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ABSTRACT

Topics in Reduced Rank methods for Multivariate Regression

by

Ashin Mukherjee

Advisors: Professor Ji Zhu and Professor Naisyin Wang

Multivariate regression problems are a simple generalization of the univariate regres-

sion problem to the situation where we want to predict q(> 1) responses that depend

on the same set of features or predictors. Problems of this type is encountered com-

monly in many quantitative fields. The main goal is to build more accurate and

interpretable models that can exploit the dependence structure among the responses

and achieve dimension reduction. Reduced rank regression has been an important

tool to this end due to its simplicity, computational efficiency and superior predictive

performance than much more complex models. In The first two parts of this thesis we

investigate certain important practical aspects of the reduced rank regression method

such as handling collinearity in the design matrix, selection of optimal rank. The last

part focuses on extensions of the reduced rank methods to general functional models.

In Chapter 2 we emphasize that the usual reduced rank regression is vulnerable to

high collinearity among the predictor variables as that can seriously distort the sin-

gular structure of the signal matrix. To address this we propose the reduced rank

ridge regression method that incorporates a ridge penalty in addition to the low rank

constraint on the coefficient matrix. Ridge penalty introduces shrinkage which allows

us to avoid the singularities when predictors are collinear. We are able to develop

a straightforward computational algorithm to solve the optimization problem. We

also discuss a novel extension of the reduced rank methodology to the Reproducing

Kernel Hilbert Space(RKHS) setting.

ix



Chapter 3 studies the effective degrees of freedom of the reduced rank estimators in

the framework of Steins Unbiased Risk Estimation (SURE). A finite sample exact

unbiased estimator is derived that admits a closed form solution. This can be used

to calculate popular model selection criteria such as BIC, Mallows Cp, GCV which

provide a principled way of selecting the optimal rank without going for computa-

tionally expensive cross-validation procedures. The results hold in high-dimensional

settings where both the feature and response dimension can exceed sample size. The

methods developed in this chapter are rather general and can be used for any model-

ing approach that employs singular value thresholding including reduced rank ridge

regression and adaptive nuclear norm thresholding methods.

The final chapter considers a non-parametric extension to the popular reduced rank

method for multi-response regression under the high-dimensional setting, where only

a few predictors affect the responses. Under the framework of additive models, we

propose a two- step procedure that encourages both dimension reduction as well as

variable selection. Theoretical properties of the proposed method is investigated in-

cluding rank selection consistency and error bound. Numerical studies demonstrate

that the proposed method outperforms relevant competitors in a broad range of set-

tings. An application to low- density polyethylene reactor data further illustrates the

usefulness of the proposed method.

x



CHAPTER I

Introduction to Multivariate Regression

1.1 Background and Literature Review

Predicting multiple response from the same set of predictors also known as multi-task

learning have attracted a lot of attention of late. Problems of this kind is commonly

encountered in many quantitative fields such as bio-informatics, chemometrics, gene

regulatory networks and so on, where one is interested in simultaneously predicting

several responses generated by a single mechanism or experiment. The basic assump-

tion is that many of the responses are highly dependent and therefore appropriate

dimension reduction might lead to a more interpretable and accurate predictive model.

Multivariate linear regression is the extension of the classical univariate regression

model to the case where we have q(> 1) responses and p predictors. We can express

the multivariate linear regression model in matrix notation as follows. Let X denote

the n × p predictor or design matrix, with the i-th row xi = (xi1, xi2, . . . , xip) ∈ Rp.

Similarly the n× q dimensional response matrix is denoted by Y, where the i-th row

is yi = (yi1, yi2, . . . , yiq) ∈ Rq. The regression parameters are given by the coefficient

matrix B which is of dimension p×q. Note that the k-th column of B is the regression

coefficient vector for regressing the k-th response on the predictors. Let E denote the

n× q random error matrix with independent entries with mean zero and variance σ2.

Then the multivariate linear regression model is given by

Y = XB + E. (1.1)

Note that, this reduces to the classical univariate regression model when q = 1. For

notational simplicity, we assume that the responses and the predictors are centered,

and hence the intercept term can be omitted without any loss of generality. The
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ordinary least squares approach of estimating B leads to

B̂ols =
(
XTX

)−1
XTY. (1.2)

The ordinary least squares estimate amounts to performing q separate univariate re-

gressions and completely ignores the multivariate aspect of the problem, where many

of the responses might be highly correlated and hence the effective dimensionality

can be much smaller than q. Also it is unsuitable for the high-dimensional case where

both p, q > n. A large number of methods have been proposed to overcome these

deficiencies most of which are based on ideas of dimension reduction and tries to find

some underlying latent structure. Popular methods include Principal Component Re-

gression (Massy , 1965), Partial Least Squares (Wold , 1975), Canonical Correlation

Analysis (Hotelling , 1935). All of these methods can be classified under the larger

class of Linear Factor Regression, in which the response Y is regressed against a small

number of linearly transformed predictors, often called the factors. The models differ

in the way they choose the factors. The estimation proceeds in two steps, transform-

ing the original predictors in the chosen factor space and selecting the number of

relevant factors r, often achieved through cross-validation. It is easy to see that as r

decreases we are able to achieve greater dimensionality reduction.

Several penalization methods have been proposed in recent years to address the issues

of prediction performance and variable selection in multivariate regression. Turlach

et al. (2005) introduced an `∞ penalty on the rows of B to encourage simultaneous

variable selection. Peng et al. (2009) used a combined penalty function of the form,

J (B) = λ1

∑p
j=1‖Bj.‖1 + λ2

∑p
j=1‖Bj.‖2 to identify “master predictors” in genomics

studies, where Bj. denotes the j-th row of the coefficient matrix. The first part of the

penalty imposes sparsity on entries of B, whereas the second part forces some of the

entire rows of B̂ to be zero, encouraging the selection of “master predictors” that in-

fluence many response variables. Obozinski et al. (2011) developed asymptotic theory

for the `1/`2 penalized multivariate regression problem, which can also be thought of

as a special case of the joint penalty employed by Peng et al. (2009) with λ1 = 0. In

particular, they prove that the multivariate group lasso penalty recovers the correct

row support with high probability in high-dimensional settings.

Yet another line of research focuses on the rank of the regression coefficient matrix.

Anderson (1951) proposed a class of regression models that restrict the rank of the

2



coefficient matrix to be much smaller than the dimensionality of B, i.e. rank(B) ≤
r ≤ min{p, q}. This is a quite reasonable assumption in many multivariate regres-

sion problems, which can be interpreted as follows: the q responses are related to

the p predictors only through r effective linear factors. It results in the following

optimization problem

B̂(r) = argmin
{B:rank(B)≤r}

‖Y −XB‖2
F , (1.3)

where ‖.‖F denotes the Frobenius norm of a matrix. Even though the rank penalty

makes it a non-convex optimization problem, it admits a closed form solution as we

shall see later. Izenman (1975) introduced the term reduced rank regression for this

class of models and derived the asymptotic distributions and confidence intervals for

reduced rank regression estimators. A non-exhaustive list of notable work includes

Rao (1978), Davies and Tso (1982), Anderson (1999, 2002a); see Reinsel and Velu

(1998) or Izenman (2008) for a more comprehensive account. Recently, there has

been a revival of interest in the reduced rank methods. Instead of restricting the

rank, Yuan et al. (2007) proposed to put an `1 penalty on the singular values of B

also known as the nuclear norm. They try to minimize the following constrained least

squares criterion

B̂ = arg min
B
‖Y −XB‖2

F + λ

min{P,Q}∑
j=1

σj(B). (1.4)

Where σj(B) denotes the j-th singular value of B. This constraint encourages spar-

sity in the singular values of B and hence the solution B̂ is of lower rank. Though

motivated from linear factor regression this approach avoids the explicit choice of the

factor space by choosing a clever set of basis functions. The optimization problem

in (1.4) is shown to be equivalent to a 2-nd order cone program and the authors use

the SDPT3 solver to obtain the solution. SDPT3 can solve conic linear optimiza-

tion problems over a closed, convex pointed set in a finite-dimensional inner-product

space (Tutuncu et al., 2003). Unlike reduced rank regression solution this provides

a continuous regularization path. The nuclear-norm penalized least squares criterion

encourages sparsity among the singular values to achieve simultaneous rank reduc-

tion and shrinkage coefficient estimation (Neghaban and Wainwright , 2011; Lu et al.,

2012). However, this method is computationally intensive and tends to overesti-

mate the rank (Bunea et al., 2011). Bunea et al. (2012) proposed the rank selection
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criterion extending reduced rank regression to high-dimensional settings, in which

rank-constrained estimation was cast as a penalized least squares method with the

penalty proportional to the rank of the coefficient matrix, or equivalently, the `0 norm

of its singular values. Under that framework the authors were able to characterize

the choice of tuning parameter, which guarantees asymptotic consistency in terms

of rank selection. Chen et al. (2012) adopted sparsity penalties on singular vectors

for reduced rank regression problems that lead to more interpretable models. Very

recently Chen and Huang (2012) proposed an adaptive nuclear norm penalty on the

signal matrix XB aiming to close the gap between `0 and `1 penalties on singular

values. The resulting optimization problem admits a closed form solution and enjoys

many desirable theoretical properties.

1.2 Outline of the Thesis

In Chapter 2 we emphasize that the low-rank structure of the response matrix Y can

arise from the collinearity in the design matrix X in addition to the low rank struc-

ture of the coefficient matrix B. In that situation reduced rank regression will often

end-up selecting a wrong rank due to the distortion of the singular values of XB. To

address this we propose the reduced rank ridge regression method that incorporates

a ridge penalty in addition to the low rank constraint on the coefficient matrix B.

Ridge penalty introduces shrinkage which allows us to avoid the singularities when

predictors are collinear. We are able to develop a straightforward computational al-

gorithm to solve the optimization problem. We also discuss a novel extension of the

reduced rank methodology to the Reproducing Kernel Hilbert Space(RKHS) setting.

Chapter 3 deals with the all important question about how to choose the optimal rank

for a reduced rank method. We study the effective degrees of freedom of a general

class of reduced rank estimators in the framework of Stein’s Unbiased Risk Estima-

tion (SURE). We derive a finite sample exact unbiased estimator that admits a closed

form solution in terms of the singular values or the thresholded singular values of the

ordinary least squares estimator. This is of much practical importance as it allows us

to use many of the popular model selection criteria such as AIC, BIC, Mallow’s Cp to

select the optimal rank without going for computationally expensive cross-validation

procedures. The results continue to hold in the high-dimensional scenario when both

the feature and response dimension exceeds sample size. We are able to obtain some
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new insights into the empirical behavior of the exact degrees of freedom estimator by

comparing it with commonly used naive estimator which is given by the number of

free parameters in matrix of low rank.

The final Chapter (4) considers a non-parametric extension of the reduced rank regres-

sion for multivariate regression with variable selection. In modern high-dimensional

problem it is rather common to encounter sparsity, that is, only a few features carry

information regarding the responses. We propose a two step approach that encour-

age both dimension reduction and variable selection under the framework of additive

models. Accurate approximation of the component functions by B-spline basis un-

der appropriate assumptions of smoothness is a key part of the methodological and

theoretical aspects. We prove that the proposed method possesses many desirable

theoretical properties such as rank selection consistency and error bounds. Simu-

lation studies and real data examples help to illustrate that the proposed method

outperforms its relevant competitors in a broad range of settings.
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CHAPTER II

Reduced Rank Ridge Regression and its Kernel

Extensions

2.1 Introduction

In Chapter I we introduced the multivariate reduced rank regression model in details

and also discussed many of its variants and relevant competitors. Most of them im-

pose a rank constraint on the coefficient matrix B to exploit the approximate low rank

structure of the response matrix Y. At this point important to notice that rank(Y)

depends on rank(XB) rather than rank(B) alone. For example if the design matrix

X is highly collinear then even if the true coefficient matrix B is of full rank, we

can end up with an approximately low rank Y. The existing methods all depend on

the singular structure of the ordinary least squares solution (1.2) to attain the rank

reduction. If the design matrix is highly collinear then the ordinary least squares

solution is unstable therefore any method that depends on it will also be affected

negatively. We propose a combination of the ridge penalty and rank constraint on

the coefficient matrix B to overcome this problem. The ridge penalty helps to ensure

that estimate of B is well-behaved even in the presence of multicollinearity, whereas

the rank constraint encourages dimension reduction.

The rest of the Chapter is organized as follows: In Section 2.2 we formally intro-

duce the reduced rank ridge regression model and discuss some of the finer details.

Section 2.3 presents numerical examples which include simulation studies comparing

the proposed model to relevant competitors as well as some real-data example. We

extend the reduced rank approach to the kernel settings in Section 2.4, and show a

real data applications. Section 2.5 concludes with a summary and brief discussion.
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2.2 Reduced Rank Ridge Regression Model

We propose a regularized estimator for the coefficient matrix B. Two penalties are

added to the usual squared error loss. Ridge penalty to ensure that the estimator of

B is well-behaved even in the presence of collinearity among the predictor variables.

Rank constraint encourages dimensionality reduction by restricting the rank of B̂.

We seek to minimize

B̂(λ, r) = arg min
{B:rank(B)≤r}

‖Y −XB‖2
F + λ‖B‖2

F . (2.1)

Where r ≤ min {n, p, q}. ‖.‖2
F denotes the Frobenius norm for matrices. For each

fixed λ we can transform this problem to a Reduced Rank Regression problem on an

augmented data set. Define

X∗(n+p)×p =

(
X√
λI

)
; Y∗(n+p)×q =

(
Y

0

)
. (2.2)

Then it is a matter of simple algebra to notice that the minimization problem in (2.1)

is equivalent to the following reduced rank regression problem

B̂(λ, r) = arg min
{B:rank(B)≤r}

‖Y∗ −X∗B‖2
F . (2.3)

Now we can use the orthogonal projection property of the ols estimator to decompose

the squared error loss function in two parts, ‖Y∗ −X∗B‖2
F = ‖Y∗ − Ŷ∗R‖2

F + ‖Ŷ∗R −
X∗B‖2

F . Here Ŷ∗R = X∗B̂∗R denotes the Ridge regression estimate which is also same

as the ols estimate obtained from the linear model Y∗ = X∗B + E∗. Note that

the first term do not involve B hence we get the following equivalent form for the

minimization problem (2.3) as

B̂(λ, r) = arg min
{B:rank(B)≤r}

‖Ŷ∗R −X∗B‖2
F . (2.4)

Let us assume that Ŷ∗R =
τ∑
i=1

σiuiv
T
i gives the singular value decomposition of Ŷ∗R.

σi’s denote the singular values, ui and vi denote the left and right singular vectors

of Ŷ∗R respectively. τ is the rank of Ŷ∗R. Then a fairly elementary result in linear

algebra known as the Eckart-Young theorem (Eckart and Young , 1936) tells us that

7



the best rank r approximation to Ŷ∗R in the Frobenius norm is given by

Ŷ∗r =
r∑
i=1

σiuiv
T
i . (2.5)

Define, Pr
q×q

=
r∑
i=1

viv
T
i , and let B̂(λ, r) = B̂∗RPr. Clearly rank(B̂(λ, r)) ≤ r, since

rank(Pr) = r. And plugging them back in we get

X∗B̂(λ, r) = X∗B̂∗RPr =

(
τ∑
i=1

σiuiv
T
i

)(
r∑
j=1

vjv
T
j

)

=
r∑
i=1

σiuiv
T
i = Ŷ∗r .

Hence we are able to show that proposed solution B̂(λ, r) = B̂∗RPr is the minimizer

of the optimization problem (2.1), which is the original reduced rank ridge regression

problem that we started with. Writing down explicitly in terms of X, Y, λ and r we

get the following

B̂(λ, r) = B̂∗RPr =
(
X∗TX∗

)−1
X∗TYPr =

(
XTX + λI

)−1
XTYPr (2.6)

Ŷ(λ, r) = X
(
XTX + λI

)−1
XTYPr = ŶλPr. (2.7)

Ŷλ in the above equation denotes the multivariate ridge regression estimator for Y

with a penalty parameter λ. This shows that the reduced rank ridge regression is

actually projecting Ŷλ to a r-dimensional space with projection matrix Pr. Here it is

important to notice that this is a projection of the rows of Ŷλ which in general lives

in a Q-dimensional space to a lower r-dimensional space. Easy to see that for r = Q

we get back the ridge regression solution.

2.2.1 Illustrative Example

To illustrate the issues with Reduced Rank regression we construct a simple toy

example. Set p = q = 3 and n = 50 and let

B =

1 3 0

3 1 0

0 0 0

 , ΣX =

 1 0.95 0

0.95 1 0

0 0 1

 .
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The first 2 columns of B are linearly independent and thus it has rank 2. But at

the same time we make predictors X1 and X2 highly collinear, so that the effective

dimension of the response reduces to 1. We simulate X ∼ N(0,ΣX) and given X,

Y is generated from Y ∼ N(XB, 0.25I). The eigenvalues of YTY comes out to be

σ2 = [1252, 16, 11]. Hence Reduced Rank regression would select rank to be 1 and

seek a rank 1 estimator of B which is clearly not the case here. This happens because

Reduced Rank regression fails to account for the correlated predictors and that is

precisely where Reduced Rank Ridge regression improves by adding ridge penalty.

2.2.2 Selection of Tuning Parameters

For the reduced rank ridge regression we propose to choose the tuning parameters

(λ, r) using a simple K-fold cross-validation procedure. We first define a grid for (λ, r)

note that r can only take values in {1, 2, . . .min {n, p, q}}. For each combination of λ

and r we evaluate average of validation prediction errors over the K-folds and choose

the optimal combination as the one that minimizes this quantity. Notationally

(λ̂, r̂) = arg min
(λ,r)

K∑
k=1

‖Y(k) −X(k)B̂(−k)(λ, r)‖2
F . (2.8)

Where X(k) and Y(k) denote the predictor and response matrix for the k-th fold,

and B̂(−k)(λ, r) denotes the estimated regression coefficient matrix computed leaving

out the observations in the k-th fold when using the penalty parameters (λ, r). This

would encourage a trade-off between the penalty parameters based on the data. We

would look into the choice of tuning parameters more deeply in the simulation studies

section.

2.3 Numerical Examples

2.3.1 Simulation Study

We compare the estimation performance of the proposed reduced rank ridge regression

method to other multivariate linear regression methods that have been proposed in

the literature based on the idea of dimension reduction and borrowing strength from

dependent response variables. Methods compared include - Ordinary least squares

(OLS); Curd and Whey (CW) procedure developed by Breiman and Friedman with

the GCV approach; Reduced Rank Regression (RRR); Multivariate Ridge Regression

(MVR) with same tuning parameter for each response; Separate Ridge Regression
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(SR); Partial Least Squares (PLS); Principal Component Regression (PCR) and the

proposed Reduced Rank Ridge Regression (RRR). For the methods that require a

selection of tuning parameter we do so by looking at the prediction error on an

independently generated validation set of same size. We measure the performance of

various methods by model error following Breiman and Friedman (1997). The model

error of an estimate B̂ is given by

ME(B̂) = trace
[
(B− B̂)TΣX(B− B̂)

]
. (2.9)

where B denotes the true coefficient matrix and ΣX denotes E(XXT ).

2.3.1.1 Models

In each replication of the simulation study we generate a design matrix Xn×p with each

rows drawn independently from N(0,ΣX). Where ΣX has the structure, ΣX(i, j) =

ρ|i−j|. We used 3 different levels for the correlation parameter ρ = [0, 0.5, 0.9]. To

generate the true coefficient matrix Bp×q we first generate a random p×q matrix from

N(0, 1) distribution. The singular values are then replaced with following structures,

• Model 1 The first half of the singular values are 2 and rest as 0.

• Model 2 All the singular values are equal to 1

• Model 3 The largest singular value as 5 and rest 0.

We choose the above mentioned models to ensure that we cover a broad spectrum of

rank-deficient situations. Model 2 covers the case of no rank redundancy in the coef-

ficient matrix B which is the usual multivariate linear regression assumption. Model

3 represents the case for a severe rank deficiency whereas Model 1 is a compromise

between these two extreme situations. We analyze each model at different correlation

levels between the predictors thus covering most of the possible real scenarios. For

each combination of model and correlation we simulate a training and validation set

each of size p = 50, q = 20, n = 100. And compute each of the estimators described

above. The process is repeated 100 times leading to an error-vector of length 100 for

each competing method.

All the methods outperforms OLS by a big margin under this settings. PLS and PCR

appear quite competitive to RR but fails to perform in the same level as RRR, MVR

or SRR. Note that the proposed method RRR dominates all the other methods at
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Figure 2.1: Boxplot of ME for each method over 100 replications.
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every combination of settings. It is interesting to note that for Model 2 where the

true B had full rank RR does significantly worse than RRR, MVR and SRR for all

choices of ρ. Whereas in Model 3 which had the strongest rank deficiency we see that

RRR and RR dominates the other methods which also seems intuitive. The biggest

advantage of the RRR over only ridge and only rank penalty comes in Model 1 which

has nearly half the singular values non-zero. For all three models we see that as the

value of ρ increases MVR and SRR tends to catch up with the best method.

To gain further insight, we look at the the singular values of the B̂ for OLS, MVR,

RR and RRR method. For this part we use a smaller set-up with p = 20, q = 8 and

n = 30 the singular values of B are σ = [3, 2, 1.5, 0, 0, 0, 0, 0]. We plot the singular

values over 100 replicates at two extreme correlation levels ρ = 0.0, and 0.9.

Figure 2.2: Singular values of B̂. Left: ρ = 0; Right: ρ = 0.9.

For ρ = 0 we see that both RR and RRR does a fairly good job of recovering the

singular value structure. But as the collinearity among the predictors increases we

find that RR most of the times selects 2 or 1 as the rank whereas RRR is able to do

a much better job. MVR and OLS fail to achieve any dimension reduction. Similar

patterns are observed at other settings as well which we skip for brevity. This clearly

illustrates that the trade-off between ridge penalty and the rank constraint is the
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key that enables us to correctly estimate singular value structure even in presence of

serious collinearity.

2.3.2 Application in Chemometrics Example

It is originally from Skagerberg et al. (1992). There are n = 56 observations with

p = 22 and q = 6. The data is generated from a simulation of a low density tubular

polyethylene reactor. The predictor variables consists of 20 temperature measure-

ments at equal distance along the reactor along with the wall temperature and the

feed rate. The responses are output characteristics of the polymers produced, namely,

Number avg. molecular weight.(Y1), Weight avg. molecular weight(Y2), Long chain

branching(Y3), Short chain branching(Y4), content of vinyl group(Y5) and content of

vinyledene group(Y6). As the responses were all right skewed we applied log transfor-

mation, and finally standardized them. The response correlation is reported below.

Corr(Y ) =



1.00 0.96 0.06 0.25 0.26 0.26

0.96 1.00 −0.13 0.28 0.27 0.28

0.06 −0.13 1.00 −0.50 −0.48 −0.48

0.25 0.28 −0.50 1.00 0.97 0.98

0.26 0.27 −0.48 0.97 1.00 0.98

0.26 0.28 −0.48 0.98 0.98 1.00


This shows {Y4, Y5, Y6} form a strongly correlated group as does {Y1, Y2}. Y3 is mildly

correlated to the others, which suggests an effective response dimensionality of 3. Av-

erage absolute correlation between the predictors is about 0.44 with many of them

being very highly correlated. The predictive performance is measured using leave-

one-out cross validation. We fit the models based on 55 of the 56 points and predict

the left-out point and the procedure is repeated 56 times. Note that we do an 11-fold

cross validation within the 55 points to select tuning parameters for the models that

have one. We report the prediction error for each response as well as overall average

prediction error.

Overall RRR performs the best with MVR being a very close second. The good

performance of MVR can also be explained by the fact that many predictors are

highly collinear. Comparing columns of RR and RRR, we see that for Y4, Y5 and Y6

RR has much smaller prediction error than RRR but it incurs larger error for Y1, Y2

and especially Y3. Because of the strong correlation structure of the responses, RR
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OLS CW-gcv PLS RR MVR RRR
Y1 0.49 0.49 0.68 0.44 0.15 0.15
Y2 1.12 0.74 0.90 0.46 0.22 0.22
Y3 0.53 0.49 0.45 0.65 0.39 0.39
Y4 0.24 0.18 0.18 0.14 0.26 0.24
Y5 0.30 0.22 0.26 0.18 0.28 0.27
Y6 0.28 0.21 0.21 0.16 0.28 0.27

Avg 0.50 0.39 0.45 0.34 0.27 0.26

Table 2.1: Performance comparison for the chemometrics data

concentrates on the heavily correlated group {Y4, Y5, Y6}, selecting 2 or 1 components

most times(out of 56 leave-one-out runs) whereas RRR is able to pick 3 as the optimal

dimension with high proportion. So even though it loses a little bit for the highly

correlated group overall prediction accuracy is much better.

2.4 Extension to RKHS

Before we go into the details for reduced rank approach in the Reproducing Kernel

Hilbet Space(RKHS) setting let us first give a very brief introduction to it.

2.4.1 Brief Introduction to RKHS

A Hilbert space is a real/complex inner product space which is complete under the

norm induced by the inner product. Examples include Rn with 〈x, y〉 = xTy, L2-space

of all square integrable functions on R with 〈f, g〉 =
∫
R f(x)g(x)dx. The reason we are

interested in functional spaces is because we would like to fit models like y = f(x) + ε

where f : Rp → R to model the data in a much more flexible non-parametric way. L2

is too big for our purpose as it contains too many non-smooth functions. One way

to obtain such spaces of smooth functions which allows us to fit a non-parametric

functional regression model without explicitly specifying the function f is the RKHS

approach.

A positive definite kernel is a function K(·, ·) : X × X 7→ R such that for any n ≥ 1

and {x1, x2, . . . xn} ∈ X n and {a1, a2, . . . , an} ∈ Rn, we have,
n∑
i=1

n∑
i′=1

aiai′K(xi, xi′) ≥

0. In other words the gram matrix K = [K(xi, xi′)]
n
i,i′=1 is positive definite for all,

{x1, x2, . . . xn} ∈ X n. For most of our purposes X = Rp, the space of the predictor

variables. It is a well known result (Wahba) that given such a kernel we can construct
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a unique functional Hilbert space H on X such that K(·, ·) is the inner product in

that space and f(x) = 〈f,K(·, x)〉 for all f ∈ H and x ∈ X and vice versa.

2.4.2 Kernel Reduced Rank Regression Approach

In the univariate case, given data {(x1, y1), (x2, y2), . . . (xn, yn)}, note that yi ∈ R and

xi ∈ Rp, our objective is to find a function f ∈ H that minimizes

Jλ(f) =
n∑
i=1

(yi − f(xi))
2 + λ‖f‖2

H. (2.10)

Where ‖.‖2
H denotes the norm in H. This is introduced to encourage smoothness

and to avoid overfitting. Then the Representer Theorem says that any f minimizing

(2.10) can be written as

f(x) =
n∑
i=1

αiK(x, xi), for (α1, α2, . . . , αn) ∈ Rn. (2.11)

For the multivariate response yi ∈ Rq, in the RKHS set-up we want to find (f1, f2, . . . , fq) ∈
H which minimizes a joint loss function defined by

Jλ(f1, f2, . . . , fq) =

q∑
j=1

n∑
i=1

‖yij − fj(xi)‖2 + λ

q∑
j=1

‖fj‖2
H. (2.12)

Like in the linear case it is fairly easy to see that in absence of any constraint on the

functions (f1, f2, . . . , fq) the above optimization is same as doing q separate single-

response kernel ridge regression problem. If we want to exploit the dependence among

the responses we need some equivalent way of expressing the reduced rank constraint

under the RKHS set-up. The following proposition gives one such way.

Proposition II.1. Let H be the RKHS corresponding to a positive-definite kernel

K(·, ·) : Rp×Rp 7→ R. Given data {(x1, y1), (x2, y2), . . . (xn, yn)}, yi ∈ Rq and xi ∈ Rp,

we consider the optimization problem

min
f1,f2,...,fq∈H

Jλ (f1, f2, . . . , fq) subject to, dim (span{f1, f2, . . . , fq}) ≤ r. (2.13)

Where 1 ≤ r ≤ q and Jλ (f1, f2, . . . , fq) is defined as in (15). The solution has the
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following representation

fq(x) =
n∑
i=1

αijK(x, xi), for j = 1, 2, . . . , q, αij ∈ R. (2.14)

The constraint dim (span{f1, . . . , fq}) ≤ r can be viewed as an extension to the rank

constraint for linear functions. The only difference being instead of working with

linear functions here we are in a general functional space. We defer the proof to the

appendix. The next natural step is to find some sufficient conditions under which the

rank constraint in (2.13) becomes equivalent to a rank constraint on the coefficient

matrix A = [αij]n×q. Because that would allow us to extend the reduced rank ridge

regression solution developed in Section 2.2 in a natural way to the kernel setting.

Proposition II.2. If K(·, ·) is strictly positive definite and {x1, x2, . . . xn} are distinct

then dim (span{f1, f2, . . . fq}) ≤ r ⇒ rank(A) ≤ r, where

[f1, . . . fq] = [K(·, x1), . . . K(·, xn)] A
n×q

(2.15)

This proposition translates the reduced rank constraint for RKHS into a simple

rank constraint for the coefficient matrix A, under some condition on K(·, ·). It

is easy to show that Gaussian kernel, K(x, x′) = exp
(
−‖x−x′‖2

2σ2

)
, Laplacian kernel,

K(x, x′) = exp
(
‖x−x′‖1

2σ2

)
, Inverse multi-quadratic kernel K(x, x′) = 1√

‖x−y‖2+c
would

satisfy strict positive definiteness. Polynomial kernels in general would not satisfy it

because it is essentially an extension to a bigger but finite-dimensional space. But

in practice the infinite-dimensional RKHS’s are the ones that we would be interested

in, so the condition for strict positive definiteness is not very prohibitive.

2.4.3 Extending the Solution

Let us recall the solution to the reduced rank ridge regression problem with penalty

parameters (λ, r), derived in Section 2.2. For a given point x ∈ Rp (row vector)

prediction had the form

Ŷx(λ, r) = x
(
XTX + λI

)−1
XTYPr.

where Pr was the projection matrix to the space spanned by r principal eigenvectors

of P = YTX
(
XTX + λI

)−1
XTY. Using the matrix inversion lemma we can easily

expand the prediction formula in terms of the inner product matrix XXT . Then
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replacing the inner product matrix by the Gram matrix K = [(K(xi, xi′)]
n
i,i′=1 we get

YTX
(
XTX + λI

)−1
XTY = YTK (K + λI)−1 Y, (2.16)

x
(
XTX + λI

)−1
XTY = K(x) (K + λI)−1 Y. (2.17)

Note that K(x) = [K(x, x1), K(x, x2), . . . K(x, xn)]1×n. If we denote the projection

matrix to the space spanned by r principal eigenvectors of YTK (K + λI)−1 Y by PK
r

then the final prediction for the point x ∈ Rp is given by

Ŷx(λ, r) = K(x) (K + λI)−1 YPK
r . (2.18)

Which is similar to projection of the kernel ridge regression estimator to a constrained

space of dimension ≤ r as in the linear case.

2.4.4 Simulation Study

In this section we compare the performance of the proposed kernel Reduced Rank

Ridge Regression (kernel RRR) with kernel Ridge Regression. We perform the com-

parison with the choice of two popular choices of kernel function namely, the Gaussian

kernel which is strictly positive-definite and thus satisfies the condition of Proposi-

tion II.1 and the polynomial kernel which is clearly finite-dimensional and hence does

not satisfy the sufficient condition provided in Proposition II.2.

We present the results for p = 10, q = 10 and n = 100, similar results were obtained

for other choices of p and q. Rows of the design matrix X were generated indepen-

dently from N(0, IP ). Responses are generated as linear combinations of m = 10

basis functions of the form K(., bj) where {bj : j = 1, 2, . . . , 10} were generated inde-

pendently from a multivariate Gaussian distribution. We consider 2 cases,

• Full Rank Situation The coefficient matrix is full-rank, i.e., of rank 10.

• Reduced Rank Situation The coefficient matrix has rank 5.

The tuning parameters, i.e. (λ, r, σ) were chosen using independently generated val-

idation data sets of same size. In the following figure we present the box-plots of

the percentage ratio of MSE of kernel RRR and kernel Ridge Regression over 100

replications of the experiment.
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Figure 2.3:
Boxplot of selected optimal rank. Left: Polynomial kernel; Right: Gaus-
sian kernel.

As expected we find that kernel Reduced Rank Ridge improves over kernel Ridge

significantly when the underlying process is truly low-rank, and even in the full-

rank case it performs comparably with kernel Ridge regression. The conclusions hold

not only for the Gaussian kernel but for the polynomial kernel as well which as we

discussed before does not satisfy the sufficient conditions in Proposition ??. Also the

estimated optimal rank seem to be quite accurate when the underlying functional

space is low-rank. Here it is useful to note that if the sample size is too high then the

gram matrix for polynomial kernel might become nearly singular causing unstable

solutions.

2.4.5 Chemometrics Data Revisited

We apply the kernel RRR on the previously discussed Chemometrics data set and

compare its performance against linear RRR and kernel Ridge Regression. We used

the popular Gaussian kernel K(x, x′) = exp
(
‖x−x′‖2

2σ2

)
and the Inverse multi-quadratic

kernel K(x, x′) = 1√
‖x−y‖2+c

. Both predictors and responses were standardized for

this analysis. An 8 fold-cross-validation is performed to select the tuning parameters,

that is (λ, r, σ2) in case of the Gaussian kernel and (λ, r, c) for the inverse multi-
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Figure 2.4:
Boxplot of ratio of test MSE for kernel RRR. Left: Polynomial kernel;
Right: Gaussian kernel.

quadratic kernel.

Linear RRR Kernel Ridge Kernel RRR
Y1 0.153 0.088 0.087
Y2 0.250 0.148 0.129
Y3 0.230 0.113 0.111
Y4 0.188 0.054 0.044
Y5 0.205 0.107 0.071
Y6 0.211 0.070 0.064

Avg 0.206 0.097 0.084

Table 2.2: Performance comparison for Kernel RRR on the Chemometrics data

We used cross-validation error estimate on the hold-out fold to select the tuning

parameters. Optimal rank for the kernel RRR which turns out to be 3 for both choices

of the kernels as it was for linear Reduced Rank regression implying that the intrinsic

dimensionality of the response space is 3. Both choices of the kernel lead to very

similar results. Kernel RRR improves by a big margin over the linear RRR, whereas

the improvement over kernel ridge regression is less pronounced but still notable for
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this data set. The Gaussian kernel is able to attain a greater reduction in MSE which

is due to the fact that it corresponds to a bigger functional class. The results seem

scientifically reasonable since the first two responses namely, Number avg. molecular

weight and Weight avg. molecular weight are approximately dependent. Similarly the

last 3 responses form a functional group, in the sense that, Short chain branching is

an approximate measure of the contents of Vinyl and Vinyledene groups and thus are

highly correlated. Long chain branching is negatively correlated to the Short chain

branching group.

2.5 Summary and Discussion

We propose Reduced Rank Ridge Regression to produce a low-rank estimator of the

regression coefficient matrix B. This is very useful when the responses are highly

dependent or there are reasons to believe a latent variable structure among the pre-

dictors. Our method accounts for multicollinearity in predictor variables by incorpo-

rating a ridge penalty, here it is important to note that both high collinearity in X

and low-rank of the true coefficient matrix B might lead to the response matrix being

rank-deficient and hence it makes sense to apply the penalties jointly and decide the

trade-off based on the data. We also extend the reduced rank idea to the RKHS

set-up and give some intuition for the meaning of a rank constraint in a functional

space.

The solution to the Reduced Rank Ridge Regression problem is obtained as a pro-

jection of the Ridge Regression estimator to a constrained space. And hence it is

computationally simple. We propose a cross-validation approach to select the tuning

parameters. The proposed method was tested in broad variety of simulation settings

as well as couple of real data sets. Results are promising and the proposed method

is able to outperform relevant competitors under most of the settings. We also apply

the kernel RRR on a real data example and it shows some significant improvement

over the linear RRR and kernel ridge regression. These applications also helps us

understand some statistical insights into the working of the proposed Reduced Rank

Ridge Regression method.
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CHAPTER III

Degrees of Freedom of Reduced Rank Estimators

in Multivariate Regression

3.1 Introduction

One of the main practical challenges of any reduced rank methodology is the selec-

tion of the optimal rank. In Chapter II we used a cross-validation technique to select

the joint tuning parameters (λ, r). In high-dimensional problems such methods can

often prove to be computational bottlenecks. Another approach is to use some well

established model selection criteria such as AIC (Akaike, 1974) or BIC (Schwarz ,

1978) and so on. But these approaches require an estimator of model complexity

or degrees of freedom. This chapter studies the degrees of freedom of the reduced

rank estimators in multivariate linear regression models. The degrees of freedom is a

very familiar and one of the most widely used terms in statistics. We utilize it from

ANOVA t-tests to various model selection criteria. However, it has been largely over-

looked in the reduced rank regression literature except for some heuristic suggestions

(Davies and Tso, 1982; Reinsel and Velu, 1998). For example, the number of free

parameters in a p× q matrix of rank r, given by r(p + q − r) has been suggested as

a naive estimate of the degrees of freedom of the reduced rank regression estimator

when restricted to rank r ≤ min{p, q}. More precisely, for an arbitrary design matrix,

the number of free parameters should be (rx + q − r)r, where rx = rank(X) is the

rank of the design matrix (Bunea et al., 2011). Henceforth, we refer to this as the

naive estimator of the degrees of freedom of a rank-r model. In this paper, we aim to

find a finite-sample unbiased estimator of the degrees of freedom for a general class

of reduced rank estimators for the multivariate regression model and investigate its

properties. The result covers a significant gap in the literature, as the previously

suggested naive estimate lacks both statistical motivation and practical performance.
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In a nutshell, the degrees of freedom quantifies the complexity of a statistical modeling

procedure (Hastie and Tibshirani , 1990). In the case of the univariate linear regres-

sion model, it is well-known that the degrees of freedom is the number of estimated

parameters, p. However, in general there is no exact correspondence between the

degrees of freedom and the number of free parameters in the model (Ye, 1998). For

example, in the best subset selection for univariate regression (Hocking and Leslie,

1967), we search for the best model of size p0 ∈ {1, 2, . . . , p} that minimizes the

residual sum of squares. The resulting model has p0 parameters but intuitively the

degrees of freedom would be higher than p0 since the search for the “optimal” subset

of size p0 increases model complexity (Hastie et al., 2009). In other words, for best

subset selection the optimal p0-dimensional subspace that minimizes the residual sum

of squares clearly depends on y. Thus the final estimator is highly non-linear in y,

which results in the loss of correspondence between degrees of freedom and the num-

ber of parameters in the model.

Similar arguments also apply to the reduced rank regression. Instead of searching

for best p0-variables as in the case of best subset selection, here we are searching

for best r linear combinations of the predictors that minimize the least squares loss,

which should intuitively suggest increased model complexity. Since the optimal rank

r-subspace depends on the response matrix Y, the natural correspondence between

number of free parameters and degrees of freedom need not hold. This is where re-

duced rank regression is different from other linear factor regression methods, e.g.

principal component regression (Massy , 1965). In principal component regression,

the factors are principal components of the design matrix X, which do not depend

on the response Y, thus the final estimator is still linear in Y.

The rest of the paper is organized as follows. In section 3.2, we review the degrees

of freedom in the framework of Stein’s unbiased risk estimation (Stein, 1981). The

reduced rank regression estimator is discussed in detail in section 3.3, additionally, we

also introduce a more general class of reduced rank estimators. Sections 3.4, 3.5 and

3.6 contain the main results on our proposed exact unbiased estimator of the degrees of

freedom including derivation of a closed form expression, connections to naive degrees

of freedom and almost everywhere existence. In section 3.7, we show that the exact

unbiased estimator of the degrees of freedom for reduced rank regression methods can

be significantly different from the naive estimator through several numerical examples.
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We also show that using the exact unbiased estimate of degrees of freedom can lead

to gain in prediction accuracy over its heuristic counterpart. In section ??, we apply

the developed method to a genetic association study, and we conclude the paper with

a discussion in section 3.9.

3.2 Degrees of freedom

Stein (1981) in his theory of unbiased risk estimation (SURE) first introduced a

rigorous definition of the degrees of freedom of a statistical estimation procedure.

Later Efron (2004) showed that Stein’s treatment can be considered as a special case

of a more general notion under the assumption of Gaussianity. Assume that we have

data of the form (yn×1,Xn×p). Given X, the response originates from the following

model y ∼ (µ, σ2I), where µ is the true mean that can be a function of X, and σ2

is the common variance. Then for any estimation procedure m(·) with fitted values

µ̂ = m(X,y), the degrees of freedom of m(·) is defined as

df(m) =
n∑
i=1

cov(µ̂i, yi)/σ
2. (3.1)

The rationale is that more complex models would try to fit the data better, and hence

the covariance between observed and fitted pairs would be higher. This expression is

not directly observable except for certain simple cases, for example, when m(y) = Sy,

a linear smoother. In that case, it is not difficult to see that df(m) = tr(S). Stein was

able to overcome this hurdle for a special case when y ∼ N(µ, σ2I). Using a simple

equality for the Gaussian distribution, he proved that as long as the partial derivative

∂µ̂i/∂yi exists almost everywhere for all i ∈ {1, 2, . . . , n}, the following holds

cov(µ̂i, yi) = σ2E
(
∂µ̂i
∂yi

)
.

Thus, we have the following unbiased estimator of the degrees of freedom for the

fitting procedure m(·)

d̂f =
n∑
i=1

∂µ̂i
∂yi

. (3.2)

Using the degrees of freedom definition as in (3.1), Efron (2004) employed the co-

variance penalty approach to prove that the Cp-type statistics (Mallow , 1973) is an

23



unbiased estimator of the true prediction error, where

Cp(µ̂) =
1

n
‖y − µ‖2 +

2df(µ̂)

n
σ2. (3.3)

This reveals the important role played by the degrees of freedom in model assessment.

It gives us a principled way of selecting the optimal model without going for compu-

tationally expensive methods such as cross-validation, and in certain settings it can

offer significantly better prediction accuracy than such methods (Efron, 2004). Indeed

the degrees of freedom is an integral part of almost every model selection criterion,

including Bayesian Information Criterion (BIC) (Schwarz , 1978), generalized cross-

validation (GCV) (Golub et al., 1979) and so on. Many important works followed that

of Stein (1981) and Efron (2004). For example, Donoho and Johnstone (1995) used

the SURE theory to derive the degrees of freedom for the soft-thresholding operator

in wavelet shrinkage; Meyer and Woodroofe (2000) employed this framework to derive

the same for shape restricted regression; Li and Zhu (2008) also used this set-up to

derive an unbiased estimator of the degrees of freedom for penalized quantile regres-

sion. Zou et al. (2007) applied the SURE theory for the popular regression shrinkage

and variable selection method lasso (Tibshirani , 1996). This is a challenging problem

because of the non-linear nature of lasso solution, which does not admit an analytical

solution except for certain special cases. Using sophisticated mathematical analysis,

Zou et al. (2007) were able to show that the number of non-zero coefficients provides

an unbiased estimate of the degrees of freedom for the lasso. This is a result of

great practical importance since this allows one to come up with model selection cri-

teria such as Cp and BIC for the lasso without incurring any extra computational cost.

The degrees of freedom for the reduced rank estimators also proves to be a challeng-

ing problem because of the non-linearity of the estimator. As we will see shortly,

even though it admits a closed-form solution, the solution is highly non-linear de-

pending on singular value decomposition of the least squares solution Ŷ described in

(3.4). In the next several sections, we study the degrees of freedom of a general class

of reduced rank estimators in the framework of SURE and propose a finite-sample

exactly unbiased estimator. The importance of such an estimator has been empha-

sized repeatedly by Shen and Ye (2002), Efron (2004), Zou et al. (2007) among others.

To overcome the analytical difficulty in computing the degrees of freedom, Ye (1998)

and Shen and Ye (2002) proposed the generalized degrees of freedom approach, where
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they evaluate (3.2) numerically, using data perturbation techniques to compute an

approximately unbiased estimator of the degrees of freedom. Efron (2004) also pro-

posed a bootstrap based idea to arrive at an approximately unbiased estimator of

(3.1). Though these kind of simulation based approaches allow us to extend the de-

grees of freedom approach to many highly non-linear modeling frameworks, they are

computationally expensive. Also this type of numerical solutions does not admit any

closed form expression making investigation of the theoretical properties an extremely

difficult task, thus limiting our insight.

3.3 A class of reduced rank estimators

Recall the multivariate linear regression model as in (4.1). Let Ŷ be the least squares

estimate which admits a singular value decomposition of the form

Ŷ = X(XTX)+XTY = W
n×r̄

D
r̄×r̄

VT

r̄×q
, (3.4)

here (A)+ denotes the Moore-Penrose inverse (Moore, 1920; Penrose, 1955) of a

generic matrix A. Note that this is well defined even when p, q > n or the design

matrix X is of low rank. W and V are orthogonal matrices that represent the left

and right singular vectors and D = diag{di, i = 1, . . . , r̄} with d1 ≥ · · · ≥ dr̄ > 0 are

the singular values of Ŷ. Without loss of generality we assume that, rank(Ŷ) = r̄ =

min{rx, q}, where rx denotes the rank of the design matrix. We will denote the k-th

column of W and V by wk and vk respectively. Using the Eckart-Young theorem

(Eckart and Young , 1936), it is not difficult to show that the reduced rank regression

estimator for (1.3) can be expressed as

Ŷ(r) = Ŷ
r∑

k=1

vkv
T
k = W(r)D(r)V(r)T , r = 1, . . . , r̄, (3.5)

where A(r) denotes the first r-columns of a generic matrix A. This rank constrained

estimation procedure can also be viewed under a more generalized penalized least

squares framework

min
B

{
1

2
‖Y −XB‖2

F + λP(B)

}
, (3.6)

in which the penalty is proportional to the rank of the coefficient matrix B, i.e.,

P(B) = rank(B) (Bunea et al., 2011). This leads to a hard-thresholding of the

singular values of Ŷ. More generally, under the regularized estimation framework
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(3.6), a set of reduced-rank estimators may be indexed by the regularization parameter

λ, which controls the penalty level and hence the model’s complexity. In light of that,

we consider a broad class of such reduced-rank estimators defined as

Ỹ(λ) = XB̃(λ) =
r̄∑

k=1

sk(dk, λ)dkwkv
>
k = Ŷ

r̄∑
k=1

sk(dk, λ)vkv
>
k , (3.7)

where each sk(dk, λ) ∈ [0, 1] is a function of dk and λ, and they satisfy s1(d1, λ) ≥
· · · ≥ sr̄(dr̄, λ) ≥ 0. To avoid confusion, we may simply write sk(dk, λ) = sk(λ) =

sk. The reduced rank regression/rank selection criterion estimator can be viewed

as a special case of this general framework with sk(dk, r) = 1(k ≤ r) ∈ {0, 1},
r = 1, . . . , r̄. Note that the solutions are indexed by the rank constraint r, instead

of a continuous penalty parameter λ. This class of estimators has the same set of

singular vectors as the reduced rank regression estimator in (3.5), but may have

different singular value estimates given by some shrunk or thresholded versions of the

estimated singular values from least squares. Such estimators can be obtained from a

non-convex singular-value penalization or thresholding operations (She, 2009, 2012;

Chen and Huang , 2012). The class of estimators (3.7) is computationally efficient and

possesses many desirable theoretical properties, such as, rank selection consistency

and achieving minimax error bound (Bunea et al., 2011; Chen and Huang , 2012) under

both the classical and the high-dimensional asymptotic regimes. Some examples

include the reduced rank regression, rank selection criterion (Bunea et al., 2011), the

nuclear norm penalized estimator under an orthogonal design (Yuan et al., 2007), and

the adaptive nuclear norm estimator proposed by Chen and Huang (2012).

3.4 Degrees of freedom of reduced rank estimators

In the previous section we discussed a broad class of reduced rank estimators

covering both hard-thresholding and soft-thresholding of the singular values of Ŷ.

Next we apply definition (3.2) to such multivariate regression estimators to estimate

the degrees of freedom. To answer that we start by rewriting the multivariate linear

regression model (4.1) as follows

vec(Y)
nq×1

= [Iq ⊗X]
nq×pq

vec(B)
pq×1

+ vec(E)
nq×1

,

where ⊗ denotes the usual Kronecker product between matrices, and vec(.) stands for

the column-wise vectorization operator on a matrix. We will first derive the results
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for the special case of reduced rank regression estimator (3.5) and later extend it to

the general class of model (3.7). Applying definition (3.2) we get

d̂f(r) = tr

{
∂vec(Ŷ(r))

∂vec(Y)

}
, r = 1, . . . , r̄, (3.8)

where tr(·) denotes the trace operator for a real square matrix. Recall that we

assumed rank(Ŷ) = r̄ = min{rx, q} which is not restrictive in general and does

not depend on the dimensions of the problem. Let X>X = QS2Q> be the eigen

decomposition of X>X, i.e., Q ∈ Rp×rx , Q>Q = I, and S ∈ Rrx×rx is a diagonal

matrix with positive diagonal elements. Then, the Moore-Penrose inverse of X>X

can be written as (X>X)+ = QS−2Q>. Define

H = S−1Q>X>Y.

It then follows that H ∈ Rrx×q admits an SVD of the form

H = UDV>, (3.9)

where U ∈ Rrx×r̄, U>U = I, and V, D are defined in (3.4). The matrix H

shares the same set of singular values and right singular vectors with Ŷ in (3.4),

as H>H = Ŷ
>
Ŷ = Y>X(X>X)+X>Y. Moreover, H is full rank since Ŷ is of rank

r̄ = min(rx, q). The matrix H plays a key role in deriving a simple form of the degrees

of freedom as we shall see later. In particular, this construction allows us to avoid

singularities arising from rx < p in the high-dimensional scenario. Simplifying (3.8)

using matrix equalities such as tr(AB) = tr(BA) and vec(ABC) = (C>⊗A)vec(B)

we obtain our unbiased estimator of the degrees of freedom of reduced rank regression

as

d̂f(r) = tr

{
∂vec(U(r)D(r)V(r)>)

∂vec(H)

}
= tr

{
∂vec(H(r))

∂vec(H)

}
=

rx∑
i=1

q∑
j=1

∂hij(r)

∂hij
, (3.10)

where H(r) = U(r)D(r)V(r)> = (hij(r))rx×q is the rank r approximation to H. The

details of this derivation could be found in the Appendix. For the general class of

reduced-rank estimators in (3.7), we have
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Ỹ(λ) = XQS−1H
r̄∑

k=1

sk(dk, λ)vkv
>
k = XQS−1UD̃(λ)V>,

where D̃(λ) = diag{sk(dk, λ)dk, k = 1, ..., r̄}. Once again using similar matrix algebra

we arrive at a simpler expression for the degrees of freedom for the general class of

reduced rank models

d̃f(λ) = tr

{
∂vec{UD̃(λ)V>}

∂vec(H)

}
= tr

{
∂vec{H̃(λ)}
∂vec(H)

}
, (3.11)

where H̃(λ) = UD̃(λ)V>. It is now clear that the problem boils down to determining

the divergence of a low-rank approximation of the matrix H with respect to H itself.

This involves the derivatives of its singular values and singular vectors. Note that the

singular values and vectors of a matrix are not only highly non-linear functions of the

underlying matrix, they are also discontinuous on certain subsets of matrices (O’Neil ,

2005). This makes that degrees of freedom calculation for the reduced rank regression

is a rather challenging problem. Stein (1973) used derivatives of the singular values

of a positive semi-difinite matrix to estimate the risk improvement for a class of es-

timators for the mean of a multivariate Gaussian distribution. Tsukuma (2008) also

used a similar method to prove minimaxity for Bayes estimators for the mean matrix

for a Gaussian distribution. We note that our set-up is very different from the ones

considered by Stein (1973) and Tsukuma (2008). Specifically, we consider a regres-

sion setting where the design matrix makes the derivation more challenging. Also as

we aim to estimate the degrees of freedom of the model we need the derivatives of

both singular values and vectors to compute the right hand side of (3.11). There has

also been a considerable amount of work on the smoothness and differentiability of

the singular value decomposition of a real matrix in applied mathematics literature;

main references include Magnus and Neudecker (1998), O’Neil (2005) and de Leeuw

(2007). In view of this, we will proceed in two main steps:

1. Derive the partial derivatives in (3.10) and (3.11) under the condition that H

does not have repeated singular values, i.e., d1 > d2 > · · · > dr̄ > 0. Use them

to obtain an explicit exact unbiased estimator of degrees of freedom.

2. Prove that the set where the partial derivatives do not exist has Lebesgue mea-
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sure 0.

The following two sections will address the aforementioned steps respectively and

thus will complete the derivation of degrees of freedom estimator for the reduced

rank estimators for multivariate regression under the SURE framework.

3.5 Proposed estimator

We start by examining the derivatives of the singular values and singular vectors of

a matrix with respect to an entry of the matrix itself. All the proofs are provided in

the Appendix.

Theorem III.1. Suppose H is an rx × q matrix of rank q, with rx ≥ q. Let its

SVD be given by H = UDV>, where U ∈ Rrx×q, U>U = I, V ∈ Rq×q, V>V = I,

and D = diag{di, i = 1, ..., q} with d1 > · · · > dq > 0. Then for each 1 ≤ i ≤ rx,

1 ≤ j ≤ q, and 1 ≤ k ≤ q,

∂vk
∂hij

=− (H>H− d2
kI)−(H>Z(ij) + Z(ij)>H)vk, (3.12)

∂dk
∂hij

=
1

2dk
v>k (H>Z(ij) + Z(ij)>H)vk, (3.13)

where (H>H − d2
kI)− = V(D2 − d2

kI)+V> with (·)+ denoting the Moore-Penrose

inverse, and Z(ij) = ∂H/∂hij is an rx × q matrix of zeros with only its (i, j)th entry

being one.

Without loss of generality, we have assumed rx ≥ q in the above theorem. When

rx ≤ q, the same results could be presented for H> with exchanged rx and q. Theorem

III.1 is established from the general results in de Leeuw (2007) about the derivatives

of a generalized eigen-system. To ensure the derivatives are well-defined, we have

assumed that the singular values are distinct. This is merely a restriction for real ap-

plications, as the observed singular values rarely coincide, a formal proof is provided

in the next section.

It is not immediately clear whether the derived unbiased estimators in (3.10) and

(3.11) may admit explicit form. Examining the SVD structure of H sheds light on

this problem. The pairs of singular vectors (uk,vk) are orthogonal to each other,

representing distinct directions in Rrx×q without any redundancy. Intuitively, these
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directions themselves are not distinguishable from each other, and their relative im-

portance or contribution in constituting the matrix H are entirely revealed by the

singular values. This suggests that the complexity of reduced-rank estimation, as

reflected by the relative complexity of a low rank approximation H(r) or H̃(λ) with

respect to H, may only depend on the singular values of the matrix H and the mech-

anism of singular-value shrinkage or thresholding. This is the main intuition that

motivated the findings for explicit forms of (3.10) and (3.11), which are summarized

in the following theorems.

Theorem III.2. Let Ŷ be the least squares estimator in (3.4). Let r̄ = rank(Ŷ) =

min(rx, q) and suppose the singular values of Ŷ satisfy d1 > · · · > dr̄ > 0. Consider

the reduced-rank estimator Ŷ(r) in (3.5). An unbiased estimator of the effective

degrees of freedom is

d̂f(r) =

 max(rx, q)r +
r∑

k=1

q∑
l=r+1

d2
k + d2

l

d2
k − d2

l

, r < r̄;

rxq, r = r̄.

The results are further generalized to the class of reduced-rank estimators in (3.7).

It is worth noting that the weights sk(dk, λ) are treated as random quantities since

they are usually some functions of the singular values.

Theorem III.3. Let Ŷ be the least squares estimator in (3.4). Let r̄ = rank(Ŷ) =

min(rx, q) and suppose the singular values of Ŷ satisfy d1 > · · · > dr̄ > 0. Consider

the reduced-rank estimator Ỹ(λ) in (3.7), and let r̃ = r̃(λ) = max{k : sk(dk, λ) > 0.}.
An unbiased estimator of the effective degrees of freedom is

d̃f(λ) =


max(rx, q)

r̃∑
k=1

sk +
r̃∑

k=1

r̄∑
l=r̃+1

sk(d
2
k + d2

l )

d2
k − d2

l

+
r̃∑

k=1

r̃∑
l 6=k

d2
k(sk − sl)
d2
k − d2

l

+
r̃∑

k=1

dks
′
k, r̃ < r̄;

max(rx, q)
r̃∑

k=1

sk +
r̃∑

k=1

r̃∑
l 6=k

d2
k(sk − sl)
d2
k − d2

l

+
r̃∑

k=1

dks
′
k, r̃ = r̄.

where for simplicity we write sk = sk(dk, λ) and s′k = ∂sk(dk, λ)/∂dk.

The explicit formulae presented in the above theorems facilitate further exploration

of the behaviors and properties of the degrees of freedom. Consider the unbiased

estimator for reduced rank regression in Theorem III.2. It is always true that
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d̂f(r) ≥ max(rx, q)r +
r∑

k=1

min(rx,q)∑
l=r+1

d2
k + 0

d2
k − 0

= (rx + q − r)r, r = 1, ..., r̄. (3.14)

This suggests that the proposed estimator is always greater than the naive estimator,

i.e., the number of free parameters (rx + q − r)r. Similar to the lasso method in

univariate regression problems (Tibshirani , 1996; Zou et al., 2007), the reduced-rank

estimation can be viewed as a latent factor selection procedure, in which we both

construct and search over as many as r̄ latent linear factors. Therefore, the incre-

ments in the degrees of freedom as shown in (3.14) can be interpreted as the price

we have to pay for performing this latent factor selection. For the general methods

considered in Theorem III.3, this inequality no longer holds, due to the shrinkage

effects induced by the weights 0 ≤ sk ≤ 1. The reduction in the degrees of freedom

due to singular-value shrinkage can offset the price paid for searching over the set

of latent variables. Therefore, similar to lasso, adaptive singular-value penalization

can provide effective control over the model complexity (Tibshirani and Taylor , 2011;

Chen and Huang , 2012).

Although the unbiased estimator and the naive estimator are quite different, some

interesting connections can be made. The two estimators are close to each other

when they are evaluated at the true underlying rank, especially when the signal is

strong relative to the noise level. This phenomenon was also noted in the empirical

studies. Suppose the true model rank is rank(B) = r∗. Intuitively, the r̄−r∗ smallest

singular values from least squares may be close to zero and are not comparable to

the r∗ largest ones; using the approximation dk ≈ 0, k = r∗ + 1, ..., r̄, we obtain

d̂f(r∗) ≈ (rx + q − r∗)r∗. A more rigorous argument can be made from either clas-

sical or high-dimensional theoretical perspective. In classical large n settings, under

standard assumptions, the consistency of the least squares estimation can be read-

ily established (Reinsel and Velu, 1998). Using techniques such as the perturbation

expansion of matrices (Izenman, 1975), the consistency of Ŷ implies the consistency

of the estimated singular values, i.e., the first r∗ estimated singular values converge

to their nonzero true counterparts while the rest converge to zero in probability. It

follows that

d̂f(r∗)→p (rx + q − r∗)r∗ (3.15)

in probability as n → ∞. An immediate implication of this result is that for each
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r = 1, ..., r̄, if we assume the true model is of rank r, then in an asymptotic sense,

the number of free parameter, (rx + q − r)r, is the correct degrees of freedom to use.

This clearly relates to the error degrees of freedom of the classical asymptotic χ2

statistic from the likelihood ratio test of H0 : rank(B) = r (Izenman, 1975), for each

r = 1, ..., r̄. In high-dimensional models, non-asymptotic prediction error bounds

have been developed for the considered reduced-rank estimation methods, and the

minimax convergence rate in fact coincides with the number of free parameters (Ro-

hde and Tsybakov , 2011; Bunea et al., 2011; Chen and Huang , 2012). These results

provide further justification of the proposed unbiased estimator and reveal the limi-

tations, the underlying assumptions and the asymptotic nature of the naive estimator.

The derived formulae also reveal some interesting behaviors of rank reduction. In

essence, the reduced-rank methods distinguish the signal from the noise by examining

the estimated singular values from least squares estimation: the large singular values

more likely represent the signals while the small singular values mostly correspond

to the noise (Bunea et al., 2011; Chen and Huang , 2012). By rank reduction, we

aim to recover the signals exceeding certain noise level. Consider the case when dk

and dk+1 are close for some k = 1, ..., r̄ − 1. It can be argued that the true model

rank is unlikely to be k, because the (k + 1)th layer and the kth layer are hardly

distinguishable. Indeed, this is reflected from the degrees of freedom: for r = k, the

formula includes a term (dk + dk+1)/(dk − dk+1), which can be excessively large. On

the other hand, there is no such term for r = k + 1. Consequently, the unbiased

estimator of the degrees of freedom may not monotonically increase as the rank r

increases, in contrast to the naive estimator. In the above scenario, the estimates for

r = k can even be larger than that of r = k + 1. This automatically reduces the

chance of k being selected as the final rank.

3.6 Existence of partial derivatives almost everywhere

One of the main technical assumptions for Stein’s degrees of freedom estimator is

that the partial derivatives must exist almost everywhere. Theorem III.1 gives us

the condition, d1 > d2 > . . . > dr̄ > 0 for the existence of the partial derivatives of

singular values and singular vectors of H ∈ Rrx×q, where {di}r̄i=1 denote the singular

values of H. Also recall that r̄ = min{rx, q}. Therefore, to apply Stein’s framework we

must show that matrices with full rank and non-repeated singular values are “dense”

in the set of all real matrices of dimension rx × q. The following theorem gives that
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result.

Theorem III.1. Let Rrx×q be the space of all real-valued rx×q dimensional matrices

equipped with the Lebesgue measure µ. Also, let S ⊆ Rrx×q denote the subset of

matrices that have full rank and no repeated singular values. Then µ(S) = 1.

To prove the theorem, we start with a few definitions and facts from algebraic geom-

etry and matrix analysis.

Definition III.2. An algebraic variety over Rk(or Ck) is defined as the set of points

satisfying a system of polynomial equations {f`(x1, x2, . . . , xk) = 0; ` ∈ I}.

Here each f`(·) is a polynomial function of its arguments and I denotes an index

set. If at least one of the f`(·) 6≡ 0, then it is called a proper sub-variety. Note that

a proper sub-variety must be of dimension less than k and therefore has Lebesgue

measure 0 in Rk (Allman et al., 2009). For a more detailed discussion, we recommend

Hartshorne (1977) or Cox et al. (2007).

Proposition III.3. (Laub, 2004) Any square symmetric matrix M ∈ Rk×k has at

least one repeated eigenvalue if and only if rank (M⊗ Ik − Ik ⊗M) < (k2 − k).

Now we prove the theorem. First we define

S1 = {A ∈ Rrx×q : A has at least one 0 singular value},

S2 = {A ∈ Rrx×q : A has at least one repeated singular value}.

Note that Sc = S1 ∪ S2, thus it is enough to show that µ(S1) = 0 and µ(S2) = 0. By

definition III.2 and the discussion above it suffices to show that S1 and S2 are proper

sub-varieties of Rrx×q. Note that S1 can be rewritten as follows

S1 = {A ∈ Rrx×q : det(A>A) = 0}.

Here det(·) denotes the determinant operator for a square matrix. Note that det(A>A)

is a non-trivial polynomial in entries of A and hence S1 is a proper sub-variety and

has Lebesgue measure 0. For S2 note that if A ∈ Rp×q has at least one repeated sin-

gular value, it implies that ATA ∈ Rp×q has at least one repeated eigenvalue. Then

in view of proposition III.3, S2 can be reformulated as

S2 =
{
A ∈ Rrx×q : rank

(
A>A⊗ Iq − Iq ⊗A>A

)
< (q2 − q)

}
.
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This is an algebraic variety since it can be expressed as the solution to all minors of

order ≥ (q2 − q) being equal to 0, which are all polynomial equations in the entries

of A. Thus, we have shown that, µ(S1 ∪ S2) = 0.

3.7 Simulation studies

In this section, we evaluate the performance of the proposed method by simulation

studies. Specifically, we aim to demonstrate two things: 1) the exact unbiased estima-

tor of the degrees of freedom for the reduced rank regression is in general significantly

higher than the naive estimator; 2) using the exact estimator of the degrees of freedom

enables us to gain prediction accuracy over the naive estimator.

3.7.1 Unbiasedness

In this simulation, we aim to show that the degrees of freedom estimator defined via

Theorem III.2 is unbiased and it can be significantly higher than the naive estimator

that simply counts the number of free parameters. Here unbiasedness is defined over

the error distribution, and we treat X as a fixed design matrix. We conduct the study

at two different parameter settings one for low-dimension and one for high-dimension.

Parameters of the setting are as follows

Setting I : n = 100, p = 20, q = 12, r0 = 6

Setting II : n = 40, p = 80, q = 50, r0 = 10

where r0 denotes the true rank of B. Let Σ denote the covariance matrix of the

predictor variables, X, and we set Σjj′ = 0.3|j−j
′|. Rows of the predictor matrix

are generated independently from Np(0,Σ). To control the singular structure of B

through the covariance of signals XB, BTΣB, we take the left singular vectors of B

the same as the eigenvectors of Σ, whereas the right singular vectors of B are gener-

ated by orthogonalizing a random standard normal matrix. The difference between

successive non-zero singular value of B is fixed at 2. The error matrix is gener-

ated from i.i.d. standard normal distribution. We replicate the process 200 times;

note that the design matrix remains fixed. We compare the proposed exact method

against the data perturbation technique (Ye, 1998) and the Monte-Carlo estimator of

the true degrees of freedom which is computed from (3.1). For the data perturbation

method, we consider 50 perturbations of the response matrix for each replication to

estimate the partial derivatives numerically. We used the choice of 0.1σ for the per-
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turbation size, where σ is the error standard deviation. Ideally we would expect the

proposed exact estimator to be fairly close to the data perturbation and Monte-carlo

estimator on average. We compare estimators against the naive degrees of freedom

estimate namely, dfn(r) = r(rx + q− r), which denotes the number of free parameters

in a p×q matrix of rank r. Note that the naive estimator does not depend on the data.
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Figure 3.1:
Left column: low dimensional setting, right column: high-dimensional
setting
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On the top row of Figure 3.1 we see that for both high-dimensional and low-dimensional

settings the proposed exact method, the data perturbation estimator and the Monte-

Carlo estimator are nearly identical; further, they are significantly higher than the

naive estimator, as indicated in the middle row of Figure 3.1. The difference is espe-

cially large once we go above the correct rank. It also justifies our theoretical intuition

that the exact estimators seem to match the naive estimator very closely at the true

rank. The bottom panels allow us to get a sense of the variability of the estimation

procedures. Standard error for the exact method is orders of magnitudes smaller than

that of data perturbation below the true rank but once we go above the true rank

the standard errors of the exact estimator becomes drastically higher. This arises

from the fact that once we go above the true rank, the singular values of Ŷ basically

correspond to noise, and can be very close to each other. Hence slight perturbations

of the data might lead to different singular directions being selected, which implies

higher variability in model complexity. This has also been noted by Ye (1998), that

is, if we are trying to fit pure error components, the degrees of freedom tends to be

higher and unstable.

3.7.2 Prediction performance

The previous set of simulations have shown that the exact degrees of freedom esti-

mator can be significantly different from the number of free parameters estimator.

Degrees of freedom estimates are commonly used in various model selection criteria.

In this subsection, we aim to show that for reduced rank regression, we can gain

in prediction accuracy by using the exact degrees of freedom estimator in a model

selection criterion instead of the naive estimator. Since our focus is on prediction

accuracy, we consider generalized cross-validation(GCV) (Golub et al., 1979) as our

model selection criterion. This choice was motivated by the fact that it does not

require an estimate for the error variance. Other popular choices such as Mallows Cp

(Mallow , 1973) require an estimate of error variance which is hard to obtain in high-

dimensional settings. In the context of reduced rank regression, the GCV criterion is

defined as follows

GCV (r) =
nq‖Y − Ŷ(r)‖2

F

(nq − df(r))2
.

We select the model that minimizes the GCV criterion over 1 ≤ r ≤ min{n, p, q}.
Once again we choose a low-dimensional and a high-dimensional setting for a com-
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prehensive comparison.

LD Setting : n = 50, p = 12, q = 10, r0 = 3

HD Setting : n = 40, p = 80, q = 50, r0 = 5

For each setting we consider two different levels for error variance, namely, σ2 = 1

and 4. This allows us to controls the signal to noise ratio defined as SNR =

dr0(XB)/d1(E). The numerator stands for the smallest non-zero singular value of

the signal matrix, a measure of the signal strength, whereas the largest singular value

of the error matrix measures the noise strength (Bunea et al., 2011). Correlation

among predictor variables is kept at a moderate level of 0.5. The data generation

scheme remains the same as before. We fit the optimal model based on GCV with

the exact degrees of freedom (GCV(e)) and GCV with the naive degrees of freedom

(GCV(n)) and report the following: estimation error Est = 100‖B − B̂‖2
F/(pq), the

prediction error Pred = 100‖XB−XB̂‖2
F/(nq) as well as the selected rank. . Table

3.1 summarizes the results. We report the averages over 100 replications and the

numbers inside the parenthesis indicate standard error.

Table 3.1:
Prediction performance comparison between different model selection cri-
teria

Error Variance Performance LD setting HD setting
and SNR Measure GCV(e) GCV(n) GCV(e) GCV(n)

σ2 = 1, SNR ≈ 1
Est 1.56(0.4) 1.80(0.8) 3.25(0.5) 3.30(0.5)

Pred 11.95(2.2) 12.97(3.4) 22.89(1.5) 28.28(4.3)
Rank 3.01(0.1) 3.18(0.4) 4.84(0.4) 5.30(0.5)

σ2 = 4, SNR ≈ 0.5
Est 6.00(2.7) 7.47(3.4) 3.77(0.5) 4.00(0.6)

Pred 50.64(10.8) 54.31(10.8) 78.48(6.2) 89.93(17.4)
Rank 2.41(0.6) 2.86(0.6) 4.00(0.0) 4.46(0.6)

We find that using the proposed exact degrees of freedom estimator in GCV criterion

performs better in terms of prediction accuracy than its naive counterpart. It has

lower average estimation error and prediction error for all the settings. The relative

gain is larger for the prediction error. We wish to note that similar results were

obtained at other levels of correlation but were excluded to facilitate brevity. For

the low-dimensional setting where an estimator of σ2 is available we also studied the

performance of Mallow’s Cp criterion and once again the results were very close to the
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ones reported and therefore excluded. We find that in the settings with moderately

high SNR, the naive degrees of freedom estimator tends to overestimate the rank

leading to inflated error measures. On the other hand in the low SNR settings often

the smallest non-zero singular value have very little explanatory power and therefore

selecting a lower rank model enables us to do better in terms of prediction accuracy

due to the bias-variance trade-off. As the exact degrees of freedom estimator is usually

higher than the naive estimator it penalizes more strictly and selects a simpler model

which predicts better. To get a better understanding for the comparison between

the two degrees of freedom estimators, we also computed the percentage of pairwise

relative gain, which is defined as follows

PRG = 100× (Pred(n)− Pred(e))

Pred(e)
%,

where Pred(e) denotes the prediction error when using exact degrees of freedom

estimator in GCV criterion, similarly Pred(n) denotes the prediction error when using

the naive degrees of freedom estimator in GCV. Note that these ratios are computed

on a per data set basis. As we can see in Figure 3.2, the boxplots tend to stay above

zero almost always indicating that the exact degrees of freedom outperforms the

naive estimator consistently. Also the relative gain is larger in the high-dimensional

scenario.
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Figure 3.2:
Relative gain in prediction error by using the exact estimator of degrees
of freedom over the naive estimator
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3.8 Analysis of Arabidopsis thaliana data

In this section, we apply the proposed degrees of freedom methodology to fit a reduced

rank model to a genetic association data set that was published in Wille et al. (2004).

This is a microarray experiment aimed at understanding the regulatory control mech-

anisms between the isoprenoid gene network in Arabidopsis thaliana plant (more com-

monly known as thale cress or mouse-ear cress). It is known that isoprenoids serve

many important biochemical functions in plants. To monitor the gene-expression

levels, 118 GeneChip microarray experiments were carried out. The predictors con-

sist of 39 genes from two isoprenoid bio-synthesis pathways namely MVA and MEP,

whereas the responses consist of gene-expression of 795 genes from 56 metabolic path-

ways, many of which are downstream of the two pathways considered as predictors.

Thus some of the responses are expected to show significant associations to the pre-

dictor genes. To facilitate it further, we select two downstream pathways namely,

Caroteniod and Phytosterol as our responses. It has already been proven experimen-

tally that the Carotenoid pathway is strongly attached to the MEP pathway, whereas

the Phytosterol pathway is significantly related to the MVA pathway. See Wille et al.

(2004) and the references therein for a more detailed discussion on the biological as-

pects. Finally we have 118 observations on p = 39 predictors and q = 36 responses.

All the predictors and responses are log-transformed to reduce the skewness of the

data. We also standardize the responses in order to make them comparable.

We split the data set randomly into training and test sets of equal size. The model

is fit using the training samples and then we use it to predict on the test set. The

performance measure under consideration is the usual mean squared prediction error

MSPE =
2

nq
‖Ytest − Ŷtest‖

2
F . (3.16)

The entire process is repeated 100 times based on random splits to ensure that the

results remain robust to the process of splitting. We used Mallow’s Cp, GCV and

BIC with the exact degrees of freedom and the naive degrees of freedom to select the

optimal rank.

The mean squared prediction errors for each method are summarized using the box-

plot in Figure 3.3. As we can see, for all three model selection criteria considered, the

use of the exact unbiased estimator enables us to outperform the one which uses the

naive estimator in terms of prediction accuracy. The relative gain is almost always
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Figure 3.3:
Left: boxplot of mean square prediction error of each method over 100
random splits; Right: Relative increase in prediction error for using naive
degrees of freedom over the exact degrees of freedom estimator for each
model selection criteria.

Table 3.2:
Prediction accuracy and rank selection performance for the competing
methods on the Arabidopsis thaliana data.

Cp(e) Cp(n) GCV(e) GCV(n) BIC(e) BIC(n) OLS
Avg(Pred Err) 2.197 2.243 2.192 2.282 1.297 1.387 2.589
Std(Pred Err) 0.250 0.246 0.248 0.246 0.134 0.201 0.282

Mean(Est Rank) 8.760 9.710 8.680 10.520 1.090 1.480 –
Std(Est Rank) 1.15 0.83 1.27 0.97 0.38 0.76 –

positive as we can see from the right panel of the figure. Also among the three model

selection criteria BIC appears to be the clear winner in terms of prediction error by

selecting a very parsimonious model.

3.9 Concluding remarks

We have proposed an exact unbiased estimator of the degrees of freedom for a gen-

eral class of reduced rank estimators for the multivariate linear regression model in

the framework of SURE. The proposed estimator can be computed explicitly lead-

ing to an efficient model selection procedure compared to computationally expensive

cross-validation or data-perturbation based methods. The closed form also provides

us with some much needed insight regarding the connection between the exact and
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the naive degrees of freedom estimator. The proposed methodology does not make

any assumption regarding the dimensions of the problem or the rank of the design

matrix and is very suitable for application to high-dimensional problems (p, q > n)

as illustrated via several numerical examples. The methods developed here are quite

general and can be extended to other related estimation procedures that employ

regularization of the singular values, e.g., reduced rank ridge regression (Mukherjee

and Zhu, 2011). There are several directions for future research. We have mainly

considered the reduced-rank estimators which share the same set of singular vectors

with the least squares solution. It would be interesting and challenging to extend

the results for other reduced-rank methods, such as, the nuclear-norm penalized re-

gression (Yuan et al., 2007). Since reduced-rank estimation can be more effective

when combined with sparse estimation, e.g., selecting latent factors of a sparse sub-

set of original variables, it would be very interesting to extend the methodology to

sparse and low-rank models (Zou et al., 2007; Chen et al., 2012; Bunea et al., 2012).

Another pressing problem concerns investigating the proposed approach in reduced

rank generalized linear models (Yee and Hastie, 2003; Li and Chan, 2007; She, 2012).

Finally, as the reduced rank methods are commonly used in multiple time series anal-

ysis, the proposed approach can be extended to these settings, including reduced rank

models with multiple sets of regressors (Velu, 1991) and the co-integration problem

(Anderson, 2002b).
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CHAPTER IV

Non-parametric Reduced Rank Regression with

Variable Selection

4.1 Introduction

We have discussed many different methods for reduced rank regression and variable

selection in the context of multivariate linear regression in Section I. The next set of

novel methodologies seek to combine the attractive features of both these approaches

creating a framework for simultaneous rank reduction and variable selection. Chen

et al. (2012) adopted a sparsity penalty on the singular vectors of the coefficient ma-

trix to obtain more interpretable models. Bunea et al. (2012) and Chen and Huang

(2012) both propose methodologies for joint rank and variable selection approaches

for high-dimensional multivariate regression through a group lasso penalty on the

coefficient matrix B with a rank constraint. The methods differ in terms of the opti-

mization algorithm as well as the asymptotic analysis.

The methods reviewed in the preceding paragraphs all assume a linear parametric

model. In many modern applications, there is little justification for assuming the

predictors have a linear effect on the responses. In many econometric, genetic or ex-

perimental studies such as the one described in Section 4.6 it has been demonstrated

that the effects are highly non-linear. One way of overcoming this drawback is to as-

sume a non-parametric additive model. The additive form helps to avoid the curse of

dimensionality and also makes it easy to device penalization approaches for variable

selection in high-dimensional settings. A large amount of statistical literature has

been dedicated to the analysis of such models of which we describe a few. Lin and

Zhang (2006) proposed the component selection and smoothing operator (COSSO)

method which incorporates an RKHS norm penalty to encourage variable selection
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in the smoothing-spline ANOVA set-up . The authors derive the rate of convergence

of their estimator and show model selection consistency for certain special cases. But

their method fails to handle the high-dimensional case where, p > n. Meier et al.

(2009) introduced a sparsity-smoothness penalty to achieve variable selection for non-

parametric additive models under high-dimensional setting. Under moderate smooth-

ness assumptions the authors are able to characterize the solution to the optimization

problem as a natural cubic spline and develop a computational algorithm based on

B-spline basis expansions. But model selection consistency is not guaranteed even

in an asymptotic sense. Ravikumar et al. (2009) introduced another non-parametric

variable selection method called sparse additive models (SpAM). Variable selection

is achieved by penalizing the `2 norm of the functional components. The estimator

is computed via sparse backfitting algorithm using non-parametric smoothers. The

authors prove model selection consistency but the conditions required for that are

not easy to check and it is unclear whether a given set of basis functions would sat-

isfy them. More recently, Huang et al. (2010) proposed a two-step adaptive group

lasso method for variable selection in non-parametric additive model based on spline

approximations. Model selection consistency is established under mild regularity

conditions using the fact that the ordinary group lasso estimator in step-I selects the

important predictors with a high probability.

Motivated by the flexibility and the versatile nature of the non-parametric regression

methods in this paper we propose a framework for reduced rank estimation under

such settings. Despite the broad appeal of such a model very little work has been

done to extend the reduced rank framework to functional regression. In this paper

we propose to model each response as a smooth function which is additive in its argu-

ments. The underlying assumption is that the rank of true functional signal matrix

(to be defined in Section 4.2) is much smaller than its dimensions thus a low-rank

estimator may have better prediction accuracy and also provide more insight about

the data. Variable selection also plays an important role as many of the real world

problems that we face today involve high-dimensional features and a large fraction of

which may carry little or no information about the responses (sparsity). We propose

a two-step low-rank group lasso algorithm to encourage simultaneous dimension re-

duction as well as variable selection for the non-parametric additive model based on

spline approximation of the functional components. The algorithm can be thought of

as a non-parametric extension of the rank-constrained group lasso algorithm proposed

by Bunea et al. (2012) in the linear case. But there are some significant differences
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due to the spline basis expansion which transforms the variable selection step to se-

lecting sub-matrices in an expanded coefficient matrix. The approximation step also

makes theoretical analysis of the proposed methodology much more challenging than

the linear case. Appropriate bounds on the spline approximation error proves to be

the key to establishing theoretical guarantees such as rank selection consistency and

estimation error bounds.

The rest of the paper is organized as follows. Section 4.2 describes the non-parametric

additive model in the context of multiple response regression and introduces the

spline approximation. Section 4.3 contains the optimization algorithm for obtaining

a low-rank solution with variable selection. We also describe the issue of tuning

parameter selection in that context. Theoretical results are described in Section 4.4

as well as the required conditions. Detailed proofs are postponed to the appedix.

Section 4.5 presents the results of numerical studies comparing the proposed method

against relevant competitors on simulated data. Section 4.6 illustrates an application

on a chemometrics experiment data. We conclude the paper with a discussion in

Section 4.7.

4.2 Model: Low-rank Non-parametric Additive Models

This section introduces the non-parametric model with rank constraints and also

describes the crucial spline approximation step. Let us assume that we have n obser-

vations on a p-dimensional predictor vector X = (X1, X2, . . . , Xp) and q-dimensional

response vector Y = (Y1, Y2, . . . , Yq). In matrix notation we have a design matrix

X ∈ Rn×p and a response matrix Y ∈ Rn×q where each row of X and Y correspond

to an observation. We assume that the responses are related to the preditors through

the following non-parametric additive model

yik =

p∑
j=1

fkj(xij) + εik, i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q, (4.1)

where εik
iid∼ N(0, σ2) and fkj are the component functions. For identifiability purposes

we assume that E(fkj(Xj)) = 0. To keep the notations simple and concise we drop

the intercept term from the model. This model can be rewritten in matrix notation

as

Y = f(X) + E, (4.2)
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where f(x)ik =
∑p

j=1 fkj(xij) and is referred to as the signal matrix. We assume

a low-rank structure on the signal matrix, which explains the dependence structure

among the responses given the predictors and achieves dimension reduction. To ad-

dress the high-dimensionality of the predictors we assume that only a few predictors

are related with the responses. The following conditions make the assumptions more

concrete.

A1. rank(f(X))� min{n, p, q}
A2. Without loss of generality ∃J � p such that fkj ≡ 0 ∀j > J and k =

1, 2, . . . , q.

Our objective is to build a non-parametric model that achieves simultaneous rank

and variable selection leading to a more interpretable and accurate predictive model.

Under mild smoothness assumptions on the component functions the signal matrix

can be well-approximated by a set of basis functions and therefore rank and variable

selection can be performed on that approximate representation. We start by approx-

imating the non-parametric component functions by B-splines much to the spirit of

Huang et al. (2010). B-spline basis functions are an attractive choice because they

are computationally efficient and very flexible. Assume that each Xj ∈ [a, b] where

−∞ < a < b < ∞, and let a = ξ0 < ξ1 < . . . < ξTn < ξTn+1 = b be a partition of

that interval. Let Tn = nν for some 0 < ν < 0.5, such that the mesh of the partition

defined as max
1≤t≤Tn+1

|ξt− ξt−1| = O(n−ν). Let Sn be the space of all polynomial splines

of degree d on [a, b] with the above partition. Then there exists a normalized B-spline

basis {φ` : 1 ≤ ` ≤ Ln}, where Ln = Tn + d (See Stone (1985) or Schumaker (1981)

for a detailed analysis) such that any f ∈ Sn can be written as

f(x) =
Ln∑
`=1

β`φ`(x), x ∈ [a, b]. (4.3)

Under suitable smoothness assumptions on the component functions fkj in (4.1) can

be well approximated by functions in Sn and accordingly the rank and variable se-

lection procedures developed in this paper will be based on that. Let us define the

approximating functions as

f̃kj(x) =
Ln∑
`=1

βkj`φ`(x), ∀j = 1, . . . , p; k = 1, . . . , q. (4.4)

Note that we have the extra constraint of E(fkj(Xj)) = 0 to make the model identi-
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fiable but the B-spline basis functions need not be mean zero. We adjust for that by

centering the basis functions over the sample points. Define

φ̄`j =
1

n

n∑
i=1

φ`(xij), ψ`j(x) = φ`(x)− φ̄`j. (4.5)

The centered functions ψ`j act as the new basis functions which ensures identifiability.

To keep notations simple and compact let us introduce the basis expanded design and

coefficient matrices

Ψ
n×pLn

=

[
Ψ1
n×Ln

| Ψ2
n×Ln

| · · · | Ψp
n×Ln

]
, B

pLn×q
=


B1
Ln×q

...

Bp
Ln×q

 (4.6)

where Ψj(i, `) = ψ`j(xij) and bj(j, `) = βkj`. Note that under assumption A2, we

have Bj ≡ 0, ∀j > J . Using this matrix notation we can reformulate (4.2) as

Y = ΨB + E(X) + E, (4.7)

where E(X) denotes the approximation error in approximating the signal matrix f(X)

by the spline basis expansion. This expansion plays a crucial role in the development

of a simultaneous rank and variable selection algorithm for the non-parametric case.

4.3 Method: Non-parametric Low-rank Group Lasso

In this section we propose a two-step rank and variable selection method for the non-

parametric additive model using expansion (4.7). The two steps are as follows.

Step I. Rank selection

r̂ = rank

(
arg min

W

{
‖Y −ΨW‖2

F + µ.rank(W)
})

. (4.8)

Step II. Variable selection

Ŵ = arg min
W:rank(W)≤r̂

{
1

2
‖Y −ΨW‖2

F + λ‖W‖F,1
}
. (4.9)

Where ‖.‖F denotes the Frobenius norm of a matrix and ‖W‖F,1 =
∑p

k=1‖Wk‖F
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which is a group lasso type penalty on the block of the coefficient matrix corre-

sponding to each predictor. The rank penalty in the first step encourages dimension

reduction while the group lasso penalty in the second step ensures that we select a

sparse model.

The first step admits a closed form solution based on the singular value decomposition

of the generalized least squares solution. Let dr(A) denote the r-th largest singular

values of a generic matrix A. Then the solution to step I is given by the following

r̂ = max
{
r : dr(Ψ(Ψ>Ψ)−Ψ>Y) >

√
µ
}
, (4.10)

here A− denotes the Moore-Penrose generalized inverse for a square matrix A. See

Bunea et al. (2011) for the detailed derivation. For an appropriate choice of tuning

parameter µ we can guarantee consistent rank selection as long as the signal is suffi-

ciently strong. In practice the optimal rank is often selected via cross-validation.

The optimization problem for the second step is non-convex due to the rank constraint

therefore solving it directly might be challenging. Observe that a rank r̂ matrix W

can be decomposed as W = UV> where U ∈ RpLn×r̂ and Vq×r̂ is an orthogonal

matrix. Note that there is no constraint on U. With this re-parametrization we can

simplify the criterion function (4.9) as

‖Y −ΨW‖2
F + λ‖W‖F,1 = ‖Y −ΨUV>‖2

F + λ‖U‖F,1 (4.11)

= ‖YV −ΨU‖2
F + λ‖U‖F,1.

Now we can solve this optimization problem in an iterative fashion. For a fixed U,

optimizing over V is a least squares problem that admits a closed form solution.

On the other hand if we fix V then the optimization problem over U is a regular

group lasso problem with the groups being given by the p-blocks of size Ln × r̂ in

U> = [U>1 ,U
>
2 , . . . ,U

>
p ]. This is a convex optimization problem and can be solved

easily using off-the-shelf optimization algorithms. Therefore we can start with some

initial guesses for U and V and iteratively solve the two sub-problems until the ob-

jective function does not change. It can be shown that the algorithm described above

possesses monotonic convergence property given any starting point (U0,V0). That

is the cost function is guaranteed to decrease at each iteration.
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We can infer the set of effective predictors and the rank of the system from the final

solution Ŵ. A predictor variable is non-informative for all of the response if the

block of the coefficient matrix corresponding to the basis expansion is shrunk to zero.

Whereas in the linear case that would be determined by a single row of the coefficient

matrix. Given any new predictor vector x we expand it using the b-spline basis

functions described in the previous section and use that to make the predictions.

4.4 Theoretical Properties

This section describes some of the desirable theoretical properties of our method

that we were able to establish under moderate regularity conditions. We start by

describing the smoothness conditions under which the component functions can be

well approximated by the B-splines. Let α be a non-negative integer and γ ∈ (0, 1],

such that, α + γ > 0.5. Define the class of functions f whose α-th order derivative

exists and satisfies a Lipschitz condition of order γ. Specifically

F =
{
f : [a, b]→ R : |f (α)(s)− f (α)(t)| ≤ |s− t|γ, for s, t ∈ [a, b]

}
. (4.12)

C1. The component functions fkj ∈ F and have E(fkj(Xj)) = 0 ∀ k, j.
C2. X has a continuous density and there exists constants c1 and c2 such that the

marginal densities gj for Xj satisfy 0 < c1 ≤ gj(x) ≤ c2 < ∞ for x ∈ [a, b] and

j = 1, 2, . . . , p.

These are rather mild assumptions that are common in many non-parametric additive

model literature. The next lemma bounds the error E(X) in approximating the signal

matrix f(X) using centered spline functions as described before.

Lemma IV.1. Under C1 and C2, ∃ B ∈ RpLn×q, such that, f(X) = ΨB + E(X),

with

‖E(X)‖2
F ≤ C1|J |qLn, (4.13)

where C1 is a constant of proportionality.

The proof adapts Lemma 1 in Huang et al. (2010) to the case of multiple functional

responses. This allows us to bound the largest singular value of the approximation

error which is a crucial step towards proving our first result on rank selection consis-

tency.
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Theorem IV.2. Assume C1 and C2 and let rank(f(X)) = r. If dr(f(X)) > 4σ(
√
q+

√
pLn) + 7C1

√
|J |qLn, then for an appropriate choice of µ we have

P(r̂ 6= r0) ≤ exp(−C2pqLn). (4.14)

Note that X is deterministic and the probability is defined over the distribution of

the error E. If pqLn → ∞ then probability of selecting the wrong rank goes to zero

at an exponential rate. The details of the proof are available in the appendix. The

non-parametric case is more challenging due to the presence of the approximation er-

ror term. Therefore to achieve rank selection consistency we need to have a stronger

signal as measured by dr(f(X)), because it needs to dominate the sum of the additive

error in the model E and the approximation error E(X). This results in the extra

term given by 7C1

√
|J |qLn in the inequality condition for dr0(f(X)) when compared

to the linear case. We introduce two more moderate regularity conditions which will

be crucial to prove next result on error bound.

C3. Let Σ = Ψ>Ψ/n. With a slight abuse of notation define J = {1, 2, . . . , J}, the

set of effective predictors and δJ > 0 such that, Σ satisfies

trace(A>ΣA) ≥ δJ
∑
j∈J

‖Aj‖2
F , (4.15)

for any A ∈ RpLn×q with blocks Aj that satisfy 2
∑

j∈J‖Aj‖F ≥
∑

j∈Jc‖Aj‖F .

C4. log (‖f(X)‖2
F ) ≤ C3|J |qLn, for some numerical constant C3.

C3 is a technical condition that can be seen as a version of the restricted eigenvalue

property for the multiple response regression problem. See Bickel et al. (2008) or

Bühlmann and van de Geer (2011) for a more detailed discussion on this. C4 is

required to ensure that the estimation error remains bounded even when the rank is

estimated wrongly in the first step. Now we present our main result on bounding the

estimation error.

Theorem IV.3. Assume that C1, C2, C3 and C4 hold then under appropriate

choice of the tuning parameters µ and λ the two-step non-parametric low-rank group

lasso estimator defined in (4.9) satisfies

E
(
‖f(X)−ΨŴ‖2

F

)
<
∼
rq + |J |qLn + r|J |Ln log(ep). (4.16)
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The symbol <
∼

stands for proportionality up to certain multiplicative constants. Once

again we remind the readers that X and Ψ are treated as deterministic quantities

and the expectation is taken of the distribution of the errors which is Gaussian by

assumption. We also note that both theorems IV.2 and IV.3 hold without any re-

striction on n, p, q as long as the fairly moderate regularity conditions on component

functions and Σ continue to hold. A comparison with the result obtained in Theorem

4 by Bunea et al. (2012) shows that we have incurred one extra term (|J |qLn) which

arises from the error in approximating the non-parametric functions by the B-spline

basis. Also the third term of the right hand side of (4.16) has an extra factor of

Ln which can be attributed to the basis expansion leading to groups of size r̂Ln. In

the linear case we have groups of size r̂ in the second step which explains the difference.

Details of the proofs are provided in the appendix. The key differences from the proof

of Theorem 4 in Bunea et al. (2012) is the handling of the approximation error in the

non-parametric case. We control the approximation error using the bound provided

in Lemma IV.1 and an application of Mirsky’s theorem (Mirsky , 1960) that bounds

the sum of squared differences between the ordered singular values for an additive

perturbation. Rigorous details are provided in the appendix.

4.5 Numerical Studies

This section uses simulated data to evaluate the performance of the joint non-parametric

rank and variable selection method. We compare the proposed joint non-parametric

rank and variable selection method against separate rank and variable selection meth-

ods. By separate method we mean applying the rank selection/variable selection al-

gorithm on the basis expanded design matrix to make it a fair comparisons as the

data are generated from non-parametric models.

The component functions are chosen to be, f1(x1) = 2x1, f2(x2) = 2(x2
2−3), f3(x3) =

0.5x3
3, f4(x4) = sin(πx4/3), f5(x5) = ex5 − (e3 − e−3)/6 and f6(x6) = f7(x7) = · · · =

fp(xp) = 0, which implies that the set of informative predictors is given by J =

{1, 2, 3, 4, 5}. Note that the constant shifts are incorporated to make the component

functions have zero mean. Let f(X) = (fj(xij)) denote the functional component

matrix where j = 1, 2, . . . , p and i = 1, 2, . . . , n. Given a rank r ≤ min{n, p, q} we
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generate the response matrix as follows

Y = f(X)B + E, (4.17)

where B, the coefficient matrix is a p× q matrix of rank r and E is the error matrix,

such that, eij
iid∼ N(0, 1). To generate the predictors we start by simulating a random

matrix An×(p+1) where aij
iid∼ U(−3, 3). Then we set xij = (aij + ρai(p+1))/(1 + ρ) for

i = 1, 2, . . . , n and j = 1, 2, . . . p. This construction allows us to introduce correlations

among the prediction variables in an efficient manner as corr(Xij,Xij′) = ρ2/(1+ρ2).

In our simulations we consider two particular cases ρ = 0,
√

1/3. ρ = 0 correspond to

the independent case while ρ =
√

1/3 introduces a mild correlation of 0.25 between

each pair of predictors. We also consider two sets of choices for the models dimensions

Low-dimensional Setting(LD): n = 100, p = 25, q = 10, r = 2

High-dimensional Setting(HD): n = 100, p = 100, q = 20, r = 3

leading to a total of four possible combinations. At each setting we generate a training

and validation sets of same sample size. In addition a test data set of size ntest =

10n = 1000 is generated to assess the prediction performance. A crucial practical

issue that we have not discussed yet is the selection of optimal tuning parameters.

For Step I we used the prediction error in the validation set to select the rank. For

Step II, we considered two different approaches to select the penalty parameter λ.

First one was the validation method similar to one described for step I. Although this

approach is simple to implement but it often tends to select too many variables (see

Shao (1993) or Arlot and Celisse (2010) for a more comprehensive account). To avoid

that we also considered a Bayesian Information Creterion (BIC) (Schwarz , 1978) for

the group lasso algorithm given by

BIC(λ) = log
(
‖Y −ΨŴ(λ)‖2

F

)
+ df(λ).

log(nr̂)

nr̂
, (4.18)

where r̂ is the selected rank in Step I, and df(λ) denotes the degrees of freedom for

the group lasso problem in Step II. The degrees of freedom of the group lasso is quite

a non-trivial problem. We used the unbiased estimator of the degrees of freedom of

the group lasso problem for a general design matrix proposed by Vaiter et al. (2012).

We report the results of both the model selection approaches over 60 replication at

each setting of the study. Results are summarized using the following measure of

accuracy
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1. Prediction error(PE) given by ‖Ytest −ΨtestŴtrain‖2
F/(qntest)

2. Average number of selected variables |Ĵ |.

3. Average estimated rank.

4. Proportion of replications where Ĵ ⊇ J called inclusion (IN).

5. Proportion of replications where Ĵ = J called correct selection (CS).

Table 4.1:
Simulation results comparing three non-parametric multiple response re-
gression methods, with joint rank and variable selection (NP:RR+VS),
with variable selection (NP:VS) and with joint rank selection (NP:RR)

NP:RR+VS NP:VS NP:RR

ρ PE |Ĵ | Rank IN CS PE |Ĵ | IN CS PE Rank

Low-Dim
p=25,
q=10,
J=5, r=2

0

BIC 1.49 5.16 2.00 1.00 0.84 1.69 11.12 1.00 0.03 3.15 2.00
(0.2) (0.4) (0.0) (0.0) (0.4) (0.2) (2.8) (0.0) (0.2) (0.4) (0.0)

Valid 1.27 8.20 2.00 1.00 0.00 1.63 13.75 1.00 0.00
(0.1) (1.4) (0.0) (0.0) (0.0) (0.2) (1.9) (0.0) (0.0)

1
4

BIC 2.52 5.22 2.00 0.95 0.71 2.72 6.43 0.97 0.38 3.26 2.00
(0.3) (0.6) (0.0) (0.2) (0.5) (0.3) (1.5) (0.2) (0.5) (0.3) (0.0)

Valid 2.14 9.11 2.00 1.00 0.00 2.47 11.40 1.00 0.00
(0.1) (1.7) (0.0) (0.0) (0.0) (0.2) (2.2) (0.0) (0.0)

High-
Dim
p=100,
q=20,
J=5, r=3

0

BIC 1.52 5.03 3.00 1.00 0.97 1.62 24.06 1.00 0.02 7.27 3.00
(0.2) (0.2) (0.0) (0.0) (0.2) (0.2) (6.0) (0.0) (0.12) (0.3) (0.0)

Valid 1.21 35.95 3.00 1.00 0.00 1.61 27.06 1.00 0.00
(0.1) (5.31) (0.0) (0.0) (0.0) (0.1) (3.61) (0.0) (0.0)

1
4

BIC 2.01 5.79 2.80 0.75 0.19 2.11 10.50 0.97 0.02 3.51 2.79
(0.2) (1.1) (0.4) (0.4) (0.4) (0.2) (3.3) (0.2) (0.1) (0.1) (0.4)

Valid 1.60 38.50 2.80 0.98 0.00 1.94 23.19 1.00 0.00
(0.1) (5.4) (0.4) (0.1) (0.0) (0.2) (4.4) (0.0) (0.0)

Table 4.1 presents the results for all four combinations of settings and the numbers in

the parenthesis represent the standard errors. As we can see the joint non-parametric

method does better both in terms prediction error as well as variable selection for

all combination of settings. The variable selection approach comes out as a close

second in terms of prediction error followed by just rank selection which is a distant

third. BIC approach fares well in terms of model selection performance for the joint

estimation method(NP:RR+VS) especially when the predictors are uncorrelated as

reflected by the inclusion(IN) and correct selection(CS) proportions. The validation

approach tends to have lower prediction error at the cost of selecting too many unim-

portant variables. The non-parametric variable selection method (NP:VS) tends to

select too many variables even with BIC approach, which reflects the importance of

the rank constraint in identifying the true model. Also it is computationally much

slower due to the large dimensions after basis expansion. For example, under the

high-dimensional setting in the non-parametric variable selection(NP:VS) approach
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we are fitting a group lasso problem with 100×7×20 = 14, 000 variables divided into

100 groups of size 140 each on data set with sample size 2000. In our experience the

joint approach is often 3 − 5 times faster in terms of run time due to the dimension

reduction achieved by rank selection in Step I.
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Figure 4.1:
Boxplot of ratio of test MSE between NP:VS and NP:RR+VS for both
BIC and Validation approach for tuning parameter selection. Top row
presents the low dimensional setting while the bottom row presents the
high-dimensional setting

Figure 4.1 facilitates pairwise comparison by plotting the ratio of the prediction error

(PE) between the pure variable selection method(NP:VS) and joint rank and variable

selection approach (NP:RR+VS). We find that the ratio is mostly greater than 1 at

every setting which provides a stronger indication of superior prediction performance

of the joint method compared to only variable selection.
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Figure 4.2:
For each predictor variable we plot the selection proportion out of the
60 replications on the Y-axis. The top row presents the low dimensional
setting while the bottom row presents the high dimensional setting

Figure 4.2 plots the selection proportion for each predictor variable over 60 replica-

tions. The four methods are overlaid as a line plot for each setting. Ideally we would

like to see high proportion for the first five variables which are the truly informative

components and a low selection proportion for the rest of the predictors. The black

line corresponding to NP:RR+VS with tuning parameter in Step II selected by BIC is

the clear winner at all settings. All the methods select the truly informative variables

consistently but for the uninformative variables we find that the other methods tend

to pick too many variables. This is consistent with the critique of cross-validation

approach in terms of variable selection. The results clearly demonstrate that if the
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underlying model satisfies the low-rank and sparsity assumptions and is truly non-

linear then the proposed method outperforms its closest competitors both in terms

of prediction accuracy as well as model selection.

4.6 Application in a Chemometrics study

We apply the methodology proposed in section 3 to a chemometrics data set

first published by Skagerberg et al. (1992). The data was collected on low-density

polyethylene production in tubular reactors under high pressure and temperature.

It consists of 6 responses on the properties of the polymer namely, number average

molecular weight (Mn), weight average molecular weight (Mw), frequency of long

chain branching (LCB), frequency of short chain branching (SCB), content of vinyl

groups (V NL) and the content of vinylidene groups (V ND) in the polymer chain.

These responses determine the quality of the final polymer products such as, ten-

sile and impact strength. Unfortunately, quantities like molecular weight, branching

frequencies or double bonds are difficult to measure requiring highly expensive, so-

phisticated and time consuming techniques, such as nuclear magnetic resonance spec-

troscopy(NMR). The goal is to find a good predictive model for the responses using

routinely collected process variables such as temperature profile along the reactor

measured at 20 points along the reactor (T1, T2, . . . , T20), solvent flow rate (S) and

wall temperature (Tw). Once the predictive model is built it can be used to infer the

polymer properties or for the purpose of quality control with investing in expensive

and complicated tests. A schematic diagram is presented in Figure 4.3. The left panel

shows a section of tubular LDPE reactor used for the data collection. The right panel

presents a typical temperature profile within the reactor, that is, T1 − T20. The re-

action is highly exothermic reaching a maximum temperature somewhere around the

middle of the tube when all the initial solvent are consumed. After that the mixture

cools down in a rather linear fashion.

Reduced rank models are relevant for this problem due to the fact that several of

the responses are very highly correlated which indicates a possibility of dimension re-

duction. Existing works that analyzed this data set assumed linear model (Breiman

and Friedman, 1997; Mukherjee and Zhu, 2011). But a simple scatter plot of the

responses against the predictors reveal that the relationships are highly non-linear.

Therefore a non-parametric approach seems more reasonable. Another interesting

aspect of this data set is that the reactor temperatures for points that are close to
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Figure 4.3:
Left Panel: Schematic diagram of a section of tubular reactor for the
production of LDPE. S denotes the solvent feed rate. T1 − T20 measure
the temperature along the reactor at equidistant points and Tw denotes
the wall temperature. Mw, Mn, LCB, SCB, V NL and V ND denotes
the 6 responses. Right Panel: A typical temperature profile in a LDPE
reactor (Skagerberg et al., 1992).

each other (e.g. Ti with Ti−1 and Ti+1) might not carry much unique information

regarding the responses. This leads us to believe that the reactor temperature at a

few key locations would suffice for a good predictive model implying a possibility of

variable selection.

The final data set consists of 56 points on 22 predictor variables and 6 responses. The

responses are log-transformed and scaled make them comparable to each other. We

also scale the predictors to the interval [−1, 1] to introduce the B-spline basis expan-

sion. 9 basis functions were used for the non-parametric method, with knots being

placed at (1/7, 2/7, . . . , 6/7)-th quantiles of the empirical distribution for each column

of X. We randomly split the data into a training set consisting of 45 observations and

a test set of 11 observations. The process is replicated 100 times. The methods that

are compared include multivariate least squares (OLS), linear reduced rank regression

(LN:RR), linear reduced rank regression with variable selection (LN:RR+VS), non-

parametric reduced rank regression (NP:RR), non-parametric joint rank and vari-

able selection (NP:RR+VS) which is the method that we are proposing and non-

parametric variable selection for multivariate regression (NP:VS). Note that for the

variable selection methods we choose the optimal tuning parameter via BIC defined

in (4.18) as it proved to be more competent in variable selection in our simulation

studies.
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Figure 4.4:
Left panel: box plot comparing the test MSE of the competing methods.
Right panel: pairwise comparison between the non-parametric methods
using ratio of test MSE.

We plot the box plots of the prediction error over 100 replication for each method

on the left panel of Figure 4.4. Clearly the non-parametric methods outperform the

linear methods in terms of prediction error. This can be explained by non-linearity

of the underlying model and poor rank selection performance for the linear methods.

We find that the linear approach selects a rank of 1 in more than 90% of the replica-

tions which is caused by the extreme collinearity of the design matrix, also noted by

Mukherjee and Zhu (2011). On the other hand the non-parametric method selects an

optimal rank of 3 in all the replication. Scientifically it is well known that the first

two responses Mn and Mw are approximately dependent. Similarly the last three re-

sponses form a functional group in the sense that SCB is an approximate measure of

the contents of V NL and V ND. The third response LCB has a moderately negative

correlation with the other groups. This leads to a effective dimension of 3 which is

consistent with our findings. The Y-axis of the left panel is inflated due to the large

variability in prediction error for OLS making it hard for us to compare between the

three non-parametric methods. To address that we do a box plot of pairwise ratio of

prediction error for (NP:RR)/(NP:RR+VS) and (NP:VS)/(NP:RR+VS) on the right

panel. More than 50% points for the first ratio and more than 75% points for the

second ratio are above 1 indicating that on average the proposed joint method does

better than the individual rank and variable selection methods for the non-parametric

approach.
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Frequency of selection out of 100 replication for each predictor variables,
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Next we investigate the variable selection performance for the methods with spar-

sity penalty which are (LN:RR+VS), (NP:VS) and (NP:RR+VS). A grouped bar

plot for the selection proportion of each variable out of 100 replications is presented

in Figure 4.5. On an average the non-parametric joint rank and variable selection

method (NP:RR+VS) selects about 14 out of 22 predictors. A closer look reveals

some interesting patterns. Among the reactor temperature profile, the start and the

end point, that is, T1 and T20 and the middle portion T5−T13 gets selected with high

proportion as does the two other predictors solvent flow rate (S) and wall tempera-

ture (Tw). This is consistent with a typical temperature profile in an LDPE reactor in

Figure 4.3. The middle portion of the profile where sharp changes occur corresponds

to T5 − T13. The start and the end phases are quite linear therefore might not carry

much extra information once T1 and T20 are selected. The linear rank and variable
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selection method tends to select too few components (5 on average) which contributes

to its poor performance. The non-parametric variable selection method possesses a

very similar selection pattern to that of the joint non-parametric method and has a

competitive prediction error.

4.7 Summary

In this paper we have proposed a two-step joint rank and variable selection method

for non-parametric additive modeling of multi-response regression. The method is

based on B-spline approximation of the component function under moderate smooth-

ness assumptions. In the first step we select the rank by running a reduced rank

regression of the response matrix on the basis expanded design matrix. The second

step introduces a group lasso penalty on the coefficient matrix to encourage vari-

able selection. Error bounds and rank selection consistency are established under

conditions on signal strength, Gaussian error and regularity of the basis expanded

covariance matrix. Simulation studies and an application on low-density polyethy-

lene data set illustrate the superior predictive and model selection performance of the

proposed method over relevant competitors.
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APPENDIX A

Representer Theorem for Reduced Rank

Estimators in RKHS

Proof of Proposition II.1

Proof. Let (f1, f2, . . . , fq) be the minimizer to (2.13). Define,

FK = span{K(·, xi) : i = 1, 2, . . . n} (A.1)

We can decompose each fj = f ∗j + f 0
j where f ∗j is the projection of fj onto FK and

f 0
j is the orthogonal to FK . Then for j = 1, 2, . . . q and i = 1, 2, . . . , n,

fj(xi) = 〈f ∗j + f 0
j , K(·, xi)〉 = f ∗j (xi)

‖fj‖2
H = ‖f ∗j ‖2

H + ‖f 0
j ‖2
H

Clearly, Jλ
(
f ∗1 , f

∗
2 , . . . , f

∗
q

)
≤ Jλ (f1, f2, . . . fq) and dim

(
span{f ∗1 , f ∗2 , . . . , f ∗q }

)
≤ r

also holds since they are just projection of (f1, f2, . . . , fq}) to FK , where dim (span{f1, . . . , fq}) ≤
r since they are a solution to (16). Thus the solution to (16) can be expressed as,

fj(x) =
n∑
i=1

αiqK(x, xi), for j = 1, 2, . . . q, αij ∈ R (A.2)

61



Proof of Proposition II.2

Proof. If r = q then the result holds vacuously. If r < q then ∃ non-trivial linear

combinations

q∑
j=1

cjfj(·) ≡ 0. Equivalently, we have, ‖
q∑
j=1

cjfj(·)‖2
H = 0.

‖
q∑
j=1

cjfj(·)‖2
H = 0⇔ cTq×1A

T [(K(xi, xi′)]
n
i,i′=1 Acq×1 = 0

Under the strict positive definiteness assumption on K(·, ·) this can only happen if

Ac = 0q×1 ⇔ c ∈ Ker(A), where Ker(T) for any matrix/linear operator T denotes

its null space. Let us define a map, T : Rq 7→ V = span{f1, f2, . . . fq}, where,

T (c) =

q∑
j=1

cjfj(·) Then using the Rank-Nullity Theorem and the previous part,

dim (Ker(T )) + dim (Img(T )) = q

⇒ dim (Ker(A)) + dim (V ) = q

⇒ rank(A) = dim(V ) ≤ r
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APPENDIX B

Derivation of the exact Degrees of Freedom

Estimator

Derivation of Equation (3.10)

Note that

Ŷ = XQS−1H,

=⇒ Ŷ(r) = XQS−1H(r), r = 1, . . . , r̄,

Using the trace identity, tr(AB) = tr(BA), the equality, vec(ABC) = (CT ⊗
A)vec(B) and the chain rule of differentiation we get

d̂f(r) = tr

{
∂vec(Ŷ(r))

∂vec(Y)

}

= tr

{[
Iq ⊗XQS−1

](∂vec(H(r))

∂vec(Y)

)}
= tr

{[
Iq ⊗XQS−1

](∂vec(H(r))

∂vec(H)

)(
∂vec(H)

∂vec(Y)

)}
= tr

{[
Iq ⊗XQS−1

](∂vec(H(r))

∂vec(Y)

)[
Iq ⊗ S−1Q>X

]}
= tr

{
∂vec(H(r))

∂vec(Y)

}
.
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Proof of Theorem III.1

We acknowledge that the proof of Theorem III.1 is mainly based on the results de-

veloped in de Leeuw (2007) about the derivatives of a generalized eigensystem. Note

that we have assumed rx ≥ q, and the same results can be presented for H> when

rx ≤ q.

Denote A = H>H, and let (d2,v) denote a pair of eigenvalue and eigenvector of A.

Suppose A is two times continuously differentiable at θ, e.g., θ = hij for any i =

1, ..., rx and j = 1, ..., q. Then the eigenvalues and eigenvectors are also differentiable

at θ. From

Av = d2v,

it follows that
∂A

∂θ
v + A

∂v

∂θ
= d2∂v

∂θ
+
∂d2

∂θ
v,

and this gives

(A− d2I)
∂v

∂θ
= −(

∂A

∂θ
− ∂d2

∂θ
I)v. (B.1)

Premultiplying both sides by v> gives

v>(A− d2I)
∂v

∂θ
= −v>

∂A

∂θ
v +

∂d2

∂θ
.

It is obvious that the left-hand-side equals to 0, and it then follows that

∂d

∂θ
=

1

2d
v>

∂A

∂θ
v. (B.2)

Define (A− d2I)− = V(D2− d2I)+V> with (·)+ denoting the Moore-Penrose inverse.

Therefore, (A − d2I)−(A − d2I) = I − vv> and (A − d2I)−v = 0. Premultiplying

both sides of (B.1) by (A− d2I)− gives

(I− vv>)
∂v

∂θ
= −(A− d2I)−

∂A

∂θ
v.

From v>v = 1, we know that v>(∂v/∂θ) = 0. It then follows that

∂v

∂θ
= −(A− d2I)−

∂A

∂θ
v. (B.3)

Define Z(ij) = ∂H/∂hij be an rx × q matrix of zeros with only its (i, j)th entry
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equalling to one. For any θ = hij,

∂A

∂hij
= H>Z(ij) + Z(ij)>H. (B.4)

The proof is completed by combining the results in (B.2), (B.3) and (B.4).

Proof of Theorem III.2

For simplicity and without loss of generality, we assume rx ≥ q. When rx ≤ q, one can

repeat the same proof using H>. When r = q, the result d̂f(q) = rxq holds trivially.

So in the following, we consider r < q. Consider ∂H(r)/∂hij for any 1 ≤ i ≤ rx,

1 ≤ j ≤ q. Because H(r) = H
∑r

k=1 vkv
>
k , by the chain rule, we have

∂H(r)

∂hij
=
∂H

∂hij

r∑
k=1

vkv
>
k + H

r∑
k=1

∂vk
∂hij

v>k + H
r∑

k=1

vk
∂v>k
∂hij

=Z(ij)V(r)V(r)> −H
r∑

k=1

{
(H>H− d2

kI)−(H>Z(ij) + Z(ij)>H)vkv
>
k

}
−H

r∑
k=1

{
vkv

>
k (H>Z(ij) + Z(ij)>H)(H>H− d2

kI)−
}
. (B.5)

Consider the first term on the right-hand-side of (B.5). Its (i, j)th entry equals to∑r
k=1 v

2
jk. Therefore, its contribution to the degrees of freedom (3.10) is

rx∑
i=1

q∑
j=1

r∑
k=1

v2
jk = rxr, (B.6)

because
∑q

j=1 v
2
jk = 1. We know

(H>H− d2
kI)− =

q∑
l 6=k

1

d2
l − d2

k

vlv
>
l .

We also have

H>Z(ij) + Z(ij)>H =



hi1
...

hi1 · · · 2hij · · · hiq
...

hiq


.
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Now consider the second term on the right-hand-side of (B.5). After some algebra,

its (i, j)th entry can be written as u>i Da(ij), where a(ij) ∈ Rq and

a
(ij)
k = −

r∑
l 6=k

1

d2
k − d2

l

(vjkvjlh
>
i vl + v2

jlh
>
i vk), k = 1, ..., q.

Similarly, the (i, j)th entry of the third term on the right-hand-side of (B.5) is given

by u>i Db(ij), where b(ij) ∈ Rq,

b
(ij)
k = −

q∑
l 6=k

1

d2
l − d2

k

(vjkvjlh
>
i vs + v2

jlh
>
i vk), k = 1, ..., r,

and b
(ij)
k = 0 for k = r + 1, ..., q whenever r < q. Now consider the second and third

terms together. Since

a
(ij)
k + b

(ij)
k =



q∑
l=r+1

1

d2
k − d2

l

(vjkvjlh
>
i vl + v2

jlh
>
i vk) k = 1, ..., r;

r∑
l=

1

d2
l − d2

k

(vjkvjlh
>
i vl + v2

jlh
>
i vk) k = r + 1, ..., q.

it follows that the contribution from the second and the third term to the degrees of
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freedom equals

rx∑
i=1

q∑
j=1

{
r∑

k=1

uikdk

q∑
l=r+1

1

d2
k − d2

l

(vjkvjlh
>
i vl + v2

jlh
>
i vk)

}

+
rx∑
i=1

q∑
j=1

{
q∑

k=r+1

uikdk

r∑
l=1

1

d2
l − d2

k

(vjkvjlh
>
i vl + v2

jlh
>
i vk)

}

=
rx∑
i=1

{
r∑

k=1

uikdk

q∑
l=r+1

1

d2
k − d2

l

q∑
j=1

(vjkvjlh
>
i vl + v2

jlh
>
i vk)

}

+
rx∑
i=1

{
q∑

k=r+1

uikdk

r∑
l=1

1

d2
l − d2

k

q∑
j=1

(vjkvjlh
>
i vl + v2

jlh
>
i vk)

}

=
rx∑
i=1

{
r∑

k=1

q∑
l=r+1

dk
d2
k − d2

l

uik(h
>
i vk) +

q∑
k=r+1

r∑
l=1

dk
d2
l − d2

k

uik(h
>
i vk)

}

=
rx∑
i=1

{
r∑

k=1

q∑
l=r+1

dk
d2
k − d2

l

uik(h
>
i vk) +

r∑
k=1

q∑
l=r+1

dl
d2
k − d2

l

uil(h
>
i vl)

}

=
r∑

k=1

q∑
l=r+1

{
dk

d2
k − d2

l

rx∑
i=1

uik(h
>
i vk) +

dl
d2
k − d2

l

rx∑
i=1

uil(h
>
i vl)

}

=
r∑

k=1

q∑
l=r+1

{
dk

d2
k − d2

l

u>k Hvk +
dl

d2
k − d2

l

u>l Hvl

}

=
r∑

k=1

q∑
l=r+1

{
d2
k

d2
k − d2

l

+
d2
l

d2
k − d2

l

}

=
r∑

k=1

q∑
l=r+1

d2
k + d2

l

d2
k − d2

l

.

Combining the result in (B.6), the proof is completed.

Proof of Theorem III.3

Again, we assume rx ≥ q. When rx ≤ q, one can repeat the same proof using

H>. Recall that H̃(λ) = UD̃(λ)V>. Consider ∂H̃(λ)/∂hij for any fixed λ > 0,

1 ≤ i ≤ rx and 1 ≤ j ≤ q. Denote r̃ = r̃(λ) = max{k : sk > 0.}. Because
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H̃(λ) = H
∑r̃

k=1 skvkv
>
k , by the chain rule, we have

∂H̃(λ)

∂hij
=
∂H

∂hij

r̃∑
k=1

skvkv
>
k + H

r̃∑
k=1

sk
∂vk
∂hij

v>k + H
r̃∑

k=1

skvk
∂v>k
∂hij

+ H
r̃∑

k=1

∂sk
∂hij

vkv
>
k

=Z(ij)V(r̃)D(r̃)−1D̃
(r̃)

V(r̃)>

−H
r̃∑

k=1

{
sk(H

>H− d2
kI)−(H>Z(ij) + Z(ij)>H)vkv

>
k

}
−H

r̃∑
k=1

{
skvkv

>
k (H>Z(ij) + Z(ij)>H)(H>H− d2

kI)−
}

+ H
r̃∑

k=1

{
s′k{

1

2dk
v>k (H>Z(ij) + Z(ij)>H)vk}vkv>k

}
, (B.7)

where s′k = ∂sk/∂dk. Consider the first term on the right-hand-side of (??). It can

be shown that its (i, j)th entry equals to
∑r̃

k=1 skv
2
jk. Therefore, its contribution to

the degrees of freedom (3.10) is

rx∑
i=1

q∑
j=1

r̃∑
k=1

skv
2
jk = rx

r̃∑
k=1

sk, (B.8)

because
∑q

j=1 v
2
jk = 1. Similar to the proof of Theorem III.2, the (i, j)th entry of the

second and third terms on the right-hand-side of (B.7) can be shown to be

u>i D(ã(ij) + b̃
(ij)

) (B.9)

where ã(ij) ∈ Rq, b̃
(ij) ∈ Rq, and

ã
(ij)
k + b̃

(ij)
k =



q∑
l 6=k

sk − sl
d2
k − d2

l

(vjkvjlh
>
i vl + v2

jlh
>
i vk) k = 1, ..., r̃;

r̃∑
l=1

sl
d2
l − d2

k

(vjkvjlh
>
i vl + v2

jlh
>
i vk) k = r̃ + 1, ..., q.

After some algebra, it follows that the contribution from the second and the third

term to the degrees of freedom equals
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rx∑
i=1

q∑
j=1

{
r̃∑

k=1

uikdk

q∑
l 6=k

sk − sl
d2
k − d2

l

(vjkvjlh
>
i vl + v2

jlh
>
i vk)

}

+
rx∑
i=1

q∑
j=1

{
q∑

k=r̃+1

uikdk

r̃∑
l=1

sl
d2
l − d2

k

(vjkvjlh
>
i vl + v2

jlh
>
i vk)

}

=
r̃∑

k=1

q∑
s=r̃+1

{
d2
k(sk − sl) + d2

l sk
d2
k − d2

l

}
+

r̃∑
k=1

r̃∑
l 6=k

{
d2
k(sk − sl)
d2
k − d2

l

}
. (B.10)

Consider the fourth term on the right-hand-side of (B.7). Note that

v>k (H>Z(ij) + Z(ij)>H)vk = 2vjk(v
>
k hi).

The (i, j)th entry of the fourth term is given by

r̃∑
k=1

s′kuikv
2
jk(v

>
k hi).

It then follows that the contribution of the fourth term to the degrees of freedom

equals

rx∑
i=1

q∑
j=1

r̃∑
k=1

s′kuikv
2
jk(v

>
k hi)

=
rx∑
i=1

r̃∑
k=1

s′kuik(v
>
k hi)

=
r̃∑

k=1

s′k

rx∑
i=1

uikh
>
i vk

=
r̃∑

k=1

dks
′
k.

Combining with the results in (B.8) and (B.10), the proof is completed.
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APPENDIX C

Theoretical Properties of Non-parametric Joint

Rank and Variable Selection method

Proof of Lemma IV.1

Define the space of centered spline functions of degree d as

S0
k =

{
f 0
k : f 0

k (x) =
Ln∑
l=1

βlkψlk(x), (β1k, . . . , βLnk) ∈ RLn

}
, k = 1, . . . , p. (C.1)

We suppress the dependence on n to keep the notations simple. We assume that the

true component functions {fjk : j = 1, . . . , q; k = 1, . . . , p} satisfy conditions C1 and

C2. Lemma 1 in (Huang et al., 2010) states that for each fixed j there exist f̃ 0
jk ∈ S0

k ,

such that

n∑
i=1

J∑
k=1

(
fjk(Xik)− f̃ 0

jk(Xik)
)2

≤ C1|J |Ln. (C.2)

Clearly this holds for each response j = 1, 2, . . . , q thus we can extend the result to

the multiple response scenario. Following the notation introduced in Section 4.2 and

using (C.2) we get

‖E(X)‖2
F ≤ C1|J |qLn. (C.3)
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Proof of Theorem IV.2

Let rank(f(X)) = r and r̂ denote the selected in Step I (4.8) of non-parametric

low-rank group lasso. The solution is characterized by (4.10) for a detailed derivation

see (Bunea et al., 2011). Let us denote the projection matrix to the spline basis

matrix by PΨ = Ψ(Ψ>Ψ)−Ψ>, then the solution can be simplified as

PΨY = ΨB + PΨE(X) + PΨE = ΨB + Ẽ. (C.4)

Suppose ∃ δ ∈ (0, 1) such that dr(ΨB) > (1+δ)
√
µ and dr+1(ΨB) < (1−δ)√µ, then

the result in Theorem 2 of (Bunea et al., 2011) implies

P(r̂ = r) ≥ 1− P(d1(Ẽ) ≥ δ
√
µ), (C.5)

where the probability is defined over the distribution of the random errors, E. Next we

try to bound the largest singular value of Ẽ using the bound from Lemma reflemma1

and largest singular value of PΨE. We will also make use of the following inequality

dk(M1 + M2) ≤ dk(M1) + d1(M2) for two generic matrices M1 and M2.

d1(Ẽ) ≤ d1(PΨE(X)) + d1(PΨE)

≤ ‖PΨE(X)‖F + d1(PΨE)

≤ d1(PΨE) + C1

√
|J |qLn.

Combining this with the inequality (C.5) we have the following

P(r̂ = r) ≥ 1− P(d1(PΨE) ≥ δ
√
µ− C1

√
|J |qLn). (C.6)

Now we need to bound the largest singular value of the projection of a matrix with

i.i.d. Gaussian entries. We use Lemma 3 in (Bunea et al., 2011) to achieve that. Let

δ = 1/2 and
√
µ = 2σ(

√
q +
√
pLn) + 4C1

√
|J |qLn. Then we have

P(r̂ = r) ≥ 1− exp
{
−C

2
1 |J |qLn
2σ2

}
, (C.7)

which goes to 0 as |J |qLn →∞. To complete the proof we only need to show that for

the choices of δ and µ made in the previous part we have dr(ΨB) > (1 + δ)
√
µ and

dr+1(ΨB) < (1 − δ)√µ hold as long as dr(f(X)) ≥ 4σ(
√
q +
√
pLn) + 7C1

√
|J |qLn.

We again make use of the inequality for the singular value of sum of two matrices

using the singular values for the individual matrices. In particular
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dr+1(ΨB) ≤ dr+1(f(X)) + d1(E(X)) ≤ C1

√
|J |qLn ≤ σ(

√
q +

√
pLn) + 2C1

√
|J |qLn =

√
µ

2
,

dr(ΨB) ≥ dr(f(X))− C1

√
|J |qLn ≥ 3σ(

√
q +

√
pLn) + 6C1

√
|J |qLn ≥

3
√
µ

2

Proof of Theorem IV.3

Let us start with the fixed rank case where r̂ = s for some 1 ≤ s ≤ min{n, p, q}.
Define Ŵ(s) to be the solution to the optimization problem in (4.9) when rank is

restricted to be s

Ŵ(s) = arg min
W:rank(W)≤s

{
1

2
‖Y −ΨW‖2

F + λ‖W‖F,1
}
.

Let Ĵs = {k : ‖Ŵ(s)
k ‖ > 0; k = 1, . . . , p} denote the set of selected variables in step

II. Define J̃ = Ĵ ∪ J , where J denotes the set of truly effective predictors. Also let Ψ̃

to be the sub-matrix of Ψ containing the columns in J̃ . From the definition of Ŵ(s)

it follows that for any A ∈ Rn×pLn with rank(A) ≤ s

‖Y −ΨŴ(s)‖2
F + 2λ‖Ŵ(s)‖F,1 ≤ ‖Y −ΨA‖2

F + 2λ‖A‖F,1 (C.8)

‖f(X)−ΨŴ(s)‖2
F + 2λ‖Ŵ(s)‖F,1 ≤ ‖f(X)−ΨA‖2

F + 2〈E,Ψ(W(s) −A)〉+ 2λ‖A‖F,1.

Where 〈A,B〉 = trace(A>B) denotes the inner product corresponding to the Frobe-

nius norm introduced earlier. To keep notations simple we define the following two

quantities

∆̂2
s = ‖f(X)−ΨŴ(s)‖2

F , ∆̂2 = ‖f(X)−ΨA‖2
F . (C.9)

Next we bound the inner product using the fact, 〈A,B〉 ≤ ‖A‖2‖B‖1. Where ‖A‖2 =

d1(A) is the operator norm of a matrix and ‖B‖1 =
∑
dj(B) is the nuclear norm.

2〈E,Ψ(W(s) −A)〉 = 2〈PJ̃E, Ψ̃(W(s) −A)〉

≤ 2d1(PJ̃E)
√

2s‖Ψ(W(s) −A)‖F
≤ 2d1(PJ̃E)

√
2s(∆̂s + ∆)

≤ 16sd2
1(PJ̃E) +

1

4
(∆̂2

s + ∆2).
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Here we have made use of the inequality 2xy ≤ 4x2 + y2/4 to arrive at the last

inequality. Plugging it back into (C.8) and collecting terms we have

3

4
∆̂2
s + 2λ‖(Ŵ(s) −A)Jc‖F,1 ≤

5

4
∆̂2 + 16sd2

1(PJ̃E) + 2λ‖(Ŵ(s) −A)J‖F,1. (C.10)

Next we break down the proof into two disjoint cases which makes the proof tractable

and easier to follow.

Case I: 5
4
∆̂2 + 16sd2

1(PJ̃E) ≤ 2λ‖(Ŵ(s) −A)J‖F,1

In this case (C.10) implies

‖(Ŵ(s) −A)Jc‖F,1 ≤ 2‖(Ŵ(s) −A)J‖F,1. (C.11)

Invoking condition C3 on ΣΨ we know that there esists δJ > 0 such that

‖Ψ(Ŵ(s) −A)Jc‖2
F ≥ nδJ

∑
k∈J

‖Ŵ(s)
k −Ak‖2

F . (C.12)

Again using the condition in Case I we have

3

4
∆̂2
s ≤ 4λ‖(Ŵ(s) −A)J‖F,1

= 2.2λ
∑
k∈J

‖Ŵ(s)
k −Ak‖F

≤ 2

{
a

n
λ2|J |+ n

a

∑
k∈J

‖Ŵ(s)
k −Ak‖2

F

}

≤ 2

{
a

n
λ2|J |+ 1

aδJ
‖ΨŴ

(s)
k −ΨAk‖2

F

}
≤ 2

{
a

n
λ2|J |+ 2

aδJ
(∆̂2

s + ∆2)

}
≤ 16

nδJ
λ2|J |+ 1

2
(∆̂2

s + ∆2) (taking a = 8/δJ)

=⇒ ∆̂2
s ≤ 2∆2 +

64

nδJ
λ2|J |

=⇒ ‖f(X)−ΨŴ(s)‖2
F ≤ 4‖ΨB−ΨÂ‖2

F + 4‖E(X)‖2
F +

64

nδJ
λ2|J | (C.13)

Note thet B is the coefficient matrix arising from spline approximation and E(X) is
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the approximation error. Even though f(X) is of rank s, B can have rank > s. There-

fore we cannot choose A = B and get rid of the first term in (C.13). This term reflects

the effect of the approximation error which we will bound in the later part of the proof.

Case II: 5
4
∆̂2 + 16sd2

1(PJ̃E) > 2λ‖(Ŵ(s) −A)J‖F,1

Plugging it back into (C.10) we get

3∆̂2
s ≤ 10∆2 + 128sd2

1(PJ̃E). (C.14)

Taking expectation over the distribution of E we have

3E(∆̂2
s) ≤ 10∆2 + 128sE(d2

1(PJ̃E)). (C.15)

We apply Lemma 8 in (Bunea et al., 2011) to bound the last term of (C.15) which

leads to

E(d2
1(PJ̃E)) ≤ 6σ2q + 12σ2e−q/2 + 6σ2E

(
|J̃ |Ln + |J̃ | log

ep

|J̃ |

)
≤ 6σ2q + 12σ2e−q/2 + 12σ2 log(ep)LnE(|J̃ |)

≤ 6σ2q + 12σ2e−q/2 + 12σ2 log(ep)Ln|J |+ 12σ2 log(ep)LnE(|Ĵs|).(C.16)

The next step involves bounding E(|Ĵs|). As rank(Ŵ(s)) ≤ s we can write Ŵ(s) =

ŜV̂>s such that V̂>s V̂s = Is. Given V̂s, Ŝ is the global optimum of a convex optimiza-

tion problem and therefore satisfies the following KKT condition

Ŵ
(s)
k 6= 0 ⇐⇒ ‖Ψ>k (ΨŜ−YV̂s)‖F = λ. (C.17)

This implies

|Ĵs|λ2 =
∑
k∈Ĵs

‖Ψ>k (ΨŜ−YV̂s)‖2
F

=
∑
k∈Ĵs

‖Ψ>k (ΨŜ− f(X)V̂s −PĴs
EV̂s)‖2

F

≤ 2
∑
k∈Ĵs

‖Ψ>k (ΨŜ− f(X)V̂s)‖2
F + 2

∑
k∈Ĵs

‖Ψ>k PĴs
EV̂s‖2

F

≤ 2nλ1(ΣΨ)(∆̂2
s + sd2

1(PĴs
E)). (C.18)
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Taking expectations on both sides and using the fact that Ĵs ⊆ J̃

E(|Ĵs|) ≤
2nλ1(ΣΨ)

λ2

{
E(∆̂2

s) + E(PJ̃E)
}

(C.19)

Choose λ2 = C2σ
2 log(ep)nLnsλ1(ΣP si) with C2 = 1584 then we can combine (C.15),

(C.16) and (C.19) to get

E(∆̂2
s) ≤ 10∆2 + 130s

{
6σ2q + 12σ2e−q/2 + 12σ2 log(ep)|J |Ln

}
≤ 20‖ΨB−ΨA‖2

F + 20‖E(X)‖2
F + 130s

{
6σ2q + 12σ2e−q/2 + 12σ2 log(ep)|J |Ln

}
(C.20)

Combining Cases I and II and ignoring numeric constants and lower order terms we

finally have

E(∆̂2
s) <∼

‖ΨB−ΨA‖2
F + ‖E(X)‖2

F + sq + s|J |Ln log(ep). (C.21)

Recall that here A ∈ Rn×pLn with rank(A) ≤ s . Next we will simplify the bound in

(C.21) for the case when the selected rank, r̂ = r which is the true underlying rank.

The other scenario, that is, r̂ 6= r will be handled later. Let ΨB has a SVD of the

form

ΨB =

q∑
i=1

diuiv
>
i . (C.22)

Choose A = B
∑r

i=1 diuiv
>
i , which implies

‖ΨB−ΨA‖2
F =

q∑
i=r+1

d2
i (ΨB). (C.23)

Now we apply Mirsky’s theorem (Mirsky , 1960) to bound the right hand side of the

above equation. Mirsky’s theorem states that for generic matrices M1 = M2 + M3

we have

∑
j

(dj(M1)− dj(M2))2 ≤ ‖M3‖2
F . (C.24)

Recall the equation for spline approximation given by, f(X) = ΨB+E(X). We apply
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the above result with M1 = f(X), M2 = ΨB and M3 = E(X) to get

‖ΨB−ΨA‖2
F =

q∑
i=r+1

d2
i (ΨB) ≤ ‖E(X)‖2

F ≤ C|J |qLn. (C.25)

Therefore under selection of true rank r̂ = r, plugging (C.25) back into (C.21) we get

E(‖f(X)−ΨŴ(r)‖2
F ) <
∼
|J |qLn + rq + r|J |Ln log(ep). (C.26)

To bound the expected risk in the general case we start by splitting it up as follows

E(‖f(X)−ΨŴ(r̂)‖2
F ) = E(‖f(X)−ΨŴ(r)‖2

F1{r̂ = r})+E(‖f(X)−ΨŴ(r̂)‖2
F1{r̂ 6= r})

(C.27)

The preceding derivation bounds the first term on the right of (C.27) for r̂ = r.

It remains to show that the second term is bounded by some constant. From the

definition of Ŵ(r̂) we have

‖Y −ΨŴ(r̂)‖2
F + 2λ‖Ŵ(r̂)‖F,1 ≤ ‖Y −Ψ0‖2

F + 2λ‖0‖F,1 = ‖Y‖2
F

⇒ ‖Y −ΨŴ(r̂)‖2
F ≤ ‖Y‖2

F . (C.28)

Using the above fact and norm inequalities we get,

E
[
‖f(X)−ΨŴ(r̂)‖2

F1{r̂ 6= r}
]
≤ E

[{
2‖Y − f(X)‖2

F + 2‖Y −ΨŴ(r̂)‖2
F

}
1{r̂ 6= r}

]
≤ E

[{
2‖E‖2

F + 2‖f(X) + E‖2
F

}
1{r̂ 6= r}

]
≤ E

[{
6‖E‖2

F + 4‖f(X)‖2
F

}
1{r̂ 6= r}

]
≤ 6E

[
‖E‖2

F1{r̂ 6= r}
]

+ 4‖f(X)‖2
FP(r̂ 6= r) (C.29)

Using Cauchy-Schwartz inequality and the fact that ‖E‖2
F/σ

2 follows a Chi-square

distribution with nq degrees of freedom we have

E
[
‖E‖2

F1{r̂ 6= r}
]
≤
√
E[‖E‖4

F ]P(r̂ 6= r) ≤
√

2nqσ2exp

{
−C2

1 |J |qLn
4σ2

}
≤ C4.

(C.30)

Here C3 is a numerical constant. The last inequality follows from the fact that

Ln = O(nν) for some 0 < ν < 0.5 and therefore the exponential term dominates the
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product. The boundedness of the second term on the right side of (C.29) follows from

the condition C4. This completes the proof.
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