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ABSTRACT

Fracture of Antarctic ice shelves and implications for the icy satellites of the outer
solar system

by

Catherine Colello Walker

Chair: Jeremy N. Bassis

Recent observations have revealed that many icy satellites of the outer solar system

either are–or were geologically recently–active, evidenced by highly-fractured surfaces

and eruption-modified landscapes. It is likely that this activity results from tidal and

tectonic stresses throughout their evolution. While it is not feasible at current to

study these satellites through fieldwork or even extended remote sensing campaigns,

it is possible to study possibly analogous features on Earth to constrain models and

improve understanding of fracturing processes that may have occurred there. Mor-

phologically similar to fracture systems observed in the icy moons, large rift systems

propagate in terrestrial ice shelves, floating extensions of ice sheets over water. This

dissertation presents results from observations of ice shelf rift propagation, and the

use of these results in a comparative study of deformation and fracturing in the icy

moons. In observing 78 ice shelf rifts around the Antarctic Ice Sheet, we found

that variability in rift behavior could not be explained by changing environmental

conditions that had previously been suggested to modulate rift propagation, like at-

mospheric temperature and ocean swell. Instead, we found variability can likely be

xxiii



attributed to structural heterogeneity within the ice and rift location and geometry,

in that we found that open-ended rifts adjacent to the ocean at ice shelf fronts were

susceptible to tsunamis. We also found that closely-spaced rifts’ behavior was af-

fected by interaction. Motivated by this observation, we showed that closely-spaced

surface fractures in the icy moons cannot fully penetrate the shell thicknesses previ-

ously predicted. Instead, we argue that a combination of surface and bottom cracks

and shear failure must exist for a fracture to reach a subsurface reservoir. We also

argue that the bizarre set of features at Enceladus’ south pole may be the result of

localized thinning, which caused extensional and compressional fracture formation at

that location, a phenomenon also seen on Earth. The work presented demonstrates

the advantages of comparative study, as we develop an improved set of observations

for Antarctic ice shelf rift propagation and use those results to advance the current

state of knowledge of planetary properties and processes.
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CHAPTER I

Introduction

“Begin at the beginning,” said the King, “and go on ’til you come to the end; then

stop.” – Alice’s Adventures in Wonderland

1.1 Motivation

The fracture of ice and snowpack is a familiar concept, for example, to those

questioning the safety of a wintertime ice-skating pond, or to skiers pondering the

imminence of an avalanche in the area. The phenomenon can be observed on a larger

scale, too, where it contributes to the dynamics of glaciers, ice sheets, ice shelves,

and even planets. The study of the evolution of ice sheets and glaciers on the Earth,

a discipline called glaciology, has come increasingly into focus in recent years as

awareness of global climate change has intensified. While ice is readily available to

the everyday observer on the ice rink or in an ice cube, larger scale processes behind

the dynamics of ice sheets and shelves remain elusive. The focus of this dissertation is

on the dynamics of ice and how it fractures. In particular, this dissertation focuses on

the role of fracturing in Earth’s polar region and the formation of mysterious features

on the icy moons of the outer solar system.
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1.1.1 Evolution of the Antarctic Ice Sheet

Sea level rise is of particular interest not only to the climate change research

community, but also those who live on coastlines worldwide. Future sea level rise is

attributed to the loss of mass from Earth’s ice sheets and glaciers. The Antarctic

Ice Sheet is the largest ice mass on the planet. As the Antarctic Ice Sheet flows

outward towards the continental margin, the ice eventually detaches from the ground

and transitions to floating ice (Fig. 1.1). Occasionally, sections of ice break off

from the ice shelf, in a process called “calving”. Iceberg calving accounts for up

to half of the total ice discharged from the Antarctic Ice Sheet to the ocean, with

basal melting accounting for the remainder, though these proportions vary between

different ice shelves (Rignot and Jacobs , 2002; Rignot and Thomas , 2002; Rignot ,

2006). Despite this fact, the iceberg calving process remains poorly understood and

thereby is not well encapsulated by models of ice sheet dynamics and mass balance.

Although iceberg calving itself does not directly affect sea level rise (since the ice is

already afloat), ice shelves have been hypothesized to have a buttressing effect on the

Antarctic Ice Shelf, preventing acceleration of grounded ice (e.g. Rignot et al., 2004;

Joughin and Alley , 2011).

1.1.2 The Evolution of Planetary Bodies

The study of the icy satellites is important because it will allow us to better under-

stand how these bodies formed, how they evolved over time, why their appearances

vary so widely, and address questions of astrobiological potential, a topic at the fore-

front of the search for life in the universe. Many planetary bodies can be observed by

telescope only, and often the only evidence available study surface and sub-surface

processes is satellite imagery. Since it is difficult to travel to these bodies to conduct

any kind of field work, we use Earth analogues to better understand processes that

could be occurring at these planets and moons. Specifically, the fracture of the ice
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that makes up the shells of many satellites is an important process to understand.

Assessment of fracture depth and opening rates of cracks can constrain shell thick-

ness over putative subsurface reservoirs, which can also constrain sub-surface heat.

Observable surface fracture patterns also constrain orbital characteristics and trace

changes over time, both of which contribute to an understanding of planetary evolu-

tion since formation. Orbital history and ice shell thickness are also important to the

astrobiological potential of these worlds. In addition, our study of the dynamics of

planetary surfaces serves as a platform to understand processes active (or previously

active) on many of the terrestrial bodies of the solar system and our findings could

be easily applied elsewhere, icy or rocky.

1.2 Geological and Geophysical Settings

In our astro-glaciological investigation, we study ice in both the terrestrial setting

and in the planetary setting. The main two icy moons studied here are Enceladus,

a moon of Saturn, and Europa, a moon of Jupiter. We next describe the physical

settings and characteristics of these locations.

1.2.1 Earth: Antarctica

1.2.1.1 The Antarctic Ice Sheet

The Antarctic Ice Sheet contains enough fresh water to raise global sea level by

approximately 57 m (Hooke, 2005), and one of the biggest questions in Earth science

is just how fast this will happen. Current sea level rise is approximately 3.2 mm yr−1

(Rahmstorf et al., 2012), a value almost 60% greater than that predicted by the

United Nations’ Intergovernmental Panel on Climate Change (IPCC). There are a

few contributors to sea level rise, the largest of which is thermal expansion of the

ocean (1.6 mm yr−1, e.g., Meehl et al. (2005)). About a third to one half of sea level
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rise is due to the melting of Earth’s ice sheets and glaciers (e.g. Meier , 1984; Meehl

et al., 2005). An increase in the discharge of ice from the ice sheets and glaciers to the

oceans due to rising atmospheric and ocean temperatures (either via increased melt

rates or iceberg calving) could significantly alter projections of sea level rise in the

near future. Approximately half of the world’s population lives within 200 km of a

coastline, a number which will only increase (e.g. Hinrichsen, 1999). Yet, despite the

implications of sea level rise on both humans and land use changes, knowledge of the

interaction of the climate system and ice dynamics and mass loss remains insufficient

to confidently assess changes in ice discharge in the long term (IPCC , 2007).

The Antarctic Ice Sheet, like other ice sheets and glaciers, gains mass through

accumulation of snow at the surface (Paterson, 2000). It loses mass through two

main mechanisms: basal melting and iceberg calving (illustrated in Fig. 1.1). At

a smaller rate, it can also lose mass by surface ablation (sublimation, melt runoff,

evaporation). While basal melting has become easier to quantify, the calving of

icebergs from ice shelves remains more difficult to assess. This is mostly due to the

fact that iceberg calving events are sporadic and not easy to predict. The removal

of large amounts of mass nearly instantaneously via iceberg calving has significant

implications for the stability of the ice sheet. Formerly a controversial hypothesis

(e.g., Thomas (1979) versus Hindmarsh (1996)), the ice shelves’ potential buttressing

effect was showcased following the collapse of two sections of the Larsen Ice Shelf on

the Antarctic Peninsula. Following the Larsen A collapse in 1995, Rott et al. (2002)

observed an up to 3-fold increase in velocity in two of its tributary glaciers. Following

the Larsen B collapse in 2002, five glaciers that flow into the collapse area sped up

(Scambos et al., 2004; Rignot et al., 2004). During the same period, glaciers south of

the collapse zone showed little change.
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Ice Shelf

Grounding line

Ice Sheet

Figure 1.1: A cartoon showing the primary mass gain and loss mechanisms for the
Antarctic Ice Sheet and its associated ice shelves. The ice sheet gains
mass through accumulation of snow. It loses mass through two main
mechanisms: basal melting and iceberg calving and at a smaller rate,
through surface ablation (sublimation, melt, evaporation).

1.2.1.2 Antarctic Ice Shelves

Our study focuses on ice shelves, floating platforms of ice that surround the

Antarctic coast (Fig. 1.2). They developed and continue to evolve as ice from the

Antarctic Ice Sheet flows outward and transitions from a grounded to a floating state

(this transitional zone is called the “grounding line”). Ice shelves can range in thick-

ness between thousands of meters at the grounding line to hundreds of meters at the

ice front. Resistive stresses from embayment walls and shallow subshelf topography

limit the rates at which ice shelves can spread. Since ice shelves are in contact with

both the atmosphere and the ocean, they have been hypothesized to be likely sensi-

tive indicators of climate change (e.g. Doake and Vaughan, 1991). Since ice shelves

are already floating, they do not contribute directly to sea level rise, but their dis-

charge does contribute to the freshwater budget of the Southern Ocean, which may

affect temperature and circulation changes. This may occur both through melting

5



Amery Ice Shelf

Ross Ice Shelf
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Figure 1.2: A map of Antarctica shows a sampling of the larger ice shelves that
surround the continent. Base image is the Landsat 7 Image Mosaic of
Antarctica (LIMA). The largest are the Filchner-Ronne, Ross, Amery,
and Larsen C ice shelves. Ice shelves can be embayed (e.g., Ross, Amery)
or more freely-spreading, set among pinning features (e.g., Abbott, West,
and Shackleton ice shelves).

and through the migration of icebergs, which melt as they drift towards mid-latitudes.

Additionally, the calving of icebergs from the ice shelves can lead to increased flow

of inland grounded ice towards the oceans—which does contribute to sea level rise—

through loss of buttressing (e.g. Joughin and Alley , 2011; Pritchard et al., 2012).

1.2.1.3 Iceberg Rift Propagation and Iceberg Calving

Direct observation of iceberg calving events are rare. Large iceberg calving events,

however, do occur as part of a cycle, in which the ice front advances by ice flow beyond

its embayment walls and then retreats by calving. Recurrence intervals for this cycle

vary by ice shelf, but are typically on the order of many decades (e.g. Scambos et al.,

2003; Bassis et al., 2007). Iceberg calving has also been implicated in some of the

most rapidly changing regions of Antarctica. Scambos et al. (2003) showed that the

abrupt disintegration of both Larsen A and Larsen B ice shelves occurred following a
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series of abnormally warm summers. Not only were these disintegrations surprising

in terms of size, but also in the speed at which they occurred. The Larsen A Ice Shelf

decreased in size over many years before completely collapsing in about one week in

1995; almost all of the Larsen B Ice Shelf collapsed over the course of five weeks in

2002, much faster than predicted even having observed the warning signs (Scambos

et al., 2003). The large ice shelves of Antarctica, Ross, Ronne, Filchner, and Amery

ice shelves (Fig. 1.2), primarily exist further south (i.e., in colder temperatures)

than those on the Antarctic Peninsula and have not experienced comparable surface

melting nor are they showing any signs of imminent peninsular-style disintegration.

To better understand iceberg calving, it is useful to observe the initiation and

propagation of rifts, the precursor to iceberg calving (Fig. 1.3). Rifts are large

fractures that penetrate the entire ice thickness. Icebergs detach when one or more

rifts isolate an iceberg that is then free to drift away. Rifts often form upstream of

the calving front and can advect for decades or centuries before isolating an iceberg.

In other cases, rifts initiate close to the ice front (within tens of kilometers) and

propagate for shorter periods of time (years to decades) prior to either becoming

inactive or isolating an iceberg.

1.2.2 The Outer Solar System: Icy Moons

1.2.2.1 The Icy Satellites

While on a larger scale than the ice shelves of Antarctica in terms of area, the

icy moons of the solar system also experience widespread fracturing, which has been

hypothesized to lead to some intriguing and sometimes bizarre landforms on those

bodies. In a stellar system, the ice line marks the distance from the central star

beyond which it is possible for hydrogen compounds to freeze into solid ice grains

(e.g., Kornet et al. (2004)). In the proto-solar system, the greater abundance of

large solid ice grains allowed for planetesimal accretion. These early planetesimals
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Figure 1.3: Series of images shows the initiation, propagation, and calving of an ice-
berg from the Pine Island Glacier in 2001. (a) a transverse-to-flow rift
initiated from an array of cracks at the embayment wall; (b) 14 months
later, the rift has propagated across about 3/4 of the ice shelf at a rate of
approximately 15 m day−1; (c) the rift ultimately propagates across the
last 1/4 of the ice shelf’s width between 4 November and 12 November of
2001, isolating an iceberg (42 ×17 km) that was then free to drift away.
Representative of calving cycle observed there, as a similar series of events
occurred in 2007, and again in late 2011 (it has propagated to within
meters of severing the entire shelf width as of March 2013). This demon-
strates that propagating rifts serve as the border for future icebergs as
they approach the front. Image credit: NASA/GSFC/LaRC/JPL, MISR
Team.
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evolved into the large ice giant planets of the solar system. It is the ice line that is the

boundary that separates the jovian planets from the terrestrial planets. The ice giants

have a massive number of natural satellites, and unlike Earth and other terrestrial

bodies, water ice rather than silicates, is the dominant constituent of the crusts of

most of these bodies. Though the inventory has changed frequently in recent years

thanks to improved observing capabilities—most notably by the Cassini spacecraft—

it stands as follows: Jupiter has 67 satellites (the four largest are referred to as the

“Galilean satellites”: Io, Callisto, Europa, and Ganymede, the largest satellite in the

solar system), Saturn has 62, Uranus has 27, and Neptune has 13. Pluto also lies

beyond the ice line, and has five satellites. The icy satellites of the outer solar system

are highly varied (Fig. 1.4). Despite the differences, however, there are common

landforms that are observed on many of the moons. Fracturing processes are the

most commonly observed feature across the satellites’ surfaces, and specifically those

observed on Enceladus (Saturn) and Europa (Jupiter) are the main focus of the work

presented here. These moons are described in more detail in the following subsections.

1.2.2.2 Enceladus

Saturn’s tiny moon Enceladus orbits Saturn at 180,000 km, between fellow moons

Mimas and Tethys, outside of the famous rocky-ice rings. It is unusual in that it is

among only a handful of moons and planets known to be geologically active. It is one

of just three bodies in the solar system that exhibits on-going plume activity (Porco

et al., 2006). This likely relates to the fact that its surface is the most reflective

in the solar system, with a bond albedo (total reflectivity) of 0.9 (Verbiscer et al.,

2007), about three times that of Earth (0.306) and almost 9 times that of the Moon

(0.11). Its geological activity and water plumes are striking characteristics given that

the global surface temperature is approximately 70 K and the moon has an effective

radius of only 251 km (Fig. 1.5). Its orbital eccentricity is maintained by a 2:1
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Figure 1.4: Various appearances of mountainous ridge features at icy moons. (a)
“grooved terrain” at Ganymede; (b) ridges cross-cutting other fractures at
Europa; (c) parallel mountain chains northwest of Xanadu on Titan; (d)
compression folds in Enceladus’ Northern hemisphere; (e) grooved terrain
on Miranda. Image(s) credit: NASA/JPL/Space Science Institute
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Figure 1.5: Enceladus’ size compared to the familiar shape of the United Kingdom.
It is Saturn’s sixth-largest moon, and has a diameter of 505 km. Image
courtesy: Image courtesy NASA/JPL/Space Science Institute.

resonance with Dione, which likely drives its tidal heating (e.g. Porco et al., 2006).

Another possible source of its lingering heat could stem from a change in its rotation.

Like most Saturnian satellites, Enceladus is in a synchronous orbit—the same face

is always pointed at Saturn—but studies of its shape have suggested that it was

previously in a nonsynchronous 1:4 secondary spin-orbit libration (e.g. Patthoff and

Kattenhorn, 2011).

Given its small surface area—about 800,000 km2, about half the size of Alaska

and almost twice the size of Ross Ice Shelf—there are a surprising number of different

extensively tectonized terrains on the surface (Pappalardo and Crow-Willard , 2010).

In contrast, another of Saturn’s moons, Mimas, is of similar size but is tectonically

inactive. Observations of Enceladus and its icy shell indicate a surface with a long

history of activity and deformation, with regions of the surface ranging in age from

primordial to geologically recent (e.g. Porco et al., 2006; Bland et al., 2007; Barr ,

2008). This evidence of continued activity and the observation of active plume jets at

the South Pole by the Cassini spacecraft suggest the possibility of a subsurface ocean,

considered to be either regional (e.g. Collins and Goodman, 2007; Tobie et al., 2008)
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or global (e.g. Patthoff and Kattenhorn, 2011) in scale. The ice shell is likely decou-

pled from the interior of the satellite, with a thickness between 30-90 km, separated by

either the global ocean or a warm, very ductile ice layer. The variation in surface fea-

tures and ages suggest regional resurfacing events and processes are dominant, rather

than processes on the global scale, and that a combination of viscous relaxation, cryo-

volcanism, and tectonic resurfacing may be responsible (Passey , 1983; Squyres et al.,

1982; Kargel and Pozio, 1996; Spencer et al., 2009b; Helfenstein, 2010). Apparent re-

gional tectonic resurfacing events are manifested in the varied appearance of portions

of the globe (e.g., Pappalardo and Crow-Willard (2010); Spencer et al. (2009b) and

others, Fig. 1.6). The Voyager 2 spacecraft first observed the surface of Enceladus in

1981, which resulted in the classification of five types of terrain in existence on the

moon. Flyby observations by the Cassini spacecraft beginning in 2005 allowed the

surface to be observed at better resolution, improving these classifications. Different

terrain types on the surface are underlain by large regions of cratered terrain, likely

the oldest sections of the moon; and smooth, relatively crater-free terrain, likely the

younger sections of the surface. Old and young plains, called planitiae, are filled by

extensive linear cracks, ridges, and scarps. Enceladus exhibits regions of compression

ridges called dorsa (e.g., Fig. 1.7), and widespread extensional features appearing as

large parallel rifts called sulci or trenches (called fossae). One of the most dramatic

one of these is Labtayt Sulci, a 162 km-long, 1 km deep canyon (Fig. 1.7) (all features

on Enceladus are named for people and places in Arabian Nights). Because of its ap-

proach geometry in 2005, early flybys by the Cassini spacecraft allowed for imaging

of Enceladus’ south pole, a region not viewed at all by Voyager 2. This unearthed

the bizarre and mysterious terrain at the south pole.

The South Polar Terrain (SPT) is distinguished from the rest of the surface due

to its noticeable lack of impact craters and relatively smooth appearance, the first

clue that this section of terrain is younger than other parts of the moon (Fig. 1.8).
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Figure 1.6: A global basemap mosaic of Enceladus created by NASA / Jet Propulsion
Lab / Space Science Institute shows the variety of tectonized terrains on
the small moon. Developed with images captured during the October and
November 2009 Cassini flybys, July 2006 flybys, and the Voyager 2 flyby
in 1981.
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Figure 1.7: The trailing hemisphere of Enceladus showcases the Cufa Dorsa region
(left) and Labtayt Sulci (right), which stems from the South Polar Terrain
(upper right, middle image). Cufa dorsa features ridges thought to be the
result of compressional tectonics, while Labtayt Sulci is a deep canyon
hypothesized to be the result of extensional tectonics associated with
the formation of the SPT. These images were captured October 5, 2008
during a flyby that took Cassini within 15 km of the surface. Image
Credit: NASA/JPL/Space Science Institute
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This young surface age is suggestive of current or recent resurfacing. Age estimates

for the region range, but are fairly consistent between crater aging—younger than

100 million years to a few hundred thousand years (Spencer et al., 2009b)—and ice

shell convection models that suggest a possible surface age up to 10 Ma (e.g. Barr ,

2008). The SPT is centered on the South pole and is bordered by a quasi-circular

boundary feature at about 60◦S latitude which appears to be a conglomerate of con-

tiguous mountain chains with curved, poleward-facing cliffs. It has been interpreted

as a convergent feature resulting from compressive stress along that boundary in the

North-South direction (Porco et al., 2006; Helfenstein et al., 2011). Despite the uplift

at the boundary, the “floor” of the SPT is relatively flat (Schenk and McKinnon,

2009), exhibiting ropy plains that are over-cut by four nearly-parallel, approximately

130 km fractures (the “tiger stripes”). The SPT region is located over a high-heat

anomaly in the sub-surface, as observed by Cassini’s Composite Infrared Spectrometer

(CIRS), both unusual and unexpected. Heat is concentrated at the tiger stripes, with

temperatures in the published literature established at approximately 167 K (Spencer

et al., 2006, 2009a,b), but could be up to approximately 190 K (e.g. Spencer et al.,

2008). Regions immediately adjacent to these fractures and along the uplift features

at the boundary were observed by the Cassini Ion and Neutral Mass Spectrometer

(INMS) and the Visible and Infrared Mapping Spectrometer (VIMS) to be the most

recently exposed surface material (Abramov and Spencer , 2009). The observed active

venting of water and trace gases that occurs at the South Pole is directly related to

the tiger stripes; Cassini images show individual plume jets located along the frac-

tures themselves (Fig. 1.8). These plume jets are the primary source mechanism for

the maintenance of the E-ring (Spahn et al., 2006). The secondary source is meteoric

bombardment and particle escape from the surface. The E-ring is the very wide and

diffuse outermost ring of Saturn made of of fine particles of ice and dust through

which Enceladus orbits in the densest part (Fig. 1.8).
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Figure 1.8: Enceladus vents subsurface materials into space. Top: The south pole
of Enceladus, imaged during the 2009 flybys of Cassini. The four promi-
nent tiger stripe fractures at the center are surrounded by a near-circular
boundary of mountainous uplift. The entire region is depressed into the
surface by 200-800 m. Middle left: A raw image captured on approach by
Cassini shows the Sun-illuminated geysers from the south pole. Middle
right: Enceladus’ south polar vents release water and gas and supplies
the E-ring of Saturn. Bottom: A close-up view captured in May 2012
of the jets set along the tiger stripe fractures themselves; one of the last
images to be captured of the south pole of Enceladus by Cassini prior
to this region going into shadow for the years to come. Image Credit:
NASA/JPL/Space Science Institute
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1.2.2.3 Europa

Europa is much larger than Enceladus, but is the smallest Galilean satellite with

a radius of 1561 km. It is the sixth-largest moon (Earth’s own Moon is fifth) and also

one of the smoothest bodies in the solar system. It is a moon of great scientific interest

due to the abundance of tectonic features on its surface (Fig. 1.9) and its subsurface

ocean. It orbits Jupiter in a 2:1 resonance with its neighboring satellites Io and

Ganymede. This particular scenario is called a “Laplace resonance” and is the only

one currently known. The Laplace resonance causes the orbits to remain eccentric,

and is the driver behind the high level of tidal heating and stress in these moons

(Greenberg et al., 1999). Notably, Io is the most volcanically active body in the solar

system (including Earth) (e.g. Lopes and Carroll , 2008). At Europa, tidal heating

is considered to be the driving mechanism by which the subsurface ocean remains

liquid (e.g. Squyres et al., 1982; Ross and Schubert , 1987), and arcuate lineaments

(“cycloids”) on the surface betray tidal stress patterns (e.g. Hurford et al., 2007a;

Groenleer and Kattenhorn, 2008; Rhoden et al., 2010).

Europa’s surface was first observed in images captured by the Galileo spacecraft

(e.g. Belton et al., 1996; Greeley et al., 2004). Differing tectonic signatures show-

case variable links between global stress mechanisms, interior structure, and surface

geology. Europa exhibits a multitude of landform types, including fractures, ridges,

bands, folds, domes/lenticulae, chaos terrains, and impact craters. The two main

sources of global stress at Europa are proposed to be non-synchronous rotation of the

shell and diurnal tidal variations, which are highlighted by the cycloid fracture chains

on its surface. Prockter and Patterson (2009) suggest that ridges and bands, the most

ubiquitous structure types, initiate as fractures and subsequently modified by pro-

cesses associated with ice shell deformation due to tidal stress and nonsynchronous

rotation, among others (Greeley et al., 2004). The fracture ridges are ubiquitous

across the surface, and several models have been suggested for the formation of ridge
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Figure 1.9: Patterns of fracturing cover Europa. Reddish linear to curvilinear fea-
tures are observed - the reddish-brown material is a non-ice contaminant
that colors Europa’s frozen surface, likely from subsurface interaction or
impactor contamination of the surface. Data used to create this view were
acquired by the Galileo spacecraft in 1995 and 1998. Right image shows
an example of the “chaos terrain” called Thera Macula. This terrain is
found distributed over Europa’s surface. Image credit: NASA/JPL/Ted
Stryk
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morphology, but the most attractive features shear deformation in a primary role.

Bands are not as ubiquitous as ridges, but are common across regions of the sur-

face. Since the Galileo mission, morphological studies of these bands have shown

that bands are extensional in origin (referred to as “pull-apart” bands in the lit-

erature) and are commonly associated with shear (e.g. Schenk , 1989) (Fig. 1.10).

Another surface type associated with fracturing or tectonics in the icy lithosphere is

the “chaos terrain”. Chaos terrain, a variation of which is also found on Mars (e.g.,

Aureum Chaos region), is an area in which a mix of ridges, fractures, and jumbled

plains appear entangled with each other (Fig. 1.9). The complexity of these regional

formations have made it difficult to determine the individual mechanisms by which

they are formed. Theories have ranged between crust-penetrating impacts (Ong et al.,

2004) to crustal thinning and brine intrusion from near-surface reservoirs (Schmidt

et al., 2011), but such hypotheses remain unconfirmed at present due to the lack of

spacecraft or instrumentation dedicated to observing Europa’s subsurface, or even its

surface for extended periods of time. This may be remedied in the next two decades

with the (proposed) 2022 launch of the European Space Agency’s (ESA) JUpiter Icy

moon Explorer (JUICE) mission, with a planned tour of Ganymede, Callisto, and

Europa, when it reaches the Jupiter system in 2030 (planned).

While it has not been directly observed and there is no certain evidence (yet) for

current surface activity, it is widely believed that Europa remains tectonically active

today (Collins et al., 2009). The observed number of large impact craters on Europa

(>20 km) implies a surface age of approximately 60 Myr as modeled by Levison

et al. (2000); Zahnle et al. (2003); Schenk et al. (2004). Another way of determining

surface age comes from estimates of ice sputtering by impacting energetic particles.

The Galileo Energetic Particle Detector (EPD) collected measurements and estimates

of water particle sputtering rates were suggested by both Ip et al. (2000) and Cooper

et al. (2001), ranging between 1.6 and 56 cm Myr−1. High-resolution imagery shows
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Figure 1.10: False-color image of Europa’s highly fractured and ridged surface. The
complicated chronology mapping of ridges and cracks points to consid-
erable geological activity. Mosaic created by images captured by the
Galileo spacecraft. Image credit: NASA/JPL

that Europa’s oldest terrain, the ridged plains, have vertical scales on the order of tens

of meters. Using this information, it has been put forward that since topography has

not yet been completely erased, then Europa’s surface must be only approximately 50

Myr old. In this case, it is likely that Europa remains active today, but would require

a longer observing campaign, since the opportunities to search for activity during the

Galileo mission were limited (e.g. Phillips et al., 2000).

1.3 Planetary Tectonics

The study of tectonics—from the Greek tektos, or “builder”—concerns the devel-

opment of landforms and surface features from the deformation of a planetary crust.

While it began as a controversial theory (later accepted based on marine ship-borne

experiments), the study of tectonics on the Earth and planets has become common-

place with the advent of satellite remote sensing capabilities and improved telescopic

observations. Because deformation of the crust is a physical response to subsurface

forces and processes, the study of tectonics often allows a window into interior pro-
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cesses that are otherwise shielded from view.

The ability to interpret tectonic landforms on the terrestrial planets and satellites

is based in our understanding of tectonic landforms on our own planet Earth. Scien-

tists have come to the realization that the tectonics of the Earth are unique in the

solar system in that it occurs by the movement of localized lithospheric plates. Most

other terrestrial bodies that exhibit tectonics, including Earth’s Moon, behave largely

as a single continuous shell. However, each of the terrestrial planets and moons show-

case distinctive styles of tectonics, expressing different paths of interior and crustal

evolution. In addition to the terrestrial planets and similarly rocky moons, the icy

satellites of the outer solar system also exhibit signatures of tectonics.

Despite major differences in properties between ice and rock, most studies of

tectonic features on the icy moons are comparative in nature, depending on Earth

analogs to understand various features of the moons, such as normal faulting, folds,

graben, mountain chains, tilt-block complexes, and basins (Collins et al., 2009). Over-

all, extensional signatures are observed on every outer planet satellite, but surface

contraction and/or compressional features are less common (thus far). This has been

linked to the likelihood of global subsurface oceans that cool and freeze, causing thick-

ening of the floating shell and therefore extensional stress in the upper lithosphere

(e.g. Nimmo, 2004; Manga and Wang , 2007; Collins et al., 2009; Rudolph and Manga,

2009).

In general, across the spectrum of icy satellites, tides are supremely important to

surface and subsurface evolution. The stress field that lead to the formation and global

features are often controlled or modulated by changes in the tidal figure of the body.

The evolution of a satellite’s orbit over time suggests that formation mechanisms

may be different from maintenance or modifying mechanisms at work today, since we

cannot assume that any satellite has remained in a steady state with respect to tidal

stress and energy input due to tidal dissipation.
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The tidal flexing and tidal dissipation are likely key players in the geological

evolution and ongoing activity at many of the moons. A non-zero orbital eccentricity

results in ongoing deposition of orbital energy into the interiors of the satellites on

a timescale much shorter than the eccentricity damping and dissipation timescales.

Tidal effects on the satellites, especially in the Galilean satellites of Jupiter, have

endured over long geological timescales, mostly due to the Laplace resonant orbit

between Europa, Io and Ganymede. More surprising is the continued tidal effects on

satellites like Enceladus, with a small eccentricity and a focused tidal heating spot

at the south pole which has yet to completely dissipate its tidal heat (e.g. Howett

et al., 2011). In the absence of a specialized resonant orbit like that of the Galilean

moons that enhances and maintains eccentricity, tidal dissipation has the effect of

circularizing an orbit relatively quickly, delivering energy into the satellite interiors.

While we can estimate the energy dissipation into the satellite interior, it represents

a global total, and contains no information on how or where the tidal dissipation

occurs. A local example is exemplified by the asymmetric high heat spot at the south

pole of Enceladus; globally, Europa is more homogenous than Enceladus in terms of

heat distribution, though hot spots are theorized to exist leading to localized thin-

shell regions (e.g. Schmidt et al., 2011). A key player in the tectonics of the moons’

surfaces is the ability to characterize the heat production and distribution in the

subsurface, topics that remain not well understood.

1.4 Comparative Planetology

It is currently impossible to complete in-situ observations at the icy moons, so for

planetary ice observations to be properly interpreted, it is useful to obtain an under-

standing of fracture and deformation processes in terrestrial ice. While laboratory

experimental measurements can provide data concerning ice behavior under certain

conditions, it is essential to gather insight into glaciological processes to provide a
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grasp on phenomena such as rift propagation and ice deformation on the larger geo-

physical scale. One of the most striking features of the icy moons is, despite the

fact that the moons are so varied, topographically-similar ridge and fracture forma-

tions are widespread. These features are, at least at first glance, similar to the rift

systems on Earth and ice flow morphology prevalent in Antarctic ice shelves. More-

over, ice shelves may provide an apt analogy to the behavior of an icy crust atop

a subsurface ocean. The radical difference in temperature and pressure between icy

moons and terrestrial ice sheets suggests caution in making comparisons. However,

two observations provide us with optimism in this interpretation: first, laboratory

and field measurements of glacier ice indicate that strength and fracture properties

are remarkably insensitive to temperature over the range of temperatures we expect

to encounter. Second, heat flow calculations suggest the bottom layer of the icy shell

is either at or close to the pressure melting point. The implication is that the bottom

portion of the ice shell has a temperature comparable to terrestrial ice sheets.

Observations of Earth-bound regions serve not only to provide background in

large-scale processes, but also provide an important view of how physical properties

of material—in this case, ice—can affect the formation of features. With the absence

of direct observation at the moons, we can employ analog observations to observe how

these features interact with each other also. van der Veen (1998a) and Hulbe et al.

(2010) showed that crevasses interact and alter stress fields within the surrounding ice.

These terrestrial observations of ice behavior are essential to obtaining a firm platform

from which to hypothesize on formation mechanisms at the icy moons. Imagery of

many icy moon surfaces has revealed the ubiquity of near- to sub-parallel ridge and

rift features across many moon surfaces. Many of these features are reminiscent of

those that we observe in Earths rocky crust and ice sheets. From the standpoint of

comparative planetology, we can study these lineament features through the “looking-

glass” of terrestrial observations to better constrain theories of formation.
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1.5 Objectives: Questions Addressed in this Dissertation

Somewhere, something incredible is waiting to be known.

– Carl Sagan

Relevant to both Earth and planetary processes, we investigate the driving mecha-

nisms and processes behind the fracture of ice. Still a poorly understood phenomenon,

this lack of understanding leads to an undermining of effective models to accurately

predict future ice shelf evolution. This affects the ability of climate models to ac-

curately predict changes in climate in the coming centuries. In addition, a lack of

understanding of the mechanisms driving fracture propagation lead to large uncer-

tainty in the ability to accurately characterize planetary evolution. With the advent

of satellite imagery, we study both Earth and planetary ice, and in this dissertation

we seek to address the following questions:

• How does ice fracture? What drives the propagation of fractures in ice?

• What aspects or drivers of rift propagation can we observe in the ice shelves of

Antarctica? Is rift propagation related to environmental changes? What other

forces may contribute to activity?

• What are the implications from these Earth-based studies for the fractured ice

shells of the outer planet satellites? Can we successfully employ comparative

planetological studies to explain features at the icy moons?

In pursuing the answers to these questions, we seek to advance our understanding

of rifting processes in ice both on Earth and on the planets, and in the long term, con-

tribute to the growing field of comparative planetology and the application of Earth

analogues to study extra-terrestrial bodies. To do so, this dissertation discusses mod-

els developed for both Earth and planetary ice, and incorporates Earth observations

in order to provide a realistic basis for our conclusions.

24



1.6 Dissertation Overview

Chapter 2: In Chapter 2, we discuss the deformation and fracture of ice, to pro-

vide the necessary theoretical background for the chapters that follow. We present

background on both terrestrial and planetary ice and point out similarities and differ-

ences that are important to emphasize in comparative studies like the one presented

in this dissertation.

Chapter 3: Iceberg calving is an important mass loss process from Antarctica

that remains poorly understood. The precursor to calving from ice shelves is the for-

mation of through-cutting rifts that initiate and propagate for decades before eventu-

ally isolating an iceberg. We have observed 72 rifts in 13 Antarctic ice shelves using

Moderate-resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging

SpectroRadiometer (MISR) images acquired over a decade (2002-2012) to provide a

large sample of rifts around the continent, in varying glaciological and oceanographic

settings. Thirty-four (47%) of the observed rifts remained dormant for the entire

decade; the remaining 38 rifts exhibited episodic propagation, with varying recur-

rence intervals. Only seven of the rifts propagated continuously over the decade:

five on the Amery Ice Shelf, one on the Filchner Ice Shelf, and one on the Ronne

Ice Shelf. Additionally, eight rifts around the continent propagated continuously for

at least five consecutive years before stopping. These 15 continuously-propagating

rifts were all initiated at the ice shelf fronts, possibly linking this type of rift to the

observed increase in propagation activity when compared to non-front-initiated rifts.

The remaining 23 rifts propagated episodically with a much longer recurrence inter-

val, resulting in large “sudden burst” propagation events once or twice in the entire

decade. We determined that the arrival of tsunamis at the Antarctic coast caused

propagation events of front-initiated rifts, occasionally leading to iceberg calving. We

hypothesize that front-initiated rifts are particularly sensitive to the wave impact

since it leads to pressure propagation within the rift and therefore increased horizon-
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tal pressure on rift walls. Our dataset represents the most geographically extensive

record of rift propagation to date, and provides a benchmark against which we can

compare future rift activity. This chapter has been accepted into the Journal of

Geophysical Research (Walker et al., submitteda).

Chapter 4: We investigated rift propagation in five rifts within 30 km of the

calving front of the Amery Ice Shelf, East Antarctica using Moderate resolution

Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer

(MISR) imagery. For the period 2002-2012, we find that all five rifts propagated, but

with a complex spatio-temporal pattern of variability. Temporal variability in rift

propagation is dominated by intermittent bursts of propagation. These propagation

events are not synchronous across all five rifts nor do the timing of propagation events

exhibit any correlation with observed proxies for environmental forcing (e.g., atmo-

spheric temperatures, sea-ice extent). However, we do observe a correlation between

rift propagation and tsunami runup. We postulate that the pronounced activity ob-

served relative to other ice shelf rift activity is due to the fact that the Amery Ice

Shelf is approaching its most extended position prior to a large calving event in 1963-

64 and that the highly dynamic propagation we observe is the precursor to the next

major calving event. This chapter has been submitted to the Journal of Geophysical

Research (Walker et al., submittedb).

Chapter 5: The absence of many craters and the presence of smooth, young sur-

faces indicate that Enceladus and Europa have likely been resurfaced through recent

or ongoing tectonic and volcanic activity. For interior materials to erupt or other-

wise flow out onto the surfaces of these satellites, fractures would have to vertically

penetrate the ice shell to the depth of a subsurface reservoir or ocean. Based on

observational studies of Earth ice, the fact that the shells are highly fractured affects

the depth to which a fracture could penetrate under tensional stresses. An additional

factor in the penetration of the ice shell is whether or not basal fractures form, and if
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they are filled by liquid water. We use a linear elastic fracture mechanics (LEFM) ap-

proach, supported by a Nye zero-stress estimation, to model the vertical propagation

of fractures in the ice shells, which are subjected to tensional and overburden stresses.

We consider a range of estimates for the thickness of the layer of ice that behaves

elastically to determine what shell depths may be fully ruptured by a given tensional

stress. The inclusion of multiple closely-spaced fractures in the model of fracture

propagation has the overall effect of lessening the amount of stress concentrated in

a fracture. We find that tensional stresses between 1-3 MPa may fully fracture the

structurally-compromised shell of Europa if the elastic thickness is ≤1 km. In the

case of Enceladus, tensional stresses between 1-3 MPa may completely crack shells of

11-22 km elastic thickness.

Chapter 6: The South Polar Terrain (SPT) of Saturn’s moon Enceladus is a

mysteriously active region that exhibits intriguing tectonic signatures and widespread

fracturing. The central region of the nearly-circular SPT is depressed into the surface

by a few hundred meters and bounded by a ring of cliffs roughly 1 km high. In this

study, we investigate whether this depression and surrounding mountainous uplift

is consistent with the morphology of terrestrial rift basins and the possibility that

the SPT could have formed during a tectonic event analogous to those of such rift

basins on Earth. Using three mechanical models of basin formation, we compare our

predicted topography of the SPT with observed topography of the region. The first of

three models we consider assumes crustal stretching by factor β, and predicts a basin

depth of roughly 600 m, closely matching previously published estimates of the depth

at the SPT. Models of extension and compression, assuming an elastic response in the

ice crust, predict best-fit mountain uplift of roughly 1820 m and 1130 m, respectively.

Our preferred model suggests that the icy shell in the SPT has been stretched, but the

extension is (partially) balanced by compression along the edges of the basin leading

to the uplift of the mountains along the boundary, thereby implying that the SPT
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may have a tectonic origin analogous to that of a terrestrial basin. This chapter has

been published in the Journal of Geophysical Research (Walker et al., 2012).

Chapter 7: In Chapter 6 we summarize what we have learned from the work

covered in the previous 4 chapters and discuss the bigger picture. We also discuss

future directions necessary to continue advancing such studies of astro-glaciological

and comparative planetological interest.

Appendix A: Appendix A showcases our work to migrate a flexure model com-

monly carried out in a Cartesian geometry to a spherical shell geometry. We also

discuss how the results shown in Chapter 6 change significantly between the two,

motivating our use of the spherical model for flexure at Enceladus. We also discuss

the spherical shell implications for bending and membrane stresses, and how they

might affect results in Chapter 5 in terms of the augmentation of the stress intensity

factor.

Appendix B: In Appendix B we show an experimental model that was developed

to test compressional modes for Enceladus’ ice shell. We used a granular model of ice

to complete a thought experiment in creating the icy mountain belts of Enceladus by

marrying this ice shelf model with simple models of tectonic mountain formation. In

this work we attempt to show the ways in which the mountains surrounding the SPT

may have formed; very few studies have addressed the compressional features on icy

moon surfaces. This Appendix is part of on-going work on the subject.

Appendix C: In Appendix C we discuss work completed at the Jet Propul-

sion Laboratory (JPL) during the summer of 2010 under support by the Michigan

Space Grant. The laboratory work took place in the Ice Physics Lab and Planetary

Tides Simulation Facility and focused on fatigue testing of ice samples. We created

cylindrical samples of pure water ice through compaction of a variety of ice grain

sizes. These samples were then subjected to loading that mirrored the loads placed

on the icy moons throughout their orbit (alternating compressive and tensile stress)
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for weeks at a time. Through this testing we could determine an effective viscosity

for the ice, and also study the micro-structure of the ice and how it changed over

time using a cryo-microscope before and after testing. This Appendix summarizes

the work completed that summer.

29



CHAPTER II

Theoretical Background: Deformation and

Fracture of Ice

2.1 Rheology of Ice

“Rheology” is a segment of study in the discipline of continuum mechanics which

relates how materials flow to the state of stress, and comes from the Latin panta rhei,

meaning “everything flows”. The rheology of ice is approximated using a range of

flow laws (constitutive relations), the validity of which depends on timescale, stress

and temperature, and grain size of ice. On short timescales (on the order of seconds

to days), glacier ice deforms as a solid elastic material. Over longer timescales (on the

order of years) ice behaves more like a viscous fluid, evident by the observation that

ice flows, e.g., glaciers (e.g. Paterson, 2000). The fracture of ice, in itself, occurs over

a range of timescales; fracture initiation or propagation event can occur in seconds to

minutes or less, while the propagation of a rift across a large section of an ice shelf can

take place for years or decades. Ice behaves both elastically and viscously, dependent

upon the timescale and loading, and different fracture mechanics models apply in the

elastic, ductile and plastic cases.
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2.1.1 Planetary perspective: Consideration of ice as planetary bedrock

Ice acts as the “bedrock” of the outer solar system, and so the rheology employed

in planetary tectonics models of the terrestrial planets may be altered when consid-

ering tectonics in ice. Water ice (planetary and Earth’s ice sheets and glaciers) has

several differences when compared to silicate materials that make up the crusts of

the terrestrial planets and moons. Unlike the relation between solid rock and molten

rock, solid ice is less dense than liquid ice. Therefore, eruption of water onto the

surface necessitates the consideration of cryo-volcanic processes in the subsurface.

Additionally, the viscous flow timescales for icy bodies are much shorter than those

in silicate bodies, as ice close to its melting point flows much more readily than

nearly-molten rock (Collins et al., 2009), i.e., it has lower viscosity. In addition to

being more ductile than silicate rock, ice is also less rigid and is subject to brittle

failure at much lower stresses than rock (e.g. Weeks and Cox , 1984). However, just

as in silicate materials, stressed ice can respond in idealized regimes: (1) elastic, at

low stresses and strains; (2) ductile (viscous creep) at higher temperatures and/or

lower strain rates; (3) visco-elastic, in which a material has both elastic and ductile

properties over intermediate timescales.

2.2 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics (LEFM) assumes that fractures initiate from

sharp “starter” cracks always present in the materials. The criterion to decide if a

crack will propagate can be evaluated by studying the stress concentration at the

crack tip in comparison to a material property called the fracture toughness. Fig. 2.1

shows the three principle modes of fracture (e.g. Lawn, 1975). Mode I propagation,

also called “opening mode”, occurs when a fracture is subjected to tensile stress

normal to the fracture plane, and displacement of the fracture walls occurs in the
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Figure 2.1: Three modes of fracture: (a) Mode I fracture: tension normal to the
fracture plane. (b) Mode II fracture: sliding mode due to shear loading.
(c) Mode III fracture: tearing mode due to out-of-plane shear loading.

direction of maximum tensile stress (i.e., also perpendicular to the fracture plane).

Mode II propagation, called “sliding mode”, occurs upon shear loading in the fracture

plane. In this case the displacement of the walls occurs parallel to the fracture plane

(and normal to the fracture tip). The third mode of fracture, Mode III, is called

“tearing mode” and results from out-of-plane shear loading, where shear stress acts

parallel to the fracture plane and parallel to the crack front. Fractures can also

propagate as mixed-mode fractures. In this dissertation, we are concerned with mode

I fracture only. In linear elastic theory, under applied loads, stresses concentrated at

a crack tip are infinitely large, creating a singularity (e.g. Broek and Rice, 1975; van

der Veen, 1998a). In reality, plastic deformation occurs around the crack tip to limit

elastic stresses, but as long as this area is small compared to the crack length, the

theory of linear elastic fracture mechanics (LEFM) can be applied (Gdoutos , 1993).

The stress concentration around the crack tip is quantified using a variable called

the stress intensity factor. It is modulated by the material and structural setting in

which the defect exists and the mode of fracture present.

In LEFM, the stress field, σij near the tip of a sharp crack can be expressed as

(Broek and Rice, 1975; van der Veen, 1998a; Tada et al., 2000)

σij =
Km√
2πr

fij(θ) + ... (2.1)
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fij(θ) is a known dimensionless function of θ, the angle with respect to the crack plane

(dependent on loading and fracture geometry), r is the distance from the crack tip and

the higher order terms on the right hand side are small compared to the square root of

r singularity which dominates the near-crack stress field. Plastic deformation occurs

to bound the singularity in the limit where r → 0. The size of this plastic region,

distance rp from the crack tip, can be calculated using the plastic yield strength of

a material, σy, and Eq. 2.1 and expressed as (Broek and Rice, 1975; van der Veen,

1998a)

rp =
K2
m

2πσ2
y

, (2.2)

rp represents the distance at which elastic stress equals the plastic yield strength of

the material. Hence, at distances less than rp, plastic deformation occurs to limit

elastic stress in that region. In both Eqs. 2.1 and 2.2, Km represents the stress

intensity factor, with a subscript m representing the mode of fracture (I, II, III). The

stress intensity factor has the dimensions of stress times square root of length (Eq.

2.1), and is defined generally for each mode of fracture:

KI = lim
r→0

√
2πrσyy(r, 0), (2.3)

KII = lim
r→0

√
2πrσyx(r, 0), (2.4)

KIII = lim
r→0

√
2πrσyz(r, 0). (2.5)

A crack will propagate when the net stress intensity factor exceeds a critical value

called the critical stress intensity factor, KIC . In glacier ice, KIC has been measured

and is typically on the order of 0.15 MPa m1/2 (Rist et al., 2002). In various planetary

ice studies, a range of values between 0.1-0.4 MPa m1/2 have been used citing the
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earlier work of Rist et al. (1996).

2.3 Viscous behavior of ice

2.3.1 Viscous behavior in terrestrial ice

Over long timescales, elastic deformation in ice is largely negligible for many

glaciological processes. However, fracture occurs over a variety of timescales, and so

the distinction between elastic and viscous behavior is an important divide, as the

LEFM method described above relates only to elastic behavior in the ice. The viscous

rheology of ice is less known. The flow law most commonly used for terrestrial ice

sheets is a power law (Glen, 1952; Nye, 1957) and is expressed as

ε̇ij = Aτn−1Sij, (2.6)

where n is the flow-law exponent, A is a rate constant, P is the pressure and τ is the

second invariant of the stress tensor, which can be written

2τ 2 = s2
11 + s2

22 + s2
33 + 2(s12 + s13 + s23)2. (2.7)

In both Eq. 2.6 and 2.7, Sij is the stress deviator and is expressed as:

Sij = σij − Pδij (2.8)

Alternately, Eq. 2.6 can be inverted to express the stress deviator in terms of the

strain rate instead:

Sij =
1

Aτn−1
ε̇ij (2.9)

and since stress deviators are related to strain rates by an effective viscosity ηeff
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(e.g. Van der Veen and Balkema, 1999), Eq. 2.9 gives

ηeff =
1

Aτn−1
. (2.10)

It is most common in the published literature to use a flow-law exponent of n = 3,

though n = 3.5 may be more appropriate for stresses of the order of hundreds of

kPa (Glen, 1952). At lower stresses, Hutter and Hughes (1984) showed that n = 1

is more appropriate, which is called a “Newtonian rheology”. This is often used in

models at the icy moons. It is also possible for much higher stresses, values of the

order of n = 10 would apply. More recently, Goldsby and Kohlstedt (2001) proposed

a grain-size dependent flow law, one that is most often employed in models of ice flow

at the icy moons.

2.3.2 Viscous behavior in planetary ice

The ice comprising the shells of the icy satellites exists at much lower tempera-

tures and, at least at the upper layers, at lower pressure than terrestrial ice, and acts

as the “bedrock” in the outer reaches of the solar system. At deeper levels within the

crust, the ice is harder to characterize (likely Ice II or III). The icy shells undergo a

range of stresses throughout their evolution, from large tectonic or orbit stabilization

stresses on the order of 1-10 MPa, to relatively low stresses from tides, on the order of

100 kPa. As above, laboratory investigations have sought to clarify the deformation

mechanisms responsible for terrestrial ice sheet flow have pointed to a composite flow

law that can match viscosity measurements from terrestrial ice and previous labora-

tory measurements (Collins et al., 2009). The composite flow law most often used in

planetary ice deformation studies differs from the common terrestrial expression, and

takes into account four deformation mechanisms (Goldsby and Kohlstedt , 2001): dif-

fusion (diff), grain boundary sliding (gbs), basal slip (bs), and dislocation creep (disl).

35



Experimental setup and data acquisition for studies regarding these mechanisms at

the icy moons is described in Appendix C.

The total rate of deformation can be expressed as the sum of strain rates due to

the four individual creep mechanisms,

ε̇tot = ε̇diff + ε̇disl +

(
1

ε̇GBS
+

1

ε̇bs

)−1

. (2.11)

Grain boundary sliding and basal slip are collectively called grain-size-sensitive creep

and both are expected to operate simultaneously to permit deformation (Durham

et al., 2001). The mechanism at work depends on the specific stress and tempera-

ture conditions considered. The strain rate for each deformation mechanism can be

described by the general expression:

ε̇ = Aσnd−pexp

(
−Q+ PV

RT

)
. (2.12)

Here, ε̇ is the resulting strain rate for a given mechanism, σ is the applied stress, d is

the grain size, A, n, and P are experimentally-derived constants, Q is the activation

energy, V is the activation volume, R is the gas constant, P is the pressure and T

is the temperature. Several different mechanisms can be operating at the same time,

which is why the total strain rate (Eq. 2.11) is a function of the individual strain

rates (e.g. Goldsby and Kohlstedt , 2001).

The deformation mechanism at work in the ice is determined by the applied stress

and temperature for a given grain size (e.g., Fig. C.5 in Appendix C). Diffusion creep

occurs at lower stress and higher temperature and results in Newtonian flow (n = 1).

Basal slip and grain boundary sliding are the dominant mechanism under higher stress

and lower temperatures and result in non-Newtonian flow (n = 2). At especially high

stresses, dislocation creep dominates and results in strongly non-Newtonian flow.

Most studies suggest that stresses and strain rates within the warmer interiors of
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the satellites are low, and so the most likely deformation mechanism there is diffu-

sion creep (McKinnon, 2006; Moore, 2006). Closer to the surface, it is more likely

that other mechanisms are at work due to higher stresses present. The viscosity is

dependent on grain size, another parameter that is very poorly constrained at the

icy moons. It has been accepted in simpler models of tectonic deformation that the

ice has Newtonian viscosity near its melting point. More complex models have been

developed that take into account non-Newtonian and viscoelastic behavior in the ice

(e.g. Dombard and McKinnon, 2006a,b) by assuming an effective composite strain

rate.

2.4 Rheological implications at the icy satellites

The ability to properly interpret landforms and features on the icy satellites de-

pends mainly on the response of the icy material to tectonic and other stressors like

tides. Hence, developing an understanding of the rheology of ice and icy-rock mix-

tures is essential. Rheological applications at the icy moons are relevant not only to

improve understanding of surface processes, but also the interior structure, another

aspect of icy moon study that remains unclear. While observable temperatures at

the surface paired with small overburden pressures in the shallow subsurface suggest

that the upper layer behaves elastically, higher temperatures at depth likely lead to

a transition between the brittle and ductile layer, called the brittle-ductile transition

(BDT). The thickness of the elastic layer is of utmost importance in many models of

surface evolution. The brittle-elastic-ductile structure in the icy bodies can be most

easily modeled as a purely elastic layer over an inviscid fluid (zero viscosity) interior

(e.g. McNutt , 1984; Collins et al., 2009). The thickness of this layer can then be used

to better constrain the temperature gradient within a shell (Golombek and Banerdt ,

1986). Most estimates of the elastic thickness Te are determined by surface topogra-

phy when a load is bending the surface. While in reality even very cold surface ice can
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relax over long timescales (i.e., behave viscously), most models of the ice shells make

the simplifying assumption that surface deformation in response to tectonic stresses

and surface loading is elastic.
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CHAPTER III

The role of structural and environmental triggers

inferred from an Antarctic-wide survey of ice shelf

rift propagation

3.1 Introduction

The Antarctic Ice Sheet is surrounded by platforms of floating ice called ice shelves,

which are freely floating seaward extensions of the grounded ice sheet. Ice shelves

play a crucial role in the overall mass balance of the Antarctic Ice Sheet because they

are the sites of the majority of the mass loss from the ice sheet to the Southern Ocean

(Rignot et al., 2008). Although mass lost from ice shelves does not directly contribute

to sea level rise, observation show that thinning, retreat, or demise of ice shelves is

linked to increased discharge of grounded ice (Scambos et al., 2004; Rignot et al.,

2004; Pritchard et al., 2012), providing an indirect link between ice sheet stability

and sea level rise.

Mass loss from ice shelves occurs primarily through the processes of iceberg calving

and basal melting. Of these two processes, iceberg calving remains the least well un-

derstood. This is partly due to the fact that calving events from Antarctic ice shelves

occur sporadically with long (decades or longer) recurrence intervals between major

calving events (Lazzara et al., 1999; Fricker et al., 2002). Moreover, observations over
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the past decade show that ice shelves exhibit a spectrum of calving behaviors. At one

extreme end of the calving style spectrum, calving occurs in abrupt ice shelf disinte-

gration events, for example those events observed in both the Larsen A and Larsen

B ice shelves following a series of abnormally warm summers (Scambos et al., 2003).

Not only were these disintegrations surprising in terms of their size, but also in the

short time over which they occurred; Larsen B Ice Shelf collapsed over the course of

three weeks (Scambos et al., 2003; Glasser and Scambos , 2008) and has been related

to the abundance of surface melt associated with the approximately 3◦C increase in

temperature at the Antarctic Peninsula over the last half of the century (Steffen et al.,

2008). Recent observations on Larsen C ice shelf have also pointed to the potential

role of wide basal crevasses in destabilizing the ice shelf (Luckman et al., 2012; Mc-

Grath et al., 2012). On the other end of the spectrum, the larger ice shelves (Ross,

Filchner-Ronne, and Amery ice shelves) are located in a colder climate, farther south

than the Antarctic Peninsula, and have not experienced comparable surface warming

nor are they currently showing any signs of imminent peninsular-style disintegration.

In this study we investigated the process that precedes iceberg calving, rift prop-

agation. Ice shelf rifts are fractures in the ice that have completely severed the ice

thickness; alternately, crevasses, which may initiate from the base or surface of the

ice shelf, are fractures that have not fully severed the ice thickness. Rifts can prop-

agate for decades before becoming the detachment boundaries of icebergs. Previous

studies have found conflicting evidence on what variables drive rift propagation, with

some studies suggesting that rift propagation is driven by the internal glaciological

stress (Joughin and MacAyeal , 2005; Bassis et al., 2005, 2008) whereas other studies

have proposed that the timing of iceberg calving events may be related to the arrival

of pulses of ocean swell (MacAyeal et al., 2006; Bromirski et al., 2010) or even the

arrival of tsunamis (Brunt et al., 2011). Previous studies have also noted that rifts

tend to arrest at suture zones between ice streams (Hulbe et al., 2010; Glasser et al.,
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2009; McGrath et al., 2012) with some speculation that marine ice filling these suture

zones may form a barrier to rift propagation (Holland et al., 2010; McGrath et al.,

2012). However, these studies have been based on a small sample of ice shelves and

it is not clear if these observations are universal or specific to individual ice shelves

and glaciological settings.

To address this, we conducted an Antarctic-wide survey of ice shelf rift propagation

rates for the decade 2002-2012. We tracked 78 rifts within 30 km of the calving fronts

of 13 ice shelves. Ice shelves were selected to provide broad geographical coverage

around the continent and to represent a variety of physical and environmental settings;

their sizes ranged from the largest ice shelves (e.g., the Ross and Filchner-Ronne ice

shelves) to smaller ice shelves (e.g. the Wilkins and West ice shelves). We used the

dataset to test hypotheses of the effects of physical setting and external variables on

rift propagation and arrest.

3.2 Data and Methods

3.2.1 Satellite imagery and image processing

We used images from two different sensors on two separate spacecraft to maxi-

mize temporal sampling: the Multi-angle Imaging SpectroRadiometer (MISR; pixel

size 275 m) on NASA’s Terra satellite and the Moderate resolution Imaging Spectro-

radiometer (MODIS; pixel size 250 m) on both the Terra and Aqua satellites. We

searched through all available browse images of the ice shelf fronts between January

2002 and March 2012 to determine suitable images, and selected only those that had a

unobscured view of the ice front, i.e., only during cloud-free, summer days (September

to April).

We used visible channel MODIS imagery, which was available online from the

National Snow and Ice Data Center (NSIDC) and required no additional processing
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(Scambos et al., 1996). For MISR, we generated false-color composites using the CF,

AN, and CA bands with the publicly available MISRView software. This allowed

better detection of the rifts in the MISR images; by using this combination of bands

from cameras looking at different angles, color acts as a proxy for angular reflectance

variations which are related to surface texture, and enhances the rifts (Fricker et al.,

2005). For each MODIS and MISR image, we performed contrast-stretching, toning

and brightening to enhance the visibility of the rifts and increase our ability to dif-

ferentiate between the rift and ice shelf (Fricker et al., 2005). We analyzed about

60 images for each of the 78 rifts over the decade, for a total of approximately 4680

images.

3.2.2 Rift length measurement

To estimate the propagation rates for each study rift, we measured the length of

each rift in every clear image (Fig. 3.1). We did not consider rift widening. For

“front initiated” rifts (i.e., initiated from the calving front and propagating inward

into the ice shelf) we measured the distance from the upstream rift wall edge to the

rift tip. For rifts originating from an interior point or a triple junction we measured

from tip-to-tip or from the center of the triple junction to the rift tips. We define the

“rift tip” as the final point at which a rift pixel is discernible from the background;

the true rift tip may extend much further than we can resolve in the MODIS and

MISR images if the rift becomes very narrow near its tip (i.e., narrower than a single

pixel). Our estimated uncertainty in identifying this point is approximately one-pixel

(∼275 m for MISR, ∼250m for MODIS). Because we only measure distances between

two points on an image, we do not require any geolocation information.
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Figure 3.1: Image enhancement and methods of measuring rift length for different
rift orientations. (a) Raw MODIS image of the Amery Ice Shelf from 11
February 2012. (b) Brightened and contrast-stretched version of same
MODIS image. (c) Red circles denote beginning and end points for mea-
suring rifts. Shown here is a front-initiated rift (left) and a rift initiated
from a triple junction (right). Red lines denote the measured length. (d)
The Fimbul Ice Shelf in a contrast-enhanced MODIS image from February
2012. Inset: Red circles denote beginning and end points of measurement
for a double-ended rift.
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3.3 Results

3.3.1 Propagation patterns

The distribution of rift activity type around the continent is shown in Fig. 3.2

and tabulated in Table 1. These observations can be categorized into two general

behavioral categories, characterized by the recurrence interval between rift propa-

gation events. These categories are defined as: (1) dormant rifts, defined as rifts

that did not propagate over the decade (i.e., propagation is less than ∼500 m over

the decade); (2) active rifts, defined as rifts that lengthened by more than ∼500 m

over the decade. Active rifts were further subdivided into: (i) continuously active

rifts, where the recurrence intervals between propagation events was comparable to

or smaller than the repeat pass time of image acquisition, giving the appearance of

continuous propagation; (ii) intermittently active rifts, which appeared to propagate

continuously for two or more years and then became dormant, and; (iii) sudden burst

active rifts, which exhibited propagation events that were larger than ∼500 m after

two or more years of dormancy.

Of the 78 rifts monitored, 43 rifts (55%) showed no change in length and so quali-

fied as dormant, making dormancy the primary behavior observed. Of the remaining

35 active rifts, seven were continuously active: five on the Amery Ice Shelf, one on

the Fimbul Ice Shelf, and one on the Filchner Ice Shelf (supplementary Figs. S1, S2,

and S3). All of these rifts are front-initiated. We found that the rifts on Amery Ice

Shelf are more active compared to rifts on any of the other ice shelves. Another eight

rifts qualified as “intermittently active”, propagating for at least two years before

arresting. Of these eight intermittently-active rifts, five were front-initiated. Two

more of these rifts were double-ended upstream rifts (one each on West Ice Shelf and

on Ross Ice Shelf) that initiated in the interior of the ice shelf, away from the margins

and lengthen from both rift tips (e.g., supplementary Fig. S3, panel 2). The eighth

44



Larsen Ice Shelf: 12

Ronne Ice Shelf: 7
Filchner Ice Shelf: 6

Fimbul Ice Shelf: 11 

Amery Ice Shelf: 7

West Ice Shelf: 7

Shackleton Ice Shelf: 2

Ross Ice Shelf: 10

Pine Island Glacier: 2

Abbott Ice Shelf: 7

Wilkins Ice Shelf: 4

George VI Ice Shelf: 1

Stange Ice Shelf: 2

Dormant

Sudden burst
Intermittently active
Continuously active

Figure 3.2: Ice shelf locations and categories of rift propagation observed. Each block
denotes a rift and the color of the block denotes the type of rift activity
observed (see legend).
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intermittently active rift was in the remnant Larsen B Ice Shelf and initiated from

the Jason Peninsula (supplementary Fig. S5). The remaining 20 active rifts qualified

as sudden burst types.

3.3.2 Temporal patterns of rift propagation

We examined temporal patterns in propagation for the 35 rifts that were active

over some portion of the decade. Although there is a data gap during the Austral

winter, for most rifts, the length of the rift at the end of each Austral summer was

typically within one pixel of its length at the beginning of the following summer, in-

dicating that rift propagation primarily occurs during the summer (Table 1; Fricker

et al. (2005)). There were three exceptions to this; we observed wintertime propa-

gation for one rift in the Ronne Ice Shelf, one in the West Ice Shelf, and one in the

Ross Ice Shelf (supplementary Fig. S12). The latter two rifts were both double-ended

rifts, that propagated at both ends.

Temporal patterns of rift propagation were highly variable over the decade with

little evidence of an Antarctic-wide increase in rift propagation activity (Fig. 3.3).

Fluctuations in rift propagation rates were, however, large and over the limited dura-

tion of our study we cannot discount a longer-term change in rift propagation rates

that is masked by the shorter-term variability. Variability in propagation within a

given ice shelf (and sometimes within a single rift) can be as large as the variability

in rift propagation observed in different ice shelves.

3.4 Discussion

The majority of rifts that we observed (43 of 78) were dormant for the entire

decade. Many of these rifts initiated far upstream of the calving front and have been

advecting downstream for decades with the main ice shelf flow (e.g. Hulbe et al.,

2010). The fact that the majority of upstream rifts were dormant suggests that once
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Figure 3.3: Each panel shows atmospheric temperature, the monthly range of sea ice
concentration from maxima and minima and rift propagation rates for
each ice shelf. Top: Monthly mean temperatures for each ice shelf over
the decade, from ERA interim reanalysis data. Middle: Gray shaded
regions are maximum and minimum annual sea ice extents in front of each
ice shelf from passive microwave measurements. Bottom: The length of
each bar represents the annual propagation rate with bars color coded
to label the different rifts in ice shelves (supplementary Figs. S1-S10).
White arrows signify rifts with two actively propagating rift tips. White
diamonds signify calving events. White zig-zag signifies rifts propagating
in a crevasse field. Left-triangles signify a collapse event.
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these rifts become inactive, they are not easily re-activated. This is supported by

observations of the crevasse field at the northeastern front of the Amery Ice Shelf

(supplementary Fig. S1). These crevasses advect towards the front, but do not

significantly change length once they have initiated upstream. In contrast, the most

active rifts in our study were all front-initiated, implying that iceberg calving may be

more tightly controlled by near calving-front fracture processes than reactivation of

dormant rifts that initiated upstream of the calving front.

We observed large variability in rift propagation in those rifts that were active. We

first consider whether or not this variability is related to fluctuation in environmental

setting, though our observations do not display an immediately-obvious geographical

trend. Alternatively, we speculate that variability in rift propagation is controlled

by mechanical heterogeneity, i.e., structural changes such as crevasses or changes in

ice type and ice properties. Such changes over a sub-kilometer scale could explain

the variability in propagation rate of a single rift over time and, in the case of more

than one active rift on a given shelf, in propagation rate disparity between rifts. We

further examine these possible controls on rift propagation in the sections that follow.

3.4.1 Role of environmental forcing

3.4.1.1 Atmospheric temperatures and ocean swell

Previous studies have linked both warming atmospheric temperatures and me-

chanical forcing from the ocean to ice shelf disintegration (e.g. Mueller et al., 2008),

motivating us to investigate whether any of the variability in rift propagation regimes

is correlated with either (i) atmospheric temperature fluctuation or (ii) changes in sea

ice concentration. We use sea ice as a proxy for mechanical-ocean forcing because its

presence will damp ocean waves. Unfortunately, the long wavelengths associated with

infra-gravity waves (e.g. Bromirski et al., 2010) will not be efficiently damped by sea

ice and their influence is not considered in this study. For atmospheric temperature
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we used monthly means of atmospheric reanalysis (ERA-Interim) 2-meter air tem-

perature data, at a spatial resolution of 1.5◦, obtained from the European Centre for

Medium-Range Weather Forecasts Data Server (ECMWF); for sea-ice concentration

we used monthly sea ice concentrations obtained from Nimbus-7 SMMR and DMSP

SSM/I-SSMIS passive microwave data archived at the NSIDC.

Observed propagation rates displayed no obvious correlation with atmospheric

temperature (Fig. 3.3). Although warmer temperatures occur in more northern

regions, ice shelves in those locations (e.g., the Larsen C, Wilkins, and Abbott ice

shelves) do not show a significantly higher level of activity than colder ice shelves

(e.g. the Ross and Filchner-Ronne ice shelves). We see little evidence that warmer

ice shelves have more active rift systems than colder ice shelves. We do not see

a clear signal of an atmospheric temperature threshold, above which one or more

rifts in a given ice shelf is prone to propagation. We did, however, note occasional

correlations between summer rift activity and temperature of the previous winter,

but these correlations were opposite to our expectations. Contrary to expectation,

warmer winter seasons did not lead to increased activity, e.g., in winter 2007, the

Amery, West, and Shackleton ice shelves experienced warmer-than-average winters,

but active rifts in all three ice shelves showed a decreased propagation rate (the

Amery and West ice shelves) or complete arrest (the Shackleton Ice Shelf) during

the following Austral summer season. Similarly, three rifts in the Amery Ice Shelf

(rifts W2, T1, and T2 in supplementary Fig. S2) propagated over the wintertime in

2005, during a relatively cold winter when compared to average winter temperatures

of other years.

Fig. 3.3 shows the range of sea ice concentration observed over the decade using

monthly maxima and minima values of sea ice concentration. We do not find a

correlation between sea ice concentration and rift activity. For instance, the ice

shelves that are adjacent to the Weddell Sea, e.g., the Larsen C, Ronne, and Filchner
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ice shelves, experience much less variability in sea ice concentration, since sea ice

remains abundant throughout the year. However, these ice shelves do not exhibit

decreased rift activity nor do we see evidence that an increase in rift activity is

correlated with abnormally low sea ice concentration at any of the ice shelves.

3.4.1.2 The effect of tsunamis

It has been previously suggested that the arrival of tsunamis may affect ice shelf

rift propagation (e.g. Brunt et al., 2011). However, studies based on a single observed

instance of a well-correlated propagation event with a tsunami arrival are difficult to

qualify as causal rather than it being simply coincidental (Bassis et al., 2008). Using

our large dataset, we further investigated the likelihood that tsunamis might affect

rift propagation. We did observe a correlation between the arrival of tsunamis and

the propagation rifts, including some rifts that had previously been dormant. All five

rifts in the Amery Ice Shelf propagated between 26 December 2004 and 09 January

2005, following the 26 December 2004 tsunami that originated west of Sumatra. Six

additional incidences of rift propagation events on other ice shelves occurred at the

end of December 2004. These ice shelves are all exposed to the Indian Ocean and

were in line with computed wave paths and in-situ buoy measurements, available from

the National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami

Research. The only exception to this is the Ronne Ice Shelf, which did not experience

any rift propagation events following the tsunami. Moreover, we observed additional

instances of large rift propagation events in both the Amery Ice Shelf and other ice

shelves following the arrival of other tsunamis originating in both the Indian and

Pacific Oceans (Fig. 3.4). “Large propagation events” are defined here as events with

a propagation rate above the interquartile range of the data. To determine if this

connection is statistically significant or merely coincidence, we used a chi-squared

test (e.g. Mighell , 2000) to determine the probability that the coincidence between
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these events is random and found that the correlation between the arrival of the

tsunami and the timing of large bursts of propagation is statistically significant at

the 90% confidence level. Intriguingly, all of the instances in which we observed rift

propagation following the arrival of a tsunami occurred in front-initiated rifts. These

rifts are open to the ocean and we hypothesize that fluctuations in wave height near

the calving front can be channeled into the rift and this wave field creates a large

pressure concentration as the waves converge near the rift tip.

3.4.2 Role of mechanical forcing controls on rift propagation

3.4.2.1 Suture zones

We observed large variability in rift propagation in those rifts that were active,

but found little evidence that ice-shelf-scale environmental forcing controls this vari-

ability. This leads us to speculate that variability in rift propagation is controlled

by mechanical heterogeneity, i.e., structural changes such as crevasses or changes in

ice type and ice properties. It has been suggested previously that suture zones may

serve as barriers to the propagation of rifts, as dormant rifts are often observed to

coincide with suture zones between ice from adjacent ice streams (Hulbe et al., 2010;

McGrath et al., 2012). Table 1 shows that roughly one-quarter of rifts that were dor-

mant or intermittently active had propagated into a known suture zone in the shelf;

however, this behavior is not universal. We observed at least two rifts propagate

through nearby suture zones at an increased rate instead of arresting. For example,

rift T1 in the Amery Ice Shelf (supplementary Fig. S1) propagated through a suture

zone. Rather than slowing down, it sped up as it propagated through the suture zone.

Likewise, we observed rifts R1 and R2 on the Ronne Ice Shelf (supplementary Fig.

S4) propagate through suture zones prior to their arrest a year to two years later.
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25 Oct 2010
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Amery Ice Shelf

Larsen C Ice Shelf
26 Dec 2004

Abbott Ice Shelf
27 Feb 2010
11 Mar 2011

26 Dec 2004
Shackleton Ice Shelf

26 Dec 2004
Fimbul Ice Shelf

26 Dec 2004
Filchner Ice Shelf

11 Mar 2011
Ross Ice Shelf11 Mar 2011

Sulzberger Ice Shelf

(Brunt et al., 2011)
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11 Nov 2004
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Figure 3.4: Examples of rifts that exhibited propagation events following the arrival
of a tsunami. Each block indicates a rift that propagated following the
arrival of a tsunami. The color of the block denotes whether the rift
propagation event was also associated with an iceberg calving event. Rift
propagation was observed in the rifts that are exposed to the specific
wave path of a given tsunami. Wave paths associated with tsunamis
that originated near Sumatra, Chile and Japan are sketched schematically
(NOAA Center for Tsunami Research).

52



3.4.2.2 Marine ice

Another possible factor in the variability in rift propagation may be the existence

of marine ice, which may underlie suture zones and cause a variance in ice properties,

leading to mechanical heterogeneities associated with different ice types within the ice

shelf (e.g. Fricker et al., 2001; Craven et al., 2009; Holland et al., 2010; Jansen et al.,

2010). Unfortunately, we have insufficient observations of marine ice distributions at

sub-kilometer scale to be able to more conclusively link observed variability in rift

propagation rate to the presence of marine ice.

3.4.2.3 The effect of crevasses and interaction between rifts

We observed several large propagation events that coincided with the intersection

of a rift with a crevasse, leading us to suggest that crevasses can serve as conduits

for sudden bursts of rift propagation (e.g. Heeszel et al., submitted). Alternatively,

crevasses that are not optimally oriented may instead hinder rift propagation. For

example, when a rift intercepts a crevasse oriented perpendicular or at an angle to

the rift, additional stress buildup may be required to either propagate along the non-

optimally oriented crevasse or for the rift to break through to the other side of the

crevasse and continue propagating. However, once sufficient stress accumulates, the

rift may propagate rapidly in a sudden burst and change direction. An example of

this behavior occurs in rift E3 on the Amery Ice Shelf (supplementary Fig. S1) where

the rift propagates in a zig-zag pattern, following the imprint of crevasses in the area.

In total, ten of the studied rifts were located in crevasse fields, and of these only three

were inactive (three on the West Ice Shelf, supplementary Fig. S10). The observed

influence of crevasses on rift propagation leads us to suggest that interaction between

rifts and crevasses plays an important role in modulating likelihood of an episodic

burst of propagation and controlling the average rift propagation rate. Moreover,

although surface crevasses are most easily identified in satellite imagery, recent ob-
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servations indicate that very wide basal crevasses are often present within ice shelves

and may also influence the propagation of ice shelf rifts, but have more subtle surface

expressions not as readily apparent in MODIS imagery (McGrath et al., 2012).

3.5 Conclusions

We have generated an observational record of Antarctic ice sheet-wide rift prop-

agation over the decade 2002-2012, by observing rifts within 30 km of fronts on

13 Antarctic ice shelves. The variation in rifting behavior for the 78 rifts that we

observed around the Antarctic Ice Sheet emphasizes that rifting is a complex and

variable process, and reinforces that rift propagation is driven or controlled by more

than one mechanism. Of the rifts we observed, we only found seven to be continuously

active throughout the decade. The remaining rifts fell into one of these categories:

(i) completely dormant, without observable motion over the decade, (ii) sudden burst

propagation in which large jumps in length occurred after years of dormancy, and

(iii) intermittently active rift propagation for at least two years before arrest. We did

not find an observable correlation between rifting activity and changes in local atmo-

spheric temperatures or sea ice concentration. However, we found that the arrival of

tsunamis may trigger rift propagation, but only in those rifts that are front-initiated.

We believe this is because these types of rifts are open to the ocean, leading to en-

hanced mechanical interaction between the rift and the ocean. This observational

dataset shows that rift propagation is complex, but reinforces the hypothesis that

mechanical heterogeneity within the ice shelf is an important control on rift propaga-

tion that needs to be further studied. Our dataset represents the most geographically

extensive record of rift propagation to date, and provides a benchmark against which

we can compare future rift activity.

54



1 2

3

E3

0 6km

0 6km

0 2km

0 25km

T1
T2

W1

W2N

1

2

3

L1

Figure 3.5: MODIS imagery from 20 December 2011 of the Amery Ice Shelf, East
Antarctica (left). Zoomed views of the five rifts monitored in this study
(boxes, right), color coded by activity level (legend in Fig. 1).

3.6 Supplementary Figures
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Figure 3.6: MODIS imagery of the Fimbul Ice Shelf acquired 28 November 2005 (top).
Zoomed boxes (bottom) show the 11 rifts observed for this study. Rift
F3 calved an iceberg prior to this study’s observation period, but served
as an initiation boundary for F3a and F3b.
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Figure 3.7: Filchner Ice Shelf (left) as imaged by MODIS acquired 13 February 2011
(left). Zoomed boxes (right) showing the six rifts observed for this study
in MODIS imagery acquired 02 January 2003.
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Figure 3.8: The Ronne Ice Shelf in MODIS imagery acquired 01 December 2007 (left).
Zoomed boxes highlight the seven rifts observed in this study.
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Figure 3.9: MODIS imagery from 17 March 2002 of the Larsen C Ice Shelf and rem-
nant Larsen B Ice Shelf on the Antarctic Peninsula (right). Zoomed
images of its northern rifts shown in the center column. To the right are
the southern set of rifts observed in this study, a total of 11 rifts on this
ice shelf.
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Figure 3.10: MODIS imagery from 30 December 2004 of the Wilkins, Stange, and
George VI ice shelves on the Antarctic Peninsula. Zoomed images on
the right exhibit the rifts observed for this study in each of the three
shelves: (1) Wilkins Ice Shelf, (2) Stange Ice Shelf, and (3) George VI
Ice Shelf.
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Figure 3.11: Abbott Ice Shelf in MODIS imagery acquired on 10 January 2011.
Zoomed boxes (bottom) show the seven rifts observed for this study.
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Figure 3.12: Ross Ice Shelf in MODIS imagery acquired on 16 November 2011 (top).
At the bottom are zoomed images to highlight the ten rifts observed in
this investigation.
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Figure 3.13: The Shackleton Ice Shelf in MODIS imagery from 20 February 2012
(right). On the left is a zoomed view of the two rifts measured in this
study, stemming from a previously-calved area that spurned an iceberg
immediately preceding the observing period.
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Figure 3.14: West Ice Shelf in MODIS imagery from 06 February 2004 (left). The
center blocks highlight the western set of rifts observed for our study, the
eastern set is shown in the zoomed images at right. Initially observing
just seven rifts on the Shackleton, rift BB2 (top center) split into two new
rifts (BB2a and BB2b) that we continued to observe over the decade.
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Figure 3.15: Two MODIS images of Pine Island Glacier acquired five years apart.
Top: An image from 19 March 2007 shows rift PIa, which calved an
iceberg in October 2007. Bottom: An image from 01 January 2012,
showing that rift PIb has severed the ice approximately three-quarters
across the glacier.
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Figure 3.16: An example of wintertime propagation exhibited by rift WR6 in the Ross
Ice Shelf between 13 March and 15 October 2009. Vertical dashed lines
show length of rift in March 2009 (top), bottom image shows the same
rift in October 2009, where it has lengthened past the length of the rift
before the winter.

65


