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ABSTRACT

Mixed and Covariate Dependent Graphical Models

by

Jie Cheng

Co-Chairs: Assoc. Prof. Elizaveta Levina and Prof. Ji Zhu

Graphical models have proven to be a useful tool in understanding the conditional

dependency structure of multivariate distributions. In Chapters II and III of the

thesis, we consider two types of undirected graphical models that are motivated by

particular types of applications. The first model we consider is a mixed graphical

model, linking both continuous and discrete variables. The proposed model is simple

enough to be suitable for high-dimensional data, yet flexible enough to represent all

possible graph structures for mixed types of data. We develop a computationally ef-

ficient regression-based algorithm for fitting the model by focusing on the conditional

log-likelihood of each variable given the rest. The parameters have a natural group

structure, and sparsity in the fitted graph is attained by incorporating a group lasso

penalty, approximated by a weighted `1 penalty for computational efficiency. We

demonstrate the effectiveness of our method through an extensive simulation study

and apply it to a music annotation data set (CAL500), obtaining a sparse and in-

terpretable graphical model relating the continuous features of the audio signal to

categorical variables such as genre, emotions, and usage associated with particular

songs.

ix



The second model we consider is a sparse covariate dependent Ising model which

allows us to study both the conditional dependency within the binary data and its

relationship with the additional covariates. This results in subject-specific Ising mod-

els, where the subjects’ covariates influence the strength of association between two

genes. As in all exploratory data analysis, interpretability of results is important,

and we use `1 penalties to induce sparsity in the fitted graphs and in the number of

selected covariates. Two algorithms to fit the model are proposed and compared on a

set of simulated data, and asymptotic results are proved. The results on the genetic

tumor data set and their biological significance are discussed in detail.

Another problem of interest that also involves multivariate binary data is the

multi-label classification problem, which has broad applications in text mining, me-

dia annotation and the study of gene functions. In Chapter IV, we propose a sim-

plified covariate dependent Ising model to model the joint distribution of the binary

responses, as well as two extensions adapted to high-dimensional data sets. The pro-

posed methods are compared on a number of benchmark data sets. We also address

the issue of choosing the best prediction rule for a particular measure of classifica-

tion performance, since in mutli-label classification there are multiple ways to define

classification error.
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CHAPTER I

Introduction

1.1 Background and Literature Review

Graphical models have proven to be a useful tool in representing the conditional

dependency structure of multivariate distributions. The undirected graphical model

in particular, sometimes also referred to as the Markov network, has drawn a lot of

attention over the past decade. They have been applied in a wide range of scientific

and engineering problems to infer the local conditional dependency of the variables.

Examples include gene association studies (Peng et al., 2009; Wang et al., 2011),

image processing (Hassner and Sklansky , 1980; Woods , 1978), and natural language

processing (Manning and Schutze, 1999). A pairwise Markov network can be rep-

resented by an undirected graph G = (V,E), where V is the node set representing

the collection of random variables, and E is the edge set where the existence of an

edge is equivalent to the conditional dependency between the corresponding pair of

variables, given the rest of the graph.

The goal is to recover the graph structure, i.e., the edge set E, from an i.i.d. sam-

ple drawn from the underlying Markov network. Two types of graphical models have

been studied extensively: the multivariate Gaussian model for continuous data, and

the Ising model (Ising , 1925) for binary data. For the multivariate Gaussian case, let

us denote the random vector by X = (X1, . . . , Xp) ∼ N(µ,Σ). We observe n i.i.d.

1



data points {xi}ni=1 from the aforementioned distribution. The graph structure E is

completely specified by the off-diagonal elements of the inverse covariance matrix, also

known as the precision matrix, Ω = Σ−1. The (i, j)th element of Ω, ωij = 0 implies

that Xi is independent ofXj given the rest of the variables. Therefore, estimating the

edge set E is equivalent to identifying the non-zero off-diagonal entries of the precision

matrix. Early works of Dempster (1972) proposed setting elements of the concentra-

tion matrix to zero to encourage selection of simpler models. But this work relies on

the classical setting where n > p and fails to guarantee positive-definiteness of the

final estimate. In recent years this topic of inverse covariance matrix estimation have

received a great deal of attention, with a focus on the high-dimensional framework.

Meinshausen and Bühlmann (2006) proposed a neighborhood selection approach by

regressing each variable on the rest using a lasso (Tibshirani , 1996) penalty to en-

courage sparsity, with a slight misuse of the notation, let X denote the n × p data

matrix from a Gaussian graphical model, the above mentioned approach solves the

following

β̂
λ

i = argmin
β∈Rp−1

{
1

n
‖X i −X−iβ‖2

2 + λ‖β‖1

}
, i = 1, . . . , p.

where X−i denotes the data matrix after removing the i-th column X; ‖ · ‖2 refers

to the squared root of the Euclidean norm of a vector and ‖ · ‖1 refers to the sum

of absolute value of all elements of a vector. The authors show that their methods

are model selection consistent for sparse graphs under appropriate choice of tuning

parameter. Yuan and Lin (2007) and Banerjee et al. (2008) used penalized likelihood

approach to directly estimate a sparse precision matrix in the Gaussian graphical

models. After simplification of the log-likelihood the optimization problem can be

written as

Ω̂ = argmin
C�0

{− log det(C) + trace(SC) + λ‖C‖1} ,
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where S denotes the sample covariance matrix and C � 0 implies that the optimiza-

tion is restricted over the space of positive definite matrices. Here we should also men-

tion that Yuan and Lin (2007) does not penalize the diagonal entries of the precision

matrix. The optimization problem is non-trivial due to the positive-definiteness con-

straint on the precision matrix. Yuan and Lin (2007) used the max-det algorithm to

solve the optimization problem which restricts their application to small dimensions.

On the other hand Banerjee et al. (2008) proposed a faster semi-definite programing

approach based on Nesterov’s method for interior point optimization. Both works

note that the simpler approach by Meinshausen and Bühlmann (2006) can be viewed

as an approximate solution to the exact problem. Friedman et al. (2008) used this

as a launching pad to develop an extremely fast computational algorithm based on

co-ordinate descent method called Graphical Lasso (glasso). Recent works by Witten

et al. (2011) and Mazumder and Hastie (2012) have proposed further improvements

and insights to the graphical lasso algorithm. Several other methodological works

also focused on the penalized likelihood or pseudo-likelihood approach which include

Rocha et al. (2008); Rothman et al. (2008); Peng et al. (2009); Yuan (2010); Cai et al.

(2011b). Many of them also establish asymptotic properties such as consistency and

sparsistency under high-dimensional settings. Lam and Fan (2009) and Ravikumar

et al. (2008) proved model selection consistency and convergence rates for covariance

and inverse covariance matrix estimation under high-dimensional settings.

The Ising model which originated in statistical physics literature has been a pop-

ular choice for multivariate binary data. It can be thought of as a counterpart of

multivariate Gaussian distribution. Let Y = (Y1, . . . , Yq)
′ ∈ {0, 1}q denote the ran-

dom binary vector. The probability mass function is given by

Pθ(Y ) =
1

Z(θ)
exp

(∑
j

θjjYj +
∑
k>j

θjkYjYk

)
,

3



where θ denotes the parameter vector and Z(θ) stands for the normalization constant.

θjk = 0 implies that Yj ⊥ Yk given the rest of the variables which bears a strong simi-

larity to the Gaussian case for continuous variables. However, penalized log-likelihood

approaches are significantly more difficult due to the intractable normalizing constant

Z(θ) also known as the partition function. Banerjee et al. (2008) tried to overcome

this by solving an approximate problem where they replace the log-partition function

by a log-determinant relaxation. This allows them to use interior point methods to

solve the optimization problem. Further improvement of this approach is possible by

considering more accurate bounds for the log-partition function at the cost of more

complex optimization problems. Ravikumar et al. (2010) proposed an approach in

the spirit of Meinshausen and Bühlmann (2006)’s work for the Gaussian case, fitting

separate `1-penalized logistic regressions for each node to infer the graph structure.

They also prove theoretical guarantees of their method such as, estimation and model

selection consistency. Another pseudo-likelihood based algorithm was developed by

Höfling and Tibshirani (2009) and analyzed by Guo et al. (2010c). Cai et al. (2012)

used composite likelihoood methods to fit Ising models.

In machine learning community, another problem of interest that arises in the

context of the multivariate binary data is the multi-label classification problem, which

has seen much activity during the past few years. Classification problems arise in a

broad spectrum of real life applications where the response variable of a predictive

task is categorical. The training data for classification problem are usually in the

form of {(x1,Y1), (x2,Y2), . . . , (xn,Yn)}, where xi ∈ Rp is the feature vector of the

ith sample and Yi ⊆ L = {l1, l2, . . . , lq} with L being the set of all the possible labels.

The objective is to construct a classification rule f : Rp → L such that for any future

input x, we can predict its associated label set with high accuracy. Single-label

Classification restricts each instance to only one label, i.e, ‖Yi‖0 = 1 (‖ · ‖0 refers

to the total number of elements in the set). Within the single-label classification

4



regime, the tasks are categorized further based on the total number of labels in L, if

‖L‖0 = 2, we call it a binary classification problem; if ‖L‖0 > 2, it is called a multi-

class classification problem. In many real applications observations can actually be

assigned multiple labels which need not be mutually exclusive; this is known as the

multi-label classification problem. Multi-label classification originated in information

retrieval and text mining, where each document is possibly associated with a set

of relevant labels rather than one. For example, a news article can be categorized

both as ‘political’ and ‘financial’. In more recent years, multi-label classification has

been applied in a much broader range of applications such as image /audio /video

annotation and gene functional analysis. In a multi-label classification task, we allow

each subject to be associated with a collection of labels rather than one label, i.e.

we assume ‖Yi‖0 ≥ 1. The key difference of a multi-label classification task from

single label classification is that the labels may neither be mutually exclusive nor

conditionally independent given the features of the samples. There has been a wide

range of literature on multi-label classification, where some methods tend to solve

individual classification problems of each label, some methods transform the problem

into one single-label classification problem and use the existing classification tools,

and some other methods take a completely different approach by ranking the labels

and output the top of the ranked list. Previous literature will be discussed in detail

in the Chapter IV of the thesis.

1.2 Outline of the Thesis

In Chapter II we introduce a novel graphical model for mixed types of data that

consist of some binary variables and some continuous ones. This kind of mixed data

are common in many scientific applications but the statistical literature on graphical

models have surprisingly few works addressing this type of data. The proposed model

is based on the general conditional Gaussian density but significantly simplified so

5



that the new model is able to represent all possible graph structures without sacrificing

computational tractability which makes it suitable for the analysis of high-dimensional

data. A computationally efficient regression based model fitting method is developed

by maximizing the conditional log-likelihood of each variable given the rest. Natural

grouping of the parameters allow us to use a group lasso penalty to encourage sparsity.

For computational efficiency we approximate the group lasso penalty by weighted

`1 penalty. Simulation studies and an application to a music annotation data set

(CAL500) demonstrates the effectiveness of our method. We also discuss an extension

of the proposed methodology to general discrete variables.

Often additional covariates are available along with the multivariate binary data,

which may influence the conditional dependence structure between the binary vari-

ables. Motivated by such a data set on genomic instability on tumor samples of several

types we propose a sparse covariate dependent Ising model in Chapter III. This re-

sults in a subject-specific Ising model where the covariates influence the strength of

association between the genes. We introduce an `1 penalty to achieve sparsity in

the estimated graph as well as the number of selected covariates. Two computa-

tional algorithms are developed to fit the proposed model using co-ordinate descent

approach and their asymptotic theoretical properties are established. We conclude

with a detailed analysis of the tumor data set and their biological significance.

Multi-label classification refers to the scenario in classification that each instance

is associated with a subset of labels rather than one. The labels are not mutually

exclusive and often correlated. In Chaper IV, we propose to use a binary Markov net-

work, i.e. Ising model with covariates, to explicitly model the conditional distribution

P (y|x) for a multi-label classification problem. Pseudo-likelihood is adopted to de-

velop a computationally efficient estimation procedure. We also investigate the choice

of evaluation measures in connection to different prediction rules, which is further il-

lustrated by numerical studies. Moreover, we consider two alternative approaches

6



motivated from the previously proposed model to handle data sets with large dimen-

sional responses. We then apply the proposed methods on four benchmark multi-label

data sets and compare their prediction performance.
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CHAPTER II

High-Dimensional Mixed Graphical Models

2.1 Introduction

The vast majority of the graphical models literature has been focusing on either

the multivariate Gaussian model (Meinshausen and Bühlmann, 2006; Yuan and Lin,

2007; Rothman et al., 2008; Banerjee et al., 2008; Rocha et al., 2008; Ravikumar et al.,

2008; Lam and Fan, 2009; Peng et al., 2009; Yuan, 2010; Cai et al., 2011b; Friedman

et al., 2008), or the Ising model for binary and discrete data (Höfling and Tibshirani ,

2009; Ravikumar et al., 2010; Guo et al., 2010c). The properties of these models are

by now well understood and studied both in the classical and the high-dimensional

settings. Both these models only deal with variables of one kind – either all continuous

variables in the Gaussian model or all binary variables in the Ising model (extensions

of the Ising model to general discrete data, while possible in principle, are rarely used

in practice). In many applications, however, data sources are complex and varied, and

frequently result in mixed types of data, with both continuous and discrete variables

present in the same dataset. In this paper, we will focus on graphical models for this

type of mixed data (mixed graphical models).

The conditional Gaussian distribution was originally proposed (Lauritzen and

Wermuth, 1989; Lauritzen, 1996) to model mixed data and has become the foundation

of most developments on this topic. In the original paper, Lauritzen and Wermuth
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(1989) define a general form of the conditional Gaussian density and characterize the

connection between the model parameters and the conditional associations among the

variables. The model is fitted by maximum likelihood, but the number of parame-

ters in this model, however, grows exponentially with the number of variables, which

renders this approach unsuitable for high-dimensional problems arising in many mod-

ern applications. Much more recently, Lee and Hastie (2012) and Fellinghauer et al.

(2011) have studied the mixed graphical model (simultaneously and independently of

the present work), under a setting that could be viewed as a simplified special case

of our proposal. A more detailed discussion of these papers is postponed to Section

2.6.

In this chapter, we propose a simplified version of the conditional Gaussian distri-

bution which reduces the number of parameters significantly yet maintains flexibility.

To fit the model in a high-dimensional setting, we impose a sparsity assumption on

the underlying graph structure and develop a node-based regression approach with

the group lasso penalty (Yuan and Lin, 2006), since edges in the mixed graphical

model are associated with groups of parameters. The group lasso penalty in itself is

not computationally efficient, and we develop a much faster weighted `1 approxima-

tion to the group penalty which is of independent interest. The simulation results

show promising model selection performance in terms of estimating the true graph

structure under high-dimensional settings.

To start with, we give a brief introduction to the conditional Gaussian distribution

and its Markov properties following Lauritzen (1996).

Conditional Gaussian (CG) density: let X = (Z, Y ) be a mixed random

vector, where Z = (Zj)j∈∆ is a q-dimensional discrete sub-vector, and Y = (Yγ)γ∈Γ

is a p-dimensional continuous sub-vector. The conditional Gaussian density f(x) is

defined as

f(x) = f(z, y) = exp

(
gz + hTz y −

1

2
yTKzy

)
, (2.1)

9



where {(gz, hz, Kz), gz ∈ R, hz ∈ Rp, Kz ∈ R+
p×p, z ∈ Range(Z)} are the canonical

parameters of the distribution. The following equations connect the canonical pa-

rameters in (2.1) to the moments (Pz, ξz,Σz):

Pz = P (Z = z) = (2π)p/2(det(Kz))
−1/2 exp

(
gz + hTzK

−1
z hz/2

)
,

ξz = E(Y |Z = z) = K−1
z hz,

Σz = Var(Y |Z = z) = K−1
z ,

and the conditional distribution of Y given Z = z is N (ξz,Σz).

The next theorem relates the graphical Markov property of the model to its canon-

ical parameters and serves as the backbone of the subsequent analysis.

Theorem II.1. Represent the canonical parameters from (2.1) by the following ex-

pansions,

gz =
∑
d:d⊆∆

λd(z), hz =
∑
d:d⊆∆

ηd(z), Kz =
∑
d:d⊆∆

Φd(z) , (2.2)

where functions indexed by d only depend on z through zd. Then a CG distribution is

Markovian with respect to a graph G if and only if the density has an expansion that

satisfies

λd(z) ≡ 0 unless d is complete in G,

ηγd (z) ≡ 0 unless d ∪ {γ} is complete in G,

Φγµ
d (z) ≡ 0 unless d ∪ {γ, µ} is complete in G.

where ηγd (z) is the γ-th element of ηd(z), Φγµ
d (z) is the γµ-th element of Φd(z), and a

subgraph is called complete if it is fully connected.

The rest of the chapter is organized as follows. Section 3.2 introduces the simplified

mixed graphical model which has just enough parameters to cover all possible graph

10



structures, proposes an efficient estimation algorithm for the model, and discusses

theoretical guarantees for the proposed method under the high-dimensional setting.

Section 2.3 uses several sets of simulation studies to evaluate the model selection

performance and compare some alternative choices of regularization. In Section 2.4,

the proposed model is applied to a music annotation data set CAL500 with binary

labels and continuous audio features. In Section 2.5, we describe the generalization

of the model from binary to discrete variables. Finally, we conclude with discussion

in Section 2.6.

2.2 Methodology

Our main contribution is a simplified but flexible conditional Gaussian model for

mixed data. Model fitting is based on maximizing the conditional log-likelihood of

each variable given the rest for computational tractability. This leads to penalized

regression problems with an overlapping group structure of the parameters, the nat-

ural solution to which is to fit separate regressions with an overlapping group lasso

penalty. This is computationally quite expensive, so we approximate the overlapping

group lasso penalty by an appropriately rescaled `1 penalty.

2.2.1 The simplified mixed graphical model

Recall we partition the random vector X = (Z1, Z2, . . . , Zq, Y1, Y2, . . . , Yp) into the

binary part Zj ∈ {0, 1}, j = 1, . . . , q, and the continuous Yγ ∈ R, γ = 1, . . . , p. We

11



propose to consider the conditional Gaussian distribution with the density function

log f(z, y) =
∑

d:d⊆∆,|d|≤2

λd(z) +
∑

d:d⊆∆,|d|≤1

ηd(z)Ty − 1

2

∑
d:d⊆∆,|d|≤1

yTΦd(z)y

=

(
λ0 +

∑
j

λjzj +
∑
j>k

λjkzjzk

)
+ yT

(
η0 +

∑
j

ηjzj

)
− 1

2
yT

(
Φ0 +

q∑
j=1

Φjzj

)
y

=

(
λ0 +

∑
j

λjzj +
∑
j>k

λjkzjzk

)
+

p∑
γ=1

(
ηγ0 +

∑
j

ηγj zj

)
yγ

−1

2

p∑
γ,µ=1

(
Φγµ

0 +

q∑
j=1

Φγµ
j zj

)
yγyµ , (2.3)

where {diag(Φj)}qj=1 = {Φγγ
j ; j = 1, . . . , q, γ = 1, . . . , p} are all 0 and λ0 is the

normalizing constant,

λ0 =

(2π)p/2
∑

z∈{0,1}q
det(Kz)

−1/2 exp

(∑
j

λjzj +
∑
j>k

λjkzjzk + hTzK
−1
z hz/2

)
−1

.

Note that the density is explicitly defined via the expanded terms in (2.2) but the

canonical parameters (gz, hz, Kz) can be obtained immediately by summing up the

corresponding terms. This model simplifies the full conditional Gaussian distribution

(2.1) in two ways: first, it omits all interaction terms between the binary variables

of order higher than two, and second, it models the conditional covariance matrix

and the canonical mean vector of the Gaussian variables as a linear function of the

binary variables instead of allowing their dependence on higher order interactions of

the binary variables. These simplifications reduce the total number of parameters

from O(p22(p+q)) in the full model to O (max(q2, p2q)). On the other hand, this model

is the simplest CG density among those allowing for varying conditional covariance

Var(Y |Z) that can represent all possible graph structures, since it includes interac-

tions between all the continuous and discrete variables and thus allows for a fully

connected graph, an empty graph, and everything in between. The fact that it allows
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both the conditional mean and the conditional covariance of Y given Z to depend on

Z adds flexibility.

2.2.2 Parameter estimation

Given sample data {(zi,yi)}ni=1, directly maximizing the log-likelihood
∑n

i=1 log f(zi,yi)

is impractical due to the normalizing constant λ0. The conditional likelihood of one

variable given the rest, however, is of much simpler form and easy to maximize. Hence,

we focus on the conditional log-likelihood of each variable and fit separate regressions

to estimate the parameters, much in the spirit of the neighborhood selection approach

proposed by Meinshausen and Bühlmann (2006) for the Gaussian graphical model and

by Ravikumar et al. (2010) for the Ising model. To specify the conditional distribu-

tions, let Z−j = (Z1, . . . , Zj−1, Zj+1, . . . , Zq) and Y−γ = (Y1, . . . , Yγ−1, Yγ+1, . . . , Yp).

Then the conditional distribution of Zj given (Z−j, Y ) is described by

log
P (Zj = 1|Z−j, Y )

P (Zj = 0|Z−j, Y )
= λj +

∑
k 6=j

λjkZk +

p∑
γ=1

ηγj Yγ −
1

2

p∑
γ,µ=1

Φγµ
j YγYµ . (2.4)

Since the conditional log-odds in (2.4) is linear in parameters, maximizing this con-

ditional log-likelihood can be done via fitting a logistic regression with (Z−j, Y, Y
2)

as predictors and Zj as response.

For the continuous variables, the conditional distribution of Yγ given (Y−γ, Z) is

given by

Yγ =
1

Kγγ
z

(
ηγ0 +

∑
j

ηγjZj −
∑
µ 6=γ

(
Φγµ

0 +
∑
j

Φγµ
j Zj

)
Yµ

)
+ eγ,

where eγ ∼ N (0, (Kγγ
z )−1). With diag(Φj) = 0 as defined by (4.1), we have Kγγ

z =

13



Φγγ
0 , i.e., the conditional variance of Yγ does not depend on Z. Rewrite

Yγ = η̃γ0 +
∑
j

η̃γjZj −
∑
µ 6=γ

(
Φ̃γµ

0 +
∑
j

Φ̃γµ
j Zj

)
Yµ + eγ , (2.5)

where the redefined parameters with “tilde” are proportional to the original ones up

to the same constant for each regression. Again, the conditional mean of Yγ is linear

in parameters, which can be estimated via ordinary linear regression with predictors

(Y−γ, Z, Y−γZ) and response Yγ.

2.2.3 Regularization

Based on Theorem II.1, the following equivalences hold:

Zj ⊥ Zk | X\{Zj, Zk} ⇐⇒ λjk = 0,

Zj ⊥ Yγ | X\{Zj, Yγ} ⇐⇒ θjγ =
(
ηγj , {Φ

γµ
j : µ ∈ Γ\{γ}}

)
= 0,

Yγ ⊥ Yµ | X\{Yγ, Yµ} ⇐⇒ θγµ =
(
Φγµ

0 , {Φγµ
j : j ∈ ∆}

)
= 0. (2.6)

This means that each edge between pairs of (Zj, Yγ) and (Yγ, Yµ) depends on a pa-

rameter vector, denoted by θjγ and θγµ, respectively. To encourage sparsity of the

edge set under high-dimensional settings, a natural choice here would be to use a

group lasso penalty, such as the `1\`2 penalty proposed by Yuan and Lin (2006) for

group lasso. The groups are pre-determined by parameter vectors corresponding to

each edge. Denoting the loss function for the logistic regression of Zj by `j and the

linear regression for Yγ by `γ, we have

`j = − 1

n

n∑
i=1

log(P (zij | (zi,(−j),yi)),

`γ =
1

n

n∑
i=1

(yiγ − (η̃γ0 +

q∑
j=1

η̃γj zij −
∑
µ6=γ

(Φ̃γµ
0 +

q∑
j=1

Φ̃γµ
j zij)yiµ))2.
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We estimate the parameters by optimizing the following criteria separately, for j =

1, . . . , q and γ = 1, . . . , γ

Logistic regression: min `j + ρ

(∑
k 6=j

‖λjk‖1 +

p∑
γ=1

‖θjγ‖2

)
, (2.7)

Linear regression: min `γ + ρ

(∑
µ6=γ

‖θ̃γµ‖2 +

q∑
j=1

‖θ̃jγ‖2

)
, (2.8)

where ρ is the tuning parameter. We use the same tuning parameter for all regressions

to simplify tuning, but they can also be tuned separately if the computational cost

is not prohibitive. Another reason to use a single tuning parameter is to simplify the

treatment of overlapping groups of parameters from different regressions (see more

on this below). Note that in linear regression, the parameters in (2.5) denoted with

“tilde” are proportional to the original parameters. The original parameters can be

recovered by multiplying the estimates by (K̂γγ
z )−1, which can be estimated from the

mean squared error of the linear regression.

Although the optimization problems (2.7) and (2.8) each have the form of reg-

ular group lasso regressions, they can not be jointly solved by existing group lasso

algorithms, because the groups of parameters involved in each regression overlap.

Specifically, in logistic regression, the parameter Φγµ
j is part of both θjγ and θjµ and

determines both the edges (Zj, Yγ) and (Zj, Yµ); thus θjγ has one parameter over-

lapping with each of the other θjµ’s. Similarly, in linear regression, Φγµ
j is part of

both θjγ and θγµ, and affects both the edges (Zj, Yγ) and (Yγ, Yµ). This overlapping

pattern creates additional difficulties in using the group penalty to perform edge se-

lection. The overlapping group lasso problem has received limited attention from a

computational point of view. Yuan et al. (2011) recently proposed an algorithm for

solving the overlapping group lasso problem, but it is computationally intensive for

high-dimensional data. Instead of optimizing the overlapping group penalty directly,

we look for a surrogate penalty with similar properties that is easier to optimize and

15



thus more suitable for a high-dimensional setting.

The weighted `1 penalty can provide an upper bound for the group penalty, since

for any vector b, ‖b‖2 ≤ ‖b‖1. For the logistic regression (2.7), for example, we have

∑
k 6=j

‖λjk‖1 +

p∑
γ=1

‖θjγ‖2 ≤
∑
k 6=j

|λjk|+
p∑

γ=1

|ηγj |+ 2
∑
γ<µ

|Φγµ
j | .

The surrogate on the right penalizes the overlapping parameters twice as much as the

other parameters, which makes intuitive sense since incorrectly estimating the over-

lapping parameters as non-zero will add two wrong edges, while incorrectly estimating

unique parameters for each group as non-zero will only add one wrong edge.

Figure 2.1: Green (outside): {b :
√
b2

1 + b2
2 +

√
b2

3 + b2
2 = 1}; Blue (inside): {b :

|b1|+ |b3|+ 2|b2| = 1}

To further illustrate why this upper bound provides a good approximation to

the feasible region, consider the following toy example. Let the parameter vector be

b = (b1, b2, b3), with groups G1 = (b1, b2) and G2 = (b2, b3). The optimization problems
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for the overlapping group lasso penalty and its `1 surrogate boil down to optimizing

the same loss function on different feasible regions (for the same tuning parameter).

Figure 2.1 compares the two feasible regions, R1 = {b :
√
b2

1 + b2
2+
√
b2

3 + b2
2 ≤ 1} and

R2 = {b : |b1|+ |b3|+2|b2| ≤ 1}. Since both the logistic loss and the least squares loss

are smooth convex functions, the solutions will lie at singular points of the feasible

regions R1 and R2. Note that R2 is not only a subset of R1 but it contains all four

singular points of R1: (±1, 0, 0), (0, 0,±1), which are also singular points in R2. Thus

in this example, the optimum will be chosen from exactly the same set of singular

points regardless of the penalty used. For higher dimensional b, it still holds that R2

is a subset of R1, but it may not contain all of the singular points of R1 (this depends

on the group structure). While that means that we may not have exactly the same

optimal points, the approximation could still be good enough to identify the same

non-zero groups, and this is what we found in practice.

With the group penalty replaced by the weighted `1 surrogate, we solve the fol-

lowing regression problems separately as an approximation to the original problems

(2.7) and (2.8) to obtain the parameter estimates.

Logistic regression with `1 penalty : for j = 1, . . . , q

min `j + ρ

(∑
k 6=j

|λjk|+
p∑

γ=1

|ηγj |+ 2
∑
γ<µ

|Φγµ
j |

)
. (2.9)

Linear regression with `1 penalty : for γ = 1, . . . , p

min `γ + ρ

(
q∑
j=1

|η̃γj |+
∑
µ6=γ

|Φ̃γµ
0 |+ 2

q∑
j=1

∑
µ 6=γ

|Φ̃γµ
j |

)
. (2.10)

Since we are estimating the parameters in separate regressions, all parameters

determining edges will be estimated at least twice. This problem is common to all

neighborhood selection approaches based on separate regressions, and is usually solved

by taking either the largest or the smallest (in absolute value) of the estimates. For
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the mixed Gaussian model, we found that taking the maximum of absolute values

results in somewhat better model selection, and that is what we use throughout the

paper as the final estimate. To fit both types of regressions with a weighted `1 penalty,

we use the matlab package glmnet of Friedman et al. (2010).

2.2.4 Asymptotic Properties

Model selection consistency in high-dimensional regression problems is equivalent

to estimating the non-zero parameters as non-zero. Correctly identifying the sign of

non-zero parameters (in addition to correctly identifying them as non-zero) is referred

to as sign consistency, while the usual `2 convergence of all the estimated parameters is

referred to as norm consistency. Regression with `1 penalty has been shown to possess

both sign consistency and norm consistency under certain regularity conditions, of

which the most important one is the irrepresentable condition (see Meinshausen and

Bühlmann (2006); Zhao and Yu (2006); Van de Geer and Bühlmann (2009) for linear

regression and Ravikumar et al. (2010); Van de Geer (2008) for logistic regression).

To show consistency of our method, we only need to require the main assumptions

of the existing results to hold on a rescaled version of the original design matrix

for each regression. Since we fit weighted `1-penalized regressions with fixed pre-

determined weights, we can treat the parameters multiplied by the weights as new

parameters, and rescale the design matrix for each regression by dividing each column

the corresponding weights. This converts the problem to a standard `1-penalized

regression, and consistency is thus guaranteed by existing results cited above.

2.3 Numerical performance evaluation

This section includes simulation studies on evaluating model selection performance

under different settings and comparing alternative choices of penalties. The results

are summarized in ROC curves, where we plot the true positive count (TP) against
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false positive count (FP) and the true positive rate (TPR) against the false positive

rate (FPR), for both parameters and edges over a fine grid of tuning parameters. Let

θ and θ̂ denote the true parameter vector and the fitted parameter vector respectively

(without the intercept terms in the regressions), the parameter based quantities are

defined as follows,

TP = #{j : θ̂j 6= 0 and θj 6= 0}, FP = #{j : θ̂j 6= 0 and θj = 0},

TPR =
TP

#{j : θj 6= 0}
, FPR =

FP

#{j : θj = 0}

The quantities based on the true edge set E and the estimated edge set Ê are defined

in a similar fashion, with parameter sets replaced by edge sets.

2.3.1 Model selection performance

In the first simulation, we fix the variable dimensions to be p = 90 continuous

variables and q = 10 discrete variables, with the sample size n = 100. We vary the

maximum node degree (i.e., the number of edges from the node) in the graph while

maintaining the total number of edges fixed at 80. This results in graph structures

with varying “uniformity”, because given the total number of edges in a graph, the

smaller the maximum node degree, the more uniform the graph is. A chain graph,

for example, is the most extreme case of a uniform graph.

The data are generated as follows. First we generate the underlying graph struc-

ture given a maximum node degree: for the case where the maximum node degree is

2, we use a chain graph of the first 81 nodes; when the maximum node degree is 6,

we generate a random graph from the Erdos-Renyi model. To enforce the maximum

node degree constraint, we simply regenerate the adjacency matrix if there are any

degrees larger than 6, which does not require many attempts since the graphs are very

sparse under this setting. For the maximum node degree of 10, we assign 10 edges
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Figure 2.2: Upper left: percentage-based ROC curves for parameter identification;
upper right: count-based ROC curves for parameter identification; lower
left: percentage-based ROC curves for edge identification; lower right:
count-based ROC curves for edge identification. The maximum node
degree varies in {2, 6, 10}, and the total number of edges is fixed at 80.
The variable dimensions are p = 90, q = 10; the sample size is n = 100;
the curves are averaged over 20 replications.

to the first node and randomly generate the other 70 edges from the Erdos-Renyi

model, thus creating a sparse graph with a hub. The first q nodes in the adjacency

matrix are taken to correspond to the binary variables. Given the true graph, we

set all parameters corresponding to absent edges to be 0. For the other (non-zero)

parameters, we set the {λj, λjk, ηj} to be 1 or −1 with equal probability, and the

off-diagonal elements of {Φ0,Φj} to 2 or −2 with equal probability. The diagonal

elements of Φ0 are chosen so that Φ0 +
∑q

j=1 Φjzj is positive definite for all possible
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z’s. We then generate the discrete variables zi’s based on 2q probabilities given by Pz

in (2.2). Since we use the exact discrete probabilities rather than MCMC methods to

generate the binary data, the storage requirements prohibits taking a very large q in

simulations; however, this does not affect real data, and the method works well with

large q in Section 2.4. Finally, for each zi we generate the continuous variables yi

from a multivariate Gaussian distribution with mean ξzi and covariance Σzi defined

by (2.2).

The results in Figure 2.2 contain four ROC curves for both parameters and edges

across a fine grid of the tuning parameters ρ, recorded both in percentage terms (FPR

and TPR) and also in terms of counts (TP and FP), to get a better sense of the results

on the real scale of the problem. The cut-off point for the parameter rate-based FPR

is chosen at the point after which the curve does not change much, and the range

of count-based FP is chosen to approximately match the range of FPR. The results

show that as the maximum node degree increases, the model selection performance

deteriorates, even though the total number of edges remains fixed.

Next, we vary the degree of sparsity in the true graphs. The variable dimensions

are again fixed at p = 90, q = 10, and the sample size at n = 100. The number of

edges is set to either 60, 80, or 100, while the degree of all nodes is at most 3. The

true graph is again generated from the Erdos-Renyi model with the specified number

of edges. The results are shown in Figure 3.1. Even though the underlying graphs are

getting more dense as the number of edges increases, as long as the maximum degree

is controlled, the percentage-based ROC curves for both edges and parameters stay

nearly the same. The count-based ROC curves are not directly comparable in this

case due to the varying number of parameters and edges of the true model.

2.3.2 Comparison with alternative penalized regressions

In this simulation, we compare our proposed method (denoted by weighted `1)

with two other penalized regression approaches using the edge ROC curves. The
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Figure 2.3: Upper left: percentage-based ROC curves for parameter identification;
upper right: count-based ROC curves for parameter identification; lower
left: percentage-based ROC curves for edge identification; lower right:
count-based ROC curves for edge identification. The number of edges
varies in {60, 80, 100}, and the maximum node degree is at most 3. The
variable dimensions are p = 90, q = 10; the sample size is n = 100; the
curves are averaged over 20 replications.

first alternative (denoted by simple `1), discussed by Fellinghauer et al. (2011), is

to fit separate `1 regularized regressions by regressing each variable on the others,

without including any of the interaction terms. The second alternative (denoted by

L1 regular) we consider is to replace the penalty in our method with the regular

`1 penalty, ignoring the grouping patterns and the overlaps between groups. We

consider two settings relevant for this comparison: true graphs with and without

complete subgraphs.
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2.3.2.1 Graphs without complete subgraphs

When the underlying graph does not contain any complete subgraphs, which can

easily happen if it is very sparse, all the overlapping parameters Φγµ
j are zero. From

(2.6), we can see that each edge is then represented by a unique parameter: the edge

corresponding to (Zj, Yγ) is determined by ηγj ; the edge for (Zj, Zk) is determined by

λjk; and the edge for (Yγ, Yµ) is determined by Φγµ
0 . Then all the interaction terms

in regressions (2.4) and (2.5) vanish. We follow the set-up of the first simulation,

where the maximum node degree takes values in {2, 6, 10}, the total number of edges

is fixed at 80, the dimensions are p = 90, q = 10, and n = 100. If a true graph

we generate contains a complete subgraph, we discard it and generate a new one.

Figure 2.4 shows that in each subplot, simple `1 and weighted `1 perform similarly,

and they both outperform the regular `1. The results are to be expected, because

for a true model with no interaction terms the simple `1, which excludes interaction

terms automatically, should perform the best. Our weighted `1 approach penalizes the

interaction terms twice as much as the other parameters, which allows it to achieve

a similarly good performance. The generic regular `1 penalty fails to capture the

group structure among the parameters and performs noticeably worse than the other

two methods. We can conclude from this that if the underlying model is believed

to be very sparse, simple `1 does well by not including the interaction terms; our

method weighted `1 does equally well even with the ineffective interactions. The

generic regular `1, which ignores the group structure, is the least accurate of the

three alternatives.

2.3.2.2 Graphs with complete subgraphs

In this part, we study the case where the true graph contains fully connected

dense subgraphs. Specifically, we set p = 40 and q = 10, make the first 20 nodes

completely connected, and the other nodes are not connected to anything. This gives
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Figure 2.4: Edge-based ROC curves for sparse graphs without complete subgraphs.
Blue solid: weighted `1; red dash-dot: simple `1; blue dash: regular `1.
The maximum node degree is 2 (left), 6 (middle), or 10 (right), the total
number of edges is 80. The variable dimensions are p = 90, q = 10;
sample size is n = 100; the curves are averaged over 20 data replications.

approximately 190 edges and 650 non-zero parameters. To obtain comparable signal-

to-noise ratios and comparable ROC curves in this setting, we adjust the sample size

to n = 200 and decrease the non-zero parameter values by a factor of 10. For graphs

with complete subgraphs, there are non-zero parameters Φγµ
j in overlapping groups,

which implies that the true model includes some interaction terms in (2.4) and (2.5).

Further, we consider two types of true models compatible with the graph structure

above for regressions: in model I, both main and interaction effects in (2.4) and (2.5)

are non-zero, and model II has main effects only and all the interaction effects are

zero. Figure 2.5 shows the results. When interaction terms are present in the true

model, the regular `1 penalty and our weighed penalty perform similarly, and better

than the simple `1 penalty, as one would expect. When only main effects are present

in the true model, all three methods show similar performance with the weighted and

simple `1 approaches having a slight advantage for reasons similar to those in Section

2.3.2.1.

Taken together, the simulation results indicate that the weighted penalty approach

does a good job balancing the need for penalizing interactions more than the main
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Figure 2.5: Edge-based ROC curves for graphs with complete subgraphs. Blue solid:
L1 weighted; red dash-dot: L1 simple; blue dash: L1 regular. Left: both
main and interaction effects present, right: main effects only. The variable
dimensions are p = 40, q = 10; sample size is n = 200; the curves are
averaged over 20 data replications.

effects because of double-counting, and the need to keep them in the model. If we

have no prior information on whether to expect complete subgraphs in the network

or not, the weighted `1 penalty appears to be the safest choice.

2.4 Application to music annotation data

Music annotation has been studied by researchers in many areas, including audio

signal processing, information retrieval, multi-label classification, and others. Music

annotation data sets usually consist of two parts: “labels”, typically assigned by

human experts, contain the categorical semantic descriptions of the piece of music

(emotions, genre, vocal type, etc.); and “features”, continuous variables extracted

from the time series of the audio signal itself using well developed signal processing

methods. Representing these mixed variables by a Markov graph would allow us

to understand how these different types of variables are associated with each other.

For example, one can ask which rhythm and timbre features are associated with

certain genres. We apply our method to the publicly available music data set CAL500

(Turnbull et al., 2008), from the Mulan database (Tsoumakas et al., 2011), to find
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the conditional dependence patterns among the mixed variables.

The CAL500 dataset consists of 502 popular western music tracks (including both

English language songs and instrumental music) composed within the last 55 years

by 502 different artists. The collection covers a large range of acoustic variations

and music genres, and the labeling of each song is supervised by at least three in-

dividuals. For each song, the label part includes a semantic vocabulary of 149 tags

represented by a 149-dimensional binary vector indicating the presence of each an-

notation. Specifically, the labels are partitioned into the following six categories:

emotions (36 total), genres (31), instruments (24), song characteristics (27), usages

(15), and vocal types (16). The continuous features of the music are based on the

short time Fourier transform (STFT) and are calculated for each short time window

by sliding a half-overlapping, 23ms time window over the song’s digital audio file. De-

tailed description of the feature extraction procedure can be found in Tzanetakis and

Cook (2002). For each analysis window of 23ms, the following continuous features are

extracted to represent the audio file: the spectral centroid, a measure of ‘brightness’ of

the music texture with higher value indicating brighter music with more high frequen-

cies; spectral flux, a measure of the amount of local spectral change; zero crossings, a

measure of the noisiness of the signal; and the first MFCC coefficient (Logan, 2000)

representing the amplitude of the music, which comes from a two-step transformation

designed to capture the spectral structure. Every consecutive 512 of the 23ms short

frames are then grouped into 1s long texture windows, based on which the following

summary statistics for the four features defined above were calculated and used as

the final continuous part of the data: overall mean, mean of the standard deviations

of each texture window, standard deviation of the means of each texture window, and

standard deviation of the standard deviations of each texture window.

In our analysis, we omitted labels which were assigned to less than 3% of the songs

and kept only the first MFCC coefficient since it can be interpreted as the overall
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amplitude of the audio signal, and other coefficients are not readily interpretable.

Also, we standardized the continuous variables. This resulted in a dataset with n =

502 observations, q = 118 discrete variables, and p = 16 continuous variables.
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Figure 2.6: Estimated graphical model for CAL500 music data (edges with stability
selection frequency of at least 0.9).

We applied our method coupled with stability selection (Meinshausen and Bühlmann,

2010) to identify the underlying Markov graph for the purposes of exploratory data

analysis, which is the primary usage of graphical models. To perform stability selec-

tion, we run our algorithm 100 times on randomly drawn sub-samples of size n/2,
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and kept only the edges that were selected at least 90 times. The results are shown

in Figure 2.6. The continuous timbre features are represented by squares labeled

1-16 and the binary variables are represented by circles labeled 1-118. Each color

represents a category of variables as shown in the legend. The graph has a number

of interesting and intuitive connections. The continuous variables that represent the

audio signal features are quite densely connected within themselves, which is to be

expected. More interesting edges can be found between continuous features and ex-

pert labels. The average amplitude of the music (square 4) is connected with the

genre “alternative rock” (circle 37) and the instrument “Synthesizer” (circle 72). The

noisiness of the music (square 13) is associated with “negative feelings” (circle 87),

which seems reasonable and has also been reported by Blumstein et al. (2012). We

also find connections between short period amplitude variation (square 8) with pop-

ular likeable songs (circle 84) and not tender or soft emotions (circle 34). Moreover,

there are some interesting patterns within the group of binary labels, which allow us

to infer connections between different emotions, genres, instruments, usages and so

on. For example, songs with positive feelings (circle 86) are connected to piano (circle

67), happy and not happy emotions (circle 17 and 18, highly negatively correlated),

songs with high energy (circle 82) and optimistic emotions (circle 27). We also find

edges connecting fast and not fast tempo music (circles 78 and 79) to classic rock

(circle 38), songs with high energy (circle 82) and very danceable and not danceable

songs (circles 97 and 98). Likeable or popular songs (circle 84) are associated with

usages such as driving (circle 101) and reading (circle 107), which makes intuitive

sense.

2.5 Extension to general discrete data

To extend our model to the general case where the discrete variables can take

more than two values, we modify the previous model (4.1) into the following,
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log f(z, y) =
∑

d:d⊆∆,|d|≤2

λd(z) +
∑

d:d⊆∆,|d|≤1

ηd(z)Ty − 1

2

∑
d:d⊆∆,|d|≤1

yTΦd(z)y ,

=

(
λ0 +

q∑
j=1

λj(zj) +
∑
j>k

λjk(zj, zk)

)
+

p∑
γ=1

(
ηγ0 +

q∑
j=1

ηγj (zj)

)
yγ ,

−1

2

p∑
γ,µ=1

(
Φγµ

0 +

q∑
j=1

Φγµ
j (zj)

)
yγyµ , (2.11)

where each zj takes integer values 1 to Kj; λj(·), ηγj (·), Φγµ
j (·) are all discrete functions

which take onKj possible values and λjk(·, ·) is a discrete function withKj×Kk values.

For identifiability, we set λj(1) = 0, ηγj (1) = 0, Φγµ
j (1) = 0 and λjk(1, ·) = λjk(·, 1) =

0. The correspondence between the parameters and the edges is then given by

Zj ⊥ Zk | X\{Zj, Zk} ⇐⇒ θjk = (λjk(zj, zk)) = 0 ,

Zj ⊥ Yγ | X\{Zj, Yγ} ⇐⇒ θjγ =
(
ηγj (zj), {Φγµ

j (zj) : µ ∈ Γ\{γ}}
)

= 0 ,

Yγ ⊥ Yµ | X\{Yγ, Yµ} ⇐⇒ θγµ =
(
Φγµ

0 , {Φγµ
j (zj) : j ∈ ∆}

)
= 0 . (2.12)

The generalized model can be fitted with separate regressions based on the condi-

tional likelihood of each variable. The parameters in (2.12) still have group structure,

which calls for using the group lasso penalty as in (2.7) and (2.8). The overlapping

structure is more complex in this case, and we use the upper bound `1 approximation

as in (2.9) and (2.10) to obtain the final estimates. Specifically, we minimize the

following criteria separately:

Logistic regression with `1 penalty : for j = 1, . . . , q

min `j + ρ

∑
k 6=j

∑
(zj ,zk)

|λjk(zj, zk)|+
p∑

γ=1

Kj∑
zj=1

|ηγj (zj)|+ 2
∑
γ<µ

Kj∑
zj=1

|Φγµ
j (zj)|

 .
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Linear regression with `1 penalty : for γ = 1, . . . , p

min `γ + ρ

 q∑
j=1

Kj∑
zj=1

|η̃γj (zj)|+
∑
µ6=γ

|Φ̃γµ
0 |+ 2

q∑
j=1

∑
µ 6=γ

Kj∑
zj=1

|Φ̃γµ
j (zj)|

 .

2.6 Discussion

We have proposed a new graphical model for mixed (continuous and discrete) data,

which is particularly suitable for high-dimensional data. While the general conditional

Gaussian model goes back to Lauritzen and Wermuth (1989), it is not appropriate for

high-dimensional data, and there is little previous work on mixed graphical models

that can scale to modern applications. While our model is substantially simpler

than the original general model, it scales much better. Given that graphical models

are primarily a tool for exploratory data analysis, this is a reasonable trade-off, and

the ability to explore conditional dependence relationships between large numbers of

discrete and continuous variables will hopefully be of use to practitioners in a range

of application domains.

We have recently become aware of two new developments on this topic (which were

derived in parallel with and independently of this manuscript). Lee and Hastie (2012)

assume a more restricted version of the conditional Gaussian density by assuming

constant conditional covariance for all the continuous variables. Their model can

be viewed as a special case of ours in (4.1), where all the Φj are 0, which can be

too restrictive for some applications. They considered both the maximum likelihood

approach and maximum pseudo likelihood approach with a group lasso penalty for

general discrete variables; when the discrete variables are all binary, this is equivalent

to using the regular `1 penalty, which is one of the alternatives we compared in

simulations in Section 2.3.2. Lee and Hastie (2012) did not focus on high-dimensional

applications. Another recent paper, Fellinghauer et al. (2011), applied random forests

and stability selection in fitting `1-regularized regressions of each variable on the rest,
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without specifying any generative models for the mixed data. In our framework, this

would amount to taking the separate regression approach to a simplified conditional

Gaussian model as in Lee and Hastie (2012), except with regression fitted using

random forests coupled with stability selection. As our simulations show, such an

approach performs well when the true graph is very sparse and has no complete

subgraphs; when the true graph has complete subgraphs, our method is expected to

outperform a separate regression approach.
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CHAPTER III

Sparse Ising Model with Covariates

3.1 Introduction

The existing literature mostly assumes that the data are an i.i.d. sample from one

underlying graphical model, although the case of data sampled from several related

graphical models on the same nodes has been studied both for the Gaussian and bi-

nary cases Guo et al. (2010a,b). However, in many real-life situations, the structure

of the network may further depend on other extraneous factors available to us in the

form of explanatory variables or covariates, which result in subject-specific graphical

models. For example, in genetic studies, deletion of tumor suppressor genes plays

a crucial role in tumor initiation and development. Since genes function through

complicated regulatory relationships, it is of interest to characterize the associations

among various deletion events in tumor samples. However, in practice we observe not

only the deletion events, but also various clinical phenotypes for each subject, such as

tumor category, mutation status, and so on. These additional factors may influence

the regulatory relationships, and thus should be included in the model. Motivated by

situations like this, here we propose a model for the conditional distribution of binary

network data given covariates, which naturally incorporates covariate information

into the Ising model, allowing the strength of the connection to depend on the co-

variates. With high-dimensional data in mind, we impose sparsity in the model, both
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in the network structure and in covariate effects. This allows us to select important

covariates that have influence on the network structure.

There have been a few recent papers on graphical models that incorporate co-

variates, but they do so in ways quite different from ours. Yin and Li (2011) and

Cai et al. (2011a) proposed to use conditional Gaussian graphical models to fit the

eQTL (gene expression quantitative loci) data, but only the mean is modeled as a

function of covariates, and the network remains fixed across different subjects. Liu

et al. (2010) proposed a graph-valued regression, which partitions the covariate space

and fits separate Gaussian graphical models for each region using glasso. This model

does result in different networks for different subjects, but lacks interpretation of the

relationship between covariates and the graphical model. Further, there is a concern

about stability, since the so built graphical models for nearby regions of the covari-

ates are not necessarily similar. In our model, covariates are incorporated directly

into the conditional Ising model, which leads to straightforward interpretation and

“continuity” of the graphs as a function of the covariates, since in our model it is the

strength of the edges rather than the edges themselves that change from subject to

subject.

The rest of the chapter is organized as follows. In Section 3.2, we describe the

conditional Ising model with covariates, and two estimation procedures for fitting it.

Section 3.3 establishes asymptotic properties of the proposed estimation method. We

evaluate the performance of our method on simulated data in Section 3.4, and apply

it to a dataset on genomic instability in breast cancer samples in Section 3.5. Section

3.6 concludes with a summary and discussion.
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3.2 Conditional Ising Model with Covariates

3.2.1 Model set-up

We start from a brief review of the Ising model, originally proposed in statistical

physics by Ising (1925). Let y = (y1, . . . , yq) ∈ {0, 1}q denote a binary random vector.

The Ising model specifies the probability mass function Pθ(y) as

Pθ(y) =
1

Z(θ)
exp

(∑
j

θjjyj +
∑
k>j

θjkyjyk

)
,

where θ = (θ11, θ12, . . . , θq−1q, θqq) is a q(q + 1)/2-dimensional parameter vector and

Z(θ) is the partition function ensuring the 2q probabilities summing up to 1. Note

that from now on we assume θjk equals to θkj unless otherwise specified. The Markov

property is related to the parameter θ via

θjk = 0⇐⇒ yj ⊥ yk ‖ y\(j,k), ∀j 6= k, (3.1)

i.e., yj and yk are independent given all other y’s if and only if θjk = 0.

Now suppose we have additional covariate information, and the data are a sample

of n i.i.d. points Dn = {(x1,y1), . . . , (xn,yn)} with xi ∈ Rp and yi ∈ {0, 1}q. We

assume that given covariates x, the binary response y follows the Ising distribution

given by

P (y|x) =
1

Z(θ(x))
exp

 q∑
j=1

θjj(x)yj +
∑

(j,k):1≤k<j≤q

θjk(x)yjyk

 . (3.2)

We note that for any covariates xi, the conditional Ising model is fully specified by

the vector θ(xi) = (θ11(xi),θ12(xi), . . . ,θq−1q(x
i),θqq(x

i)), and by setting θkj(x) =

θjk(x) for all j > k, the functions θjk(x) can be connected to conditional log-odds in
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the following way,

log

(
P (yj = 1|y\j,x)

1− P (yj = 1|y\j,x)

)
= θjj(x) +

∑
k:k 6=j

θjk(x)yk, (3.3)

where, y\j = (y1, . . . , yj−1, yj+1, . . . , yq). Further, conditioning on y\{j,k} being 0, we

also have

log

(
P (yj = 1, yk = 1| y\{j,k},x)P (yj = 0, yk = 0| y\{j,k},x)

P (yj = 1, yk = 0| y\{j,k},x)P (yj = 0, yk = 1| y\{j,k},x)

)
= θjk(x).

Similarly to (3.1), this implies yj and yk are conditionally independent given covariates

x and all other y’s if and only if θjk(x) = 0.

A natural way to model θjk(x) is to parametrize it as a linear function of x.

Specifically, for 1 ≤ j ≤ k ≤ q, we let

θjk(x) = θjk0 + θTjkx, where θTjk = (θjk1, . . . , θjkp)

θjk(x) = θkj(x), ∀j > k

The model can be expressed in terms of the parameter vector θ = (θ110,θ
T
11, θ120,θ

T
12, . . . , θqq0,θ

T
qq)

as follows:

Pθ(y|x) =
1

Z(θ(x))
exp

(
q∑
j=1

(θjj0 + θTjjx)yj +
∑
k>j

(θjk0 + θTjkx)yjyk

)
. (3.4)

Instead of (3.3), we now have the log-odds that depend on the covariates, through

log

(
P (yj = 1|y\j,x)

1− P (yj = 1|y\j,x)

)
= θjj0 + θTjjx+

∑
k:k 6=j

(θjk0 + θTjkx)yk. (3.5)

The choice of linear parametrization for θjk(x) has several advantages. First, (3.5)

mirrors the logistic regression model when viewing the x`’s, yk’s and x`yk’s (k 6= j)
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as predictors. Thus the model has the same interpretation as the logistic regression

model, where each parameter describes the size of the conditional contribution of that

particular predictor. Second, this parametrization has a straightforward relationship

to the Markov network. One can tell which edges exist and on which covariates they

depend by simply looking at θ. Specifically, the vector (θjk0,θ
T
jk) being zero implies

that yk and yj are conditionally independent given any x and the rest of y`’s, and

θjk` being zero implies that the conditional association between yj and yk does not

depend on x`. Third, the continuity of linear functions ensures the similarity among

the conditional models for similar covariates, which is a desirable property. Finally,

the linear formulation promises the convexity of the negative log-likelihood function,

allowing efficient algorithms for fitting the model discussed next.

3.2.2 Fitting the Model

The probability model Pθ(y|x) in (4.1) includes the partition function Z(θ(x)),

which requires summation of 2q terms for each data point and makes it intractable to

directly maximize the joint conditional likelihood
n∑
i=1

logPθ(y
i|xi). However, (3.5)

suggests we can use logistic regression to estimate the parameters, an approach in the

spirit of Ravikumar et al. (2010). The idea is essentially to maximize the conditional

log-likelihood of yij given yi\j and xi rather than the joint log-likelihood of yi.

Specifically, the negative conditional log-likelihood for yj can be written as follows

`j(θ;Dn) = − 1

n

n∑
i=1

logP (yij|xi,yi\j) = − 1

n

n∑
i=1

(
log(1 + eη

i
j)− yijηij

)
, (3.6)

where

ηij = log

(
P (yij = 1|yi\j,xi)

1− P (yij = 1|yi\j,xi)

)
= θTjjx

i +
∑
k 6=j

(θjk0 + θTjkx
i)yik.

Note that this conditional log-likelihood involves the parameter vector θ only through
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its subvector θj = (θj10,θ
T
j1, . . . , θjq0,θ

T
jq) ∈ R(p+1)q, thus we sometimes write `j(θj;Dn)

when the rest of θ is not relevant.

There are (p + 1)q(q + 1)/2 parameters to be estimated, so even for moderate p

and q the dimension of θ can be large. For example, with p = 10 and q = 10, the

model has 605 parameters. Thus there is a need to regularize θ. Empirical studies

of networks as well as the need for interpretation suggest that a good estimate of

θ should be sparse. Thus we adopt the `1 regularization to encourage sparsity, and

propose two approaches to maximize the conditional likelihood (3.6).

3.2.2.1 Separate Regularized Logistic Regressions

The first approach is to estimate each θj, j = 1, . . . , q separately using the follow-

ing criterion,

min
θj∈R(p+1)q

`j(θj;Dn) + λ‖θj\0‖1,

where θj\0 = θj\{θjj0}, that is, we do not penalize the intercept term θjj0.

In this approach, θjk and θkj are estimated from the jth and kth regressions,

respectively, thus the symmetry θ̂jk = θ̂kj is not guaranteed. To enforce the symme-

try in the final estimate, we post-process the estimates following Meinshausen and

Bühlmann (2006), where the initial estimates are combined by comparing their mag-

nitudes. Specifically, let θ̂jk` denote the final estimate and θ̂0
jk` denote the initial esti-

mate from the separate regularized logistic regressions. Then for any 1 ≤ j < k ≤ q

and any l = 0, . . . , p, we can use one of the two symmetrizing approaches:

separate-max: θ̂jk` = θ̂kj` = θ̂0
jk`I(|θ̂0jk`|>|θ̂

0
kj`|)

+ θ̂0
kj`I(|θ̂0jk`|<|θ̂

0
kj`|)

separate-min: θ̂jk` = θ̂kj` = θ̂0
jk`I(|θ̂0jk`|<|θ̂

0
kj`|)

+ θ̂0
kj`I(|θ̂0jk`|>|θ̂

0
kj`|)

The separate-min approach is always more conservative than separate-max in the

sense that the former provides more zero estimates. It turns out that when the sample
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size is small, the separate-min approach is often too conservative to effectively identify

non-zero parameters. More details are given in Section 3.4.

3.2.2.2 Joint regularized logistic regression

The second approach is to estimate the entire vector θ simultaneously instead of

estimating the θj’s separately, using the criterion,

min
θ∈R(p+1)q(q+1)/2

q∑
j=1

`j(θ;Dn) + λ‖θ\0‖1,

where θ\0 = θ\{θ110, θ220, . . . , θqq0}. The joint approach criterion can be written as

one large penalized logistic regression by careful rearranging of terms. One obvious

benefit of the joint approach is that θ̂ can be automatically symmetrized by treat-

ing θjk and θkj as the same during estimation. The price, however, is that it is

computationally much less efficient than the separate approach.

To fit the model using either the separate or the joint approach, we adopt the

coordinate shooting algorithm in Fu (1998), where we update one parameter at a

time and iterate until convergence. The implementation is similar to the glmnet

algorithm of Friedman et al. (2010), and we omit the details here.

3.3 Asymptotics: consistency of model selection

In this section we present the model selection consistency property for the separate

regularized logistic regression. Results for the joint approach can be derived in the

same fashion by treating the joint regression as a single large logistic regression. The

spirit of the proof is similar to Ravikumar et al. (2010), but since their model does

not include covariates x, both our assumptions and conclusions are different.

In this analysis, we treat the covariates xi’s as random vectors. With a slight

change of notation, we now use θj to denote θj\0, dropping the intercept which is
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irrelevant for model selection. The true parameter is denoted by θ∗. Without loss of

generality we assume that θ∗jj0 = 0, and we also assume that θ̂jj0 = 0.

First, we introduce additional notation to be used throughout this section. Let

I∗j = Eθ∗(∇2 logPθ(yj|x,y\j)) (3.7)

= Eθ∗
(
pj(1− pj)(x⊗ y\j)(x⊗ y\j)T

)
(Information matrix)

U ∗j = Eθ∗
(
(x⊗ y\j)(x⊗ y\j)T

)
(3.8)

where

pj = pj(x,y\j) = Pθ∗(yj = 1|x,y\j) ,

x⊗ y\j = (1, x1, . . . , xp)
T ⊗ (y1, . . . , yj−1, 1, yj+1, . . . , yq)

T\{1} .

Let Sj denote the index set of the non-zero elements of θ∗j , and let I∗SjSj be the

submatrix of I∗j indexed by Sj. Similarly defined are IScjSj and IScjScj , where Scj is

the compliment set of Sj. Moreover, for any matrix A, let ‖A‖∞ = maxi
∑

j |Aij| be

the matrix L∞ norm, and let Λmin(A) and Λmax(A) be the minimum and maximum

eigenvalues of A, respectively.

For our main results to hold, we make the following two assumptions for all q

logistic regressions.

A1 There exists a constant α ∈ (0, 1], such that

‖I∗ScjSj
(
I∗SjSj

)−1

‖∞ ≤ (1− α) .
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A2 There exist constants ∆min > 0 and ∆max > 0, such that

Λmin

(
I∗SjSj

)
≥ ∆min

Λmax(U ∗j) ≤ ∆max

These assumptions bound the correlation among the effective covariates, and the

amount of dependence between the group of effective covariates and the rest. Under

these assumptions, we have the following result:

Theorem III.1. For any j = 1, . . . , q, let θ̂j be a solution of the problem

min
θj

−`j(θj;Dn) + λn‖θj‖1. (3.9)

Assume A1 and A2 hold for I∗j and U ∗j , and further assume that for some δ > 0

P (‖x‖∞ ≥M) ≤ exp(−M δ), for all M ≥M0 > 0, (3.10)

Let d = maxj ‖Sj‖0 and C > 0 a constant independent of (n, p, q). If

Mn ≥ (Cλ2
nn)

1
1+δ , (3.11)

λn ≥ CMn

√
log p+ log q

n
, (3.12)

n ≥ CM2
nd

3(log p+ log q) , (3.13)

the following hold with probability at least 1 − exp−C(λ2nn)δ
∗

(δ∗ is a constant in (0,

1)),

1. Uniqueness: θ̂j is the unique optimal solution for any j ∈ {1, . . . , q}.

2. `2 consistency: ‖θ̂j − θ∗j‖2 ≤ 5λn
√
d/∆min for any j ∈ {1, . . . , q}

3. Sign consistency: θ̂j correctly identifies all the zeros in θ∗j for any j ∈ {1, . . . , q};
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moreover, θ̂j identifies the correct sign of non-zeros in θ∗j whose absolute value

is at least 10λn
√
d/∆min.

Theorem III.1 establishes the consistency of model selection allowing both of the

dimensions p(n) and q(n) to grow to infinity with n. The extra condition, which

requires the distribution of x to have a fast decay on large values, was not in Raviku-

mar et al. (2010) as the paper does not consider covariates. The new condition is,

however, quite general; for example, it is satisfied by the Gaussian distribution and

all categorical covariates. The proof of the theorem can be found in the Appendix.

3.4 Empirical performance evaluation

In this section, we present three sets of simulation studies designed to test the

model selection performance of our methods. We vary different aspects of the model,

including sparsity, signal strength and proportion of relevant covariates. The results

are presented in the form of ROC curves, where the rate of estimated true non-

zero parameters (sensitivity) is plotted against the rate of estimated false non-zero

parameters (1-specificity) across a fine grid of the regularization parameter. Each

curve is smoothed over 20 replications.

The data generation scheme is as follows. For each simulation, we fix the dimension

of the covariates p, the dimension of the response q, the sample size n and a graph

structure E in the form of a q × q adjacency matrix (randomly generated scale-free

networks (Barabasi and Albert , 1999). For any (j, k), 1 ≤ j ≤ k ≤ q, (θjk0,θ
T
jk)

consists of (p + 1) independently generated and selected from three possible values:

β > 0 (with probability ρ/2), −β (with probability ρ/2), and 0 (with probability

1 − ρ). An exception is made for the intercept terms θjj0, where ρ is always set

to 1. Covariates xi’s are generated independently from the multivariate Gaussian

distribution Np(0, Ip). Given each xi and θ, we use Gibbs sampling to generate
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the yi, where we iteratively generate a sequence of yij’s (j = 1, . . . q) from a Bernoulli

distribution with probability Pθ(y
i
j = 1|yi\j,xi) and take the last value of the sequence

when a stopping criterion is satisfied.

We compared three estimation methods: the separate-min method, the separate-

max method and the joint method. Our simulation results indicate that perfor-

mance of the separate-min method is substantially inferior to that of the separate-

max method in almost all cases (results omitted for lack of space). Thus we only

present results for the separate-max and the joint methods in this section.

3.4.1 Effect of sparsity

First, we investigate how the selection performance is affected by the sparsity of

the true model. The sparsity of θ can be controlled by two factors: the number of

edges in E, denoted by nE, and the average proportion of effective covariates for each

edge, ρ. We fix the dimensions q = 10, p = 20 and the sample size n = 200, and set

the signal size to β = 4. Under this setting, the total number of parameters is 1155.

The sparsity parameter nE takes values in the set {10, 20, 30}, and ρ takes values in

{0.2, 0.5, 0.8}. The resulting ROC curves are shown in Figure 3.1.

The first row shows the results of the joint approach and the second row of the

separate-max approach. As the true model becomes less sparse, the performance

of both the joint and the separate methods deteriorates, since sparse models have

the smallest effective number of parameters to estimate and benefit the most from

penalization. Note that the model selection performance seems to depend on the total

number of non-zero parameters ((q + nE)(p + 1)ρ), not just on the number of edges

(nE). For example, both approaches perform better in case nE = 20, ρ = 0.2 than

nE = 10, ρ = 0.5, even though the former has a more complicated network structure.

Comparing the separate-max method and the joint method, we observe that the two

methods are quite comparable, with the joint method being slightly less sensitive to
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Figure 3.1: ROC curves for varying levels of sparsity, as measured by the number
of edges (nE) and expected proportion of non-zero covariates (ρ). The
star on each curve corresponds to an optimal value of λ selected on an
independent validation set.
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Figure 3.2: ROC curves for varying levels of signal strength, as measured by the
parameter β. The star on each curve corresponds to an optimal value of
λ selected on an independent validation set.

increasing the number of edges.

Note that the “∗” point on each curve represents the average sensitivity and (1-

specificity) over the replications based on an “optimal” λ, selected by maximizing the

conditional log-likelihood on an independent validation dataset of the same size as

the training data.

3.4.2 Effect of signal size

Second, we assess the effect of signal size. The dimensions are set to be the same

as in the previous simulation, that is, q = 10, p = 20 and n = 200, and underlying

network is the same. The expected proportion of effective covariates for each edge is

ρ = 0.5. The signal strength parameter β takes values in the set {0.5, 1, 2, 4, 8, 16}.

For each setting, the non-zero entries of the parameter vectors θ are at the same

positions with the same signs, only differing in magnitude. The resulting ROC curves

are shown in Figure 3.2.
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As the signal strength β increases, both the separate and the joint methods show

improved selection performance, but the improvement levels off eventually. Both

methods achieve almost the same “optimal” sensitivity and specificity (the ’∗’ point),

with the separate-max method performing better overall.

3.4.3 Effect of noise covariates

In the last set of simulations, we study how the model selection performance

is affected by adding extra uninformative covariates. At the same time, we also

investigate the effect of the number of relevant covariates ptrue and the sample size

n. The dimension of the response is fixed to be q = 10 and the network structure

remains the same as in the previous simulation. We take ptrue ∈ {10, 20} and

n ∈ {200, 500}. For each combination, we first fit the model on the original data and

then on augmented data with extra uninformative covariates added. The total number

of covariates ptotal ∈ {ptrue, 50, 200}. The non-zero parameters are generated the

same way as before with β = 4 and ρ = 0.5. With the changes in ptotal, the total

number of non-zero parameters remains fixed for each value of ptrue, while the total

number of zeros is increasing.

To make the results more comparable across setting, we plot the counts rather than

rates of true positives and false positives. The resulting curves are shown in Figure

3.3. Generally, performance improves when the sample size grows and deteriorates

when the number of noise covariates increases, particularly with a smaller sample

size. The separate-max method dominates the joint method under these settings, but

the difference is not large.

3.5 Application to tumor suppressor genes study

In breast cancer, deletion of tumor suppressor genes plays a crucial role in tumor

initiation and development. Since genes function through complicated regulatory
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relationships, it is of interest to characterize the associations among various deletion

events in tumor samples, and at the same time to investigate how these association

patterns may vary across different tumor subtypes or stages.

Our data set includes DNA copy number profiles from cDNA microarray exper-

iments on 143 breast cancer specimens (Bergamaschi et al., 2006). Among them,

88 samples are from a cohort of Norwegian patients with locally advanced (T3/T4

and/or N2) breast cancer, receiving doxorubicin (Doxo) or 5 fluorouracil/mitomycin

C (FUMI) neoadjuvant therapy (Geisler et al., 2003). The samples were collected

before the therapy. The other 55 are from another cohort of Norwegian patients from

a population-based series (Zhao et al., 2004). Each copy number profile reports the

DNA amounts of 39,632 probes in the sample. The array data was preprocessed and

copy number gain/loss events were inferred as described in Bergamaschi et al. (2006).

To reduce the spatial correlation in the data, we bin the probes by cytogenetic bands

(cytobands). For each sample, we define the deletion status of a cytoband to be 1 if

at least three probes in this cytoband show copy number loss. 430 cytobands covered

by these probes show deletion frequencies greater than 10% in this group of patients,

and they were retained for the subsequent analysis. The average deletion rate for all

the 430 cytobands in 143 samples is 19.59%. Our goal is to uncover the association

among these cytoband-deletion events and how the association patterns may change

with different clinical characteristics, including TP53 mutation status (a binary vari-

able), estrogen receptors (ER) status (a binary variable), and tumor stage (an ordinal

variable taking values in {1, 2, 3, 4}).

For our analysis, denote the array data by y143×430, where yij indicates the deletion

status of the jth cytoband in the ith sample. Let xi denote the covariate vector con-

taining the three clinical phenotypes of the ith sample, and xl the lth covariate vector.

We first standardize the covariate matrix x143×3 and then fit our Ising model with

covariates with the separate-max fitting method. We then apply stability selection
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(Meinshausen and Bühlmann, 2010) to infer the stable set of important covariates for

each pairwise conditional association. Specifically, we repeatedly fit the model 100

times on subsamples containing half the data selected randomly without replacement.

For each tuning parameter λ from a fixed grid of values, we record the frequency of

θ̂jkl being non-zero respectively for each covariate xl, l = 0, 1, 2, 3 on all pairs of (j, k),

1 ≤ j < k ≤ 430, and denote it by fjkl(λ). Note that x0 corresponds to the main

effect interaction between a pair of yj’s and does not involve any covariates. Then we

use f ∗jkl = maxλ fjkl(λ) as a measure of importance of covariate xl for the edge (j, k).

Finally, for each covariate xj, we rank the edges based on the selection frequencies

{f ∗jkl : 1 < j ≤ k < q}. At the top of the list are the edges that depend on xj

most heavily. We are primarily interested in the pairs of genes belonging to different

chromosomes, as the interaction between genes located on the same chromosome is

more likely explained by strong local dependency. The results are shown in Table 1,

where the rank list of the edges depending on different covariates are recorded. The

first two columns of each covariate related columns are the node names and the third

columns record the selection frequency.

There are 332 inter-chromosome interactions (between cytobands from different

chromosomes) with selection probabilities at least 0.5. Among these, 39 interactions

change with the TP53 status; 12 change with the ER status; and another 12 change

with the tumor grade (see details in Table 3.1). These results can be used by biologists

to generate hypotheses and design relevant experiments to better understand the

molecular mechanism of breast cancer.

The most frequently selected pairwise conditional association is between deletion

on cytoband 4q31.3 and deletion on 18q23 (94% selection frequency). Cytoband

4q31.3 harbors the tumor suppressor candidate gene SCFFbw7, which works coop-

eratively with gene TP53 to restrain cyclin E-associated genome instability (Minella

et al., 2007). Previous studies also support the existence of putative tumor suppressor
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loci at cytoband 18q23 distal to the known tumor suppressor genes SMAD4, SMAD2

and DCC (Huang et al., 1995; Lassus et al., 2001). Thus the association between the

deletion events on these two cytobands is intriguing.

Another interesting finding is that the association between deletion on cytoband

9q22.3 region and cytoband 12p13.31 appears to be stronger in the TP53 positive

group than in the TP53 negative group. A variety of chromosomal aberrations at

9p22.3 have been found in different malignancies including breast cancer (Mitelman

et al., 1997). This region contains several putative tumor suppressor genes (TSG), in-

cluding DNA-damage repair genes like FANCC and XPA. Alterations in these TSGs

have been reported to be associated with poor patient survival (Sinha et al., 2008).

On the other hand, cytoband 12p13.31 harbors another TSG, namely ING4 (inhibitor

of growth family member 4), whose protein binds TP53 and contributes to the TP53-

dependent regulatory pathway. A recent study also suggests involvement of ING4

deletion in the pathogenesis of HER2-positive breast cancer. In light of these pre-

vious findings, it is interesting that our analysis also found the association between

the deletion events of 9p22.3 and 12p13.31, as well as the changing pattern of the

association under different TP53 status. This result suggests potential cooperative

roles for multiple tumor suppressor genes in cancer initiation and progression.

We also searched the network for hubs (highly connected nodes), which often

have important roles in genetic regulatory pathways. Since there can be different

hubs associated with different covariates, we separate them as follows. For each node

j, covariate l, and stability selection subsample m, let the “covariate-specific” degree

of node j be dmj,l = #{k : θ̂jkl 6= 0}. A ranking of nodes can then be produced

for each covariate l and each replication m, with rmj,l being the corresponding rank.

Finally, we compute the median rank across all stability selection subsamples rj,l =

median{rmj,l,m = 1, . . . , 100}, and order nodes by rank for each covariate. The results

are listed in Table 3.2. Interestingly, cytoband 8p11.22 was ranked close to the top for
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Table 3.1: Frequency-based ranked list of covariate-dependent inter-chromosomal in-
teractions
Main effect TP53 mutation status ER status

Gene1 Gene2 Freq Gene1 Gene2 Freq Gene1 Gene2 Freq

4q31.3 18q23 0.95 3p22.2 22q13.1 0.79 3q26.1 11p14.3 0.69
2p25.2 15q26.2 0.87 3p12.3 12p13.1 0.72 4q34.3 5q32 0.64
2q36.3 3p26.1 0.84 12q22 15q14 0.7 8p11.22 11p14.2 0.63
7q21.13 8q21.13 0.84 2p12 Xp22.33 0.69 3q24 22q11.23 0.57
6p21.32 16q12.2 0.83 6p21.32 8p11.22 0.68 4p14 11p15.3 0.55
3p21.1 17p13.2 0.81 1p34.2 3p24.1 0.67 1q31.1 Xq27.3 0.54
4q24 12q21.1 0.81 2p21 Xp11.22 0.67 13q33.2 22q11.23 0.54
2q23.3 6p12.1 0.79 2p12 7p21.1 0.66 21q21.1 22q11.21 0.54
8p21.3 21q21.1 0.79 12q15 13q12.12 0.63 5q33.1 17q21.31 0.53
2q34 3q13.31 0.78 4q25 8p11.22 0.62 12q21.32 18q22.3 0.51
6p21.32 9q31.3 0.78 8p11.22 Xq23 0.62 8p11.22 22q11.21 0.5
6p21.32 13q21.1 0.78 9p21.2 16q22.1 0.61 8q21.13 Xp22.11 0.5
6p21.31 11p15.2 0.78 3p21.1 11q14.1 0.58
11p15.1 14q22.2 0.78 3p13 9p24.2 0.58
1p36.11 2p21 0.77 9q22.32 12p13.31 0.57
1p31.1 2q32.2 0.76 7q21.3 22q12.3 0.56 Tumor stage
1q31.1 22q11.21 0.76 3q26.1 11p13 0.55 Gene1 Gene2 Freq
2q32.1 6q14.1 0.76 4q35.2 22q12.3 0.55 16q23.3 17p13.1 0.61
9q21.11 16q21 0.76 15q22.33 17p11.2 0.55 12p11.23 16q12.2 0.59
9q31.3 14q24.3 0.76 3p22.1 6p21.31 0.54 3q13.13 Xq23 0.57
10q25.3 12p13.31 0.76 4q28.2 7q21.13 0.54 7p21.3 12p11.23 0.56
4q35.1 15q22.2 0.75 5q13.1 6q22.33 0.54 9q34.13 15q21.1 0.55
3p21.31 17p11.2 0.74 5q23.2 8p21.2 0.54 11q24.2 13q32.3 0.55
6p21.32 13q31.2 0.74 16q22.1 17q21.31 0.54 8q21.13 13q33.1 0.54
10q11.21 12p13.32 0.74 4q28.3 9p21.3 0.53 2p21 12p13.31 0.53
9q33.1 14q12 0.73 4q35.1 9p21.3 0.53 10q26.3 17p11.2 0.53
12p13.31 17q11.2 0.73 4q35.2 16q22.1 0.53 7p21.3 12p12.1 0.51
1p34.2 3p22.1 0.72 2q31.3 4q13.2 0.52 3q13.13 7p21.3 0.5
5q33.1 11p15.4 0.72 3p26.1 14q13.1 0.52 9q34.13 15q22.1 0.5
6q12 20p12.1 0.72 4p16.1 13q31.1 0.52
12p12.2 Xp11.4 0.72 6p21.31 11q14.2 0.52
4q35.2 9p21.2 0.71 3p25.1 11p15.2 0.51
11p15.2 18q12.1 0.71 5q14.2 Xq27.1 0.51
1p21.1 7q21.12 0.7 5q14.2 Xq27.2 0.51
2p16.1 6p12.3 0.7 8p11.22 15q14 0.51
2q31.2 3p26.2 0.7 10q23.32 21q21.1 0.51
2q36.3 9q22.31 0.7 16q22.1 17p13.2 0.51
3p22.1 15q25.3 0.7 3p22.1 5q33.3 0.5
6p21.32 Xp11.4 0.7 5q14.2 17q21.2 0.5
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all three covariates. The 8p11-p12 genomic region plays an important roles in breast

cancer, as numerous studies have identified this region as the location of multiple

oncogenes and tumor suppressor genes (Yang et al., 2006; Adelaide et al., 1998). High

frequency of loss of heterozygosity (LOH) of this region in breast cancer has also been

reported (Adelaide et al., 1998). Particularly, cytoband 8p11.22 harbors the candidate

tumor suppressor gene TACC1 (transforming, acidic coiled-coil containing protein

1), whose alteration is believed to disturb important regulations and participate in

breast carcinogenesis (Conte et al., 2002). From Table 3.1, we can also see that

the deletion of cytoband 8p11.22 region is associated with the deletion of cytoband

6p21.32 and 11p14.2 with relatively high confidence (selection frequency > 0.6); and

these associations change with both TP53 status and ER status. This finding is

interesting because high frequency LOH at 6q and 11p in breast cancer cells are

among the earliest findings that led to the discovery of recessive tumor suppressor

genes of breast cancer (Ali et al., 1987; Devilce et al., 1991; Negrini et al., 1994).

Moreover, there is evidence that allele loss of c-Ha-ras locus at 11p14 correlates with

paucity of oestrogen receptor protein, as well as patient survival (MacKay et al.,

1988; Garcia et al., 1989). These results together with the associations we detected

confirm the likely cooperative roles of multiple tumor suppressor genes involved in

breast cancer.

3.6 Summary and Discussion

We have proposed a novel Ising graphical model which allows us to incorporate

extraneous factors into the graphical model in the form of covariates. Including covari-

ates into the model allows for subject-specific graphical models, where the strength

of association between nodes varies smoothly with the values of covariates. One con-

sequence of this is that if all covariates are continuous, there is probability 0 of the

graph structure changing with covariates, and only the strength of the links is af-
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Table 3.2: Degree-based ranking of nodes

Main effect TP53 mutation status ER status Tumor stage

Gene Median rank Gene Median rank Gene Median rank Gene Median rank

1p36.11 16.75 8p11.22 12.75 3q26.1 10 16q23.1 19.25
1q31.1 21 1p31.3 14.5 1q31.1 12 10q11.23 22.25
6p21.31 24.25 3p22.2 25.25 3p22.2 13 16q12.2 23.5
6p21.32 37 1q31.1 28.75 8q21.13 14 9q34.13 27.5
2p12 38.5 12q23.1 32 10q22.1 15.25 22q11.23 27.75
2q32.2 43 2p16.2 33.5 8p11.22 19 12p11.23 33
8q21.13 44.5 4q31.1 41.75 3p21.1 20.25 2q33.1 35.25
6p12.3 45.5 9p21.3 42 11q23.3 22 8p11.22 35.75
2q32.3 53.75 7q21.3 44.25 5q13.1 28 10q25.2 36
3p22.2 54.25 3q26.1 44.75 4p16.1 33 11q14.1 40.5
6p12.1 57.5 12q15 45.5 5q13.3 34 10p12.2 41.5
1p31.3 59.25 12p11.22 51.5 9p22.3 36.25 3q13.13 42
21q21.1 60 15q22.1 51.5 8p21.3 41.25 13q13.2 42.75
3q26.1 73.25 15q23 51.75 3p25.1 42.5 16q12.1 47
12p11.22 73.25 8q21.13 54 10q23.2 42.75 6p21.31 50
6q26 74.5 9p21.2 54.5 5q32 47 11q22.2 53
13q32.1 75.75 21q21.1 55.25 1p36.11 47.5 10q26.3 53.5
17p13.2 78 9q34.13 59 Xp22.22 48.75 9q33.1 55.5
11q14.1 80.25 9p24.2 62 21q21.1 49 4q21.1 56
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fected. With binary covariates, which is the case in our motivating application, this

situation does not arise, but in principle this could be seen as a limitation. On the

other hand, this is a necessary consequence of continuity, and small changes in the

covariates resulting in large changes in the graph, as can happen with the approach of

Liu et al. (2010), make the model interpretation difficult. Further, our approach has

the additional advantage of discovering exactly which covariates affect which edges,

which can be more important in terms of scientific insight.

While here we focused on binary network data, the idea can be easily extended to

categorical and Gaussian data, and to mixed graphical models involving both discrete

and continuous data. Another direction of interest is understanding conditions under

which methods based on the neighborhood selection principle of running separate

regressions are preferable to pseudo-likelihood type methods, and vice versa. This

comparison arises frequently in the literature, and understanding this general principle

would have applications far beyond our particular method.

3.7 Appendix

3.7.1 Proof of Theorem III.1

For notational convenience, we omit the j indexing each separate regression. Follow-

ing the literature, we prove the main theorem in two steps: first, we prove the result

holds when assumptions A1 and A2 hold for In and Un, the sample versions of of

I∗ and U ∗ defined in (3.7) (Proposition III.2). Then we show that if A1 and A2

hold for the population versions I∗ and U ∗, they also hold for In and Un with high

probability (Proposition III.7). The sample quantities In and Un are defined as

In = ∇2`(θ∗,Dn) =
1

n

n∑
i=1

(
pij(1− pij)(xi ⊗ yi\j)(xi ⊗ yi\j)T

)
,

Un =
1

n

n∑
i=1

(xi ⊗ yi\j)(xi ⊗ yi\j)T .
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Proposition III.2. If A1 and A2 are satisfied by In and Un, assume moreover that

Mn = sup‖x‖∞ <∞ a.s.,

λn ≥
8Mn(2− α)

α

√
log p+ log q

n
,

n > Cd2(log p+ log q) .

Then with probability at least 1− 2 exp
(
−C λ2nn

M2
n

)
, the result of Theorem III.1 holds.

Proof of Proposition III.2. The proof requires several steps. The uniqueness part

follows directly from the following lemma:

Lemma III.3. (Shared sparsity and uniqueness of θ̂, Ravikumar et al. (2010)). De-

fine the sign vector t for θ to satisfy the following properties,


t̂k = sign(θ̂k), if θ̂k 6= 0 ,

|t̂k| ≤ 1, if θ̂k = 0 .

Suppose there exists an optimal solution θ̂ with sign t̂ defined as above, such that,

‖t̂SC‖∞ < 1, then any optimal solution θ̃ must have θ̃SC = 0. Furthermore, if the

Hessian matrix ∇2`(θ̂)SS is strictly positive definite, then θ̂ is the unique solution.

We now proceed to prove the rest of Proposition III.2. For θ̂ to be a solution of

(3.9), the sub-gradient at θ̂ must be 0, i.e.,

∇`(θ̂,Dn) + λnt̂ = 0 . (3.14)

Then we can write ∇`
(
θ̂,Dn

)
−∇` (θ∗,Dn) = −λnt̂+W n, where

W n = −∇` (θ∗,Dn) =
1

n

n∑
i=1

(xi ⊗ yi\j)(yij − pij(θ∗)) .
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Let θ̃ denote a point in the line segment connecting θ̂ and θ∗. Applying the mean

value theorem gives

In
(
θ̂ − θ∗

)
= W n − λnt̂+Rn . (3.15)

where Rn =
(
∇2` (θ∗,Dn)−∇2`(θ̃,Dn)

)
(θ̂ − θ∗).

Now define θ̂ as follows: let S be the index set of true non-zeros in θ∗, let θ̂S be

the solution of

min
(θ̂S ,0)

`(θ̂,Dn) + λn‖θ̂S‖1 , (3.16)

and let θ̂SC = 0. We will show that this θ̂ is the optimal solution and is sign consistent

with high probability.

We set the corresponding sign vector t̂S for θ̂S similarly defined as in Lemma III.3,

and t̂SC = − 1
λn
∇SC`(θ̂S ,Dn) as obtained in (3.14). Now we need to show that with

high probability,

‖t̂j‖∞ < 1, for j ∈ SC (3.17)

t̂j = sign(θ∗j), for j ∈ S and ‖θ∗j‖ ≥
10λn

√
d

∆min

(3.18)

The following three lemmas form the proof.

Lemma III.4. (Control the remainder term W n). For α ∈ (0, 1], assume ‖x‖∞ ≤

Mn a.s, then,

P

(
2− α
λn
‖W n‖∞ ≥

α

4

)
≤ 4 exp

(
− λ2

nnα
2

32M2
n(2− α)2

+ log p+ log q

)
.

This probability goes to 0 as long as λn ≥ 8M 2−α
α

√
log p+log q

n
.

Proof of Lemma III.4. We can write W n = 1
n

∑n
i=1(xi⊗yi\j)(yij−pij(θ

∗)) =
∑n

i=1 Zi,
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where Zik is bounded by Mn/n. Thus by Azuma-Hoeffding Inequality,

P

(
‖W n‖∞ ≥

λnα

4(2− α)

)
≤ 2pqP

(
‖W n

k ‖∞ ≥
λnα

4(2− α)

)
≤ 4 exp

(
− λ2

nnα
2

32M2
n(2− α)2

+ log p+ log q

)
.

�

Lemma III.5. (`2-consistency of the sub-vector θ̂S). If λnd <
∆2

min

10∆maxMn
, and,

‖W n‖∞ ≤ λn
4

, then

‖θ̂S − θ∗S‖2 ≤
5λn
√
d

∆min

.

Proof of Lemma III.5. Let G(uS) = `(θ∗S + uS ,Dn)− `(θ∗S ,Dn) + λn(‖θ∗S + uS‖1 −

‖θ∗S‖1) be a function G : Rd → R. It is easy to see that G(uS) is convex and it

achieves its minimum at ûS = θ̂S − θ∗S . Moreover, G(0) = 0. Thus if we can show

that G(uS) is positive on the set ‖uS‖2 = B, then we will have ûS ≤ B due to

convexity of G(uS). Note that

G(uS) = −W nT
S uS + uTS∇2`(θ∗S + αuS)uS + λn(‖θ∗S + uS‖1 − ‖θ∗S‖1) .

Further,

|W nT
S uS | ≤ ‖W n‖∞‖uS‖1 ≤

λn
4

√
d‖uS‖2 ,

Λmin(∇2`(θ∗S + αuS)) ≥ ∆min −∆maxMn

√
d‖uS‖2 ,

|λn(‖θ∗S + uS‖1 − ‖θ∗S‖1)| ≤ λn
√
d‖uS‖2 .

Combining all of the above, we have

G(uS) ≥ ‖uS‖2(−∆maxMn

√
d‖uS‖2

2 + ∆min‖uS‖2 −
5

4
λn
√
d) .
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Easy algebra shows that if λnd ≤ ∆2
min

10∆maxMn
and B = 5λn

√
d

∆min
, the result follows. �

Lemma III.6. (Control the remainder term Rn). If λnd ≤ ∆2
min

100Mn∆max

α
2−α , ‖W n‖∞ ≤

λn
4

, then

‖Rn‖∞
λn

≤ 25∆max

∆2
min

Mnλnd ≤
α

4(2− α)
.

Proof of Lemma III.6. Recall that

Rn =
(
∇2` (θ∗,Dn)−∇2`

(
θ̃,Dn

))(
θ̂ − θ∗

)
=

1

n

n∑
i=1

(
pij(θ

∗)(1− pij(θ∗))− pij(θ̃)(1− pij(θ̃))
)

(xi ⊗ yi\j)(xi ⊗ yi\j)T
(
θ̂ − θ∗

)
.

Let ωij(θ) = pij(θ)(1− pij(θ)). The k-th element of Rn has the form

Rn
k =

1

n

n∑
i=1

(ωij(θ
∗)− ωij(θ̃))Zi

k(x
i ⊗ yi\j)T

(
θ̂ − θ∗

)
=

1

n

n∑
i=1

ω̇ij(θ̄)Zi
k

(
θ∗ − θ̃

)T
(xi ⊗ yi\j)(xi ⊗ yi\j)T

(
θ̂ − θ∗

)
,

where Zi
k = xily

i
m, for some (l,m). By A1 and Lemma III.5, we have

|Rn
k | ≤Mn∆max‖θ̂ − θ∗‖2

2 ≤Mn∆max

(
5λn
√
d

∆min

)2

.

�

Putting all the lemmas together, we are ready to prove Proposition III.2.

Proof of Proposition III.2. Set λn = 8Mn(2−α)
α

√
log p+log q

n
. By Lemma III.4, we have

‖W n‖∞ ≤ λnα
4(2−α)

≤ λn
4

with probability at least 1 − 4 exp(Cλ2
nn/M

2
n). Choosing

n ≥ 1002∆2
max(2−α)2

∆4
minα

2 d2(log p+ log q)), we have λnd ≤ ∆2
min

100Mn∆max

α
2−α , thus the conditions

of Lemmas III.5 and III.6 hold.
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By rewriting (3.15) and utilizing the fact that θ̂SC = θ∗SC = 0, we have

InSCS(θ̂S − θ∗S) = W n
SC − λnt̂SC +Rn

SC , (3.19)

InSS(θ̂S − θ∗S) = W n
S − λnt̂S +Rn

S . (3.20)

Since InSS is invertible by assumption, combining (3.19) and (3.20) gives

InSCS(InSS)−1(W n
S − λnt̂S +Rn

S) = W n
SC − λnt̂SC +Rn

SC . (3.21)

To show (3.17), we reorganize (3.21) and use results from Lemmas III.4 and III.6:

λn‖t̂SC‖∞ = ‖InSCS(InSS)−1(W n
S − λnt̂S +Rn

S)−W n
SC −R

n
SC‖∞

≤ ‖InSCS(InSS)−1‖∞(‖W n‖∞ + λn + ‖Rn‖∞) + ‖W n‖∞ + ‖Rn‖∞

≤ λn(1− α

2
) .

To show (3.18), it suffices to show that ‖θ̂S − θ∗S‖∞ ≤
θ∗min

2
. By Lemma III.5,

‖θ̂S − θ∗S‖∞ ≤
5λn
√
d

∆min

≤ θ
∗
min

2
.

The last inequality follows as long as θ∗min ≥ 10λn
√
d

∆min
. This completes the proof of

Proposition III.2. �

Proposition III.7. If I∗ and U ∗ satisfy A1 and A2, and Mn = sup‖x‖∞ <∞ a.s.,
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the following hold for any δ > 0. A and B are some positive constants.

P

{
Λmax

(
1

n

n∑
i=1

(xi ⊗ yi\j)(xi ⊗ yi\j)T
)
≥ Dmax + δ

}
≤ 2 exp

(
−A δ2n

M2
nd

2
+B(log p+ log q)

)

P (Λmin(InSS) ≤ Cmin − δ) ≤ 2 exp

(
−A δ2n

M2
nd

2
+B log d

)
P
(
‖|InScS (InSS)−1|‖∞ ≥ 1− α

2

)
≤ exp

(
−A n

M2
nd

3
+B(log p+ log q)

)

We omit the proof of Proposition III.7, which is very similar to Lemmas 5 and 6

in Ravikumar et al. (2010).

Proof of Theorem III.1. With Propositions III.2 and III.7, the proof of Theorem

III.1 is straightforward. Given that A1 and A2 are satisfied by I∗ and U ∗ and

that conditions (3.12) and (3.13) hold, on the set A = {x : Mn = sup ‖x‖ < ∞}

the assumptions in Proposition III.7 are satisfied. Thus with probability at least

1 − exp(−Cλ2nn
M2
n

), the conditions of Proposition III.2 hold, and therefore the results

in Theorem III.1 hold. Finally, let T stand for the set where the results of Theorem

III.1 hold. Then by (3.10) and (3.11), we have

P (T c) ≤ P (T c | A)+P (Ac) ≤ exp(−Cλ
2
nn

M2
n

)+exp(−M δ
n) ≤ exp−(C ′λ2

nn)δ
∗
,where 0 < δ∗ < 1.

�
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CHAPTER IV

Multi-label Classification via Ising Models

4.1 Introduction

Despite many interesting applications and connections to several other well-studied

statistical problems, the statistical literature on multi-label classification is somewhat

sparse. Most of the existing methods share the common approach to break down the

multi-label classification into separate binary classification problems and builds a bi-

nary classifier for each label independently. Joachims (1998) uses a set of binary SVM

classifiers and shows that using SVM as binary classifiers achieves higher accuracy

than others competing methods. However he does not discuss multi-label training

models or specific testing criteria. Certain modification of such separate binary SVM

classifiers include Elisseeff and Weston (2002), Godbole and Sarawagi (2004), etc.

Boutell et al. (2004) applied similar decomposed classifiers to a image scene classi-

fication problem. (Zhang and Zhou, 2007) proposed ML-KNN where the k-nearest

neighboring instances are identified first, and based on the label sets of these neighbor-

ing instances, maximum a posteriori (MAP) principle is applied to determine the label

set. The perks of constructing separate classifiers is that most of the well-established

single-label classification techniques can be employed readily; however this approach

fails to take into account the correlation among labels, which can be a drawback as

co-occurrence of the labels is an intrinsic feature of the problem.
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Another commonly taken approach is to view the problem as a single classification

problem by treating each possible combination of the labels as a new label l∗; such

a transformation is named label powerset(LP). The pruned problem transformation

(PPT) method proposed by Read (2008) extends LP by pruning away label sets

that occur less times than a small user-defined threshold and optionally replaces

their information by introducing disjoint subsets of these label sets that do exist

more times than the threshold. Tsoumakas and Vlahavas (2007) proposed random

k-labelsets(RAkEL) method which constructs an ensemble of LP classifiers. Each LP

classifier is trained using a different small random subset of L. RAkEL manages to

take into account the label correlation, if not explicitly. However, the major concern

of this transformational approach is that the data can be very sparse in the sense that

for many combinations of the labels, there might be very few instances in the training

data or even none, which results in fitting these classes difficult or even impossible for

most of the single-label classifiers. Also, the size of transformed label space increases

exponentially comparing to the original label set size q. For example, if the original

label set has 8 labels, they are transformed into 256 new labels which might be too

much to handle even for the very best multi-class classification techniques.

A third majority of approaches Ranking the labels is uniquely motivated by the

multi-label classification problem itself and attracts much of interests in the text

categorization applications. Instead of trying to construct a classifier that outputs

multiple labels directly, this approach focuses on the relevance level of the labels to the

instance and attempts to find a score function that assigns higher value to the more

relevant labels and outputs a ranked list of the labels. Schapire and Singer (2000)

proposes a Boosting algorithm called AdaBoost.MR(commonly known as BoosTexter)

which modifies the boosting algorithm to fit a ranking function for all document-label

pairs. Joachims (2002) designed a SVM-based method (RankSVM) to perform a clas-

sification task on label-instance pairs and finally produce a linear ranking function
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that aims at minimizing the mismatched pairs of labels for all samples. Crammer and

Singer (2003) proposes a family of one-against-the-rest online ranking algorithms that

create a weight vector for each label and compute the ranking between a document

and a label using the inner product of the feature vector and the weight vector. These

approaches have straightforward objectives that makes intuitive sense and the opti-

mization procedure is usually standard without too much computational challenge.

However, in terms of prediction, the ranking approaches have to choose a threshold

on the score function in order to output the labels whose score are above it and in

most of the cases, the choice of this threshold is heuristic.

Apart from the three most common approaches mentioned above, there also exists

some other notable works which propose generative models explicitly. McCallum

(1999) proposed a mixture model trained by EM, selecting the most probable set

of labels from the power set of all possible subsets and used heuristics to overcome

the associated computational complexity. However, his generative model is based on

learning word frequencies in documents and is thus restricted to text applications.

Ueda and Saito (2003) also proposed a probabilistic generative model that uses a

different mixture approach. The advantage of their approach is they explicitly model

the label correlations and require no threshold for determining the category label for

each data point. However, this paper shares the same drawback that it only applies

to text categorization problem and their prediction rule is not optimal. Two other

related works are done by Niagm et al. (1999) and Zhu et al. (2005) based on the

idea of Maximum Entropy. Nigam et al. first introduce maximum entropy techniques

to model the conditional distribution of labels given the feature vectors and seek

for the solution by improved iterative scaling algorithm. However, they still break

the problem into single-labeled problems and fit the conditional probability of each

label given the data individually. Zhu et al. (2005) et al. modified this approach by

exploring the correlation between different labels with maximum entropy techniques
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and derive a classification algorithm which predicts the label set directly.

In the presented work, we formulate the multi-label classification task into a mul-

tivariate binary response regression problem and propose several methods to tackle

data sets with both small dimension and large dimension of labels. To better assist

the mathematical formulation of the problem, we can represent the label set Yi as

q-dimensional binary vector yi, with the jth element being the indicator of whether

label lj is relevant for the ith sample. As the foundation, we propose a covariate de-

pendent binary Markov network, (also known as the Ising model), to explicitly model

the conditional distribution P (y|x) and predict the label set with the maximum like-

lihood estimates of the fitted model. This model is efficient to fit however is far less

efficient to compute the prediction for large dimension of labels as the number of

possible label set increases exponentially with q. To overcome this prediction compu-

tational difficulty, we propose two alternative methods based on this model to work

for large dimension of labels (recommended for q ≥ 20). One is a two-step regression

approach and the other is an ensemble method. We then apply our methods on five

benchmark data sets and show their performances. Compared to most of existing

methods, our approach takes into account of the correlation among labels and is ca-

pable of handling large dimensional data. The final classification boundary for each

individual label is in general non-linear, which allows us to build more flexible models.

We also point out that for multi-label classification tasks, different prediction rules

based on the joint likelihood should be used for minimizing different classification

error measures.

The remainder of the report is organized as follows. In section 4.2, we describe the

foundational model as building blocks. Section 4.3 addresses the prediction and model

tuning issue. Section 4.4 proposes two alternatives to tackle the large dimensional

data. We apply our method to the several bench mark data sets and present the

results in section 4.5. Section 4.6 concludes with discussions and future work.
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4.2 Covariate Dependent Multivariate Binary Markov Model

In a multi-label classification, the training data are denoted as {(x1,y1), (x2,y2), . . . , (xn,yn)},

where xi = (xi1, xi2, . . . , xiP ) ∈ Rp is the feature vector for the ith sample and

yi = (yi1, yi2, . . . , yiq) ∈ {0, 1}q is the binary response vector. yiq = 1 indicates that

the q-th label is associated with the i-th data point and yiq = 0 otherwise. Our goal

is to explicitly model the conditional distribution P (y|x) and come up with optimal

prediction rules given different evaluation measures. As mentioned in the introduc-

tion previously, the reason we adopt a joint probabilistic model is that we would like

to take into account of the correlations among the labels and use the information

to produce better prediction. A simple yet flexible model we choose to use here, is

based on the binary Markov network model, also known as Ising model. For a binary

random vector y = (y1, . . . , yq), an Ising model characterize its distribution via the

following

P (y) =
1

Z(θ,γ)
exp

(
q∑
j=1

θjyj +
∑
j>k

θjkyjyk

)
,

where the parameter vector θ = (θ1, . . . , θq, θ12, . . . , θ1q, θ23, . . . , θq−1q) fully charac-

terizes the model and Z(θ) is the partition function which ensures the probability

sum up to 1. An Ising model can be thought as a second order approximation of

all possible distributions of a binary random vector and thus represents a rich class

of distributions. Most importantly, an Ising model is known for its convenient inter-

pretation of conditional dependency among the variables; specifically, yj and yk are

conditionally independent given the other variables if and only if θjk = 0.

In presence of covariates x, a natural way to extend the model is to assume the

conditional distribution P (y|x) follows an Ising model associated with x. We propose

the extension as follows

P (y|x) =
1

Z(θ(x))
exp

(
q∑
j=1

(θTjjx)yj +
∑
j>k

θjkyjyk

)
. (4.1)
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For simplicity of the notation, we assume that the first element of covariates x is

always 1 so we do not need an extra intercept term.This model has a total number of

parameters as O(max(pq, q2)). To assist our understanding of the interpretations of

the parameters, we consider the conditional log-odds of each of the response variable

log

(
P (yj = 1|y−j,x)

1− P (yj = 1|y−j,x)

)
= θTjjx+

∑
k:k 6=j

θjkyk. (4.2)

The interpretation of each parameter becomes straightforward in this setting: θjjl

directly measure the effect of covariate xl on the log-odds of yj and θjk measures

the effect of yk on the same conditional log-odds ratio. This formulation shares the

same assumption as a logistic regression model, where the response is one of the binary

variable yj, and the predictors are the feature vector x and remaining response vector

y−j.

The joint likelihood P (y|x) involves a normalizing constant Z(θ) which is the

sum of 2q terms and makes it difficult to maximizing this likelihood directly. In-

stead, we have a nice linear logistic model in (4.2) based on the conditional likelihood

P (yj|y−j,x); so we maximize pseudo likelihood of the data to obtain the parameter

estimates. Further more, we introduce `1 penalty on the parameters to control the

sparsity of the estimates so that our model can be used for high-dimensional data sce-

nario which is very common in multi-label data set. To be more specific, the estimates

of the parameters is obtained by solving the following optimization problem

θ̂ = argmin
θ)

− 1

n

n∑
i=1

q∑
j=1

log(P (yij|yi(−j),xi)) + λ‖θ‖1,

where λ > 0 is the tuning parameter that controls the degree of penalization. We

adopt the coordinate shooting algorithm (Fu, 1998) to solve a reweighed single-parameter

lasso problem to update one parameter at a time. We then use 5-fold cross validation

on the chosen classification error is employed to choose the optimal λ.
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To end this section, we would like to point out a connection of our model with the

maximum entropy method. Niagm et al. (1999) first introduced maximum entropy

distributions for text categorization problems, which was later extended by Zhu et al.

(2005). They explore the correlations among labels and attempt to derive P (y|x)

based on maximum entropy criterion. Specifically, then they seek a solution to the

following constrained optimization problem

P̂ = argmax
P

EP (log(P (y|x))),

subject to
〈yj〉P = 〈yj〉P̃ , for all 1 ≤ j ≤ q;

〈yjxl〉P = 〈yjxl〉P̃ , for all 1 ≤ j ≤ q and 1 ≤ l ≤ p;

〈yjyk〉P = 〈yjyk〉P̃ , for all 1 ≤ j < k ≤ q;∑
y

P (y|x) = 1;

where P̃ is the empirical distribution of the training data. The constrained opti-

mization problem can be solved using Lagrange multiplier algorithms. The final

distribution has the same form as our covariate depenent Ising model (4.1). However,

since the motivation behind the model assumption is different the results are not the

same. The maximum entropy methods are actually fitting the exact log-likehood with

an additional `2 penalty on the parameters.

4.3 Prediction and Tuning

4.3.1 Classification Error Measures and Optimal Prediction Rules

The previous section builds up to the model fitting part, yet the final goal is to

predict the most probable combination of labels based on the estimated probability

Pθ̂(y|x). In this section, we discuss that for different misclassification error measure,
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we should adopt different likelihood-based estimates. For a data point x, Let ŷ(x) =

(ŷ1(x), . . . , ŷq(x)) be the predicted label vector and y(x) = (y1(x), . . . , yq(x)) be the

true label set. The following two classification errors are usually considered in the

literature.

Hamming-Loss =
1

q

q∑
j=1

I(ŷj(x) 6= yj(x)),

Vector Error = I(ŷ(x) 6= y(x)).

Hamming loss is the average number of incorrectly predicted labels, where each labels

are computed separately and the errors are accumulated. Vector error in general is

a much more strict evaluation measure as it requires the predicted set of labels to

be an exact match of the true set of labels for loss being 0, otherwise the loss is 1.

Depending on which of the two quantities fits better of the application, the optimal

prediction rule differs. The following proposition illustrates this point.

Proposition IV.1. Given a joint distribution P (y,x), where y ∈ {0, 1}q and x ∈ Rq,

define

ŷmarginal(x) = (ỹ1(x), . . . , ỹq(x)), where ỹj(x) = argmax
yq

P (yj|x),

ŷjoint(x) = argmax
y

P (y|x),

then the following holds

ŷmarginal(x) = argmin
ŷ(x)

1

q

q∑
j=1

P (ŷj(x) 6= yj(x)) , ŷjoint(x) = argmin
ŷ(x)

P (ŷ(x) 6= y(x)).

Proposition IV.1 states a convenient fact that if the goal is to minimize the ex-

pected hamming loss, we should use maximum marginal probability of each yq to

predict while if the goal is to minimize vector classification error, maximum joint

probability estimates are preferred. Though the point is not complicated to derive, it
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has been overlooked by most of the existing methods where they all use the maximum

joint probability prediction as default even though they aim to minimize hamming

loss. Note that all of above are valid for general distribution P (y|x) without assuming

Ising model.

In terms of computation, both marginal and joint prediction would involve 2q

calculations of the probability for each combination of the labels and the maginal

prediction would involve one more round of summation. This is computationally

very challenging when the size of label set q is even of moderate size, say 15. Thus we

discuss two alternative approaches based on model (4.1) in the next section to deal

with data set with large q .

4.3.2 Choice of Tuning Parameter λ

As mentioned in section 4.2, we are choosing the tuning parameters based on cross-

validation. However, it will involve the choice of a proper error/accuracy measure for

the multi-label prediction. The Hamming loss and the vector error preferred different

prediction rules as mentioned above, thus would not serve as a fair criterion. Other

than the two classification errors, there are a few more accuracy measures that are

often used in the multi-label context.

Precision =

∑q
j=1 I(yj = 1, ŷj = 1)∑q

j=1 I(ŷj = 1)
(proportion of correct labels among the predicted ones),

Recall =

∑q
j=1 I(yj = 1, ŷj = 1)∑q

j=1 I(ŷj = 1)
(proportion of correct labels among the true ones),

F1 =

∑q
j=1 I(yj = 1, ŷj = 1)∑q

j=1 I(yj = 1) + I(ŷj = 1)
(in between Precision and Recall),

Accuracy =

∑q
j=1 I(yj = 1, ŷj = 1)∑q
j=1 I(ŷj = 1 or yj = 1)

(smaller than both Precision and Recall).

Maximizing the precision encourage methods that output a small number of labels

while maximizing the recall will oppositely encourage method to output too many
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labels. Therefore, we use F1 measure as our cross-validation criterion to balance the

precision and recall simultaneously. Specifically, we conduct a 5-fold cross validation,

compute the F1 measure on each of the testing data and choose the λ that maximize

the average F1 measure.

We shall mention that in multi-label classification literature, some other evaluation

measures such as one -error, ranking loss, average precision, coverage are used. These

measures are all based on the predicted ranking of the labels. They are not suitable

if the output is already the subset of labels as in our approach; therefore we do not

use these measures in our later analysis.

4.4 Two Alternative Approaches for Large-Sized Label Set

As mentioned in the end of subsection 4.3.1, the computational cost for prediction

based on the joint probability model P (y|x) grows exponentially with the size of the

label set q. Therefore, this section proposes two alternative approaches motivated

by the original model (4.1) to accommodate the computational inefficiency. The

first approach is a two-step approach modeling the conditional log-odds of each label

and the final output are separate binary linear classifiers; however the model training

involves interaction between the labels thus takes into account of the label correlation.

The second approach is an ensemble method that creates a compromise between the

prediction computation and the joint probability model where we randomly select

subsets of the labels to fit model (4.1) and then aggregates of many sub-models to

produce the final prediction. Details of the two methods are discussed as follows.

4.4.1 Two-step Logistic Model

One way to avoid joint probability modeling is to build a separate logistic model

for yj depending only on the feature vector x, in which case the prediction computa-

tion is linear in q rather than exponential. Meanwhile, we hope not to lose the mutual
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association among the labels which might help improve the prediction accuracy. Mo-

tivated by the conditional log-odds in (4.2), the prediction can be done through the

conditional probability if we have x and all the other yk’s; in reality however, we do

not have the value of other labels as they themselves are part of the prediction task,

therefore, we propose to replace the yk with a surrogate based on x only, i.e, some

score function fk(x). Ideally, fk(x) should be viewed as an approximation to yk,

indicating how likely yk is to be 1. One natural candidate of such surrogate would be

the marginal log-odds of yk given x. To be specific, we propose the following two-step

model.

Step I: Fit logistic regression on yj ∼ x to obtain β̂j for all j = 1, . . . , q

log

(
P (yk = 1|x)

1− P (yk = 1|x

)
= βk

Tx.

Step II: Fit logistic regression on yj ∼ (x, {fk(x, β̂k), k 6= j}) to obtain (θ̂jj, θ̂jk),

where fk(x, β̂k) = logistic(β̂
T

kx),

log

(
P (yj = 1|x)

1− P (yj = 1|x)

)
= θjj

Tx+
∑
k:k 6=j

θjkfk(x, β̂j). (4.3)

The final classification rule for each yj is given in (4.3) which depends on x only;

therefore prediction can be done separately. Note that each classifier is not linear

in x due to the logistic transformation of the first step model, which increases the

flexibility of the boundary.

4.4.2 Ensemble Method

While prediction on large dimension labels become prohibitive because of the

computational cost, we would still like to predict the labels jointly to gain accuracy.

A compromise between the two leads us to a solution where the problem is broken

into smaller subsets and we fit joint models on the subsets separately. The results

70



can be aggregated from a number of these smaller models. To be more specific, we

randomly sample the subsets of labels with size k, where k is much smaller than q.

We fit the model (4.1) to the subset of labels and repeat this experiment for many

times. The final prediction takes the majority votes for each label from sub-models

in which that label is being selected. The following describes the ensemble method

in mathematical details.

1. Repeat the following for m = 1, . . . ,M :

(a) Randomly sample (without replacement) Sm from the entire label set

{1, . . . , q}, where ‖Sm‖0 = k.

(b) Fit model (4.1) on {(xi,yiSm) : i = 1, . . . , n}, denote the fitted model by

Pm(ySm|x).

2. Given any input x, let ŷSm = argmaxySm Pm(ySm|x), and ŷj,m is the prediction

for yj for all j ∈ Sm, we have

ŷj =
1

M

M∑
m=1

ŷj,m1(j ∈ Sm).

4.4.3 Approximation Methods

There has been many literature on approximating algorithms for finding the maxi-

mum likelihood estimation of binary Markov random fields, most of which originated

from the problem of noisy figure reconstruction. For comparison purpose, we also

apply two approximation methods in our data analysis, respectively ICM (Iterative

Conditional Modes) (Besag , 1986) and MinCut (Minimum Cut of a Graph) (Greig

et al., 1989). The generative model we fit is the same as (4.1), with only the prediction

approximated to gain computational efficiency.
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4.5 Numerical Examples

4.5.1 Simulation Study: Prediction

In this section we conduct simulation study to further illustrate the prediction

rules in proposition IV.1. The purpose of this study is to show that when different

classification error measures are considered, maximum marginal probability predic-

tion and maximum joint probability prediction should be differentiated accordingly.

We show that under certain settings, the difference of prediction accuracy can be

significant. Most of the researchers only consider optimizing Hamming loss or using

Hamming loss as evaluation measure since zero-one error is a very strict measure and

it is usually high. Hence we will mainly focus on Hamming loss in this section.

4.5.1.1 Simulation 1: Ising model without covariates

This simulation considers only y ∈ {0, 1}q from an Ising model without covariates

x. We specify one such sufficient condition on Chain graphical structure that the

marginal prediction has a significant advantage over the joint prediction in minimiz-

ing the Hamming loss. A Chain graphical model indicates that yj is conditionally

independent with all other yk’s except yj−1 and yj+1.

Lemma IV.2. Assume y ∼ Ising(Θ,θ), if the following holds,

1. θ1 = −θ12 = ‖θ−1 ‖1 > 0 , θ2 > θ1, where, θ1 = (θ12, . . . , θ1Q).

2. θqq′ < 0, for (q, q′): |q − q′| = 1.

3. all the other θq’s and θqq′’s are 0.

Then the maximum joint probability prediction has a higher expected hamming loss

than the maximum marginal probability prediction.

An easy extension of this lemma to more general graphical structures is by setting

all the other θjk’s to be negative, then the same results will hold as well.
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We simulate 9 sets of Ising models satisfying the above conditions in lemma IV.2,

calculate the theoretical hamming loss and compare the difference of loss between

joint prediction and marginal prediction. We vary the dimension q ∈ {3, 6, 9} and

the magnitude of parameters which are uniformly generated in [1, 5], [6, 10], and[11, 15]

respectively. In every setting, 50 Ising models are generated and we compute the exact

theoretical value of the Hamming loss both on the joint prediction and the marginal

prediction. Figure 4.1 shows the difference of Hamming loss between two prediction

methods over 50 repetitions in boxplots. Table 4.1 records the mean(std) of the

Hamming loss.
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Figure 4.1: Hamming-loss(ŷjoint)-Hamming-loss(ŷmarginal)

From the box plots 4.1, it is clear that the difference of the Hamming loss is always

positive which means the marginal prediction is always better than the joint prediction

under the setting of Lemma IV.2. As the dimension q increases, the advantage became

more significant (higher differences) and more consistent (smaller dispersion). The

difference does not seem to be affected by the parameters scale that much. From Table
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hloss(yjoint) hloss(ymarginal) ∆hloss

scale = [1,5]
Q = 5 0.3609(0.0357) 0.2939 (0.0236) 0.0670 (0.0142)
Q = 10 0.3854 (0.0165) 0.2964 0.0102) 0.0890 (0.0075 )
Q = 15 0.3943 (0.0121) 0.2962 (0.0085) 0.0981 (0.0058)

scale = [6,10]
Q = 5 0.3515 (0.0347 ) 0.2780 (0.0210) 0.0735 (0.0137)
Q = 10 0.3779 (0.0182) 0.2812 0.0103) 0.0967 (0.0079)
Q = 15 0.3826 (0.0110 ) 0.2781 (0.0062) 0.1045 (0.0048)

scale = [11,15]
Q = 5 0.3584 (0.0342) 0.2821 (0.0207) 0.0763 (0.0135)
Q = 10 0.3746 ( 0.0177) 0.2793 (0.0100) 0.0953 (0.0077)
Q = 15 0.3808 (0.0102 ) 0.2770 (0.0058 ) 0.1038 (0.0044)

Table 4.1: average value(std) of Hamming-Loss for different prediction

4.1, we can see the accuracy gain using marginal prediction comparing to the original

Hamming loss using joint prediction is quite large in terms of relative percentage,

for example, when q = 15 and scale = [11, 15], the reduction in Hamming loss by

marginal prediction is 7.63%, which is around 20% of the original 35.84%.

4.5.1.2 Simulation 2: Ising model with covariates

When covariates x are considered, explicit calculation of the theoretical Hamming

loss become intractable because we can not integrate the partition function Z(θ,x).

Still, we can numerically evaluate the Hamming loss by generating a large number

of data points from the joint distribution P (y,x) and calculating the sample average

of Hamming loss. The data are generated as follows: Firstly, we generate features

x from a multi-variate normal distribution with mean 0 and covariance matrix I; for

each given x, the distribution of y is Ising model (4.1) with chain structure, where

the θjj1’s, θjk’s are generated under the same condition as in Lemma IV.2 and scales

in [1, 5]; for the other θjjl’s where l > 1, we set them to be 0.5. We set q ∈ {3, 9}

and p ∈ {20, 200} respectively. For each combination of p and q, 20 replication are

generated and the results are shown in Figure 4.2.

The results in Figure 4.2 shows the difference in Hamming-loss under each setting.

Only for p = 20 and q = 3, the median of the difference was around 0 with the lower
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Figure 4.2: Hamming-loss(ŷjoint|x)-Hamming-loss(ŷmarginal|x)

half very close to 0; as either p and q grows larger, all of the differences are shifting

to the larger side. For q = 9 specifically, the difference is strictly all above 0 which

partially coincides with the results when there is no covariates that the advantage of

marginal probability prediction is more significant for larger dimension of q.

4.5.2 Real Data Analysis

In this section, we apply the proposed methods on four multi-label data sets and

compare the results for different prediction rules as well as the alternative methods

when the label set is of large dimension. The data sets are downloaded from a publicly

available online library MuLan(a java library for multi-label learning). We start with

a brief description of each one of the data sets and Table 4.2 gives the summary

statistics for each data set.

emotions data set This data set was created using a collection of 700 songs

equally distributed between 7 different genres. For each song a period of 30 seconds

after the initial 30 seconds was extracted and used for labeling and feature extraction.

Two types of features were considered for this study which are rhythmic features and

timbre features. The labels consisted of 6 main emotion groups, including amazed-
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surprised, happy-pleased, relaxing-calm, etc. Each song were rated by three male

experts. The songs which had exactly identical labels for all three annotators were

included in the final data set. This led to a final data set consisting of 593 songs.

More details regarding the data set could be found at Trohidis et al. (2008).

scene data set This data set consists nearly 2400 images of Corel stock photo

library and personal images. There are 6 pre-specified labels including beach, sunset,

field, etc.; the images were originally chosen so that each of the 6 class contained

around 400 images. The images were later re-labeled with multiple labels by three

human observers. After re-labeling, approximately 7.4% of the images belonged to

multiple classes. The features of each image are spatial color moments in LUV space.

For more details of the data set, see Boutell et al. (2004)

yeast data set This data set (Elisseeff and Weston, 2002) is formed by micro-array

expression data and phylogenetic profiles with a total of 2417 genes. The data were

generated from spotted arrays using samples collected at various time points under

different experimental conditions. Each gene is associated with a set of functional

classes whose maximum size can be potentially 190. The whole set of classes if indeed

structured is a tree whose leaves are functional categories. Here we try to predict all

the first level nodes of the tree which has a total number of 14.

CAL500 data set This data set consists a set of 500 Western popular songs from

500 unique artists, each of which was reviewed by a minimum of three individuals.

The labels are semantic annotations containing categories such as emotional content,

genre, instrumentation, and vocal characterizations. A vocabulary of 174 musically

relevant semantic keywords are finally created as the label set. Each song is repre-

sented as feature vector calculated by analyzing a short-time segment of the audio

signal. More details regarding the description of the data set can be found in Turnbull

et al. (2008)

For emotions and scene data sets, we fit the original model (4.1) as well as the two
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name domain n p q cardinality density distinct
emotions music 593 72 6 1.869 0.311 27
scene image 2407 294 6 1.074 0.179 15
yeast biology 2417 103 14 4.237 0.303 198
CAL500 music 502 68 174 26.044 0.15 502

Table 4.2: Summary statistics of the data sets. cardinality: average number of labels
per sample; density: average proportion of labels per sample; distinct:
number of distinct labels combinations in the data set.

approximation algorithms for joint prediction; for yeast data set, we fit the original

model as well as the two alternative methods; for CAL500 data set, joint prediction

is infeasible due to the large size of the label set, therefore we implement only the

alternative methods mentioned in section 4. For each of the test data set, we report

the six error/accuracy measures mentioned in section 3, i.e, Hamming loss, vector

error, precision, recall, F1 and accuracy, with the optimal tuning parameters chosen

by 5-fold cross validation.

data set method 1-HamLoss 1-VecErr Precision Recall F1 Accuracy

emotions
baseline 0.8741 0.4507 0.7923 0.7622 0.7500 0.6793
joint-prob 0.7883 0.3338 0.6360 0.7111 0.6495 0.5701
mrg-prob 0.8027 0.2933 0.6638 0.6126 0.6074 0.5303

scene
baseline 0.9000 0.5476 0.6311 0.6595 0.6344 0.6124
joint-prob 0.8974 0.6647 0.7262 0.6979 0.7068 0.6962
mrg-prob 0.8914 0.5214 0.5706 0.5539 0.5577 0.5486

yeast

baseline 0.8002 0.1469 0.7048 0.5844 0.6111 0.5014
joint-prob 0.7864 0.2044 0.6589 0.6271 0.6219 0.5171
mrg-prob 0.7951 0.1192 0.7297 0.5274 0.5822 0.4681
two-step 0.7935 0.1444 0.6853 0.5923 0.6077 0.4982
ensemble 0.7993 0.1680 0.6980 0.6043 0.6218 0.5135

CAL500 ensemble 0.8504 0 0.5130 0.3090 0.3743 0.2369

Table 4.3: Results of proposed methods on testing data sets.
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4.6 Conclusion

In this project, we propose to use a binary Markov network, i.e, Ising model with

covariates, to explicitly model the conditional distribution P (y|x) for a multi-label

classification problem. The pseudo-likelihood based method is adopted to develop

a computationally efficient estimation procedure. We also investigate the choice of

evaluation measures in connection to different prediction rules. For prediction with

the joint probability, however, computation cost can become huge when the size

of the label set is even moderately large. Therefore, we consider two alternative

approaches motivated from the original Ising model with covariates: one approach

is to fit separate logistic models to each label by approximating the interaction with

other labels with a score function fit beforehand; the other approach is an ensemble

method that aggregates a collection of smaller models built on randomly selected

subsets of the labels. We apply all of the methods on four benchmark multilabel data

sets and compare their prediction performance.

4.7 Appendix

proof of Proposition IV.1 To prove the proposition, we need to following lemma.

Lemma IV.3. Given y = (y1, . . . , yQ) ∼ Pr(y), y ∈ {0, 1}Q, define

ŷmarginal = (ỹ1, . . . , ỹQ), where ỹq = argmaxyqPr(yq)

ŷjoint = argmaxyPr(y)

the following holds

ŷmarginal = argminŷ
1

Q

Q∑
q=1

Pr(ŷq 6= yq) , ŷjoint = argminŷ Pr(ŷ 6= y)

78



Proof. Given any prediction ŷ,

1

Q

Q∑
j=1

Pr(ŷq 6= yq) =
1

Q

Q∑
q=1

Pr(yj = 1− ŷq)

≥ 1

Q

Q∑
q=1

min{Pr(yq = 1), P r(yj = 0)}

=
1

Q

Q∑
q=1

Pr(ŷq,marginal 6= yq)

Similarly,

Pr(ŷ 6= y) = 1− Pr(y = ŷ)

≥ 1−max
y

Pr(y) = Pr(ŷjoint 6= y)

Lemma IV.3 basically tells that if the goal is to minimize hamming loss, the

marginal prediction ŷmarginal based on maximum marginal probability is better than

the joint prediction ŷjoint, which is actually the label set with the maximum joint

probability; however if the goal is to minimize zero-one classification error, then ŷjoint

is preferred to ŷmarginal. With this lemma, the results can be easily extended to models

with covariates x.

Proof. We only need to show the first part and the second part follows similarly.

Given any prediction function ŷ(x),

1

Q

Q∑
q=1

Pr(ŷq(x) 6= yq(x)) =
1

Q

q∑
q=1

∫
Pr(ŷq(x) 6= yq(x) | x) dP (x)

≥ 1

Q

q∑
q=1

∫
Pr(ŷq,marginal(x) 6= yq(x) | x) dP (x) (By Lemma 1.)

=
1

Q

Q∑
q=1

Pr(ŷq,marginal(x) 6= yq(x))
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The sufficient condition in section 4.3.1 is based on the following fact.

Fact. Assuming

Pr(y) =
1

Z(Θ, θ)
exp(

Q∑
q=1

θqyq +
∑
q′>q

θqq′yqyq′) =
1

Z(Θ,θ)
exp(yTAy)

where

A =



θ1
θ12
2
· · · θ1q

2

θ21
2

θ2 · · · θ2q
2

...
...

. . .
...

θq1
2

θq2
2
· · · θq


.

denote θj = (θq1, . . . , θqq−1, θqq+1, . . . , θqQ); θ+
q is the positive part of θ element-wise,

θ−q defined similarly. the following result holds:

1. if θq ≥ ‖θ−q ‖1, Pr(yq = 1) ≥ 0.5.

2. if θq ≤ −‖θ+
q ‖1, Pr(yq = 0) ≥ 0.5.

the above inequality holds strictly unless all the θqq′ ’s are 0.

Proof. let Aq be the (q−1)× (q−1) matrix by deleting both qth row and qth column

of A, then

Pr(yq = 1)

Pr(yq = 0)
=

∑
y−q

exp{(θq + θTq y−q) + yT−qAqy−q}∑
y−q

exp(yT−qAqy−q)

=
∑
y−q

w(y−q)exp(θq + θTq y−q)

(1) ≤ exp(θq + ‖θ+
q ‖1)

(2) ≥ exp(θq − ‖θ−q ‖1)

w(y−q) =
exp(yT−qAqy−q)∑
y−q

exp(yT−qAjy−q)
and

∑
y−q

w(y−q) = 1. From above, it is straight forward

to reach the final conclusion.
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