lm ⊗ q∗(E)⊗Oq−1E) in

which ΦLm is represented by the matrix in M(d+e+1−g)×e(k[t]/(tm+1))



1 0 0

. . .

1

tλ1
...

...

. . .

tλl 0 0


0

0

Definition IV.2. Given a partition λ , let ri(λ) be the number of k such that λk = i

and let ni(λ) be the number of k such that λk ≥ i.

It is easy to see that the partition λ in Definition IV.1 does not depend on the
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choice of bases. If L is the image of Lm under the truncation map

πm : Picd(C)m → Picd(C),

then we will see below that the length of the partition associated to Lm is h0(C,L).

We now give a criterion to decide whether an element Lm ∈ Picg−1(C)m is a jet

of Θ in terms of the partition λ.

Lemma IV.3. For every family of line bundles Lm ∈ Picg−1(C)m centered at L ∈

Picg−1(C) and of type λ ∈ Λl,m+1, the following are equivalent:

(i) Lm ∈ Θm,L.

(i)′ det(ΦLm) = 0 in k[t]/(tm+1).

(ii)
l∑

i=1

λi ≥ m+ 1.

(ii)′
m+1∑
j=1

rj(λ) · j ≥ m+ 1.

(ii)′′
m+1∑
k=1

nk(λ) ≥ m+ 1.

Proof. Recall that Θ = W 0
g−1 ⊂ Picg−1(C). With the above notation, for every family

of line bundles Lm in Θm, the sheaves p∗(Lm ⊗ q∗(E)) and p∗(Lm ⊗ q∗(E) ⊗ Oq−1E)

are locally free of rank e. The definition shows that the theta divisor parameterizes

the line bundles Lm for which det(ΦLm) = 0. This proves the equivalence between

(i) and (i)′. It is clear that with the choice of basis in Definition IV.1,

det(ΦLm) = tλ1+···+λl ∈ k[t]/(tm+1).

Therefore the determinant vanishes if and only if
l∑
i

λi ≥ m+ 1.

In order to complete the proof of the lemma, it suffices to show that

l∑
i=1

λi =
m+1∑
j=1

rj(λ) · j =
m+1∑
k=1

nk(λ).
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The first equality is clear by the definition of rj(λ). The second equality follows from

nk(λ) =
∑
j≥k

rj(λ). Indeed,
m+1∑
k=1

nk(λ) =
m+1∑
k=1

∑
j≥k

rj(λ) =
m+1∑
j=1

rj(λ) · j.

Using the definition of W r
d (C), we have the following description of W r

d (C)m,L,

which gives a generalization of Lemma IV.3.

Lemma IV.4. Let Lm ∈ Picd(C)m have type λ = (1 ≤ λ1 ≤ · · · ≤ λl ≤ m+ 1). The

following are equivalent:

(i) Lm ∈ W r
d (C)m,L.

(i’) All the (e+ d+ 1− g − r) minors of ΦLm vanish in k[t]/(tm+1).

(ii)
l−r∑
i=1

λi ≥ m+ 1.

(ii’)
l−r∑
i=1

(l − i− r + 1)(λi − λi−1) ≥ m+ 1, where λ0 = 0.

The proof of this lemma is very similar to that of Lemma IV.3, so we leave it to

the reader.

Our first goal is to recover Riemann’s Singularity Theorem using jet schemes.

Theorem IV.5. For every L ∈ Θ, we have multLΘ = h0(C,L).

Remark IV.6. Note that the multiplicity of a divisor at a point is one if and only if

the divisor is smooth at that point, hence Theorem IV.5 implies in particular that a

line bundle L ∈ Θ is a smooth point if and only if h0(C,L) = 1.

Before proving the theorem we need some preparations. For every degree d line

bundle L, we shall first describe the fiber of ρmm−1 : Picd(C)m,L → Picd(C)m−1,L.

Let E be the effective divisor of degree e ≥ 2g − d − 1 in Definition IV.1. By

the universal property of Picd(C), every Lm ∈ Picd(C)m,L is identified with a line

bundle on C × Tm. Let us fix a line bundle L ∈ Picd(C) and a family of line bundles
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Lm ∈ Picd(C)m,L lying over L. For every 0 ≤ i ≤ m, we denote by Li the image

of Lm in Picd(C)i,L under the truncation map Picd(C)m → Picd(C)i. By the short

exact sequence (4.1), H0(Li) is the kernel of the morphism

ΦLi : Mi = H0(Li ⊗ q∗(E))→ Ni = H0(Li ⊗ q∗(E)⊗Oq−1E).

There is a k[t]/(tm+1)-module map πmi : H0(Lm)→ H0(Li) induced by restriction

of sections. This can be described as follows. Applying the Base-change Theorem to

the morphism Ti ↪→ Tm, we obtain the following commutative diagram

H0(Lm) ↪→ Mm
ΦLm−−−→ Nm

↓πmi ↓ρM ↓ρN

H0(Li) ↪→ Mi

ΦLi−−→ Ni

Clearly Mi = Mm ⊗k[t]/(tm+1) k[t]/(ti+1) and Ni = Nm ⊗k[t]/(tm+1) k[t]/(ti+1) and the

vertical maps are induced by the quotient map k[t]/(tm+1)→ k[t]/(ti+1).

Lemma IV.7. For every 0 ≤ i ≤ m, there is an embedding of k[t]/(tm+1)-modules

vmi : H0(Li) ↪→ H0(Lm)

such that the image is the kernel of πmm−i−1 : H0(Lm)→ H0(Lm−i−1).

Proof. The multiplication with tm−i defines a linear map of k[t]/(tm+1)-modules

k[t]/(ti+1)→ k[t]/(tm+1)

and induces embeddings of k[t]/(tm+1) modules Mi

umi−→Mm and Ni

wmi−−→ Nm. There-

fore it induces an injective k[t]/(tm+1)-module morphism vmi : H0(Li)→ H0(Lm).

It is clear that the image of the embedding umi : Mi → Mm is AnnMm(ti+1). By

definition, we have H0(Lm) ∩ AnnMm(ti+1) = AnnH0(Lm)(t
i+1). The multiplication

map wmi : Ni → Nm is injective, and one deduces easily that the image of vi is

AnnH0(Lm)(t
i+1). Since ker πmm−i−1 = AnnH0(Lm)(t

i+1), this completes our proof.
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Lemma IV.8. For every family of line bundles Lm ∈ Picd(C)m of type λ ∈ Λl,m+1,

we have

h0(Lm) =
m+1∑
k=1

nk(λ).

Proof. Choose bases {ej} and {fh} for the free modules Mm and Nm such that ΦLm

is represented by the matrix

1 0 0

. . .

1

tλ1
...

...

. . .

tλl 0 0


= A0 + A1 · t+ · · ·+ Am · tm.0

0

All Ai are (d+e+1−g)×e matrices over the field k. For every 0 ≤ i ≤ m the image

of {ej} under the map ρM : Mm →Mi gives a basis of Mi over k[t]/(ti+1). Similarly,

the image of {fh} under ρN : Nm → Ni gives a basis of Ni. With respect to these

bases, the homomorphism ΦLi is represented by the matrix A0 +A1 · t+ · · ·+Ai · ti.

We first consider the case m = 0. ΦL is represented by A0, which is a diagonal

matrix with 1 showing up on the first e+ d+ 1− g − l rows, hence

h0(L) = dimk ker ΦL = l = n1(λ).

Let λ′ be the type of Lm−1. One can check easily that λ′ is the image of λ under the

natural map Λl,m+1 → Λl,m. For k ≤ m, we have nk(λ
′) = nk(λ). Now it suffices to

show that h0(Lm)−h0(Lm−1) = nm+1(λ) for m ≥ 1. For each i > 0, Ai is a diagonal

matrix with entries 0 or 1, with 1’s in the rows (e+d+ 1− g)− l+ r1 + · · ·+ ri−1 + j,

with 1 ≤ j ≤ ri, where ri = ri(λ) (See Definition IV.2). We now consider {tk · ej}
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and {tk · fh} where 0 ≤ k ≤ m to be the bases of Mm and Nm, respectively, as linear

spaces over k. The matrix associated to ΦLm as a morphism of k−linear spaces has

the upper triangular form

ΨLm =



A0 A1 A2 · · · Am−1 Am 0 0

A0 A1 · · · Am−2 Am−1 0 0

A0
. . .

...
...

...

. . . . . .
...

...
...

A0 A1 0 0

A0 0 0

0

Therefore the associated matrix ΨLm−1 of ΦLm−1 as a k-linear map is the bottom

right corner submatrix of the associated matrix of ΦLm , obtained by omitting the

rows and columns containing the left upper corner A0.

In each row and column of the matrix ΨLm , there is at most one nonzero element.

Therefore rank ΨLm = rank ΨLm−1 +
m∑
i=0

rankAi. Since rank(A0) = d + e + 1− g − l

and rank(Ai) = ri(λ) for 1 ≤ i ≤ m, we deduce that

dimk ker ΦLm − dimk ker ΦLm−1 = nm+1(λ).

Therefore h0(Lm)− h0(Lm−1) = nm+1(λ).

Remark IV.9. For every j with 0 ≤ j ≤ m, Lemmas IV.7 and IV.8 imply that the

image of the morphism πj0 : H0(Lj)→ H0(L) has dimension equal to

h0(Lj)− dimk ker(πj0) = h0(Lj)− h0(Lj−1) = nj+1(λ).

Therefore πj0 is a zero map if and only if nj+1(λ) = 0.
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We now fix a line bundle L ∈ Picd(C) and describe the fibers of the truncation

maps ρmm−1 : Picd(C)m,L → Picd(C)m−1,L for every m. Let {Uα} be an affine covering

of C which trivializes the line bundle L by isomorphisms γα : L|Uα ∼= OUα . Let

{gαβ = γβ ◦ γ−1
α } be the corresponding transition functions. For every scheme Uα

and i ≥ 1, we have short exact sequence of sheaves on Uα × Ti as follows:

0→ OUα → O∗Uα×Ti → O
∗
Uα×Ti−1

→ 0,

where the embedding morphism maps x ∈ OUα to 1 + x · ti. Since Uα is affine,

Hj(OUα) vanishes for every j ≥ 1. We thus obtain an isomorphism

H1(OUα×Ti) ∼= H1(OUα×Ti−1
).

In other words, we have Pic(Uα × Ti) ∼= Pic(Uα × Ti−1) for every α. By induction

on i with 0 ≤ i ≤ m, we deduce that {Uα × Tm} is an affine covering of C × Tm

which trivializes every line bundle Lm ∈ Picd(C)m,L. In particular, for every line

bundle L1 ∈ Picd(C)1,L on C × T1, there is a trivialization for L1 on the covering

{Uα × T1} with the transition functions {gαβ(1 + tϕ
(1)
αβ)}. This gives a bijection

ξ : Picd(C)1,L → H1(C,OC) via ξ(L1) = [ϕ
(1)
αβ ].

In general, we fix a family of line bundles Lm−1 ∈ Picd(C)m−1,L. After we also fix

a point M in the fiber of ρmm−1 over Lm−1, we get an isomorphism

(ρmm−1)−1(Lm−1) ∼= H1(C,OC).

Since we will use later the description in terms of C̆ech cohomology classes, we

describe this isomorphism as follows. We choose a trivialization of Lm−1 with the

transition functions gm−1
αβ := gαβ(1 + tϕ

(1)
αβ + · · ·+ tm−1ϕ

(m−1)
αβ ). It is easy to see that

there is a trivialization for M with transition functions

gmαβ =: gαβ(1 + tϕ
(1)
αβ + · · ·+ tm−1ϕ

(m−1)
αβ + tmϕ

(m)
αβ ).
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Every point Lm ∈ (ρmm−1)−1(Lm−1) has transition functions

gαβ(1 + tϕ
(1)
αβ + · · ·+ tm−1ϕ

(m−1)
αβ + tm(ϕ

(m)
αβ + ψαβ))

where [ψαβ] ∈ H1(C,OC). We thus obtain an isomorphism

ξ : (ρmm−1)−1(Lm−1)→ H1(C,OC)

given by ξ(Lm) = [ψαβ]. Abusing the notation, we write [Lm] for the cohomology

class corresponding to Lm. Note, however, that this depends on the choice of M.

Let sm−1 ∈ H0(Lm−1) be a nonzero section. The obstruction to extending sm−1

to a section of Lm can be described as follows. We have a short exact sequence of

sheaves on C × Tm,

0→ L→ Lm → Lm−1 → 0.

Let δLm be the connecting map H0(Lm−1)→ H1(C,L). The long exact sequence on

cohomology implies that sm−1 can be extended to a section sm of Lm ∈ (ρmm−1)−1(Lm−1)

if and only if δLm(sm−1) = 0.

With the above notation, we get the following more explicit obstruction to ex-

tending a section of Lm−1 in terms of C̆ech cohomology.

Lemma IV.10. Fix a line bundle M in the fiber of ρmm−1 over Lm−1. For a fixed

section sm−1 = (
m−1∑
j=0

c
(j)
α tj) ∈ H0(Lm−1), let s0 be the its image under

πm0 : H0(Lm−1)→ H0(L).

The section sm−1 has an extension to a section of Lm if and only if

(†) ν(s0 ⊗ [Lm]) is the cohomology class corresponding to (−γ−1
α (

m∑
j=1

ϕ
(j)
αβc

(m−j)
α ))

where ν is the natural pairing H0(C,L)⊗H1(C,O)→ H1(C,L).
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Proof. Assume there is an extension of sm−1 ∈ H0(Lm−1) to a section sm ∈ H0(Lm).

Locally sm−1 is given by functions
m−1∑
j=0

c
(j)
α tj ∈ Γ(Uα × Tm−1,OUα×Tm−1). We write

sm as
m−1∑
j=0

c
(j)
α tj + c

(m)
α tm. Let γmα : Lm|Uα×Tm → OUα×Tm be a trivialization of Lm on

Uα × Tm. We thus have the following equality on (Uα ∩ Uβ)× Tm:

(γmα )−1(
m∑
j=0

c(j)
α tj) = (γmβ )−1(

m∑
j=0

c
(j)
β tj).

Since (γmα )−1 = (γmβ )−1 ◦ gmαβ, we have (γmβ )−1 ◦ gmαβ(
m∑
j=0

c
(j)
α tj) = (γmβ )−1(

m∑
j=0

c
(j)
β tj).

More explicitly, we obtain

gαβ(1 + tϕ
(1)
αβ + · · ·+ tm−1ϕ

(m−1)
αβ + tm(ϕ

(m)
αβ + ψ

(m)
αβ ))(

m∑
j=0

c(j)
α tj) = (

m∑
j=0

c
(j)
β tj)

in O((Uα∩Uβ)×Tm). We now expend this equation and take the coefficient of ti for

i with 0 ≤ i ≤ m. If i < m, the equation we obtain from the coefficient of ti always

holds since sm−1 is a section of Lm−1. For i = m, we obtain

gαβ(ψαβ · c(0)
α +

m∑
j=1

ϕ
(j)
αβ · c

(m−j)
α + c(m)

α ) = (c
(m)
β )

in O((Uα∩Uβ)×T ). Note that the restriction to the trivialization γmα to the subsheaf

L of Lm is exactly the trivialization γα, we have

(γβ)−1 ◦ gαβ(ψαβ · c(0)
α +

m∑
j=1

ϕ
(j)
αβ · c

(m−j)
α + c(m)

α ) = (γβ)−1(c
(m)
β )

as sections of L on (Uα ∩ Uβ).

Clearly (γβ)−1◦gαβ(c
(m)
α )−(γβ)−1(c

(m)
β ) gives the zero cohomology class inH1(C,L).

We obtain that ν(s0⊗[Lm]), the cohomology class corresponding to (γ−1
α (ψαβ ·c(0)

α )) is

equal to the cohomology class corresponding to (−γ−1
α (

m∑
j=1

ϕ
(j)
αβc

(m−j)
α )). By reversing

the argument, we also obtain the converse.

Remark IV.11. The identification between the fiber of Picd(C)m,L → Picd(C)m−1,L

and H1(C,OC) is not canonical. In particular, the expression for γ(s0⊗ [Lm]) in (†)
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does depend on M. However, for any fixed nonzero section sm−1, the dimension of

the subset

{Lm ∈ (ρmm−1)−1(Lm−1) | H0(Lm)→ H0(Lm−1) has nonempty fiber over sm−1}

is independent of M.

We now prove Theorem IV.5. The idea is similar to that in Kempf’s proof of

Riemann’s multiplicity formula.

Proof of Theorem IV.5. For every effective Cartier divisor D on a smooth variety X

and a point x ∈ D, the multiplicity of D at x is equal to the minimal positive integer

m such that Dm,x is a proper subset of Xm,x.

Let L ∈ Θ be a line bundle with l = h0(L). We first show that

Θm,L = Picg−1(C)m,L

for every m < l. This follows from the description of Θ as a determinantal variety.

Indeed, let Lm ∈ Picg−1(C)m,L be a line bundle of type λ ∈ Λl,m, then
l∑

i=1

λi ≥ l > m.

By Lemma IV.3, we have Lm ∈ Θm,L. Hence Θm,L = Picg−1(C)m,L for every m < l.

We now show that Θm,L 6= Picg−1(C)m,L for m = l. Let Z1 be the image of

Θm,L under Picg−1(C)m → Picg−1(C)1. It suffices to show that Z1 6= Picg−1(C)1,L.

For every Lm ∈ Θm,L of type λ = (1 ≤ λ1 ≤ · · · ≤ λl), Lemma IV.3 implies

that
l∑

i=1

λi ≥ m + 1. Hence λl ≥ 2 and n2(λ) ≥ 1. By Lemma IV.8, we have

h0(L1)− h0(L) = n2(λ) ≥ 1. By Remark IV.9, we see that the map

π1
0 : H0(L1)→ H0(L)

is not zero. Equivalently, there is a nonzero section s0 ∈ H0(L) which can be extended

to a section of H0(L1). Let Z2 be the subset

{L1 ∈ Picg−1(C)1 | π1
0 : H0(L1)→ H0(L) is not zero}.
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We have seen thatZ1 is a subset ofZ2, hence it suffice to show thatZ2 6= Picg−1(C)1,L.

We now apply Lemma IV.10 with m = 1. LetM be the trivial deformation of L,

i.e. M represents the zero tangent vector at L. To compute the dimension of Z2,

we consider the proper subset

Z = {(W,L1) | ν(s0 ⊗ [L1]) = 0 for every s0 ∈ W}

of P(H0(C,L)) × H1(C,OC). Here P(H0(C,L)) stands for the projective space of

one dimensional subspaces of H0(C,L). Let W be an element in P(H0(C,L)) and

s0 a nonzero element of W . The induced map H1(C,OC)→ H1(C,L) taking [L1] to

ν(s0 ⊗ [L1]) is surjective. Hence each fiber of the first projection map

Z → P(H0(C,L))

is a codimension l vector space of H1(C,OC). We obtain dimZ = g − 1. Since Z2

is a subset of the image of the second projection map Z → H1(C,OC), we obtain

dimZ2 ≤ g − 1. Hence Z2 6= Picg−1(C)1,L. This completes the proof. �

For smooth projective curves of genus g ≤ 2, Riemann’s Singularity Theorem

implies that the theta divisor is smooth. We consider the singularities of the theta

divisor for curves of genus g ≥ 3 in the next section.

4.2 Singularities of the Theta divisor and of the W r
d loci

Our first goal in this section is to give an upper bound for dimW r
d (C)m,L for each

L ∈ Picd(C) and m ≥ 0. We fix a line bundle L of degree d with l = h0(L).

For every partition λ ∈ Λl,m+1, we denote by Cλ,m the subset

{Lm ∈ Picd(C)m,L | Lm is of type λ}.

It is easy to see that locally Cλ,m is the pull back of a locally closed subset of the

m-th jet scheme of the variety of (d + e + 1 − g) × e matrices. Therefore Cλ,m is a
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constructible subset of Picd(C)m,L. By Lemma IV.4, we have W r
d (C)m,L =

⋃
λ

Cλ,m,

where λ varies over the partitions in Λl,m+1 satisfying
l−r∑
i=1

λi ≥ m + 1. In particular,

we have a finite union Θm,L =
⋃
λ

Cλ,m, where λ varies over all elements in Λl,m+1

with
l∑

i=1

λi ≥ m + 1. In order to estimate the dimension of Θm,L, it is enough to

bound the dimension of Cλ,m for every λ ∈ Λl,m+1. The idea is to describe the image

of Cλ,m under the truncation map ρmi : Picd(C)m,L → Picd(C)i,L for every i ≤ m.

Definition IV.12. A weak flag of H0(C,L) of signature κ = (κi) with κ1 ≥ · · · ≥ κn

is a sequence of subspaces of H0(C,L),

V : H0(C,L) = V0 ⊇ V1 ⊇ · · · ⊇ Vn−1 ⊇ Vn

such that dimVi = κi for every 1 ≤ i ≤ n. Here n is called the length of the weak

flag V. Given a weak flag V of H0(C,L) of length n, for every i ≤ n we denote by

V(i) the truncated weak flag of length i:

V(i) : H0(C,L) = V0 ⊇ V1 ⊇ · · · ⊇ Vi−1 ⊇ Vi.

For every Lm ∈ Cλ,m and every j with 0 ≤ j ≤ m, we denote by Lj the image of Lm

under ρmj : Picd(C)m → Picd(C)j. Lemma IV.8 implies that the function Cλ,m → Z

which takes Lm to h0(Lj) =
j+1∑
k=1

nk(λ) is constant. For a fixed Lm ∈ Cλ,m, the images

Vj of the morphisms πj0 : H0(Lj)→ H0(L) give a weak flag VLm of H0(L) of length

m. Remark IV.9 implies that dimVj = dimH0(Lj) − dimH0(Lj−1) = nj+1(λ).

Hence the signature κ of the weak flag VLm , with κj = nj+1(λ), only depends on the

partition λ.

Lemma IV.7 shows that there is a short exact sequence

0→ H0(Lm−1)
vmm−1−−−→ H0(Lm) � Vm → 0.



42

We now choose a splitting of this short exact sequence, which gives a decomposition

H0(Lm) = H0(Lm−1)⊕ Ṽm , with Ṽm mapping isomorphically onto Vm. The restric-

tion map πmm−1 : H0(Lm) → H0(Lm−1) maps Ṽm isomorphic to its image. For the

short exact sequence

0→ H0(Lm−2)
vm−1
m−2−−−→ H0(Lm−1) � Vm−1 → 0,

we can choose a splitting H0(Lm−1) = H0(Lm−2) ⊕ Ṽm−1 such that the restriction

map πmm−1 maps Ṽm into Ṽm−1. By descending induction on i with 0 ≤ i ≤ m, we

can find a subspace Ṽi ⊂ H0(Li) for each i such that

1. The restriction of the truncation map πi0 : H0(Li) → H0(L) to Ṽi induces an

isomorphism onto Vi.

2. The truncation map πii−1 : H0(Li)→ H0(Li−1) takes Ṽi into Ṽi−1

Definition IV.13. A weak flag V of H0(C,L) of length m is extended compatibly to

the line bundle Lm if there are linear subspaces Ṽi ⊂ H0(C,Li) for each i ≤ m such

that (1) and (2) above hold.

In this case, the set of linear subspaces {Ṽi}i as above is called a compatible

extension of V to line bundle Lm. The above argument shows that every weak flag

VLm associated to a line bundle Lm can be extended compatibly to the line bundle

Lm.

For every i with 1 ≤ i ≤ m, recall that λ is the image of λ ∈ Λl,m+1 under the

map Λl,m+1 → Λl,i+1. Given a weak flag V of H0(L) of length m, we denote by Sλi,V

the set of line bundles Li ∈ Picd(C)i,L such that Li ∈ Ci,λ and V(i) can be extended

compatibly to Li. For a fixed non-increasing sequence κ, we define Sλi,κ =
⋃
V′
Sλi,V′ ,

where V′ varies over all weak flags of H0(L) of signature κ. For convenience, we set

Sλ0,V = Sλ0,κ = {L}.
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Standard arguments show that Sλi,V and Sλi,κ are constructible subsets of Picd(C)i,L.

For the benefit of the reader, we give the details in the appendix. The truncation

map ρmi : Picd(C)m,L → Picd(C)i,L maps Cλ,m to the set Sλi,κ with κj = nj+1(λ).

In order to estimate the dimension of Cλ,m, we only need to estimate dimSλi,κ for a

suitable i ≤ m.

Definition IV.14. For a fixed weak flag V of H0(L) of length m, for every i and j

with 1 ≤ i ≤ j ≤ m, we define S̃λi,j,V to be the set of pairs (Li,W ) such that

1. Li ∈ Sλi,V and W is a subspace of H0(Li) of dimension κj.

2. There is a compatible extension {Ṽl}l≤i of V(i) to Li such that W is the inverse

image of Vj in H0(Li) under the isomorphism Ṽi → Vi.

We call the W in a pair (Li,W ) as above a lifting of Vj to Li. For any element

s ∈ Vj, the preimage of s via the isomorphism W → Vj is called a lifting of s to the

level i.

In the appendix we also show that S̃λi,j,V is a constructible subset of a suitable

Grassmann bundle. For the convenience, we set S̃λ0,j,V = {(L, Vj)} for every λ.

Lemma IV.15. Let X1 and Y1 be constructible subsets of algebraic varieties X and

Y respectively. Let f : X1 → Y1 be the restriction of a morphism g : X → Y . If all

the fibers of f are of dimension d ≥ 0, then dimX1 = dimY1 + d.

Proof. Since Y1 is a constructible subset of Y , we write Y1 as a finite disjoint union

of locally closed subset Vk of Y . We may assume that all subsets Vk are irreducible.

For every k, the inverse image f−1(Vk), as the intersection of g−1(Vk) with X1, is a

constructible subset of X. We thus have

dimY1 = max
k
{dimVk} and dimX1 = max

k
{dim f−1(Vk)}.
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Hence it is enough to show the statement for the map f−1(Vk)→ Vk for every k. We

may thus assume that Y1 is an irreducible algebraic variety.

Consider the stratification X1 =
m∐
l=1

(Wl), where each Wl is a locally closed subset

of X. For every l, the morphism Wl → Y1 has fibers of dimension ≤ d. We get

dimWl ≤ dim f(Wl) + d ≤ dimY1 + d.

This implies that dimX1 = max
l
{dimWl} ≤ dimY1 + d.

We now prove the other direction of the inequality. Let {Wl}l=1,...,m0 be the

collection of thoseWl that dominates Y1. (This collection is nonempty since otherwise

f−1(y) would be empty for a general point y ∈ Y1.) We choose an open subset V ⊂ Y1

such that dim(Wl ∩ f−1(y)) is constant for y ∈ V and l ≤ m0. There is a subset

Wl with l ≤ m0 such that dim(f−1(y) ∩ Wl) = dim f−1(y) = d. We obtain that

dimWl = d+ dimY1. We thus have

dimX ≥ dimW1 = dimY1 + d.

This completes the proof.

Lemma IV.16. For a fixed point L ∈ Picd(C) with l = h0(C,L) and a partition

λ ∈ Λl,m+1, let κ = (κ1, κ2, . . . , κm) be a signature of length m, with κj ≤ nj+1(λ) for

every j ≤ m, and V a weak flag of H0(L) of signature κ. For every i with 1 ≤ i ≤ m,

we write di for the dimension of the kernel of

µVi : Vi ⊗H0(C,K ⊗ L−1)→ H0(C,K).

Then the the following holds:

(1) dimSλi,V − dimSλi−1,V ≤ g + di − κi · (g − d− 1 + ni(λ)),

(2) dimSλi,V ≤ gi−
i∑

j=1

{(κj · (g − d− 1 + nj(λ))− dj}.
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Proof. Since we fix the partition λ, we may and will omit the superscript λ in the

proof. We apply Lemma IV.10 to compute the dimension of Si,V inductively on i.

S0,V = {L} implies that dimS0,V = 0. Consider the following commutative diagram:

S̃i,i,V
h→ S̃i−1,i,V

↓ρ1 ↓ρ2

Si,V → Si−1,V

The horizontal map h maps (Li,W ′) to (Li−1,W ), where W is the image of W ′

under the truncation map πii−1 : H0(C,Li) → H0(C,Li−1). The vertical map ρ1 is

given by mapping (Li,W ′) to Li and ρ2 is defined similarly.

Let Li be a fixed point in Si,V. The fiber of ρ1 over the point Li is the set of linear

subspaces W ′ ⊂ H0(Li) that map isomorphically onto Vi via πi0 : H0(Li) → H0(L).

Let {s0,k}k be a basis of Vi. A lifting W ′ of Vi is determined by the preimage of s0,k

in W ′ for each k. By Lemma IV.7, we see that for every s ∈ Vi, any two liftings of s

to the level i differ up to an element of H0(Li−1). Therefore, the relative dimension

of the map ρ1 is h0(Li−1) · κi = (
i∑

j=1

nj(λ)) · κi. Similarly the relative dimension of

the second vertical map ρ2 is (
i−1∑
j=1

nj(λ)) · κi.

Consider the horizontal map h. For every element (Li−1,W ) ∈ S̃i−1,i,V, we now

give a criterion to decide whether it is in the image of h or not. Fix an element

M in the fiber of ρii−1 : Picd(C)i → Picd(C)i−1 over Li−1. We identify the fiber

(ρii−1)−1(Li−1) with H1(C,OC). Let {s0,k}k be a basis of W . We donote by si−1,k the

lifting of s0,k to the level i−1 in W . With the notation in Lemma IV.10, every element

si−1,k = (
i−1∑
j=0

c
(j)
k,αt

j) ∈ H0(Li−1) has an extension to a section ofM′ ∈ (ρii−1)−1(Li−1)

if and only if the following equation holds

(†k) ν(s0,k⊗[M′]) = the cohomology class corresponding to (−γ−1
α (

i∑
j=1

ϕ
(j)
αβc

(i−j)
k,α )).
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Hence (Li−1,W ) is in the image of h if and only if there is a point M′ ∈

(ρii−1)−1(Li−1) such that the above identity (†k) holds for every k. We now assume

that (Li−1,W ) is in the image of h and fix an element (M′,W ′) in the fiber of h over

(Li−1,W ). The above argument implies that

ρ1(h−1(Li−1,W )) = {[Li] ∈ (ρii−1)−1(Li−1) | ν(s0,k ⊗ ([Li]− [M′])) = 0 for every k}.

By taking the dual linear spaces, we now deduce that ρ1(h−1(Li−1,W )) is an

affine space consisting of the elements in H1(C,OC) that annihilate the image of the

pairing

µVi : Vi ⊗H0(C,K ⊗ L−1)→ H0(C,K).

It follows that dim ρ1(h−1(Li−1,W )) = g − (κi · (l − d− 1 + g)− di).

If Li is an element in ρ1(h−1(Li−1,W )), then a pair (Li,W ′) is in the fiber of h over

(Li−1,W ) if and only if the truncation map H0(Li)→ H0(Li−1) takes W ′ into W . A

lifting W ′ of W is determined by the preimage of {si−1,k}k in W ′. By Lemma IV.7,

we see that any two liftings only differ by an element of H0(L). Hence we deduce

that h−1(Li−1,W )∩ρ−1
1 (Li) is an affine space of dimension κi · l. Thus the dimension

of every nonempty fiber of the horizonal map h is g+ di− κi · (l− d− 1 + g) + κi · l.

By Lemma IV.15, we have:

dim S̃i,i,V = dimSi,V + κi · (
i∑

j=1

nj(λ))

dim S̃i,i,V ≤ S̃i−1,i,V + g + di − κi · (l − d− 1 + g) + κi · l

dim S̃i−1,i,V = dimSi−1,V + κi · (
i−1∑
j=1

nj(λ)))

It follows that

dimSi,V − dimSi−1,V ≤ g − κi · (g − d− 1) + di − κi · ni(λ).

This proves (1).
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Part (2) follows from (1) by induction on i, using dimS0,V = 0.

Remark IV.17. From the proof, we know that the equality in (1) can be achieved if

the map h : S̃λi,i,V → S̃λi−1,i,V is a surjection. In fact, we will see that equality can be

achieved when we apply the above lemma in the proofs of the main theorems.

We now prove our first main result.

Proof of Theorem A. Let C be a curve of genus g ≥ 3. Since we fix the curve C, we

may and will write W r
d for W r

d (C) for every r and d. By Remark IV.6, we know that

Θsing = W 1
g−1 =

⋃
l≥2

(W l−1
g−1 rW l

g−1). To bound the dimension of (πΘ
m)−1(Θsing), it is

enough to bound the dimension of (πΘ
m)−1(W l−1

g−1 rW l
g−1) for each l ≥ 2.

Let L be a point in W l−1
g−1rW l

g−1. We have seen in the proof of Theorem IV.5 that

Θm,L = Picg−1(C)m,L for m < l. Hence dim Θm,L = mg for m < l. We now assume

that m ≥ l. Recall that we put Cλ,m = {Lm ∈ Θm,L | Lm is of type λ}, where λ is a

partition in Λl,m+1. By Lemma IV.3, Θm,L is a finite union of Cλ,m, with λ satisfying
l∑

i=1

λi ≥ m+ 1. In order to prove the theorem, we first bound the dimension of each

Cλ,m.

We now fix a partition λ ∈ Λl,m+1 with
l∑

i=1

λi ≥ m + 1. Let κ be the signature

with κi = 1 for every i ≤ λl − 1 and κi = 0 for i ≥ λl. If Lm ∈ Cλ, we denote

by Li the image of Lm under ρmi : Picm(C)m → Pici(C)i for every i ≤ m. The

definition of nk(λ) implies that λl is the largest index k such that nk(λ) 6= 0. Remark

IV.9 implies that the map πλl−1
0 : H0(Lλl−1) → H0(L) is nonzero while the map

πλl0 : H0(Lλl) → H0(L) is zero. Let W ⊂ H0(C,L) be the 1–dimensional subspace

in the image of πλl−1
0 . Consider a weak flag of H0(L) of signature κ,

VW : H0(C,L) = V0 ⊃ V = V1 = · · ·Vλl−1 = W ⊃ Vλl = · · · = Vm = 0.

Hence Li is in Sλi,V for each i ≤ λl − 1. We thus conclude that the truncation map
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ρmλl−1 : Picg−1(C)m,L → Picg−1(C)λl−1,L maps Cλ,m into Sλλl−1,κ.

Let Flagκ be the variety parameterizing all weak flags of signature κ. Let W be a

1-dimensional subspace of H0(C,L). It defines a weak flag VW = {Vi} of signature

κ. We thus have a bijection between Flagκ and P(H0(C,L)). We now compute the

dimension of Sλλl−1,VW
. Let s0 be a nonzero element in W . The multiplication map

ms0 : H0(C,KC ⊗ L−1)→ H0(C,KC)

is always injective. We thus conclude that W ⊗ H0(C,KC ⊗ L−1) → H0(C,KC) is

injective. Recall that di is the dimension of the kernel of map

µVi : Vi ⊗H0(C,KC ⊗ L−1)→ H0(C,KC).

We conclude that di = 0 for every i with 0 ≤ i ≤ m. Moreover, the dual map of ms0 ,

denoted by m∗s0 : H1(C,OC)→ H1(C,L), is a surjection. Lemma IV.10 implies that

for every i ≤ λl − 1 and every si−1 ∈ H0(Li−1) which is a lifting of s0, there are line

bundles Li over Li−1 such that si−1 can be extended as a section of Li. Therefore,

the horizontal map h : S̃λi,i,VW
→ S̃λi−1,i,VW

is a surjection. By Lemma IV.16 and

Remark IV.17, we obtain that for every weak flag VW

dimSλλl−1,VW
= (λl − 1)g −

λl−1∑
k=1

nk(λ).

By Lemma IV.15, we obtain that dimSλλl−1,κ ≤ max
W
{dimSλλl−1,VW

}+dim PH0(L),

where W ∈ H0(C,L). We consider Cλ,m as a subset of the preimage of Sλλl−1,κ under

the map ρmλl−1 : Picg−1(C)m → Picg−1(C)λl−1.

Hence

dimCλ,m ≤ g · (m− λl + 1) + max
W
{dimSλl−1,VW

}+ dim P(H0(L))

= mg −
λl−1∑
j=1

nj + l − 1

= mg − (
l∑

i=1

λi − rλl) + l − 1
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Martens’ theorem says that for every smooth curve of genus g ≥ 3, and every d

and r with 2 ≤ d ≤ g−1 and 0 < 2r ≤ d, we have dimW r
d (C) ≤ d−2r. (See [Kem]).

For 1 ≤ m < l, we have

dim(πΘ
m)−1(W l−1

g−1 rW l
g−1) = dim (W l−1

g−1 rW l
g−1) +mg

≤ g − 1− 2(l − 1) +mg

= (m+ 1)(g − 1) + (m− 2(l − 1))

≤ (m+ 1)(g − 1)−m

For m ≥ l, we have

(4.2)

dim(πΘ
m)−1(W l−1

g−1 rW l
g−1) ≤ max

λ
{dim(Cλ) + g − 2l + 1}

≤ max
λ

{
(m+ 1)(g − 1)− (

l∑
i=1

λi −m− 1)− (l − rλl(λ))

}
where λ varies over partitions in Λl,m+1 with

∑l
i=1 λi ≥ m+ 1. We conclude that for

every m,we have dim(πΘ
m)−1(W l−1

g−1 rW l
g−1) ≤ (m + 1)(g − 1). Furthermore, if the

equality is achieved for some m, then there is λ ∈ Λl,m+1 such that
l∑

i=1

λi = m+1 and

l = rλl(λ), i.e. λ1 = · · · = λl. It follows that for m such that m + 1 is not divisible

by any integer l ∈ [2, g − 1], the set (πΘ
m)−1(Θsing) =

⋃
l≥2

(πΘ
m)−1(W l−1

g−1 rW l
g−1) has

dimension smaller than (m+ 1)(g− 1). Hence Θm is irreducible for arbitrarily large

m, which implies that Θm is irreducible for all m. (See [Mus1, Proposition 1.6].)

This implies that

dim(πΘ
m)−1(Θsing) ≤ (m+ 1)(g − 1)− 1

for every m.

In order to get the lower bound for dim(πΘ
m)−1(Θsing), we need the following lemma,

see [Mus1, proposition 1.6].

Lemma IV.18. If X is a locally complete intersection variety of dimension n and
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Z ⊂ X is a closed subscheme, then dim(πXm+1)−1(Z) ≥ dim(πXm)−1(Z) + n for every

m ≥ 1.

If C is a hyperelliptic curve, we show that dim(πΘ
m)−1(Θsing) = (m+ 1)(g− 1)− 1

by induction on m ≥ 1. By [ACGH, §VI.4], we know that Θsing has dimension equal

to g − 3, which implies that dim(πΘ
1 )−1(Θsing) = g − 3 + g = 2(g − 1)− 1. We thus

have the assertion for m = 1. Assume now that the assertion holds for m − 1. A

repeated application of Lemma IV.18 implies that for every m ≥ 1,

dim(πΘ
m)−1(L) ≥ (m− 1)(g − 1) + dim(π−1

1 )(L).

Hence for every L ∈ Θsing, dim(πΘ
m)−1(L) ≥ (m− 1)(g − 1) + g. Therefore

dim(πΘ
m)−1(Θsing) ≥ dim Θsing + (m− 1)(g − 1) + g = (m+ 1)(g − 1)− 1.

This completes the proof of the theorem for hyperelliptic curves.

We now assume that C is a nonhyperelliptic curve of genus g, and show that

dim(πΘ
m)−1(Θsing) = (m + 1)(g − 1) − 2 by induction on m. By [ACGH, §VI.4], we

have dim Θsing = g − 4, hence dim(πΘ
1 )−1(Θsing) = g − 4 + g = 2(g − 1) − 2. This

proves the assertion for m = 1. A repeated application of Lemma IV.18 implies that

for every L ∈ Θsing and every m ≥ 1, dim(πΘ
m)−1(L) ≥ (m−1)(g−1)+dim(πΘ

1 )−1(L).

We thus have dim(πΘ
m)−1(Θsing) ≥ g − 4 + (m− 1)(g − 1) + g = (m+ 1)(g − 1)− 2.

In order to finish the proof, it is enough to show that

dim(πΘ
m)−1(Θsing) < (m+ 1)(g − 1)− 1

for every m. Assume there is some m0 such that

dim(πΘ
m0

)−1(Θsing) ≥ (m0 + 1)(g − 1)− 1.

A repeated application of Lemma IV.18 implies that for every m > m0,

dim(πΘ
m)−1(Θsing) ≥ (m−m0)(g − 1) + dim(πΘ

m0
)−1(Θsing) ≥ (m+ 1)(g − 1)− 1.
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On the other hand, for nonhyperelliptic curves, Martens’ theorem has a better bound,

namely dimW r
d ≤ d− 2r − 1. By applying it for the theta divisor, we have

dim(W l−1
g−1 rW l

g−1) ≤ g − 2l.

Arguing as in (†), we obtain

dim(πΘ
m)−1(W l−1

g−1 rW l
g−1) ≤ max

λ

{
(m+ 1)(g − 1)− (

l∑
i=1

λi −m− 1)− (l − rλl(λ))− 1

}

where λ varies over partitions in Λl,m=1 with
∑l

i=1 λi ≥ m+ 1. It follows that unless

there is a λ ∈ Λl,m+1 with
l∑

i=1

λi = m+ 1 and rλl(λ) = l, we have

dim(πΘ
m)−1(Θsing) < (m+ 1)(g − 1)− 1.

Therefore this holds for every m such that m + 1 is not divisible by any integer

2 ≤ l ≤ g− 1. Since there are arbitrarily large such m, we obtain a contradiction. �

In [Mus1], Mustaţǎ describes complete intersection rational singularities in terms

of jet schemes as follows. If X is a local complete intersection variety of dimension n

over k, then the following are equivalent:

(i) X has rational singularities.

(ii) X has canonical singularities.

(iii) Xm is irreducible for each m.

(iv) dimπ−1
m (Xsing) < n(m+ 1) for every m.

The equivalence of the first two parts is due to Elkik, see [Elk]. Note also that by

Theorem 3.3 in [EMY], for a reduced irreducible divisor D on a smooth variety X

of dimension n, the following are equivalent,

(i) The jet scheme Dm is a normal variety for every m.
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(ii) D has terminal singularities.

(iii) For every m, dim(πDm)−1(Dsing) ≤ (m+ 1)(n− 1)− 2.

Applying these two results to the theta divisor, we obtain the following result con-

cerning the singularities of this variety.

Corollary IV.19. Let C be a smooth projective curve of genus g ≥ 3 over k. The

theta divisor has terminal singularities if C is a nonhyperelliptic curve. If C is hyper-

elliptic, then the theta divisor has canonical non-terminal singularities. In particular,

the theta divisor has rational singularities for every smooth curve.

We now apply the above ideas to compute the log canonical threshold of the pair

(Picd(C),W r
d (C)) at a point L ∈ W r

d (C), where C is general in the moduli space of

curves.

In [Mus2, Corollary 3.6], one gives the following formula for the log canonical

threshold of a pair in terms of the dimensions of the jet schemes. If Y ⊂ X is a

closed subscheme and Z ⊂ X is a nonempty closed subset, then the log canonical

threshold of the pair (X, Y ) at Z is given by

lctZ(X, Y ) = dimX − sup
m≥0

dim(πYm)−1(Y ∩ Z)

m+ 1
.

For every L ∈ W r
d (C), the above formula implies that

lctL(Picd(C),W r
d (C)) = g − sup

m≥0

dimW r
d (C)m,L

m+ 1
.

Our main goal is to estimate the dimension of W r
d (C)m,L for each m.

We now turn to the proof of Theorem B. Let C be a general smooth projective

curve of genus g and let L be a line bundle on C. The generality assumption on C

implies that the natural pairing

µ0 : H0(C,L)⊗H0(C,KC ⊗ L−1)→ H0(C,KC)
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is injective for every L. This was stated by Petri and first proved by Gieseker [Gie].

Before proving the theorem, we need to prove an identity for every partition as

preparation.

Lemma IV.20. Let λ ∈ Λl,m+1 and λ0 = 0. We now prove that

λl∑
i=1

n2
i (λ) =

l∑
i=1

(l − i+ 1)2(λi − λi−1).

Proof. Given a partition λ ∈ Λl,m+1, we may write it as:

1 ≤ λ1 = · · · = λm1 < λm1+1 = · · · = λm2 < λm2+1 · · ·λmk < λmk+1 = · · · = λl.

For simplicity, we write ni for ni(λ). It is easy to see that

n1 = · · · = nλm1
= l

nλm1+1 = · · · = nλm2
= l −m1

· · ·

nλmk+1 = · · · = nλl = l −mk−1

This implies that

l∑
i=1

(l − i+ 1)2(λi − λi−1) = l2(λ1) + (l −m1)2(λm1+1 − λm1) + · · ·+ (l −mk)
2(λmk+1 − λmk)

= l2(λm1) + (l −m1)2(λm2 − λm1) + · · ·+ (l −mk)
2(λl − λmk)

=

λm1∑
i=1

l2 +

λm2∑
i=λm1+1

n2
i + · · ·+

λl∑
i=λmk+1

n2
i

=

λl∑
i=1

n2
i =

λl∑
i=1

n2
i (λ)

Proof of Theorem B. Let C be a general smooth projective curve in the sense of

Petri and Gieseker. Let L be a line bundle in W r
d (C) with l = h0(C,L) ≥ r + 1.
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Since we are only interested in the asymptotic behavior of W r
d (C)m,L, we can assume

that m ≥ l. By Lemma IV.4 we have a stratification W r
d (C)m,L =

⋃
Cλ,m, where

λ ∈ Λl,m+1 are taken over all length l partitions satisfying
l−r∑
i=1

λi ≥ m+ 1.

We now fix such a partition λ. Let κ be a signature with κi = ni+1(λ) for

every i with 1 ≤ i ≤ m. For every Lm ∈ Cλ,m, we denote by Li the image of

Lm under the truncation ρmi : Picd(C)m → Picd(C)i. The images Vi of the maps

πi0 : H0(Li)→ H0(C,L) give a weak flag VLm . By Remark IV.9, we obtain

dimVi = h0(Li)− h0(Li−1) = ni+1(λ).

Therefore VLm is a weak flag of signature κ. The image of Lm in Picd(C)λl−1 is in

Sλλl−1,VLm
. Hence the truncation map

ρmλl−1 : Picd(C)m → Picd(C)λl−1

maps Cλ,m to Sλλl−1,κ =
⋃
V

Sλλl−1,V, where V varies over all weak flags of signature

κ. The key step is to compute the dimension of Sλλl−1,V for each V. We keep the

notation in the proof of Lemma IV.16.

The fact that the canonical pairing

µ0 : H0(C,L)⊗H0(C,KC ⊗ L−1)→ H0(C,KC)

is injective implies that all restrictions µVi : Vi⊗H0(C,KC ⊗L−1)→ H0(C,KC) are

injective. Hence di = dim kerµVi is zero for every weak flag V of H0(L) of signature

κ.

We now show that if the canonical pairing µ0 is injective, then all horizontal maps

h : S̃λi,i,V → S̃λi−1,i,V in the proof of Lemma IV.16 are surjective. Let (Li−1,W ) be an

element in S̃λi−1,i,V. Given a pointM in the fiber of ρii−1 : Picd(C)i → Picd(C)i−1 over

Li−1, we get an isomorphism (ρii−1)−1(Li−1) ∼= H1(C,OC). Let {s0,p}p be a basis of
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Vi, and si−1,p the lifting of s0,p to the level i−1 in W . It is easy to see that (Li−1,W )

is in the image of h if and only if there is an element Li ∈ (ρii−1)−1(Li−1) such that

for every p, the section si−1,p has an extension to a section of Li. By Lemma IV.10,

we deduce that for every p, si−1,p has an extension to a section of Li if and only if

the equation of the following form holds:

(�p) ν(s0,p ⊗ [Li]) = τp.

where τp is a cohomology class in H1(C,L) determined by the section si−1,p. In order

to prove that (Li−1,W ) is in the image of h, it suffices to show the existence of an

element Li ∈ (ρii−1)−1(Li−1) such that the equation (�p) holds for every p.

Recall thatH1(C,OC) is the dual space ofH0(C,KC), hence we identify [Li] with a

linear map H0(C,KC)→ k. By the duality between H1(C,L) and H0(C,KC⊗L−1),

we identify τp with a linear map H0(C,KC ⊗ L−1)→ k. For every p, there is a map

ms0,p : H0(C,KC ⊗ L−1)→ H0(C,KC) taking γ ∈ H0(C,KC ⊗ L−1) to µ0(s0,p ⊗ γ).

Hence the equation (�p) holds for Li for all p if and only if the composition map

H0(C,KC ⊗ L−1)
ms0,p
↪→ H0(C,KC)

[Li]→ k

is equal to τp for all p.

Let Ap be the image of ms0,p . The fact that Vi⊗H0(C,KC⊗L−1)→ H0(C,KC) is

injective implies that the sum
∑
p

Ap in H0(C,KC) is a direct sum. We conclude that

there is a C̆ech cohomology classes [Li] satisfying (�p) for all p. Therefore (Li−1,W )

is in the image of h.

Applying Lemma IV.16 and Remark IV.17 to the case i = λl − 1, we obtain

dimSλλl−1,V = g(λl − 1)−
λl∑
i=2

ni(λ)(g − d− 1)−
λl−1∑
i=1

ni+1(λ)ni(λ).

Recall that Flagκ is the variety parameterizing all weak flag variety of signature κ.

We denote by Dκ the dimension of Flagκ. It is easy to see that Flagκ is exactly
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the usual flag variety of signature κ′ where κ′ is the longest decreasing subsequence

of κ. Since k1 = n2(λ) ≤ n1(λ) = l = H0(C,L), there are only finitely many

ways to get strictly decreasing sequence with values ≤ l and length ≤ l. There are

thus only finitely many integers Dκ. Let K1 be the maximal value among these

numbers. Clearly K1 only depends on l. In particular, it is independent on m, hence

lim
m→∞

K1

m
= 0.

Note that Sλλl−1,κ =
⋃
V

Sλλl−1,V, where V varies over all weak flags in Flagκ. We thus

have dimSλλl−1,κ ≤ max
V
{dimSλλl−1,V}+K1. We have seen that ρmλl−1(Cλ,m) ⊂ Sλλl−1,κ,

hence dimCλ,m ≤ (m− λl + 1)g + dimSλλl−1,κ. For each m ≥ l, we thus have

codim(Picd(C)m,L,W
r
d (C)m,L) = min

λ
{mg − dimCλ,m}

≥ min
λ

{
λl∑
i=2

ni(λ)(g − d− 1) +

λl−1∑
i=1

ni(λ)ni+1(λ)−K1

}

= min
λ

{
(

l∑
i=1

λi − l)(g − d− 1) +

λl−1∑
i=1

ni(λ)ni+1(λ)−K1

}

where λ varies over the partitions in Λl,m+1 with
l−r∑
i=1

λi ≥ m+ 1.

Note that
λl−1∑
i=1

ni(λ)ni+1(λ) ≥
λl∑
i=1

n2
i (λ)− l2, and since lim

m→∞
l2

m
= 0 = lim

m→∞
K1

m
, we

obtain

inf
m→∞

codim(Picd(C)m,L,W
r
d (C)m,L)

m+ 1

≥ inf
m→∞

min
λ

{
1

m+ 1

(
(

l∑
i=1

λi − l)(g − d− 1) +

λl−1∑
i=1

ni+1(λ)ni(λ)−K1

)}

≥ inf
m→∞

min
λ

{
1

m+ 1

(
(

l∑
i=1

λi)(g − d− 1) +

λl∑
i=1

n2
i (λ)

)}
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By Lemma IV.20, we thus obtain

inf
m→∞

codim(Picd(C)m,L,W
r
d (C)m,L)

m+ 1

≥ inf
m→∞

min
λ

{
1

m+ 1

(
l∑

i=1

(l − i+ 1)(λi − λi−1)(g − d− 1) +
l∑

i=1

(l − i+ 1)2(λi − λi−1)

)}

= inf
m→∞

min
λ

{
1

m+ 1

l∑
i=1

(λi − λi−1)(g − d+ l − i)(l − i+ 1)

}
For every i with 1 ≤ i ≤ l, let xi = λi − λi−1. Consider a linear function of the

form
l∑

i=1

bixi with bi ≥ 0, defined over the region

{(x1, · · · , xl) ∈ Rl | xi ≥ 0 for every i,
l−r∑
i=1

(l − i− r + 1)xi ≥ m+ 1}.

The minimum value of this function is achieved at the vertices of this region, i.e. the

points with all the xi but one equal to 0 and
l−r∑
i=1

(l − i− r + 1)xi = m+ 1.

We thus have

(]) lctL(Picd(C),W r
d (C)) ≥

l−r
min
i=1

{
(l + 1− i)(g − d− i+ l)

l + 1− r − i

}
On the other hand, recall that one can locally define a map from Picd(C) to

a variety of matrices M(d+e+1−g)×e such that W r
d (C) is the pull back of a suitable

generic determinantal variety Y defined by e + d + 1 − g − r minors. Let ΦL be

the image of L. The right hand side in (]) is the log canonical threshold of the

pair (M(d+e+1−g)×e, Y ) at the point ΦL (for the formula of log canonical thresh-

old of a generic determinantal variety, see [Doc, Theorem 3.5.7]). We thus have

lctL(Picd(C),W r
d (C)) ≤ lctΦL(M(d+e+1−g)×e, Y ), by [Lar, Example 9.5.8], which com-

pletes the proof. �

4.3 Appendix

Let L be a line bundle in Picd(C) with l = h0(C,L). In this section, we are

going to show that the subsets Sλi,V and Sλi,κ of Picd(C)i,L defined in section 2 are
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constructible subsets of Picd(C)i,L. The key point is to realize S̃λi,j,V as a constructible

subset of a suitable product of Grassmann bundles.

Let X be a scheme and E a vector bundle of rank n over X. For every d ≤ n, we

denote by Gr(d,E) the Grassmann bundle of d-dimensional subspaces in E and by

π the projection morphism from Gr(d,E) to X. We write elements in Gr(d,E) as

pairs (x,W ) where x is a point in X and W is a dimension d subspace of Ex.

Lemma IV.21. If Φ : E → F is a homomorphism of vector bundles on the scheme

X, then we have

1. The subset IΦ := {x ∈ X | Φx : Ex → Fx is an injection} is an open subset of

X.

2. If H is a subbundle of F , then the set MΦ
H := {x | Φx(Ex) ⊂ Hx} is a closed

subset of X.

The proof of Lemma IV.21 is standard, so we leave it to the reader.

Recall that P is a Poincaré line bundle on Picd(C) × C. From the definition of

jet schemes, we have Picd(C)m × Cm ∼= (Picd(C) × C)m ∼= Hom(Tm,Picd(C) × C).

By the adjunction (3.1) in section 1 for Y = Picd(C)m × Cm and X = Picd(C)× C,

the identity map of Picd(C)m × Cm gives an evaluation morphism

Picd(C)m × Cm × Tm
Ξ−→ Picd(C)× C.

For every m, we also have a morphism C
γm−→ Cm that takes a point to the corre-

sponding constant jet. We have the composition map

η : Picd(C)m × C × Tm
id×γm×id−−−−−−→ Picd(C)m × Cm × Tm

Ξ−→ Picd(C)× C.

We denote by Bm the pull back of the line bundle P to Picd(C)m × C × Tm via η.
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Recall that for every partition λ in Λl,m+1, Cλ,m is the locally closed subset

{Lm ∈ Picd(C)m,L | Lm is of type λ}.

For every 0 ≤ i ≤ m, there is a natural map Λl,m+1 → Λl,i+1 mapping λ to λ where

λk = min{λk, i+ 1} for each k ≤ l. We have seen that ρmi : Picd(C)m,L → Picd(C)i,L

maps Cλ,m to Cλ,i.

We now fix a partition λ ∈ Λl,m+1. We denote by Bλ,m the restriction of Bm to the

subscheme Cλ,m×C×Tm, where on Cλ,m we consider the reduced scheme structure.

We denote by p1 the projection to the first factor Picd(C)m,L×C×Tm → Picd(C)m,L.

It is easy to check that for every Lm ∈ Picd(C)m,L corresponding to a morphism

f : Tm → Picd(C), the restriction of Bm to the fiber of p−1
1 (Lm) ∼= C × Tm is

(f × idC)∗(P) ∼= Lm.

Recall that for every i with 0 ≤ i ≤ m, there is a closed embedding ιmi : Ti ↪→ Tm.

Let

νmi : Cλ,m × C × Ti ↪→ Cλ,m × C × Tm

be the induced embedding. Let Dλ,i be the sheaf p1∗(ν
m
i )∗(ν

m
i )∗(Bλ,m) on Cλ,m.

Consider the function Cλ,m → Z that takes Lm to h0(C × Ti,Li), where Li is the

image of Lm in Picd(C)i ∼= Picd(C × Ti). Lemma IV.8 implies that this function is

constant on Cλ,m. By the Base Change Theorem, we deduce that Dλ,i is a locally

free sheaf of rank
i+1∑
j=1

nj(λ) on Cλ,m, whose fiber over a point Lm is H0(C,Li). For

every i and j with 0 ≤ j ≤ i ≤ m, the embedding map νmj factors through νmi . We

thus have a natural morphism of sheaves

(νmi )∗(ν
m
i )∗(Bλ,m)→ (νmj )∗(ν

m
j )∗(Bλ,m)

on Cλ,m × C × Tm. Applying (p1)∗ to it, we obtain a vector bundle map

Φi
j : Dλ,i → Dλ,j
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on Cλ,m whose restriction to the fiber over {Lm} is the truncation map

πij : H0(Li)→ H0(Lj).

For a fixed partition λ ∈ Λl,m+1, we consider κ = (κ1, · · · , κm) a signature with

kj ≤ nj+1(λ) for every j ≤ m. For every i ≤ m, a point in the fiber product of

Grassmann bundles

Gλ,i,κ := Gr(κ1,Dλ,1)×Cλ,m · · · ×Cλ,m Gr(κi,Dλ,i)

over Cλ,m is written as an (m + 1)–tuple (Lm; Ṽ1, · · · , Ṽi), where Lm ∈ Cλ,m and

Ṽj is a dimension κj subspace of (Dλ,j)|Lm ∼= H0(Lj) for every j ≤ i. For every

weak flag V of H0(C,L) of signature κ, we denote by Pλm,i,V the subset of points

(Lm; Ṽ1, · · · , Ṽi) ∈ Gλ,i,κ, where Lm ∈ Cλ,m and {Ṽ1, . . . , Ṽi} is a compatible extension

of V(i) to the line bundle Li. We also write Pλm,i,κ for
⋃
V

Pλm,i,V, where V varies over

all weak flags of H0(C,L) of signature κ.

Recall that Flagκ is the variety parameterizing weak flags of H0(C,L) of signature

κ. We denote by P̃λm,i,κ the subset of points

(Lm; Ṽ1, · · · , Ṽi; V′) ∈ Gλ,i,κ × Flagκ

where V′ ∈ Flagκ and (Lm; Ṽ1, · · · , Ṽi) ∈ Pλm,i,V′ .

Lemma IV.22. Let λ ∈ Λl,m+1 and κ be a signature of length m with κj ≤ nj+1(λ)

for every 1 ≤ j ≤ m. Then for every i with 1 ≤ i ≤ m, P̃λm,i,κ is a constructible

subsets of Gλ,i,κ × Flagκ.

Proof. For simplicity, we write X for the scheme Gλ,i,κ×Flagκ. For j with 1 ≤ j ≤ i,

we denote by pj the projection X onto Gr(κj,Dλ,j) and by pi+1 the projection of X

onto Flagκ. For a fixed j with 1 ≤ j ≤ i, we denote by qj : Gr(κj,Dλ,j) → Cλ,m.
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The composition map

X
pj−→ Gr(κj,Dλ,j)

qj−→ Cλ,m

does not depend on a particular choice of j for j ≤ i. We denote it by χ.

For every j with 1 ≤ j ≤ i, we denote by Tj the tautological subbundle of q∗j (Dλ,j)

on Gr(κj,Dλ,j). Let Tj = p∗jTj and Fj be the vector bundle p∗jq
∗
j (Dλ,j) = χ∗(Dλ,j).

Hence Tj is a subbundle of Fj for each j. Over a point x = (Lm; Ṽ1, · · · , Ṽi; V′) ∈ X,

we have Tj,x = Ṽj and Fj,x is H0(Lj) where Lj is the image of Lm under Picd(C)m,L →

Picd(C)j,L. For every k and j with 0 ≤ k ≤ j ≤ i, we write Ψj
k for the composition

Tj ↪→ Fj → Fk.

Let R1 ⊇ R2 ⊇ · · · ⊇ Rm be the tautological flag bundles on Flagκ, where the

fiber of Rj over a point V′ = {V ′n}n in Flagκ is V ′j . We write Rj for the pull back

of Rj via pi+1 : X → Flagκ. Over a point x = (Lm; Ṽ1, · · · , Ṽi; V′) ∈ X, where

V′ = {V ′j } ∈ Flagκ we have Rj,x = V ′j . Note that D0 is the trivial vector bundle on

Cλ,m with fiber H0(C,L). Hence F0 is a trivial bundle on X with fiber H0(C,L). It

implies that Rj is a subbundle of F0.

With the notation in Lemma IV.21, we have

P̃λm,i,κ =
i⋂

j=1

(IΨj0
∩MΨjj−1

Tj−1
∩MΨj0

Rj )

This completes the proof.

Corollary IV.23. With the notation in Lemma IV.22, let V be a weak flag of

H0(C,L) of signature κ. For every i with 1 ≤ i ≤ m, Pλm,i,κ and Pλm,i,V are both

constructible subsets of Gλ,i,κ.

Proof. We denote by pr1 and pr2 the projections of Gλ,i,κ × Flagκ onto Gλ,i,κ and

Flagκ, respectively. We thus deduce that Pλm,i,κ, as the image of P̃λm,i,κ under pr1, is

a constructible subset of Gλ,i,κ. It is clear that Pλm,i,V is the image of P̃λm,i,κ∩pr−1
2 (V)
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under pr1. Lemma IV.22 implies that P̃λm,i,κ ∩ pr−1
2 (V) is a constructible subset of

Gλ,i,κ × Flagκ. This completes the proof.

Corollary IV.24. Let κ be a signature of length m with kj ≤ nj+1(λ) for every

j ≤ m, and V ∈ Flagκ. For every i with 1 ≤ i ≤ m, the subsets Sλi,κ and Sλi,V are

constructible subset of Picd(C)i,L.

Proof. For a fixed i, let κ be a signature of length i such that κj = κj for every j ≤ i.

Recall that λ is the image of λ under Λl,m+1 → Λl,i+1. By the definition of Sλi,κ, we

have Sλi,κ = Sλi,κ for every i ≤ m. It suffice to prove the assertion in case i = m.

Recall that χ is the morphism of projection Gλ,m,κ → Cλ,m. The fact that Sλm,κ is

the image of Pm,m,κ under χ and Corollary IV.23 shows that Sλm,κ is a constructible

subset of Picd(C)m,L. The assertion for Sλi,V is proved similarly.

Lemma IV.25. S̃λi,j,V is a constructible subset of the Grassmann bundle Gr(κj,Di)

on Cλ,i.

The proof of this lemma is similar to those of Lemma IV.22 and Corollary IV.23,

hence we leave it to the reader.



CHAPTER V

Divisorial Valuations via Arc Spaces

5.1 Cylinder Valuations and Divisorial Valuations

The main goal of this section is to establish the correspondence between cylinders

and divisorial valuations described in the introduction. Let X be a variety over a

field k. Recall that a subset C of X∞ is thin if there is a proper closed subscheme Z

of X such that C ⊂ Z∞.

Lemma V.1. Let X be a smooth variety over k. If C is a nonempty cylinder in

X∞, then C is not thin.

For the proof of Lemma V.1, see [ELM][Proposition 1].

Lemma V.2. Let f : X ′ → X be a proper birational morphism of schemes over k.

Let Z be a closed subset of X and F = f−1(Z). If f is an isomorphism over X \ Z,

then the restriction map of f∞

ϕ : X ′∞ \ F∞ → X∞ \ Z∞

is bijective on the L–valued points for every field extension L of k. In particular, ϕ

is surjective.

Proof. Since f is proper, the Valuative Criterion for properness implies that an arc

γ : SpecL[[t]] → X lies in the image of f∞ if and only if the induced morphism
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γη : SpecL((t)) → X can be lifted to X ′. γ is not contained in Z∞ implies that γη

factor through X \ Z ↪→ X. Since f is an isomorphism over X \ Z, hence there

is a unique lifting of γη to X ′. This shows that ϕ is surjective. The injectivity of

ϕ follows from the Valuative Criterion for separatedness of f . The last assertion

follows from the fact that a morphism of schemes (not necessary to be of finite type)

over k is surjective if the induced map on L–valued points is surjective for every field

extension L.

The Change of Variable Theorem due to Kontsevish [Kon] and Denef and Loeser

[DL] will play an important role in our arguments. We now state a special case of

this theorem as Lemma I.6.

Lemma V.3. Let X be a smooth variety of dimension n over k and Z a smooth

irreducible subvariety of codimension c ≥ 2. Let f : X ′ → X be the blow up of X

along Z and E the exceptional divisor.

(a) For every positive integer e and every m ≥ 2e, the induced morphism

ψX
′

m (Conte(KX′/X))→ fm(ψX
′

m (Conte(KX′/X)))

is a piecewise trivial Ae fibration.

(b) For every m ≥ 2e, the fiber of fm over a point γm ∈ fm(ψX
′

m (Conte(KX′/X))) is

contained in a fiber of X ′m → X ′m−e.

Although Lemma I.6 is well-known, we give a proof for completeness. The idea is

similar to that of [Bli, Theorem 3.3].

Proof. Suppose that γ′ is an element in Conte(KX′/X) ⊂ X ′∞. We denote by γ the

image of γ′ in X∞. Let γm = ψXm(γ) and γ′m = ψX
′

m (γ′). We denote by L the residue

field of γm and L′ the residue field of γ′m. We now describe the fiber of fm over γm.



65

Let x′ = ψX
′
∞ (γ′) and x = ψX∞(γ). The residue field of x is a subfield of L. Since

e ≥ 1, then x ∈ Z. Let U be an affine open neighborhood of x in X such that Z is

defined by c regular local parameters, denoted by z1, . . . , zc.

Due to the local nature of the question, we can replace X by U and X ′ by the

blow up of U along Z ∩U . It follows that X ′ ⊂ Pc−1
U , defined by the 2× 2 minors of

the matrix  y1 y2 · · · yc

z1 z2 · · · zc


where the yi are the homogeneous coordinates of Pc−1. Suppose that the point x′ is

in the affine patch U ′ of X ′ such that y1 is not zero. We set y1 = 1, then the above

equations are yiz1 = zi for every i ≥ 2. The morphism U ′ → U induces the ring map

f ∗ : O(U) ↪→ O(U)[y2, . . . , yc] = O(U ′).

The exceptional divisor E is defined by z1 = 0 in O(U ′). Since codimZ = c, it follows

that KX′/X is defined by zc−1
1 . Hence ord′γ E =

ordγ′ KX′/X
c−1

= e
c−1

. For simplicity, we

write α for e
c−1

. Note that m ≥ 2e ≥ e+α. Consider the induced ring homomorphism

(γ′m)∗ : O(U ′)→ L′[t]/(tm+1), since fm(γ′m) = γm, we obtain

(5.1)

(γm)∗(z1) = (γ′m)∗(z1) = tα
m−α∑
i=0

a1,it
i

(γm)∗(z2) = (γ′m)∗(z2) =
m∑
i=0

a2,it
i

· · ·

(γm)∗(zc) = (γ′m)∗(zc) =
m∑
i=0

ac,it
i

where the coefficients ai,j ∈ L with a1,0 6= 0.

We now fix a finitely generated L–algebra M and show that the M–valued points

of f−1
m (γm) are the affine space Ae over M . Let γ′′m be an M–valued m–jet in the
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fiber of fm : Conte(KX′/X)m → Xm over γm. For every 1 ≤ j ≤ c, we get

(γ′′m)∗(yj) =
m∑
i=0

bj,it
i

with bj,i ∈M .

The equality fm(γ′′m) = γm implies that

(5.2)

(γm)∗(z1) = (γ′′m)∗(z1) = tα
m−α∑
i=0

a1,it
i mod tm+1

(γm)∗(z2) = (γ′′m)∗(y2z1) = (
m∑
i=0

b2,it
i)(tα

m−α∑
i=0

a1,it
i) mod tm+1

· · ·

(γm)∗(zc) = (γ′′m)∗(ycz1) = (
m∑
i=0

bc,it
i)(tα

m−α∑
i=0

a1,it
i) mod tm+1

Comparing the first rows in equations (1) and (2), we get

m∑
i=0

b1,it
i = (γm)∗(z1) = tα

m−α∑
i=0

a1,it
i mod tm+1.

This implies that all coefficients b1,j for 1 ≤ j ≤ m are determined in terms of {a1,i}.

For the coefficients b2,j, we compare the second rows in equations (5.1) and (5.2), i.e.

(
m∑
i=0

b2,it
i)(tα

m−α∑
i=0

a1,it
i) =

m∑
i=0

a2,it
i mod tm+1.

Expanding the product of two sums, we observe that all the coefficients b2,m−α+1, . . . , b2,m

do not show up. On the other hand, the coefficients of tj with j ≥ α give equations

as follows:

(5.3)

a2,α = b2,0a1,0

a2,α+1 = b2,0a1,1 + b2,1a1,0

· · ·

a2,m = b2,0am−α + · · ·+ b2,m−αa1,0

Note that a1,0 6= 0, by induction on the second index of b, we can solve b2,0, . . . , b2,m−α

in terms of {a1,i} and {a2,j}. We do the similar computations on z3, . . . , zc. It is
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clear that the set of M–valued points of the fiber of fm over γm is an M–affine space

with coordinates bj,i for 2 ≤ j ≤ c and m − α + 1 ≤ i ≤ m. This implies that the

fiber of fm at γm is Ae
SpecL . This complete the proof of the part (a).

Let γm ∈ ψm(Conte(KX′/X)). The proof of Part (a) implies that any two jets γ′m

and γ′′m in the set f−1
m (γm) only differ in the last α coordinates. Hence they have the

same image via the truncation map ρmm−α. In particular, this implies part (b).

Let X be a smooth variety of dimension n over k. For every irreducible cylinder

C which does not dominate X, we define a discrete valuation as follows. Let γ be the

generic point of C with residue field L. We thus have an induced ring homomorphism

γ∗ : OX,γ(0) → SpecL[[t]]. Lemma V.1 implies that ker γ∗ is zero. Hence γ∗ extends

to an injective homomorphism γ∗ : k(X)→ L((t)). We define a map

ordC : k(X)∗ → Z

by ordC(f) := ordγ(f) = ordt(γ
∗(f)). If C does not dominate X, then ordC is a

discrete valuation. If C ′ is a dense subcylinder of C, then they define the same

valuation. Given an element f ∈ k(X), we can check that ordC(f) = ordγ′(f) for

general point γ′ in C.

From now on we assume that k is a perfect field. We first prove that every

valuation defined by a cylinder is a divisorial valuation.

Lemma V.4. If C is an irreducible closed cylinder in X∞ which does not dominate

X, then there exist a divisor E over X and a positive integer q such that

(5.4) ordC = q · ordE .

Furthermore, we have codim(C) ≥ q · (1 + ordE(K−/X)).
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Proof. We will prove that such divisor E can be reached by a sequence of blow

ups of smooth centers after shrinking to suitable open subsets. Let (R,m) be the

valuation ring associated to the valuation ordC . Suppose that C is ψ−1
m (S) for some

closed irreducible subset S in Xm. Chevalley’s Theorem implies that the image of

the cylinder C by the projection ψ0(C) = πm(S) is a constructible set. We denote

its closure in X by Z. This is the center of ordC . If C is irreducible and does not

dominate X, then Z is a proper reduced irreducible subvariety of X. The generic

smoothness theorem implies that there is an nonempty open subset U of X such

that U ∩ Z is smooth. Since U contains the the generic point of Z, then C ∩ U∞ is

an open dense subcylinder of C. Note that U∞ is an open subset of X∞, we have

codim(C,X∞) = codim(C ∩ U∞, U∞) and C ⊆ X∞ and C ∩ U∞ ⊆ U∞ define the

same valuation. This implies that we can replace X by U and C by C ∩ U∞. As a

consequence, we may and will assume that Z is a smooth subvariety of X.

If Z is a prime divisor on X, then the local ring OX,Z is a discrete valuation ring

of k(X) with maximal ideal mX,Z . Given two local rings (A, p) and (B, q) of k(X),

we denote by (A, p) � (B, q) if A ⊆ B is a local inclusion, i.e. p = q∩A. This defines

a partial order on the set of local rings of k(X). By the definition of Z, we deduce

that

(OX,Z ,mX,Z) � (R,m).

Since every valuation ring is maximal with respect to the partial order �, it follows

thatOX,Z is equal to the valuation ring R of ordC , and ordC = q·ordZ for some integer

q > 0. Therefore we may take X ′ = X and E = Z, in which case ordE(K−/X) = 0.

The equality ordC Z = q · ordZ Z = q implies that C is a subcylinder of Cont≥q(E).

Since E is a smooth divisor, we obtain that codim Cont≥q(E) = q. This proves the
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inequality

codim(C) ≥ q · (1 + ordE(K−/X)) = q.

We now assume that Z is not a divisor, i.e. codimZ ≥ 2. Let f : X ′ → X be the

blow up of X along Z. We claim that there exists an irreducible closed cylinder C ′

in X ′∞ such that the morphism f∞ maps C ′ into C dominantly.

Let e be the vanishing order ordC(KX′/X). We can assume that C = (ψXm)−1(S)

for some closed irreducible subset S in Xm with m ≥ 2e. The smoothness of X

implies that C \ Z∞ is a dense subset of C. Let F = f−1(Z) be the exceptional

divisor on X ′. It is clear that f−1
∞ (Z∞) = F∞. We denote by

ϕ : X ′∞ \ F∞ → X∞ \ Z∞

the restriction of f∞. Let γ be the generic point of C and L the residue field of γ.

Hence γ induces a morphism

γL : SpecL[[t]]→ X.

Lemma V.1 implies that γ ∈ X∞ \Z∞. By Lemma V.2, we deduce that ψ is bijective

on L–valued piont, hence there is a unique L–valued point of X ′∞ mapping to γL via

ϕ. We denote by γ′ its underlying point in X ′∞. It is clear that f∞(γ′) = γ. For

simplicity we write γm for ψXm(γ) and γ′m for ψX
′

m (γ′). By Lemma I.6 part (a), we

deduce that f−1
m (γm) is an affine space of dimension e over the residue field of γm.

Hence the image of f−1
m (γm) in X ′∞, denoted by T , is irreducible. Since γm is the

generic point of S, there is a unique component of f−1
m (S) which contains T . Let S ′

be this component and C ′ the cylinder (ψX
′

m )−1(S ′) in X ′∞. We now check that the

closed irreducible cylinder C ′ satisfies the above conditions. The fact

fm(γ′m) = fm ◦ ψX
′

∞ (γ′) = ψXm(γ) = γm
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implies that γ′m ∈ T . We deduce that γ′ ∈ C ′. It follows that f∞ maps C ′ into C

dominantly.

The fact that the center of ordC on X is Z implies that ordC(F ) > 0, hence

e = ordC(KX′/X) > 0. Lemma I.6 implies that fm : S ′ → S is dominant with general

fibers of dimensional e. We thus have dimS ′ = dimS + e, hence

codimC ′ = dimX ′m − dimS ′ = dimXm − (dimS + e) = codimC − e

We now set X(0) = X,X(1) = X ′, C(0) = C and C(1) = C ′. Since C ′ dominates C,

we get that ordC and ordC′ are equal as valuations of k(X). If the center of ordC′ on

X ′ is not a divisor, we blow up this center again (we may need to shrink X ′ to make

the center to be smooth). We now run the above argument for the variety X(1) and

C(1) and obtain X(2) and C(2). Since every such blow up decreases the codimension

of the cylinder, which is an non-negative integer, we deduce that after s blow ups,

the center of the valuation ordC(s) on X(s) is a divisor, denoted by E. We have

ordC = ordC(1) = · · · = ordC(s) = q · ordE .

We now check the inequality codimC ≥ q · (1 + ordE(K−/X)). At each step, we have

codim(C) = codim(C(1)) + ordC(KX(1)/X)

codim(C(1)) = codim(C(2)) + ordC(KX(2)/X(1))

· · ·

codim(C(s−1)) = codim(C(s)) + ordC(KX(s)/X(s−1))

We thus obtain that

codim(C) = codim(C(s)) +
s∑
i=1

ordC(KX(i)/X(i−1))

= codim(C(s)) + ordC(KX(s)/X)

It is clear that ordC E = q · ordE(E) = q, hence C(s) ⊆ Cont≥q(E), and therefore

codimC(s) ≥ codim Cont≥q(E) = q. This complete the proof.
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Lemma V.5. Let X be a smooth variety and S a constructible subset of Xm for

some m.

(a) ψ−1
m (S) = ψ−1

m (S).

(b) If U is an open subset of X and C is a cylinder in U∞, then the closure C in

X∞ is a closed cylinder in X∞.

Proof. We first prove part (a). Since ψm is continuous with respect to the Zariski

topologies, we deduce that ψ−1
m (S) is closed. We thus have ψ−1

m (S) ⊆ ψ−1
m (S). If

ψ−1
m (S) 6= ψ−1

m (S), then there is an arc γ ∈ ψ−1
m (S) \ ψ−1

m (S). Let U be an affine

neighborhood of ψ0(γ) in X and W = S ∩ Um. It is clear that

γ ∈ (ψUm)−1(W ) \ (ψUm)−1(W ).

In order to get a contradiction, we can replace X by U and S by W . We thus may

assume that X is an affine variety. It follows from the construction of jet schemes

that Xm are smooth affine varieties. Let Xm = SpecAm for every m ≥ 0. Hence

X∞ = SpecA where A =
⋃
m

Am. We claim that if ψ−1
m (S) 6= ψ−1

m (S), then there is an

integer n ≥ m such that

ψn(ψ−1
m (S)) 6= ψn(ψ−1

m (S)).

Since ψn(ψ−1
m (S)) = (ρnm)−1(S) and ψn(ψ−1

m (S)) = (ρnm)−1(S), we deduce that

(ρnm)−1(S) = ψn(ψ−1
m (S)) ⊆ ψn(ψ−1

m (S)) ( (ρnm)−1(S).

On the other hand, since ρnm is a locally trivial affine bundle with fiber AdimX(n−m),

we have (ρnm)−1(S) = (ρnm)−1(S). We thus get an contraction.

We now prove the claim. Let I be the radical ideal defining ψ−1
m (S) in X∞ and

J the radical ideal defining ψ−1
m (S). If ψ−1

m (S) 6= ψ−1
m (S), then there is an element
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f ∈ I \ J . There exist an integer n ≥ m such that f ∈ An. Let In = I ∩ An and

Jn = J ∩ An. It is clear that ψn(ψ−1
m (S)) is the closed subset of Xn defined by Jn.

Similarly ψn(ψ−1
m (S)) = (ρnm)−1(S) is the closed subset of Xn defined by the ideal In.

Since f ∈ In \ Jn, we thus have the assertion of the claim. This completes the proof

of part (a).

For the proof of part (b), let C = (ψUm)−1(S) for some integer m ≥ 0 and some

constructible subset S of Um. We now consider S as a constructible subset of Xm

and apply part (a), we thus obtain C = ψ−1
m (S) = (ψXm)−1(S). This completes the

proof.

Lemma V.6. Let X and X ′ be smooth varieties over a field k, and f : X ′ → X a

blow up with smooth center. If C ′ is a closed cylinder of X ′, then the closure of the

image f∞(C ′), denoted by C, is a cylinder in X ′. We also have

ordC = ordC′ ; codimC = codimC ′ + ordC′ KX′/X .

Proof. Let e = ordC′ KX′/X . For simplicity, we write ψ′m for ψX
′

m and ψm for ψXm for

every m ≥ 0. We first show that C is a closed cylinder. We choose an integer p ≥ e

and a constructible subset T ′ of X ′p such that C ′ = (ψ′p)
−1(T ′). Let m = e + p. We

denote by S ′ the inverse image of T ′ by the canonical projection ρmp : X ′m → X ′p.

Let S = fm(S ′). Lemma I.6 part (b) implies that f−1
m (fm(S ′)) ⊆ (ρmp )−1(T ′) = S ′.

We thus have f−1
m (fm(S ′)) = S ′. It follows that f∞(C ′) = ψ−1

m (S). Hence

C = f∞(C ′) = ψ−1
m (S) = ψ−1

m (S)

is an irreducible closed cylinder in X∞. Here the last equality follows from Lemma

V.5 part (a). Since C ′ dominates C, we have ordC = ordC′ . The codimension equality

follows from the fact that dimS ′ = dimS + e by Lemma I.6.
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Lemma V.7. Let X be a smooth variety over a perfect field k. If f : Y → X

is a birational morphism from a normal variety Y and E is a prime divisor, then

for every positive integer q, there exist an irreducible cylinder C ⊂ X∞ such that

ordC = q · ordE and

(5.5) codim(C) = q · (1 + ordE(KY/X))

Proof. Let ν be the divisorial valuation q ·ordE on the function field K(X). We define

a sequence of varieties and maps as follows. Let Z0 be the center of ν on X and

X(0) = X. We choose an open subset U (0) of X(0) such that Z0 ∩U (0) is a nonempty

smooth subvariety of U (0). If Z0 ∩ U (0) is not a divisor, then let f1 : X(1) → U (0)

be the blow up of U (0) along Z0 ∩ U (0) and h1 : X(1) → X the composition of f1

with the embedding U (0) ↪→ X. If fi : X(i) → U (i−1) and hi : X(i) → X(i−1) are

already defined, then we denote by Zi the center of ν on X(i). We pick an open

subset U (i) ⊂ X(i) such that Zi ∩ U (i) is a smooth subvariety of U (i). If Zi is not a

divisor, then we denote by fi+1 : X(i+1) → U (i) the blow up of Ui along Zi ∩U (i) and

hi+1 : X(i+1) → X(i) the composition of fi+1 with the embedding U (i) → X(i). By

[KM][Lemma 2.45], we know there is an integer s ≥ 0 such that Zs is a prime divisor

on U (s) and ordZs = ordE. Hence we can replace Y by a smooth variety U (s) and

E = Zs ∩ U (s). We write gi : Y → X(i) for the composition of morphisms hj for j

with i < j ≤ s and the embedding U (s) ⊂ X(s).

Let Cs be the locally closed cylinder Contq(E) in Y∞ and C0 the closure of its

image (g0)∞(Cs) in X∞. It is clear that codimCs = q. We now show that C = C0 is

a cylinder that satisfies our conditions. For every i with 1 ≤ i ≤ s, we denote by Ci

the closure of the image of Cs in X
(i)
∞ under the map (gi)∞ : Y∞ → X

(i)
∞ . Similarly,

we denote by Di the closure of the image of Cs in U
(i)
∞ . It is clear that Di is the

closure of the image of Ci+1 in U
(i)
∞ under the map (fi+1)∞ : X

(i+1)
∞ → U

(i)
∞ and Ci is
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the closure of Di in X
(i)
∞ . By Lemma V.6 and Lemma V.5 part (b), using descending

induction on i < s, we deduce that Di is a cylinder in U
(i)
∞ and Ci is a cylinder in

(Xi)∞. We also deduce that ordCi = ordDi = ordCi+1
and

codimCi = codimDi = codimCi+1 + ordCi KX(i+1)/X(i) .

We thus obtain ordC = ordC1 = · · · = ordCs = q · ordE and

codimC = codimC1 + ordC(KX(1)/X)

· · ·

= codimCs +
s−1∑
i=0

ordC(KX(i+1)/X(i)) = q + q · ordE(KY/X).

It is clear that Theorem I.4 follows from Lemma V.4 and Lemma V.7. We now

prove Theorem I.5.

Proof. If Y = X, the assertion is trivial. Hence we may and will assume Y is a closed

subscheme of X and Y 6= X. By Theorem I.4, we deduce that

lct(X, Y ) := inf
E

1 + ordE(K−/X)

ordE(Y )
= inf

C

codimC

ordC(Y )
.

where C varies over the irreducible closed cylinders which do not dominate X.

We first show that

(†) lct(X, Y ) ≤ inf
m≥0

codim(Ym, Xm)

m+ 1

For every m ≥ 0, let Sm be an irreducible component of Ym which computes the

codimension of Ym in Xm and Cm the closed irreducible cylinder ψ−1
m (Sm) in X∞.

We thus obtain

codim(Cm) = codim(Sm, Xm) = codim(Ym, Xm).
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The image ψ0(Cm) = ρm0 (Sm) is contained in Y , which implies that Cm does not

dominate X. By the definition of contact loci, we know that Ym = Cont≥m+1(Y )m

in Xm. This implies that ordCm(Y ) ≥ m+ 1. We conclude that

lct(X, Y ) ≤ codim(Cm)

ordCm(Y )
=

codim(Ym, Xm)

m+ 1
.

Taking infimum over all integers m ≥ 0, we now have the inequality (†).

We now prove the reverse inequality. Given an irreducible closed cylinder C which

does not dominate X. If ordC(Y ) = 0, then codimC
ordC(Y )

=∞. Hence

codimC

ordC(Y )
≥ inf

m≥0

codim(Ym, Xm)

m+ 1
.

From now on, we may and will assume that ordC(Y ) > 0. Let m = ordC(Y ) − 1.

Since C is a subcylinder of the contact locus Cont≥m+1(Y ) = ψ−1
m (Ym), we have

codimC

ordC(Y )
≥ codim(Ym, Xm)

m+ 1
≥ inf

m≥0

codim(Ym, Xm)

m+ 1
.

We now take infimum over all cylinders C which do not dominate X and obtain

lct(X, Y ) = inf
C

codimC

ordC(Y )
≥ inf

m≥0

codim(Ym, Xm)

m+ 1
.

Let X be a smooth variety over a perfect field k, Y a closed subscheme of X and

Z a closed subset of X. Recall that

lctZ(X, Y ) = inf
E/X

ordE(K−/X) + 1

ordE Y

where E varies over all divisors over X whose center in X intersects Z. By the

correspondence in Theorem I.4(2), we deduce that for every such divisor E over X,

the corresponding closed irreducible cylinder C satisfies

ψX0 (C) ∩ Z 6= ∅.
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Applying the argument in the proof of Theorem I.5, we can show the following

generalized log canonical threshold formula in terms of jet schemes.

Proposition V.8. Let (X, Y ) be a pair over a perfect field k and Z a closed subset

of X. We have

lctZ(X, Y ) = inf
C⊂X∞

codimC

ordC(a)
= inf

m≥0

codimZ(Ym, Xm)

m+ 1

where C varies over all irreducible closed cylinders with ψ0(C) ∩ Z 6= ∅, ψ0(C) 6= X

and codimZ(Ym, Xm) is the minimum codimension of an irreducible component T of

Ym such that πm(T ) ∩ Z 6= ∅.

Remark V.9. We have seen that

lct(X, Y ) := inf
E

1 + ordE(K−/X)

ordE(Y )
= inf

C

codimC

ordC(Y )
= inf

m≥0

codim(Ym, Xm)

m+ 1
.

If one of the infumums can be achieved, then so are the other two. In particular,

when the base field k is of characteristic 0, log resolutions of (X, Y ) exist. Hence the

log canonical threshold lct(X, Y ) can be computed at some exceptional divisor E in

the log resolution. In this case, all the infimums can be replaced by minimuns.

Remark V.10. Let k be an algebraically closed field of characteristic 0 and K = k(s)

the function field of A1
k. Hence K is not a perfect field. There are examples of pairs

(X,Z) over K such that the formula in Theroem I.5 does not hold. For instance,

let X = SpecK[x] and Y be a prime divisor on X defined by a single equation

(xp − s). It is easy to check that lct(X, Y ) = 1. On the other hand, for every

m, Xm = Am+1 and Ym = Am−bm
p
c. Hence inf

m≥0

codim(Ym,Xm)
m+1

= 1/p. We thus have

lct(X, Y ) 6= inf
m≥0

codim(Ym,Xm)
m+1

.
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5.2 The log canonical threshold via jets

In this section, we apply Theorem I.5 to deduce properties of log canonical thresh-

old for pairs. Our first corollary of Theorem I.5 is the following comparison result in

the setting of reduction to prime characteristic. Suppose that X is the affine variety

An
Z over the ring Z and Y is a subscheme of X defined by an ideal a ⊂ Z[x1, · · · , xn]

that contained in the ideal (x1, · · · , xn). For every prime number p, let Xp = An
Fp

and Yp be the subscheme of Xp defined by a ·Fp[x1, · · · , xn]. Note that a log resolu-

tion of (XQ, YQ) induces a log resolution of the pair (Xp, Yp) for p large enough. It

follows that lct0(YQ, XQ) = lct0(Yp, Xp) for all but finitely many p. We now prove

the following inequality for every prime p.

Corollary V.11. If (X, Y ) is a pair as above, then for every prime integer p, we

have

lct0(XQ, YQ) ≥ lct0(Xp, Yp),

where the log canonical thresholds are computed at the origin.

Proof. Using [Mus2][Corollary 3.6], we obtain

lct0(YQ, XQ) = inf
m≥0

codim((YQ)m,0, (XQ)m)

m+ 1
.

By Proposition V.8, for every integer m ≥ 0, we have

lct0(Xp, Yp) ≤
codim0((Yp)m, (Xp)m)

m+ 1
≤ codim((Yp)m,0, (Xp)m)

m+ 1
.

In order to complete the proof, it is enough to show that for every m ≥ 1 and every

prime p,

codim((Yp)m,0, (Xp)m) ≤ codim((YQ)m,0, (XQ)m).

Since dim(XQ)m = dim(Xp)m = n(m+ 1), it suffices to show that

dim(Yp)m,0 ≥ dim(YQ)m,0
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for every p.

Let S be Spec Z. Recall that (Y/S)m is the mth relative jet scheme of Y/S. Since

a ⊂ (x1, · · · , xn), the zero map Spec Z→ X factors through Y . Let τ : Spec Z→ Y

be the zero section. By Lemma III.7, we deduce that for every m ≥ 1, the function

f(s) = dim(Ys)m,τ(s) = dim(Ys)m,0 is upper semi-continuous on S. Hence we have

dim(Yp)m,0 ≥ dim(YQ)m,0 for every m and p. This completes the proof.

This in turn has an application to an open problem about the connection be-

tween log canonical thresholds and F -pure thresholds. Recall that in positive char-

acteristic Takagi and Watanabe [TW] introduced an analogue of the log canonical

threshold, the F -pure threshold. With the above notation, it follows from [HW]

that lct0(Xp, Yp) ≥ fpt0(Xp, Yp) for every prime p, where fpt0(Xp, Yp) is the F–pure

threshold of the pair (Xp, Yp) at 0. By combining this with Corollary V.11, we obtain

the following result, which seems to have been an open question.

Corollary V.12. With the above notation, we have lct0(XQ, YQ)) ≥ fpt0(Xp, Yp) for

every prime p.

Let k be a perfect field and k be the algebraic closure of k. For every scheme X

over k, we denote by X the fiber product X ×k Spec k.

Corollary V.13. Let X be a smooth variety over a perfect field k and Y a closed

subscheme of X. We have

lct(X, Y ) = lct(X,Y ).

Proof. For every scheme Z over field k, we know that dimZ = dimZ. We thus have

for every m ≥ 0,

codim(Ym, Xm) = codim(Y m, Xm).
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Our assertion follows from Theorem I.5.

Remark V.14. Corollary is not true if the base field is not perfect. For instance,

let k be an algebraically closed field and K = k(s) the function field of A1
k. Let

X = SpecK[x] and Y be the closed subscheme of X defined by xp−s. We have seen

that lct(X, Y ) = 1. Let K be the algebraic closure of K. We thus have XK = A1
K

and YK is a nonreduced subscheme of XK defined by (x− s1/p)p. One can check that

lct(XK , YK) = 1/p.

Corollary V.15. Let X be a smooth variety over a perfect field k and Y a closed

subscheme of X. If H is a smooth irreducible divisor on X which intersects Y and

Z ⊂ H is a nonempty closed subset, then

lctZ(X, Y ) ≥ lctZ(H,H ∩ Y ).

Proof. The case H∩Y = H is trivial since lctZ(H,H∩Y ) = 0. We may thus assume

Y ∩H 6= H. Similarly, if Z ∩ Y = ∅, then both lctZ(X, Y ) and lctZ(H,H ∩ Y ) are

equal to ∞. We should assume Z ∩ Y 6= ∅ from now on.

By Proposition V.8, we only have to prove that for every m ≥ 0,

codimZ(Ym, Xm) ≥ codimZ((H ∩ Y )m, Hm).

Let T be an irreducible component of Ym such that

πm(T ) ∩ Z 6= ∅ and codimT = codimZ(Ym, Xm).

Since H is a Cartier divisor on X, H ∩ Y is defined locally in Y by one equation.

This implies that (H∩Y )m = Hm∩Ym is defined locally in Ym by m+1 equations. If

πm(T ∩Hm)∩Z 6= ∅, then there is a component of T ∩Hm, denoted by S, such that

πm(S)∩Z 6= ∅ and dimS ≥ dimT − (m+ 1). Note that dimXm = dimHm +m+ 1
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and we conclude that

codimZ((H ∩ Y )m, Hm) ≤ codim(S,Hm) ≤ codim(T ∩Hm, Hm) ≤ codim(T,Xm).

We now prove that πm(T ∩ Hm) ∩ Z 6= ∅. Let γm ∈ T such that πm(γm) ∈ Z.

Recall that σm : Y → Ym is the zero section. Since T is invariant under the action

of A1, the orbit of γm is a subset of T . In particular, σm(πm(γm)) ∈ T . Since the

zero section is functorial by its construction, we get σm(Y ∩ H) ⊂ Ym ∩ Hm. In

particular, σm(πm(γm)) is in T ∩Hm and its image under πm is in Z. This completes

our proof.

Corollary V.16. If X is a smooth complex variety and Y ⊂ X is a proper closed

subscheme, then for we have lct(X, Y ) > 0.

Proof. Since log canonical thresholds can be computed after passing to an algebraic

closure of k, we can assume k is algebraically closed. It follows from the definition

that lct(X, Y ) = inf
x∈Y

lctx(X, Y ). For every x ∈ Y , we will show that

(5.6) lctx(X, Y ) ≥ 1/ordx(Y ).

We thus have lctx(X, Y ) ≥ 1/d where d = max
x∈Y
{ordx Y }. Here ordx Y is the maximal

value q such that IY,x ⊆ mq
X,x, where mX,x is the ideal defining x.

We prove the inequality (5.6) by induction on dim(X). If X is a smooth curve,

then it follows from definition that lctx(X, Y ) = ordx Y . We now assume that

dimX ≥ 2. After replacing X by an open neighborhood of x, we may find H, a

smooth divisor passing through x, such that ordx(H ∩ Y ) = ordx Y . By Corollary

V.15, we have

lctx(X, Y ) ≥ lctx(H,H ∩ Y ) ≥ 1/ordx(H ∩ Y ) = 1/ ordx Y.

This completes the proof.
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