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Abstract 
Indoor recirculating aquaculture systems (RAS) for the production of shrimp are a 

potentially sustainable alternative to traditional pond culture systems in terms of water 

conservation and reduced impact on receiving water quality.  RAS systems consist of a shrimp 

production tank and one or more biofilters for water treatment.  Microorganisms in the biofilters 

have a critical role in maintaining water quality in the production tank. Therefore, a better 

understanding of microbially mediated nitrogen transformation processes in indoor RAS can 

help improve performance through appropriate operational modifications. Furthermore, a 

reduction in commercial shrimp feed may be possible through the use of biofilter biofilm as a 

supplemental feed source for shrimp.  

The microbial community was characterized in the trickling filter of a local (Okemos, MI) 

indoor, zero-discharge RAS used in the production of Pacific white shrimp, Litopanaeus 

vannamei. Ammonium oxidizing archaea and nitrite-oxidizing nitrospiras were the dominant 

nitrifying microbes in this system. Clone libraries and quantitative polymerase chain reaction 

were used to identify and quantify the ammonium-oxidizers and nitrite-oxidizers in the system.  

A laboratory-scale indoor, zero-discharge RAS was designed and operated under simulated 

intensive growth conditions, i.e., at least 100 shrimp per m2 of tank area.  The ammonium load to 

the system was increased to simulate shrimp growth and additional waste production over time to 

investigate the effect of the ammonium concentration on the population abundance of ammonia-

oxidizers and nitrite-oxidizers in the biological aerated filters of this system. A correlation 

between ammonium concentration and niche differentiation of ammonium oxidizers was not 

observed but the abundance of ammonia oxidizing bacteria increased, with increasing 

ammonium concentration. Also Nitrospira nitrite oxidizing bacteria (NOB) were more abundant 

than Nitrobacter NOB.  

The laboratory-scale indoor, zero-discharge RAS was operated to examine the impact of 

biofilter biofilm as a supplemental feed source on shrimp growth and survival. Supplementing 

commercial shrimp feed with RAS biofilter biofilm is a viable way to reduce feed costs and 

improve the sustainability of RAS. Additional research is needed to optimize the level of biofilm 

supplmentation for increased shrimp growth. 
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Chapter 1: Introduction 
 

1.1 Background 

Aquaculture, which is the cultivation or farming of aquatic animals and plants in fresh, 

brackish, and marine environments (Pillay & Kutty, 2005), has been the most rapidly growing 

animal food producing sector, with an annual increase of at least 8% since 1985 (Food and 

Agriculture Organization, 2012).  The demand for farmed seafood has been increasing, since 

production from wild fish harvest is relatively stable or declining, the global population is 

increasing, and the per-capita seafood consumption has been predicted to increase from to about 

1.5 kg per person per year by 2025 (Food and Agriculture Organization, 2008). As with all food 

production systems, there are drawbacks to aquaculture. The major downside is that aquaculture 

as a global food production system has a negative impact on the environment (Goldburg & 

Triplett, 1997, Boyd & Clay, 1998, Naylor et al., 2000). Negative impacts include destruction of 

coastal mangrove forests or wetlands, use of fish meal or fish oil from wild-caught fish for feed, 

accidental release of non-native species, and discharge of excess nutrients causing eutrophication 

in receiving water bodies. If the aforementioned environmental impacts of aquaculture are 

reduced or eliminated, aquaculture can have a net positive impact on the environment.  

Americans are eating more seafood. Since 1980, fish consumption has increased more 

than 50%  (Blisard et al., 2002). The U.S. Food and Drug Administration (U.S. FDA) reported 

that imports account for more than 75 % of total U.S. fish consumption (Allshouse et al., 2004), 

and the U.S. imports billions of dollars more in edible seafood than it exports.  According to the 

Food and Agriculture Organization of the United Nations (Food and Agriculture Organization, 

2005), edible U.S. seafood production is dominated by oysters and clams (shellfish) and channel 

catfish (fish). By contrast, shrimp are the largest import item. Most of this shrimp is from Asia as 

the Asia-Pacific region produces 88% of all farmed species of shrimp and prawns (Food and 

Agriculture Organization, 2008). In 2001, for example, imported shrimp was estimated at 883 

million pounds and was approximately worth $3.6 billion dollars (Allshouse et al., 2004). 
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Consequently, most of the safety violations for seafood imports are related to shrimp and prawns 

(Allshouse et al., 2004).  For example, in 2001 U.S. FDA detention data for seafood products 

imported from 130 countries listed 6,405 violations.  The vast majority of these (83.6%) were for 

adulteration (which deals with safety, packaging integrity, or sanitation problems), and 

Salmonella accounted for 34 percent of all adulteration violations (Allshouse et al., 2004). 

Approximately 25% of all U.S. FDA seafood import detentions in 2001, and more than half of 

the violations for Salmonella were for shrimp and prawns (farm raised and wild caught) 

(Allshouse et al., 2004).  

Pacific white, or whiteleg, shrimp (Litopeneaus vannamei) is the most popular shrimp 

species cultured. Pacific white shrimp culture production in the U.S. averaged approximately 

2,800 metric tons per year from 1990-2010 (Figure 1.1), which is less than one percent of the 

global average yearly production (Food and Agriculture Organization, 2013). These data suggest 

there is great potential for the U.S. to increase domestic shrimp production, which would have a 

positive impact on food safety and trade.     

 

 
Figure 1.1: World and United States aquaculture production of Pacific whiteleg shrimp from 1970-2010. 

Data source, Food and Agriculture Organization, 2013. 
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Pacific white shrimp is the species of choice for commercial shrimp farming in the U.S.  

From 1950-1972, shrimp farming research and development in the U.S. were aimed at native 

Penaeus (or Litopenaeus) species found in the coastal waters of South Carolina and Texas 

(Hopkins et al., 1995). In 1974, a study was published on the very successful intensive culture of 

Pacific white shrimp and since that time research and development of intensive shrimp 

production in the U.S. has focused on Pacific white shrimp (Hopkins et al., 1995).  Currently, 

Pacific white shrimp are farmed at production levels seven times higher than other shrimp 

species (Food and Agriculture Organization, 2013). 

Farmers can replicate the complete life cycle of Pacific white shrimp (Figure 1.2). The 

shrimp hatchery cycle begins with broodstock, or adult shrimp that can reproduce. Spawning 

occurs and the shrimp are reared through the larval stages. Nurseries are used to increase shrimp 

size for stocking growout systems and/or acclimate post larval (PL) shrimp to farm conditions. 

Growout systems are where PL shrimp are grown to a marketable size. The supply of large 

quantities of PL shrimp from hatcheries has allowed the expansion of shrimp aquaculture 

because it reduced the reliance on capture fisheries for PL shrimp delivery. A specific-pathogen-

free (SPF) shrimp population was established in Hawaii, and it has been a source of SPF stocks 

to hatcheries in the U.S. (Hopkins et al., 1995).  Commercial shrimp farms in the U.S. are 

located in several states, including Texas, South Carolina, Florida, and Arizona (U.S. Marine 

Shrimp Farm Program, 2010).  
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Figure 1.2: Pacific white shrimp or Pacific whiteleg shrimp (Litopenaeus vannamei) production cycle. 

(Source: FAO Cultured Aquatic Species Information Programme [online]. Last updated August 17, 2006. 

Accessed March 24, 2010. http://www.fao.org/fishery/culturedspecies/Litopenaeus_vannamei/en) 
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Shrimp aquaculture in the U.S. must comply with environmental regulations and take into 

account the economics of shrimp markets.  Accordingly, the expansion of shrimp aquaculture in 

the U.S. must proceed in a sustainable and environmentally sensitive manner (Clay, 1997).  

Factors to consider in the sustainability of shrimp aquaculture are (Clay, 1997): site selection, 

eliminate dependency on the capture of wild PL shrimp, efficient use of feed, reduction of 

carbon and nitrogen loads to receiving waters, and reduced water usage. Systems proposed for 

sustainable shrimp farming include recirculating aquaculture systems (RAS) and the biofloc 

system (BFS).  At present, nearly all worldwide shrimp aquaculture production, ranging from 

extensive to intensive, occurs in outdoor, flow-through ponds (FAO, 2007).  In the U.S., shrimp 

culture occurs in ponds because RAS operations, either indoors or outdoors, typically are too 

expensive (Whetstone et al., 2002) to compete with imported shrimp. To be economically 

competitive with shrimp imports, U.S. shrimp farmers must culture shrimp at high stocking 

densities and/or have high-value markets for their product. Indoor RAS allow shrimp farms to be 

located inland, away from valuable coastal property and close to specialty high-value niche 

markets, such as gourmet food stores or restaurants that want a supply of fresh fish/shellfish 

(Losordo et al., 1998).  

 

1.2 Overall goal of dissertation and description of content 

The long-term goal of the research presented in this dissertation is to improve the 

environmental sustainability of shrimp recirculating aquaculture systems (RAS) operated 

indoors.  Microorganisms have a critical role in maintaining water quality and solid waste 

management in RAS. Therefore, a better understanding of the microbially-mediated nitrogen 

transformation processes in indoor RAS can help improve performance through appropriate 

operational modifications. Furthermore, a reduction in commercial shrimp feed may be possible 

through the use of microbial biomass from RAS biofilters as a supplemental feed source. The 

following is a description of the individual chapters in this dissertation: 

 

Chapter 2 provides background information and a literature study on RAS and microbial 

biomass as a supplemental feed source. 
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In Chapter 3, the nitrifying microbial populations of a local indoor shrimp farm were analyzed.  

This farm utilized a zero-discharge RAS for culturing Pacific white shrimp. Ammonia oxidizing 

archaea and nitrite oxidizing Nitrospira-like bacteria were detected, as well as ammonia 

oxidizing bacteria. This study was published in the journal FEMS Microbiology Ecology (Brown 

et al., 2013). 

 

In Chapter 4, laboratory experiments were conducted with three RAS to evaluate the impact of 

increasing ammonia load on ammonia-oxidizing and nitrite-oxidizing microbes in biofilters.   

 

In Chapter 5, microbial biomass from the biofilters of an indoor, zero-discharge RAS was 

evaluated as a supplemental feed source for Pacific white shrimp.  

 

Chapter 6 provides conclusions for this study and recommendations for future research. 

 

Appendix I is supplemental information for Chapter 3.  

 

Appendix II is a summary of the residence time distribution analysis of the laboratory RAS. 

This analysis was done to describe the hydraulic characteristics of the experimental set-up.   

 

Appendix III is supplemental information for Chapter 4. 

 

Appendix IV is supplemental information for Chapter 5. 
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Chapter 2: Literature Review 

 

2.1 Introduction 

As the human population increases, food production must also increase to meet demand.   

Aquaculture, or the farming of aquatic organisms, has been the most rapidly growing production 

sector, with an annual increase at least 8% since 1985 (Food and Agriculture Organization, 

2012).  The demand for farmed seafood has increased because production from wild fish 

harvesting is relatively stable or declining depending on fish type and because the global per-

capita seafood consumption has increased (Food and Agriculture Organization, 2004, Food and 

Agriculture Organization, 2007, Food and Agriculture Organization, 2008).   

Americans are shifting their dietary patterns to include consumption of more seafood. 

The U.S. demand for shrimp has continually increased since 1989 and is supplied primarily 

through imported shrimp. U.S. shrimp imports increased by more than 200% from 1989 to 2011 

(Economic Research Service, 2013).  During this time, the U.S. population increased from 248 to 

308 million people with an associated per capita consumption of 15 to 16 pounds (6.8 to 7.3 

kilograms) (Figure 2.1, National Marine Fisheries Service, 2012). The U.S. Food and Drug 

Administration (U.S. FDA) reported that seafood imports account for more than 75% of total 

U.S. fish consumption (Allshouse et al., 2004). Shrimp are the largest seafood import item in the 

U.S. and come primarily from the Asia-Pacific region, which produces 88% of all farmed shrimp 

and prawns by mass (Food and Agriculture Organization, 2008). The majority of the shrimp 

imports to the U.S. come from Thailand, Ecuador, Vietnam, Indonesia, and China (Economic 

Research Service, 2013) and these countries do not have the same seafood safety standards as the 

U.S., which has led to concerns about seafood safety. For example in 2001, U.S. FDA detention 

data for seafood products imported from 130 countries listed over 6,000 violations; Salmonella 

contamination accounted for 34% of all adulteration, packing integrity or sanitation, violations 

(Allshouse et al., 2004). Approximately 25% of all U.S. FDA seafood import detentions in 2001, 
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and more than half of the violations for Salmonella, were for shrimp and prawns (farm raised and 

wild caught) (Allshouse et al., 2004). Therefore, increasing domestic shrimp production would 

have a positive impact on food safety and trade.  

 

 

 
Figure 2.1: Per capita seafood consumption (left axis) and population (right axis) in the U.S. (Adapted 

from National Marine Fisheries Service, 2012) 

 

 

The Pacific white shrimp (Litopeneaus vannamei), also called Pacific whiteleg shrimp, is 

the most popular cultured shrimp species in the world.  It is native to the Pacific coast of Central 

and South America and has a complex life cycle that includes three larval stages. Pacific white 

shrimp is the species of choice for commercial shrimp farming.  From 1950-1972, shrimp 

farming research and development in the U.S. were aimed at native Penaeus shrimp species 

found in the coastal waters of the Atlantic Ocean and Gulf of Mexico  (Hopkins et al., 1995). 

These species were Northern white shrimp (Penaeus setiferus), Northern pink shrimp (Penaeus 

duorarum), and Northern brown shrimp (Penaeus aztecus). However, a study published in 1974 

demonstrated successful intensive culture of the non-native, Pacific white shrimp and, since that 
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time, research and development of intensive shrimp production in the U.S. has focused on 

Pacific white shrimp (Hopkins et al., 1995) instead of native shrimp species. Since 1990, Pacific 

white shrimp accounted for all of the aquaculture production of shrimp and prawns in the U.S. 

(Food and Agriculture Organization, 2013). Farmed Pacific white shrimp production in the U.S. 

averaged approximately 2,800 metric tons per year from 1990-2010, which is 0.3% of the global 

average yearly production (Food and Agriculture Organization, 2013). Due to low production in 

the U.S., the majority of Pacific white shrimp consumed in the U.S. is imported. 

Conventional aquaculture systems include ponds and cages, or net pen systems, which 

are open-air and open-water environments. These systems are geographically limited to locations 

that have climates suitable for growing shrimp, require large land areas, utilize large volumes of 

water to maintain water quality, and are vulnerable to disease. Since the farmer cannot control 

water temperature in conventional culture systems, pond and cage systems must be located in a 

water body that has the appropriate temperature for shrimp growth. Aquaculture systems can be 

extensive, semi-intensive, or intensive depending on the density of cultured organisms. The 

division between these intensity levels are not rigidly defined, but can be classified as less than 

or equal to one shrimp per m2 for extensive, three to ten shrimp per m2 for semi-intensive, 15 to 

40 shrimp per m2 for intensive.  A density greater than 100 shrimp per m2 is considered ultra-

intensive (Fast & Lester, 1992). In extensive systems, farmers rely on natural production, semi-

intensive systems use fertilizers to promote the growth of algae as feed for shrimp, and intensive 

systems rely on feed pellets manufactured from fish meal, plants, nutritional supplements, and a 

binder to feed shrimp (Boyd & Clay, 1998, Diana, 2012). Conventional systems tend to be semi-

intensive or intensive because water quality control is difficult, which limits the number of 

organisms that can be grown at a given time. They require a large land area to produce a large 

crop. To maintain water quality, excess nutrients from aquaculture ponds are discharged during 

water exchange. Water exchange is necessary due to oxygen depletion by the growing shrimp 

and microorganisms, the accumulation of organic matter (from uneaten feed and feces), and the 

accumulation of inorganic nitrogen compounds (van Rijn, 1996). Shrimp and other aquatic 

organisms do not efficiently extract nitrogen from their feed and around 75% of nitrogen 

provided in the feed is excreted as waste (Piedrahita, 2003, Gutierrez-Wing & Malone, 2006). 

Most ponds are operated with high rates of water exchange and approximately 40% of pond 

volume is replaced daily (Samocha et al., 2002).  For flow-through systems, the water is 
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continually discharged. Conventional aquaculture systems are vulnerable to disease because of 

their open-air, open-water environment. Diseases are transferred by direct water contact with 

diseased organisms.  

  As with all food production systems, conventional aquaculture systems affect the 

environment. Pond and cage culture has documented negative environmental impacts, which 

include destruction of coastal mangrove forests or wetlands, use of fish meal or fish oil in 

manufactured feed, accidental release of non-native species, and discharge of excess nutrients 

causing eutrophication, or low dissolved oxygen, in receiving water bodies (Goldburg & Triplett, 

1997, Boyd & Clay, 1998, Naylor et al., 2000). Coastal mangrove forests and wetlands were 

converted to pond systems for shrimp farming in tropical areas including Ecuador and Thailand 

(Boyd & Clay, 1998, Naylor et al., 2000). In Thailand, an estimated 161,000 acres (65,000 

hectares) of mangrove forests were converted to shrimp farms between 1961 and 1993 

(Menasveta, 1997). Cage farming in bays, rivers, lakes, and other coastal areas involved the use 

of intensive stocking and feeding, which resulted in increased oxygen demand and nitrogen 

loading (Pillay, 1992).  Manufactured feeds contained 30% fish meal and 2% fish oil from wild-

caught fish in 1997 (Naylor et al., 2000). Large-scale aquaculture has both negative and positive 

environmental impacts (Diana, 2009). Positive environmental impacts include supplementing 

reproduction in natural populations, improving the quality of natural waters through filtering or 

consuming wastes by cultured organisms, and reducing pressure on fisheries by providing 

alternative sources in the market (Diana, 2012). 

There is potential for the aquaculture industry to expand in the U.S., but it must be done 

in a sustainable manner. Assessment tools that have been used to evaluate the environmental 

impact of aquaculture systems include ecological footprint and life cycle assessment (Samuel-

Fitwi et al., 2012). Developing sustainable aquaculture can be done using an ecosystem, or 

ecological, approach (Costa-Pierce, 2010, Klinger & Naylor, 2012) and an intensive culture 

approach in technological systems that can treat the associated waste (Timmons & Ebeling, 

2007, Klinger & Naylor, 2012). According to Costa-Pierce, ecological aquaculture aims to 

develop aquatic farming ecosystems that preserve and enhance the form and functions of the 

natural and social environments in which they are situated. This approach is appropriate for 

small-scale farms or in locations that have large land areas available for aquaculture. Intensive 

culture systems are suitable systems when high productivity in a small land area is desired from a 
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profit perspective. Culture intensity is an important consideration in improving the 

environmental impacts of aquaculture. A life cycle assessment of intensive and semi-intensive 

shrimp pond systems in China (Cao et al., 2011) showed that the intensive system had 

significantly higher environmental impacts per unit of production in global warming, 

acidification, eutrophication, cumulative energy use, and biotic resource use. The use of fishmeal 

and fish oil from fisheries in shrimp must also be reduced or eliminated to improve the 

sustainability of shrimp aquaculture (Duarte et al., 2009, Klinger & Naylor, 2012). Current 

approaches to reduce fishmeal and fish oil in feeds include substituting plant proteins, terrestrial 

animal proteins, fish processing waste, and using microorganisms as a food source, similar to 

extensive systems (Klinger & Naylor, 2012). 

In the U.S., limitations imposed by land cost and regulation of water quantity/quality and 

waste discharges are costly to the aquaculture industry (Timmons & Ebeling, 2007). 

Conventional pond culture must be located on a coastal site, which creates conflict with other 

uses of coastal areas including residential property and recreation. These issues make indoor 

operations away from the coast a more viable option than open pond or cage culture systems. 

However, such a system requires (i) an indoor system with heating and temperature control, (ii) 

availability of local brackish water sources or artificial preparation of salt water (for marine 

organisms), and (iii) water treatment to allow recycling of the water and reduction of waste. 

Using currently developed technologies, the energy and material costs of such a system exceed 

those of outdoor production facilities in warmer areas with ready access to salt water.  An 

economic feasibility study (Van Wyk, 1999) concluded that shrimp from technologically 

advanced aquaculture systems cannot directly compete with imported shrimp in the wholesale 

frozen market.  Developing a viable indoor shrimp aquaculture industry in the U.S. will require 

operations to be highly efficient, predictable, and stable to compete with inexpensive imports.  

   

2.2 Recirculating Aquaculture System (RAS) 

Two technologies that may be adopted for shrimp aquaculture operations are the bio-floc 

system (BFS) and recirculating aquaculture system (RAS).  BFS have been under development 

since the 1990s, while RAS have been under development and refinement since the 1970s. Both 

systems can be operated at or near zero water exchange, i.e., no water discharge during a 
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cropping cycle, or the period of time it takes to grow the shrimp from post-larval to harvest size. 

These systems also rely on microbial resource management (Verstraete et al., 2007), where 

microbes maintain water quality for production systems, enhance growth, and may serve as 

supplemental feed source.  In BFS, an organic carbon source is added to establish a high carbon 

to nitrogen ratio to promote growth of heterotrophic bacteria that assimilate ammonium into 

microbial biomass in the culture tank (Avnimelech et al., 1992, Avnimelech, 1999). On the other 

hand, RAS consist of an integrated set of processes that are designed to remove the by-products 

of fish or shrimp metabolism and thus treat water for reuse in the culture tank (Fig. 2.2). The 

primary treatment unit of RAS is the biofilter, which relies on chemoautotrophic microbial 

conversion of ammonium to nitrate. Because of the higher water quality associated with RAS, 

the water can be reused between cropping cycles (van Wyk, 1999).  Both systems are attractive 

in terms of water conservation, reduced land use, and limited impact on receiving water quality 

when compared to conventional pond culture.  Furthermore, these systems are also attractive in 

terms of disease control: the water used is typically disinfected prior to startup to kill microbial 

shrimp pathogens, the shrimp used for production can be obtained as certified pathogen-free, and 

the indoor enclosure reduces crop contamination.  In both of these systems, microbes play a 

central role in maintaining water quality, improving shrimp health, and managing waste. Due to 

widespread commercial use of RAS, and the potential extensive benefits of RAS for shrimp 

aquaculture, the focus of this research is on RAS. 

 

 
 

Figure 2.2 Schematic diagram of the unit processes in a recirculating aquaculture system (RAS). 

Adapted from Ebeling, 2000. 
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RAS provide benefits such as year-round production of shrimp, disease control, and waste 

management (Timmons & Ebeling, 2007). They can be operated indoors or outdoors. Both 

indoor and outdoor RAS can be operated with minimal or no water discharge. However, outdoor 

systems may have problems with cultured organisms escaping, resulting in the release of non-

native species into the environment.  Indoor systems allow shrimp farms to be located inland, 

away from valuable coastal property and close to specialty high-value niche markets, which 

reduces transportation. Consequently, the focus of this research is on indoor RAS. 

RAS are more capital intensive than conventional pond or cage culture. Therefore, they 

must produce at intensive or ultra-intensive culture levels to be profitable (Timmons & Ebeling, 

2007). RAS can support intensive culture conditions better than conventional systems because 

RAS allow farmers to have a high degree of control over important physical and chemical 

parameters (e.g., temperature, dissolved oxygen level, pH, and ammonia concentration) in the 

culture unit. In addition, stress on the shrimp from poor water quality is minimized and shrimp 

can be produced year-round. Water quality control units play a critical role in RAS operation. 

These units remove particulate waste solids, oxidize toxic inorganic nitrogen compounds, 

maintain dissolved oxygen concentrations above 5 mg/L, remove carbon dioxide, and inactivate 

pathogenic microorganisms (Fig. 2.2, Ebeling, 2000).  

The most important process to RAS performance is the nitrifying biofilter(s) in which 

microorganisms convert ammonium to nitrate. Nitrifying biofilters keep ammonium 

concentrations below toxic levels through conversion of ammonium to nitrite and then nitrite to 

nitrate by ammonium-oxidizing and nitrite-oxidizing microbes, respectively (Fig. 2.3). Toxic 

concentrations of ammonium and nitrite depend on the species being cultured and salinity levels. 

For Pacific white shrimp, ammonium toxicity levels range from 2.44 to 3.95 mg/l of total 

ammonium-nitrogen (Lin & Chen, 2001), while nitrite toxicity levels range from 6.1 to 25.7 mg/l 

of nitrite-nitrogen (Lin & Chen, 2003). Decreases in salinity, in the range of 35 to 15 g/L, result 

in increased sensitivity to ammonium and nitrite (Lin & Chen 2001, Lin & Chen 2003). RAS 

utilize various types of biological reactor, or bioreactor, configurations to achieve nitrification. 

The most commonly used types of bioreactors for nitrification are: upflow or downflow packed 

bed reactors, trickling filters, floating bead filters, fluidized bed filters, rotating biological 

contactors (RBC), and moving bed reactors (Timmons & Losordo, 1994, Huguenin & Colt, 

2002, Timmons et al., 2002, Timmons & Ebeling, 2007). Parameters important to bioreactor 
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performance include pH, alkalinity, and concentrations of dissolved oxygen, ammonium-

nitrogen, nitrite-nitrogen, and organic matter (particulate and dissolved). Most RAS rapidly 

remove suspended solids from the culture unit to minimize the growth of heterotrophic bacteria 

in the biofilter because they out-compete the slow-growing nitrifying bacteria for oxygen and 

space in the biofilm due to their faster growth rate. 

 

 
Figure 2.3: Schematic diagram of the nitrification process. The ammonium oxidizing bacterium/archaeon 

derives energy from the conversion of ammonium to nitrite, while the nitrite oxidizing bacterium derives 

energy from the conversion of nitrite to nitrate. 

 

2.3 Microbial ecology of RAS biofilters   

The activities of various microbes are important to aquaculture in general, but particularly to 

zero-discharge RAS, in which water quality is maintained solely via biofiltration. To maintain water 

quality over the long run, and thus reduce the need for water exchange, microbial communities must 

process excess nitrogen, and the microbes themselves must be controlled such that they do not 
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accumulate to a density that is detrimental to the operation of the system, e.g. reduce dissolved 

oxygen concentration below 5 mg/L. Collecting information on the microbial ecology in the water 

treatment reactors provides insight into the roles of various microbes in the nitrogen 

transformation processes occurring in the system. This information can be used to enhance the 

efficiency of microbiological processes through the optimization of operating conditions (e.g., 

oxygen and nutrient levels) to promote the growth and activity of the desired microbes.  

 

2.3.1 Nitrogen cycle and ammonia removal pathways 

The concentrations of various nitrogen species are important in aquaculture because 

several nitrogen compounds are toxic to aquatic organisms at various concentrations. Un-ionized 

ammonia is toxic at concentrations of ranging from 0.8 to 2 mg/L ammonia-nitrogen (Timmons 

& Ebeling, 2007); consequently farmers are advised to maintain total ammonia (sum of un-

ionized and ionized ammonia) below 1 mg/L nitrogen (Timmons & Ebeling, 2007). Nitrite above 

5 mg/L nitrite-nitrogen changes blood hemoglobin to methemoglobin, which does not carry 

oxygen and can cause death (Lin & Chen, 2003, Timmons & Ebeling, 2007). Researchers have 

shown that chronic exposure to nitrate concentrations above 200 mg/L nitrate-nitrogen has a 

negative impact on growth (Kuhn et al., 2010).  

Nitrogen (N) exists in a number of oxidation states in the environment, including zero in 

nitrogen gas (𝑁2), negative three in amino groups of proteins, negative three in un-ionized 

ammonia (𝑁𝐻3) and ionized ammonia (𝑁𝐻4+), positive one in nitric oxide (NO), positive two in 

nitrous oxide (N2O), positive three in nitrite (𝑁𝑂2−), and positive five in nitrate (𝑁𝑂3−). Nitrogen 

is cycled through these oxidation states via microbially mediated processes (Figure 2.4). Major 

microbial nitrogen transformations include nitrogen fixation, ammonification, aerobic 

ammonium oxidation (nitritation) and aerobic nitrite oxidation (collectively referred to as 

nitrification), denitrification, and anaerobic ammonium oxidation (anammox). Of primary 

interest to aquaculture systems are ammonia transformation processes which are assimilation, 

ammonification, nitrification, and anammox. Assimilation is the uptake of ammonia by microbes 

to create proteins and nucleic acids, and ammonification is the process by which ammonia is 

released during the decomposition of organic nitrogen compounds such as proteins. Nitrification 

is the aerobic oxidation of ammonia to nitrite followed by the aerobic oxidation of nitrite to 
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nitrate. Anammox is the oxidation of ammonium and the reduction of nitrite to form nitrogen gas 

in environments without oxygen (Strous et al., 1999).  Denitrification is an important 

transformation process in zero-discharge systems that utilize nitrification because in these 

systems nitrate accumulates to concentrations above 200 mg/L N. The most commonly used 

ammonia “removal” process in aquaculture and wastewater treatment is nitrification. However, 

use of anammox has increased in wastewater treatment during the last decade (Kumar & Lin, 

2010, Van Hulle et al., 2010, Terada et al., 2011, Bagchi et al., 2012). Since nitrification is the 

primary ammonia transformation process used in RAS, this review will focus on the microbial 

ecology of that process.  

 

 
Fig. 2.4 Diagram of the nitrogen cycle (adapted from Madigan et al., 2009). The solid arrows denote 

oxidation or reduction reactions, and the dashed arrows denote reactions without changes in oxidation 

state. Anammox reaction is 𝑁𝐻3 + 𝑁𝑂2− +  𝐻+ → 𝑁2 + 2𝐻2𝑂   
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2.3.2 Aerobic ammonia oxidation 

Nitrification is a two step process in which ammonia is oxidized to nitrite by ammonia 

oxidizing bacteria (AOB) or ammonia oxidizing archaea (AOA) and nitrite is then oxidized to 

nitrate by nitrite oxidizing bacteria (NOB) (Figure 2.3, 2.4).  The sensitivity of AOB and NOB to 

a wide variety of environmental factors is well known, so much so that nitrification has been 

regarded as the “Achilles heel” of wastewater treatment (Daims et al., 2006).  In recirculating 

aquaculture settings, the challenges associated with accumulation of ammonia and nitrite are 

similar to those in the wastewater treatment field and include problems with low dissolved 

oxygen levels, pH outside the optimal range for nitrifying microbes (7.5 – 8.6), and accumulation 

of trace amounts of toxic sulfides due to the activity of sulfate reducing microbes when dissolved 

oxygen concentrations are low (Joye & Hollibaugh, 1995, Masser et al., 1999, Ling & Chen, 

2005).  Less is known about the sensitivity of AOA because they have not been under study for 

as long as the AOB. However, research has shown that AOA have adapted to survive under 

ammonia limited conditions where AOB cannot grow (Hatzenpichler et al., 2008, Martens-

Habbena et al., 2009), AOA utilize a different ammonia oxidation pathway than AOB (Walker et 

al., 2010), and AOA use a different carbon fixation pathway (Berg, 2011).   

AOB mediate the first step in nitrification. They use ammonia as their energy source and 

carbon dioxide as their carbon source, although some AOB can also use organic carbon as their 

carbon source (Bock & Wagner, 2013).  AOB and were first isolated in the 19th century by 

Winogradsky from soil (Madigan et al., 2009). Since then, researchers have continued to 

investigate the diversity of AOB in various terrestrial and aquatic environments. All known AOB 

share a common ammonia oxidation biochemical pathway, in which ammonia is oxidized to 

hydroxylamine by an ammonia monoxygenase (AMO) complex and hydroxylamine is oxidized 

to nitrite by a hydroxylamine oxidoreductase (HAO) complex (Klotz & Stein, 2008, Madigan et 

al., 2009). These microbes can only respire under aerobic conditions, although some groups may 

be tolerant of low oxygen or anoxic environments (Schmidt & Bock, 1997). Studies have shown 

that AOB can reduce nitrite under anoxic conditions to nitrogen gas (Schmidt et al., 2003). The 

phylogeny of AOB has been inferred from the 16S rRNA gene and the ammonia monooxygenase 

A (amoA) gene. The known AOB belong to two lineages of the Proteobacteria, the beta-subclass 

and the gamma-subclass (Purkhold et al., 2000). The genera Nitrosomonas, Nitrosospira, 

Nitrosolobus, and Nitrosovibrio fall within the Betaproteobacteria, and the genus Nitrosococcus 
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is affiliated with the Gammaproteobacteria. Betaproteobacteria-AOB can vary from no salt 

requirement to obligate halophilic, while Gammaproteobacteria-AOB are obligate halophilic 

(Koops & Pommerening-Roser, 2001). AOB are one of two microbial populations known to 

oxidize ammonium to nitrite. 

AOA is the other microbial population known to oxidize ammonium to nitrite. The first 

cultivated strain of AOA, Nitrosopumilus maritimus strain SCM1, was isolated from a marine 

aquarium tank in 2005 (Konneke et al., 2005).  Reviews of the literature (Prosser & Nicol, 2008, 

Erguder et al., 2009, You et al., 2009, Hatzenpichler, 2012, Stahl & de la Torre, 2012) indicate 

that AOA are present in various environments including marine waters, biofilters of aquaria, 

coral reefs, estuaries, wastewater treatment plants, hot springs, sediments, and soils based on the 

detection of archaeal amoA gene. In most studies in which the abundances of archaeal and 

bacterial amoA gene copies were investigated, the archaeal amoA gene copies outnumbered 

bacterial amoA copies (Erguder et al., 2009, Schleper & Nicol, 2010, Hatzenpichler, 2012, Stahl 

& de la Torre, 2012), which is an indication that AOA are more abundant than AOB in most 

natural and in some engineered environments. The factors that influence this distribution are still 

unclear, but researchers have proposed that AOA might be important ammonia oxidizers in low 

nutrient environments and environments where bicarbonate is the dominant form of inorganic 

carbon (Erguder et al., 2009, Schleper & Nicol, 2010, Hatzenpichler, 2012).  It was originally 

proposed that the AOA belong to the Crenarchaeota kingdom of the domain Archaea in the 

Group I lineage; however, upon further research AOA were suggested to belong to a newly 

named kingdom “Thaumarchaeota” (Brochier-Armanet et al., 2008, Spang et al., 2010, Pester et 

al., 2011).  Several Thaumarchaeota strains of AOA exist in enrichment cultures including: a 

psychrophilic strain Cenarchaeum symbiosum (optimal growth at 10°C), which has a symbiotic 

relationship with a marine sponge (Preston et al., 1996);  a moderately thermophilic strain 

“Candidatus Nitrososphaera gargensis,” (optimal growth at 46°C),  which was enriched from the 

Siberian Garga hot spring (Hatzenpichler et al., 2008); and a thermophilic strain “Candidatus 

Nitrosocaldus yellowstonii” (optimal growth at 69°C), which was enriched from hot springs in 

Yellowstone National Park (de la Torre et al., 2008). While some AOA genomes, including the 

genome of Nitrosopumilus maritimus SCM1, suggest mixotrophic growth, to-date experimental 

results on mixotrophic growth have been mixed (Hatzenpichler, 2012). Organic carbon 

compounds can promote or inhibit AOA growth depending on the type and concentration. For 
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example, Nitrososphaera viennensis, a soil isolate, grows better in the presence of pyruvate than 

in purely autotrophic conditions (Tourna et al., 2011). Knowledge on conditions favorable for 

AOA growth is continually evolving.  

The second step of nitrification is mediated by NOB. There are five phylogenetically 

distinct groups of aerobic NOB, Nitrobacter, Nitrospina, Nitrococcus, Nitrospira, and Nitrotoga. 

The genus Nitrobacter is part of the Alphaproteobacteria and the genera Nitrospina and 

Nitrococcus belong to the Gammaproteobacteria. The genus Nitrospira falls within the separate 

phylum Nitrospirae, which is closely related to the Deltaproteobacteria (Koops & 

Pommerening-Roser, 2001). A cold-adapted betaproteobacterial NOB, Candidatus Nitrotoga 

arctica, was recently cultivated from the Siberian Arctic (Alawi, 2007). Researchers have also 

identified a nitrite oxidizing bacterium in the phylum Chloroflexi (Sorokin et al., 2012). Nitrite 

oxidizers use the enzyme nitrite oxidoreductase to oxidize nitrite to nitrate (Schmidt et al., 2003, 

Madigan et al., 2009).  For many years, the general consensus was that Nitrobacter species were 

the dominant NOB in most environments because these were isolated most frequently 

(Abeliovich, 2006). However, since molecular methods have been applied to environmental 

samples, researchers have found that the dominant nitrite oxidizers in most environments are 

Nitrospira species (Daims et al., 2001, Abeliovich, 2006). Studies have shown that Nitrospira-

like bacteria can exploit low amounts of nitrite and oxygen more efficiently than Nitrobacter 

(Schramm et al., 1999, Koops & Pommerening-Roser, 2001). 

Since nitrifying microbes play a crucial role in the performance of RAS biofilters, researchers 

have studied these microbes in aquaria, freshwater RAS, and marine RAS. Aquaria and RAS are 

similar in how they maintain water quality with differences arising from the density and/or variety of 

animals present. Hovanec and DeLong (1996) indicated that the bacteria thought to be traditionally 

responsible for nitrification in aquaria, such as Nitrosomonas europaea and Nitrobacter 

winogradskyi or close relatives, were not the dominant components of nitrifying freshwater aquaria.  

On the other hand, Nitrosomonas europaea and related species accounted for as much as 20% of the 

total bacterial rRNA in nitrifying seawater aquaria. Hovanec et al. (1998) found that nitrite oxidation 

in freshwater aquaria was mediated by bacteria closely related to Nitrospira marina and Nitrospira 

moscoviensis instead of Nitrobacter spp. In a study of the biofilter of a marine RAS culturing shrimp 

(Brown et al., 2013), the only NOB detected, via 16S rRNA gene targeted clone library and Sanger 

sequencing and quantitative polymerase chain reaction, were Nitrospira spp. Studies evaluating 
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nitrifier diversity in  biofilters of marine aquaria or aquaculture systems have shown that elevated 

salinity levels select for a less diverse AOB community (Grommen et al., 2005), and various 

Nitrosomonas species including Nitrosomonas aestuarii (Itoi et al., 2006), Nitrosomonas sp. 

Nm143 (Itoi et al., 2006), Nitrosomonas cryotolerans (Tal et al., 2003), and Nitrosomonas 

marina (Tal et al., 2003, Grommen et al., 2005) have been detected. 

 

2.4 Limitations of Indoor, Zero-Discharge RAS  

Indoor, zero-discharge RAS are an alternative technology to pond culture. As with all 

technologies, RAS have areas that need improvement. These issues include biofilter start-up 

time, maintaining water quality in a dynamic system, nitrate accumulation, and reliance on 

commercial feed. It can take several weeks to establish nitrification in a nitrifying biofilter due to 

the slow growth rate of chemoautotrophic bacteria (Timmons & Ebeling, 2007). One way to 

solve this issue is to feed the biofilters ammonium once they have been inoculated with biomass 

from an active nitrifying reactor prior to shrimp addition (Timmons & Ebeling, 2007). The other 

three concerns listed above are described in more detail below.  

 

2.4.1 Importance of nitrification in zero-discharge RAS 

The heart of a zero-discharge RAS facility lies in the biofilters. RAS reliance on 

chemoautotrophic microorganisms, AOB and NOB, is its weakness, since the microbes that 

accomplish this task encompass a narrow phylogenetic range, are slow growing, possess limited 

metabolic versatility, and are sensitive to a variety of environmental factors (Prosser, 1989). 

Management of microbial communities in zero-discharge RAS is central to process performance, 

in terms of water quality, shrimp yield, and waste treatment. The presence of AOA, in addition to 

AOB, provides a more diverse ammonia oxidizing microbial community. Higher diversity 

should result in biofilters that have a better ability to maintain water quality as concentrations 

fluctuate over time due to the presence of microbes with similar functions but different niches, 

such as AOA and AOB.  The distribution of AOA and AOB in various environments including 

in engineered systems is an on-going area of research.  

Previous studies have analyzed the nitrifying communities in aquaria and aquaculture biofilms. 

Researchers have investigated freshwater aquaria (Hovanec & DeLong, 1996, Hovanec et al., 1998, 



 

23 

 

Burrell et al., 2001, Sauder et al., 2011), marine aquaria (Urakawa et al., 2008), and aquaculture 

biofilms (Foesel et al., 2008, Keuter et al., 2011, Brown et al., 2013). The work by Hovanec and 

Delong (1996) indicated that neither AOB nor Nitrobacter NOB were present in freshwater aquaria. 

Hovanec and colleagues (1998) found that nitrite oxidation in freshwater aquaria was mediated by 

bacteria closely related to nitrite-oxidizing Nitrospira instead of Nitrobacter species. In several 

studies, AOA were the dominant ammonia oxidizers (Sauder et al., 2011, Sauder et al., 2012, Brown 

et al., 2013). Researchers have proposed salinity level (Grommen et al., 2005) and temperature 

(Urakawa et al., 2008) as factors in determining the niches of ammonium oxidizers. Ammonium 

concentration has also been suggested as a factor determining the abundance of AOA and AOB 

(Erguder et al., 2009, Schleper, 2010). In studies of ammonium amended soils, AOB were more 

abundant than AOA (Taylor et al., 2010, Verhamme et al., 2011). While in studies of freshwater 

aquarium biofilters (Sauder et al., 2011) and rotating biological contactors treating municipal 

wastewater (Sauder et al., 2012), AOA were the dominant ammonium oxidizers and their 

abundance was inversely correlated to ammonium concentration. AOA were also dominant in 

marine RAS biofilters (Brown et al., 2013) where ammonium concentrations were low. To date 

no studies have examined the role of ammonium concentration in determining the abundance of 

ammonia oxidizers in marine RAS.  

 

2.4.2 Nitrate accumulation in zero-discharge RAS 

Recirculating systems rely on nitrification for the transformation of ammonia-nitrogen to 

nitrate-nitrogen, which leads to the accumulation of nitrate-nitrogen in the system. The nitrate 

concentration in RAS depends on the water exchange rate and the extent of nitrification and 

denitrification. Discharge of water with large nitrate concentrations from RAS can adversely 

affect the environment.  Nitrate concentrations also need to be monitored from a fish/shrimp 

growth perspective because nitrate can accumulate to levels that are stressful or toxic. Relative to 

ammonia and nitrite, nitrate is not as toxic to aquatic organisms (van Rijn, 1996).  Consequently, 

most commercial RAS do not include a nitrate removal unit. Nitrate concentrations below 200 

mg/L are acceptable for marine organisms (Huguenin & Colt, 2002, Kuhn et al., 2010), but 

investigators have reported maximum nitrate concentrations in recirculating systems as high as 

400 mg/L (Otte & Rosenthal, 1979). As stocking densities increase and water exchange rates are 
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reduced to zero, the denitrification process will become more important to RAS operation 

(Ebeling, 2000).  

Microorganisms can reduce nitrate concentrations in RAS two ways. Nitrate reduction 

pathways can be assimilatory, where nitrate is used as the nitrogen source in biosynthesis, or 

dissimilatory, in which nitrate is used as an electron acceptor in metabolism. If ammonium is 

present, it is preferentially used as nitrogen source for cell synthesis. However, when ammonium 

is unavailable, microbes utilize other compounds as a nitrogen source including nitrate. In terms 

of energy metabolism, nitrate is a common alternative electron acceptor for cellular respiration 

when oxygen is not present (Madigan et al., 2009). Both of these pathways are able to reduce 

nitrate concentrations in RAS. 

Dissimilatory denitrification has been the focus of nitrate removal in RAS. Research in 

this area has been on-going since the 1970s. Investigators studied denitrification in packed bed 

reactors (Balderston & Sieburth, 1976, Abeysinghe et al., 1996, Sauthier et al., 1998), and an 

aerobic trickling filter followed by an activated sludge denitrification filter (Otte & Rosenthal, 

1979). These studies used an external electron donor source. External electron donor addition 

increases denitrification efficiency, but it increases the cost of the system. Therefore, a few 

studies utilized the endogenous organic matter (which includes shrimp feces, microbial biomass, 

and uneaten feed), in the culture tank as the electron donor: in a digestion basin followed by a 

fluidized bed reactor (Van Rijn & Rivera, 1990, Aboutboul et al., 1995, Arbiv & van Rijn, 1995, 

Shnel et al., 2002, Gelfand et al., 2003), a packed bed reactor (Phillips & Love, 1998), activated 

sludge reactor (Klas et al., 2006a, Klas et al., 2006b), and up-flow fixed bed biofilter (Tal et al., 

2009). Researchers have also investigated hydrolysis followed by fermentation of particulate 

organic matter, collected from a commercial RAS farm, to produce volatile fatty acids for use as 

a carbon source in denitrification (Suhr et al., 2013). Another technology under investigation for 

application in aquaculture is electrochemical treatment (Mook et al., 2012) where nitrate is 

reduced to nitrogen gas on the cathode.  

There are other pathways for nitrate removal in aquaculture systems. One such pathway 

is the BFS in which an organic carbon source is added to the culture tank to promote the growth 

of heterotrophic bacteria that assimilate ammonium into microbial biomass (Avnimelech, 1999, 

Avnimelech, 2007). In integrated multi-trophic aquaculture systems (IMTA), production of fed 

fish/shellfish is combined with an economically valuable organism, e.g., plants, filter feeding 
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fish, oysters, or clams, that can utilize the metabolic byproducts from fish/shellfish for their 

growth (van Rijn, 2013). Examples of IMTA are aquaponic systems that co-culture plants 

(Racocy, 2007), high-rate algal ponds (Metaxa et al., 2006), and constructed wetlands (Zhong et 

al., 2011). There are multiple ways to manage inorganic nitrogen in aquaculture systems and 

those that reduce waste and/or recycle nutrients into organisms are the best options in terms of 

improving the environmental sustainability of aquaculture systems. 

 

2.4.3 Microbial biomass from RAS biofilters as supplemental feed for shrimp 

In intensive shrimp culture, the nutritional requirements of the shrimp are typically met 

through the addition of an artificial feed. This commercial food represents a significant 

production cost for shrimp farmers. The production of commercial food has a negative 

environmental impact on fisheries due to the inclusion of fish oil and fish meal from wild-caught 

fishes (Goldburg & Triplett, 1997, Boyd & Clay, 1998, Naylor et al., 2000). Therefore, reduction 

in the amount of commercial feed that must be given to shrimp reduces production costs for 

farmers and improves sustainability of the system because it reduces the need for the use fish 

meal and fish oil from wild-caught fish.  

Researchers are searching for a fishmeal replacement in aquaculture feeds. Fishmeal is 

important because it provides essential nutrients and is palatable (Suarez et al., 2009). 

Alternatives to fishmeal must supply essential nutrients, be palatable, and preferably would be 

cheaper than fishmeal. Fishmeal alternatives under investigation include soy protein (Cruz-

Suarez et al., 2009, Salze et al., 2010), soybean meal (Alvarez et al., 2007), and microbial floc 

meal (Kuhn et al., 2009, Kuhn et al., 2010). Soybean meal is deficient in amino acids and has 

low digestibility (Gatlin et al., 2007), while soy protein, which is derived from soybean meal, has 

a better amino acid profile and more digestible proteins (Gatlin et al., 2007, Cruz-Suarez et al., 

2009). Microbial floc meal can be obtained from farms that use BFS to manage ammonia.   Kuhn 

et al. (2010) replaced fishmeal and/or soybean meal at 10%, 15%, and 21% with microbial floc 

meal and did not observe significant differences between treatments with microbial floc meal 

and fishmeal with respect to growth and survival. Bauer et al. (2012) evaluated replacing 

fishmeal with a combination of soy protein and microbial floc meal at 0%, 25%, 50%, 75%, and 

100% levels. Both the soy protein and microbial floc meals were processed into feed pellets for 
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this experiment. This study found that key parameters, including specific growth rate, survival, 

and feed conversion ratio, were not significantly different between treatments, which indicate 

that the combination of soy meal and microbial floc meal can replace fishmeal.  In addition to 

plant and microbial floc meal, researchers are also considering reducing aquaculture feed use by 

supplementing directly with microbial biofilms as discussed below. 

Researchers have investigated the impact of natural biota, in the form of biofilms 

growing in the culture cage, pond, or tank as a supplemental food source for shrimp. 

Phototrophic biofilms grown with the shrimp contributed significantly to the growth of 

Farfantepenaeus paulensis (Thompson et al., 2002, Abreu et al., 2007, Ballester et al., 2007, 

Fernandes Da Silva et al., 2008), Litopenaeus vannamei (Bratvold & Browdy, 2001, Moss & 

Moss, 2004, Otoshi et al., 2006, Zarain-Herzberg et al., 2006, Lezama-Cervantes & Paniagua-

Michel, 2010), Penaeus esculentus (Burford et al., 2004), and Penaeus monodon (Arnold et al., 

2006). In these studies, a biofilm attachment surface was provided to promote the development 

of a biofilm for the shrimp to graze upon. Researchers (Fernandes de Silva et al., 2008) also 

examined the contribution of microorganisms to the protein and lipid content of the biofilm 

nutritional quality. They found that protein content varied from 0.43-1.76 mg protein per cm2 of 

biofilm area, while lipid content ranged between 1.21-4.23 mg lipid per cm2 of biofilm area. The 

variation in protein content was related to the abundance of unicellular centric diatoms and 

nematodes, while the variation in lipid content was related to the abundance of heterotrophic 

bacteria, flagellates, and nematodes. An evaluation of biofilm as a food source using stable 

isotope, δ13C and δ13N, analysis (Abreu et al., 2007) showed that biofilm contributed more than 

49% of carbon and 70% of nitrogen to shrimp growth. These studies have examined biofilm 

contribution to shrimp growth in environments where phototrophic microorganisms are a 

significant part of the microbial community. However, the microbes present in RAS are 

predominately bacteria under indoor, non-greenhouse culture conditions. 

Section 2.3 focused on the microbial ecology of ammonia- and nitrite-oxidizing microbes 

because of their importance in ammonia removal.  Heterotrophic bacteria are also present in the 

biofilters of RAS. This is due to the presence of organic compounds in the system even when 

solids, from uneaten feed and shrimp feces, are removed. A solids removal filter, in addition to 

the nitrifying biofilter, is an ideal environment for heterotrophic bacterial growth. The growth of 

heterotrophic bacteria requires that filters be backwashed frequently to remove excess microbial 
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biomass and prevent short circuiting. As indicated above, biofilm growth with shrimp and 

microbial flocs grown in separate bioreactors have had a positive impact on shrimp performance. 

Therefore, it is reasonable to suggest that biofilm from RAS biofilters may also have a positive 

impact on shrimp performance. To date no studies have examined the impact of biofilm from 

RAS biofilters on shrimp growth.  

 

2.5 Microbial resource management in indoor RAS 

Microorganisms play an important role in RAS by maintaining water quality and serving 

as a food source for shrimp. Consequently, more knowledge of biological nitrogen conversion 

processes in indoor RAS can provide farmers with the information needed to make operational 

modifications to promote growth conditions for the desired microbial community (Chapters 3 

and 4). In addition to water quality, excess microbial biomass collected from RAS biofilters can 

serve as a supplemental feed source resulting in the reduction of commercial feed (Chapter 5).  
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Chapter 3: Ammonia oxidizing archaea and nitrite oxidizing nitrospiras 

in the biofilter of a shrimp recirculating aquaculture system 
 

3.1 Introduction 

Recirculating aquaculture systems (RAS) for the production of marine shrimp are a 

potentially sustainable alternative to traditional aquaculture systems because RAS reduce water 

requirements and limit the concentration of nutrients discharged to receiving waters.  RAS 

require biological filters to oxidize toxic ammonia and nitrite, and aeration of the water to 

remove carbon dioxide and increase oxygen concentrations (Ebeling, 2000). Nitrifying biofilters 

keep ammonia and nitrite concentrations below toxic levels. For the white shrimp, Litopenaeus 

vannamei (Boone), ammonia toxicity levels range from 2.44 to 3.95 mg/l of total ammonia 

nitrogen (Lin and Chen, 2001), while nitrite toxicity levels vary between 6.1 and 25.7 mg/l of 

nitrite-nitrogen (Lin and Chen, 2003).  

Nitrification is a two step process in which ammonia is oxidized to nitrite by ammonia 

oxidizing bacteria (AOB) or ammonia oxidizing archaea (AOA) and nitrite is oxidized to nitrate 

by nitrite oxidizing bacteria (NOB).  The sensitivity of AOB and NOB to a wide variety of 

environmental factors is well known, so much so that nitrification has been regarded as the 

“Achilles heel” of wastewater treatment (Daims et al., 2006).  In recirculating aquaculture 

settings, the challenges associated with accumulation of ammonia and nitrite are similar to those 

in the wastewater treatment field, and also include problems with low dissolved oxygen levels, 

pH outside the optimal range for nitrifying microbes (7.5 – 8.6), and accumulation of trace 

amounts of toxic sulfides (Joye and Hollibaugh, 1995; Masser et al., 1999; Ling and Chen, 

2005).   

Less is known about the sensitivity of AOA to environmental parameters.  Archaeal 

ammonia monooxygenase subunit A (amoA) gene has been found to be ubiquitous in the 

environment, including in marine waters, biofilters of aquaria, coral reefs, estuaries, wastewater 

treatment plants, hot springs, sediments, and soils (Prosser and Nicol, 2008; Erguder et al., 2009; 
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You et al., 2009). In most studies in which the abundances of archaeal and bacterial amoA gene 

copies were investigated, the archaeal amoA outnumbered the bacterial amoA gene copies 

(Erguder et al., 2009). The factors that influence this distribution are still unclear, but Erguder 

and colleagues (2009) proposed that AOA might be important ammonia oxidizers in low 

nutrient, low pH, and sulfide containing environments. Furthermore, Martens-Habbena et al. 

(2009) have shown that AOA have adapted to survive at low ammonia concentrations, e.g., 0.2 

µM, concentrations at which AOB cannot grow. 

There are four validly described genera of NOB: Nitrobacter, Nitrospina, Nitrococcus, 

Nitrospira, as well as a newly communicated NOB species, “Candidatus Nitrotoga arctica” 

(Bartosch et al., 1999, Alawi et al., 2007). Nitrospira spp. have been found to be the main nitrite 

oxidizers in wastewater treatment plants (Juretschko et al., 1998; Burrell et al., 1999, Daims et 

al. , 2000, Daims et al., 2001, Daims et al., 2006) and the biofilters of a marine RAS (Keuter et 

al., 2011) because they are better scavengers for nitrite and oxygen than Nitrobacter spp. 

(Schramm et al., 1999; Koops and Pommerening-Roser, 2001). Nitrospira spp. have also been 

found in a hot spring (Lebedeva et al., 2011), a marine sponge (Off et al., 2010), and various 

soils (Bartosch et al., 2002). An analysis of the publicly available sequences of the Nitrospirae 

phylum (Daims et al., 2001) revealed that the genus Nitrospira consists of at least four distinct 

sublineages. 

Nitrification is important to aquaculture in general, but particularly to zero discharge RAS, in 

which water quality (specifically ammonia and nitrite concentrations) is maintained by biofiltration.  

The success of these systems depends on stable and reliable performance of its biofilters. The 

long-term goal of this work is to understand the nitrogen cycling processes in zero-discharge 

RAS. In the present study, we examined the nitrifier community in the biofilter of a marine, zero 

discharge, indoor, recirculating shrimp maturation system, a type of RAS that was operated for 

the growth and reproduction of L. vannamei. We evaluated the identities and abundances of 

nitrifying bacteria and archaea and found AOA and nitrospiras to be the dominant nitrifiers. Few 

studies have characterized both AOA and nitrite oxidizers in marine systems that allow for 

process control. In addition to their industrial importance, such systems may serve as important 

model systems to improve our understanding of the ecophysiology of AOA and NOB.  
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3.2 Materials and Methods 

3.2.1 Sample Collection 

Samples were collected from an indoor, zero discharge, marine RAS shrimp farm in 

Okemos, MI (Fig. S1). At the time of sampling, the system had been run continuously for three 

years with minimal water exchange and stable production, although not at intensive levels (>100 

shrimp/m2 culture area; Fast and Lester, 1992). Because the facility is located away from the 

coast, artificial seawater was prepared from a commercial salt solution to fill the system. Water 

quality in the culture tank was measured on site as follows: Ammonium, nitrite, and nitrate 

concentrations were measured using colorimetric assays using Hach kits; dissolved oxygen and 

temperature were measured with a YSI model 55 DO meter (Yellow Springs, OH), salinity was 

measured using a YSI model 30 salinity meter (Yellow Springs, OH), and pH was determined 

with a Mettler-Toledo SevenGo portable pH meter (Schwerzenbach, Switzerland). All samples 

for biomass analysis were placed in sterile Whirl-Pak bags (Nasco, Fort Atkinson, WI), and three 

replicate samples were collected from each location. Samples were collected using sterile 

equipment from four locations: the culture tank, the bioballs compartment, the oyster shell 

compartment, and sludge from the basin beneath the filter tower. All samples were stored on ice 

during transport to the lab and processed within 24 hours.  

3.2.2 DNA extraction 

DNA from two replicate samples collected from the four RAS compartments were 

extracted using the following procedures: For water samples, each replicate consisted of DNA 

extracted from the pellet obtained after centrifuging 250 mL tank water at 3,220 g for 30 min.  

For the bioball compartment, each replicate consisted of DNA extracted from the biofilm 

stripped from two bioballs. Biofilm (average of 260 mg fresh weight) was stripped by immersing 

each bioball in phosphate buffered saline (PBS; 130 mM NaCl, 10 mM sodium phosphate buffer 

[pH 7.2]) and manually brushing the surface with an endocervical brush while sonicating for two 

minutes using a sonicator bath (L&R, Kearny, NJ). Each sludge sample (average of 560 mg fresh 

weight) was obtained by centrifuging 1 mL of the sample at 5,000 g for 10 min. The oyster shells 

(average of 260 mg fresh weight) were placed directly into bead beating tubes used for DNA 

extraction.  DNA was extracted from all biomass samples using the FastDNA Spin Kit for Soil 

(MP Biomedicals, Solon, OH) according to the manufacturer’s protocol. Extracted DNA in each 
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sample was quantified using a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, 

Wilmington, DE). 

3.2.3 PCR amplification 

Duplicate PCR reactions for each sample replicate were run for each primer set. The 

primers 8F (Lane, 1991) and 1387R (Marchesi, et al., 1998) were used to amplify the bacterial 

16S rRNA gene (Briones, et al., 2007). The archaeal 16S rRNA gene was amplified with the 

primer set 109f/934b (Grosskopf, et al., 1998). PCR reactions were 50 µL and each reaction 

contained 5 µL of 10X buffer, 200 µM of each dNTP, 2 mM MgCl2, 0.2 µM of each primer, 1.25 

units of Taq Polymerase (ExTaq DNA polymerase, Takara Bio USA, Clontech Laboratories Inc., 

Madison, WI) and 1 µL template.  

Archaeal amoA gene fragments were amplified using primers Arch-amoAF (Francis, et 

al., 2005) and Arch-amoARmod (5’-TTWGACCARGCGGCCATCCA-3’; this work). The PCR 

mixture was as described above. Thermal cycling consisted of initial denaturation of 94°C for 2 

min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 56°C for 1 min, and 

extension at 72°C for 1 min; final extension was at 72°C for 19 min. Bacterial amoA gene 

fragments were amplified using primers amoA-1F/amoA-2R (Rotthauwe, et al., 1997). The PCR 

mixture was as described above. Thermal cycling consisted of initial denaturation of 94°C for 2 

min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 51.5°C for 30 s, and 

extension at 72°C for 30 s; final extension was at 72°C for 10 min. All PCR results were 

confirmed with agarose gel electrophoresis. 

3.2.4 Cloning, sequencing, and phylogenetic analysis 

Triplicate PCR reactions were first pooled and purified using the QIAquick® PCR 

Purification Kit (Qiagen, Germantown, MD) and then the appropriate band was gel extracted as 

follows except for the archaeal 16S rRNA product. The bacterial 16S rRNA (1396 bp), archaeal 

amoA (645 bp) and bacterial amoA (491 bp) PCR products were run on 0.8%, 2%, and 2%, 

respectively, agarose gels. The desired bands were excised and purified using the MinElute Gel 

Extraction Kit (Qiagen, Germantown, MD). The amplified archaeal 16S rRNA genes were 

purified using the UltraClean® PCR Clean-Up Kit (MO BIO Laboratories, San Diego, CA). The 

PCR products for archaeal 16S rRNA, archaeal amoA, and bacterial amoA genes were pooled 

before cloning to create each respective clone library for the RAS system. All purified PCR 
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products were cloned using a TOPO TA cloning kit (Invitrogen Corp., San Diego, CA) 

according to the manufacturer’s protocol. All sequencing was done at the Genome Sequencing 

Center at Washington University, School of Medicine, except for the AOB amoA gene 

sequencing, which was performed by Agencourt Bioscience Corporation (Beverly, MA).  

The archaeal and bacterial 16S rRNA gene sequences were aligned with the NAST 

alignment tool (DeSantis, et al., 2006a) available at the Greengenes website 

(greengenes.lbl.gov). The aligned sequences were chimera-checked using the Bellerophon 

version 3 tool (DeSantis, et al., 2006b) at the Greengenes website. The aligned, non-chimera 

sequences were classified using the classification tool at the Greengenes website. The archaeal 

and bacterial amoA and nitrite oxidizing bacteria (NOB) 16S rRNA gene sequences were aligned 

using MEGA version 4 (Tamura, et al., 2007). From the alignment, phylogenetic analyses were 

conducted in MEGA version 4 (Tamura, et al., 2007).  

Sequences obtained in this study have been deposited in GenBank under the following 

Accession Numbers: HM345608-HM345611 (archaeal amoA clones), HM345612-HM345622 

(bacterial amoA clones), and HM345623-HM345625 (Nitrospira spp. clones). 

3.2.5 Quantitative PCR 

Quantitative PCR (qPCR) was used to quantify the AOA and AOB amoA gene 

abundance as well as Nitrospira 16S rRNA gene abundance. All sample and standard reactions 

were carried out in triplicate using SYBR green chemistry on a Mastercycler ep realplex 

(Eppendorf, North America, Hauppauge, NY) qPCR machine. Standard curves were generated 

for all experiments from plasmids containing cloned amoA or 16S rRNA gene PCR amplicons 

previously sequenced to verify identity. Samples were diluted to contain 10 ng per µL DNA. All 

qPCR assays were carried out in 25 µL reactions consisting of 1 µL template DNA, 100 nM 

(archaeal amoA) or 300 nM of each primer (bacterial amoA and Nitrospira 16S rRNA gene), and 

12.5 µL 2x Quantitect MasterMix (Quantitect, Qiagen, Germantown, MD). The specificity of 

amplification for all qPCR assays was verified via generation of melting curves and agarose gel 

electrophoresis.  

Archaeal amoA gene copies were quantified using primers AOA-amoA-fm (5’-

TTCTAYACTGACTGGGCYTGGACATC-3’) and AOA-amoA-rb (5’-

AKGCCGTTTCTAGTGGGTCWGCTA-3’). These primers were modified from the primer set 
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AOA-amoA-f/AOA-amoA-r (Coolen, et al., 2007) based on the archaeal amoA clone sequences 

obtained in this study. Linear response (R2 = 0.97) was observed for plasmids containing 

archaeal amoA between 101-107 gene copies per µl template DNA; PCR efficiency was 1.78. The 

PCR conditions were as follows: 94°C for 15 min, followed by 43 cycles consisting of 94°C for 

15 s, 58.5°C for 30 s, 72°C for 30 s. The one-point calibration method for absolute 

quantification, as described by Brankatschk, et al. (2012), was used to calculate the gene 

abundance. The LinRegPCR Program (v 2012.0) (Ruijter, et al., 2009) was used to calculate 

cycle threshold, CT, and PCR efficiency, E, values for samples and standards from amplification 

data.  The mean E values for samples were 1.34 for tank water, 1.34 for bioballs, 1.29 for oyster 

shells, and 1.37 for sludge. The mean E value for the standard used in the one-point calibration 

was 1.40. 

Bacterial amoA was quantified using the primers amoA-1F/amoA-2R (Rotthauwe, et al., 

1997). Linear response (R2 = 0.99) was observed for plasmids containing bacterial amoA 

between 101-107 gene copies per µl template DNA and the PCR efficiency was 1.87. The PCR 

conditions were as follows: 95°C for 15 min, followed by 45 cycles consisting of 95°C for 30 s, 

52°C for 30 s, 72°C for 30 s. The standard curve method for absolute quantification was used to 

calculate gene abundance.  NOB 16S rRNA genes were quantified using the primer sets Ntspa4-

821f/Ntspa4-1028r and Ntspa2-172f/Ntspa2-311r for Type IV nitrospiras (N. marina sublineage) 

and Type II nitrospiras (N. moscoviensis sublineage), respectively. The one-point calibration 

method for absolute quantification was used to calculate gene abundance as described for AOA 

amoA. 

Ntspa4-821f (5’-GGGYACTAAGTGTCGGCGGT-3’) and Ntspa4-1028r (5’-

RGSTCMTCMCCCTTTCAGGT-3’) were designed based on the sequences obtained in this 

study. Primer design and evaluation of specificity was performed using Primer3 software (Rozen 

& Skaletsky, 2000) implemented in the Primer-BLAST website 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Optimization of annealing temperatures for 

each primer pair for real time PCR was conducted using the gradient function of the 

Mastercycler ep realplex machine. Linear response (R2 = 0.99) was observed for plasmids 

containing N. marina 16S rRNA between 5 and 1x106 gene copies per µL template DNA; PCR 

efficiency was 1.90. The PCR conditions were as follows: 95°C for 15 min, followed by 44 

cycles consisting of 94°C for 15 s, 57°C for 30 s, 72°C for 30 s. Mean E values for samples were 
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1.34 for bioballs and 1.38 for oyster shells. Mean E for standard used in one-point calibration 

was 1.37. 

Ntspa2-172f/ (5’-ATACCGCATACGRCTCCTGG-3’) and Ntspa2-311r (5’-

GCTGATCGTCCTCTCAGACC-3’) were designed based on the sequences obtained in this 

study. Linear response (R2 = 0.99) was observed for plasmids containing N. moscoviensis 16S 

rRNA between 5 and 1x106 gene copies per µl template DNA; PCR efficiency was 1.77. The 

PCR conditions were as follows: 95°C for 15 min, followed by 44 cycles consisting of 94°C for 

15 s, 61.5°C for 30 s, 72°C for 30 s. The mean E values for samples were 1.25 for bioballs and 

1.27 for oyster shells. The mean E value for standard used in the one-point calibration was 1.19. 

 

3.3 Results and Discussion 
Samples were collected from an indoor, zero discharge, marine RAS shrimp farm in 

Okemos, MI. At the time of sampling (May 17, 2007), the system had been run continuously for 

three years with minimal water exchange and stable production, although not at intensive levels. 

Because the facility is located away from the coast, artificial seawater was prepared from a 

commercial salt solution to fill the system. The RAS relies on biofiltration in a multi-stage, 

nitrifying trickling filter that contains multiple types of biofilm attachment media, including 

plastic bioballs, plastic corrugated block, and crushed oyster shells (Appendix I, Figure A1.1). 

The bioballs (polyethylene, Aquatic Eco-System Inc., Apopka, FL) had a diameter of 3.5 cm 

with a specific surface area of 525 m2/m3. The crushed oyster shells are used as a supplement for 

chicken feed and were obtained from an animal feed store. Stocking densities for this maturation 

system are 6-9 shrimp per square meter of tank area (personal communication with farmer), 

which is considerably less than typical stocking densities of ultra-intensive production systems 

(>100 shrimp per square meter of tank area (Fast, 1991)). In this system, water from the culture 

tank is pumped and filtered by gravity through the different biofilm attachment media.  Beneath 

the filter tower is a basin to collect water and settled particles (sludge) before the water is 

pumped back into the culture tank.  

To analyze the composition of the microbial community in this RAS, we constructed 16S 

rRNA gene clone libraries of Archaea (Appendix I, Figure A1.2), Bacteria (Table A1.1), and 

Planctomycetes (data not shown). Bacterial clone libraries were generated using biomass 
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collected from each sampling location in the RAS (tank water, bioballs, oyster shells, and sludge; 

Figure A1.1). However, the archaeal and Planctomycetes libraries were generated using pooled 

PCR products obtained from DNA extracted separately from biomass samples obtained from 

each of the four sampling locations. Analysis of the archaeal 16S rRNA clone library (Figure 

A1.2) revealed that 17% of clones were Nitrosopumilus-type, a group related to AOA (Könneke 

et al., 2005). Analysis of the bacterial clone libraries failed to detect any representatives of the 

proteobacterial AOB and NOB (Table S1). However, NOB from the genus Nitrospira were 

detected (Table A1.1). No sequences closely related to known anaerobic ammonium-oxidizing 

bacteria were detected in the Planctomycetes clone library (data not shown). 

To confirm the presence of AOA and to determine their distribution within the RAS, a 

PCR assay was used to detect archaeal amoA genes in biomass samples collected from tank 

water, bioballs, oyster shells, and sludge (data not shown). The initial PCR result indicated the 

presence of AOA amoA genes, and revealed the highest abundance in the samples obtained from 

oyster shells (data not shown). These results were confirmed by a quantitative PCR (qPCR) 

assay targeting archaeal amoA (Figure 3.1). The abundance of archaeal amoA in the biomass 

attached to oyster shells (7.1x104 ± 2x104 copies archaeal amoA per ng DNA) was higher than 

the abundance of archaeal amoA associated with bioballs (P < 0.5, two-sample t test) and an 

order of magnitude higher than the abundance associated with tank water (P < 0.25) and sludge 

(P < 0.5).  Sequence analysis of the archaeal amoA PCR products (Figure 3.2) showed that most 

of the sequences amplified were related to the previously described Nitrosopumilus species 

(Könneke et al., 2005) confirming our initial identification based on analysis of 16S rRNA 

genes. The sequences were obtained from two replicate samples pooled together to generate one 

clone library. A total of 24 clones related to Nitrosopumilus sequences were obtained, of which 

16, five, two, and one clones clustered within groups SF_AOA_A07, SF_AOA_A10, 

SF_AOA_C12, and SF_AOA_H10, respectively.   
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Figure 3.1: Archaeal amoA gene abundance in four different RAS samples (Figure A1.1), as measured by 
qPCR. Error bars show standard deviation. 
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Figure 3.2: Phylogenetic relationships of archaeal amoA gene. Sequences obtained in this study are 
indicated with the prefix “SF_”. The tree was inferred using the Neighbor-Joining method (Saitou and Nei, 
1987). The bootstrap consensus tree inferred from 1,000 replicates (Felsenstein, 1985) is taken to 
represent the evolutionary history of the sequences analyzed (Felsenstein, 1985). The percentage of 
replicate trees in which the associated sequences clustered together in the bootstrap test (1,000 
replicates) are shown next to the branches (Felsenstein, 1985). The evolutionary distances were 
computed using the Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of 
the number of base substitutions per site. 
 

 

The bacterial 16S rRNA gene clone libraries did not detect the presence of AOB. 

However, using a PCR assay targeting the betaproteobacterial amoA gene, AOB were detected, 

but only in bioball samples (data not shown). These results were confirmed by a qPCR assay 

targeting bacterial amoA (Figure 3.3). The abundance of bacterial amoA in the biomass attached 
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to bioballs (83 ± 15 copies bacterial amoA per ng DNA) was approximately an order of 

magnitude higher than in the biomass associated with tank water, oyster shells, and sludge 

(Figure 3.3). Sequence analysis of bacterial amoA PCR products (Figure 3.4) showed that 98.5% 

of the sequences amplified were related to obligately halophilic Nitrosomonas marina. One 

clone, designated SF_AOB_C09, was found to be closely related to Nitrosomonas aestuarii, 

which was isolated from brackish water and is closely related to N. marina (Purkhold et al., 

2000). In summary, the AOB population in the RAS was not abundant and consisted of AOB 

belonging to the N. marina-cluster of betaproteobacterial-AOB (Purkhold et al., 2000).   

 

 

 
Figure 3.3: Bacterial amoA gene abundance in four different RAS samples (Figure A1.1), as measured by 
qPCR. Error bars show standard deviation. 
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Figure 3.4: Phylogenetic relationships obacterial amoA genes. Sequences obtained in this study are 
indicated with the prefix “SF_”. The tree was created as described in the caption for Figure 3.2.  
 

 

The presence of a functional gene does not necessarily correlate to activity. However, the 

relatively low abundance of bacterial amoA genes in this marine RAS as compared to archaeal 

amoA genes suggests that AOB played a minor role in the function of the biofilter at the time of 

sampling.  

NOB belonging to the phylum Nitrospirae were detected in the bacterial 16S rRNA gene 

clone libraries (supplemental information, Table A1.1) of the bioballs (14.3% of clones) and 

oyster shells (3.4% of clones). Phylogenetic analysis of these clones revealed that they belong to 

Nitrospira sublineage IV (N. marina sublineage) and sublineage II (N. moscoviensis sublineage) 

(Daims et al., 2001), (Figure 3.5). This is consistent with the results from other researchers who 

analyzed the nitrifier community in freshwater aquarium (Hovanec et al., 1998) and marine 

aquaculture (Foesel et al., 2008, Keuter et al., 2011) biofilters. A qPCR assay was used to 
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quantify the abundance of NOB types in the RAS (Figure 3.6). Both N. marina and N. 

moscoviensis-like NOB were detected in the bioballs and oyster shell compartments of the 

biofilter. N. marina-like NOB (3.8x104 ± 2.2x104 copies 16S rRNA gene per ng DNA) were an 

order of magnitude more abundant than N. moscoviensis-like NOB in the biomass obtained from 

the bioballs, while their abundances were similar in the oyster shell biomass.  

 

 

 
Figure 3.5: Phylogenetic relationships of NOB 16S rRNA genes. The tree was created as described in the 
caption for Figure 3.2. 
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Figure 3.6: NOB 16S rRNA gene abundance in two biofilter compartments (Figure A1.1), as measured by 
qPCR. Error bars show standard deviation. 
 

 

The water quality and biofilm attachment media likely play important roles in 

determining the relative levels of AOA versus AOB and N. marina- versus N. moscoviensis-type 

NOB. Low ammonia production rates are expected in the maturation system because of the 

relatively low shrimp stocking density (6-9 shrimp per square meter of tank area). The water 

quality data collected for a sample obtained from the culture tank (0.25 mg/L ammonium-N, 

nitrite-N below detection, 25 mg/L nitrate-N, 6.5 mg/L dissolved oxygen (DO), 26.3 practical 

salinity units, and pH 8.8) indeed indicated that ammonium and nitrite oxidation in the biofilter 

were effective in maintaining low levels of ammonium and nitrite in the culture tank, suggesting 

that AOA and N. marina-like NOB were most competitive at low substrate concentrations.  

Specifically, Nitrosopumilus-type AOA were more abundant than Nsm. marina-type AOB at the 

time of sampling. Others have shown that AOA have adapted to survive under ammonia limited 

conditions where AOB cannot survive (Martens-Habbena et al., 2009). The abundance of AOA 
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may also be due to mixotrophic or heterotrophic growth of AOA (Prosser and Nicol, 2008). 

Similarly, Nitrospira spp. were the dominant NOB at the time of sampling, which was likely due 

to the low nitrite concentrations in the biofilter.  Schramm et al. (1999) proposed that Nitrospira-

like bacteria are K-strategists that grow efficiently at low nitrite and oxygen concentrations. The 

results obtained by a study characterizing NOB in a nitrifying sequencing batch biofilm reactor 

with a nitrite concentration gradient ranging from zero to 50 mg nitrite-N per liter confirmed this 

K/r-hypothesis (Daims et al., 2001). A recent study examining the nitrifying populations of two 

municipal wastewater treatment plants (Whang et al., 2009) detected the presence of both N. 

marina-like and N. moscoviensis-like bacteria. In the current study, N. marina-like NOB were 

significantly more abundant than N. moscoviensis-like NOB in the bioballs (P < 0.01, two-

sample t test) and oyster shells (P < 0.05), which was likely due to the advantage that N. marina 

has in halophilic environments. N. marina is obligately halophilic (Watson et al., 1986b), 

whereas N. moscoviensis has no salt requirement (Ehrich et al., 1995). In addition to salinity, the 

metabolic versatility of N. marina-like NOB compared to N. moscoviensis-like NOB may also 

impact the abundance. Specifically, the accessible supplies of both organic and inorganic sources 

of energy in the RAS favor the growth of mixotrophs such as N. marina (Watson et al., 1986a), 

but not of N. moscoviensis (Ehrich et al., 1995).  To date, studies have not compared sublineage 

II to sublineage IV nitrite oxidizing nitrospiras in any environment.  

The role of the biofilm attachment media in determining the competitiveness of different 

ammonium and nitrite oxidizing populations needs to be studied further.  It is tempting to 

speculate that crushed oyster shells provide an environment conducive for AOA competiveness, 

possibly due to the release of alkalinity (carbonates) or trace elements, or due to low DO zones 

caused by the close packing and aggregation of the oyster shells. The low DO zones combined 

with the low ammonium levels expected at the bottom of the filter may explain the abundance of 

AOA in the oyster shells.  

 

3.4 Conclusions 
The ammonium- and nitrite-oxidizing populations of a mixed media trickling filter 

consisting of compartments with plastic bioballs and crushed oyster shells, which was operated 

to treat water from a marine RAS culturing white shrimp in a maturation system, was dominated 



 

52 

 

by Nitrosopumilus-like AOA and N. marina-like bacteria (Nitrospira sublineage IV). The AOA 

were particularly abundant in the biofilter compartment containing oyster shells. The water 

quality (i.e., low ammonium and nitrite concentrations) and biofilm attachment media played a 

role in the competitiveness of AOA over AOB and N. marina- over N. moscoviensis- type NOB, 

but additional work is needed to elucidate their function and importance in determining the 

outcome of the competition. 
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Chapter 4: Nitrification performance and characterization of nitrifying 

microbes in a biological aerated filter in an indoor, zero-discharge 

marine shrimp recirculating aquaculture system  
 

4.1 Introduction1 

Recirculating aquaculture systems (RAS) rely on nitrification for the transformation of 

ammonia to nitrate in biofilters to maintain water quality. This is particularly important to zero-

discharge RAS where there is no water exchange except to replace water loss due to evaporation. 

Nitrification is a two step process in which ammonia2 is oxidized to nitrate via nitrite. Ammonia-

oxidizing bacteria (AOB) or ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria 

(NOB) mediate this process. Therefore, the activities of various microbes are important to 

recirculating systems in general. Information on microbial ecology in the water treatment reactors 

of zero-discharge RAS under various conditions would provide insight into the roles of various 

microbes in the nitrogen transformation processes occurring in the system. This information 

could be used to enhance the efficiency of microbiological processes through the optimization of 

operating conditions (e.g., oxygen and nutrient levels) to induce growth of the desired microbes.  

Ammonia, nitrite, and nitrate are toxic to aquatic organisms. Both ammonia and nitrite 

can cause death. Consequently, farmers are advised to maintain total ammonia (sum of un-

ionized and ionized ammonia) below 1 mg/L nitrogen (Timmons & Ebeling, 2007) and to 

maintain nitrite-nitrogen concentrations below 15 mg/L (Lin & Chen, 2003, Timmons & 

Ebeling, 2007). Researchers have shown that chronic exposure to nitrate concentrations above 

200 mg/L nitrate-nitrogen has a negative impact on shrimp growth (Kuhn et al., 2010). 

Therefore, farmers should maintain nitrate-nitrogen concentrations below 200 mg/L. In zero-

                                                 
1 This is an abbreviated version of Section 2.3. Refer to Section 2.3 for a more detailed discussion of the microbial 
ecology of RAS biofilters. 
2 In this chapter, ammonia refers to total ammonia, which is the sum of un-ionized and ionized ammonia, unless 
otherwise noted. 
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discharge RAS, water quality is maintained by nitrifying biofilters where the ammonia produced 

by shrimp and uneaten feed is converted to nitrate. Ammonia and nitrite should not accumulate 

to toxic levels in biofilters that are working correctly; however, nitrate can accumulate to 

concentrations of concern. 

The presence of organic matter, particulate or dissolved, in RAS biofilters has an impact 

on nitrification. Heterotrophic bacteria utilize organic matter for growth and have a higher 

growth rate than nitrifying bacteria. Several studies investigating the impact of organic matter on 

nitrification performance have used sucrose as organic carbon source when simulating shrimp 

waste (Guerdat et al., Fdz-Polanco et al., 2000, Zhu & Chen, 2001, Ling & Chen, 2005). These 

studies showed that organic carbon reduced the ammonia-nitrogen removal rate at 

carbon/nitrogen (C/N) ratios greater than 0.5.  

For zero-discharge RAS to be viable, the biofilters must be able to oxidize variable influent 

ammonium concentrations. Consequently, a robust microbial community that has ammonia and 

nitrite oxidizers that can thrive at high and low substrate, ammonium or nitrite, concentrations is 

essential for successful RAS operation. The sensitivity of AOB and NOB to a wide variety of 

environmental factors is well known.  In recirculating aquaculture settings, the challenges 

associated with accumulation of ammonia and nitrite are similar to those in the wastewater 

treatment field and include problems with low dissolved oxygen levels, pH outside the optimal 

range for nitrifying microbes (7.5 – 8.6), and accumulation of trace amounts of toxic sulfides 

(Joye & Hollibaugh, 1995, Masser et al., 1999, Ling & Chen, 2005) from the reduction of sulfate 

in marine systems.  Less is known about the sensitivity of AOA because they have not been 

under study for as long as the AOB. Researchers (Martens-Habbena et al., 2009) have shown 

that marine AOA have an ammonia-nitrogen saturation constant of 0.133 nM (0.00186 mg/L), 

which is two orders of magnitude lower than the corresponding value for AOB with high 

ammonium affinity. This suggests that AOA have adapted to survive under ammonium-limited 

conditions where AOB cannot grow.  

 Previous studies have analyzed the nitrifying communities in aquarium and aquaculture 

biofilms. Researchers have investigated freshwater aquaria (Hovanec & DeLong, 1996, Hovanec et 

al., 1998, Burrell et al., 2001, Sauder et al., 2011), marine aquaria (Urakawa et al., 2008), and 

aquaculture biofilms (Foesel et al., 2008, Keuter et al., 2011, Brown et al., 2013). The work by 

Hovanec and Delong (1996) indicated that neither AOB nor Nitrobacter NOB were present in 
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freshwater aquaria. Hovanec and colleagues (1998) found that nitrite oxidation in freshwater aquaria 

was mediated by bacteria closely related to nitrite-oxidizing Nitrospira instead of Nitrobacter 

species. As described below, AOA were the dominant ammonia oxidizers in several studies (Sauder 

et al., 2011, Sauder et al., 2012, Brown et al., 2013). Elevated salinity levels (Grommen et al., 2005) 

and low temperature (Urakawa et al., 2008) have been proposed as factors in determining the niches 

of ammonium oxidizers, in addition to ammonium concentration (Erguder et al., 2009, Schleper, 

2010). In studies of ammonium amended soils, AOB were more abundant than AOA (Taylor et 

al., 2010, Verhamme et al., 2011). While in studies of freshwater aquarium biofilters (Sauder et 

al., 2011) and rotating biological contactors treating municipal wastewater (Sauder et al., 2012), 

AOA were the dominant ammonium oxidizers and their abundance was inversely correlated to 

ammonium concentration. AOA were also dominant in marine RAS biofilters (Chapter 3) where 

ammonium concentrations were low. To date no studies have examined the role of ammonium 

concentration in determining the abundance of ammonia oxidizers in marine zero-discharge 

RAS. The purpose of this study was to examine the correlation between nitrifying populations 

and ammonium concentration in the biofilters of an indoor, zero-discharge RAS.  

 

3.6 Materials and Methods 
3.6.1 Experimental Set-up 

The experimental set-up consisted of three RAS, each consisting of a culture tank and a 

down-flow, nitrifying biological aerated filter with two compartments (Figure 4.1). Reactor start-

up is described in Appendix III. The three RAS were operated as replicate reactors. Each 

biofilter compartment consisted of a column that was 20.32 cm in diameter and 91.44 cm in 

length. All biofilter compartments contained a mix of 1.6 mm by 3.2 mm oval plastic beads 

(Aquatic Eco-system, Inc., Apopka, FL) and 4 to 10 mm diameter clay spheres (Aquaclay, 

Keeton Industries, Wellington, CO) as biofilm attachment medium. The mix was two-thirds 

plastic beads and one-third clay spheres by volume. The culture tanks were semi-square, 50-

gallon polyethylene tanks (Polytank Inc., Litchfield, MN). Refer to Appendix III Table A3.1 for 

a summary of flow rate and media volume for all RAS. 
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Figure 4.1. Three replicate RAS. Each reactor consisted of a culture tank and two biological 
aerated filters. Water was pumped from the tank to the first filter and then flowed by gravity 

through the biofilters back to the tank. 
 

Water for all RAS was prepared in the laboratory as follows. Each system was filled with 

50 liters of distilled deionized water (16.5 cm depth) and a sea salt mix (Instant Ocean, Spectrum 

Brands Inc, Cincinnati, OH) to establish a salinity of approximately 25 g/L. Actual salinity 

values were 24.3 ± 1.0 g/L, 24.6 ± 0.9 g/L, and 24.5 ± 1.0 g/L for RAS-1, RAS-2, and RAS-3, 

respectively.  Salinity was calculated from measured conductivity and temperature data. Two 

150-watt Stealth submersible aquarium heaters (Marineland, Spectrum Brands Inc., Cincinnati, 

OH) in each tank were used to maintain the water temperatures at 30°C. Measured temperatures 

were 29.5 ± 0.6 °C, 29.9 ± 0.9 °C, and 29.5 ± 0.9 °C for RAS-1, RAS-2, and RAS-3, 

respectively.  Air-tubing, located at the bottom of the tank, was used in each system to distribute 

compressed air. The target dissolved oxygen (DO) concentration was 5 mg/L. Average DO 

concentrations were 5.96 ± 0.54 mg/L, 6.16 ± 0.43 mg/L, and 6.36 ± 0.57 mg/L for RAS-1, 

RAS-2, and RAS-3, respectively. Bicarbonate, as ammonium bicarbonate and sodium 

bicarbonate, was added daily to maintain alkalinity above 100 mg/L as CaCO3. Alkalinity was 

measured biweekly, while pH was monitored daily. During the experiment, alkalinity measured 

at 251 ± 11 mg/L as CaCO3, 226 ± 13 mg/L as CaCO3, and 150 ±14 mg/L as CaCO3 in RAS-1, 

RAS-2, and RAS-3, respectively. The average pH in the tank was 8.28 ± 0.10, 8.34 ± 0.14, and 

8.26 ± 0.15 for RAS-1, RAS-2, and RAS-3, respectively. 
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3.6.2 Simulated shrimp waste  

Biofilters were supplied with a simulated shrimp waste via the culture tank at a flow rate of 250 

mL/min. The simulated waste consisted of ammonium bicarbonate (NH4HCO3, ACS grade, 

Fisher Scientific) as the nitrogen and pH buffer source and sucrose (C12H22O11, ACS grade, 

Fisher Scientific) as organic carbon source. The daily amount of ammonium-nitrogen added was 

determined by an estimate of the ammonium produced by 100 shrimp weighing 5 g, 10 g, 15 g, 

and 20 g. Ammonium-nitrogen production was estimated using this equation:  

 

𝑃𝑇𝐴𝑁 = 𝐹 ∗ 𝑃𝐶 ∗ 0.092   (Ebeling et al., 2006) 

 

where PTAN  is the production rate of total ammonium nitrogen (g/day),  

F is the feed rate (g/day), and  

PC is the protein fraction of the feed (0.4).  

The constant is the product of the fraction of feed protein that is nitrogen (0.16), 

the fraction of nitrogen assimilated (0.8), the fraction of assimilated nitrogen that 

is excreted (0.8), and the fraction of nitrogen excreted that is total ammonium 

nitrogen (0.9). 

 

For 100 shrimp weighing 5, 10, 15, and 20 g, the daily ammonium-nitrogen concentration 

estimated was 552 mg (11 mg/L), 1104 mg (22 mg/L), 1656 mg (33 mg/L), and 2208 mg (44 

mg/L), respectively. The ammonium-N dose was adjusted every 14 days starting at 552 mg (11 

mg/L) and increasing to 20 g (44 mg/L); the ammonium-N does was added to the tank once per 

day. Since shrimp waste contains organic carbon in addition to ammonium-nitrogen. Zhu and 

Chen (2001) estimated a BOD5/TAN ratio of 4 for aquaculture waste. While a C/N ratio of 5 was 

measured in actual shrimp waste from Waddell Mariculture Center in South Carolina (Roy et al., 

2010). Sucrose was used to maintain a carbon to nitrogen (C/N) ratio of 0.5, by weight, in the 

simulated waste. Sucrose has been used in other studies investigating impact of C/N ratio on 

RAS biofilters (Guerdat et al., Fdz-Polanco et al., 2000, Zhu & Chen, 2001). A C/N ratio of 0.5 

was selected in this study to account for the affect of organic carbon on nitrification 

performance, reduced nitrification rate, but not disrupt the stability of the nitrifying microbes. 
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Researchers have shown that C/N ratios greater than one can reduce nitrification rate by 70% in 

submerged filters (Zhu & Chen, 2001). Furthermore, other nutrients for growth, which include 

phosphorus and trace metals, were supplied through the Instant Ocean Salt Mix (Spectrum 

Brands Inc, Cincinnati, OH) used to prepare the artificial seawater. 

 

3.6.3 Water quality analyses 

The experimental period was eight weeks and the biofilters were not backwashed during 

this period. Parameters such as salinity, temperature, pH, and dissolved oxygen in the culture 

tanks were monitored with probes. Salinity and temperature were measured with an Orion Model 

1230 meter (Thermo Scientific, Waltham, MA) and pH with a Mettler Toledo sevenEasy meter 

(Columbus, OH). Grab samples were collected 24-hours after ammonium-N addition from the 

tank and biofilter effluent and depth profile samples were collected biweekly to monitor total 

ammonium-nitrogen (TAN), nitrite-nitrogen, and nitrate-nitrogen concentrations according to 

standard methods (APHA, 1998). Other water quality parameters that were measured biweekly 

included alkalinity, total suspended solids (TSS), and volatile suspended solids (VSS) according 

to standard methods (APHA, 1998). All analyses were performed in triplicate for each sample 

collected. Each RAS has eleven sample locations (Figure 4.2). 
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Figure 4.2. Schematic diagram of RAS. Sampling locations are identified by green circles. T is 

the tank water, E1 is the effluent from biofilter 1, and E2 is the effluent from biofilter 2. The 
numbers denote ports on the biofilter; ports one through 4 are on biofilter 1 and ports 5 through 

8 are on biofilter 2. 
 

3.6.4 Microbial sample collection and DNA extraction 

Each RAS had eight sample locations along the height of the column (Figure 4.2). Media 

samples were collected biweekly, once at each loading condition (Day 14, 28, 42, and 56). A 

horizontal core was collected from each sample port before ammonium-N addition using a 1-

inch diameter, 18-inch long brass cylinder. The media samples were transferred to 50 mL 

centrifuge tubes and then split into another 50 mL centrifuge tube to create biological replicates. 

The wet mass of the sample was recorded. Sterile saline water was added to all tubes, which 

were then vigorously vortexed for one hour at 4°C to detach biomass from media. Biomass was 

then filtered onto sterile 0.2 µm polycarbonate membrane filter. Filters were folded and put into 

2 mL screw cap tubes for DNA extraction. Samples were stored at -80°C until further 

processing.  DNA was extracted from samples using a phenol extraction method described by 

Griffiths et al., 2000), with  modifications (Duangmanee et al., 2007). Extracted DNA in each 

sample was quantified using a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, 

Wilmington, DE). Samples were diluted with TE buffer to contain 25 ng per µL genomic DNA. 
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3.6.5 PCR Amplification for 454-Sequencing and Data Processing  

PCR amplification was conducted in triplicate for each sample using Roche 454 titanium 

compatible primers targeting bacterial 16S rRNA genes as described elsewhere (Pinto & Raskin, 

2012). Triplicate PCR products were pooled and purified using a QiaQuick PCR purification kit 

(Qiagen Inc.,Valencia, CA). The amount of PCR product from each sample was quantified  in 

triplicate using a Quant-iT dsDNA assay kit (Invitrogen, Carlsbad, CA) on a Nanodrop 3300 

(ThermoScientific, Wilmington, DE). All samples were pooled based on DNA concentration and 

purified using AMPure XP beads to ensure that DNA was uniform in length prior to sequencing. 

The pooled, purified PCR products were sequenced at the University of Illinois Biotechnology 

Center (Urbana, IL) on half of a pico-titer plate (56 samples unrelated to the current study were 

also included). 

All data were processed and analyzed using mothur v.1.29.2 (Schloss et al., 2009). A 

total of 1,606 sequences were obtained for the 16 samples sequenced for this study. The 

sequences were trimmed to remove barcodes and primers, filtered for quality reads, and checked 

for chimeras as previously described (Schloss et al., 2011, 454 SOP was accessed March 5, 

2013), resulting in a total of 1,592 sequences in the final data library. The numbers of quality-

filtered, chimera-free reads in each sample are provided in Appendix III Table A3.2. Due to the 

variation in sequence number, a subset of 23 sequences was randomly selected based on the 

sample with the lowest sequence number prior to statistical analyses.  

 

3.6.6 PCR 

For population specific PCR, only samples collected on Day 14 and Day 56 were 

analyzed. Triplicate PCR reactions for each sample were run. PCR reactions were 25 µL and 

each reaction contained 500 nM of each primer, 22.5 µL Platinum PCR Supermix (Invitrogen, 

Life Technologies Corporation, Carlsbad, CA) and 1 µL template. 

Gammaproteobacterial-AOB amoA-amoB gene fragment was amplified using primers 

amoA-3F/amoB-4R (Purkhold et al., 2000). PCR was done prior to qPCR to determine if these 

samples contained the gene of interest. The PCR mixture was as described above. Thermal 

cycling consisted of initial denaturation of 95°C for 5 minutes, followed by 40 cycles of 

denaturation at 95°C for 30 seconds, annealing at 48°C for 30 seconds, and extension at 72°C for 
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30 seconds; final extension was at 72°C for 10 minutes. All PCR results were confirmed with 

agarose gel electrophoresis. 

 

3.6.7 Quantitative PCR (qPCR) 

Quantitative PCR (qPCR) was used to quantify the AOA and Betaproteobacterial-AOB 

amoA gene abundance as well as Nitrobacter and Nitrospira NOB 16S rRNA gene abundance. 

Only samples collected on Day 14 and Day 56 were analyzed. All sample and standard reactions 

were carried out in triplicate using SYBR green chemistry on a Mastercycler ep realplex 

(Eppendorf, North America, Hauppauge, NY) qPCR machine. Standard curves were generated 

for all experiments from plasmids containing cloned amoA or 16S rRNA gene PCR amplicons. 

Samples were diluted to contain 25 ng per µL DNA. All qPCR assays were carried out in 10 µL 

reactions consisting of 1 µL template DNA, 500 nM of each primer, and 5 µL 2x Quantitect 

MasterMix (Quantitect, Qiagen, Germantown, MD). The specificity of amplification for all 

qPCR assays was verified via generation of melting curves. The one-point calibration method for 

absolute quantification, as described by Brankatschk et al., 2012, was used to calculate gene 

abundance. The LinRegPCR Program, version 2013.0, (Ruijter et al., 2009) was used to 

calculate cycle threshold, CT, and PCR efficiency, E, values for samples and standards from 

amplification data.   

Archaeal amoA gene copies were quantified using primers crenAMO_F (Hallam et al., 

2006)/Arch-amoAR (Francis et al., 2005). The PCR conditions were as follows: 95°C for 15 

minutes, followed by 45 cycles consisting of 95°C for 15 seconds, 58.5°C for 30 seconds, 72°C 

for 30 seconds. A plasmid containing Nitrosopumilus maritimus amoA gene was used as 

standard. The mean E value for the standard used in the one-point calibration was 1.76 for both 

days. The mean E value for samples was 1.51 for Day 14 and 1.50 for Day 56.   

Betaproteobacterial-AOB amoA was quantified using the primers amoA-1F/amoA-2R 

(Rotthauwe et al., 1997). The PCR conditions were as follows: 95°C for 15 minutes, followed by 

45 cycles consisting of 95°C for 30 seconds, 52°C for 30 seconds, 72°C for 30 seconds. A 

plasmid containing Nitrosomonas europaea amoA gene was used as standard. The mean E value 

for the standard used in the one-point calibration was 1.74 for Day 14 and 1.75 for Day 56. The 

mean E value for samples was 1.76 for Day 14 and 1.74 for Day 56.   
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Nitrospira NOB 16S rRNA genes were quantified using the primer set NTSPAf/NTSPAr 

(Nakamura et al., 2006).  The PCR conditions were as follows: 95°C for 15 minutes, followed by 

45 cycles consisting of 95°C for 30 seconds, 60°C for 30 seconds, 72°C for 60 seconds. A 

plasmid containing Nitrospira defluvii 16S rRNA gene was used as standard. The mean E for the 

standard used in one-point calibration was 1.81 for both days. The mean E value for samples was 

1.25 for Day 14 and 1.19 for Day 56.  

Nitrobacter NOB 16S rRNA genes were quantified using the primer set Nitro-

1198f/Nitro1423r (Graham et al., 2007). The PCR conditions were as follows: 95°C for 15 

minutes, followed by 45 cycles consisting of 95°C for 15 seconds, 58°C for 60 seconds, 72°C for 

40 seconds. A plasmid containing Nitrobacter winogradskyi 16S rRNA gene was used as 

standard. The mean E value for the standard used in the one-point calibration was 168 for Day 14 

and 1.65 for Day 56. The mean E value for samples was 1.70 for Day 14 and 1.62 for Day 56.   

 

4.3 Results and Discussion  

4.3.1 Inorganic nitrogen 
Samples were collected 24-hours after ammonium-N addition to monitor inorganic 

nitrogen. These samples were analyzed for ammonium-N (Table 4.1), nitrite-N (Table 4.1), and 

nitrate-N (Figure 4.3) for all RAS. The purpose of these samples was to monitor the 24-hour 

accumulation of inorganic N after ammonium addition. It is important to maintain less than 1 

mg/L as ammonium-N and less than 15 mg/L as nitrite-N because higher concentrations are toxic 

to shrimp (Timmons & Ebeling, 2007). These results show that there was no ammonium or 

nitrite accumulation within a 24-hour period after the ammonium spike. However, nitrate 

accumulated in the system as expected. 

Because no nitrate removal was performed during the course of this study, nitrate-N 

accumulated in the system. Concentrations were as high as 700 mg/L as nitrate-N (Figure 4.3), 

which would likely have negative impacts on the shrimp. A recent study (Kuhn et al., 2010) 

investigating the chronic toxicity of nitrate on Pacific white shrimp in a RAS, showed negative 

impacts on shrimp biomass and antennae length at 435 mg/L nitrate-N and negative impacts on 

growth, survival, total mass, and antennae length at 910 mg/L nitrate-N. 
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Table 4.1: Average concentrations of 
ammonium-N and nitrite-N over experimental 
period in tank 

Reactor 
Ammonium-N Nitrite-N 
mg/L mg/L 

RAS-1 0.08 ± 0.37 0.28 ± 0.26 
RAS-2 0.07 ± 0.28 0.18 ± 0.22 
RAS-3 0.04 ± 0.12 0.12 ± 0.19 

 

 

 

 

Figure 4.3: Nitrate-nitrogen in RAS tanks.  

 

The purpose of the depth profile was to observe spatial concentration gradients within the 

biofilters. Depth profile samples were collected 8 days into each 14-day ammonium loading 

period. Samples were collected 30 minutes after influent addition and were analyzed for 

ammonium-N (Figure 4.4), nitrite-N (Figure 4.5), and nitrate-N (Figure 4.6). An ammonium-N 
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concentration gradient developed across the reactor for all time points. This suggests that the 

highest abundance of ammonium oxidizing microbes was in the first biofilter (Ports 1 – BF1 

effluent, Figure 4.2) because the majority of the ammonium was oxidized in the first biofilter 

based on difference between influent and effluent concentrations. Nitrite-N concentrations 

generally increased from Ports 1-3 in the first biofilter (Figure 4.2) and then decreased through 

the second biofilter. This suggests that the highest abundance of nitrite oxidizing bacteria 

occurred between Ports 4-6. Since the reactors were not operated to remove nitrate, 

Concentrations of nitrate-N showed little variation across the biofilters (Figure 4.6) due to the 

short time scale of the sampling; nitrate-N does accumulate over experimental period (Figure 

4.3).   

Although this system was not designed for denitrification, it could be occurring in the 

biofilters. A theoretical nitrogen balance over the entire RAS indicates that denitrification is 

occurring in all RAS and there is more denitrification in RAS-1 and RAS-2 than in RAS-3. Refer 

to the nitrogen balance section in Appendix III (pages 129 - 134). Based on the mass of 

ammonium-N input to the system, 77 g, there should be 70 g of nitrate-N. However, the highest 

observed mass of nitrate-N was 39 g in RAS-3, 33 g in RAS-2, and 30 g in RAS-1. 

Heterotrophic and autotrophic bacterial uptake of ammonium for assimilation, or cell growth, 

does not account for the missing nitrate. These processes would remove 7 g nitrate-N when 

ammonium is used as the nitrogen source. Sucrose was the carbon source for heterotrophic 

bacteria and typical parameter values (Henze et al., 2000) were used to calculate the mass of 

nitrogen needed for assimilation. A similar process was used to calculate the nitrogen 

requirement for autotrophic (ammonium and nitrite oxidizers). Consequently, it is reasonable to 

infer that denitrification occurred in all RAS. The lower nitrate-N concentrations in RAS-1 and 

RAS-2 indicate that there was more denitrification in these reactors than in RAS-3 since all RAS 

received the same mass of ammonium.  
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Figure 4.4: Ammonium-N depth profile in each RAS (R1, R2, and R3): (A) 6/15/12 (Day 8), influent ammonium-N concentration was 11 

mg/L; (B) 6/29/12 (Day 22), influent ammonium-N concentration was 22 mg/L; (C) 7/13/12 (Day 36), influent ammonium-N 
concentration was 33 mg/L; and (D) 7/27/12 (Day 50), influent ammonium-N concentration was 44 mg/L. Samples for depth profile were 

collected 30 minutes after influent addition. 
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Figure 4.5: Nitrite-N depth profile in each RAS (R1, R2, and R3): (A) 6/15/12 (Day 8), influent ammonium-N concentration was 11 mg/L; 

(B) 6/29/12 (Day 22), influent ammonium-N concentration was 22 mg/L; (C) 7/13/12 (Day 36), influent ammonium-N concentration was 
33 mg/L; and (D) 7/27/12 (Day 50), influent ammonium-N concentration was 44 mg/L. Samples for depth profile were collected 30 

minutes after influent addition. Concentrations increased after Port 1, reached a maximum at Port 3 or Port 4, and decreased through 
Port 8 for each time point. 
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Figure 4.6: Nitrate-N depth profile in each RAS (R1, R2, and R3): (A) 6/15/12 (Day 8), influent ammonium-N concentration was 11 mg/L; 
(B) 6/29/12 (Day 22), influent ammonium-N concentration was 22 mg/L; (C) 7/13/12 (Day 36), influent ammonium-N concentration was 

33 mg/L; and (D) 7/27/12 (Day 50), influent ammonium-N concentration was 44 mg/L. Samples for depth profile were collected 30 
minutes after influent addition. 
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4.3.2 Microbial community analysis of RAS-1 
A subset of samples from RAS-1 was analyzed. These were samples from Ports 1, 4, 5, 

and 8 (Figure 4.2) at all four ammonia loading rates. Refer to Table A3.2 for a summary of the 

total number of sequences obtained pre- and post-filtering for quality. Sequences were classified 

at the phylum level (Figures A3.1 to A3.4).  The genus Nitrobacter is part of the phylum 

Alphaproteobacteria, and the phylum relative abundance of this phylum suggests that 

Nitrobacter were present.  The AOB genus Nitrosoccocus is part of the phylum 

Gammaproteobacteria, and the relative abundance of this phylum suggests that Nitrosococcus 

were present. PCR and qPCR analyses on samples collected from all RAS at 11 and 44 mg/L 

ammonium-N were conducted to confirm and quantify the ammonium- and nitrite-oxidizers. 

4.3.3 Ammonia- and nitrite-oxidizing population abundances 
Microbial biomass samples were collected along the depth of each biofilter (Figure 4.2). 

Samples from Port 1 to Port 4 were collected from biofilter #1 while samples from Port 5 to Port 

8 were collected from biofilter #2. Samples were collected 14 days into each ammonium-N load, 

on Day 14 (11 mg/L ammonium-N), Day 28 (22 mg/L ammonium-N), Day 42 (33 mg/L 

ammonium-N), and Day 56 (44 mg/L ammonium-N).  

To analyze the population dynamics of ammonium- and nitrite-oxidizing microbes with 

increasing ammonia concentration and depth in the biofilter, qPCR was used. Samples collected 

on Day 14 (lowest ammonium-N load at 11 mg/L) and Day 56 (highest ammonium-N load at 44 

mg/L) were analyzed. Microbial populations of interest were AOA, Betaproteobacteria AOB (β-

AOB), Gammaproteobacteria AOB (γ-AOB), nitrite-oxidizing Nitrospira, and Nitrobacter. 

Since these were marine systems, it was likely that AOB that require salt, halo-tolerant or 

halophiles, were present in the biofilters. Salt-tolerant genera of AOB are Nitrococcus (γ-AOB) 

and some species of Nitrosomonas (β-AOB) (Koops & Pommerening-Roser, 2001). Therefore, 

PCR was used to screen all samples for γ-AOB, and γ-AOB were not detected (data not shown). 

All other populations of interest were detected via qPCR. AOA were more abundant than β-AOB 

at all depths in the biofilter and at both ammonium concentrations in RAS-1 (Figure 4.7), RAS-2 

(Figure 4.8), and RAS-3 (Figure 4.9). This is consistent with results observed in the biofilters of 

an indoor shrimp farm (Chapter 3). β-AOB abundance increased from Day 14 to Day 56, 

corresponding to increasing ammonium-N concentrations from 11 to 44 mg/L, while AOA 
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abundance remained relatively constant over time. AOB amoA gene abundance was more 

correlated to ammonium-N concentration than AOA amoA gene abundance (Figures 4.7 – 4.9). 

This suggests that with increasing ammonium-N concentration, the β-AOB population will 

become more abundant than the AOA. This follows from observations in ammonia amended soil 

experiments where AOB were more abundant than AOA at high ammonium concentrations 

(Taylor et al., 2010, Verhamme et al., 2011).  

For NOB, Nitrospira were generally more abundant than Nitrobacter (Figures 4.10 – 

4.12). There was minimal correlation between NOB 16S rRNA gene abundance and nitrite-N 

concentrations. Nitrospira abundance decreased with increased ammonium-N conecentration in 

all RAS, while Nitrobacter abundance remained relatively constant.   

The microbial population dynamics were needed to help explain the inorganic nitrogen 

depth profiles (Figures 4.4 - 4.6). There was minimal variation between the reactors for the 

ammonium-N profile (Figure 4.4). However, RAS-3 deviated from RAS-1 and RAS-2 in both 

the nitrite-N (Figure 4.5) and nitrate-N (Figure 4.8) profiles. Where nitrite-N concentrations were 

highest in RAS-3, both Nitrospira and Nitrobacter were an order of magnitude less abundant in 

RAS-3 compared to RAS-1 and RAS-2, which may explain the higher nitrite-N concentrations. 

In RAS-1 and RAS-2, on the other hand, both NOB population abundances were relatively 

constant across all ports. 
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Figure 4.7: Ammonium-oxidizing population abundances in RAS-1. (A) and (B) Day 14, influent ammonia load of 11 mg/L 

ammonium-N. (C) and (D) Day 56, influent ammonia load of 44 mg/L. AOA were more abundant at all depths in biofilter by at least 
two orders of magnitude (A). While AOA were still more abundant on Day 56 (C), AOB abundance was higher at this concentration 

and increased with depth in biofilter. There was higher correlation between AOB amoA gene copy number and ammonium-N 
concentration (B) and (D). 
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Figure 4.8: Ammonium-oxidizing population abundances in RAS-2. (A) and (B) Day 14, influent ammonia load of 11 mg/L 
ammonium-N. (C) and (D) Day 56, influent ammonia load of 44 mg/L. AOA were more abundant at all depths in biofilter by at least 
two orders of magnitude (A). While AOA were still more abundant on Day 56 (C), AOB abundance was higher at this concentration 

and increased with depth in biofilter. There was higher correlation between AOB amoA gene copy number and ammonium-N 
concentration (B) and (D). 
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Figure 4.9: Ammonium-oxidizing population abundances in RAS-3. (A) and (B) Day 14, influent ammonia load of 11 mg/L 

ammonium-N. (C) and (D) Day 56, influent ammonia load of 44 mg/L. AOA were more abundant at all depths in biofilter by at least 
two orders of magnitude on Day 14 (A). While AOA were still more abundant on Day 56 (C), AOB abundance was higher at this 

concentration and was relatively constant with depth in biofilter. There was higher correlation between AOB amoA gene copy number 
and ammonium-N concentration (B) and (D). 
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Figure 4.10: Nitrite-oxidizing population abundances in RAS-1. (A) and (B) Day 14, influent ammonia load of 11 mg/L ammonium-N. 
(C) and (D) Day 56, influent ammonia load of 44 mg/L. Nitrospira were more abundant at all depths in biofilter by at least two orders 

of magnitude on Day 14 (A). While Nitrospira were still more abundant on Day 56 (C), their abundance decreased and at some 
locations was less than Nitrobacter. Nitrobacter abundance was relatively constant with depth in the biofilter and with increased 

ammonium-N concentration.  There was higher correlation between Nitrobacter 16S rRNA gene copy number and nitrite-N 
concentration (B) and (D) than Nitrospira 16S rRNA gene copy number. 
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Figure 4.11: Nitrite-oxidizing population abundances in RAS-1. (A) and (B) Day 14, influent ammonia load of 11 mg/L ammonium-N. 
(C) and (D) Day 56, influent ammonia load of 44 mg/L. Nitrospira were more abundant at all depths in biofilter by at least two orders 

of magnitude on Day 14 (A). While Nitrospira were still more abundant on Day 56 (C), their abundance decreased and at some 
locations was less than Nitrobacter. Nitrobacter abundance was relatively constant with depth in the biofilter and with increased 

ammonium-N concentration.  There was minimal correlation between Nitrobacter 16S rRNA gene copy number and nitrite-N 
concentration or between Nitrospira 16S rRNA gene copy number.concentration (B) and (D)  
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Figure 4.12: Nitrite-oxidizing population abundances in RAS-2. (A) and (B) Day 14, influent ammonia load of 11 mg/L ammonium-N. 
(C) and (D) Day 56, influent ammonia load of 44 mg/L. Nitrospira were more abundant at all depths in biofilter by at least two orders 

of magnitude on Day 14 (A). While Nitrospira were still more abundant on Day 56 (C), their abundance decreased. Nitrobacter 
abundance was relatively constant with depth in the biofilter and with increased ammonium-N concentration.  There was minimal 

correlation between Nitrobacter 16S rRNA gene copy number and nitrite-N concentration or between Nitrospira 16S rRNA gene copy 
number.concentration (B) and (D)  
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The ammonium and nitrite concentrations likely played a role in the relative levels of 

AOA versus β-AOB (Figures 4.7 – 4.9) and Nitrospira-NOB and Nitrobacter-NOB (Figures 

4.10 – 4.12). These concentrations were dynamic with the highest concentrations, 11 mg/L 

ammonium-N, occurring after influent addition (Figures 4.4 and 4.5) and the lowest 

concentrations, below 0.05 mg/L ammonium-N detection limit, observed 23 hours after influent 

addition (Table 4.1). Such a range of concentrations provided substrate concentrations that were 

suitable for populations that have high and low substrate affinities. This suggests that the RAS 

biofilters were robust and able to oxidize both high and low concentrations. AOA were more 

abundant than AOB at the time of sampling which is consistent with previous aquarium and 

aquaculture studies (Sauder et al., 2011, Brown et al., 2013). However, AOA abundance was not 

correlated to decreasing ammonium concentration as previously observed in freshwater aquaria 

(Sauder et al., 2011) and rotating biological contactors treating municipal wastewater (Sauder et 

al., 2012). In this study, AOA abundance remained relatively constant while β-AOB abundance 

increased as the initial ammonium concentration increased. This may be due to the cycling of 

ammonium levels between values higher than the half-saturation constant of AOB with low 

ammonium affinity and those lower than the half-saturation of AOB with high ammonium 

affinity (Limpiyakorn et al., 2013). The half-saturation constants of AOB ranges from 12.3 to 

27.4 mg/L ammonium-N (Laanbroek et al., 1994) for AOB with low ammonium affinity to 0.4  

to 1.1 mg/L ammonium-N (Bollmann et al., 2002) for AOB with high ammonium affinity. The 

half-saturation constant for Nitrosopumilus-like AOA, on the other hand, is 0.00186 mg/L N  

(Martens-Habbena et al., 2009), which is two orders of magnitude lower than the lowest 

measured value for AOB.  

Similarly, nitrite-oxidizing Nitrospira were the dominant NOB at the time of sampling, 

which was likely due to low nitrite concentrations in the biofilter.  Nitrite-oxidizing Nitrospira 

were also the dominant nitrite oxidizers in other aquaculture biofilters (Foesel et al., 2008, 

Keuter et al., 2011, Brown et al., 2013). Researchers (Schramm et al., 1999) have proposed that 

Nitrospira-like bacteria are K-strategists that grow efficiently at low nitrite and oxygen 

concentrations. The results obtained by a study characterizing NOB in a nitrifying sequencing 

batch biofilm reactor with a nitrite concentration gradient ranging from zero to 50 mg nitrite-N 

per liter confirmed this K/r-hypothesis (Daims et al., 2001). In this study, AOA were the most 
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abundant ammonia oxidizer while nitrite-oxidizing Nitrospira were the most abundant nitrite 

oxidizer.   

 

4.4 Conclusions 

A waste stream simulating the ammonium-N excretion of 100 shrimp weighing an 

average of 5, 10, 15, and 20 g was used to investigate the response of increasing influent 

ammonium-N concentration on water quality and the nitrifying microbes in biological aerated 

filters used to treat wastewater in an indoor shrimp farm. Three replicate reactors were examined, 

and all reactors performed well with respect to water quality with the removal of ammonium-N 

to below detection levels and no accumulation of nitrite. Nitrate-N accumulated in the system as 

expected because the system was not operated for nitrate removal. Future work should 

investigate nitrate removal because nitrate-N concentrations will reach levels where they have 

negative impacts on shrimp growth in zero-discharge systems. 

The biofilters investigated in this study had a robust nitrifying community. Two 

populations of both ammonium oxidizers and nitrite oxidizers were detected and quantified via 

qPCR. AOA were the dominant ammonia oxidizers, while nitrite-oxidizing Nitrospira were the 

more abundant nitrite oxidizers at all influent ammonium-N concentrations, which deviates from 

previous observations in aquaria studies. However, β-AOB abundance increased as the influent 

ammonium-N concentration increased. Future work should continue to examine the correlation 

between influent ammonium concentration and the abundance of ammonia oxidizing 

populations.  
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Chapter 5: Effect of biofilter biofilm as a supplemental food on Pacific 

white shrimp, Litopenaeus vannamei, growth in an indoor, zero-

discharge recirculating aquaculture system

 

5.1 Introduction3 

In intensive shrimp culture, the nutritional requirements of the shrimp are typically met 

through the addition of an artificial food source, which is usually purchased from commercial 

feed suppliers. This commercial food represents a significant production cost for shrimp farmers. 

The use of commercial food has a negative environmental impact on shrimp production due to 

the inclusion of fish oil and fish meal from wild-caught fish (Goldburg & Triplett, 1997, Boyd & 

Clay, 1998, Naylor et al., 2000). Therefore, reducing the amount of commercial food used for 

shrimp production decreases the production cost for farmers and improves the environmental 

sustainability of the system.  

Researchers have investigated the impact of natural biota, in the form of biofilms 

growing in the culture cage, pond, or tank as a supplemental food source for shrimp. Studies 

have suggested phototrophic biofilms, which is a biofilm that includes algae, cyanobacteria, 

diatoms, flagellates, and/or nematodes in addition to bacteria, grown with the shrimp contribute 

significantly to the growth of various shrimp species, including Farfantepenaeus paulensis 

(Thompson et al., 2002, Abreu et al., 2007, Ballester et al., 2007, Fernandes Da Silva et al., 

2008), Litopenaeus vannamei (Bratvold & Browdy, 2001, Moss & Moss, 2004, Otoshi et al., 

2006, Zarain-Herzberg et al., 2006, Lezama-Cervantes & Paniagua-Michel, 2010), Penaeus 

esculentus (Burford et al., 2004), and Penaeus monodon (Arnold et al., 2006). In these studies, 

biofilm attachment surfaces were provided to promote the development of biofilms for the 
                                                 
3 This is an abbreviated version of Section 2.4.3. Refer to Section 2.4.3 for a more detailed discussion on alternatives 
to fish meal in commercial feed. 
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shrimp to graze upon. Experiments in these studies had treatments with and without commercial 

feed.   Fernandes Da Silva et al., (2008) also examined the protein and lipid content of the 

biofilm to evaluate nutritional quality. They found that biofilm protein content varied from 0.43-

1.76 mg protein per cm2 of biofilm area, while lipid content ranged between 1.21-4.23 mg lipid 

per cm2 of biofilm area. The variation in protein content was significantly correlated to the 

abundance of unicellular centric diatoms and nematodes, while the variation in lipid content was 

correlated to the abundance of heterotrophic bacteria, flagellates, and nematodes. An evaluation 

of biofilm as a food source using stable isotope analysis (Abreu et al., 2007) showed that biofilm 

contributed more than 49% of carbon and 70% of nitrogen to shrimp tissue in a net cage 

experiment where shrimp received commercial feed and biofilm was available for shrimp to 

graze upon. The studies cited above examined the contribution of biofilm to shrimp growth in 

environments where phototrophic microorganisms were a significant part of the biofilm 

microbial communities. However, microbes in RAS biofilters under indoor, non-greenhouse 

culture conditions will be predominately bacteria.  

Recirculating aquaculture systems (RAS) are being promoted as sustainable alternative to 

pond culture. They consist of a culture tank, biological filters to oxidize toxic ammonia and 

nitrite, and aeration of the water to remove carbon dioxide and increase oxygen concentrations 

(Ebeling, 2000). Ammonia- and nitrite-oxidizing bacteria are important to the functioning of 

biofilters in RAS as ammonia generated through hydrolysis of shrimp waste (urea) is converted 

to nitrite, which is in turn converted to nitrate.  In addition, heterotrophic bacteria are present due 

to the availability of dissolved organic compounds and residual organic suspended solids in the 

system even when efforts are made to remove the suspended solids (uneaten feed and shrimp 

feces) regularly. The filter operated for suspended solids removal, in addition to the nitrifying 

biofilter, is an ideal environment for heterotrophic bacterial growth. The growth of heterotrophic 

bacteria in both types of filters requires that filters be backwashed frequently to remove excess 

microbial biomass and residual suspended solids removed from the culture tank to prevent head 

loss build up and short circuiting. As indicated above, culturing shrimp in systems with biofilms 

have had a positive impact on shrimp performance. Therefore, it is reasonable to suggest that 

biofilm from RAS biofilters and filters operated for suspended solids removal may also have a 

positive impact on shrimp performance. To date no studies have examined the impact of biofilm 

from RAS biofilters on shrimp growth. The purpose of this study was to examine the impact of 
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microbial biomass from the backwash of an indoor, non-greenhouse biological aerated filter as a 

supplemental feed source based on protein content on shrimp growth and survival. 

 

5.2 Materials and Methods 

5.2.1 Experimental design 

5.2.1.1 RAS description 
The three RAS consisted of a culture tank and two biofilter compartments operated as 

biological aerated filters (Figure 5.1). Each biofilter compartment consisted of a plexi glass 

column that was 20.32 cm in diameter and 91.44 cm in length. All biofilter compartments 

contained a mix of 1.6 mm by 3.2 mm oval plastic beads (Aquatic Eco-system, Inc., Apopka, 

FL) and 4 to 10 mm diameter clay spheres (Aquaclay, Keeton Industries, Wellington, CO) as 

biofilm attachment media. The mix was two-thirds plastic beads and one-third clay spheres by 

volume. The culture tanks were semi-square, 50-gallon polyethylene tanks (Polytank Inc., 

Litchfield, MN). Table 5.1 provides a summary of flow rate and media volume for all RAS.  

 

 

 
Figure 5.1: Schematic diagram of RAS. Sampling locations are identified by green circles. T is 

the tank water, E1 is the effluent from biofilter 1, and E2 is the effluent from biofilter 2. 
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Table 5.1: RAS hydraulic information 

Reactor 

Volume of 
water in 

RAS (m3) 
Flow rate 

(m3/d) 
Hydraulic load 

(m3/(d-m2)) 

Media volume (m3) 

Biofilter 1 Biofilter 2 
Control 0.05 0.0060 1.88 0.0167 0.0162 
Treatment-1 0.05 0.0060 1.88 0.0167 0.0165 
Treatment-2 0.05 0.0060 1.88 0.0164 0.0161 

 

Water for all RAS was prepared in the laboratory as follows. Each system was filled with 

50 liters of distilled deionized water (16.5 cm depth) and a sea salt mix (Instant Ocean, Spectrum 

Brands Inc, Cincinnati, OH) to establish a salinity of 25 g/L. Salinity was calculated from 

measured conductivity and temperature data. A 150-watt Stealth submersible aquarium heater 

(Marineland, Spectrum Brands Inc., Cincinnati, OH) in each tank was used to maintain water 

temperatures at 30°C (RAS Feeding Experiment Trial #1) or 25°C (RAS Feeding Experiment 

Trial #2 and Batch Experiment). Air-tubing, located at the bottom of the tank, was used in each 

system to aerate the water. The target dissolved oxygen (DO) concentration was 5 mg/L. 

Bicarbonate, as ammonium bicarbonate and sodium bicarbonate, was added to maintain 

alkalinity above 100 mg/L as CaCO3. Alkalinity was measured biweekly and pH daily (RAS 

Feeding Experiment Trial #1) or several times per week (RAS Feeding Experiment Trial #2 and 

Batch Experiment). 

The RAS used in this study had different operational histories. Treatment-2 RAS was 

started in March 2011, while Treatment-1 RAS was started in March 2012 and Control RAS was 

started in May 2012. Microbial biomass from an indoor shrimp farm located in Okemos, MI was 

used to seed the biofilters of Treatment-2 RAS (Brown et al., 2013). Microbial biomass from 

Treatment-2 RAS was used to seed the biofilters of Treatment-1 RAS and Control RAS. A 

preliminary shrimp study was conducted in Treatment-2 RAS, while no shrimp were grown in 

Treatment-1 RAS and Control RAS prior to this study. Furthermore an experiment to evaluate 

the correlation between increasing ammonia load and ammonia- and nitrite-oxidizing microbes 

(Chapter 4) was conducted with simulated waste prior to the feeding experiment described in this 

chapter in all RAS.  
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5.2.1.2 RAS Feeding Trial #1 
Commercial feed was supplemented with biofilter biofilm based on protein content in 

two treatments: 25% biofilm + 75% commercial feed (treatment-1, T1) and 50% biofilm + 50% 

commercial feed (treatment-2, T2); the control (C) was 100% commercial feed. The commercial 

feed used in this experiment contained 40% protein as reported by the manufacturer (Shrimp 

Grower, Rangen, Buhl, ID). Biofilter biofilm was collected during backwashing prior to the 

feeding experiment. Backwashing consisted of air scour for 10 minutes followed by air and 

water scour for 20 minutes. The bed was not fluidized during this process. The backwash 

effluent was collected and allowed to settle for 48-72 hours at 4°C. The supernatant was returned 

to the culture tank and the biomass was further concentrated via centrifuging 200 mL bottles at 

2800 g for 10 minutes. The concentrated wet biomass was then stored at -20°C in 50 mL 

centrifuge tubes. Biomass samples were sent to Rtech Laboratories (Arden Hills, MN) for 

protein analysis using the Kjeldhal protein method. The appropriate amounts of Rangen shrimp 

feed and backwash biomass, on a nitrogen basis, were mixed, which formed a slurry, and freeze 

dried (Freezone 6 Freeze Dry System, Labconco, Kansas City, MO) for at least 24 hours. The 

freeze dried mix was stored at 4°C.  Refer to Appendix IV for details on the calculation used to 

determine how much biomass was needed based on the protein content of the biofilter backwash. 

Tanks were stocked with 88, 83, and 80 post-larval Pacific white shrimp for the control, 

treatment-1, and treatment-2, respectively. This equates to a stocking density of 282, 266, and 

256 shrimp/m2 for the control, treatment-1, and treatment-2, respectively. Shrimp were fed at  

6% body weight per day for 29 days. The amount of feed provided was adjusted based on wet 

weight shrimp measurements assuming 100% survival. The wet weight of 8-10 shrimp was 

measured at stocking, once per week during the trial, and at the end of the trial.  Shrimp 

measured before the end of the experimental period were returned alive. Survival was monitored 

by counting the number of shrimp at the beginning and end of the experimental period. 

5.2.1.3 RAS Feeding Trial #2 
Trial #2 was conducted similarly to Trial #1 with several modifications. These 

modifications were as follows: (1) Microbial biomass collected from the RAS biofilters was 

freeze dried after centrifuging and the freeze dried biomass was shipped for protein analysis; (2) 

a four-day feeding cycle was used that consisted of four days of feeding with commercial feed 

for the control, three days of commercial feed plus one day of microbial biomass for treatment-1 
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(75/25), and two days of commercial feed plus two days of microbial biomass for treatment-2 

(50/50); (3) feed was given manually once per day; and (4) wet weight of shrimp was measured 

every 10 days.  All tanks were stocked with 100 Pacific white shrimp PLs. This equates to a 

stocking density of 320 shrimp/m2. Shrimp were fed at a rate of 6% body weight per day for the 

first 32 days of the experiment; from Day 33 to the end of the experiment shrimp were fed at 

12% body weight per day.  

5.2.1.4 Batch Feeding Experiment 
The purpose of this experiment was to compare growth rate of shrimp with continuous 

access to microbial biomass to shrimp fed on microbial biomass at specific intervals. This 

experiment was conducted concurrently with RAS feeding trial #2. Five-gallon buckets were 

used as tanks for this experiment with window screen mesh as biofilm attachment media. One 

week before the start of the experiment, backwash from RAS biofilters was used to establish 

biofilm in the batch reactors. During this one-week time period, sucrose and ammonia were 

added to promote the growth of heterotrophic bacteria and establish biofilm on the window 

screen mesh. Microbial biomass was scraped from the window screen mesh for measurements. 

Tanks were stocked with 20 Pacific white shrimp PLs for a stocking density of 270 

shrimp/m2. For the first 32 days shrimp were fed at 6% body weight per day. From Day 33 to 

Day 68 shrimp were fed at 12% body weight per day. Each treatment (control, treatment-1, and 

treatment-2) was conducted in duplicate. Feed was given in a four-day cycle as described in RAS 

Feeding Experiment Trial #2, except that no external microbial biomass was fed on the fourth 

day (treatment-1) and the third and fourth days (treatment-2) of the feeding cycles. Wet weight 

of shrimp was measured at the beginning and end of the experiment.  

5.2.2 Water quality 
Probes were used to monitor several parameters in the tank. Salinity and temperature 

were measured with a Orion Model 1230 meter (Thermo Scientific, Waltham, MA) and pH with 

a Mettler Toledo sevenEasy meter (Columbus, OH). Water samples were collected daily (RAS 

Feeding Trial #1) or three times per week (RAS Feeding Trial #2 and Batch Feeding 

Experiment) from the tank and biofilter effluents to monitor total ammonium-nitrogen (TAN), 

nitrite-nitrogen (NO2), and nitrate-nitrogen (NO3) concentrations according to standard methods 

(APHA, 1998). Other water quality parameters that were measured included alkalinity, total 

organic carbon (TOC), total suspended solids (TSS), and volatile suspended solids (VSS) 
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following standard methods (APHA, 1998). All analyses were performed in triplicate for each 

sample collected.  

Samples for TOC analysis were collected several times per week during the experimental 

period for each treatment. Samples were collected from the tank and each biofilter effluent 

(Figure 5.1). The purpose of these samples was to monitor organic carbon. Chemical oxygen 

demand (COD) was not measured due to the high concentration of chloride ion in the water, 

which interferes with the COD reaction chemistry. 

During RAS Feeding Trial #1, TAN, NO2, and NO3 concentrations were measured, in 

the tank and biofilter effluents (Figure 5.1), once each week at one-hour intervals over twelve 

hours between feedings to observe variations in concentration not captured by the daily grab 

sample. Tank samples were also analyzed for TOC. 

In the batch experiment, all water quality parameters were measured three times per week 

except alkalinity, TSS, VSS and TOC which were measured biweekly.  

 

5.3 Results and Discussion 

5.3.1 RAS Feeding Experiment Trial #1 
In this experiment, water temperature varied between 28.0 and 29.5°C, while salinity 

ranged from 23.3 to 26.6 (Table 5.2). Bicarbonate was added to maintain alkalinity above 100 

mg/L CaCO3, and alkalinity ranged from 243 to 331 mg/L CaCO3 (Table 5.2). Due to the high 

buffer capacity in each RAS there was minimal variation pH (Table 5.2). Total and volatile 

suspended solids and total organic carbon were also monitored to assess the amount of organic 

carbon available to heterotrophic bacteria. Concentrations indicate that organic carbon was 

relatively low throughout the experiment. For detailed information on TOC refer to Appendix 

IV, Figures A4.6 and A4.7.  
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Table 5.2: RAS Feeding Trial #1 Water quality Summary* 

Parameter 
Control 
(100) 

Treatment 1 
(75/25) 

Treatment 2 
(50/50) 

Temperature (°C) 29.2 ± 0.3 29.1 ± 0.3 28.4 ± 0.4 
Salinity (psu) 25.1 ± 1.5 24.5 ± 1.2 24.9 ± 1.2 

pH 8.34 ± 0.05 8.49 ± 0.04 8.42 ± 0.13 
Alkalinity (mg/L CaCO3) 255 ± 12 389 ± 42 368 ± 24 

TSS (mg/L) 62.4 ± 7.0 67.2 ± 9.8 65.8 ± 8.4 
VSS (mg/L) 16.7 ± 1.7 17.4 ± 3.6 17.2 ± 3.8 
TOC (mg/L) 7.5± 3.6 10.4 ± 4.7 7.9 ± 3.1 

*numbers in the table are average ± standard deviation 
 

 

Daily grab samples were collected before the morning feeding and analyzed for 

ammonium-N (Appendix IV, Figure A4.1), nitrite-N (Figure A4.2), and nitrate-N (Figure A4.3). 

The purpose of these samples was to monitor the 24-hour accumulation of inorganic nitrogen. It 

is important to maintain less than 1 mg/L as ammonium-N and less than 15 mg/L as nitrite-N 

because higher concentrations are toxic to shrimp (Timmons & Ebeling, 2007). These results 

show that there was no ammonium or nitrite accumulation within a 24-hour period. However, 

nitrate-N concentrations increased in the system, which indicates that ammonium was produced 

by the shrimp and converted to nitrate by nitrification since measured concentrations of 

ammonium were low. Because the system was not operated to promote nitrate removal, nitrate-N 

accumulated. The highest concentrations of nitrate-N (120 mg/L) were observed in the control 

(Figure A4.3). These levels should not have had negative impacts on the shrimp based on 

information from the literature. A study (Kuhn et al., 2010) investigating the chronic toxicity of 

nitrate on Pacific white shrimp in a RAS at 9, 220, 435, and 910 mg/L nitrate-N, showed 

negative impacts on shrimp biomass and antennae length at 435 mg/L nitrate-N and negative 

impacts on growth, survival, total mass, and antennae length at 910 mg/L nitrate-N. The 

concentrations observed in this study were below these values. Grab samples only capture the 

concentration in the system at the time of sampling. Consequently, the grab sample at the end of 

the feeding cycle did not capture potentially higher concentrations that might occur immediately 

after feeding. Therefore, samples were collected in one-hour intervals after feeding, time series 

samples, to observe concentrations during a feeding cycle that were not captured by the daily 
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grab samples. For all treatments, ammonium-N and nitrite-N concentrations were below the 

detection limit of 0.05 mg/L, while nitrate concentrations remained constant (Figures A4.4 and 

A4.5).   

Shrimp were fed at 6% body weight assuming 100% survival for the experimental period. 

The growth rate for the control was 2.1 times higher than that for treatment-1 and 3.8 times 

higher than that for treatment-2 (Table 5.3). The growth rates range from 0.0064 to 0.0245 g/day, 

and  similar range of growth rates, 0.00455 to 0.0427 g/day, was observed in a study on the 

effect of microbial mats on Pacific white shrimp (Lezama-Cervantes & Paniagua-Michel, 2010). 

In that study microbial mats were used to treat shrimp waste and were also evaluated for their 

effect on shrimp growth and survival under various conditions during a 33-day experimental 

period. The lower growth rate observed in the treatments is possibly due to the unavailability of 

protein in the biofilter biofilm to the shrimp or the biofilter biofilm may not have been presented 

in a form suitable for consumption. Thompson et al. (2002) observed higher final shrimp weight 

in tanks with biofilm, even though the biofilm had a low protein content of 6% wet weight. The 

biofilm used in this study had a wet weight protein content that ranged from 0.73% to 4.53%; the 

variability in the protein values were caused by the water content. The organic carbon associated 

with these protein values are shown in Table 5.4.  

Survival in all treatments was less than 80% (Table 5.3). The low survival was likely due 

to stress from the overnight transport from Florida to Michigan as well as temperature stress 

from moving the shrimp from the transport water to the RAS tanks. Furthermore at the end of the 

experimental period, shrimp were effectively being fed at 12% to 18% body weight per day 

because of the low survival. This may have contributed to increased growth towards the end of 

the experiment. 
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Figure 5.2. Shrimp growth for Trial #1. Error bars show standard deviation. Each curve was 

fitted with an exponential equation R2 value greater than 0.9 (data not shown) 

 

 

 

Table 5.3: Shrimp growth rate and survival 

Treatment  

No. 
shrimp at 

t = 0 

No. 
shrimp at 
t = 29 d 

Survival 
(%) 

growth 
rate 

(g/day) 
Control  (100) 88 31 35 0.0245 
Treatment-1 (75/25) 83 46 55 0.0118 
Treatment-2 (50/50) 80 30 38 0.0064 
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If each growth curve (Figure 5.2) was fitted with an exponential equation, the time to 

reach an average weight of 20 g/shrimp would take 64 days (control), 88 days (treatment-1), and 

119 days (treatment-2). This corresponds to a growth period 27% and 46% longer in treatment-1 

and treatment-2, respectively, compared to the control. An exponential equation was selected to 

describe the data because previous results showed that shrimp growth is exponential (A4.8). 

There is a tradeoff between reduced commercial feed inputs and time to harvest size. Reducing 

the amount of commercial feed slows the growth rate which results in a longer growout time. 

The operational cost, or cost of commercial feed plus cost of electricity needed to operate RAS, 

is higher for the treatments compared to the control (Figure 5.3). Electricity cost is the highest 

fraction of the operation cost. Therefore, for the treatments to be cost competitive more work 

needs to be done to optimize the supplemental level that yields a growth rate similar to that 

obtained for 100% commercial feed.

Table 5.4: Protein and carbon content of microbial biomass from 
six collections of biofilter backwash used in RAS feeding trial #1 

Protein content (%) 
VSS 

(mg/L) 
COD* 
(mg/L) 

TOC** 
(mg/L) 

4.53 665 944 350 
0.73 260 369 137 
2.63 284 403 149 
2.89 303 430 159 
2.51 443 629 233 
0.81 248 352 130 

*Calculated from 1.42 g COD/g VSS (Rittmann & McCarthy, 2001) 
**Calculated from 1 g TOC/2.7 g COD (Henze et al., 2000) 
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Figure 5.3: Operational cost to produce one kg shrimp for Trial #1 as a function of feed 
conversion ratio. Operation cost is the cost of commercial feed plus cost of electricity needed to 
operate RAS. The majority of the operation cost, at least 94%, is due to electricity usage.Refer 
to Table A4.3 for summary of feed cost and to Tables A4.4., A4.5, and A4.6 for summary of 
electricity costs. 
 

5.3.2 RAS Feeding Experiment Trial #2 
During the study period, the water temperature ranged from 24.4 and 25.4°C, while salinity 

ranged from 24.4 to 30.6 (Table A4.7). pH, alkalinity, TSS, VSS and TOC values were similar to 

Trial #1 (refer to Table A4.3 for detailed information on these parameters in Trial #2). Daily 

samples were collected before feeding and analyzed for ammonium-N (Figure A4.9), nitrite-N, 

and nitrate-N (Figure A4.10). Ammonia-N concentrations were below 0.2 mg/L, there was no 

detectable nitrite-N, and nitrate-N accumulated in the system to approximately 43 (Treatment-2), 

60 (Treatment-1), and 65 (Control) mg/L nitrate-N.  

Modifications were made to the experimental design, as described in the Materials and 

Methods, to address potential issues with nutrient availability in the microbial biomass and to 

determine if shrimp were being under fed. The shrimp in the treatments were fed on a four-day 

cycle and the feeding rate was doubled halfway through the experiment. Shrimp were fed at 6% 

body weight assuming 100% survival from Day 0 to 32, and then were fed at 12% body weight 

assuming 100% survival from Day 33 to Day 68. The growth rate for the control was 1.9 times 
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higher than that for treatment-1 and 2.9 times higher than that for treatment-2 (Table 5.5). There 

was a significant difference in the growth rate between shrimp fed 6% and 12% body weight per 

day (P < 0.1, t test). The biofilm used in this study had a dry weight, after freeze drying, protein 

content of 6%, 14%, 20%, and 30%. Survival rate was 80% or better in this trial (Table 5.5).  

Shrimp were acclimated to the temperature difference between the water they were shipped in 

and tank water. This, combined with changes in feed delivery, likely played a role in the 

increased survival rate in Trial #2.  

 

 
Figure 5.4: Shrimp growth for Trial #2. Error bars show standard deviation. Each curve was 

fitted with an exponential equation R2 value greater than 0.9 (data not shown) 
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Table 5.5: Shrimp growth rate and survival for Trial #2 

Treatment 

No. 
shrimp at 

t = 0 

No. 
shrimp at 
t = 68 d 

% 
survival 

Growth 
rate 

(g/day) 
Control (100) 100 80 80 0.0136 
Treatment 1 (75/50) 100 93 93 0.0073 
Treatment 2 (50/50) 100 87 87 0.0047 

 

 

If each growth curve (Figure 5.4) was fitted with an exponential equation, the time to 

reach an average weight of 20 g/shrimp would take 112 days (control), 126 days (treatment-1), 

and 137 days (treatment-2). Similar to the results for Trial #1, the increased time it takes to reach 

harvest size has increased operational costs (Figure 5.5) in the treatments as compared to the 

control. This corresponds to a growth period 11% and 18% longer in treatment-1 and treatment-

2, respectively, compared to the control. The time needed to reach harvest size was longer in 

Trial #2 as compared to Trial #1 because the size of the shrimp at the beginning of the 

experiment was different. The starting average weight in Trial #1 was 0.06 g/shrimp while the 

initial average weight in Trial #2 was 0.005 g/shrimp. The difference between the growth rates in 

Trial #1 and Trial #2 were not statistically significant (P > 0.1, t test). 
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Figure 5.5: Operational cost to produce one kg shrimp as a function of feed conversion ratio for 
Trial #2. Operational cost is the cost of commercial feed plus cost of electricity needed to 
operate RAS. The majority of the operation cost, at least 94%, is due to electricity usage. Refer 
to Table A4.9 for summary of feed cost and to Tables A4.10, A4.11, and A4.12 for summary of 
electricity costs. 
 

 

5.3.3 Batch Experiment 
The growth rates in this experiment were 0.0192 g/day (Control), 0.0095 g/day 

(Treatment-1), and 0.0086 g/day (Treatment-2). These results were similar to those observed in 

RAS feeding Trial #2. However, the difference in growth rate between the batch experiment and 

RAS Feeding Trial #2 was not significant (P > 0.1, t test). For details on water quality refer to 

Table A4.13.  

 

5.4 Conclusion 

Microbial biomass from RAS biofilters was evaluated as a supplemental feed source 

based on protein content for Pacific white shrimp. This studied showed that replacing 25% and 

50% of commercial feed protein content with microbial biomass from RAS biofilters resulted in 

a decreased growth rate. However, the longer grow out time increases operational cost, cost of 

commercial feed plus electricity cost needed to operate RAS. The results of this study can be 
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refined by using a feeding method that provides sufficient feed for shrimp growth to optimize 

growth rate. Also, shrimp in this study were not grown to 20 g; consequently, time to grow to 20 

g was calculated. Future studies should use longer experimental periods to improve growth 

projections. Shrimp farmers using RAS can use their biofilter backwash waste and/or solids 

waste as a supplemental feed source to reduce solid waste and mass of commercial feed in 

Pacific white shrimp production. 
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Chapter 6: Conclusions and Future Work 
 

The long-term goal of the research presented in this dissertation is to improve the 

environmental sustainability of shrimp recirculating aquaculture systems (RAS) operated 

indoors.  Microorganisms have a critical role in maintaining water quality and solid waste 

management in RAS. Therefore, a better understanding of the microbially-mediated nitrogen 

transformation processes in indoor RAS can help improve performance through appropriate 

operational modifications. Furthermore, a reduction in commercial shrimp feed may be possible 

through the use of microbial biomass from RAS biofilters as a supplemental feed source. This 

research began with the analysis of the nitrifying microbial populations in the trickling filter of a 

local indoor shrimp farm (Shrimp Farm Market, Okemos, MI). This farm utilized a zero-

discharge RAS for culturing Pacific white shrimp (Litopenaeus vannamei). Laboratory-scale 

RAS were fabricated and used to investigate effect of ammonium concentration on ammonia-

oxidizing and nitrite-oxidizing populations. The lab RAS were also used to evaluate biofilter 

biofilm as a supplemental feed source on shrimp growth and survival. In the following section I 

will discuss the important findings from each chapter and provide recommendations for future 

research.  

 

Chapter 3: AOA and nitrite-oxidizing nitrospiras were the dominant nitrifying microbes in the 

tricking filter of an indoor, zero-discharge marine recirculating aquaculture system 

 This study analyzed the nitrifier community in the biofilter of a zero discharge, RAS for 

the production of marine shrimp in a low density (low ammonium production) system. The 

system consisted of a culture tank and a nitrifying trickling filter that contained different types of 

biofilm attachment media: plastic bioballs at the top and crushed oyster shells at the bottom. 

Water from the culture tank was pumped and filtered by gravity through the different biofilm 

attachment media and returned to the culture tank.  There was a basin beneath the filter tower to 

collect water and settled particles (sludge) before the water was pumped back into the culture 
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tank. Using biomass from the nitrifying trickling filter, archaeal 16S rRNA gene clone libraries 

were constructed and ammonia oxidizing archaea (AOA) related to Nitrosopumilus maritimus 

were detected in these samples.  The presence of AOA was confirmed by PCR targeting archaeal 

ammonia monooxygenase A (amoA) genes. qPCR indicated the abundance of archaeal amoA in 

oyster shells was an order of magnitude higher than its abundance in bioballs. Proteobacterial 

ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were not detected by 

bacterial 16S rRNA gene clone library analysis. However, NOB from the genus Nitrospira were 

represented in the library. The abundance of bacterial amoA was found to be very low using 

qPCR, but bioballs contained significantly greater levels of AOB than oyster shells. qPCR 

revealed that bioballs contained an order of magnitude higher level of Nitrospira marina-type 

NOB than oyster shells, but its abundance relative to total bacteria was higher in oyster shells. 

The water quality (i.e., low ammonium and nitrite concentrations) and biofilm attachment media 

played a role in the competitiveness of AOA over AOB and Nitrospira marina-type NOB over 

Nitrospira moscoviensis-type NOB, but additional work is needed to elucidate their function and 

importance in determining the outcome of the competition. 

 

Chapter 4: A correlation between ammonium concentration and niche differences of ammonium 

oxidizers was not observed but AOB abundance did increase with increasing ammonium 

concentration in the biological aerated filters of an indoor, zero-discharge RAS 

A waste stream simulating the ammonium-N excretion of 100 shrimp weighing an 

average of 5, 10, 15, and 20 g was used to investigate the response of increasing influent 

ammonium-N concentration on water quality and the nitrifying microbes in biological aerated 

filters used to treat wastewater in an indoor shrimp farm. Three replicate reactors were examined, 

and all reactors performed well with respect to water quality with the removal of ammonium-

nitrogen to below detection levels and no accumulation of nitrite. Nitrate-nitrogen accumulated 

in the system as expected because the system was not operated for nitrate removal; however, 

there was partial nitrate removal based on nitrogen mass balance calculations. This passive 

dentirification did not remove nitrate to concentrations that do not have an impact on shrimp 

growth. Future work should investigate nitrate removal strategies in zero-discharge marine RAS 

because nitrate-nitrogen concentrations will reach levels where they have negative impacts on 

shrimp growth. 
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The biofilters investigated in this study had a robust nitrifying community. Two 

populations of both ammonium oxidizers and nitrite oxidizers were detected and quantified via 

qPCR. AOA were the dominant ammonia oxidizers, while nitrite-oxidizing Nitrospira were the 

more abundant nitrite oxidizers at all influent ammonium-nitrogen concentrations. However, 

Betaproteobacterial AOB abundance increased as the influent ammonium-nitrogen 

concentration increased. Future work should continue to examine the correlation between 

influent ammonium concentration and the abundance of nitrifying microbes in engineered 

environments.  

 

Chapter 5: Supplementing commercial shrimp feed with RAS biofilter biofilm is a viable way to 

reduce feed costs and improve the sustainability of RAS; however, work needs to be done to 

optimize the supplemental level for increased shrimp growth and to improve cost estimates 

Microbial biomass from RAS biofilters was evaluated as a supplemental feed source 

based on protein content for Pacific white shrimp. The biological aerated filters of an indoor, 

zero-charge RAS were backwashed to remove the microbial biomass from the biofilters. The 

resulting slurry of microbial biomass and water was then processed to remove water and 

concentrate the solids via centrifuging and freeze drying. Protein content of the microbial 

biomass was measured, and in the first trial microbial biomass was mixed in a slurry with 

commercial feed prior to feeding, while in the second trial microbial biomass was not mixed with 

commercial feed. The supplemental levels investigated in this study were 25% and 50% 

replacement of commercial feed based on protein content. This studied showed that replacing 

25% and 50% of commercial feed protein content with microbial biomass from RAS biofilters 

results in a decreased growth rate. The longer growth time results in higher operational costs, 

which includes the commercial feed cost plus the cost of the electricity needed to operate the 

RAS. The results of this study can be refined by optimizing the supplemental level to achieve the 

highest growth while reducing feed cost and minimizing additional growth time. Also, shrimp in 

this study were not grown to harvest size so time to grow to 20 g was estimated. Future studies 

should use longer experimental periods to improve growth projections. Shrimp farmers using 

RAS can use their biofilter backwash waste and/or solids waste as a supplemental feed source to 

reduce waste and feeding costs of Pacific white shrimp production. 
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Appendices 

 

Appendix I: Supplemental Information for Chapter 3 
 

 
 
Figure A1.1: Simplified schematic of a zero-exchange RAS for marine shrimp production in 
Okemos, MI. The system relies on a biofilter containing different biofilm attachment media: 
plastic bioballs, plastic corrugated block, and crushed oyster shells. In this system, water from 
the culture tank is pumped and filtered by gravity through the biofilter. The numbers indicate 
sampling locations. 
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Biofilter 1. Tank water 

2. Bioballs 
 

3. Oyster 

shells 

4. Sludge 
 



 

107 

 

Table A1.1: Phylum level affiliations of bacterial 16S rRNA genes 
that were PCR amplified, cloned, and sequenced for different RAS 
sampling locations (Figure A1.1). Values in the table are expressed 
as a percentage of the total number of clones.  
    RAS sampling locations 

Phylum level 
classifications 

Tank 
water Bioballs 

Oyster 
shells Sludge 

Bacteroidetes 45.3 2.9 6.8 18.6 
Alphaproteobacteria 29.7 28.6 22.7 19.6 
Betaproteobacteria ND* ND ND 1.0 
Gammaproteobacteria 9.4 17.1 9.1 26.5 
Deltaproteobacteria ND 4.3 5.7 7.8 
Planctomycetes 1.6 4.3 25.0 2.0 
Firmicutes ND 1.4 2.3 8.8 
Actinobacteria 3.1 4.3 4.5 2.0 
Nitrospirae ND 14.3 3.4 ND 
Chloroflexi ND 2.9 2.3 2.9 
Chlorobi ND ND ND 1.0 
Verrucomicrobia ND ND 2.3 1.0 
Gammatimonadetes ND ND  2.3 ND 
Unclassified 10.9 20.0 13.6 8.8 
Number of clones 64 70 88 102 
*ND = not detected 
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Figure A1.2: Phylum level affiliations of archaeal 16S rRNA genes that were PCR amplified, 
cloned, and sequenced using samples obtained from the RAS system. This clone library was 
generated from pooled DNA samples extracted from the different RAS samples (Figure A1.1).
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Figure A1.3: Standard curve for archaeal amoA gene qPCR. Standard curve was generated 
from linearized plasmids containing cloned archaeal amoA PCR amplicons previously 
sequenced to verify identity.  

y = -3.9985x + 43.496
R² = 0.9743

Efficiency = 0.78

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Ct
 SY

BR

log[copies]



 

110 

 

 
 
Figure A1.4: Standard curve for archaeal 16S rRNA gene qPCR. Standard curve was generated 
from linearized plasmids containing cloned archaeal 16S rRNA PCR amplicons previously 
sequenced to verify identity. Refer to the caption of Figure A1.3 for a discussion of the method 
used to calculate efficiency. 
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Figure A1.5: Standard curve for the Nitrospira marina-type NOB 16S rRNA gene qPCR. 
Standard curve was generated from linearized plasmids containing cloned bacterial 16S rRNA 
PCR amplicons previously sequenced to verify identity. Refer to the caption of Figure A1.3 for a 
discussion of the method used to calculate efficiency. 
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Figure A1.6: Standard curve for Nitrospira moscoviensis-type NOB 16S rRNA gene qPCR. 
Standard curve was generated from linearized plasmids containing cloned bacterial 16S rRNA 
PCR amplicons previously sequenced to verify identity. Refer to the caption of Figure A1.3 for a 
discussion of the method used to calculate efficiency. 
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Appendix II: Residence time distribution analysis to characterize the 
flow regime in each component of the laboratory recirculating 

aquaculture systems 
 

Background 

Ideal reactors 

There are three reference, or ideal, reactor configurations are common in engineered and 

natural systems. They are the continuously mixed batch reactor (CMBR), continuously stirred 

tank reactor (CSTR), and the plug flow reactor (PFR). These reactors differ in terms of mixing 

characteristics and mass flow. The difference between CMBR and CSTR is that the CMBR has 

no mass transport across the reactor boundary whereas the CSTR has continuous mass flow in 

and out of the reactor. Neither of these reactors have concentration gradients (Crittenden et al., 

2005). The difference between the CSTR and PFR is that the CSTR is completely mixed and has 

no concentration gradient, while PFRs have continuous mass flow but the elements of fluid 

parcels move parallel to the reactor axis and do not mix creating a continuous concentration 

gradient (Crittenden et al., 2005). These basic reactors have more complicated variations which 

include reactors in series and sequencing batch reactors. Real systems are never completely 

ideal.  

 

Non-ideal reactors 

Non-ideal reactors have flow patterns that deviate from the ideal reactors described above. 

Deviations from ideal CSTRs are caused by stagnant regions, channeling, and imperfect mixing 

equipment, while deviations from ideal PFRs are caused by stagnant regions, dispersion, and 

preferential flow paths. Reactor performance is affected by non-ideal flow (Crittenden et al., 

2005). To determine how this flow affects performance, the non-ideal flow has to be described 

first and then performance can be modeled with the appropriate flow characteristics. Tracers are 

used to characterize flow in reactors (Crittenden et al., 2005, Danckwerts, 1953).  
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Materials and Methods 

RAS reactor description 

There were three RAS in the experimental set-up, each RAS consisted of a culture tank 

and a down-flow, nitrifying biological aerated filter with two compartments (Figure A2.1). Each 

biofilter compartment was comprised of a column that was 20.32 cm in diameter and 91.44 cm in 

length. For the RTD analysis the biofilter compartments in RAS-1 contained 4 to 10 mm 

diameter clay spheres (Aquaclay, Keeton Industries, Wellington, CO) as biofilm attachment 

medium.  The biofilter compartments in RAS-2 and RAS-3 both contained 1.6 mm by 3.2 mm 

oval plastic beads (Aquatic Eco-system, Inc., Apopka, FL) as biofilm attachment medium. The 

culture tank for each RAS was semi-square, 50-gallon polyethylene tanks (Polytank Inc., 

Litchfield, MN).  

 

 

 

 
Figure A2.1: Three RAS reactors 
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Tracer test 

A tracer test was done for each reactor component to characterize its hydraulic flow.  

First the flow rate of each reactor component was measured. Chloride was used as the tracer 

element because it is non-reactive, and the chloride concentration was measured with a 

conductivity meter during the tracer test. A standard curve was generated to correlate the 

chloride concentration to the conductivity measurement. The tracer was introduced as a pulse 

input to the influent of each reactor component, and the conductivity was measured at 

predetermined time intervals. 

 

Tracer data analysis 

The tracer data was analyzed according to the procedure outlined in (Danckwerts, 1953, 

Crittenden et al., 2005). In summary, the tracer data was normalized with respect to the 

measured mean residence time and to the total mass concentration of tracer recovered to generate 

an exit age distribution curve. The tracer results were characterized with hydraulic residence time 

and the equivalent number of tanks-in-series (Levenspiel & Knovel, 1999). Details of the 

analysis method are described below. 

For a pulse input, the stimulus-response curves are obtained as either C-curves or E-

curves depending on how they are normalized. If MT = mass of tracer injected, VR = reactor 

volume, and C∆ = MT/VR, then the C-curve is a plot of time versus Cout/C∆. The E-curve, or E(t), 

is a plot of the C-curve values normalized by the area under the C-curve. The E(t) is an exit age 

distribution function, and the area under the E-curve is one because it is a frequency distribution. 

The first moment of E(t) about the origin gives the mean value of tracer mass residence time, tm. 

The second moment of E(t) about mean mass residence time, tm, is a measure of the variance of 

distribution, or extent of spreading of pulse.  

Steps to obtain the exit age distribution from a pulse tracer study (Danckwerts, 1953; 

Crittenden et al., 2005; Levenspiel & Knovel, 1999): 

 

1. Plot the C-Curve and the E-Curve. 

2. Determine the tracer mass residence time, tm.  

3. Compare the tracer mass residence time to the hydraulic residence time to determine if 

there is any short circuiting. 
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4. Determine the normalization concentration 

5. Replot the E-curve as E(Θ) = C/CN versus Θ  where Θ = t/tm and CN = total mass 

concentration of tracer recovered 

 

These steps account for the fact that not all of the tracer will be recovered.  

 

A Microsoft Excel spreadsheet was used to analyze tracer data. Details on how to set-up this 

spreadsheet are provided below. All integrals were calculated using the trapezoid rule. 

Column 1. Measured, or raw, time data. 

Column 2. Calculated concentration data from chloride to conductivity standard curve. 

Column 3.  The sum of this column is the mass of tracer recovered. 𝑀𝑇 = ∑𝑄𝐶𝑖∆𝑡𝑖 

Column 4.  C∆ = MT/VR. The C-Curve is a plot of time versus C/ C∆.  

Column 5.  To plot the exit age distribution function, the area under the C-Curve must be 

calculated. The area under the C-Curve, AC = 1
𝐶∆
∫ 𝐶(𝑡)𝑑𝑡∞
0   

 𝐴𝐶  is related to the fractional recovery of tracer mass = QAC/VR 

Column 6.  E(t) = [C(t)/ C∆]/AC. E(t) values are obtained by dividing Column 3 values by AC.  

Column 7.  The area under the E(t) curve, or the sum of this column, should be one.  

Column 8.  To calculate the dimensionless exit age distribution, E(Θ), the mean residence time 

must be calculated. The first moment of E(t) about the origin is the mean tracer mass residence 

time, tm.  𝑡𝑚 =  ∫ 𝑡𝐸(𝑡)𝑑𝑡∞
0 . This column contains the values of t*E(t) at each time step. 

Column 9.  Numerical integration of area under t*E(t) function. The sum of this column is tm. 

Column 10. The second moment of E(t) about the mean mass residence time, tm, is a measure of 

the extent of spreading of the pulse, or the variance of distribution. 

 𝜎𝑡2 = ∫ 𝑡2𝐸(𝑡)𝑑𝑡 −  𝑡𝑚2
∞
0 . This column contains the values of t2*E(t) at each time step. 

Column 11. Numerical integration of area under t2*E(t) function. This value is used to calculate the 

variance of distribution 

Column 12. CN  is the total mass concentration of tracer recovered. 𝐶𝑁 = ∫ 𝐶(𝑡)𝑑𝑡∞
0

𝑡𝑚
. This column 

contains the numerical integration of area under the C(t) function. These values are summed 

and divided by tm. 
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Column 13. The dimensionless E-curve can be calculated two ways. E(Θ) = C/CN  = tm*E(t). This 

column is C/CN. The values in this column and Column 15 should be the same. 

Column 14. Dimensionless time Θ = t/tm 

Column 15. This column contains values of E(Θ) calculated as tm*E(t). 

 

Tanks-in-Series model to describe tracer data 

The tanks-in-series (TIS) model was used to model the tracer test results. The exit age 

distribution for n CSTRs in series is given by  

 

𝐸(𝜃)𝑛 =  
𝑛(𝑛𝜃)𝑛−1

(𝑛 − 1)!
𝑒−𝑛𝜃 

 

where  E(Θ)n = exit age distribution for n tanks in series and Θ = relative 

residence time, or dimensionless time  t/tm (Levenspiel & Knovel, 1999, Crittenden et al., 

2005). 

 

Results and Discussion 

It was expected that the tanks would be described as CSTRS while the biofilters would be 

described as some number of CSTRs in series instead of as PFRs due to aeration in the biofilters. 

A tracer study was conducted to obtain the exit age distribution for each RAS component. This 

data was then fit to the tanks-in-series model to describe the non-ideal flow.  The best fit between 

the tanks-in-series model and the tracer data was determined by the value of n tanks that 

minimized the sum of squared differences between the model and the data. This was done for 

each tank and biofilter compartment in RAS-1, RAS-2, and RAS-3. 

 

RAS-1 

The RAS-1 tank was best described as a CSTR. As shown in Figure A2.2, the tank tracer 

data was best explained by the one tank-in-series model, which is one CSTR. RAS-1 BF1 was 

best described as 3 tanks-in-series model (Figure A2.3). The sum of the squared difference 

between the tracer data and 2 tanks-in-series, 3 tanks-in-series, and 4 tanks-in-series models were 

0.911, 0.445, and 0.476, respectively. RAS-1 BF2 tracer data was explained by the 4 CSTRs-in-
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series model (Figure A2.4). The sum of the squared difference between the tracer data and 3 

tanks-in-series, 4 tanks-in-series, and 5 tanks-in-series models were 0.246, 0.074, and 0.117, 

respectively.  

 

 

 
Figure A2.2. Exit age distribution curve, or E-curve, for RAS-1 tank tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
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Figure A2.3. Exit age distribution curve, or E-curve, for RAS-1 BF1 tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
 

 

 
Figure A2.4. Exit age distribution curve, or E-curve, for RAS-1 BF2 tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
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RAS-2 

The RAS-2 tank was best described as a CSTR. As shown in Figure A2.5, the tank tracer 

data was best explained by the one tank-in-series model, which is one CSTR. RAS-2 BF1 was 

best described as 3 tanks-in-series model (Figure A2.6). The sum of the squared difference 

between the tracer data and 2 tanks-in-series, 3 tanks-in-series, and 4 tanks-in-series models were 

0.804, 0.136, and 0.354, respectively. RAS-2 BF2 tracer data was explained by the 4 CSTRs-in-

series model (Figure A2.7). The sum of the squared difference between the tracer data and 3 

tanks-in-series, 4 tanks-in-series, and 5 tanks-in-series models were 0.389, 0.356, and 0.855, 

respectively.  

 

 

 
Figure A2.5. Exit age distribution curve, or E-curve, for the RAS-2 tank tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
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Figure A2.6. Exit age distribution curve, or E-curve, for RAS-2 BF1 tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
 

 
Figure A2.7. Exit age distribution curve, or E-curve, for RAS-2 BF2 tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
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RAS-3 

The RAS-3 tank was best described as a CSTR. As shown in Figure A2.8, the tank tracer data 

was best explained by the one tank-in-series model, which is one CSTR. RAS-2 BF1 was best 

described as 3 tanks-in-series model (Figure A2.9). The sum of the squared difference between 

the tracer data and 2 tanks-in-series, 3 tanks-in-series, and 4 tanks-in-series models were 0.731, 

0.379, and 0.952, respectively. RAS-2 BF2 tracer data was explained by the 4 CSTRs-in-series 

model (Figure A2.10). The sum of the squared difference between the tracer data and 3 tanks-in-

series, 4 tanks-in-series, and 5 tanks-in-series models were 0.718, 0.202, and 0.207, respectively.  

 

 
Figure A2.8. Exit age distribution curve, or E-curve, for the tank tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
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Figure A2.9. Exit age distribution curve, or E-curve, for RAS-3 BF1 tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
 

 
Figure A2.10. Exit age distribution curve, or E-curve, RAS-3 BF2 tracer test. The time is 
normalized by “tm” which is the measured mean residence time. Tank-in-series is a model used 
to describe non-ideal flow in a reactor (Levenspiel & Knovel, 1999). 
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Conclusions 

A residence time distribution analysis was conducted on each component of the three RAS 

reactors. The purpose of the analysis was to describe the non-ideal flow in each reactor. Based on 

this analysis, all culture tanks were best described as a CSTR. Biofilter #1 was best described as 

3 CSTRs-in-series, while biofilter #2 was best described as 4 CSTRs-in-series. The difference 

between BF1 and BF2 is most likely the placement of the three bendable rubber aeration tubes 

that span the length of each column. 
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Appendix III: Supplemental Information for Chapter 4 
 

Reactor Information 

RAS-1 was inoculated in April 2011 with biomass from the full-scale RAS used in the 

preliminary field study (Chapter 3), operated by Shrimp Farm Market, located in Okemos, MI 

and a salt-tolerant nitrifying activated sludge from a wastewater treatment plant that treats a high 

salt wastewater (Plum Island Wastewater Treatment Plant, Charleston Water Systems, 

Charleston, SC).  RAS-1 was initially operated by feeding an ammonium chloride/ammonium 

bicarbonate solution and commercial shrimp feed to ensure that nitrification developed in the 

system before shrimp were added. Samples were collected regularly for pH, alkalinity, ammonia, 

nitrite, and nitrate analyses. 

RAS-1 was operated with shrimp in the system for 194 days prior to seeding RAS-2. 

Litopenaeus vannamei (Pacific White Shrimp) post larvae (or PLs) were ordered from Miami 

Aqua-culture, Inc. (www.miami-aquaculture.com). When the shrimp were added to RAS-1, 

ammonium supplementation was stopped. Shrimp were fed commercial food equal to 8% of their 

body weight per day and their growth was monitored. Samples were collected regularly for pH, 

alkalinity, ammonia, nitrite, nitrate analyses, total organic carbon, total suspended solids, and 

volatile suspended solids according to Standard Methods (APHA 1998). Only one biofilter 

associated with RAS-1 was periodically backwashed to remove the buildup of particulate matter.  

The second RAS (RAS-2) was seeded in March 2012 with inoculum biomass from the 

biofilter backwash from RAS-1. RAS-2 was initially operated by feeding an ammonium chloride 

solution for 14 days followed by ammonium bicarbonate and commercial shrimp feed thereafter 

to ensure that nitrification developed in the system before adding shrimp. Samples were collected 

regularly for pH, alkalinity, ammonia, nitrite, and nitrate analyses. The third RAS (RAS-3) was 

started using the same procedure as for RAS-2 in May 2012. 

Prior to starting the laboratory experiments, the biofilter attachment media in the 

biofilters of all three RAS were mixed to remove the variability associated with different RAS 
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run times. This resulted in biofilter attachment media mix in each compartment of two-thirds 

plastic beads and one-third clay spheres by volume. 

 

 

Table A3.1: Reactor information 

Reactor 
Total 

volume (L) 
Flow rate 

(m3/d) 
Hydraulic load 

(m3/(d-m2)) 
Media volume (m^3) 

Biofilter 1 Biofilter 2 
RAS-1 50 0.0060 1.88 0.0167 0.0165 
RAS-2 50 0.0060 1.88 0.0164 0.0161 
RAS-3 50 0.0060 1.88 0.0167 0.0162 

 

 

454-Sequencing  

 

Table A3.2: Number of sequences by sample pre- and post-processing for quality of reads 

Concentration Sample location 

Initial 
number of 
sequences 

Number of 
sequences after 
pre-processing 

Median 
read 

length (bp) 
 
11 mg/L 
ammonium -N 
 

RAS-1 Port 1 Day 14 60 54 347 
RAS-1 Port 4 Day 14 101 91 345 
RAS-1 Port 5 Day 14 71 64 345 
RAS-1 Port 8 Day 14 156 145 346 

 
22 mg/L 
ammonium-N 
 

RAS-1 Port 1 Day 28 115 107 347 
RAS-1 Port 4 Day 28 92 89 346 
RAS-1 Port 5 Day 28 101 91 345 
RAS-1 Port 8 Day 28 121 104 346 

 
33 mg/L 
ammonium-N 
 

RAS-1 Port 1 Day 42 106 91 347 
RAS-1 Port 4 Day 42 142 132 346 
RAS-1 Port 5 Day 42 121 111 346 
RAS-1 Port 8 Day 42 94 84 345 

 
44 mg/L 
ammonium-N 

RAS-1 Port 1 Day 56 27 23 345 
RAS-1 Port 4 Day 56 154 136 346 
RAS-1 Port 5 Day 56 60 52 345 
RAS-1 Port 8 Day 56 85 82 346 
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Figure A3.1: Relative abundance of bacterial phyla on Day 14 in RAS-1; influent ammonium-N 
concentration was 11 mg/L. The detection of Gammaproteobacteria suggests the presence of 
Gammaproteobacteria AOB, while the detection of Alphaproteobacteria suggests the presence 
of Nitrobacter. Classification was using the RDP training set in mothur (Schloss et al., 2009) at 
97% cutoff. 
 

 

 
Figure A3.2: Relative abundance of bacterial phyla on Day 28 in RAS-1; influent ammonium-N 
concentration was 22 mg/L. The detection of Gammaproteobacteria indicates the presence of 
Gammaproteobacteria AOB, while the detection of Alphaproteobacteria indicates the presence 
of Nitrobacter. Classification was using the RDP training set in mothur (Schloss et al., 2009) at 
97% cutoff. 
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Figure A3.3: Relative abundance of bacterial phyla on Day 42 in RAS-1; influent ammonium-N 
concentration was 33 mg/L. The detection of Gammaproteobacteria indicates the presence of 
Gammaproteobacteria AOB, while the detection of Alphaproteobacteria indicates the presence 
of Nitrobacter. Classification was using the RDP training set in mothur (Schloss et al., 2009) at 
97% cutoff. 
 

 

 
Figure A3.4: Relative abundance of bacterial phyla on Day 56 in RAS-1; influent ammonium-N 
concentration was 44 mg/L. The detection of Gammaproteobacteria indicates the presence of 
Gammaproteobacteria AOB, while the detection of Alphaproteobacteria indicates the presence 
of Nitrobacter. Classification was using the RDP training set in mothur (Schloss et al., 2009) at 
97% cutoff.  
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Nitogen Mass Balance 
Theoretical 
Purpose: to account for mass of nitrate measured in RAS  
 
 

Schematic diagram of RAS with control volume 

 
 

 
MNH = once per day input of ammonium-N (mg/d) 
 
Sucrose-C was also added during this daily mass spike of 
ammonium-N at a ratio of C/N = 0.5 
 
VT = 36.4 L 
V1 = V2 = 6.8 L 
Q = 250 mL/min = 360 L/d 

 
In Tank, SRT = HRT = VT/Q = 36.4 L / (360L/d) = 0.1 d 
 
For t = 1 – 14 d, MNH = 552 mg/d NH4-N; MC = 276 mg/d sucrose-C 
 t = 15 – 28 d, MNH = 1104 mg/d NH4-N; MC = 552 mg/d sucrose-C   
 t = 29 – 42 d, MNH = 1656 mg/d NH4-N; MC = 828 mg/d sucrose-C   
 t = 43 – 56 d, MNH = 2208 mg/d NH4-N; MC = 1104 mg/d sucrose-C   
 
Total mass of NH4-N added to RAS =  

(552 mg/d)*14 d + (1104 mg/d)*14 d + (1656 mg/d)*14 d + (2208 mg/d)*14 d = 77280 mg NH4-N 
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(E1)    

  
 

where CNH = CT  and CNH,r = C2 
 
Assumptions 

• MNH >> V(dCNH,r/dt), V(dCNH/dt) 
• dCNH/dt is negligible 

 
 

0 = MNH + rV 
 

MNH = rV 
 

Reactions in the tank 
• autotrophic bacterial respiration of ammonium-N (ammonium-N → nitrate-N) 
• autotrophic bacterial assimilation of ammonium-N 
• heterotrophic bacterial assimilation of ammonium-N 

 
The mass of ammonium-N that is available for respiration is reduced by assimilation reactions 
 
Samples to measure inorganic N were collected prior to water addition; samples were not 
collected for TOC. Consequently, these concentrations need to be adjusted down by 5% based on 
dilution. Volume in tank after water addition = 36.4 L, water in tank prior to water addition  = 
34.6 L 
 

((36.4 – 34.6)/36.4)*100 = 5% reduction 
 

Total mass of nitrate = MNO3,T + MNO3,BF1 + MNO3,BF2 
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Use the nitrogen requirement (NR) equation (Grady, et al. 1999): 
 

(E2)   𝑁𝑅 = 0.087(1+𝑓𝐷𝑏𝜃𝐶)𝑌
1+𝑏𝜃𝐶

 
 

Autotrophic bacterial parameters (Henze, et al. 2000) 
Parameter Value* 
fD (dimensionless) 0.08 
b (1/d) 0.62 
YA (g biomass COD/ g N oxidized) 0.24 
*typical values 

 
 

Heterotrophic bacterial parameters (Henze, et al. 2000) 
Parameter Value* 
fD (dimensionless) 0.08 
b (1/d) 0.62 
YH (g biomass COD/ g COD oxidized) 0.67 
*typical values 

 
 
Nitrogen requirement for assimilation: 
 

𝑁𝑅𝐴𝑢𝑡𝑜𝑡𝑟𝑜𝑝ℎ𝑖𝑐 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

=
0.087 𝑚𝑔 𝑁

𝑚𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝐶𝑂𝐷 �1 + (0.08) �0.62
𝑑 � (0.01𝑑)� �0.24𝑚𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝐶𝑂𝐷

𝑚𝑔 𝑁 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑 �

1 + �0.62
𝑑 � (0.01𝑑)

 

 
(E2a) 
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𝑁𝑅𝐻𝑒𝑡𝑒𝑟𝑜𝑡𝑟𝑜𝑝ℎ𝑖𝑐 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

=
0.087 𝑚𝑔 𝑁

𝑚𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝐶𝑂𝐷 �1 + (0.08) �0.62
𝑑 � (0.01𝑑)� �0.67 𝑚𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝐶𝑂𝐷

𝑚𝑔 𝐶𝑂𝐷 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑�

1 + �0.62
𝑑 � (0.01𝑑)

 

 
(E2b) 

 
 

A mass balance on each component of the RAS (tank, biofilter 1, and biofilter 2) cannot be 
calculated because of insufficient TOC data. The TOC data is needed to account for ammonium-
N assimilated by heterotrophic bacteria. Therefore, from this point forward the entire RAS is 
used as the control volume (refer to schematic below). 
 

 
 
The mass of ammonium-N available for respiration is reduced by the mass of ammonium-N used 
for assimilation by autotrophs and heterotrophs. 
 
Based on stoichiometry: 𝑁𝐻4+ + 2𝑂2 → 𝑁𝑂3− + 2𝐻+ + 𝐻2𝑂 
 
1 mg nitrate-N is produced from 1 mg ammonium-N oxidized 
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From Equation E2a, the nitrogen requirement for autotrophs = 0.02 mg NH4-N assimilated per 
mg NH4-N oxidized 
 
Mass of ammonia-N assimilated by autotrophs =  
 (0.02 mg NH4-N assim per mg NH4-N oxid)(77280 mg NH4-N_ = 1560 mg 
 

 
 
From Equation E2b, the nitrogen requirement for heterotrophs = 0.0552 mg NH4-N per mg COD 
oxidized 
 
Mass of ammonium-N assimilated by heterotrophs 
 
A. Determine mass of COD oxidized 
Assumption: all influent sucrose-C oxidized; ignore soluble microbial products and particulate 
matter 
 
Mass sucrose-C =  
 (14d)*(276 mg/d + 552 mg/d + 828 mg/d + 1104 mg/d) = 38640 mg sucrose-C 
 
B. Calculate the COD mass equivalent of sucrose-C 
 

𝐶12𝐻22𝑂11 + 12𝑂2 → 12𝐶𝑂2 + 11𝐻2𝑂 
 
[(12 mol O2)(32g/mol O2)] /[(1 mol sucrose)(12 mol sucrose-C/mol sucrose)(12 g/mol sucrose-C)] =  
 

2.67 g COD/g sucrose-C 
 
 
Mass of NH4-N assimilated by heterotrophs  
 =(0.0552 mg NH4-N/mg COD)(38640 mg sucrose-C)(2.67 mg COD/mg sucrose-C) = 5690 mg NH4-N 
 

 
 
 
Mass of ammonium-N available for respiration by autotrophs =  
 Box 1 – Box 4 – Box 5 = 77280 mg – 1560 mg – 5690 mg = 700000 mg NH4-N 
 

 
 

Each RAS received the same mass of ammonium-N and sucrose-C. 
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From mass balance calculation there should be 70000 mg nitrate-N if all of the available 
ammonium was converted to nitrate-N in each RAS. However, the measured mass of nitrate-N 
on Day 56 was 30100 mg (RAS-1), 33100 mg (RAS-2), and 39300 mg (RAS-3). This suggests 
that 44 to 57% of the ammonium-N was denitrified. 
 
 

 

Henze et al., 2000 

Grady et al., 1999 
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Appendix IV: Supplemental Information for Chapter 5 
 

Commercial food and biofilter biomass for calculation for experiment 

The commercial feed used in this study was Shrimp Grower (Rangen, Inc., Buhl, ID). According 

to the manufacturer it contains 40% protein, 9% fat, 4% fiber, 15 % ash, and 10% moisture. 

 

To determine the amount of biofilter biofilm needed, the amount commercial feed needed per 

day was converted to protein content expressed as nitrogen and then converted to weight of 

biofilter biofilm needed. This is described in the following equation:  

 

(weight of biofilter biofilm, g) = (weight of shrimp, g)*0.06*0.4*0.16 / 0.025 

 

where  0.06 is the feeding rate 

0.4 is protein content of commercial feed 

0.16 is percentage of protein that is nitrogen 

0.025 is the percentage of protein in biofilter biofilm 

 

Either 25% or 50% of the protein content expressed as nitrogen was replaced with biofilter 

biofilm. To determine the amount of biofilter biofilm needed, the weight of biofilter biofilm as 

calculated above was multiplied by 0.25 or 0.5 depending on the treatment. Refer to Table A4.1 

for estimation of commercial feed and biofilter biofilm based on 80 shrimp with a starting weight 

of 0.02 g/shrimp, a growth rate of 2.1 g per week, and 100% survival.  
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Table A4.1: Estimate of mass of commercial food and biofilter biofilm needed during trial 
    Control Treatment 1 (75/25) Treatment 2 (50/50) 
Time 
(day) 

Mass of 
shrimp 
(g) 

Commercial 
food (g/day) 

Commercial 
food (g/day) 

Biofilter biofilm 
(g wet weight/day) 

Commercial 
food (g/day) 

Biofilter biofilm 
(g wet weight/day) 

1 1.60 0.096 0.072 0.384 0.048 0.768 
2 1.60 0.096 0.072 0.384 0.048 0.768 
3 1.60 0.096 0.072 0.384 0.048 0.768 
4 1.60 0.096 0.072 0.384 0.048 0.768 
5 1.60 0.096 0.072 0.384 0.048 0.768 
6 1.60 0.096 0.072 0.384 0.048 0.768 
7 1.60 0.096 0.072 0.384 0.048 0.768 
8 3.70 0.222 0.167 0.888 0.111 1.776 
9 3.70 0.222 0.167 0.888 0.111 1.776 

10 3.70 0.222 0.167 0.888 0.111 1.776 
11 3.70 0.222 0.167 0.888 0.111 1.776 
12 3.70 0.222 0.167 0.888 0.111 1.776 
13 3.70 0.222 0.167 0.888 0.111 1.776 
14 3.70 0.222 0.167 0.888 0.111 1.776 
15 5.80 0.348 0.261 1.392 0.174 2.784 
16 5.80 0.348 0.261 1.392 0.174 2.784 
17 5.80 0.348 0.261 1.392 0.174 2.784 
18 5.80 0.348 0.261 1.392 0.174 2.784 
19 5.80 0.348 0.261 1.392 0.174 2.784 
20 5.80 0.348 0.261 1.392 0.174 2.784 
21 5.80 0.348 0.261 1.392 0.174 2.784 
22 7.90 0.474 0.356 1.896 0.237 3.792 
23 7.90 0.474 0.356 1.896 0.237 3.792 
24 7.90 0.474 0.356 1.896 0.237 3.792 
25 7.90 0.474 0.356 1.896 0.237 3.792 
26 7.90 0.474 0.356 1.896 0.237 3.792 
27 7.90 0.474 0.356 1.896 0.237 3.792 
28 7.90 0.474 0.356 1.896 0.237 3.792 

  
Totals 5.985 31.920 3.990 63.840 
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RAS Feeding Experiment Trial #1 

 

Figure A4.1: Box plot of ammonia-N concentrations in daily, or 24-hour, grab samples from 
RAS Feeding Experiment Trial #1. Data shown is from the tanks 

 

 

Figure A4.2: Box plot of nitrite-N concentrations in daily, or 24-hour, grab samples from RAS 
Feeding Experiment Trial #1. Data shown is from the tanks 
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Figure A4.3: Nitrate-N concentrations in daily, or 24-hour, grab samples from RAS Feeding 
Experiment Trial #1. Data shown is from the tanks 
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A. Control (100) 

 

 

 

B. Treatment-1 (75/25) 
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C. Treatment-2 (50/50) 

 

Figure A4.4: Inorganic nitrogen time series from RAS Feeding Experiment Trial #1; (A) 

Control, (B) Treatment-1, and (C) Treatment-2. Samples were collected on Day 4. Data shown is 

from the tanks. 
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A. Control (100) 

 

 

B. Treatment-1 (75/25) 
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C. Treatment-2 (50/50) 

 

Figure A4.5: Inorganic nitrogen time series from RAS Feeding Experiment Trial #1; (A) 

Control, (B) Treatment-1, and (C) Treatment-2. Samples were collected on Day 25. Data shown 

is from the tanks 
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TOC 24-hour grab samples 

In the control, TOC ranged from 3.6 to 27.6 mg/L with an average of 8.1 mg/L, while TOC in 

treatment-1 ranged from 5.0 to 36.3 mg/L with an average of 11.5 mg/L and TOC in treatment-2 

ranged from 4.8 to 38.7 with an average of 9.5 mg/L (Figure A4.6). The maximum value 

occurred on day 20 for all treatments. For comparison to COD, the TOC values were converted 

to COD using a conversion ratio of 2.7 g COD/g TOC (Table 5). This data indicates that there 

was not a lot of dissolved organic carbon matter in the system. TOC and suspend solids 

concentrations (Table A4.2) indicate that organic carbon was relatively low through the 

experimental period.  

 

Table A4.2: Measured TOC values converted to COD for grab samples 
 Control Treatment 1 Treatment 2 

TOC COD TOC COD TOC COD 
Average (mg/L) 8.1 21.9 11.5 31.1 9.5 25.7 
Minimum(mg/L) 3.6 9.7 5.0 13.5 4.8 13.0 
Maximum (mg/L) 27.6 74.5 36.3 98.0 38.7 104.5 

 

 

 

 
Figure A4.6: TOC 24-hour grab samples from RAS Feeding Experiment Trial #1. Data shown is 

from the tanks
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TOC 12-hour time series concentration between feedings  

The purpose of the TOC time series analysis was to observe concentrations during a feeding 

cycle that were not captured by the grab samples (Figure A4.6). Time series samples were only 

collected from the tank at the same time as the inorganic nitrogen time series samples (Figure 

A4.7). There is a general decreasing trend for all treatments over the 12-hour period. Values 

ranged from 3 to 15 mg/L TOC (8 to 40 mg/L COD).  

 

A. Day 4 

 
B. Day 25 

 
Figure A4.7: TOC 12-hour time series (A) Day 4 and (B) Day 25 from RAS Feeding Experiment 

Trial #1. Samples collected in one hour intervals after feeding. Data shown is from the tanks 
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Figure A4.8: Growth curve from preliminary shrimp growth trial. Shrimp were feed 100% 
commercial feed (46% protein, Melick Aquafeed, Catawissa, PA) at 8% body weight. Wet 
weight was measured weekly. Amount of feed provided was adjusted weekly based on wet 
weight measurements and assuming 100% survival. Error bars show standard deviation 
 

 

Table A4.3: Cost comparison of producing  one kilogram of shrimp   

FCR* 

100% Commercial feed 75% Commercial feed 50% Commercial feed 
 feed 

consumed 
(g) 

Price to 
produce kg 

shrimp 

feed 
consumed** 

(g) 

Price to 
produce kg 

shrimp 

feed 
consumed*** 

(g) 

Price to 
produce kg 

shrimp 
1.0 1000 $0.62 953 $0.59 730 $0.45 
1.5 1500 $0.93 1429 $0.88 1095 $0.68 
2.0 2000 $1.24 1905 $1.18 1460 $0.90 
2.5 2500 $1.55 2381 $1.47 1825 $1.13 
3.0 3000 $1.85 2858 $1.77 2190 $1.35 
3.5 3500 $2.16 3334 $2.06 2555 $1.58 
4.0 4000 $2.47 3810 $2.36 2920 $1.81 

*FCR = feed conversion ratio (amount of feed consumed/ amount of shrimp weight gained) 
**(feed consumed)100*0.75*1.27 where 1.27 = 1+ (88-64)/88 to account for the increased time to 
grow to 20 g 
***(feed consumed)100*0.50*1.46 where 1.46 = 1+ (119-64)/119 to account for the increased time 
to grow to 20 g 
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Table A4.4: Energy Consumption in Control (100) 

Equipment kW 

90% 
Efficient 

Equipment 
(kW) 

# of 
Units 
per 

RAS 
# Days 

Used/cycle 

# Days 
Used x 

# of 
Units 

# Hours 
Used 

Total 
Electrical 
Use/cycle 

(kWh/cycle) 
Air pump for 
tank 0.1 0.11 1 63 63 1512 168 
Air pump for 
biofilters  0.018 0.02 4 63 252 6048 121 
Heater 0.05 0.06 1 63 63 1512 84 
Water pump 0.075 0.08 1 63 63 1512 126 
  

  
  Total Electrical Use (kWh/cycle): 499 

   
Electricity cost ($0.1/kWh, Capdet Works): $49.90 

        
        Table A4.5: Energy Consumption in Treatment-1 (75/25) 

Equipment kW 

90% 
Efficient 

Equipment 
(kW) 

# of 
Units 
per 

RAS 
# Days 

Used/cycle 

# Days 
Used x 

# of 
Units 

# Hours 
Used 

Total 
Electrical 
Use/cycle 

(kWh/cycle) 
Air pump for 
tank 0.1 0.11 1 88 88 2112 235 
Air pump for 
biofilters  0.018 0.02 4 88 352 8448 169 
Heater 0.05 0.06 1 88 88 2112 117 
Water pump 0.075 0.08 1 88 88 2112 176 
  

  
  Total Electrical Use (kWh/cycle): 697 

    

Electricity cost: ($0.1/kWh, Capdet 
Works): $69.70 

        
        Table A4.6: Energy Consumption in Treatment-2 (50/50) 

Equipment kW 

90% 
Efficient 

Equipment 
(kW) 

# of 
Units 
per 

RAS 
# Days 

Used/cycle 

# Days 
Used x 

# of 
Units 

# Hours 
Used 

Total 
Electrical 
Use/cycle 

(kWh/cycle) 
Air pump for 
tank 0.1 0.11 1 119 119 2856 317 
Air pump for 
biofilters  0.018 0.02 4 119 476 11424 228 
Heater 0.05 0.06 1 119 119 2856 159 
Water pump 0.075 0.08 1 119 119 2856 238 
  

  
  Total Electrical Use (kWh/cycle): 942 

    

Electricity cost ($0.1/kWh, Capdet 
Works): $94.25 
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RAS Feeding Experiment Trial #2 

 

Table A4.7: Water quality in RAS fedding experiment trial #2 

  

Control (100) 
Treatment 1 

(75/25) 
Treatment 2 

(50/50) 

average 
std 
dev* average std dev average std dev 

Temperature (°C) 24.9 0.3 25.2 0.2 24.8 0.4 
Salinity (psu) 26.7 3.9 26.5 1.3 25.7 1.3 
pH 8.11 0.08 8.08 0.09 8.11 0.09 
Alkalinity (mg/L CaCO3) 264 39 234 40 188 46 
TSS (mg/L) 78.2 10.0 82.3 11.2 104.4 32.5 
VSS (mg/L) 19.7 3.0 19.0 3.2 23.0 5.7 
TOC (mg/L) 13.50 2.80 12.30 3.70 8.85 1.84 
*std dev = standard deviation 

 

 

 
 

Figure A4.9: Box plot of ammonia-N concentrations in daily, or 24-hour, grab samples from 
RAS Feeding Experiment Trial #2. Data shown is from the tanks 
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Figure A4.10: Nitrate-N concentrations in daily, or 24-hour, grab samples from RAS Feeding 

Experiment Trial #2. Data shown is from the tanks 

 

 

Table A4.8: Growth rate for Trial #2 

Time 
Control 
(100) 

Treatment 1 
(75/25) 

Treatment 2 
(50/50) 

Day 0 - 33 0.0024 0.0015 0.0010 
Day 33-68 0.0241 0.0128 0.0083 
Day 0 - 68 0.0136 0.0073 0.0047 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

0 10 20 30 40 50 60 

N
itr

at
e-

ni
tr

og
en

 (m
g/

L)
 

Time (days) 

Control (100) Treatment 1 (75/25) Treatment 2 (50/50) 



 

149 

 

 
Figure A4.11: Growth curve for shrimp in feeding Trials 1 and 2. 

 

 

 

Figure A4.12: Same data as shown in Figure A4.12 with the first 33 days of Trial #2 removed to 
highlight the reproducibility between the trials of the experiment. 
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Table A4.9: Cost comparison of producing one kilogram of shrimp   

FCR* 

100% Commercial feed 75% Commercial feed 50% Commercial feed 
 feed 

consumed 
(g) 

Price to 
produce kg 

shrimp 

feed 
consumed** 

(g) 

Price to 
produce kg 

shrimp 

feed 
consumed*** 

(g) 

Price to 
produce kg 

shrimp 
1.0 1000 $0.62 833 $0.51 590 $0.36 
1.5 1500 $0.93 1249 $0.77 885 $0.55 
2.0 2000 $1.24 1665 $1.03 1180 $0.73 
2.5 2500 $1.55 2081 $1.29 1475 $0.91 
3.0 3000 $1.85 2498 $1.54 1770 $1.09 
3.5 3500 $2.16 2914 $1.80 2065 $1.28 
4.0 4000 $2.47 3330 $2.06 2360 $1.46 

*FCR = feed conversion ratio (amount of feed consumed/ amount of shrimp weight gained) 
**(feed consumed)100*0.75*1.11 where 1.11 = 1+ (126-112)/112 to account for the increased time to 
grow to 20 g 
***(feed consumed)100*0.50*1.18 where 1.18 = 1+ (137-112)/137 to account for the increased time to 
grow to 20 g 

 

  



 

151 

 

 

Table A4.10: Energy Consumption in Control (100) 

Equipment kW 

90% 
Efficient 

Equipment 
(kW) 

# of 
Units 
per 

RAS 

# Days 
Used/ 
cycle 

# Days 
Used x # of 

Units 
# Hours 

Used 

Total 
Electrical 
Use/cycle 

(kWh/cycle) 
Air pump for 
tank 0.1 0.11 1 112 112 2688 299 
Air pump for 
biofilters  0.018 0.02 4 112 448 10752 215 
Heater 0.05 0.06 1 112 112 2688 149 
Water pump 0.075 0.08 1 112 112 2688 224 
  

  
  Total Electrical Use (kWh/cycle): 887 

  
Electricity cost ($0.1/kWh, Capdet Works): $88.70 

        
        Table A4.11: Energy Consumption in Treatment-1 (75/25) 

Equipment kW 

90% Efficient 
Equipment 

(kW) 

# of 
Units 
per 

RAS 

# 
Days 
Used/ 
cycle 

# Days 
Used x # of 

Units 
# Hours 

Used 

Total 
Electrical 
Use/cycle 
(kWh/cycl

e) 
Air pump for 
tank 0.1 0.11 1 126 126 3024 336 
Air pump for 
biofilters  0.018 0.02 4 126 504 12096 242 
Heater 0.05 0.06 1 126 126 3024 168 
Water pump 0.075 0.08 1 126 126 3024 252 
  

  
  Total Electrical Use (kWh/cycle): 998 

   
Electricity cost ($0.1/kWh, Capdet Works): $99.79 

        
        Table A4.12: Energy Consumption in Treatment-2 (50/50) 

Equipment kW 

90% 
Efficien

t 
Equipm

ent 
(kW) 

# of 
Units 
per 

RAS 

# Days 
Used/ 
cycle 

# Days 
Used x 

# of 
Units 

# Hours 
Used 

Total Electrical 
Use/cycle 

(kWh/cycle) 
Air pump for 
tank 0.1 0.11 1 137 137 3288 365 
Air pump for 
biofilters  0.018 0.02 4 137 548 13152 263 
Heater 0.05 0.06 1 137 137 3288 183 
Water pump 0.075 0.08 1 137 137 3288 274 

  
  

  
Total Electrical Use (kWh/cycle): 1085 

  
Electricity cost($0.1/kWh, Capdet Works): $108.50 
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Batch Experiment 

 

Table A4.13: Water quality data from batch experiment 

  

B100-1 B100-2 B75-1 B75-2 B50-1 B50-2 

Average  Std dev Average  Std dev Average  Std dev Average  Std dev Average  Std dev Average  Std dev 

Temperature 

(°C) 27.2 0.4 25.2 0.3 27.3 0.3 26.1 0.4 27.3 0.3 25.1 0.2 

Salinity (psu) 30.4 2.9 29.0 3.1 29.4 2.9 29.7 2.9 30.2 3.0 31.4 2.2 

pH 8.36 0.05 8.40 0.08 8.39 0.10 8.51 0.09 8.32 0.08 8.48 0.02 

Alkalinity 

(mg/L CaCO3) 390 42 377 53 353 61 370 55 381 53 340 64 

TSS (mg/L) 171 75 118 37 126 37 129 28 152 48 154 49 

VSS (mg/L) 75.8 50.0 43.2 24.5 46.2 22.7 45.8 22.3 59.3 32.8 63.4 36.3 

TOC (mg/L) 15.2 3.7 13.5 2.7 13.6 3.6 12.3 4.2 10.3 4.2 12.2 1.4 
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