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ABSTRACT

Quantifying and Scaling Airplane Performance in Turbulence

by

Johnhenri R. Richardson

Co-Chairs: Ella M. Atkins, Anouck R. Girard, and Pierre T. Kabamba

This dissertation studies the effects of turbulent wind on airplane airspeed and

normal load factor, determining how these effects scale with airplane size and de-

veloping envelopes to account for them. The results have applications in design

and control of aircraft, especially small scale aircraft, for robustness with respect

to turbulence. Using linearized airplane dynamics and the Dryden gust model, this

dissertation presents analytical and numerical scaling laws for airplane performance

in gusts, safety margins that guarantee, with specified probability and logarithmic

residence time, that steady flight can be maintained when stochastic wind gusts act

upon an airplane, and envelopes to visualize these safety margins.

Presented here for the first time are scaling laws for the phugoid natural frequency,

phugoid damping ratio, airspeed variance in turbulence, and flight path angle variance

in turbulence. The results show that small aircraft are more susceptible to high

frequency gusts, that the phugoid damping ratio does not depend directly on airplane

size, that the airspeed and flight path angle variances can be parameterized by the

ratio of the phugoid natural frequency to a characteristic turbulence frequency, and

xiv



that the coefficient of variation of the airspeed decreases with increasing airplane

size. Accompanying numerical examples validate the results using eleven different

airplanes models, focusing on NASA’s hypothetical Boeing 757 analog the Generic

Transport Model and its operational 5.5% scale model, the NASA T2.

Also presented here for the first time are stationary flight, where the flight state is

a stationary random process, and the stationary flight envelope, an adjusted steady

flight envelope to visualize safety margins for stationary flight. The dissertation shows

that driving the linearized airplane equations of motion with stationary, stochastic

gusts results in stationary flight. It also shows how feedback control can enlarge the

stationary flight envelope by alleviating gust loads, though the enlargement is sig-

nificantly limited by control surface saturation. The results end with a numerical

example of a Navion general aviation aircraft performing various steady flight ma-

neuvers in moderate turbulence, showing substantial reductions in the steady flight

envelope for some combinations of maneuvers, turbulence, and safety margins.
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CHAPTER I

Introduction

1.1 Motivation

Turbulence is a common factor in airplane accidents. In a review of over 4,000

reports on weather-related accidents between 1992 and 2001, 509, or 12%, listed

weather-related turbulence as a cause or contributing factor [1]. In particular, loss of

control in-flight is often associated with wind gusts, including turbulence. Among 126

loss of control accidents that occurred between 1979 and 2009, 14% listed wind shear,

turbulence, or thunderstorms as a cause or contributing factor [2]. Loss of control

in-flight is itself a leading cause of aviation accidents. In the years 2000–2009, 20

out of 89 investigated commercial jet accidents, or 22%, had loss of control in-flight

identified as the primary cause [3]. An example from 2010 illustrates turbulence

leading to an upset, loss of control, and ultimately an accident. According to the

investigation, the autopilot of a Cirrus SR22 disengaged during a turbulent approach

upon coming dangerously close to stalling. The pilot could not maintain control and

ultimately deployed a parachute to slow the airplane’s uncontrolled descent [4].

In addition to loss of control in-flight, turbulence contributes to accidents by

causing substantial damage to aircraft and injuries to crew and passengers, sometimes

fatal. In the same report on turbulence-related accidents, among air carriers, all

but one of the 72 turbulence-related accidents caused “serious injuries” [1], but this
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statistic is misleading because air carriers do not usually report accidents causing

only minor injuries and do not usually suffer turbulence-related accidents causing

substantial damage to the airplane but only minor injuries to passengers. However,

for general aviation aircraft, the same report on weather-related accidents categorized

turbulence-related accidents by severity of damage and injury. The review shows that

for turbulence-related general aviation aircraft accidents, 98% resulted in “substantial

damage” to or destruction of the aircraft, and 42% resulted in “serious injuries” or

fatalities [1]. In many cases, turbulence damages the airplane directly by excessively

loading the airframe. In a 2006 accident, an Aero Commander 690A broke up during

cruise after encountering moderate turbulence [5].

This last statistic suggests the first aspect of turbulence-related accidents that

this dissertation will address: the effects of turbulence on aircraft differ greatly based

on aircraft size. To see this, we can normalize the number of turbulence-related

accidents between 1992–2001 from the same report [1] by the total number of hours

flown by air carriers and general aviation aircraft. Since the 2001 flight hours are

readily available for air carriers [6] and general aviation aircraft [7], but the hours

for the entire ten year period are not, we use ten times the 2001 flight hours for the

normalization. Air carriers have a turbulence-related accident rate of 1.25 × 10−5

turbulence-related accidents per flight hour, while general aviation aircraft and air

taxis have a rate of 1.41 × 10−3 turbulence-related accidents per flight hour, two

orders of magnitude larger. While other factors besides size undoubtedly factor into

this much higher turbulence accident rate among light aircraft, for example pilot

proficiency and underreporting of general aviation flight hours, this dissertation shows

how aircraft performance may explain this difference.

As shown in Chap. III, turbulence can be modeled as a disturbance in the air-

plane equations of motion, and the standard deviation of an airplane’s airspeed can

be computed based on the statistics of the turbulence. Dividing that standard devi-
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Figure 1.1: Plot of the dynamically scaled airspeed coefficient of variation versus
wingspan. The corresponding values for the NASA GTM and T2 aircraft are marked.

ation by the average airspeed gives the airspeed coefficient of variation, a normalized

measure of uncertainty in the airspeed. Figure 1.1 shows that the airspeed coefficient

of variation for an airplane in moderate turbulence decreases with increasing airplane

size, measured in this example by wingspan. The airplane scaled for this example is

the Lockheed C-5A. Chapter IV explains dynamic scaling, but in essence the curve

represents the performance of the C-5A if its wingspan were changed but its other

dimensions, its weight, and its airspeed remained constant relative to the wingspan.

Also marked on the figure are the coefficients of variation for ten other aircraft of

various sizes. The figure is described in detail in Section 4.4, but the result is intu-

itive: the fractional change in airspeed due to turbulence is larger for small aircraft,

in particular because larger aircraft tend to cruise at faster airspeeds.

The airplanes with the smallest wingspans in Fig. 1.1 are smaller than general

aviation aircraft. A growing fleet of unmanned aircraft systems (UAS) can benefit

from modeling of gust effects. By early 2010, the U.S. military had acquired more

than 6,100 unmanned aircraft that each weighed 20 lbs or less [8]. Moreover, the U.S.
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military classifies unmanned aerial vehicles over 5,000 lbs as “large” [9], while the

Federal Aviation Administration (FAA) wake turbulence classifications designate air-

planes lighter than 41,000 lbs as “small” [10]. Many of these aircraft utilize autopilots

that rely on mathematical models of the airplane’s dynamics and performance, much

like the autopilot in the Cirrus SR22 accident described earlier. Nonmilitary use of

UASs is not as well developed, but a wide range of potential civil and commercial ap-

plications of UASs have been identified. Examples include border and coastal patrol,

fire detection and firefighting management, and ground transportation monitoring

and control [11, 12].

When the airspeed changes due to turbulence, as demonstrated by Fig. 1.1, air-

plane upsets and flight envelope departures mentioned earlier can result. In the study

of 126 loss of control accidents, investigations listed “stall/departure”, meaning an

excursion out of the flight envelope, as a causal or contributing factor in 49 cases, or

39%. Furthermore, 86% of accidents initiated by atmospheric disturbances led to an

upset flight condition, of which stall/departure is the most common. 64% of these

accidents also involved inappropriate crew response [2].

The flight envelope, the set of speeds, altitudes, flight path angles, and bank

angles at which an airplane can maintain steady flight, is a useful tool in identifying

when an airplane is prone to loss of control. The boundaries of the flight envelope

are computed based on constraints limiting steady flight, namely maximum engine

output, maximum angle of attack, and maximum normal load factor. Steady flight,

where the airplane’s linear and angular velocity vector components are constant in the

body frame, is not conducive to loss of control because most airplanes are designed

to fly stably or stabilizably when flying steadily. Nevertheless, models of steady flight

assume nominal conditions that cannot be expected in turbulence. To cope with this

environmental uncertainty, pilots are trained to fly more conservatively in turbulence

than under nominal conditions, well within the steady flight envelope.
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Consider an airplane operating at a low-speed condition close to stall. For ex-

ample, the airplane might be climbing just after takeoff or on approach to land. If

that airplane encountered turbulence, the airspeed and angle of attack would fluctu-

ate. Under some circumstances, the airspeed could fluctuate below the stall speed,

as depicted in Fig. 1.2. The figure shows a hypothetical case where turbulence causes

fluctuations in airplane airspeed with a standard deviation of 10 ft/s. The dash-dot

line shows three standard deviations worth of fluctuations around the steady flight

state. Operating within the stationary flight envelope would ensure that the stall

speed remained at least three standard deviations below the steady flight state, or

that the airplane’s airspeed remained above the stall speed 99.87% of the time, as-

suming a Gaussian distribution on the airspeed fluctuations. The stationary flight

envelope is described in detail in Section 5.3.

The aim of this work is to provide new insight and modeling for airplane dynamic

response to stochastic gusts in an effort to make airplanes, especially small airplanes,

more robust with respect to turbulence. This aim is accomplished by quantifying
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airplane performance in turbulence, by exploring how airplane performance in turbu-

lence scales with airplane size, and by providing tools to help clarify the boundaries

of the flight envelope under uncertain wind conditions. These tools can be used in

design and control of airplanes, especially small, potentially unmanned airplanes, to

better understand airplane capabilities and safe operating conditions in an uncertain

environment.

1.2 Problem Statement & Technical Approach

This dissertation addresses the problem of quantifying airplane performance in

stochastic gusts. Specifically, given an airplane, a desired steady flight state, and a

turbulence intensity, this dissertation shows how to:

� Compute the variances of the airspeed and normal load factor

� Dynamically scale the airspeed variance for one aircraft to a geometrically sim-

ilar aircraft of a different size

� Define safety margins using the variances of the airspeed and normal load factor

� Draw new flight envelopes that incorporate these safety margins

The problem is framed by driving airplane equations of motion with a stochastic

wind disturbance and then computing the variances of the true airspeed and normal

load factor. These two variances quantify the airplane’s performance relative to a

reference steady flight state. For the airplane equations of motion, this work uses

linearized dynamics where the state variables are the airplane linear and angular

velocity body frame components and the roll and pitch Euler angles. The inputs

to these linearized dynamics are wind gust linear and angular velocity disturbances

and the aileron, elevator, and rudder control inputs. In order to generate analytical

solutions, some sections of this work use a phugoid approximation to these linearized
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equations where the state variables are the airspeed and flight path angle and the

input is the longitudinal wind velocity disturbance.

For the wind disturbances, this work incorporates stochastic gusts generated using

the Dryden model. A coloring filter is appended to the linearized airplane dynamics.

It takes white noise as an input and outputs the wind linear and angular velocity

disturbance. The analysis does not use the airplane control inputs unless necessary

to stabilize the dynamics of a particular airplane, with the notable exception of a

section in Chap. V on gust alleviation using feedback control. When used, feedback

control is achieved using state feedback and an observer, with the various gains chosen

using a linear-quadratic regulator and a linear-quadratic estimator.

The resulting linear time invariant system incorporates the airplane dynamics,

the wind gust dynamics, and, in some cases, state feedback and estimation. The

covariance matrix of this system can be obtained using a Lyapunov equation. Through

careful choice of the system output, the covariance matrix for the linear velocity

components of the airplane and wind is computed and used to estimate the variances

of the true airspeed and normal load factor. These variances are then used in scaling

and flight envelope applications.

1.3 Original Contributions

Drawing on prior work in flight dynamics, turbulence modeling, and dynamic

scaling, this dissertation provides the following original contributions:

� Scaling laws for the airplane phugoid mode natural frequency and damping ratio

� Analytical expressions for the airplane airspeed and flight path angle variances

in the phugoid approximation parameterized by a new non-dimensional param-

eter, the phugoid-to-turbulence relative frequency
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� Scaling laws for the airplane airspeed and flight path angle variances in the

phugoid approximation

� A scaling law for the airplane airspeed coefficient of variation in the phugoid ap-

proximation showing decreasing coefficient of variation with increasing airplane

size

� Validation of these scaling laws through numerical examples comparing the

performance of eleven aircraft, focusing on the NASA Generic Transport Model

(GTM) and its dynamically scaled counterpart, the NASA T2 [13]

� A method to determine the probability that a steady flight maneuver violates

a steady flight constraint after taking into account stochastic gusts

� Stationary flight envelopes to visualize the probability that a particular combi-

nation of steady flight state and turbulence condition will exceed a steady flight

constraint for a given airplane

Among these contributions, several provide innovative solutions to the problems

addressed in this dissertation. In particular, use of the phugoid approximation in the

dynamic scaling problem allows derivation of analytical solutions to the problem. Ad-

ditionally, use of stationary flight envelopes allows visualization of the safety margins

developed for flight through stochastic gusts.

These contributions provide new insights into airplane dynamic response to tur-

bulence as well as quantitative tools to estimate and predict airplane performance in

turbulence. These contributions are especially pertinent for small airplanes, which,

according to the scaling laws and envelopes of this work, exhibit the largest changes

in performance and which, according to the sources cited earlier, are becoming more

prevalent in military applications and potentially in commercial applications as well.
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1.4 Organization

The remainder of the dissertation is organized into five chapters. Chapter II

gives an overview of the literature related to gust models, airplane dynamics and gust

response, and dynamic scaling. Chapter III derives the state space, linearized airplane

equations of motion used in the subsequent chapters and shows how to incorporate

the Dryden model of turbulence and feedback control into these linearized equations.

Chapter IV introduces a phugoid approximation of the equations in Chap. III

and dynamic scaling laws from the literature. Using that approximation, Chap. IV

derives scaling laws for the phugoid mode, the airspeed variance, the flight path angle

variance, and the airspeed coefficient of variation. In the process, Chap. IV shows

that the airspeed and flight path angle variances can be parameterized by the ratio of

the phugoid natural frequency to the turbulence corner frequency. Chapter IV ends

by comparing the derived scaling laws to numerical solutions computed for a variety

of aircraft, notably the NASA GTM [14] and the NASA T2 [13].

Following the discussion of scaling, Chap. V presents a technique to quantify

airplane performance in turbulence. Chapter V introduces the notion of stationary

flight, where an airplane’s linear and angular velocities are stationary random pro-

cesses. Chapter V also introduces the stationary flight envelope, an analog of the

steady flight envelope depicting limitations of airplane performance in turbulence.

Following the introduction of the stationary flight envelope, the chapter provides a

detailed example of a Navion executing various steady flight maneuvers in turbulence

with and without feedback control to alleviate the gusts.

The last chapter, Chap. VI, summarizes the work, highlights key contributions,

and proposes directions for future study. Three appendices follow the conclusion to

provide details on computing the true airspeed, angle of attack, and normal load

factor variances, to derive probabilistic measures of staying in the flight envelope,

and to describe the various airplane and turbulence models used in the examples.
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CHAPTER II

Literature Review

2.1 Introduction

The contributions of this dissertation fall into a much larger body of science and

engineering research. The results of the coming chapters rely heavily on this prior

work. This chapter outlines some of the existing work that is most important and rele-

vant to the rest of the dissertation. In particular, this chapter provides background in

wind gust modeling, flight dynamics, and dimensional analysis in airplane dynamics.

It also discusses several topics related to airplane dynamic response to gusts. Because

this chapter summarizes work beyond the scope of the dissertation, notations in this

chapter differ somewhat from notations in the rest of the dissertation. An effort is

made in this chapter to define variables not used or used differently in the remaining

chapters.

2.2 Stochastic Gust Models

Wind gust modeling is one of two fields that are critical to this dissertation.

Virtually all of the contributions of this dissertation assume that the wind input to

the airplane equations of motion is representative of realistic wind gusts. This section

provides an overview of how stochastic wind gusts are modeled. Hoblit’s text provides
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a thorough description of gusts and gust loads [15], while Houbolt [16] and Etkin [17]

provides concise summaries.

The wind can be described, classified, and modeled in a variety of ways. The type

of wind relevant to this dissertation is wind gusts, brief changes in the wind velocity

from a steady value. Gusts are classified into two types: discrete and continuous.

Discrete gusts are isolated changes in wind velocity. They may also be added to

continuous gusts to represent rare extremes. They are typically modeled as a pulse.

When Hoblit computes gust responses, the response to a square pulse, also called a

sharp-edge gust, serves as the baseline to compare other gust responses [15]. The

FAA prefers discrete gust models with a “1 minus cosine” shape. For example, if

there is a lateral gust of maximum speed vwymax , then the gust builds as

δvwy =
vwymax

2

(
1− cos

πx

xmax

)
0 ≤ x ≤ 2xmax, (2.1)

where x is the distance penetrated into the gust, xmax is the position at which the

gust reaches a maximum, and δvwy is the deviation of the lateral wind from its steady

value [18]. The FAA regulation specifies values for vwymax and xmax. The military

has similar standards [19]. Note that the gust is a function of position but not

time. In this model, any temporal variation comes from the motion of the aircraft

passing through the gust. This is clearly not realistic; any reader has undoubtedly

experienced gusts varying in time while the reader stood in one place. Nevertheless,

such an assumption is sufficient to model airplane flight in gusts.

Continuous gusts vary randomly in patches lasting for several minutes of flight.

The prevailing models of continuous gusts treat them as random processes and make a

number of simplifying assumptions in order to describe them mathematically. Chap-

ter 13 of Etkin’s text gives a good description of the key assumptions [20], which

include:
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� Gaussian: The probability distribution of gust velocities is Gaussian

� Stationary: The statistics do not vary with time

� Homogeneous: The statistics do not depend on the path flown by the vehicle

� Ergodic: Ensemble averages equal single sample time averages

� Frozen: The spatially varying gust velocity field does not vary with time

� Isotropic: For high altitude gusts, the statistics do not depend on the orientation

of the coordinate axes

Chapter 12 of Hoblit’s text thoroughly assesses these assumptions and concludes that,

while suspect, they yield an adequate model [15]. These models have analogs for road

roughness [21] and rough seas [22, 23].

The two most widely used models of continuous gusts are the Dryden and von

Kármán models. These two models have standardized forms specified by the Federal

Aviation Administration and the Department of Defense for design and simulation

[18, 19]. According to Hoblit [15], the Dryden model first appeared in a 1952 paper

by Liepmann [24]. The von Kármán model dates back to a report by Diedrich and

Drischler [25], who drew upon earlier work by von Kármán [26, 27, 28] to develop the

model. Both models define gusts using power spectral densities. Clear air turbulence

and turbulence in storms adhere well to this type of model.

The Dryden model has a rational power spectral density. For example, MIL-

HDBK-1797, the Department of Defense’s handbook on flying qualities, specifies the

power spectral density of the longitudinal linear velocity component in the Dryden

model as

Φδvwx(Ω) =
2Luσ

2
u

πvt

1

1 +
(
LuΩ
vt

)2 , (2.2)

where Φδvwx is the power spectral density for the longitudinal linear velocity compo-

nent of the gust, Ω is a spatial frequency, Lu is the longitudinal gust scale length, σu is
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the root mean square gust velocity or “gust intensity”, and vt is the true airspeed [19].

The power spectral density can be spectrally factorized, meaning a stable, minimum

phase transfer function Gδvwx(s) can be found such that

Φδvwx(ω) = |Gδvwx(iω)|2, (2.3)

where i =
√
−1. When this transfer function is driven by a white noise input, its

output has the power spectral density Φδvwx . Such a filter transforms the white noise

process into a colored random process and is sometimes referred to as a “coloring fil-

ter”. Because the Dryden power spectral density is rational, its spectral factorization

is exact.

The von Kármán model has an irrational power spectral density, so its spectral

factorization can only be approximated, with an exact factorization requiring a filter of

infinite order. However, the von Kármán power spectral density matches experimental

observations of gusts more closely than the Dryden model. MIL-HDBK-1797 specifies

the power spectral density of the longitudinal linear velocity component in the von

Kármán model as [19]

Φδvwx(Ω) =
2Luσ

2
u

πvt

1(
1 +

(
1.339LuΩ

vt

)2
)5/6

. (2.4)

For both models, the choice of turbulence scale length and intensity depend on altitude

according specifications given with the spectra. They have three different regimes

representing low (below 1000 ft AGL), medium (1000–2000 ft AGL), and high (above

2000 ft AGL) altitude turbulence, where AGL stands for altitude “above ground

level”. The turbulence intensity varies with turbulence severity.

This dissertation almost exclusively uses the Dryden model to generate the wind

gust inputs. This choice is primarily for convenience. The Dryden model yields filters
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of lower dynamic order that are more tractable for analytical and numerical compu-

tations without sacrificing any illustrative value for the dissertation’s contributions.

The military specifications indicate that the von Kármán model is preferable in all

cases, but that the Dryden model is acceptable for modeling and simulation that do

not include structural loading [19].

2.3 Flight Dynamics

This dissertation uses the wind gusts described in the previous section as inputs

to airplane dynamic equations. The dynamics of airplane flight are well-known; a

number of standard textbooks provide excellent presentations [20, 29, 30, 31, 32].

Flight dynamics are founded on Newton’s second law expressed in the body or wind

frame, neither of which is inertial. In the body frame, we can say that

m(v̇c + Ω×vc) = Fa(vc − vw, ω − ωw, c) + Fg + F0, (2.5)

ḣ+ Ω×h = Ma(vc − vw, ω − ωw, c) +M0. (2.6)

On the left hand side, m is the mass, vc is the center of mass velocity expressed in

the body frame, h is the angular momentum, and Ω× is a skew symmetric matrix

formed from the angular velocity ω such that Ω×vc is the same as the cross product of

ω and the center of mass velocity vc. Therefore, the left hand sides of Eqs. (2.5) and

(2.6) represent the time derivatives of the linear and angular momenta, respectively,

assuming constant mass and moment of inertia. The terms with Ω× are entrainment

terms due to frame rotation. On the right hand side, the net force is split into

aerodynamic, gravitational, and other components, and the net torque, or moment,

is split into aerodynamic and other components. The aerodynamic force and moment

include dependence on the wind linear and angular velocities vw and ωw as well as the

control input vector c. When combined with kinematic equations for the airplane’s
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position and attitude, these equations provide a complete nonlinear description of the

airplane’s six-degree-of-freedom motion.

In most applications, these nonlinear equations are linearized for small perturba-

tions around an equilibrium condition. Chapter III of this dissertation shows how to

linearize these equations in the notation used by the later chapters. The chapter also

summarizes some of the key assumptions needed to model airplane flight with these

equations.

2.4 Steady Flight

The equilibrium conditions of the airplane equations of motion occur when the

airplane’s linear and angular velocity are constant in the body frame and are called

steady flight states. In the Earth frame, the only acceleration possible in a steady

flight maneuver is a centripetal acceleration during a steady banked turn, unless we

consider instantaneously steady maneuvers such as a steady roll or a steady pull-up.

Therefore, after substituting aerodynamic models for the lift and drag and substitut-

ing propulsion models for the thrust, we can derive a set of algebraic relationships

too numerous to list between the airplane parameters, the atmospheric parameters,

the control inputs, and the variables determining the flight state. Steady flight is

described in detail in several textbooks [32, 33].

A steady flight state can be parameterized by four variables:

� Altitude above mean sea level, which determines air density [34]

� True airspeed: the magnitude of the velocity of the airplane relative to the wind

� Bank angle: the angle between the vertical in the Earth frame and the z-axis

in the wind frame

� Flight path angle: the angle between the velocity vector and horizontal in the
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Earth frame

Note that the bank angle and flight path angle, along with the heading angle, are the

three Euler angles describing the orientation of the wind frame with respect to the

Earth frame. Also note that airplanes cannot achieve all combinations of the four

variables. Steady flight is characterized by three constraints:

� Stall constraint: maximum and minimum values for the angle of attack, the

angle between the velocity vector and the aircraft longitudinal axis

� Propulsion constraint: a maximum value for the engine thrust or engine power,

depending on the type of engine

� Load constraint: maximum and minimum forces of lift, measured relative to

weight, that can be withstood by the airframe

The angle of attack, along with the sideslip angle, is an Euler angle describing the

orientation of the aircraft body frame with respect to the wind frame. In general, the

the minimum angle of attack and normal load factor are negative and not relevant to

the analysis in this dissertation.

In steady flight, the stall and propulsion constraints directly limit the range of air-

speeds achievable by an airplane at a given altitude. Additionally, for most airplanes,

these first two constraints indirectly limit the maximum altitude and most positive

flight path angle. The range of achievable flight path angles is also limited by the

fact that the steady flight equations assume it is small. For many airplanes, the load

constraint can limit the maximum achievable airspeed as well, since the normal load

factor might exceed its maximum acceptable value at high speeds. Additionally, a

larger lift force is needed to maintain steady turns, so the load constraint limits the

maximum bank angle of many aircraft.

The combinations of altitudes, airspeeds, bank angles, and flight path angles that

satisfy the steady flight constraints comprise the steady flight envelope. In its full
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form, the steady flight envelope is a four-dimensional surface. Points inside the surface

are combinations of altitudes, airspeeds, bank angles, and flight path angles that

can be achieved as steady flight states and points outside are not. The steady flight

envelope is typically depicted in two-dimensional cross-sections. Two particular cross-

sections are more popular than the others: altitude versus airspeed, and normal load

factor versus airspeed. An example of the former was already shown in Fig. 1.2. The

latter is often referred to as a v-n diagram, and an example for a Navion is given in

Fig. 2.1. Variants of the v-n diagram also include limits for negative loads.

2.5 Scaling in Flight Dynamics
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Figure 2.1: v-n diagram for a Navion.

The airplane dynamic equations de-

scribed earlier apply very widely to air-

plane flight. However, the key vari-

ables in these equations carry dimen-

sions. This means that the equations

do not readily provide a systematic com-

parison of airplane response and perfor-

mance between airplanes with different

geometries, mass characteristics, engine characteristics, or flying in different atmo-

spheric conditions. Instead, response and performance must be determined separately

for each case in absolute terms and then compared.

In many applications, comparison of one airplane relative to another is desirable.

For example, one might want to understand the performance of a large airplane that

is costly, difficult, or dangerous to test by studying a small-scale analog that can be

tested readily. If a relationship between the performance of the large airplane relative

to the small one exists, then the tests on the small airplane can be used to predict

the performance of the large airplane without testing it at all. A variety of scaling
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laws exist for airplanes, including several new ones presented in this dissertation.

Scaling of airplane response and performance derives from the general field of

dimensional analysis. Dimensional analysis is described well in several textbooks

[35, 36]. A key objective in dimensional analysis is to re-express the variables in a

model of some system that has dimensions in terms of non-dimensional variables. A

key result of dimensional analysis is that the number of independent variables needed

to describe the system is often reduced in the transition to dimensionless variables.

For most systems,

Np = Nv −Nd, (2.7)

where Nv is the number of dimensional variables needed to describe the system,

Nd is the number of dimensions needed for those variables, and Np is the number

of dimensionless variables needed to describe the system. Once the dimensionless

variables have been defined, systems that may be very different in scale but have the

same values for the dimensionless variables have equivalent models and are described

as “similar”. The most convenient system can be studied, and the conclusions applied

to any similar system, as in the airplane flight test example just described. Equation

(2.7) represents a special case of the more general Buckingham-π theorem [37].

In flight dynamics, Wolowicz et al. give a thorough overview of similarity require-

ments and scaling laws [38]. As a simplified example, suppose the lift force acting on

an airplane is a function of the following quantities:

� ρ Air density � vt True airspeed

� µa Dynamic viscosity of air � α Angle of attack

� a Speed of sound in air � c Control surface deflections

� l Airplane characteristic length � g Standard acceleration of free fall

� m Airplane mass
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FL = FL(ρ, µa, a, l,m, vt, α, c, g). (2.8)

The dimensions of these variables can all be expressed in terms of three fundamental

dimensions: length, time, and mass. Thus, by Eq. (2.7), our one dependent and

nine independent dimensional variables can be reduced to one dependent and six

independent dimensionless variables. The choice of dimensionless variables is not

unique, but the following choice includes some familiar quantities:

CL ,
2FL
ρv2

t l
2

= CL(α, c,
vt
a
,
ρvtl

µa
,
vt√
gl
,
m

ρl3
). (2.9)

� 2Fa
ρv2t l

2 Coefficient of lift (if l2 ← S) � vt√
gl

Froude number

� vt
a

Mach number � m
ρl3

Relative density

� ρvtl
µa

Reynolds number

These quantities are not unique to flight dynamics. In fact, these types of similarity

and dimensional analysis arguments are very common in fluid mechanics [39] more

generally, with analogous applications for ships [40] and supernovae [41].

The dimensionless variables in the example lead to a variety of potential simi-

larities between ostensibly dissimilar aircraft. Related to this notion of similarity is

the practice of producing geometrically similar models, where the length and mass

characteristics of one aircraft are determined by applying to another aircraft a set

of scaling laws described in detail later in Section 4.2. These scaling laws have been

used in applications such as system identification of small scale helicopters [42] and

development of dynamically scaled aircraft for flight testing [43, 44].

In addition to using scaling laws for model testing, scaling laws can be used to

understand the science of flight and predict performance of flyers of different sizes.
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One such study by Tennekes produced what he calls the Great Flight Diagram, repro-

duced in Fig. 2.2. The points in the diagram show the relationship between weight

and cruise speed for flyers ranging from a fruit fly to an Airbus A380. The diagonal

line represents the scaling law

mg

S
∝ (mg)

1/3, (2.10)

that wing loading is proportional to the cube root of the weight. The proportionality

constant chosen is 47. The vertical line represents a cruise speed of 10 m/s.

Scaling laws such as that in the Great Flight Diagram are at the intersection

of scaling laws for aircraft described above, and a rich literature of scaling laws for

animals [46, 47, 48, 49]. In the same vein as Tennekes’ work, Shyy et al. provide a

review of scaling laws for fixed and flapping wing flight in their text on low Reynolds

number flyers [50]. Liu provides a variety of geometric, power, and velocity scaling

laws with comparative examples for fixed and flapping wing flight [51].

2.6 Turbulence in Flight Dynamics

Many authors have studied the loads and dynamic response that gusts cause in

airplanes, in no small part because of the safety hazard gusts represent, as described

in Chap. I. Houbolt [16] and Etkin [17] provide detailed reviews of the literature on

gust modeling and applications up to the early 1980s. Hoblit’s text provides the most

thorough discussion on gust load concepts and applications [15]. Etkin also describes

how to incorporate wind disturbances into flight dynamics in the last chapter of his

textbook [20].

Chapter 7 of Hoblit’s text outlines how to formulate dynamic equations to deter-

mine gust loads on aircraft. Chapter 8 of the same text describes loads computed

using a short period approximation of the rigid body airplane equations of motion.

20



Figure 2.2: The Great Flight Diagram, adopted from [45].
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Hoblit’s work focuses on calculation of Kσ, where

Kσ =
∆n

sharp-edge gust ∆n
. (2.11)

The numerator is the root-mean square normal load factor when the airplane is subject

to continuous gusts. The denominator is the root mean square normal load factor

when the airplane is subject to gusts modeled with a particular rectangular pulse

described in Hoblit’s text. Thus, Kσ is a dimensionless coefficient that relates the

root mean square normal load factor to a reference normal load factor for a different

type of gust.

Hoblit shows that in the short period approximation of the airplane dynamic

equations, Kσ can be parameterized by four dimensionless variables:

δsp
Lw

,
c̄

δsp
,

fspδsp
vt

, ζsp,

where δsp is a characteristic airplane length, Lw is the characteristic length of vertical

gusts, c̄ is the airplane chord length, fsp is the short period natural frequency, and

ζsp is the short period damping ratio. The second dimensionless variable, c̄/δsp, is a

measure of unsteady effects on the response, while the other three characterize the

steady short period effects. Hoblit gives examples from a family of charts to look

up Kσ for different combinations of the dimensionless variables above. He cites LR

18382, an internal Lockheed Report I could not obtain, that gives the comprehensive

set of charts showing how loads depend on the four dimensionless variables.

Chapter IV of this dissertation presents analytical solutions to the gust response

in the phugoid approximation. In the process, we show that the steady gust effects

are characterized by two dimensionless variables: the phugoid damping ratio and

the ratio of the phugoid natural frequency to the turbulence power spectral density’s

corner frequency. The latter is the phugoid approximation analog of dividing Hoblit’s
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fspδsp/vt by δsp/Lw. This means that these two dimensionless parameters of Hoblit only

appear as a ratio in the solution presented in Chap. IV.

Extending the studies of gust loads and airplane response to turbulence, a number

of researchers have studied gust alleviation. Phillips [52] provides an early theoretical

study of methods to improve smoothness of flight in gusts. McClean [53] shows

an automatic elevator controller that alleviates gusts using the load factor, pitch

rate, and elevator angle to determine elevator deflections. The study yielded modest

alleviation and, according to its conclusions and to Etkin [17], is only effective at low

frequencies. Burris [54] gives results from flight tests flown on modified B-52 aircraft

where a flight control system was designed to use traditional control surfaces for

gust alleviation. These flight tests mainly focused on aeroelastic effects and flutter

modes and showed potential to reduce fatigue damage rates. Rynaski [55] gives

theoretical but impractical criteria for total gust rejection using direct turbulence

measurements, complemented by another work [56] that describes a linear optimal

control law for alleviating gusts. More recently, Sato [57] shows an application of

Model Predictive Control to the problem of gust alleviation. While recognizing that

there is a substantial body of literature on gust alleviation, Chap. V of this dissertation

uses simple state feedback with a Kalman filter and the standard control surfaces on

a general aviation aircraft to illustrate the potential gains of feedback control in

reducing the uncertainty caused by gusts.

In addition to gust alleviation, researchers have studied robustness of controllers

with respect to various types of uncertainty. For example, some work has considered

robustness with respect to uncertainty in the statistics of disturbances [58, 59]. Addi-

tional work studies robustness of systems with respect to model uncertainty and dis-

turbances [60]. Researchers have applied these results to airplane design and control.

Some examples include the use of quantitative feedback theory to design controllers

robust with respect to variation of an airplane’s design parameters through its flight
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envelope [61, 62]. Similarly, the FAA and military specifications described earlier in

the chapter [18, 19] are meant to standardize the gust models that researchers and

manufacturers of airplanes use to test the robustness of their designs and controllers.

Nevertheless, little theoretical work is available on the effects of gusts on control of

aircraft. Chapter V adds to this field by providing safety margins for flight through

turbulence based not only on gust loads but also on the probability of leaving the

flight envelope.

2.7 Author’s Publications

This dissertation is the culmination of several years of research I published else-

where. The collective contributions of my work are summarized in Chap. I. Here I

cite the relevant publications.

The original paper related to this work [63], presented at the American Institute

for Aeronautics and Astronautics (AIAA) Atmospheric Flight Mechanics Conference

in 2011, presents an early sketch of the stationary flight envelope concepts found here

in Chap. V. A subsequent article accepted in 2012 for publication in the AIAA Journal

of Guidance, Control, and Dynamics [64] presents the fully developed stationary flight

envelope concepts found here in Chap. V, albeit with a different representation of the

airplane rotational kinematics. The other article [65], submitted to the AIAA Journal

of Aircraft shortly before publication of this dissertation, presents the scaled airplane

response to turbulence found here in Chap. IV.
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CHAPTER III

Developing the Airplane Equations of Motion

3.1 Introduction

Airplane equations of motion can be linearized and expressed in state space form.

Such linearized equations are common, and variations can be found in several text-

books [29, 30, 31, 32]. This chapter derives the linearized equations, driven by stochas-

tic gusts formed using the Dryden model, in the notation that is utilized throughout

this dissertation. This chapter also incorporates a state feedback controller using

the linear-quadratic regular and an observer to stabilize the linearized equations and

alleviate gusts. Along the way, the chapter shows how to compute the covariance

of the true airspeed, angle of attack, and normal load factor in both the open- and

closed-loop cases for use in later applications.

3.2 Linearizing the Airplane Equations of Motion

The linearization starts with the nonlinear airplane dynamic equations from [30],

m(v̇c + Ω×vc) = Fa(vc − vw, ω − ωw, c) + Fg(ε) + F0, (3.1)

ḣ+ Ω×h = Ma(vc − vw, ω − ωw, c) +M0, (3.2)

ε̇ = E(ω, ε), (3.3)
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where definitions for symbols can be found in the List of Symbols at the beginning

of the dissertation. All the vectors are expressed in the body frame,

h = Iω, (3.4)

E(ω, ε) = Φ(ε)ω, (3.5)

Φ(ε) =

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

 , (3.6)

and

I =

∫
Volume

ρA/C(r)
(
||r||213 − rrT

)
dV =


Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 , (3.7)

where r is a position vector with origin at the aircraft center of mass for the integral

over the airplane’s volume. The yaw Euler angle does not affect any of the other

variables, so its dynamics are omitted. Ω× is a skew-symmetric matrix replacing the

cross product of a pair of vectors expressed in an orthonormal coordinate system with

the inner product of a matrix and a vector, as in the identity

a× b = A×b = BT
×a, (3.8)

A×(a) =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (3.9)

The subscript × indicates that these matrices replaced cross products.

Figure 3.1 depicts the orientation of the body frame with respect to the Earth

frame. The Earth frame axes have subscript E and the body frame axes have subscript

b. The xb axis is the aircraft longitudinal axis and is positive in front of the aircraft.

The zb axis is perpendicular to the xb axis, is in the plane of symmetry for all aircraft
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Figure 3.1: Orientation of the body frame with respect to the Earth frame, including
the Euler angles. Adapted from Kuipers [66].

studied in this dissertation, and is positive below the aircraft.

Figure 3.1 also depicts the yaw, pitch, and roll Euler angles (ψ, θ, φ) and the

sequence of rotations to transform between frames. An analogous illustration can be

drawn using the heading, flight path, and bank Euler angles (σ, γ, µ) to depict the

orientation of the wind frame with respect to the Earth frame. In the wind frame,

the positive xw axis is aligned with the aircraft velocity vector. Another analogous

illustration can be drawn using the angles of sideslip, attack, and zero (β, α, 0) as

Euler angles to depict the orientation of the body frame with respect to the wind

frame.

The airplane dynamic equations require a number of assumptions. They assume

that the Earth is flat and that a point on the Earth’s surface can be the origin of

an inertial reference frame. They assume that the airplane’s weight and moment of
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inertia do not change over time or with altitude. These are standard assumptions

justifiable for airplane flight over tens of minutes. They also assume that the airplane

is a rigid body, ignoring structural dynamics, also a standard assumption in many

applications.

This dissertation focuses on the dynamic response of the airplane to wind velocity

perturbations. To represent these perturbations, the following substitutions are made

in Eqs. (3.1) and (3.2):

vw ← vw + δvw, ωw ← ωw + δωw. (3.10)

As a consequence of Eqs. (3.1), (3.2), and (3.3), the perturbation of the wind velocity

perturbs the airplane’s linear and angular velocity and the Euler angles. The control

input vector c can be perturbed by the pilot. These perturbations are denoted by the

following substitutions:

vc ← vc + δvc, ω ← ω + δω, ε← ε+ δε, c← c+ δc. (3.11)

Henceforth, vc, vw, ω, ωw, ε, and c are treated as constant reference values, with δvc,

δvw, δω, δωw, δε, and δc representing variations. Because of the substitutions,

m
(
v̇c + δv̇c + Ω̃×(vc + δvc)

)
= Fa(vc + δvc − vw − δvw, ω + δω − ωw − δωw, c+ δc)

+ Fg(ε+ δε) + F0, (3.12)

ḣ+ Iδω̇ + Ω̃×(h+ Iδω) = Ma(vc + δvc − vw − δvw, ω + δω − ωw − δωw, c+ δc)

+M0, (3.13)

ε̇+ δε̇ = E(ω, ε) + δE(ω, ε, δω, δε). (3.14)
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By linearity of the cross product,

Ω̃× = Ω× + δΩ×, (3.15)

where Ω̃× is formed from the vector (ω + δω) and δΩ× is formed from δω.

In Eqs. (3.1) and (3.2), the forces and moments have been split into components

that depend on the relative wind velocity vc − vw and the relative wind angular

velocity ω − ωw, and components that do not. The components that depend on

the relative wind are typically the aerodynamic forces and moments. Both of these

relative wind velocities have been perturbed by Eqs. (3.10) and (3.11). Additionally,

the gravitational force in Eq. (3.12) depends on the perturbed Euler angles. Therefore,

Fa(vc + δvc − vw − δvw, ω + δω − ωw − δωw, c+ δc) =

Fa(vc − vw, ω − ωw, c) + δFa(δvc, δω, δvw, δωw, δc), (3.16)

Ma(vc + δvc − vw − δvw, ω + δω − ωw − δωw, c+ δc) =

Ma(vc − vw, ω − ωw, c) + δMa(δvc, δω, δvw, δωw, δc), (3.17)

Fg(ε+ δε) = Fg(ε) + δFg(δε). (3.18)

Expressions for δFa, δMa, and δFg are derived in the next section.

Replacing the forces, the moments, and Ω̃× in Eqs. (3.12)–(3.13) with the ex-

pressions in Eqs. (3.15)–(3.18), canceling the steady state terms, and ignoring second

order terms,

m(δv̇c + δΩ×vc + Ω×δvc) = δFa(δvc, δω, δvw, δωw, δc) + δFg(δε), (3.19)

Iδω̇ + δΩ×h+ Ω×Iδω = δMa(δvc, δω, δvw, δωw, δc). (3.20)

By ignoring second order terms, we have assumed that the center of mass linear and
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angular velocity perturbations are small.

Equation (3.14) can be linearized directly by taking partial derivatives of E with

respect to the components of ω and ε and evaluating them at the reference condition,

resulting in

δε̇ = Φ(ε)δω +
∂E
∂ε
δε, (3.21)

where the partial derivative is shorthand for a Jacobian matrix evaluated at the steady

flight reference condition.

In Eq. (3.8), when converting a cross product into an inner product, either vector

from the cross product can be converted into a matrix. Therefore, Vc× and H× can

be defined as prescribed by Eq. (3.8) to express products such as δΩ×vc in terms of

δω. Recall that the matrices with subscript × are each equal to the negative of their

transpose. Also, in realistic applications, the airplane’s moment of inertia matrix is

positive definite and invertible. After making these substitutions,


δv̇c

δω̇

δε̇

 =


−Ω× Vc× 0

0 I−1(H× − Ω×I) 0

0 Φ ∂E
∂ε



δvc

δω

δε

+


1
m
13 0 1

m
13

0 I−1 0

0 0 0



δFa

δMa

δFg

 ,

(3.22)

where perturbation of the forces and moment are inputs and perturbations of the

airplane’s linear velocity, angular velocity, and Euler angles are states.
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3.3 Perturbing the Forces & Moments

Next, δFa and δMa must be related to the relative wind and δFg to the Euler

angles. Expanding the left hand side of Eqs. (3.16) and (3.17) to first order,

Fa(vc + δvc − vw − δvw, ω + δω − ωw − δωw, c+ δc) ≈

Fa(vc − vw, ω − ωw, c) +
∂Fa
∂v

(
δvc − δvw

)
+
∂Fa
∂ω

(
δω − δωw

)
+
∂Fa
∂c

δc, (3.23)

Ma(vc + δvc − vw − δvw, ω + δω − ωw − δωw, c+ δc) ≈

Ma(vc − vw, ω − ωw, c) +
∂Ma

∂v

(
δvc − δvw

)
+
∂Ma

∂ω

(
δω − δωw

)
+
∂Ma

∂c
δc.

(3.24)

In the body frame,

Fg(ε) = mg (− sin θ cos θ sinφ cos θ cosφ)T (3.25)

To first order in perturbation of ε,

Fg(ε+ δε) ≈ Fg(ε) +
∂Fg
∂ε

δε. (3.26)

The partial derivatives in Eqs. (3.23), (3.24), and (3.26) are shorthand for Jacobian

matrices evaluated at the steady flight reference condition. For the derivatives of

aerodynamic forces and moments, the matrices consist of airplane stability and control

derivatives.

Comparing Eqs. (3.23), (3.24), and (3.26) with Eqs. (3.16)–(3.18) reveals that, to
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first order,

δFa(δvc, δω, δvw, δωw, δc) ≈
∂Fa
∂v

(
δvc − δvw

)
+
∂Fa
∂ω

(
δω − δωw

)
+
∂Fa
∂c

δc, (3.27)

δMa(δvc, δω, δvw, δωw, δc) ≈
∂Ma

∂v

(
δvc − δvw

)
+
∂Ma

∂ω

(
δω − δωw

)
+
∂Ma

∂c
δc, (3.28)

δFg(δε) ≈
∂Fg
∂ε

δε. (3.29)

Making these substitutions, Eq. (3.22) becomes


δv̇c

δω̇

δε̇

 =


−Ω× + 1

m
∂Fa
∂v

Vc× + 1
m
∂Fa
∂ω

1
m

∂Fg
∂ε

I−1 ∂Ma

∂v
I−1

(
H× − Ω×I + ∂Ma

∂ω

)
0

0 Φ ∂E
∂ε



δvc

δω

δε



+


1
m
∂Fa
∂c

I−1 ∂Ma

∂c

0

 δc−


1
m
∂Fa
∂v

1
m
∂Fa
∂ω

I−1 ∂Ma

∂v
I−1 ∂Ma

∂ω

0 0


δvw
δωw

 , (3.30)

a linear time invariant (LTI) system with wind velocity perturbations as the input.

Note the following about Eq. (3.30):

� The wind perturbations are not assumed to be random processes. These equa-

tions could also be used to study an airplane’s impulse response, the response

to pulses approximating discrete gusts, or the step response to wind shear.

� The forces and moments have not been perturbed with respect to linear or

angular acceleration, hence we assume that those effects are negligible.

� To linearize the forces, we assume a small angle of attack and define the max-

imum angle of attack as the angle above which the lift coefficient cannot be

modeled as proportional to angle of attack, illustrated in Fig. 3.2. These as-

sumptions are consistent with those used in McClamroch’s steady flight analysis

[33]. This definition for the maximum angle of attack should not be confused
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with the angle corresponding to the largest possible lift coefficient CLmax .

� Stability derivative values typically come from wind tunnel testing and may

change with flight state. They are not readily available for many aircraft. Nelson

[30] explains how to compute these stability derivatives and tabulates their

values for several aircraft.

3.4 Modeling the Gusts

Figure 3.2: Illustration of the lift coeffi-
cient as a function of the angle of attack
highlighting CLmax .

Until this point, the only assump-

tion made about the wind velocity per-

turbations has been that they result in

small perturbations of the forces, mo-

ments, and state variables. This is nec-

essary to discard higher order terms in

the linearization. Applying this model to

flight through turbulence requires substi-

tution of stationary random processes for

δvw and δωw. Such a definition of gusts

is consistent with turbulence found in clear air or storms but not with wind shear

or discrete gusts. Engineers typically use the Dryden and von Kármán models of

stochastic gusts [15, 19]. Both models define gusts in terms of their power spectral

densities, and in both cases the random processes are colored.

We define the spectral density of (δvw δωw)T and assume that it has a rational

spectral factorization. This factorization exists for the Dryden model but can only

be approximated for the von Kármán model [15]. Once the spectral density has been

factorized, the wind velocity perturbations are modeled as the output of a coloring

filter driven by Gaussian white noise d(t) with zero mean and covariance matrix D.

33



Denote a realization of the filter in state space form as

ξ̇w = Awξw + Ewd(t), (3.31a)δvw
δωw

 = Cwξw =

Cwv
Cwω

 ξw, (3.31b)

d(t) ∼ N (0, D). (3.32)

Examples of such filters, such as the one used later from [67], have been derived

from the power spectral densities of the Dryden or von Kármán models given in

MIL-HDBK-1797 [19]. MIL-HDBK-1797 gives criteria based on airplane stability

derivatives to judge when the angular velocity components of the gusts will be non-

negligible.

3.5 Combining the Models

Appending the filter from the previous section to Eq. (3.30),



δv̇c

δω̇

δε̇

ξ̇w


=



−Ω× + 1
m
∂Fa
∂v

Vc× + 1
m
∂Fa
∂ω

1
m

∂Fg
∂ε

− 1
m( ∂Fa∂v Cwv+ ∂Fa

∂ω
Cwω)

I−1 ∂Ma

∂v
I−1(H×−Ω×I+

∂Ma
∂ω ) 0 −I−1( ∂Ma∂v

Cwv+ ∂Ma
∂ω

Cwω)

0 Φ ∂E
∂ε

0

0 0 0 Aw





δvc

δω

δε

ξw



+



1
m
∂Fa
∂c

I−1 ∂Ma

∂c

0

0


δc+



0

0

0

Bw


d(t), (3.33)

or more compactly,

ẋ = Ax+Bδc+ Ed(t). (3.34)
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The system of Eq. (3.33) is linear and driven by zero-mean, Gaussian white noise.

In applications with asymptotically stable dynamics, the perturbations δvc and δω

are also zero-mean, Gaussian, stationary random processes. For a white noise input

to Eq. (3.33), the steady state covariance POL of this open-loop system’s state is the

solution of the Lyapunov equation [68]

APOL + POLA
T + EDET = 0. (3.35)

For POL to be finite, unique, and positive definite, two conditions must hold. First,

A must be asymptotically stable. Second, (A,Ec) must be controllable, where, since

EDET is positive semidefinite, it can be factorized as EcE
T
c .

The applications considered later require the covariance of the true airspeed, the

angle of attack, and the normal load factor. So, we choose (δvt δα δn)T as the

output of the LTI system, with corresponding output matrix CPOL. Equation (A.17)

in Appendix A defines CPOL. The output’s covariance matrix is

P = CPOLPOLC
T
POL. (3.36)

The diagonal of P contains the variances of the true airspeed, angle of attack, and

normal load factor. The applications presented in later chapters use these variances

to determine the probability that the airplane strays outside its flight envelope.

3.6 Incorporating Feedback Control

The larger the entries in P , the greater the uncertainty in the state, and the larger

the margin of safety required for safe operation. The terms in P can be adjusted in

several ways. First, airplanes can be designed to be more or less sensitive to gusts,

i.e., by changing the parameters of aircraft performance reflected in state matrix
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Figure 3.3: Observer-based state feedback control system architecture used for gust
rejection.

A. Second, pilots can choose how and under what turbulence conditions to fly the

airplane, i.e., the pilot determines the reference steady flight state and which forecast

turbulence levels are acceptable. This section shows that control action to alleviate

gust loads can also reduce the components of P . In many cases, control action will

also be necessary to stabilize the dynamics of Eq. (3.30).

Consider the system in Eq. (3.34) with output

ymeas = (δvmeas δωmeas)
T = Cmeasx+ s(t), (3.37)

s(t) ∼ N (0, Smeas). (3.38)

A controller design must be selected. To illustrate how feedback control affects the

covariance of the states, state feedback with a Kalman filter is utilized. The control

architecture is illustrated in Fig. 3.3. As described in Chap. II, various feedback

control designs exist for gust alleviation, many of which may perform better than this

controller. This controller is chosen because its effect on the covariance of the state

variables can readily be shown analytically.
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Defining the state estimate from the Kalman filter as x̂ and the estimate’s error

as ∆x = x− x̂,

 ẋ

∆ẋ

 =

A−BK BK

0 A− LCmeas


 x

∆x

+

BK
0

xdes +

E 0

E −L


d(t)

s(t)

 ,

(3.39a)

ymeas =

(
Cmeas 0

) x

∆x

+ s(t), (3.39b)

where the state feedback gain K and the observer gain L are

K = R−1BTP̄ , (3.40)

L = Σ̄CT
measS

−1
meas. (3.41)

P̄ and Σ̄ are the respective solutions of the algebraic Riccati equations

P̄A+ ATP̄ +Q− P̄BR−1BTP̄ = 0, (3.42)

Σ̄AT + AΣ̄ +D − Σ̄CT
measS

−1
measCmeasΣ̄ = 0. (3.43)

Q and R are weight matrices for a linear-quadratic regulator (LQR).

Equation (3.39) can be expressed more compactly as

ẋCL = ACLxCL +BCLxdes + ECL

d(t)

s(t)

 , (3.44a)

ymeas = CCLxCL + s(t). (3.44b)

As in Eq. (3.35), the covariance of the closed-loop system’s state vector is the solution
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of a Lyapunov equation,

ACLPCL + PCLA
T
CL + ECL

D 0

0 Smeas

ET
CL = 0. (3.45)

By once again restricting attention to the covariance of (δvt δα δn)T using the

output matrix CPCL = (CPOL 0) applied to the closed-loop state variables (x ∆x)T,

the covariance matrix P is

P = CPCLPCLC
T
PCL. (3.46)

The entries of P , whether computed for an open- or closed-loop system, provide the

statistics necessary for the applications that follow.
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CHAPTER IV

Dynamic Scaling of Airplane Response to

Stochastic Gusts

4.1 Introduction

This chapter presents scaling laws for the phugoid mode, the airspeed and flight

path angle variances, and the airspeed coefficient of variation. In the process, an

analytical solution for the airspeed and flight path angle variances is derived and

shown to depend on a new non-dimensional parameter, the airplane-to-turbulence

relative frequency. The analytical results are validated using models of a variety of

airplanes, particularly stability derivative models of the NASA Generic Transport

Model (GTM) and the NASA T2. The numerical examples are primarily given for

the phugoid approximation, though some are from the full linearization presented in

Chap. III.

Section 4.2 summarizes the scaling laws presented in the literature. Section 4.3

summarizes a phugoid approximation of the model in Chap. III and shows how this

phugoid model’s natural frequency and damping ratio depend on airplane size. Sec-

tion 4.3 also derives an analytical solution for the airspeed and flight path angle vari-

ances in the phugoid model in terms of a new non-dimensional parameter. Section 4.4

provides numerical examples of the models from Chap. III and 4.3 that dynamically
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scale a full-size transport airplane in comparison to a scale model. Section 4.4 also

shows how these two transports compare to a variety of other airplanes.

4.2 Dynamic Scaling

To compare aircraft of different sizes, the aircraft should be dynamically scaled ac-

cording to established similitude requirements and scaling laws. Wolowicz et al. present

a comprehensive review of similitude requirements for scale models of aircraft [38].

Their review describes similarity of geometry, angle of attack, Reynolds number,

Froude number, and Mach number and lists other similarities that may be important

in applications. For geometric similarity, a set of scaling laws are presented in Mettler

et al. [42] and Burk and Wilson [43]:

Length: lm = Nlf , (4.1a)

Area: Sm = N2Sf , (4.1b)

Mass: mm = N3mf , (4.1c)

Inertia: Im = N5If , (4.1d)

Speed: vm =
√
Nvf , (4.1e)

Angular Rate: ωm =
1√
N
ωf , (4.1f)

where the subscripts “m” and “f” stand for “model” and “full-size”, and N is the

length scale factor, meaning a quantity such as the model aircraft’s wingspan will be

N times the wingspan of the full-size aircraft. Wolowicz et al. describe some of the

assumptions needed to make these geometric similarity arguments, mainly as they

relate to similarity in Reynolds and Froude numbers [38].

In the work of Burk and Wilson [43] and Jordan et al. [44, 69], scaling is used

to design small-scale model airplanes upon which experiments are conducted that

40



give insight into the performance of the full-size airplane. In Shyy et al., on the

other hand, scaling laws presented at the beginning of the book are meant to explain

how parameters and performance variables can be expected to vary over aircraft of

different sizes [50]. This chapter of the dissertation uses scaling in a manner similar to

Shyy [50]. The contributions of this chapter center on deriving other scaling laws from

those above and drawing conclusions about how aircraft performance is a function

of aircraft size. As such, the scale factor N is often referred to in this chapter as a

measure of aircraft size relative to some arbitrary baseline aircraft.

The scaling relationships above also depend on the relative density of the air,

since, in many cases, a model and full-size aircraft do not operate at the same altitude.

Rather than include the density explicitly in the scaling laws above, we assume that

smaller aircraft operate at lower altitudes than their larger counterparts, or

ρ = ρ(a(N)),
dρ

dN
≤ 0, (4.2)

where here a is the altitude. Equation (4.2) shows that the air density decreases with

increasing N over the range of length scales for fixed wing flight. In the figures in

Section 4.4, however, the air density is held constant for the dynamic scaling, i.e.,

each curve compares scaled aircraft at a particular altitude. On a related note, the

turbulence parameters in the Dryden model vary with altitude. For fixed probability

of exceedance, the most severe turbulence generally occurs at roughly 5,000 ft above

the ground [19].

Note that scaling the airplane equations of motion down to small flyers can be

perilous. In his 1934 text on insect flight, Magnan relates:

“Tout d’abord, poussé par ce qui se fait en aviation, j’ai appliqué aux

insectes les lois de la résistance de l’air, et je suis arrivé avec M. Sainte-

Laguë à cette conclusion que leur vol est impossible.” [70]
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To paraphrase, by applying the laws of aerodynamics to insects, Magnan and Sainte-

Laguë conclude that insect flight is impossible. Among other subtleties, some of the

models of aerodynamic forces and moments in airplane flight assume a large Reynolds

number. As the length scale becomes sufficiently small, this assumption ceases to

hold. This dissertation only considers length scales relevant for fixed wing flight at

high Reynolds number. Detailed analysis of aerodynamics at Reynolds numbers of

105 and below is available in Shyy et al. [50].

4.3 Turbulence in the Phugoid Model

4.3.1 Phugoid Model

The phugoid model described in Stengel [32] is a model order reduction that cap-

tures the airspeed and flight path angle dynamics of the linearized dynamics presented

in Chap. III. As described in detail in Chap. V, the airspeed statistics can be used to

compute safety margins and envelopes for steady flight maneuvers performed in tur-

bulence, hence the interest in the phugoid approximation. In particular, the airspeed

statistics can be used to identify steady flight states close to the stall and propulsion

boundaries of the steady flight envelope, including the flight ceiling, that are unlikely

to be maintainable and prone to loss of control in turbulence. The phugoid equations

of motion areδV̇
δγ̇

 =

− 1
m
∂FD
∂V

−g cos γ

1
mV

∂FL
∂V

g sin γ
V


δV
δγ

+
1

m

 ∂FD
∂V

− 1
V
∂FL
∂V

 δvwx, (4.3)

or more compactly,

δẋp = Apδxp + Epδvwx. (4.4)
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Figure 4.1: Bode magnitude plot for the GTM’s phugoid approximation.

From here the discussion is limited to level reference conditions, i.e., γ = 0. The

characteristic equation for this system is

s2 +
1

m

∂FD
∂V

s+
g

mV

∂FL
∂V

= 0. (4.5)

From the coefficients of the characteristic equation, the natural frequency and damp-

ing ratio are

ωnp =

√
g

mV

∂FL
∂V

, (4.6)

ζp =
1

2mωnp

∂FD
∂V

. (4.7)

Qualitatively, the frequency response of both the airspeed and the flight path angle

to a wind disturbance has a flat or upward sloping low-frequency response, a resonant

peak at ωnp if ζp < 0, and a high-frequency response that falls off with frequency.

Fig. 4.1 shows the Bode magnitude plot for the GTM’s phugoid approximation.
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For the forces of lift and drag,

FL =
1

2
ρSCLV

2, (4.8)

FD =
1

2
ρSCDV

2, (4.9)

∂FL
∂V

= ρSCLV +
1

2
ρSV 2∂CL

∂V
, (4.10)

∂FD
∂V

= ρSCDV +
1

2
ρSV 2∂CD

∂V
. (4.11)

Set ∂CL
∂V

= ∂CD
∂V

= 0 for subsonic flight, as it is, for example, in all of the stabil-

ity derivative models presented in the appendix of Nelson [30]. Substituting these

expressions into the natural frequency and damping ratio,

ωnp =

√
gρSCL
m

, (4.12)

ζp =
CDV

2

√
ρS

mgCL
. (4.13)

Substituting the scaling laws in Eqs. (4.1a)–(4.1f) gives a scaling law for the phugoid

mode.

Scaling Law 1: Phugoid Mode

ωnp ∝
√
ρ(N)

N
, (4.14)

ζp ∝
√
ρ(N). (4.15)

The natural frequency decreases with increasing airplane size. Its N − 1/2 depen-

dence is consistent with the angular rate scaling law of Eq. (4.1f). It has an additional

dependence through the air density that also decreases with increasing size. The

damping ratio decreases with increasing N , but only due to the higher flight altitude
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of larger aircraft. Because of these relationships, small aircraft are more sensitive to

high frequency gusts than large aircraft. Similarly, the resonant peak of small aircraft

is at a higher frequency than that of large aircraft and is smaller due to increased air

density at low altitude.

4.3.2 Covariance of the Phugoid Model

The phugoid model is driven by gusts along the same direction as the velocity

vector. At altitudes above 2,000 ft, the Dryden turbulence model provides the power

spectral density and coloring filter transfer function for turbulence along the aircraft

longitudinal axis [67]. For small angles of attack and sideslip, these gust components

along the wind and body frame x-axes are approximately equal. Appending a state

variable of the coloring filter to Eq. (4.4),

δẋp

ξ̇vwx

 =

Ap EpCvwx

0 Avwx


δxp

ξvwx

+

 0

Bxw

n(t). (4.16)

As with Eq. (3.35), a Lyapunov equation can provide this LTI system’s state vari-

ables’ covariance. Solving the Lyapunov equation analytically and substituting in

Eqs. (4.10) and (4.11) as well as the coloring filter matrices yields analytical expres-

sions for the airspeed and flight path angle variances. Relating them to the scaling

laws already presented leads to a scaling law for these variances.
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Scaling Law 2: Airspeed & Flight Path Angle Variances

σ2
V =

(
σ2
u

π

) 2ζpκ+ κ
2ζp

+ κ2

1 + 2ζpκ+ κ2
, (4.17)

σ2
γ =

(
σ2
u

V 2π

)(
CL
CD

)2
2ζpκ

1 + 2ζpκ+ κ2
, (4.18)

κ ,
ωnp
ωturb

, (4.19)

ωturb ,
V

Lu
, (4.20)

After substituting in the scaling laws for ωnp and V ,

κ ∝ 1

N
. (4.21)

The frequency ωturb is the corner frequency of the longitudinal turbulence power

spectral density. So, κ is the relative frequency of the airplane phugoid mode to the

turbulence corner frequency. To understand why the turbulence’s corner frequency

depends on the airplane’s airspeed, recall that the Dryden and von Kármán models

assume a spatially varying turbulence velocity field frozen in time. The temporal

frequency content of the stochastic gusts depends on how fast the airplane travels

through the spatially varying field.

Figures 4.2 and 4.3 show how σ2
V and σ2

γ depend on κ and ζp. The other parame-

ters, CL
CD

, σ2
u, and σ2

u

V 2 , are kept fixed at the GTM’s values for steady level longitudinal

flight at Mach 0.8 and 35,000 ft in moderate turbulence. The airplane and turbulence

model parameters are described in detail in Section 4.4 and Appendix C. The range

of values for κ starts at the GTM’s value at the small end and increases until the

length scale factor N = 0.01 in Eq. (4.21). Both σ2
V and σ2

γ have peaks near the low

end of this range of κ. The range of values for ζp starts at the order of magnitude of
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Figure 4.2: Plot of the airspeed variance versus the relative frequency of the phugoid
mode to the turbulence parameterized by the phugoid damping ratio.

the GTM and T2 and goes up three orders of magnitude. This range of ζp allows us

to speculate about the effects on the variances of feedback control to improve phugoid

damping. Increasing ζp causes a decrease in σ2
V except for combinations of low values

of κ and high values of ζp and causes an increase in σ2
γ.

To investigate the peaks of both variances with respect to κ, we take the derivatives

of σ2
V and σ2

γ with respect to κ and set them equal to zero. The peaks of σ2
V and σ2

γ

occur, respectively, at

κ = 2ζp +
√

1 + 8ζ2
p , (4.22)

κ = 1. (4.23)

The peaks indicate resonance between the turbulence and the aircraft taking place at

these relative frequencies. For the airspeed variance, that resonance depends on the

phugoid damping, but for the flight path angle variance, the phugoid damping does

not matter.
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Figure 4.3: Plot of the flight path angle variance versus the relative frequency of the
phugoid mode to the turbulence parameterized by the phugoid damping ratio.

4.3.3 Comparison with Hoblit Parameters

Recall from Section 2.6 that Hoblit describes the root mean square normal load

factor in the short period approximation in terms of four dimensionless parameters,

δsp
Lw

,
c̄

δsp
,

fspδsp
vt

, ζsp,

where Lw is the characteristic length of vertical gusts, c̄ is the airplane chord length,

fsp is the short period natural frequency, ζsp is the short period damping ratio, and

δsp ,
2m

ρSCLα
, (4.24)

a characteristic airplane length [15].

We do not consider here Hoblit’s dimensionless parameter c̄/δsp describing unsteady

effects, though in Table C.2 in Appendix C quotes its value for the various airplanes

used in the upcoming examples to show that unsteady effects should be small. In

Eqs. (4.17)–(4.18) we see that, as in the short period approximation, the phugoid
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damping ratio can be used as one of the dimensionless parameters to describe the

response. As for Hoblit’s other two dimensionless parameters, note that if we divide

them, we get the dimensionless parameter fspLw/vt, a short period analog of κ defined

in Eq. (4.19). Thus, in this dissertation’s formulation of the gust response, these two

dimensionless parameters of Hoblit only appear as a ratio, reducing the number of

dimensionless parameters needed to characterize the response. As described in Szirtes

and Rózsa, the number of curves and charts necessary to characterize a dependent

variable in terms of a set of independent variables, not to mention the effort that

goes into creating and using such charts, grows exponentially with the number of

independent variables [36]. So, a reduction from four dimensionless parameters to

three is a marked improvement.

4.4 Comparison of Airplane Responses to Turbulence

This section gives numerical examples of the results from the previous section. The

numerical examples are based on the Dryden turbulence model and stability deriva-

tive models of two NASA airplanes. Some of the examples also include nine other

airplanes. Appendix C gives detailed discussion of the parameters for the airplanes

and the turbulence.

The first NASA airplane used is the GTM, a hypothetical airplane similar to

a Boeing 757 used in computer simulations of transport aircraft [14]. The reference

condition for the chosen parameters is steady level longitudinal flight at Mach 0.8 and

an altitude of 35,000 ft. Figure 4.4 depicts the ARIES, a NASA-owned Boeing 757.

The second NASA airplane used is the T2 subscale jet transport, a 5.5% dynamically

scaled model of the GTM in operational use by NASA. Hence, N = 0.05 in Eq. (4.1a)

when the GTM is the full scale aircraft and the T2 is the model. Jordan et al. [44]

describe the design and construction of the T2. Most of the needed aircraft parameters

for the T2 are tabulated in Morelli and Cunningham [13] and correspond to steady
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level longitudinal flight at roughly 132 ft/s and an altitude of 1,400 ft. Figure 4.5

depicts the NASA T2.

4.4.1 Figure Format

Figures 4.6–4.8 show numerical examples of the dynamic scaling of different per-

formance variables described in Section 4.3. In each of the figures, the values of the

variables investigated are plotted by dynamically scaling the value for the GTM in

steady level longitudinal flight in moderate turbulence at two altitudes using the scal-

ing laws in Eqs. (4.1a)–(4.1f). The two altitudes chosen are 35,000 ft and 1,400 ft,

typical cruise altitudes of the GTM and T2, respectively.

A choice of Mach 0.8 for the GTM at 1,400 ft is neither practical nor a good

comparison to the cruising T2. For the curve corresponding to 1,400 ft, the GTM

airspeed has been adjusted as follows. Assume that Mach 0.8 at 35,000 ft, or 782

ft/s, corresponds to the airspeed for minimum thrust vmt for the GTM. According to

McClamroch [33], the airspeed for minimum thrust in a jet aircraft is also the airspeed

that minimizes the rate of fuel consumption and only depends on altitude via the air

density. They are related as vmt(a) ∝ ρ− 1/2(a), where a is again the altitude. Thus,

the airspeed for minimum thrust at 1,400 ft is related to the air densities at 1,400 ft

and 35,000 ft and the airspeed for minimum thrust at 35,000 ft as

vmt(1400 ft) =

√
ρ(35000 ft)

ρ(1400 ft)
vmt(35000 ft). (4.25)

Carrying out the computation, the GTM’s airspeed for minimum thrust at 1,400 ft

is 446 ft/s. This airspeed is used as the reference airspeed for the GTM in the curve

showing dynamic scaling at 1,400 ft.

Along with the dynamic scaling curves, points are marked for the values of the

GTM at 35,000 ft and the T2 at 1,400 ft. The dynamic scaling curves are plotted
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Figure 4.4: The ARIES, a NASA-owned Boeing 757. The Boeing 757 is similar to
the GTM. Image courtesy of NASA Langley Research Center.

Figure 4.5: The NASA T2. Image courtesy of NASA Langley Research Center.
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using the analytical solutions from Section 4.3, while the points for the GTM and

T2 are computed by forming the respective state space models and using a numerical

Lyapunov solver. Two points are marked for each aircraft, one computed using the

phugoid approximation of Eq. (4.16) and one computed using the full linearized model

of Eq. (3.33).

4.4.2 Scaling of the Phugoid Mode

Equations (4.14) and (4.15) give scaling laws for the phugoid natural frequency

and damping ratio, respectively. Figure 4.6 plots the phugoid natural frequency ωnp

versus the scale factor N . The curves show how the GTM phugoid natural frequency

scales dynamically based on Eq. (4.14) at 35,000 ft and 1,400 ft. The points marked

show good agreement between the phugoid approximation and the full linearization

phugoid natural frequency. The T2’s phugoid approximation and full linearization

also have similar phugoid natural frequencies. The T2’s phugoid natural frequency is

below that predicted by dynamically scaling the GTM with the T2 phugoid natural

frequency about 15% below the predicted value, but it is well above the GTM’s

phugoid natural frequency at 35,000 ft. Any error must come from the difference in

airspeed or coefficients of lift and drag, since the other airplane parameters match

well and the altitude and turbulence parameters are the same for both.

Equation (4.15) shows that the phugoid damping ratio only depends on the length

scale factor through the air density. Without a model of how the air density varies

with length scale factor, the phugoid damping ratio cannot be plotted versus length

scale factor. Instead, Table 4.1 shows the phugoid damping ratio for the GTM and T2

computed using the phugoid approximation and the full linearization. The GTM and

T2 phugoid damping ratios are all of the same order of magnitude, with the phugoid

approximations matching best. The natural frequency values in Table 4.1 correspond

to the four points marked in Fig. 4.6.
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Figure 4.6: Phugoid natural frequency ωnp versus the scale factor N . Also plotted are
values for the GTM and T2 using the phugoid approximation and the full 6 degree
of freedom linearization.

4.4.3 Scaling of the Airspeed Variance

In Eq. (4.17), the variance of the airspeed depends on the airplane length scale

factor through κ. Figure 4.7 shows how σ2
V varies with airplane length scale factor.

At both altitudes, σ2
V is small for small and large airplanes and has a peak in between.

For the T2, the phugoid approximation, the full linearization, and the scaled GTM

are all close in variance. However, the difference between the airspeed variance in

the phugoid approximation and the full linearization is substantial for the GTM.

Validating these dynamic scaling curves from the phugoid model against the full

linearization is left as future work.

To get a better sense of the magnitude of these variances, they should be nor-

malized. A common way to measure uncertainty in a random variable is to compute

its coefficient of variation: the standard deviation divided by the mean. Because

Eq. (4.16) is a linear time invariant system driven by zero-mean white noise, the air-

speed perturbations will also have zero mean. The mean airspeed will therefore equal
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Table 4.1: Phugoid eigenvalue, damping ratio, and natural frequency for the GTM
and T2 computed using the phugoid approximation and the full six-degree-of-freedom
linearization.

Airplane Model Eigenvalue ζp ωnp rad/s
GTM Phugoid −0.00257± 0.0583i 0.0440 0.0583
GTM 6 DOF −0.00185± 0.0766i 0.0241 0.0766
T2 Phugoid −0.0193± 0.346i 0.0558 0.346
T2 6 DOF −0.0283± 0.307i 0.0918 0.309

the reference airspeed of the linearization.

Scaling Law 3: Airspeed Coefficient of Variation The coefficient of variation

for the airspeed is σV/V . Figure 4.8 plots the airspeed coefficient of variation versus

the scale factor.

Figure 4.8 shows that, after normalizing by the airspeed, the uncertainty in the

airspeed decreases monotonically with increasing airplane size. The figure also shows

that the disagreement in airspeed variance between the phugoid approximation and

the full linearization lessens after normalization. The T2’s coefficient of variation from

the phugoid approximation is about 16% below the value for the scaled GTM but

is well above the GTM’s coefficient of variation at 35,000 ft. A later example shows

better agreement when the airspeed of the scaled GTM is used for the T2 instead

of the airspeed from the parameter source. Recall from Eq. (4.1e) that V ∝ N 1/2.

The coefficient of variation exhibits the airspeed’s strong dependence on length scale

factor but is adjusted because of the dependence of σV on the length scale factor.

To consider how the dynamically scaled GTM compares to the other types of

airplanes, consider again Fig. 1.1 from the introduction, variations of which are pre-

sented in Fig. 4.9. Figure 4.9 shows values for the airspeed variance and coefficient of

variation for a variety of aircraft, all computed at 1,400 ft using the phugoid approx-

imation. The solid curve represents the dynamically scaled, analytically determined

GTM value. The dashed curve represents the dynamically scaled, analytically deter-
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mined C-5A value. The numerically determined GTM and C-5 values are marked

with × on the curves. All of the other plotted points correspond to numerically

determined values for the indicated airplanes.

Both the airspeed variance and coefficient of variation depend on the reference

airspeed. The speed scaling law in Eq. (4.1e) suggests a simple relationship between

airspeeds at different airplane sizes. In reality, aircraft can operate at a wide range

of airspeeds, and design considerations other than length scale, such as weight and

engine performance, play an important role in determining airspeed.

Compare, for example, the Navion general aviation aircraft and the A-4D fighter.

The Navion’s wingspan is 33.4 ft and the A-4D’s is 27.5 ft. We estimate that, at

an altitude of 1,400 ft, the Navion’s airspeed for minimum fuel consumption is 100

ft/s and the A-4D’s is 402 ft/s. Scaling the GTM down to the size of the A-4D,

we expect an airspeed for minimum fuel consumption of 209 ft/s. To eliminate this

variability, the scaled GTM’s airspeed is used for all of the airplanes in Figs. 4.9.

This includes adjusting the T2’s airspeed, and improves agreement between the T2

and the scaled GTM compared to the previous examples. Airplane weight exhibits

similar variability, but the figures do not account for deviations of airplane weight

from the scaling laws.

In Fig. 4.9, the length scale factor again corresponds to the relative wingspan.

While studying the figures, note the following:

� The T2 matches the scaled GTM’s curves well, better than the previous exam-

ples where the airspeed from the T2 parameters’ source was used

� Neither fighter matches the scaled transports well

� Both the GTM and T2 appear to be unusually sensitive to gusts for aircraft at

their wingspans

� The Navion’s airspeed variance is lower than the scaled GTM’s or the scaled
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Figure 4.9: Airspeed variance σV and coefficient of variation σV/V for eleven airplanes
versus the wingspan scale factor N computed using the phugoid approximation at
1,400 ft.
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C-5A’s

� The rest of the aircraft follow the trend of the dynamically scaled C-5A

The poor agreement between the scaling law and the fighters is expected for the

reasons described earlier related to performance of the fighters compared to perfor-

mance of transport aircraft their size. The fighters, the Navion, and the Convair

880 have less airspeed variation than the scaled C-5A while the GTM and T2 have

more; all of these deviations from the scaled C-5A can be explained by comparing

the airplanes’ phugoid damping ratios.

Table C.2 in Appendix C lists for each airplane in Fig. 4.9 the values of κ, the

GTM’s scaled value of κ, and ζp. While the scaled GTM’s κ does not predict the values

of κ for the other airplanes well, the trends match. As for the phugoid damping ratio,

according to Eq. (4.15) it should be the same for all airplanes at fixed altitude, but

it clearly varies between the different aircraft types. Moreover, these are open-loop

phugoid damping ratios, so they can be expected to vary further with a controller.

For every airplane in Fig. 4.9, the damping ratio relative to the C-5A’s determines

whether the airspeed variance and coefficient of variation are above or below the C-

5A’s dynamically scaled value. Furthermore, the GTM and the F-104, which have

the lowest and highest damping ratios, respectively, are the most significant outliers.

Thus, the dependence of the airspeed variance on ζp and the difference between the

various airplanes’ values for ζp limit the accuracy of the scaling laws.

4.4.4 Other Length Scale Factors

Relative wingspan is one of many potential length scale factors to use for these

scaling laws. This section compares scaling based on relative wingspan with scaling

based on relative wing loading and relative weight.

In some applications, the wing loading mg/S is the preferred length scale factor, as

in Tennekes’ Great Flight Diagram [45]. In fact, the wing loading is very relevant to
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this problem since Eqs. (4.14)–(4.15) show that the phugoid natural frequency and

damping ratio can be written in terms of wing loading. While wing loading is not a

length, the scaling laws in Eqs. (4.1b)–(4.1c) show that it should scale proportional

to length.

Figure 4.10 shows the same scaling laws as Fig. 4.9 except with the length scale

factor and the chosen airspeeds corresponding to relative wing loading. Note that

even though the T2 is designed as a 5.5% dynamically scaled model of the GTM,

its relative wing loading actually corresponds to a relative wing loading length scale

factor of 8.7%. Also note that the T2’s reference airspeed from the source of the

parameters [13] and the scaled GTM’s airspeed based on relative wing loading differ

by less than 3%. Therefore, the T2’s airspeed variance and coefficient of variation do

not change significantly from the examples earlier that use the airspeed given in the

T2 parameters’ source.

From the plots, the trends shown in the previous examples are apparent, with the

F-104 and the GTM still being outliers and the smallest airplanes having the largest

airspeed coefficients of variation. With the exception of the F-104, all of the aircraft’s

variances and coefficients of variation are bounded by those of the dynamically scaled

GTM and C-5A. However, neither the dynamically scaled GTM nor the dynamically

scaled C-5A capture the precise values of the other aircraft, especially for the variance,

when compared with using the relative wingspan for the length scale factor.

Another preferred length scale factor is the cube root of the airplane mass, 3
√
m,

as in Liu [51]. Like wing loading, the cube root of the mass is not a length but

scales proportional to length, as seen in Eq. (4.1c). Also like wing loading, the mass

features prominently in the phugoid approximation, suggesting it should also be a

more relevant length scale than wingspan.

Figure 4.11 shows the same scaling laws as Figs. 4.9 and 4.10, except with the

length scale factor and the chosen airspeeds corresponding to the cube root of the
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Figure 4.10: Airspeed variance σV and coefficient of variation σV/V for eleven airplanes
versus the wing loading scale factor N computed using the phugoid approximation
at 1,400 ft.

60



relative mass. Using this length scale factor, the trends and major outliers remain the

same. For the airspeed variance, the scaled C-5A and the other aircraft show better

agreement than when scaled by wing loading, but relative wingspan still provides the

best fit and agreement related to the damping ratio. Scaling based on relative weight

results in better agreement between the airspeed coefficient of variation scaling law

and numerical solution compared to scaling based on relative wing loading, but it is

not clear if it is an improvement over scaling based on relative wingspan. Overall,

the scaling laws in this dissertation are good predictors of the statistics of airspeed

variations due to turbulence in the phugoid approximation, particularly the airspeed

coefficient of variation. Furthermore, the examples suggest that relative wingspan is

a better measure of length scale than wing loading for this set of scaling laws.

4.5 Summary

Using a phugoid approximation of the linearized airplane dynamic equations, this

chapter derives scaling laws for the phugoid mode natural frequency and damping

ratio as well as expressions for the airspeed and flight path angle variances. It also

gives numerical examples of the results of the phugoid analysis and compares them to

stability derivative models of the NASA GTM and T2. The numerical results include

plots showing how the airspeed coefficient of variation scales with airplane size and

compare the T2 and dynamically scaled GTM to a variety of other airplanes.

Using two metrics, the results show that small airplanes are more susceptible to

turbulence than large airplanes. First, the scaling of the phugoid natural frequency

shows that the dynamics of large airplane filter out more high frequency gusts than

the dynamics of smaller airplanes. Second, the coefficient of variation for airspeed de-

creases as airplanes get larger, showing that variations in airspeed due to turbulence,

when expressed as a fraction of the nominal airspeed, are smaller for large airplanes.

This scaling law, which from a qualitative standpoint is intuitive, reemphasizes the
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Figure 4.11: Airspeed variance σV and coefficient of variation σV/V for eleven air-
planes versus the cube root of the weight scale factor N computed using the phugoid
approximation at 1,400 ft.
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need to make autopilots on small airplanes robust with respect to turbulence and

raises the complementary question of whether small scale airplanes are more or less

capable of alleviating gust response with control action.

These scaling laws provide a quantitative basis to compare gust responses of air-

planes of different sizes. Such a comparison can improve understanding of gust re-

sponse at different length scales. It can also help pilots using the same airspace

in airplanes of different sizes trade information about gust conditions and expected

response. As small aircraft become more prevalent in military and commercial appli-

cations, these scaling laws can serve as useful tools to predict and improve airplane

performance in gusts.
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CHAPTER V

Envelopes for Flight Through Stochastic Gusts

5.1 Introduction

This chapter uses the model derived in Chap. III to introduce the notion of sta-

tionary flight and the stationary flight envelope. This chapter describes how to use

the linear velocity covariance matrix generated at the end of Chap. III to quantify

airplane performance in stochastic gusts. In particular, this chapter describes how

to compute the probability that steady flight constraints are violated given the co-

variance matrix and the airplane model. This leads to the stationary flight envelope,

an adjustment of the steady flight envelope for use when the airplane’s state is a

stationary random process. The stationary flight envelope allows visualization of the

probability of an airplane violating a steady flight constraint because of turbulence.

Section 5.2 describes applications of the model derived in Chap. III to compute

safety margins for steady flight in turbulence. Section 5.2 also introduces the notion

of stationary flight and the stationary flight envelope. Section 5.3 gives numerical

examples for a Navion general aviation aircraft performing various steady flight ma-

neuvers in moderate turbulence, including examples of gust alleviation using feedback

control. Through analysis of the example, the section shows what guarantees can be

made about steady flight in uncertain wind conditions, both in terms of true airspeed

and normal load factor perturbations. The chapter ends by providing brief, illus-
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trative examples of a small, unmanned airplane’s stationary flight envelope and the

Navion stationary flight envelope when the gusts are generated using the von Kármán

model.

5.2 Safety Margins for Stationary Flight

Chapter III presents linearized airplane dynamic equations that include a gust

coloring filter and, in some cases, state feedback and an observer. In either the open-

or closed-loop case, a covariance matrix P is computed using a Lyapunov equation.

This matrix P is the covariance of the vector (δvt δα δn)T, the true airspeed,

the angle of attack, and the normal load factor. Appendix A defines these three

quantities and derives their perturbations from the perturbations of the airplane and

wind linear velocities. After determining the covariance matrix P , the effect of wind

gusts on steady flight can be quantified.

The Cessna 172 Pilot Information Manual [71] provides an example where quan-

tifying performance to meet a desired stall safety margin might be beneficial. For a

normal landing, the manual states:

“Normal landing approaches can be made with power on or power off

with any flap setting within the flap airspeed limits. Surface winds and

air turbulence are usually the primary factors in determining the most

comfortable approach speeds.” [71]

Later, the manual states:

“For a short field landing in smooth air conditions, approach at 61 KIAS

with FULL flaps using enough power to control the glide path. Slightly

higher approach speeds should be used in turbulent air conditions.” [71]

Pilots might benefit if the manual included information describing how much to adjust

the approach speed for a particular severity of turbulence. Similarly, the manual
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could show the stall curves or adjusted steady flight envelopes for an approach in

turbulence. In this manner, the manual could quantify how to adjust the approach

speed in turbulence. Of course, these and similar adjustments to airspeed to account

for turbulence must be traded off against other constraints, such as landing and

takeoff distances. When weighing the airspeed adjustment for turbulence against

other constraints, quantifying the reduction in the flight envelope due to turbulence

would help identify flight plans that are not flyable in turbulence with the desired

margin of safety.

5.2.1 Stationary Flight and the Stationary Flight Envelope

To help predict safe flight conditions when facing turbulence, we propose use

of the terms stationary flight and stationary flight envelope. Stationary flight is a

flight state where the airplane’s linear and angular velocities are stationary random

processes. Equation (3.33) is an example of a system whose flight state is stationary.

A stationary flight state is defined by its covariance matrix for the state variables

and a reference steady flight state that is the mean. A stationary flight envelope

is an adjusted version of the steady flight envelope for use in the case of stationary

flight. It is defined as the set of stationary flight states where the instantaneous

probability of exceeding a steady flight constraint is less than some specified value. It

can equivalently be defined as the set of stationary flight states where the logarithmic

residence time in the steady flight envelope is less than some specified value. It is

formed by shifting the boundaries of the steady flight envelope inward as a function

of the variances of the airplane’s true airspeed and normal load factor to achieve the

desired safety margin. For the case of steady level longitudinal flight, a stationary

flight envelope can be formed by shifting the steady flight envelope inward by three

standard deviations of the fluctuations of the airspeed.

Section 1.1 gives an illustration of a stationary flight envelope in Fig. 1.2, repro-
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duced for convenience here as Fig. 5.1. In this open-loop, low-speed example, the

reference flight state is steady flight with both zero flight path angle and zero bank

angle. In their most general form, the linear and angular velocities in steady flight

depend on the flight path angle γ and the bank angle around the velocity vector µ as

vc = V


cosα

0

sinα

 , ω =
g

V
tanµ


− sin γ cosα− cos γ cosµ sinα

cos γ sinµ

cos γ cosµ cosα− sin γ sinα

 , (5.1)

where the angle of attack α is related to µ by

α =
1

CLα

(
2mg

ρV 2S cosµ
− CL0

)
. (5.2)

For steady level longitudinal flight, Eq. (5.1) simplifies to the reference condition

vc =


u

0

w

 , ω =


0

0

0

 . (5.3)

Figure 5.2, illustrations adapted from McClamroch [33], shows steady climbing turn

of an airplane from several perspectives, with the relevant angles and coordinate

frames included. Figure 3.1 in Chap. III depicts the orientation of the body frame

with respect to the Earth frame along with the yaw, pitch, and roll Euler angles

(ψ, θ, φ). By analogy, Fig. 3.1 also shows the heading, flight path, and bank Euler

angles (σ, γ, µ) that transform the Earth frame to the wind frame as well as the angles

of sideslip, attack, and zero (β, α, 0) that transform the wind frame to the body frame.

As discussed in Section 2.4, steady flight is constrained by maximum engine out-

put, angle of attack, and normal load factor. In steady flight, the maximum angle

of attack corresponds to a minimum true airspeed and the maximum engine output
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Figure 5.1: Illustration of the steady and stationary flight envelopes for an airplane
flying through turbulence.

corresponds to maximum and minimum true airspeeds. The diagonal entries of the

covariance matrix P are
(
σ2
vt σ2

α σ2
n

)
, the variances of the true airspeed, the angle

of attack, and the normal load factor, respectively. Therefore, the diagonal entries of

P describe the statistics of variables that are bounded in steady flight.

5.2.2 Quantifying the Probability of Flight Envelope Departures

In this section, we consider three methods to quantify the probability that the

system in Eq. (3.33) exceeds a steady flight constraint. Each method applies to the

true airspeed, the angle of attack, and the normal load factor. For convenience, each

method is only explained in terms of the true airspeed.

5.2.2.1 Instantaneous Probability of Exceedance

Consider an airplane in turbulence with a steady flight reference true airspeed vt

and true airspeed fluctuations with zero mean and variance σ2
vt . The probability p

that at a particular instant the true airspeed’s value is less than k standard deviations
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(a) Three dimensional view of an airplane
in a climbing turn.

(b) View in the direction of the velocity
vector of an airplane in a climbing turn.

(c) View in the −yE-axis direction of an airplane
in a climbing turn.

Figure 5.2: Illustration of the Earth and body frame axes in a climbing turn adapted
from McClamroch [33]. Also shown are the flight path angle γ, the bank angle around
the velocity vector µ, and the angle of attack α.
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below or greater than k standard deviations above the mean can be computed from the

Gaussian distribution’s cumulative distribution function. Because of the symmetry

of the Gaussian distribution, both probabilities are given by

p (vt + δvt ≤ vt − kσvt) = p (vt + δvt ≥ vt + kσvt) =
1

2
(1− erf (k/

√
2)) , (5.4)

where erf(k/
√

2) is the error function. For ergodic random processes, which we presume,

p is also the fraction of time that the process spends k standard deviations above

or below the mean. So, for example, if the stall speed were exactly two standard

deviations less than vt, i.e., k = 2, then, as the airspeed randomly fluctuated, the

airplane would slow to below the stall speed at most 2.3% of the time. If it were

three standard deviations less than vt, the plane would slow below the stall speed

0.13% of the time. Figure 5.4 gives an illustration.

This instantaneous probability of exceeding the flight envelope, or equivalently

the fraction of time spent outside of the flight envelope, is referred to as a safety

margin in the rest of this chapter. This safety margin can be set by the number of

standard deviations of flight state fluctuations lying between the reference state and

the steady flight envelope boundaries.

5.2.2.2 Flight Envelope Logarithmic Residence Time

Consider again stationary flight with a true airspeed that is a stationary random

process with distributionN (vt, σ
2
vt). Another safety margin to consider is the expected

value for the time of the first flight envelope departure, called the residence time. The

first section of Appendix B derives an approximation for the residence time within

the flight envelope. It also derives an exact value for the logarithmic residence time,

a constant of a random process related to the natural log of the residence time and

useful in residence time control applications [72, 73].
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Denote the logarithmic residence time of the true airspeed µ̂vt . Suppose that the

minimum steady flight true airspeed is vt − kminσvt and the maximum steady flight

true airspeed is vt + kmaxσvt . Then,

µ̂vt =
1

2
min(kmin, kmax)2. (5.5)

This dimensionless logarithmic residence time grows monotonically with the residence

time and does not require computation of the proportionality constant needed to

find the actual residence time. Like the safety margin in the previous section, the

logarithmic residence time is directly related to the number of standard deviations

between the steady flight reference value and value at the steady flight envelope

boundary. For flight states no less than 3 standard deviations away from the flight

envelope boundary, the logarithmic residence time is guaranteed to be at least 4.5.

5.2.2.3 Probability of Exceedance Per Unit Time

In many applications it is desirable to know the probability that the flight envelope

will be exceeded during a given time interval. The second section of Appendix B

derives this probability and gives it in Eq. (B.14). Consider again stationary flight

with a true airspeed that is a stationary random process with distribution N (vt, σ
2
vt).

Suppose that the minimum steady flight true airspeed is vt−kminσvt and the maximum

steady flight true airspeed is vt + kmaxσvt . Then,

pex(t) = 1− e−Nvt (kmin,kmax)t, (5.6)

Nvt(kmin, kmax) = N0,vte
−µ̂vt , (5.7)

where Nvt(kmin, kmax) is the frequency of |δvt| exceeding kmin or kmax–whichever is

smaller–per unit time, µ̂ is given in Eq. (5.5), and N0,vt is the frequency with which

δvt crosses 0 with positive slope. N0,vt is related to the proportionality constant
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described earlier for the residence time and can only be estimated in many flight

dynamics applications. Equation (B.12) shows how to compute N0,vt from the power

spectral density of δvt.

For small Nvt(kmin, kmax)t, as in the case where vt is many standard deviations

away from the flight envelope boundaries,

pex(t) ≈ Nvt(kmin, kmax)t, (5.8)

and Nvt(kmin, kmax) is approximately equal to the probability of exceedance per unit

time, pex(t)/t.

All three of the preceding measures of the probability of exceeding the flight

envelope can be developed for the angle of attack and the normal load factor. The

normal load factor’s safety margin is discussed later. The angle of attack safety margin

applies to stall, as does the true airspeed safety margin. In the examples of the next

section, for reference states near the stall boundary, stall safety margins based on

the true airspeed and the angle of attack give the same stall speed to within 3%.

Furthermore, we prefer to use the steady flight envelope, which plots true airspeed

on one axis. Therefore, this dissertation uses the true airspeed variance to compute

stall safety margins. Detailed comparison of the merits of each approach is left for

future study.

5.2.3 Flight Envelope Departures Other Than Stall

Until this point, we have mainly discussed true airspeed fluctuations, especially

for avoiding stall, but we propose shifting all boundaries of the steady flight envelope

inward. This inward shift creates a stationary flight envelope that provides a quan-

titative safety margin that corresponds to the turbulence level. A set of constraints

determines the boundaries of the steady flight envelope, namely maximum values of
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power, angle of attack, and normal load factor. Exceeding any of these constraints

puts the airplane in a flight state where steady flight cannot be guaranteed, and

therefore the control and structural integrity of the airplane are at risk. In Fig. 5.1,

the angle of attack constraint determines most of the minimum airspeed boundary,

while the propulsion constraint determines the rest. For this airplane, the normal load

factor constraint only limits the maximum bank angle in steady turns. In general,

the normal load factor limits the high-speed performance of many aircraft. Returning

to the Cessna 172 manual, a table under “Airspeeds for Normal Operation” shows

the “Maximum Recommended Turbulent Air Penetration Speed” parameterized by

airplane weight [71]. These airspeeds can also be computed and depicted using the

methods herein. The next section goes through detailed examples of for a Navion.

Limits on the normal load factor are typically displayed on v-n diagrams, plots

of normal load factor versus airspeed demarcating steady flight states. v-n diagrams

at fixed altitude and flight path angle are two dimensional cross-sections of the full

steady flight envelope. σ2
n can be used to shift inward the wing loading boundaries

and form the stationary flight envelope.

The propulsion constraint limits airplane thrust or power, depending on the en-

gine type. For the reciprocating engine of the Navion, we can model the propulsion

constraint as a maximum engine power [33]. Exceeding the propulsion constraint

implies that the airplane cannot provide sufficient power to maintain its flight state.

While this excursion is not as dangerous as stalling or overloading, it puts the airplane

in a state that cannot be maintained steadily. Suppose that turbulence changed the

airplane’s airspeed, resulting in the airplane flying out of equilibrium. If the airplane

were out of equilibrium but the new combination of airspeed, altitude, flight path

angle, and bank angle were within the steady flight envelope, then the pilot could

adjust the control inputs to equilibrate the aircraft in the new state and then adjust

the inputs again to transition back to the desired state. If the airplane were out of
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equilibrium and had crossed the propulsion boundary, the pilot would have less con-

trol over equilibration of the flight state and might struggle to maintain the desired

reference state. Staying within the stationary flight envelope reduces the probability

of this occurring. Regardless of the utility, the adjustment of the propulsion bound-

ary is an available safety margin for flight through turbulence. In practice, a less

stringent safety margin, or no margin at all, may be acceptable to the operator for

this steady flight constraint compared to the others.

As a consequence of shifting the low and high speed boundaries of the flight

envelope inward, the flight ceiling is also reduced. This downward shift of the flight

ceiling is not a reduction based on the fluctuations of the altitude, nor is it a reflection

of the risks of exceeding the flight ceiling. Flight states near the flight ceiling are

necessarily close to the low and high speed boundaries of the flight envelope. The

inward shift of those boundaries therefore excludes states near the flight ceiling. Even

if, in applications, it is decided not to shift the propulsion boundary inward, the

inward shift of the stall boundary may still cause this reduction in flight ceiling.

In summary, when planning a flight through known turbulent conditions, or upon

encountering turbulence and flight state perturbations whose statistics can be esti-

mated, a pilot can adjust the airplane’s steady flight state to ensure that the state

lies within the stationary flight envelope. For an inward shift of three standard devi-

ations, flying within the stationary flight envelope guarantees that the airplane stays

within the steady flight envelope at least 99.87% of the time and also guarantees

a logarithmic residence time above 4.5. The three standard deviation adjustment is

arbitrary and can be changed on each boundary to generate the desired safety margin

for each type of envelope excursion.
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Figure 5.3: Ryan Navion on display at the Air Force Museum.

5.3 Envelopes for a General Aviation Aircraft

This section details a specific example of the model just derived. The application

centers on a Ryan Navion general aviation aircraft model from [30]. Figure 5.3 shows

a picture of a Navion on display at the Air Force Museum. Table C.1 in Appendix

C summarizes the necessary parameters. This airplane model only offers one steady

flight state’s stability and control derivatives, but we use them for all steady flight

states. This likely detracts from the validity of the numerical results. However,

the examples below still provide valuable illustrations of how to apply the method.

Applications of this method could be improved by using airplane models that offer

multiple states’ derivatives spanning the relevant portions of the flight envelope.

A variant of the algorithm published in [33] enables calculation of the flight enve-

lope boundaries. The steady flight envelopes are plotted by computing what combi-

nations of airspeed, altitude, bank angle, and flight path angle mark the boundaries

of the steady flight constraints: maximum angle of attack, maximum power, and

maximum normal load factor. The stationary flight envelopes are plotted by shifting

the boundaries of the steady flight envelope based on the statistics of the flight state.
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The example uses high altitude turbulence, which MIL-HDBK-1797 defines as

valid starting 2,000 ft above terrain [19]. For high altitude turbulence, the turbulence

axes are defined to coincide with the airplane axes. For the noise, the example uses a

filter for continuous Dryden gusts given in [67]. Table C.3, also in Appendix C, gives

the parameters describing the turbulence and coloring filter. The example assumes

that the average wind velocity is zero, i.e., vw = ωw = 0.

In certain parts of the flight envelope, including all longitudinal flight states, this

Navion model has one unstable mode in the system of Eq. (3.30). Therefore, open-loop

covariances cannot be computed for these states and the model must be stabilized.

The stabilization is achieved using the controller design of Section 3.6. For the LQR

weight matrix Q, define a weight matrix Qa for the system in Eq. (3.30) as

Qa = q

16 0

0 0

 , (5.9)

where q is some scalar. We form Q from Qa by appending zeros for the coloring filter

states,

Q =

Qa 0

0 0

 . (5.10)

The LQR weight matrix R and the Kalman filter measurement noise covariance Smeas

are chosen as

R = 13, (5.11)

Smeas = 16, (5.12)

where Smeas is chosen such that the measurement noise in the simulations is about

an order of magnitude smaller than the fluctuations caused by the gusts. These

choices and q = 10 allow stabilization of the dynamics. For consistency, all of the
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Navion examples use this controller regardless of whether they are stable without the

controller.

5.3.1 Steady Level Longitudinal Flight

Consider steady level longitudinal flight in moderate turbulence with a reference

airspeed of 102 ft/s at an altitude of 16,500 ft. This is an unusual state in which to

operate a Navion, but it is in the flight envelope and provides a good illustration.

Given this airplane model, turbulence model, and reference flight state, the variance

of the true airspeed σ2
vt can be computed to be 15 ft2/s2. With this information,

the stationary flight envelope can be plotted by shifting the steady flight envelope

inwards by three standard deviations, 3σvt , as shown in Fig. 5.4. For the reference

state depicted inside the stationary flight envelope, the airspeed is guaranteed to stray

outside the steady flight envelope at most 0.13% of the time as it fluctuates due to

the turbulence. That state is also guaranteed to have a logarithmic residence time of

at least 4.5. For the state depicted outside the stationary flight envelope, the airspeed

leaves the flight envelope between 0.13% and 50% of the time and the logarithmic

residence time is less than 4.5.

For other choices of safety margin, the stationary flight envelope is a different size.

Equation (5.4) shows the relationship between probability of departing the steady

flight envelope and the number of true airspeed standard deviations between vt and

the stall speed. Figure 5.5 shows several stationary flight envelopes corresponding to

different probabilities of instantaneously dropping below the stall speed, the safety

margin in question in this example. Only the safety margin is varied to generate each

of the figure’s stationary flight envelopes. Note that as the probability of departing the

envelope decreases, the number of standard deviations required to meet that safety

margin increases but more slowly. For example, decreasing the probability from 10−3

to 10−6 results in less than three standard deviations worth of additional inward shift
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Figure 5.4: Steady and stationary flight envelopes for a Navion in moderate turbu-
lence, along with two reference flight states, where the stationary flight envelope is
shifted inward by 3σvt .

to draw the corresponding stationary flight envelope. Nevertheless, the stationary

flight envelope boundaries do not approach an asymptote as the probability shrinks

arbitrarily. Choosing a probability that is sufficiently small does eventually reduce

the flight envelope dramatically. Also, note that the steady flight envelope is itself

a stationary flight envelope with a 50% probability of instantaneously departing the

steady flight envelope as the airspeed fluctuates and a logarithmic residence time of

0.

5.3.2 Steady Longitudinal Flight

The previous case of steady level longitudinal flight is a special case of the more

general steady longitudinal flight, where the airplane flies along a straight line tra-

jectory in a vertical plane and its linear and angular velocities remain constant in

the body frame. The two-dimensional steady level longitudinal flight envelope is a

cross-section of the three-dimensional steady longitudinal flight envelope where the
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Figure 5.5: Steady flight envelope for a Navion and several stationary flight envelopes
corresponding to different safety margins.

flight path angle γ = 0. Figure 5.6 shows the three-dimensional steady longitudi-

nal flight envelope and its corresponding three-dimensional stationary longitudinal

flight envelope for a Navion in moderate turbulence. The climb rate axis represents

V sin(γ). σ2
vt ranges from 13–16 ft2/s2 for the airplane and turbulence considered

above. An inward shift of 15σvt is used in Fig. 5.6 to make it easier to distinguish the

two surfaces in the plot. The reader will quickly recognize that, in this example, the

reduction of the flight envelope to form the stationary flight envelope is small, so for

this airplane, our analysis is only important for flight states near the boundaries of

the envelope. Later, Section 5.3.5 gives an example for a small, unmanned airplane

where the adjustment is more significant.

5.3.3 Steady Turning Flight

To maintain steady longitudinal flight, the flight state must satisfy the stall con-

straint, which defines much of the low-speed portion of the flight envelope, and the

propulsion constraint, which defines the rest. During steady turning flight, both
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Figure 5.6: Three-dimensional steady longitudinal and stationary longitudinal flight
envelopes for a Navion in moderate turbulence. The mesh surface is the steady
longitudinal flight envelope and the solid surface underneath is the stationary flight
envelope.

the stall constraint and the propulsion constraint still apply, but another constraint

must be analyzed: wing loading. For steady flight analysis, the normal load factor

n , FL/mg is usually constrained to be less than or equal to some maximum acceptable

value nmax. Exceeding the maximum load factor endangers the structural integrity of

the airplane, thereby increasing the risk of costly damage to the airframe, loss of con-

trol, and a subsequent accident. When adjusting the steady turning flight envelope

to take into account stochastic gusts, two different perturbations must be considered.

The first perturbation is the one already discussed, the perturbation of vt character-

ized by σvt . The second perturbation is the perturbation of the normal load factor n.

80



5.3.3.1 Perturbation of Airspeed in Steady Turning Flight

As with the case of steady longitudinal flight, the linearized system developed in

Chap. III, combined with the dependence of the reference flight state on the flight

path angle and bank angle given in Eq. (5.1), provide sufficient tools to analyze the

covariance of the velocity due to turbulence. The reference state depends on the

flight path angle and bank angle, so the covariance matrix P varies with these angles.

Figure 5.7a shows how σ2
vt depends on the flight path angle for a reference condition

with a 30° bank angle, a Mach number of 0.158, and an altitude of 11,550 ft. Figure

5.7b shows how σ2
vt depends on the bank angle with a steady level turning reference

state at a Mach number of 0.158 and an altitude of 11,550 ft.

5.3.3.2 Perturbation of Normal Load Factor in Steady Turning Flight

In addition to perturbations of the velocity, perturbations of the normal load

factor also occur. For simplicity, static wing loading is assumed to dominate and

structural dynamics are ignored. To assess the static wing loading, this section first

considers the variance of the normal load factor perturbations, as was done with vt.

In steady flight the relationship between FL and mg allows the normal load factor

to be expressed in terms of the bank angle around the velocity vector as n = secµ.

Turbulence will perturb the lift force as the true airspeed fluctuates, but the weight

remains constant. This results in normal load factor perturbations. In a manner

similar to Eq. (3.16), a first order perturbation to n called δn can be defined and

related to the lift force perturbation as

δn =
δFL
mg

. (5.13)

The bottom right entry of the covariance matrix P is σ2
n. Figure 5.8, a plot of the

standard deviation of the normal load factor versus the reference normal load factor,
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Figure 5.7: Relationship between the variance of the true airspeed and the flight path
and bank angles for a Navion.
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Figure 5.8: Plot of the standard deviation of the normal load factor versus the refer-
ence normal load factor for a Navion.

shows that as the reference normal load factor grows, the standard deviation of the

normal load factor tends to an asymptote.

The variance of the normal load factor gives a measure of the typical size of

the normal load factor perturbations as well as a way to predict how often large

perturbations occur. For violations of the stall constraint, large but short duration

fluctuations of the airspeed were assumed not to cause a stall even if they briefly

violated the stall constraint. For wing loading, a large increase above the nominal

normal load factor could damage the airplane in much less time than it takes to

stall the airplane. Hence, practical applications would likely need more conservative

safety margins on the wing loading compared to the safety margins on stall. Equation

(5.4), the cumulative distribution of the Gaussian distribution, shows that this can

be accomplished by requiring the airplane to stay more standard deviations away

from the wing loading edge of the envelope than was chosen for the stall edge. Etkin

notes that the Gaussian distribution can significantly underestimate the probability

of gusts whose magnitude exceeds three standard deviations above the mean [17].
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Figure 5.9: Steady and stationary v-n diagrams for a Navion.

This provides extra motivation for a large safety margin on the normal load factor

when assuming a Gaussian distribution for the gusts.

For steady turning, the flight envelope is often assessed via a v-n diagram [33].

The steady longitudinal flight analysis above simply entailed shifting the edges of

the flight envelope inward by an amount proportional to σvt . Steady turning flight

analysis requires shifting the envelope inward along both axes. Along the airspeed

axis the shift is again proportional to σvt . Along the normal load factor axis the shift

is proportional to σn. In both cases, the size of the shift varies with the bank angle.

Figure 5.9 shows an example of a v-n diagram for steady level turning at an altitude

of 11,550 ft and the corresponding stationary flight envelope shifted inward by three

standard deviations. nmax is chosen to be two [33].

The effect of the turbulence on loading is more significant than the effect on

airspeed in this example. Compare the coefficients of variation for the normal load

factor and the true airspeed, which, in the level turning example just given at a

40° bank angle, are 0.079 and 0.054, respectively. The coefficient of variation is the
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ratio of the standard deviation to the mean, where in this case the mean is the

reference value. The present analysis is likely less conservative than one that takes

into account the airplane’s structural dynamics or the distribution of the loading on

the structure. These effects could make the wing loading during turbulence even

larger. However, increasing the safety margin in this framework can protect against

some of these unknown effects.

On a different note, the coefficient of variation serves as a heuristic to judge the

viability of the linearization. A small coefficient of variation indicates that the first

order effects of the perturbation are small, which suggests that including higher order

effects will not change the results much.

5.3.4 Enlarging the Stationary Flight Envelope By Gust Alleviation

As illustrated in the examples above, the stationary flight envelope can be enlarged

if the components of P are reduced. Section 3.6 showed that the components of P

can be changed using feedback control, resulting in the closed-loop system given

by Eq. (3.39). Feedback control has already been utilized to stabilize the airplane

dynamics. In this section, the controller’s ability to alleviate gusts is investigated.

A representative plot of how σvt depends on the LQR gain Q is shown in Fig. 5.10.

In the plot, Q is parameterized by its norm q from Eq. (5.9). The reference flight

state was a steady level turn with a bank angle of 30° and Mach number of 0.158 at

11,550 ft.

Figure 5.11 shows a comparison of the steady flight envelope and two stationary

flight envelopes for a steady level turn. One stationary flight envelope uses this

controller implemented at q = 103 and the other at q = 10. q = 103 is not practical

for the Navion, which is discussed later, but such a high value illustrates the potential

enlargement of the stationary flight envelope by gust alleviation. The reference flight

state used here is a steady level turn with a 30° bank angle at 11,550 ft.
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Figure 5.10: Plot of σ2
vt versus the norm of the LQR gain Q for a Navion.
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Figure 5.11: Comparison of the stationary level turning flight envelopes for two dif-
ferent norms of Q.
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Elevator deflection with q = 103

Trim value of elevator deflection

Figure 5.12: Elevator deflection versus time for a Navion with a high gain controller
in turbulence.

The conclusion based on the two figures is that the stationary flight envelope

can, in principle, be enlarged using feedback control. However, in order to achieve

reductions in σvt that are more than a few percent, the controller utilizes unreasonably

high control gains. The resulting deflections of the control surfaces make unrealistic

assumptions such as infinite bandwidth of the actuators, linear aerodynamics at large

control deflections, and deflections well beyond typical saturation values.

As an example, a sample time history of the elevator deflection with q = 103 is

plotted in Fig. 5.12. The figure also shows the trim value of the elevator deflection

for the steady reference condition. In the example, the elevator deflection is subject

to a ±20° saturation that is not accounted for by the controller. From the figure, it

is clear that with q set at 103, the controller almost always generates control inputs

in excess of the elevator’s capabilities. The aileron and rudder deflections suffer from

the same problem. Even at q = 10, saturation at ±20° limits performance, but to less

of an extent. We did not investigate loading on or near the control surfaces for this

high-gain controller, but presume they were correspondingly large. Controller designs

and control surfaces other than those used, such as those incorporating quasilinear

control [74] or those described in Chap. II, might offer more realistic alleviation.
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The modest alleviation achieved in this example conveys the importance of the

stationary flight envelope. Should closed-loop control offer dramatic reduction in the

effects of the gusts, then the stationary flight envelope would be enlarged to the point

that it offers little advantage over the steady flight envelope. However, this study

suggests that simple state feedback with a Kalman filter is not sufficient to reduce

the effects of gusts for this aircraft. Therefore, short of a controller design with much

better performance, the stationary flight envelope remains a useful tool to determine

how far from the steady flight envelope boundaries a pilot should fly to maintain a

desired safety margin.

5.3.5 Comparison With Other Examples

This section provides two other numerical examples for comparison with the de-

tailed Navion results just presented. First, the stationary flight envelope is shown for

a smaller airplane, an Aerosonde. Second, the Navion’s stationary flight envelope is

computed using a von Kármán wind model instead of the Dryden wind model.

5.3.5.1 Aerosonde Stationary Flight Envelope

Some of the Navion stationary flight envelope examples presented show only mi-

nor reductions in the flight envelope after accounting for turbulence, indicating that

only states very close to the edges of the envelope are problematic during turbulence

encounters. In Chap. IV, the coefficient of variation for the airspeed, the ratio of

the airspeed’s standard deviation to its mean, decreases monotonically with increas-

ing airplane size. Thus, for airplanes smaller than the Navion, the flight envelope

reductions will be larger.

As an example of a smaller airplane, consider the Aerosonde model in Beard and

McLain [12]. An Aerosonde is a single-engine, propeller-driven, unmanned aircraft

with a wingspan of 9.56 ft and a typical weight of 29.7 lbs. Figure 5.13 depicts the
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steady and stationary flight envelopes for the Aerosonde subject to the same mod-

erate turbulence as the Navion in Fig. 5.4 and using a reference condition of steady

level longitudinal flight at 4,950 ft and 83 ft/s. Comparing the Aerosonde’s steady

flight envelope to the Navion’s, the Aerosonde is seen to be slower than the Navion,

to have a lower flight ceiling, and to have a smaller range of airspeeds. Moreover, the

reduction from the Aerosonde’s steady flight envelope to the Aerosonde’s stationary

flight envelope is more substantial. This gives a true airspeed coefficient of variation

of 5.8%, compared to a coefficient of variation of 3.8% in the Navion steady level

longitudinal example. Using the same safety margin of a three standard deviation

inward shift of the flight envelope, at 4,950 ft the Aerosonde’s range of airspeeds

within the envelope is decreased by about 35% to form the stationary flight envelope,

compared to about a 15% reduction in the Navion example. This means that turbu-

lence constrains the Aerosonde to fly closer to the center of its steady flight envelope

than it does for the Navion in order to stay within the safety margin.

While this result and the scaling laws suggest that the reduction of small scale air-

planes’ flight envelopes are more substantial in turbulence, many small scale airplanes

have high thrust to weight ratios. This allows them to fly post-stall, offsetting the

reduction in lift with a component of thrust. For application to small scale airplanes,

the results of this dissertation would be complemented by research on the expansion

of the flight envelope post-stall for high performance airplanes.

5.3.5.2 Response to von Kármán Gusts

Thus far, all of the examples given in this dissertation use turbulence generated

using the Dryden model of stochastic gusts. In this section, the level longitudinal flight

example from Section 5.3.1 and Fig. 5.14 is repeated using the von Kármán model

of stochastic gusts. The von Kármán coloring filters, adapted from the MATLAB

documentation [75], approximate the von Kármán gust model since the model’s power
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spectral density is irrational. The reference state is again steady level longitudinal

flight in moderate turbulence with an airspeed of 102 ft/s at an altitude of 16,500 ft.

The variance of the true airspeed σ2
vt is 13 ft2/s2. Figure 5.14 shows the steady and

stationary flight envelopes for this von Kármán example. This example demonstrates

the viability of using the approximated von Kármán gust model’s coloring filters in

all of the scaling and envelope examples of this dissertation. In applications, the most

appropriate gust model can be applied.

5.4 Summary

This chapter uses linearized airplane dynamic equations to determine the impact

of stochastic gusts on steady flight maneuvers. In the process, it extended the concept

of steady flight to stationary flight, where the airplane’s linear and angular velocities

are stationary random processes whose mean corresponds to a reference steady flight

state. Stationary flight, while developed in the context of response to turbulence, is

relevant in any situation where the airplane’s state variables are stationary random

processes. The stationary flight envelope, an adjusted steady flight envelope that

takes into account the stochastic nature of the state variables, is computed based on

the statistics of the state variables. Whether those statistics are computed from a

model of how an underlying cause affects the state variables or those statistics are

estimated from direct measurements, the stationary flight envelope can be employed

to ensure that a desired safety margin is maintained.

This analysis’ model of airplane dynamic response to stochastic gusts allows esti-

mation of the statistics of the state variables and, therefore, estimation of the prob-

ability of violating the steady flight constraints. The analysis also shows that this

probability can be reduced with feedback control to alleviate gust loads. This infor-

mation can ultimately be used, given wind gust statistics, to choose flight states that

guarantee, with specified probability and logarithmic residence time, that the aircraft
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Figure 5.13: Steady and stationary flight envelopes for an Aerosonde in steady level
longitudinal flight.
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Figure 5.14: Steady and stationary flight envelopes for a Navion in moderate turbu-
lence using the von Kármán gust model.
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remains within the steady flight envelope despite uncertain conditions. In particu-

lar, the method presented shifts the boundary of the steady flight envelope based on

the statistics of the wind gusts to provide a probabilistic safety margin when flying

through turbulence. The stationary flight envelope can help pilots plan safe flights

through known turbulent conditions. The stationary flight envelope, stored as a

look-up table or computed online, can help autopilots, as well. Similarly, if airplanes

encounter turbulent conditions in-flight and can estimate the statistics of either the

turbulence or the flight state, the stationary flight envelope can give pilots a basis to

determine quantitatively which maneuvers are safe.
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CHAPTER VI

Conclusion

6.1 Summary of Contributions

The preceding chapters addressed the problem of quantifying airplane performance

in stochastic gusts. Following a review of the literature in Chap. II, Chap. III reviewed

the linearized, open- and closed-loop airplane equations of motion with stochastic

gusts as a disturbance. Chapter III also reviewed how to compute the covariance

matrix for the aircraft and wind linear velocity components.

Chapter IV derived the dependence of the airspeed variance on airplane size using

a phugoid approximation of the linearized dynamics. It also gave a series of numerical

examples showing how airplane performance in turbulence scales with size. In par-

ticular, Chap. IV compared the NASA GTM with its dynamically scaled counterpart

the NASA T2, showing that the scaling laws derived can be used to accurately predict

the T2’s performance based on the performance of the GTM. Key contributions on

scaling in Chap. IV included:

� Scaling laws for the airplane phugoid mode natural frequency and damping ratio

� Analytical expressions for the airplane airspeed and flight path angle variances

in the phugoid approximation parameterized by a new non-dimensional param-

eter, the phugoid-to-turbulence relative frequency
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� Scaling laws for the airplane airspeed and flight path angle variances in the

phugoid approximation

� A scaling law for the airplane airspeed coefficient of variation in the phugoid ap-

proximation showing decreasing coefficient of variation with increasing airplane

size

� Validation of these scaling laws through numerical examples comparing the

performance of eleven aircraft, focusing on the NASA GTM and its dynamically

scaled counterpart, the NASA T2

Chapter V continued by showing how the true airspeed and normal load factor

variances can be used to compute safety margins for flight through stochastic gusts.

In developing these safety margins, the chapter introduced the notions of station-

ary flight and the stationary flight envelope. To illustrate the concepts, the chapter

provided numerical examples of a Navion performing a variety of steady flight ma-

neuvers with accompanying stationary flight envelopes. Complementing the general

aviation aircraft examples, the chapter ended with an example of a stationary flight

envelope for the much smaller Aerosonde, showing even more substantial reductions

in the flight envelope because of turbulence. Key contributions in Chap. V on safety

margins for flight through turbulence included:

� A method to determine the probability that a steady flight maneuver violates

a steady flight constraint after taking into account stochastic gusts

� The stationary flight envelope, an innovative visualization tool to depict which

steady flight states have high probability of exceeding a steady flight constraint

in the presence of stochastic gusts

These contributions further our understanding of the effects of stochastic gusts

on airplane performance. In particular, they help us understand the capabilities
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and limitations of small scale airplanes, which this dissertation showed are more

susceptible to turbulence. As use of small, unmanned airplanes continues to grow

for military and commercial applications, these contributions can lead to improved

airplane design and control for flight through gusts.

6.2 Future Directions

Future research can readily build upon the contributions of this dissertation. Some

of these future projects are direct extensions of these contributions, including some

extensions already mentioned in the preceding chapters. Direct extensions of the

scaling work in Chap. IV include:

� Validating the scaling laws from the phugoid approximation against the rigid

body, six-degree-of-freedom model

� Developing scaling laws for the true airspeed rather than the magnitude of the

center of mass velocity

� Defining a lower bound on airplane size where the scaling laws no longer apply

� Incorporating unsteady effects into the gust response solutions

� Developing scaling laws for gust alleviation to complement the scaling laws for

gust response

Similarly, direct extensions of the work in Chap. V on stationary flight and stationary

flight envelopes include:

� Identifying maneuvers where angle of attack variations due to turbulence are

more important than airspeed variations when computing the stall boundary of

the stationary flight envelope
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� Detailed comparison of the residence time derived from large deviations theory

and the residence time derived from the frequency of exceedance

� Incorporating the effects of structural modes into the wing loading safety mar-

gins

� Assessing the potential gains of quasilinear control to alleviate gusts despite

actuator saturation

In addition to the direct extensions just listed, farther-reaching extensions of this

work include:

� Using the same analytical technique to develop safety margins for other types

of wind disturbances, such as discrete gusts, wind shear, and wake turbulence

� Extending the scaling laws of this dissertation to low Reynolds number flyers

� Developing margins analogous to those used in the steady flight envelope that

quantify deviation from a desired trajectory in turbulence

� Using the safety margins developed in this dissertation to quantify turbulence

limits for takeoff and landing of particular airplane models

� Informing pilots and operators of the probability of exceeding the steady flight

envelope in turbulence via charts in pilot operating handbooks or via in-cockpit

displays

� Incorporating post-stall dynamics into small scale airplane controller design so

unmanned aircraft can use less stringent safety margins on the stall boundary

of the stationary flight envelope

� Developing a model linking uncertainty in airplane dynamics with degradation

of information collection from onboard sensors in order to quantify the effects
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of turbulence on information gathered during intelligence, surveillance, and re-

connaissance flights

6.3 Closing Remarks

At the beginning of this dissertation, we considered the hazard posed by turbulence

to flight operations, recognized that small aircraft seem to be more susceptible to that

hazard, and noted the growing use of small scale, unmanned aircraft in military and

potential commercial applications. The subsequent chapters quantified the hazard

posed by turbulence and the extent to which small scale aircraft are more susceptible.

They also presented safety margins that, when adhered to, guarantee with specified

probability and logarithmic residence time that an airplane flight state will remain in

the steady flight envelope despite the airplane operating in turbulence.

Aircraft will continue to encounter turbulence. Using the contributions of this

dissertation, those who design aircraft, design autopilots for aircraft, and operate

aircraft, especially small scale aircraft, can better understand the capabilities and

limitations of their aircraft in turbulence. They can also use these contributions to

plan safer flights through known turbulent conditions and to pilot their aircraft in a

manner more robust with respect to the effects of turbulence in flight.
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APPENDIX A

Perturbations of vt, α, & n

This appendix shows how to derive the output matrix CPOL used in Eq. (3.36).

Multiplying the state vector of Eq. (3.33) by CPOL gives as output the perturbations

of the true airspeed, the angle of attack, and the normal load factor, (δvt δα δn)T.

Therefore, this appendix defines these quantities and shows how to write them as

linear combinations of the airplane and wind linear velocities.

True Airspeed Perturbations

We define the true airspeed as the magnitude of the airplane velocity with respect

to the air, namely

vt , |vc − vw| =
√

(u− vwx)2 + (v − vwy)2 + (w − vwz)2. (A.1)

We perturb the airplane and wind velocities as in Chap. III by substituting vc ←

vc + δvc and vw ← vw + δvw, where vc and vw are constant reference values. Solving
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for the first order perturbation of vt,

δvt =
δv2

t

2vt
, (A.2)

δv2
t = 2 ((u− vwx)(δu− δvwx) + (v − vwy)(δv − δvwy) + (w − vwz)(δw − δvwz)) ,

(A.3)

where δv2
t is the perturbation of v2

t , not the square of δvt, and vt now refers to

a constant true airspeed reference value. This first order perturbation is a linear

combination of the airplane and wind linear velocity components and can be factored

as

δv2
t = 2 (u− vwx v − vwy w − vwz) (δu− δvwx δv − δvwy δw − δvwz)T . (A.4)

The column vector on the right is itself a linear combination of airplane and wind lin-

ear velocity components’ perturbations and, therefore, of the state vector of Eq. (3.33)

as well. Thus,

δv2
t = 2 (u− vwx v − vwy w − vwz)Ctx, (A.5)

Ct , (13 0 0 −Cwv) , (A.6)

x = (δvc δω δε ξw)T , (A.7)

where Cwv is defined in Eq. (3.31b) and x is the state vector of Eq. (3.33). Substituting

Eq. (A.5) into Eq. (A.2) gives the first row of CPOL.

Angle of Attack & Normal Load Factor Perturbations

This section shows how to derive the perturbations of the angle of attack and

normal load factor as a linear combination of the state vector of Eq. (3.33). To begin,
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define the normal load factor and perturb it with substitutions analogous to those in

Chap. III:

n =
FL
mg
← n+ δn =

FL + δFL
mg

. (A.8)

Canceling the steady state terms,

δn =
δFL
mg

, (A.9)

relating the perturbation of the normal load factor to the perturbation of the lift

force.

Recall the magnitude of the lift force,

FL =
1

2
ρSCLv

2
t , (A.10)

CL = CL0 + CLαα. (A.11)

Perturbing this expression for the lift to first order,

δFL =
1

2
ρSCLδv

2
t +

1

2
ρSCLαv

2
t δα, (A.12)

where δv2
t is defined in Eq. (A.3) as the perturbation of v2

t . All of the quantities

except δv2
t and δα now represent constant reference values. Air density variations

due to turbulence are assumed negligible.

Equation (A.12) relates the lift force perturbation to the true airspeed and angle

of attack perturbations. Equation (A.5) gives δv2
t . The angle of attack is defined in

terms of the relative wind as

α = arctan
w − vwz
u− vwx

. (A.13)
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Perturbing this to first order,

δα =
u− vwx

(u− vwx)2 + (w − vwz)2
(δw − δvwz)−

w − vwz
(u− vwx)2 + (w − vwz)2

(δu− δvwx).

(A.14)

The remainder of this derivation can be completed using this expression for δα. How-

ever, most flight dynamics applications assume a small angle of attack, i.e. (u −

vwx)
2 � (w − vwz)2. Under this assumption, Eq. (A.14) simplifies to

δα ≈ 1

u− vwx
(δw − δvwz)−

w − vwz
(u− vwx)2

(δu− δvwx). (A.15)

As with Eq. (A.3), this simplified expression for δα can be factored into a row vector

multiplying the state vector of Eq. (3.33),

δα ≈
(
− w−vwz

(u−vwx)2
0 1

u−vwx

)
Ctx, (A.16)

which is the second row of CPOL. Making the necessary substitutions into Eq. (A.9)

gives the last row of CPOL. Factoring the expressions for the rows,

CPOL ,


1
vt

0 0

0 1 0

0 0 ρSCL
mg




u− vwx v − vwy w − vwz

− w−vwz
(u−vwx)2

0 1
u−vwx

u− vwx −CLα
v2t

2CL

w−vwz
(u−vwx)2

v − vwy w − vwz + CLα
v2t

2CL(u−vwx)

Ct.

(A.17)

102



APPENDIX B

Flight Envelope Residence Times

This appendix derives the flight envelope residence time and the probability of

exceeding the flight envelope per unit time.

Asymptotic Output Residence Time

In this section, work done by Meerkov and Runolfsson on aiming control [72, 73]

is leveraged to compute the expected time for an airplane’s flight state to first exceed

the steady flight envelope. First, we review definitions and a theorem taken directly

from Meerkov and Runolfsson [73], then we derive a special case applicable to the

safety margins of Chap. V.

Consider a LTI system such as Eq. (3.33) that can be modeled in state space form,

ẋ = Ax+ εEd, (B.1a)

y = Cx, (B.1b)

where x ∈ Rn, y ∈ Rp, d is a zero-mean, stationary, Gaussian white noise process

with covariance matrix D, ε is a small parameter, and C has rank p. Define a domain
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Ψ ⊂ Rp that contains the origin and has a smooth boundary ∂Ψ. Assume that

x0 = x(0) ∈ Ω0 , {x ∈ Rn|y = Cx ∈ Ψ}. Denote the output y(t) in Eq. (B.1) with

initial condition x0 as y(t, x0). Define the first passage time of the output y(t, x0)

from Ψ as

τ ε(x0) = inf{t ≥ 0 : y(t, x0) ∈ ∂Ψ|y(t0, x0) ∈ Ψ}, (B.2)

and call its mean,

τ̄ ε(x0) = E[τ ε(x0)|x0], (B.3)

the residence time. Large deviations theory offers asymptotic approximations of these

times for small ε.

Theorem 1. Assume

1. A is Hurwitz

2. The pair (A,E) is completely controllable

Then uniformly for all x0 belonging to compact subsets of Ω = {x0 ∈ Rn|CeAtx0 ∈

Ψ, t ≥ 0} we have

lim
ε→0

ε2 ln τ̄ ε(x0) = µ̂(Ψ), (B.4)

where

µ̂(Ψ) = min
y∈∂Ψ

1

2
yTP−1y, (B.5)

P = CP̄CT, (B.6)

and P̄ is the positive definite solution of the Lyapunov equation

AP̄ + P̄AT + EDET = 0. (B.7)

This theorem is proven by Meerkov and Runolfsson [73]. The constant µ̂ is referred
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to as the logarithmic residence time in Ψ.

Consider the special case where y is some scalar quantity denoted δỹ. The covari-

ance matrix P simplifies to the variance of δỹ, denoted σ2
ỹ , the domain Ψ simplifies to

the real interval [−δỹmin, δỹmax], where δỹmin, δỹmax > 0, the boundary ∂Ψ simplifies

to the two real numbers {−δỹmin, δỹmax}, and the logarithmic residence time simplifies

to

µ̂(Ψ) =
min(δỹmin, δỹmax)2

2σ2
ỹ

. (B.8)

We can express the boundary ∂Ψ in terms of standard deviations of δỹ: δỹmin = kminσỹ

and δỹmax = kmaxσỹ. Substituting into Eq. (B.8),

µ̂(Ψ) =
1

2
min(kmin, kmax)2. (B.9)

Because y(t) has zero mean in Eq. (B.1), the logarithmic residence time for scalar

output is proportional to the square of the number of standard deviations between the

mean and the boundary closest to the mean. The residence time can be approximated

as

τ̄ ε ≈ e
µ̂/ε2 . (B.10)

For a more accurate but still approximate value of τ̄ ε, the exponential can be mul-

tiplied by a proportionality constant described in detail by Meerkov and Runolfsson

[72]. A related formulation for the residence time that gives the same logarithmic

residence time is derived in the next section.

Suppose that δỹ represents zero mean, stationary, Gaussian fluctuations of some

flight dynamics quantity around its steady flight reference value ỹ. Furthermore,

suppose that in steady flight there is a constraint ỹmin ≤ ỹ ≤ ỹmax. We can then

define δỹmin = ỹ − ỹmin and δỹmax = ỹmax − ỹ. With this choice of boundary, the

residence time τ̄ ε and the logarithmic residence time µ̂ quantify the expected time

for the perturbed airplane flight state to exit the steady flight envelope.
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Probability of Exceedance Per Unit Time

In many applications, it is desirable to evaluate the probability of a random event

occurring during a specified time interval. Chapter 4 of Hoblit describes how to do this

for perturbed variables in the case of airplane dynamics driven by stationary, Gaussian

models of turbulence [15]. His method, summarized here, amounts to determining

the frequency with which a Gaussian random process exceeds some threshold, using

that frequency as the rate for a Poisson process that counts the number of threshold

crossings of the Gaussian random process, and computing the probability that the

first jump of the Poisson process occurs at time t.

Rice [76] shows that for a zero-mean, scalar, Gaussian random process δỹ with vari-

ance σ2
ỹ, power spectral density Φỹ(f), and some threshold δỹmax > 0, the frequency

of exceedence, i.e., the number per unit time of threshold upcrossings, crossings with

positive slope, is

N(δỹmax) = N0e
− δỹ

2
max
2σ2
ỹ , (B.11)

where N0 is the number of zero upcrossings per unit time and can be computed from

the power spectral density of the random process,

N0 =

√∫∞
0
f 2Φỹ(f)df∫∞

0
Φ(f)ỹdf

. (B.12)

The integral in the numerator of N0 is problematic because it does not converge for

either the Dryden or von Kármán models or, consequently, for many flight perfor-

mance metrics. This makes it difficult or impossible to compute accurate values for

N0 in many cases. Both Hoblit [15] and Rice [76] address cases where the integral in

the numerator of N0 does not converge. Because of the symmetry of the Gaussian

distribution, the frequency of crossing −δỹmin < 0 with negative slope is the same

after substituting δỹmin for δỹmax. Expressing the threshold in terms of standard
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deviations, δỹmax = kmaxσỹ,

N(kmax) = N0e
− k

2
max
2 . (B.13)

According to Hoblit, for kmax > 2, this frequency of exceedance is a good approxi-

mation for the average number of peaks that exceed δỹmax per unit time on sample

paths of δỹ.

For many types of stochastic processes, including Gaussian processes, as the

threshold whose upcrossings are being counted grows arbitrarily, the number of the

upcrossings converges to a Poisson process. The Poisson process’ inter-arrival times

are exponentially distributed random variables with rate equal to N(δỹmax) [77]. The

probability that at time t no upcrossing has occurred is e−N(δỹmax)t [78]. Its com-

plement is the probability of exceedance at time t, the probability that at least one

upcrossing has occurred by time t,

pex(t) = 1− e−N(δỹmax)t. (B.14)

For small N(δỹmax)t, as in the case of large deviations of δỹ from the mean,

pex(t) ≈ N(δỹmax)t, (B.15)

and N(δỹmax) is approximately equal to the probability of exceedance per unit time,

pex(t)/t.

The expected time for the first jump of a Poisson process is the mean of the inter-

arrival times’ exponential distribution, N−1(δỹmax). This quantity is another way to

formulate the residence time of δỹ within the threshold δỹmax. Detailed comparison

with the residence time of the previous section is left as future work, but we note here

that both formulations give the same logarithmic residence time for scalar outputs of
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Eq. (B.1), µ̂ = ln(N0/N(δỹmax)).

Once again, we can consider δỹ to be fluctuations around some steady flight ref-

erence value ỹ and set δỹmin or δỹmax according to the difference between ỹ and

the steady flight constraints on ỹ. The upcrossings then represent departures from

the flight envelope. As in the residence time discussion of the previous section,

min(δỹmin, δỹmax) will determine the margin of safety since the smaller threshold has

a larger frequency of exceedance, a larger probability of exceedance per unit time,

and a shorter residence time.
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APPENDIX C

Numerical Example Parameters

The numerical examples in Chaps. IV–V use models of eleven different aircraft.

They also incorporate a Dryden model of wind gusts and an atmospheric model. This

appendix provides references for and descriptions of the different airplane and wind

models used. First the NASA GTM and T2 are described, followed by the Navion,

then the remaining aicraft, and finally the wind and atmospheric models.

NASA GTM & T2

Chapter IV’s examples focus on the NASA GTM and T2 transport aircraft. The

GTM parameters came primarily from a GTM simulator developed at NASA Ames.

The model is described in an internal NASA report [14] and applied in Nguyen et

al. [79]. The simulator contains tables of stability derivatives parameterized by Mach

number and angle of attack. Nguyen et al. [79, 80] use the GTM to study damaged,

asymmetric transport aircraft, but Chap. IV uses the parameters for the intact GTM.

The parameters selected correspond to Mach 0.8 with an angle of attack of 2°. The

simulator does not specify an altitude for the parameters, so they are assumed to

be valid at 35,000 ft. The GTM is similar to the Boeing 757, so this Mach number
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and altitude are chosen based on Boeing 757 specifications posted on the American

Airlines website1, and the angle of attack is chosen based on a Boeing article about

commercial jet angles of attack [81].

Stability derivatives for the NASA T2 subscale transport are given in the appendix

of Morelli and Cunningham [13]. According to the flight test results, the stability

derivatives correspond to a nominal flight condition of level longitudinal flight with

a airspeed of roughly 132 ft/s at 1,400 ft with an angle of attack of 4.5°. Morelli and

Cunningham [13] do not give values for the reference coefficients of lift or drag, CL0

and CD0 . These coefficients are estimated using standard equations for steady level

longitudinal flight performance given in McClamroch [33]. Specifically, the following

two expressions for the coefficient of lift are equated and solved for CL0 :

CL =
2mg

ρSV 2
, (C.1)

CL = CL0 + CLαα. (C.2)

For the reference drag coefficient, the GTM’s airspeed for minimum thrust at 1,400

ft computed in Eq. (4.25) is scaled using Eq. (4.1e) to the corresponding T2 airspeed

for minimum thrust vmt. Carrying out the computation, vmt = 104 ft/s for the T2 at

1,400 ft altitude. This airspeed is related to the reference drag coefficient as

vmt =

√
2mg

ρ
√
CD0πeSb

2
. (C.3)

These relationships lead to the values

CL0 = 0.129, CD0 = 0.0252. (C.4)

1American Airlines, “Boeing 757,” http://www.aa.com/il8n/aboutUs/ourPlanes/boeing757.

jps, accessed February 28, 2013.
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Table C.1: Navion parameters and stability derivatives used in this dissertation.
Values are given in the source’s units.

Symbol Value Name Ref. Symbol Value Ref.
mg 2,750 lbs Weight [82] Cmq −9.96 [82]
Ixx 1,048 slug ft2 Rolling Moment of Inertia [82] Cyβ −0.564 [82]
Iyy 3,000 slug ft2 Pitching Moment of Inertia [82] Clβ −0.074 [82]
Izz 3,530 slug ft2 Yawing Moment of Inertia [82] Cnβ 0.0701 [82]
Ixz 0 slug ft2 xz Product of Inertia [82] Clp −0.410 [82]
Ixy, Iyz 0 slug ft2 Other Products of Inertia [30] Cnp 0.0575 [82]
S 184 ft2 Wing Planform Area [82] Clr 0.107 [82]
b 33.4 ft Wing Span [82] Cnr −0.125 [82]
c̄ 5.7 ft Mean Chord [82] Czδe −0.355 [82]*

e 0.8 Oswald Efficiency Factor [33] Cmδe −0.889 [82]*

a 0.6 Air Density Exponent [33] Clδa 0.1342 [82]
P s

max 290 hp Maximum Engine Power [33] Cnδa −0.00346 [82]
CLmax 2.4 Maximum Coefficient of Lift [33] Cyδr 0.157 [82]
nmax 2 Maximum Load Factor [33] Clδr 0.0118 [82]
η 0.8 Propeller Efficiency [33] Cnδr −0.0717 [82]
CL0 0.36 [82]* Cyp 0
CD0 0.039 [82]* Cyr 0
CLα 4.44 [82] Czq 0
CDα 0.33 [82] dCD

dM
� 0 [31]

Cmα −0.683 [82] dCm
dM

� 0 [31]

* Computed from other parameters given in [33] and [82].
� M denotes the Mach number.

Navion

Section 5.3’s numerical example uses a Navion general aviation aircraft model from

Teper [82]. Table C.1 summarizes the necessary airplane parameters. This source’s

parameters correspond to steady level longitudinal flight at mean sea level with Mach

number 0.158. For parameters not specified in Teper [82], the example uses the value

given in McClamroch’s [33] general aviation aircraft model. The last five parameters

in the table are not given in either source. The last two are based on a plot for a

different airplane in Roskam [31]. The remaining three parameters did not appear

to affect the results and were set to zero. The stall boundaries of the resulting flight

envelopes are generally consistent with the stall speeds listed in the Navion manual

[83].
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Other Aircraft

Figures 1.1 and 4.9–4.11 include results for several other aircraft. Beard and

McClain [12] provide the Aerosonde model. Teper [82] provides the F-104, and A-4D

models. Heffley and Jewell [84] provide the Lockheed Jetstar, Convair 880, Boeing

747, and C-5A models. MacDonald et al. [85] provide the de Havilland Canada

DHC-5 Buffalo model. The Aerosonde model does not give a reference flight state. A

reference airspeed of 60 kts is chosen as its cruise airspeed based on manufacturer’s

specifications [86]. The C-5A model used is for sea level at Mach 0.45. The Buffalo

model used is for sea level at 215 ft/s. The remaining aircraft models, including the

Navion, are reproduced in Appendix B of Nelson [30], and Chap. IV uses the sea level

flight states listed in that text. For all of these models except the Aerosonde and

the Buffalo, CL, CD, CLα , and α are given for the reference flight state of the model,

but Chap. IV requires CD0 . CD0 is computed for each aircraft from the drag polar in

McClamroch [33],

CD = CD0 +
SC2

L

πeb2
. (C.5)

For all of the aircraft, the analysis required a value for the Oswald efficiency factor

e in order to compute the coefficient for induced drag in the drag polar. This param-

eter is rarely provided, though the Buffalo model gives it as 0.75. This dissertation

uses the value 0.8 for all of the other aircraft, including the GTM and T2.

Relevance of Unsteady Effects

Hoblit shows that, in the short period approximation, the dimensionless parameter

c̄/δsp is a measure of the importance of unsteady effects in turbulence response [15]. δsp

is defined in Eq. (4.24) for the short period approximation. Here we posit a phugoid

analog of δsp,

δp ,
2m

ρSCL
, (C.6)
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Table C.2: Dimensionless parameters for the airplanes in Fig. 4.9.

Airplane κ Scaled GTM’s κ ζp c̄/δp
T2 5.5 1.7 0.050 0.0027
Aerosonde 3.9 1.2 0.078 0.0013
F-104 1.7 0.52 0.30 0.0088
A-4D 1.4 0.41 0.14 0.0080
Navion 1.1 0.34 0.12 0.0035
Jetstar 0.70 0.21 0.091 0.0041
Buffalo 0.39 0.12 0.10 0.0021
Convair 880 0.31 0.094 0.14 0.0032
GTM 0.30 0.30 0.044 0.0027
Boeing 747 0.19 0.058 0.080 0.0028
C-5A 0.17 0.052 0.092 0.0028

based on the way the lift coefficient enters the two approximations.

Table C.2 shows the values of the relevant non-dimensional parameters for the

eleven airplane models used in Fig. 4.9. The last column of Table C.2 lists the values

for c̄/δp. Hoblit shows that for values of c̄/δsp ≤ 0.010, the gust response does not

change significantly due to unsteady effects. Since each of the airplanes listed in

Table C.2 has a value for c̄/δp that is less than 0.010, unsteady effects are not expected

for any combination of airplane and flight state considered in this dissertation.

Atmosphere & Wind

For the air density and speed of sound in air, this dissertation follows the U.S. Stan-

dard Atmosphere model [34] by using a calculator provided in McClamroch [33]. For

the Dryden and von Kármán gusts, this dissertation adheres to the MIL-HDBK-1797

specifications [19] and the filters given in the MATLAB documentation [67, 75]. The

turbulence intensity and scale length vary with altitude. Since the high altitude

turbulence intensity must be read off of a chart, some discretion had to be used in

choosing values. For moderate turbulence, we choose σu = 5 ft/s at 35,000 ft and
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Table C.3: Turbulence parameters used in Section 5.3. Values are given in the source’s
units.

Symbol Value Name Ref.
D 16 Noise Covariance Matrix [67]
σu 10 ft/s Longitudinal Turbulence Intensity [19]
σv, σw σu Other Turbulence Intensities [19]
Lu 1,750 ft Longitudinal Turbulence Scale Length [19]
Lv, Lw

Lu
2

Other Turbulence Scale Lengths [19]

σu = 9 ft/s at 2,000 ft. The U.S. Standard Atmosphere model uses altitude above

mean sea level while the turbulence models use altitude above ground level. For

convenience, this dissertation assumes that the ground is at sea level.

In Chap. V, the same turbulence parameters are used in all of the examples that

use the Dryden model for gusts. The parameters are listed in Table C.3
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