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ABSTRACT 

 

Process control in high precision machining necessitates high-definition metrology 

(HDM) systems that provide fine resolution data needed to characterize surface shape. 

HDM data is critical for the evaluation of process surface variation, as it reveals local 

surface patterns that are undetectable using low definition metrology (LDM) systems. 

Monitoring of the part-to-part variation of these patterns identified by HDM enables the 

detection of abnormal surface variation and the degradation of process conditions. 

HDM systems present many opportunities for surface variation reduction. However, 

there are challenges to using HDM data for process control. Conventional HDM systems 

are inefficient and may take a long time to measure a part, such that sufficient samples 

cannot be obtained for process control purposes.  In addition, conventional monitoring 

methods are difficult to implement due to the high density of data. 

A new study uncovered significant cross-correlations between part surface height and 

process variables in an automotive engine milling process. This dissertation aims to apply 

new insights gained from HDM to develop algorithms and methods for surface variation 

control, specifically:   

 Surface modeling through fusion of process variables and HDM data: An 

improved surface model is developed by incorporating process and multi-

resolution data through spatial and cross-correlation to increase prediction 
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accuracy and reduce the amount of HDM measurements necessary for process 

control.  

 Measurement system analysis for HDM using: A method to effectively estimate 

the gage capability for HDM systems is proposed. 

 Surface variation monitoring using HDM data: A sequential monitoring 

framework is developed to monitor surface variations as reflected by HDM data. 

Based on the surface data-process fusion model, a progressive monitoring 

algorithm under a Bayesian framework is developed to monitor surface variations 

when limited HDM measurements are available.  

 Multistage modeling and monitoring of HDM Data: A morphing-based approach 

is proposed to model process multistage interdependence. A new multistage 

monitoring procedure is developed based on the morphing model.  

The research presented in this dissertation will aid in transforming quality control 

practices from dimensional variation reduction to surface shape variation control. The 

proposed HDM data monitoring algorithms can be extended to other high precision 

manufacturing processes.  
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CHAPTER 1  

INTRODUCTION 

 

1.1. Motivation 

Process control in high precision machining necessitates high-definition metrology 

(HDM) systems that provide fine lateral (x-y) resolution data needed to characterize 

surface shape. HDM systems can measure up to millions of points per part, with 

resolution ranging from nanometers to microns. HDM data is critical for the evaluation of 

process performance with micron-level accuracy. Figure 1.1a shows the HDM 

measurement (lateral resolution: 300μm) of a deck face on an automotive engine head. 

Local variations surrounding the cylinder bores can be clearly observed, a detail that is 

not well captured by a coordinate measuring machine (CMM, lateral resolution: 0.2-

1mm) that scans the surface along a few preprogrammed traces (Figure 1.1b), or 

traditional profilometric measurement systems. Such surface variation patterns not only 

significantly impact the sealing performance of engine assemblies but also reflect cutting 

force dynamics during machining processes [1]. Monitoring of the part-to-part variation 

of these patterns identified by the new HDM helps detect tool condition degradation 

including the stiffness change and the abnormal wear of cutting inserts in a spindle-cutter 

system [2]. 
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Figure 1.1 (a) HDM measurement and (b) CMM measurement 

Process control based on HDM data faces two major challenges:  

1. Efficiency of metrology systems: Obtaining HDM measurements for process 

monitoring can be difficult since HDM systems are costly and taking measurements is 

time-consuming. Due to the high cost, manufacturers may deploy fewer HDM 

machines in a plant, resulting in an insufficient sample size and further restricting the 

number of parts that can be measured. Therefore, it is common practice to monitor the 

process characteristics using a combination of HDM and low definition metrology 

(LDM). The HDM measurements are taken on pre-selected patches on the part 

surface, while the LDM measures the part surface along a few pre-programmed 

traces. Figure 1.2 shows the (a) HDM measurements and (b) LDM measurements 

used to monitor an automotive engine head process. 

2. Methodologies for HDM Data Monitoring: The large density of measurement points 

obtained by HDM makes conventional statistical process control (SPC) approaches 

difficult to use. One approach is to monitor each measurement point individually 

using univariate methods such as Shewhart control charts, but this increases the false 

(a) (b)
(a) (b)

(a) (b)
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alarm rates as the data density increases. A second approach is to use multivariate 

methods such as the T
2
 control chart; however these methods are not capable of 

handling surface data in the millions of points. Neither of these approaches aid in 

finding the defect area location, which is important for the diagnosis of abnormal 

surface variation.  

 

Figure 1.2 (a) HDM Patches and (b) CMM Trace on an Automotive Engine Head 

New Opportunities Enabled by HDM 

A recent study [1] provided new insights on surface variation which present 

opportunities to address the aforementioned challenges, as follows:  

 Understanding surface features: HDM technology can reveal previously unseen local 

variations on the part surface. For example, the HDM measurement of an engine head 

in Figure 1.3 clearly shows local variations on the part surface such as patterns 1-3. 

When using CMMs, these variations are undetected due to the low density of 

measurements, as shown in Figure 1.2b. 

(a) (b)

(a) (b)

P1P2P3P4

P8P9P10

P5P6P7
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Figure 1.3 New surface features Uncovered using HDM  

 Establishing cross-correlations between surface and process variables: The 

availability of fine resolution data over the entire part surface has revealed 

correlations between the part surface and process variables that were previously 

undiscovered [1]. One such cross-correlation is between the average surface profile 

along the feed direction and the arc length of a cutter engaged in cutting. For 

example, [1] shows that the surface height is correlated to the part geometry and the 

amount of material removal along the cutting feed direction, i.e., the average surface 

profile becomes high where more material is present. It can be conjectured that this 

correlation may result from variations of the axial cutting force between the cutter 

and workpiece which is proportional to the variations in the material removal rate 

(MRR), i.e., amount of material removal volume per unit feed. A large axial cutting 

force could cause a higher relative cutter-workpiece displacement leading to high 

surface profile. When other variables are constant, the surface height is linearly 

correlated to the cutting arc length. Other such cross-correlations will be explored in 

more detail in Section 2.  

Local variations

1

1

3

2
2

1 High profile at edges

2 Local variation near 

bores
3 Profile singularity
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Figure 1.4 Cross-Correlation between Surface Height and Arc Length 

 Multistage Interdependence: Surface shape variations could be interdependent over 

multiple stages. For example, a machined surface may change its shape as it goes 

through a multistage machining process (Figure 1.5a) because a downstream 

operation can change the surface characteristics generated from a prior upstream 

operation. Figure 1.5b shows a workpiece which goes through a face milling 

operation (Op i) that mills its top surface followed by a hole drilling operation on its 

side (Op i+1). Due to the drilling torque, the top surface is twisted thus creating a 

local height variation. Understanding the interdependency between these local 

variations resulting from subsequent machining stages will enable between-stage 

monitoring of the surface shape. 

 

Figure 1.5 Surface Data Correlation between Machining Stages [3] 
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These new insights can be utilized to improve the surface modeling by fusing process 

variables and multi-resolution data, for surface variation monitoring and multistage 

modeling and monitoring of HDM data. 

This dissertation aims to apply the insights gained from HDM systems to develop 

algorithms and methods for surface variation control using high dimensional quality 

characteristics by (1) modeling part surfaces using the fusion of process and HDM data, 

(2) developing methods for Measurement System Analysis (MSA) using high 

dimensional data, (3) applying the surface models to create cost effective monitoring 

methods for high dimensional quality characteristics, and (4) modeling the inter-stage 

surface variation relationship in multistage manufacturing processes.  

1.2. State of the art 

This section reviews research related to surface variation modeling, single stage and 

multistage HDM data monitoring. 

Surface variation modeling 

 Researchers have taken different approaches to address the challenges of measuring 

and analyzing HDM data. These approaches include interpolating and extrapolating 

surface forms from measured points through least squares [4] and B-spline methods [5-

7].  The surface shape may also be estimated using spatial statistics by taking into 

account spatial dependence among sampled points. Such spatial correlation reflects 

spatial similarities between data in the same vicinity of the part surface, and has been 

extensively utilized to interpolate and extrapolate surface data for form error estimation 
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[8, 9] and remote sensing applications, [10-13]. The surface model usually follows the 

general form of  

                             ,                                   (1-1) 

 

where the functions,  T , are assumed known, β is the vector of regression coefficients, 

and Z( ) is a Gaussian process with zero-mean and covariance function    . The model 

was also employed to determine the optimal measurement strategy [14].  

Other proposed approaches combine limited HDM data with low definition metrology 

(LDM) data to estimate surface shape with high resolution. There are two main ways in 

which the data are combined: the first one requires individual modeling of both sources 

of data and using statistical inference to estimate the data at a medium or new scale [15]; 

the second method is to create a linkage model [16, 17] by which the low z-resolution 

(vertical resolution) data is linked to the data with high z-resolution, such that 





mj

jljiih xxxKxy
..1

01 )(),()(  ,                                     (1-2) 

where yh(xi) is the high resolution response, α1 and α0 are the scale and location 

coefficients, ),( ji xxK  is a kernel or Gaussian function, ηl are the LDM measurements, 

and ε is a normally distributed error. In addition, research also focused on using the same 

vertical resolution data and combining metrologies of different lateral resolutions to 

improve surface prediction [18, 19].  

  For nonlinear cases, a model for the data surface height can be 
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y(xi)=f(ti)+ ε,                                                                 (1-3) 

where the function vector f(ti) is used to estimate the spatial nature of nonlinear variation 

patterns. Principal curve estimation has been demonstrated [20-22] to be an effective 

method to identify the nonlinear patterns f(ti) among multi-dimensional data, especially 

for two-dimensional image processing [23, 24]. However, this method is not 

computationally efficient in processing high-dimensional data. Apley and Zhang [20] 

proposed a dimensional reduction method through PCA filtering given that the nonlinear 

patterns can be approximated as piecewise linear, which is reasonable for most of 

manufacturing applications. Although the principal curve can provide a visualization of 

spatial variation, a quantitative method is essentially needed to detect the abnormal 

variation patterns and evaluate the associated risk for the quality control purposes.  

 Research Gap: A significant amount of work related to multi-resolution surface data 

has focused on surface form prediction, multi-resolution data registration, and 

measurement strategy evaluations using spatial correlations. These spatial-correlation 

enabled methods rely on the density of the measured data points; but an inadequate 

amount of measurements could fail to capture the local variations, such as the variations 

surrounding the cylinder bores in Figure 1.3. There is a lack of research on combining 

engineering insights with spatial data modeling to improve surface variation modeling, 

especially for a large surface with complex designed geometry given limited 

measurements due to a time or cost constraint. 

Process Monitoring and Diagnosis using Surface Data 

Various multivariate statistical methods have been developed for identifying and 

analyzing variation patterns in multi-dimensional data [25-28]. Principal Component 
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Analysis (PCA) has been applied [25, 27] to extract the process variation patterns in 

autobody assembly when only one single fault is present at a time. To characterize a 

process with multiple faults, the most commonly used approaches assume that the high-

dimensional feature variation can be represented as a linear combination of contributions 

from multiple variation patterns [25, 28]. Each variation pattern is either obtained from 

process knowledge through off-line modeling or identified from variation patterns in data 

without the process knowledge a priori. In addition, nonlinear variation patterns were 

captured by principal curve modeling [20].  

Quality control based on high-dimensional data has been focused on part inspection 

and process performance evaluation. The objective of part inspection is to characterize 

surface geometric features for each part by fitting a parameterized model to the data [29-

31]. The model parameters are compared with specification for conformance of each part 

to the geometric tolerance. These parametrization methods are simple to implement, but 

often are not effective in detecting changes in local variation patterns because the model 

is fit to the global trend. Thus, wavelet based approaches for fault detection and part 

characterization have been explored extensively [32-35], as they allow for a multiscale 

decomposition of surfaces, and thus global and local scales can be characterized. The 

wavelet analysis is data driven but it is challenging to monitor the large number of 

wavelet coefficients that are generated on the entire part surface. Process variation 

monitoring (e.g., using Hoteling T
2
 control chart [36]) is used to evaluate process stability 

(repeatability) by measuring a sequence of parts. This approach uses one test statistic to 

characterize the overall variation of multiple variables and can assist in the detection of 
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process faults. But such monitoring provides very limited insights into variation source 

diagnosis and cannot be directly used with high dimensional data. 

 Research Gap: With the increased amount of data provided by HDM, monitoring 

data points individually may lead to high false alarm rates (type I error). Therefore, the 

major challenge in monitoring multidimensional data is the reduction of the data 

dimension by discerning the critical features of the product and monitoring these features 

jointly without inflating the type I error. In addition, previously proposed monitoring 

methods make a linear variation pattern assumption, whereas with HDM a non-linear 

variation pattern might exist. A methodology that takes into consideration the HDM non-

linear pattern variation and spatial autocorrelation is needed to effectively monitor HDM 

data.  When the availability of HDM data is limited because of measurement time or cost 

constraints, researchers have proposed surface prediction models combining multi-

resolution data. There is a lack of research incorporating process variable information to 

improve the accuracy of surface predictions for surface variation monitoring using a low 

sample of HDM data.  

Multistage Process Control using Surface Data 

Methods have been proposed to improve the performance of multistage 

manufacturing processes (MMP‟s). The related work includes regression-based methods 

[37], Bayesian methods [38, 39] , control chart allocation strategies [40, 41]  and cause-

selecting strategies [42]. A detailed review of SPC for MMP‟s can be found in [43]. In 

addition to SPC methods, dimensional variation propagation has been studied using the 

stream of variation (SoV) methodology [44, 45], which models variation through 
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dimensional quality state spaces or vectors, creating between-stage variation models 

through rigid body kinematics [46-49], finite element analysis (FEA) [50], or by 

statistical approaches [51]. These SoV methods have been successfully applied to 

improve tolerancing, process adjustment and diagnosis [52-55]. However, the SPC and 

SoV methodologies have mainly been applied to dimensional variation control instead of 

surface variation control.  

Research Gap: Although the existing SoV methods are effective in modeling the 

variation propagation from upper stream to downstream, the method for capturing the 

impact of certain downstream stages on the surface variations generated at upstream 

stages is still lacking. Furthermore, the majority of these methods focus on dimensional 

control, and not surface variation control.  The SoV methodology has mainly been 

applied to dimensional variation control instead of 3D surface variation control. Although 

the existing SoV methods are effective on modeling the variation propagation from upper 

stream to downstream, the method for capturing the impact of certain downstream stages 

on the surface variations generated at upstream stages is still lacking. 

Summary 

There is a lack of effective methodologies for the monitoring of high-precision 

multidimensional data in manufacturing processes. The overall research gaps are the lack 

of (1) surface variation modeling considering cross-correlation between the surface 

height data and process variables, (2) efficient monitoring and diagnostic methods using 

HDM data for quickly detecting and locating abnormal surface variation changes, and (3) 
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understanding of surface variation patterns and the effect of downstream stages on 

surface variations generated from the upstream stages (multistage interdependence).  

1.3. Research Objectives 

To fill the research gaps as outlined above, this dissertation proposes:  

 Surface modeling through fusion of process and HDM data: An improved surface 

model is developed by incorporating process and multi-resolution data through 

spatial and cross-correlation. The proposed model is as follows:  

( ) ( ) ( ) ( )Z w   s s s s , where 

    
),0(N~)(        Error     

||))||;(,0(GP~)(    Covariance

 ])([)(      Mean      

2

2







s

sss

βsU1s

ji

T

w 



   ,                   (1-4) 

where the mean of the expression, μ(s) is modeled as a deterministic function in 

terms of the correlated process variable, and the residuals are modeled as a spatial 

process, w, with mean zero and variance σ
2
ρ(ϕ), where ρ(ϕ) is the exponential 

correlation of the form  exp(  || ||)i j s s , and the error, ε(s) is normally 

distributed with mean zero and variance τ
2
. The proposed model increases 

prediction accuracy and reduces the amount of HDM measurements needed. 

 Measurement system analysis for HDM: An MSA procedure is needed to make 

certain that HDM systems are capable of measuring surface local variations with 

high repeatability. A framework is proposed which uses the surface data-process 

fusion model to effectively calculate the HDM system capability of capturing 

both global and local variations. In addition, a zone by zone Gage R&R is 

developed which detects the areas on the part where the gage is incapable. 
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 Surface variation monitoring using HDM data: A sequential monitoring 

framework is developed to monitor surface variations as reflected by HDM data. 

Based on the surface data-process fusion model, a progressive monitoring 

algorithm under a Bayesian framework is also developed to monitor surface 

variations when limited HDM measurements are available. The proposed methods 

are able to effectively monitor HDM data and locate defective part areas.  

 Multistage modeling and monitoring of HDM Data: A morphing-based approach 

is proposed to model the multistage interdependence between downstream and 

upstream operations. A new multistage monitoring procedure is developed based 

on the morphing model which improves surface prediction accuracy when 

abnormal variations are present. 

1.4. Organization of Thesis  

The thesis is organized as depicted in Figure 1.6. Chapter 2 conducts modeling of 

surface data-process fusion using spatial and cross-correlation. Chapter 3 develops 

methods for measurement system analysis for HDM. Based on the data-process fusion 

model, Chapter 4 develops surface variation monitoring for (a) HDM data and (b) multi-

resolution data when only limited HDM data is available. Chapter 5 models the 

multistage interdependence using a morphing-based methodology to monitor between 

stage surface variations. Chapter 6 concludes the thesis and outlines topics for future 

research.  
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Figure 1.6 Thesis Organization 
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CHAPTER 2  

SURFACE MODELING THROUGH FUSION OF PROCESS AND HDM DATA 

 

 

 HDM systems provide fine resolution measurements needed for the evaluation of 

process performance with micron-level accuracy. As observed in Chapter 1, obtaining a 

sufficient sample size of HDM measurements for process monitoring can be difficult 

since HDM systems are costly and the measurement is time-consuming. It might take a 

significant amount of time for an HDM system to measure a part, depending on the part 

size, the scanning speed, and the scanning technology employed. In addition, due to the 

high cost of HDM systems, manufacturers deploy fewer HDM machines in plant, further 

restricting the number of parts that can be measured. There is a strong need to develop an 

efficient strategy for HDM-based process control that addresses these challenges.   

  To enable HDM-based process control, it is desirable to combine the insights gained 

through HDM data with LDM measurements to decrease measurement time and cost. 

Thus, this chapter develops an approach for efficiently predicting surface variations by 

using both limited HDM measurements from preselected local regions and LDM 

measurements over the entire surface from an incoming part. Based on these combined 

measurements, we propose a method to predict spatial data at unobserved locations using 
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the cross correlations between the surface profile and process variables in conjunction 

with spatial correlation. The cross correlation patterns were reported for the first time by 

previous studies [1, 56] which showed that surface profile variations along certain 

directions are strongly correlated to process variables such as material removal rate. The 

process variables considered are usually less costly and more time-efficient to measure. 

Incorporating such cross correlations with these variables in a surface model can 

potentially reduce the number of HDM measurements needed for process control while 

maintaining prediction accuracy.  

In this chapter, the existing cross correlations between the process variables and 

surface profile are first reviewed and illustrated. A data fusion surface prediction model is 

then established by using the cross correlation between the HDM data and machining 

process variables in conjunction with spatial correlation to improve surface prediction. A 

case study demonstrates the effectiveness of the proposed surface model.   

2.1. Cross correlations uncovered by HDM systems 

Spatial correlation and cross correlation may be utilized to reconstruct the surface 

profiles revealed by the HDM data. The spatial correlation reflects the similarity among 

neighboring data points on the surface, while the cross correlation reflects the 

relationship between external process variables and the surface data. In a machining 

process, dominant cross-correlation patterns exist between surface height and material 

removal rate (MRR), i.e., the material removal volume per cutter revolution [1]. A 

change in MRR can cause cutting force variation and thus impact surface shape. Since 

the MRR is influenced by feed rate, arc length of cutter engaged in cutting, cutting insert 
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engagement and cutter path, and clamping, this section discusses different cross 

correlation patterns with these variables. 

Cross correlation with cutting arc length. A previous study on HDM surface 

characterization reported a linear cross-correlation pattern between the average surface 

profile along the feed direction and the arc length of a cutter engaged in cutting [1]. For 

example, the HDM data of the deck face on the engine head in Figure 1.4 show that the 

surface profile is low where a bore is present and becomes high where more material is 

present (e.g., the bridge areas between cylinder bores). A correlation study was conducted 

to analyze the relationship between the average surface profile per cutting revolution and 

the material removal volume per cutter revolution, i.e., material removal rate (MRR). The 

MRR can be approximated by the arc length of a cutter engaged in cutting. Figure 1.4 

shows that the average height of the part surface is positively correlated to the MRR or 

the arc length. Such a cross correlation is induced by the cutting force during machining, 

which was shown in [56] using a cutting force simulation based on a Third Wave 

Systems
®
 package. The simulation revealed that due to surface discontinuities caused by 

surface geometry, the volume of removed material per cutting revolution (MRR) varies 

as the cutter moves along the feed direction. The MRR causes axial cutting force changes 

which generate the variations of the relative displacement between the work piece and 

cutter, resulting in surface height variations along the feed direction.  

 

Cross correlation with cutting arc length. Figure 2.1 demonstrates the relationship 

between the surface height and the MRR. When the cutter is in position 1, less material is 

being removed than when the cutter is in position 2. A trace on the part shows that when 
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the cutter is at position 1, the surface height is low; when the cutter is in position 2, the 

surface height is high.  

 

Figure 2.1 Cross-Correlation between Surface Height and MRR [1] 

Cross correlation with cutting insert engagement Cross-correlation patterns also exist in 

the circumferential direction of the cutter. Figure 2.2(a) shows the profile of a machined 

planar surface where the color represents surface height. Figure 2.2(b)-(f) show the states 

of the cutter during one complete revolution. For example, in Figure 2.2(b), insert 1 is 

engaged in cutting, and as the cutter rotates clockwise, both insert 5 and insert 1 begin to 

be engaged in cutting as shown in Figure 2.2(c). The boundary between the zones with 

different grey scales in Figure 2.2(g) outlines the locations where the number of inserts 

engaged in cutting switches from 1 to 2 or from 2 to 1. The area where the number of 

inserts engaged in cutting switches from 1 to 2 (or equivalently where axial cutting force 

changes) in Figure 2.2(g) corresponds to a height change in the profile in Figure 2.2(a). 

Thus, the surface profile along the circumferential direction is correlated to the cutting 

force variation due to the different insert engagement.  

Cross correlation with feed rate. Another type of MRR cross-correlation observed occurs 

between varying feed rate and the surface height. Figure 2.3 shows a close up of the tool-

marks on an engine head surface. The spacing between the tool-marks are an indication 

of the feed rate; the larger the spacing, the faster the feed rate. In this example, the CNC 
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machine tool executes a different line of G-code, causing a dwell zone, where the 

spacings between the tool-marks are reduced by two thirds, indicating a feed rate 

slowdown. The decreased feed rate reduces axial cutting force generating smaller relative 

displacement between the cutting insert and workpiece and therefore creating a lower 

surface profile. Thus, the surface height is highly correlated with the feed rate or tooling 

mark spacings on the surface.  

 

 

Figure 2.2 Cross-Correlation: Surface Height vs. Cutter Insert Engagement [2] 

 

 

Figure 2.3 Cross-Correlation: Surface Height vs. Feed rate or Tool Mark Spacing 

Cross correlation with clamping scheme. The surface profile is correlated to the clamping 

scheme including clamping layouts and force as shown in Figure 2.4. It can be seen that 

the surface height increases at locations where the clamping is applied. Such a pattern 
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results from cutting depth decrease at the clamped areas due to the clamping effect. The 

magnitude of the clamping torque is also positively correlated to surface height.  

 
Figure 2.4 Cross-Correlation: Surface Height vs. Clamping torque 

 The above insight on the correlation patterns gained from HDM measurements can be 

used to improve the surface prediction accuracy. The remainder of this chapter uses the 

cross correlation between surface height and cutter arc length to demonstrate the 

prediction improvement. 

2.2. Surface prediction considering spatial and cross correlations 

A high resolution estimate of machine surface height can be predicted using the 

surface measurements along with process variables. The components used for the 

prediction are the reduced subset of HDM measurements, the spatial correlation between 

these HDM data and the cross-correlation between the HDM data and highly correlated 

process variables, such that 
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                                                                               (2-1) 

where      is the estimate of surface height at any location s=(xi , yi); f is a function that 

reflects both the spatial correlation between the observed surface height measurements, Z, 

and the cross-correlation between the surface height and process variables;  U1(s0) …. 

Un(s0) are the observed measurements for n process variables at surface locations s0, and 

ε is the error. This dissertation refers to the surface height (the variable of interest) as the 

primary variable and the correlated process variable as the secondary variable.    

A number of models could be proposed for the function f() to expand Equation 2-1 

and estimate the Z(s) (the primary variable). Without losing generality, this dissertation 

uses the hierarchical Bayesian model as an example to illustrate the procedure [57]. The 

model inputs are:  

 Z(s0)=[Z1 ∙∙∙ Zi]
T
, an i×1 vector of observed measurements of the primary 

variable;  

 
pT

i iU 1)]([)( 00  ssU , an  i×p matrix of measurements with i observations for each 

of the  p secondary variables. 

The secondary variables U are assumed to have a high correlation with the surface height 

and be cost-effective to measure. The inclusion of these secondary variables supplements 

the information provided by the primary variable, resulting in a more accurate estimate 

for the prediction variable. The estimate of Z can be calculated by 

                                               ( ) ( ) ( ) ( )Z w   s s s s , where 
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The mean of the expression, μ(s) is modeled as a deterministic function in terms of the 

correlated process variable, and the residuals are modeled as a spatial process, w, with 

mean zero and variance σ
2
ρ(ϕ), where ρ(ϕ) is the exponential correlation of the form  

exp(  || ||)i j s s , and the error, ε(s) is normally distributed with mean zero and 

variance τ
2
. 
 

Equations 2-1~2-2 are used to make surface height predictions on the spatial domain 

for a single part and establish the basis for surface monitoring, as will be discussed in 

Chapter 4. 

2.3. Case Study 

To demonstrate the advantages of using a secondary variable for surface prediction, 

the following section compares the predictions obtained using (a) one covariate, the 

spatial correlation between  ZHD and (b) two covariates, the spatial correlation between 

ZHD and the cross-correlation between ZHD  and the MRR variable on a single surface. 

Figure 2.5 shows the model input data; for case (a) only the surface measurements are 

used, and for case (b) both the surface measurements and the MRR measurements at 

3000 locations are used. The right panel shows the MRR, which was calculated as the 

total arclength of the part moving in the feed direction; i.e. the arclength is lower in the 

areas where the bores are present. 
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Figure 2.5 Data Inputs for Data Fusion Surface Prediction 

The spatial relationships were modeled by Equations 2-1 ~ 2-2. 

)504.1,2(~

)35.0,2(~

)3,1.0(~

()~

2

2

eIG

IG

unif

unif









                                                         (2-3) 

where β, ϕ, σ
2
 and τ

2
 are as described in Equation 2-2. Predictions are shown in Figure 

2.6. The left panel shows the actual measurements, the middle panel the results from 

using only spatial correlation, and the right panel the results from using both spatial and 

cross-correlation. The predictions based on spatial correlation in case (a) produce a 

smoother surface compared to the actual surface. The addition of the cross-correlation 

information in case (b) captures local variation features, such as the peaks and valleys 

around the bores. The root mean square (RMS) improved from an RMS=0.008 in case (a) 

to RMS=0.003 in case (b), showing that the prediction using both spatial and cross-

correlation is closer to the actual. The use of the MRR information at the prediction 

points improved the prediction accuracy significantly.  
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Figure 2.6 Prediction Results 

To more clearly show the improvement of local variation prediction, a cross section 

of the parts in cases (a) and (b) are compared in Figure 2.7.  In both panels, the actual 

measurement is in red, while the prediction is in blue.  As seen in the figure, the 

prediction in case (b) is more accurate and better captures the local variation of the 

surface.  

 

Figure 2.7 Comparison Between Prediction Cross Sections 

2.4. Chapter Summary 

 HDM systems enabled the discovery of cross-correlations between process variables 

and the surface profile of a part in a machining process. In this chapter, examples of such 

cross-correlations were outlined, including the cross-correlation between the part surface 

and the MRR, arc length, feed rate and clamping scheme. A model was proposed to 

predict the surface data at unobserved locations by incorporating spatial correlation and 
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cross-correlations between the surface measurements and process variables in 

conjunction with limited HDM data and LDM data. A case study demonstrated that the 

proposed surface model is more accurate at predicting the surface local variations as 

compared to a spatial correlation surface model that does not include process 

information. The data fusion surface model thus enables HDM based process control by 

reducing the need for a large sample size of HDM data. The proposed data fusion model 

is the basis for the work presented in the subsequent chapters: engineering-driven MSA, 

process monitoring and multistage monitoring.  
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CHAPTER 3  

MEASUREMENT SYSTEM ANALYSIS FOR HIGH DEFINITION 

METROLOGY USING CROSS-CORRELATION 

 

 

HDM technologies are increasingly being used in manufacturing plants to make 

inferences on product and process quality. Prior to utilizing an HDM system for process 

control in a manufacturing process, the system has to be deemed capable of measuring 

parts in a repeatable and reproducible fashion. Currently, industry practitioners use 

conventional capability indices designed for LDM systems on HDM systems. This 

chapter develops a new MSA method to improve the estimation of gage capability for 

HDM systems through an engineering driven, spatial clustering based method. A 

comparison between the proposed method and other commonly used approaches is 

provided.   

The measured data from an HDM system usually is in the form of a data cloud 

comprised of individual points. Each point is identified by its 3-dimensional x-y-z 

coordinates. Two of the most common types of 3D measurement data for

manufacturing processes are planar surfaces and 3D shell objects. Planar surfaces are 

measurements where each x-y location has only one associated z measurement; usually 
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these measurements can be converted into images in an x-y grid of measurements at each 

location. Figure 3.1(a) shows a planar measurement of an automotive engine head 

measured by a laser interferometry system, where the color indicates the height (z) 

measurement. Three-dimensional shell measurements are taken on the surface of an 

object, and typically each x-y location might have more than one associated z 

measurement. Figure 3.1(b) shows an example of a volumetric shell measurement of a 

generic part as measured by a scanner system.  

 

Figure 3.1(a) 3D planar Measurement (b) Volumetric Shell Measurement 

Conventional methods to quantify the performance of a measurement system were 

developed based on LDM data. These methods use a few critical summary dimensional 

characteristics to calculate a system‟s capability, and might not accurately estimate the 

capability of an HDM gage at measuring local surface variations. For instance, Figure 3.2 

shows the HDM measurements of the surface of two milled parts. A typical way of 

calculating the gage capability is to use the part surface flatness, which is the maximum 

minus the minimum observation in the data set. Both parts in Figure 3.2 have a surface 

flatness of approximately 30 μm, but their local surface variations are dissimilar. An 

(a) (b)
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MSA based on the surface flatness might incorrectly conclude that a gage is capable. 

Another less popular approach used in practice is to calculate the capability for each point 

individually (pointwise). For high dimensional HDM data, this calculation can become 

computationally intensive, particularly if each measurement has millions of points. In 

addition, HDM data can be highly auto-correlated, and performing an MSA without 

accounting for this correlation results in an overestimation of the %R&R [58].  

Additional challenges of calculating the capability of data utilizing the pointwise method 

is that measurements utilizing the same HDM system on the same part might yield a 

different number of points per measurement, and these measurements may not have 

aligned x-y coordinates.   

 

Figure 3.2  HDM Measurements of two parts 

 Thus, the challenges of using conventional MSA methods with HDM metrology 

systems may be summarized as follows: (1) global surface variations might mask local 

variations in conventional MSA methods resulting in inaccurate capability estimates, (2) 

the capability of the measurement system may be underestimated if the measurement 

points are highly autocorrelated, and (3) applying the MSA method pointwise is 

computationally intensive.  



29 

 

State of the Art  

The most used MSA model calculates capability indices based on decomposing the 

total study variance into the various measurement system components [59-61], such that  

222

gageQCmeas                                                              (3-1) 

where σ
2

meas is the variance of the measurement of the observed quality characteristic, 

σ
2

QC is the variance of the true, unknown value of the quality characteristic, and σ
2
gauge  is 

the gauge error. Based on Equation 3-1, several indices have been developed to measure 

the capability of a gauge. One index that is often utilized is the P/T ratio as described in 

AIAG (2002), 

TOL

k

T

P gage̂
 ,                                                                      (3-2) 

where k represents the sigma-multiplier (k  = 5.15 is usual), and TOL is the maximum 

specification minus the minimum specification limit as set by the plant. Usually, a P/T 

ratio of less than 10% is considered acceptable.  Another index is the %R&R,  

                 100&% 


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


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gage
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


,                                                     (3-3) 

such that a system is considered capable if the %R&R is less than 33%. Finally, the 

signal-to-noise ratio (SNR) index which is a function of the %R&R is also used, 

             2















gage

measSNR



.                                                           (3-4) 

A measurement system is considered capable if the SNR is less than five.  
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To estimate the variation components σmeas, σgauge and σtotal in a two-factor 

experiment, a two-way ANOVA may be used [61, 62]. The experiment involves o 

operators measuring p parts n times each, such that  

ijkijjiijk OPPOY  
,
                                                       (3-5) 

where Yijk is an individual measurement performed by operator i (i = 1…o), measuring 

part j (j=1…p) for the k
th

 time (k=1…n); μ is the overall mean, Oi is the effect of the i
th 

operator, Pj is the effect of the j
th

 part, OPij is the interaction effect of the operator and 

part, and εijk is the normally distributed error term. While this method is straightforward 

and intuitive, it only assesses the capability of the system to measure one particular 

quality characteristic. Thus, practitioners often have individual %R&R requirements for 

each dimensional measurement, such that there are as many capability ratios as there are 

quality dimensions. 

Previous researchers have addressed the challenges for dealing with the high 

dimensionality of HDM data using different strategies. Majeske [58] proposed using the 

multivariate generalization of ANOVA, MANOVA, to calculate the capability indices. 

The frameworks works well in instances where the number of parts measured, p, is 

greater than the number of quality characteristics measured on each part, m. However, 

when m>>p there are not enough degrees of freedom to estimate the error term, 

covariance matrices become singular and the variance components cannot be estimated. 

This type of high-dimensional scenario where m>>p is typical when analyzing HDM and 

image data where each point may count as a quality characteristic.  
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Recent work has focused on reducing data dimensionality prior to performing the 

MSA, which usually fits models to the multidimensional data and measures the capability 

of the system using the fitting coefficients [63, 64]. However, these methods are not 

performed directly on point data clouds and some of the local information from the 

between part variability may be lost when fitting coefficients. Researchers have also 

explored multivariate multisite capability testing using principal components [65] and 

factor analysis [66].  

Most multivariate MSA methods rely on MANOVA to decompose gage variation. 

However, MANOVA is difficult to use with multivariate data where the number of 

dimensions is larger than the number of observations. Most of the research on MANOVA 

for high dimensional data is divided into two categories; the first tries to find high-

dimensional approximations to the MANOVA test statistic [67]; the second tries to 

reduce the high-dimensional data by selecting the most significant features [59, 68, 69].  

A cohesive methodology is needed to assess the capability of a high dimensional, 

point cloud measurement system that addresses the previously listed challenges. In this 

chapter, a method is developed to estimate the capability of HDM gages at measuring the 

global and local variations of multidimensional data. In addition, the method is able to 

locate the areas of the gages that are not capable, thus aiding in gage diagnosis and 

calibration. This chapter: (1) proposes  an improved engineering-driven interpolation 

method that improves MSA estimation, (2) develops a spatial clustering based MSA 

method to calculate zone by zone gage capability, and (3) provides a comparison of 

several data reduction methods to perform MSA using HDM data.  
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The rest of the chapter is organized as follows: section 3.1 describes proposed method 

for high dimensional MSA. In section 3.2, the method is demonstrated using a generic 

part and 3D sphere measurements. Section 3.3 discusses the advantages and 

disadvantages of various data reduction approaches in high-dimensional MSA and 

section 3.4 concludes the chapter.  

3.1. Proposed Framework for High Dimensional Multivariate MSA 

The proposed method for high-dimensional multivariate MSA focuses on applying 

multivariate MSA to reduced and regularized data as shown in  

Figure 3.3. The first three steps address the measurement, registration and 

interpolation of the data to transform all measurements to the same coordinate frame. The 

part measurement size needs to be reduced in step 4 such that the multivariate MSA 

procedure can be applied in step 5. Each of these steps is discussed in the following 

subsections in more detail.  

 

Figure 3.3 Proposed Measurement System Analysis Framework 

3.1.1. HDM Data Regularization using Spatial and Cross-Correlations 

HDM data pre-processing might be required prior to performing MSA analysis. 

Ideally, HDM data obtained from repeated measurements on the same part should 
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produce the same number of points, where each point has the same x-y location in the 

same coordinate frame across measurements, as illustrated in Figure 3.4(a). However, 

HDM systems do not necessarily produce an equal number of data points for each 

measurement. As shown in Figure 3.4(b), HDM systems may produce a different number 

of points in different x-y locations. Thus, to facilitate the comparison of the data, two data 

regularization steps might be needed before performing an MSA on an HDM 

measurement system: (1) data registration and (2) data interpolation.  

 

 

Figure 3.4 (a) Regularized Part Measurements (b) Point Cloud Part Measurements 

3.1.1.1. HDM Data Registration  

A set of HDM point cloud measurements is unregistered when one or more of the 

measurement‟s x-y coordinates are not aligned with the others. To facilitate the 

comparison between the measurements, the HDM data needs to be registered, such that a 

mapping function which scales, rotates and translates the points between the 

measurements is established. The mapping functions considered in this paper consist of 

affine transformations that estimate the rotation and translation between two parts. As the 

measurement system is measuring the same part repeatedly, it is assumed that the 

measurement data will have negligible deformation such that the scaling effect can be 

ignored. A review of registration methods for image data can be found in [70]; for 3D 

point clouds in [71, 72].    
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A general rigid-body registration approach is briefly reviewed. Denote two different 

measurements of the same part as A and B, with each measurement having a 

corresponding coordinate frame, CA and CB respectively. Further denote the points ZA = 

[xA yA zA] and ZB = [xB yB zB], which are corresponding points measuring the same feature 

in measurement A and B. Then a transformation, T, may be found such that 

ABAABB tZRZ  ,                                                                  (3-6) 

with an objective function  





N

i

ABAABBi

1

)(min tZRZ
tR, ,

                                                    (3-7) 

where RAB is a 3 × 3 rotation matrix and tAB is a 3 × 1 translation vector transforming 

point ZB into the reference coordinates of ZA.  

Various closed form and iterative methods have been developed to determine the RAB 

and tAB matrices. A comparison of commonly used closed form methods based on feature 

(surfaces, lines, or points) correspondence is found in [73]. For cases where it is desirable 

to estimate the rotation and translation by minimizing the distance between the 

measurement data clouds, the iterative closest point (ICP) algorithm may be used [74-76]. 

ICP seeks to minimize the distance between the points in each measurement, and has 

been found to be an efficient way to find local minima. Given two point data clouds, {Pi} 

and {Qi}, the following objective function is minimized 

tR  )(
1

),( ii qp
N

tRf ,                                                     (3-8) 
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where pi and qi are points corresponding to data clouds {Pi} and {Qi}, N is the total 

number of pairs in the data sets, R is the rotation matrix, and t is translation vector. The 

ICP algorithm is widely used due to the ease of implementation. 

3.1.1.2. HDM Data Interpolation using process-data fusion model  

Data interpolation is the process by which the data at unobserved locations is 

estimated. The purpose of the data interpolation when doing an MSA is to regularize the 

different measurements onto the same grid such that they can be compared. Figure 3.5 

shows an example of scattered data points (zi) and interpolation estimates (zi
‟
) that can be 

at the lattice points. 

 
Figure 3.5 Projection of Scattered Data onto Grids 

Prior to interpolation, the number and location (ip,jp) of the prediction points, Ẑ (ip,jp), 

should be determined. To establish the location of the prediction points, it is 

recommended to overlay all of the registered measurements taken for the MSA 

experiment, and find the outer points for all of the combined locations. For planar 

surfaces, a lattice can be established between the boundary points at the edges of 

measurements, such as the one shown in Figure 3.6, and the prediction locations placed 

on the corners of the lattice. The lattice spacing should be determined by the desired 

measurement resolution. It is recommended that that the lattice spacing is greater than the 
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precision of the gauge such as to not extrapolate data to a higher precision than the 

gauge‟s capability. In addition, Nyquist theory indicates that the spacing should be at 

least half of the smallest measurement feature that needs to be captured by the gage. 

 

Figure 3.6 Procedure for Identifying Prediction Locations 

3.1.1.3.HDM Data Interpolation using Spatial and Cross-Correlations 

The surface model for the fusion of HDM and process data proposed in Chapter 2 can 

be used to improve the accuracy of the interpolated planar and volumetric measurements, 

such that  

                                               .                          (3-9) 

The estimate,   , can be calculated by using Bayesian Kriging such that  

                                                                       , where 
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The mean of the expression, μ( ,p pi j ) is modeled as a deterministic function in terms of 

the correlated process variable, and the residuals are modeled as a spatial process, w, with 
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a mean of zero and variance of σ
2
ρ(ϕ), where ρ(ϕ) is the exponential correlation of the 

form  exp(  || ||)i j s s , and the error, ε( ,p pi j ) is normally distributed with a mean of 

zero and variance of τ
2
. By incorporating the information from process physics to adjust 

the measurement predictions, the accuracy at measurement areas where there are fewer 

observations (such as at the edges of the measurement) can be improved. 

If there is no highly correlated process information available, many interpolation 

methods may be used, most of which estimate the data at a prediction location using the 

measurements in its vicinity. Two commonly used methods are Kriging and triangular 

interpolation. Kriging is a linear least squares estimator commonly used in the 

geostatistical field to estimate values at unobserved locations through establishing a 

spatial relationship between the points in the data cloud [77, 78].  Triangular interpolation 

seeks to estimate lattice data on grids, and at each grid corner the prediction is calculated 

from a few of its locally observed measurements [79]. Comprehensive reviews on 

different interpolation algorithms can be found in [80, 81]. 

Note: For volumetric shell objects, the object should be partitioned prior to 

engineering driven interpolation. Most interpolation techniques rely on calculating the 

point estimate by using local information. However, volumetric measurements may have 

multiple z-height values for the same x-y locations, distorting the interpolation results. 

Thus, it is necessary to partition the object such that only one z-height value is associated 

with each x-y location. For example, Figure 3.7 shows a half shell partitioned into four 

different sections using the x-y-z planes as guides.    
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Figure 3.7 Volumetric Shell Object Partition for Interpolation 

3.1.2. MSA for HDM  

Data reduction is necessary after the data pre-processing. Different data reduction 

techniques may be useful depending on the nature of the measurement. In this section we 

briefly review two approaches which are applicable across a number of fields, and which 

have proved successful in decreasing data size while retaining local variation 

information.   

The first approach is data reduction through Principal Components Analysis (PCA), 

which converts data points into variables (or principal components) that are linear 

combinations of the points [82]. For a data cloud Y=[Y1…Ym], it‟s i
th

 principal 

component is defined as 

      



m

i

iii YaPC
1

,                                                            (3-11) 

where the a’s are constants which minimize the variation of Z. Thus the data cloud Y can 

be represented using pc number of principal components which account for a large 

portion of the variation in the data, such that pc<<m.  

(a) 3D shell of half sphere (b) Partitioned half shell

x

y

z
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A PCA decomposition may be applied to the data by rearranging the K images of size 

M ×N into a single K×MN matrix, such that each row of the matrix represents an image. 

Equation 3-11 can be used on K×MN matrix to find the principal components of the 

variation between the images. After the PCA decomposition, the resulting eigenvectors 

can be reverted back into K images to visualize the spatial variation corresponding to 

each principal component. Recently, a 2D PCA method was proposed [83] which may 

also be used for image feature extraction and data reduction. The 2D PCA method may 

be more computationally efficient than PCA, however, the use of more coefficients per 

image is required.  

 

The second reduction approach is to use spatial clustering algorithms. These 

algorithms seek to segment a data cloud into clusters, each cluster composed of similar 

points. Common clustering models include distance based models (such as hierarchical 

clustering), center based models (such as k-means or k-medoid) and distribution based 

models. These algorithms differ in terms of the clustering criteria and efficiency. In this 

dissertation, the K-means approach is used, but any spatial clustering method can be 

effectively used within the proposed framework.   

After the data has been reduced, the methodology utilizes the framework proposed in 

[58] on the registered, interpolated, and reduced data. Majeske‟s model for a three factor 

model is  

                                    ijkijjiijk POOP Y ,                                (3-12) 

where Yijk = [Y1 …Y1] is the k
th

 multivariate measurement of part i and operator j. The 

model is analyzed using Multivariate Analysis of Variance (MANOVA), and the %R&R, 
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P/T ratio and SNR derived.  The framework works well for the reduced data; however it 

is important to note that in a p-dimensional MANOVA, there is a probability that the 

difference between the between-group mean squares and the within-group mean squares 

will be negative, thus resulting in negative estimates of variance components. A common 

approach to dealing with negative variance components is to set them to zero and 

estimate the within-group components by using the pooled mean squares. An alternative 

approach proposed by Amemiya derives covariance matrix estimators that are always 

proper [84].  

3.2. Case Studies 

Measurement system analyses for a complete set of combinations from two HDM 

measurement systems, three data reduction methods and three data sets were compared, 

as summarized in Table 3.1.  

Table 3.1. MSA Case study Analysis Methods and Data Set Summary 

 

The measurement systems tested were a planar HDM laser interferometer and a 

volumetric HDM scanner. An initial data set was obtained from a normal process using a 

2×2×3 Gage R&R experiment for both metrology systems. A data set with a large 

Measurement system
High dimensional 

MSA method
Data set

1. Laser interferometry 1. Pointwise
1. Normal process 

(original meas.)

2. Laser scanner 2. PCA reduction
2. Large operator effect 

(simulated meas.)

3. Spatial clustering
3. Large gage effect 

(simulated meas.)
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operator effect (operator variance increase of 20%) and one with a large gauge effect 

(gauge variance increase of 30%) were simulated. After the measurement data was 

interpolated, the MSA method described in the previous section was used to assess the 

capability of the gauge using the individual points (pointwise), PCA reduced data and 

spatial clustering.   

3.2.1. Planar Measurements MSA 

The planar HDM system tested was a laser holographic interferometer, with a 

measurement area of 300 mm
2
, an x-y resolution of 150 μm and z height resolution of 1 

μm. Measurements from this system are high dimensional and can be up to 4M points. 

Sample measurements from such a system can be seen in Figure 3.1(a) and Figure 3.2. A 

two-factor high dimensional multivariate Gauge R&R study was conducted on the laser 

interferometry system, where two operators measured two parts three times each. Surface 

measurements of the milled top surface of two generic aluminum parts were used for the 

analysis, as seen in Figure 3.8. The overall global shape pattern for both parts shows a 

similar global variation but different local variations.  

 

Figure 3.8 Sample Planar Measurements used for Laser Interferometer MSA 

Although the 12 measurements did not require registration due to the nature of the 

measurement system, the original measurements consisted of data clouds of size ranging 

Monitored surface
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from 8500 to 9000 points. As process information was not available, B-spline 

interpolation was used to regularize the measurements to 8000 points each at pre-selected 

rectangular grid locations. 

3.2.1.1.  Pointwise MSA  

An individual MSA analysis was performed on each of the 8000 points in the planar 

surface measurement using conventional ANOVA analysis methods, as can be found in 

[62]. The results for the normal process data shown in Figure 3.9(a) demonstrate most of 

the measurement points have a passing %R&R, but towards the center of the parts the 

%R&R is close to 100%. After closer examination, there is negligible variation in the 

center area between the 12 measurements. This very small part variation (approximately 

1 micron) resulted in a failing %R&R in the center areas. The simulated increased 

operator variation and gauge error result in an increased %R&R, as expected. The large 

operator variance depicted %R&R in Figure 3.9(b) shows a spatial pattern which might 

be explained by operator differences in measuring. Figure 3.9(c) which illustrates %R&R 

for the data with large gauge variation has no discernible spatial pattern; thus we can 

conclude that the gauge variation has increased evenly over the whole measurement area 

of the part.  

3.2.1.2.PCA based MSA 

PCA was applied to the planar surface measurements, and the PCA scores used to 

evaluate the measurement system. Figure 3.10 shows the normal process images 

decomposed into the first three principal components. As can be seen from the images, 

most of the variation in the measurements can be explained by using the first principal 
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component, which accounts for 99.8% of the variation of the data. This is explained by 

the marked difference between the two original part surfaces as seen in Figure 3.8, such 

that the part variation was higher than the measurement repeatability and reproducibility.  

The second and third principal components appear to be random noise and have no 

discernible spatial pattern.  

 

Figure 3.9 %R&R values and %R&R distribution for (a) Measurements for a Normal 

Process (b) Measurements with a Large Operator Effect, and (c) Measurements with Large 

Gauge Error 

 

Figure 3.10 First three 2-D Principal Components of Planar Measurements 

Using the PCA reduction method, the %R&R was 3.97%, which is much decreased 

from the estimates using the pointwise method. This decrease might be attributed to the 

noise present in the point by point MSA, where outliers are more likely to affect the 
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individual calculations. The %R&R for the measurements with the simulated operator 

and gauge errors were calculated using the corresponding PC‟s that attributed for at least 

90% of the variation, which are summarized in Table 3.2. As expected, the simulated 

operator effect increased the %R&R to 53.4%, while the gauge error increased the 

%R&R to 70.9%. 

Table 3.2 Eigenvalues for Parts, Measurement and Gauge Covariance Matrices for Planar 

Measurements 

 

3.2.1.3. Spatial clustering MSA 

The K-means clustering algorithm was applied to an average part calculated from the 

study measurements to separate the measurement data into similar clusters. The 

characteristics used for the clustering were the mean and standard deviation at each of the 

measurement locations.  The resulting clustering scheme which separated the normal 

process data into 11 spatial clusters is seen in Figure 3.11(a), where each color represents 

a different cluster. The resulting clustering schemes for the measurements with a large 

operator and gauge effect can be seen in Figure 3.11(b) and (c) respectively. 

Normal Operator effect Gage effect

No. Part Gage Meas. Part Gage Meas Part Gage Meas.

1 3.8190 0.0096 3.8240 0.1336 0.0014 0.2066 0.4140 0.0000 0.4140

2 - - - 0.0000 0.1089 0.1090 0.0000 0.3560 0.3560

3 - - - 0.0000 0.0683 0.0686 0.0000 0.7700 0.7700

4 - - - 0.0000 0.0688 0.0688 0.0000 1.5990 1.5990

5 - - - - - - 0.0000 1.7680 1.7680

6 - - - - - - 0.0000 1.6270 1.6270

7 - - - - - - 0.0000 1.6530 1.6530

8 - - - - - - 0.0000 1.6750 1.6750

9 - - - - - - 0.0000 1.7020 1.7020

10 - - - - - - 0.0000 1.7230 1.7230
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Figure 3.11 Spatial Cluster Scheme on HDM measurements using K-means Algorithm with 

(a) normal process Measurements (b) Measurements with an Operator Effect (c) 

Measurements with a Gauge Error 

The clustering scheme was then applied to each of the part measurements and the 

%R&R and P/T ratio calculated from the cluster averages are shown in Table 3.3. The 

results are similar to the pointwise MSA method, as the center cluster (denoted in blue in 

Figure 3.11) has a very high %R&R percentage of 83%. However, the P/T ratio for 

cluster 1 is low at 1.83%, thus indicating that the low part variability in the center region 

of the part measurements is the reason for the high %R&R.  

Table 3.3 Gauge %R&R and P/T ratio for Planar Measurement Spatial Clusters 
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Normal Operator effect Gage effect

Cluster %R&R P/T %R&R P/T %R&R P/T

1 83.04 0.037 98.7 1.20 29.26 0.19

2 5.11 0.051 94.3 1.26 21.28 0.18

3 5.00 0.037 51.7 1.22 16.82 0.18

4 4.13 0.045 68.3 1.22 75.48 0.21

5 18.26 0.084 79.8 1.19 45.66 0.17

6 6.22 0.094 89.3 1.28 - -

7 5.53 0.028 59.4 1.20 - -

8 6.72 0.043 74.4 1.20 - -

9 4.96 0.048 84.3 1.21 - -

10 5.24 0.031 64.4 1.12 - -

11 4.74 0.0529 - - - -
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3.2.2. Volumetric Shell Measurements MSA 

The volumetric HDM system utilized for the study was a 3D laser scanner with a 0.05 

mm resolution, up to a 0.04 mm accuracy and stand-off distance of 300 mm. This system 

is utilized to measure volumetric shell objects, such as that observed in Figure 3.1(b). 

Depending on the size of the object, measurements from the scanner may result from 

thousands to millions of observations.   

A two-factor high dimensional multivariate MSA study was performed on a 3D 

scanner, where two operators measured two parts three times each. Two flat-bottomed 

spheres with a 2” diameter were scanned. Prior to the %R&R analysis, the two parts were 

in different reference frames, as seen in Figure 3.12. To register the measurements, a 

rigid body ICP algorithm was used.  The measurements were then regularized via 

triangular interpolation at 5000 predetermined sphere locations on a mesh.   

 

Figure 3.12 Volumetric Part Measurements from Laser Scanner 

3.2.2.1. Pointwise MSA 

An individual MSA was performed on each of the 5000 measurement points of the 

spheres. The resulting %R&R distributions are depicted in Figure 3.13 for each of the 

three measurement data sets.  

Sphere 1

Sphere 2
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Figure 3.13 %R&R distributions for (a) Normal Process Measurements (b) Measurements 

with Operator Effect and (c) Measurements with Gauge Effect 

 

As expected, the distributions for the measurements with simulated operator and 

gauge effects are highly skewed left, with the majority of the %R&R being 100%. The 

median %R&R was 10.3% for the normal parts data set, 75.2% for the data set with the 

simulated operator effect and 71.3% for the data set with the simulated gauge effect.  

3.2.2.2. PCA based MSA 

The sphere data was reduced using PCA prior to performing the %R&R analysis, and 

the resulting eigenvalues from the MSA analysis shown in Table 3.4 for the three data 

sets.  

The corresponding %R&R values were 9% for the normal process measurements, 

20.4% for the measurements with the large operator effect, and 80.1% for the 

measurements with the large gauge effect. It can be seen from the table that the increased 

operator effect is reflected in the larger gauge variance components in the first PC, the 

direction with the most variation. However, the large gauge effect is reflected in an 

increase in the number of PC‟s, all with a large gauge variance component.  
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Table 3.4 Eigenvalues for Parts, Measurement and Gauge Covariance Matrices for 

Volumetric Measurements 

 

3.2.2.3.Spatial Clustering based MSA 

Spatial clusters were determined using the K-means algorithm using the average and 

standard deviation at each measurement point as the clustering characteristics. The 

resulting %R&R and P/T calculations are shown in Table 3.5 for each cluster. The values 

indicate that again the operator effect and gauge effect increase the %R&R. 

Table 3.5 %R&R and P/T Ratio for Volumetric measurement Spatial Clusters 

 

Normal Operator effect Gage effect

No. Part Gage Meas. Part Gage Meas Part Gage Meas.

1 90.46 0.74 91.2 0 8.37E+4 9.1E+4 1.5E+05 4.1E+00 1.5E+05

2 - - - 6.6E+4 0.01E+4 6.8E+4 0.0E+00 8.0E+04 8.0E+04

3 - - - 0.0E+00 9.6E+04 9.6E+04

4 - - - 0.0E+00 3.3E+05 3.3E+05

5 - - - - - - 0.0E+00 3.2E+05 3.2E+05

6 - - - - - - 0.0E+00 3.2E+05 3.2E+05

7 - - - - - - 0.0E+00 3.1E+05 3.1E+05

8 - - - - - - 0.0E+00 3.1E+05 3.1E+05

9 - - - - - - 0.0E+00 3.0E+05 3.0E+05

10 - - - - - - 0.0E+00 3.0E+05 3.0E+05

Normal Operator effect Gage effect

Cluster %R&R P/T %R&R P/T %R&R P/T

1 10.761 0.037 64.75 64.75 20.80 0.24

2 2.423 0.051 96.62 96.62 18.03 0.44

3 2.834 0.037 80.36 80.36 48.22 0.39

4 2.871 0.045 65.26 65.26 22.46 0.38

5 3.175 0.084 93.91 93.91 27.03 0.40

6 7.831 0.094 44.26 44.26 63.72 0.39

7 3.75 0.03 58.14 58.14 - -

8 3.05 0.04 89.19 89.19 - -

9 2.68 0.05 50.97 50.97 - -

10 6.31 0.03 67.42 67.42 - -
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3.3. Discussion 

This section discusses the advantages and disadvantages of using different reduction 

methods as explored in the case studies.  

Poinwise MSA. This method is the most intuitive for practitioners, as it is based on 

current industry practices. However, its main drawback is that it is very computationally 

inefficient due to the high dimensionality of HDM measurements. In addition, HDM data 

often exhibits autocorrelation patterns, which can result in the overestimation of %R&R 

if the capability of the point measurements is calculated individually [58]. HDM systems 

are also typically prone to having measurement outliers, which might skew the results for 

some of the measurement points. Due to the high dimensionality of the measurement 

data, it is highly likely that false alarms will occur as individual points might fail the 

MSA. The method has severe shortcomings and is not recommended for use for HDM 

systems.   

PCA MSA. The primary advantage of using a PCA approach is that it decomposes the 

measurement data into orthogonal components, thus eliminating data autocorrelation and 

resulting in more accurate %R&R estimations. By reducing the dimensionality of the data 

while capturing most of the variation between the measurements this method decreases 

the number of calculations required as compared to pointwise calculations. In addition, 

the results are condensed into a single %R&R figure, which can be easily compared to 

industry standard thresholds. However, the primary disadvantage is that PC scores are 

unitless and have no relationship to the initial measurements. Therefore, capability 

indices such as the P/T ratio cannot be calculated as the product tolerance is meaningless 

when compared to the standard deviation based on the PC‟s. Another disadvantage is that 
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using PCA as a reduction method does not provide information about the spatial 

distribution of the %R&R, such that defective areas cannot be located.  

Cluster MSA. The cluster method is a compromise between the pointwise and the PCA 

methods for data reduction, as the data is reduced significantly while preserving the data 

units of measurement. One of the main advantages of this method is that it provides a 

visual, spatial map denoting the areas of the part where the gauge is not performing well. 

For example, it is not uncommon that laser based systems will have more variability 

towards the edges of the field of view. This method highlights the spatial pattern of the 

%R&R such that the problematic areas can be uncovered. Detecting the field of view 

areas which have high %R&R allows operators to potentially diagnose the gage problem 

and aid in gage calibration. One disadvantage of this method is that the selection of  the 

number of spatial clusters may be subjective. In addition, the choice to use one clustering 

scheme over another might result in different spatial clusters and alter the results of the 

MSA.  

3.4. Chapter Summary 

This chapter proposes an MSA framework for planar and volumetric HDM systems, 

and compares the framework with other existing MSA methods. The developed 

framework first registers and regularizes the measurement data using an engineering-

driven approach to establish a common basis for comparison. Then, the data is reduced 

through spatial clustering, and the MSA study performed on the individual clusters.  Case 

studies were conducted which demonstrated the advantages of the proposed framework 

over methods utilized by practitioners. Compared with previous approaches, the 

improvements of the proposed framework are:  
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 Engineering-driven MSA for HDM systems: An improved surface model which 

considers spatial and cross-correlations with process variables is proposed. The 

surface estimation method improves the accuracy and precision of the interpolated 

measurements, particularly in areas where there are a low number of observed 

measurement points.  

 Comparison on the effect of data reduction methods on MSA for HDM systems: A 

comparative study between using several data reduction methods was done. It was 

found that using the spatial clustering and PCA data reduction methods 

effectively capture and summarize the global and local surface variations of  the 

HDM gage. 

 Zone by Zone MSA: The proposed spatial clustering based MSA method is able to 

locate the areas within the field of view where the gage is not capable. This 

enables the diagnosis of gage problem areas and aids with gage calibration. 
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CHAPTER 4  

SURFACE VARIATION MONITORING USING HDM 

 

 

Statistical process control for manufacturing processes is vital for process variation 

reduction and product quality improvement. In high precision manufacturing processes, it 

is often necessary to control the part surface variation within micron levels; thus, high 

definition metrology (HDM) systems which can measure parts densely across the surface 

may be employed to measure parts for the purposes of process control.  

As explored in Chapter 1, HDM measurements can provide rich information at 

different feature scales, but the high density of data presents significant challenges in 

utilizing them for quality control. HDM data may have redundancy and cause 

unnecessary computational load for certain diagnostic purposes. HDM data may also be 

cost prohibitive and time consuming to measure. Most importantly, data show strong 

correlation patterns. In Figure 4.1, the top surface on the part was divided into 36 regions, 

and the relationships between the average height of each region plotted using scatter 

diagrams. Regions that are close to each other (such as R1 and R2) show a linear 

relationship between the average heights, while regions that are further apart (such as R1 

and R33) do not exhibit such linear relationship.  
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In this chapter, new methods for HDM based monitoring are proposed to address the 

identified challenges. In section 4.1, a sequential monitoring method is developed for 

monitoring full-resolution HDM data. When HDM data is limited, a method is proposed 

in section 4.2 for monitoring of multi-resolution data based on a data fusion model 

presented in Chapter 2. The chapter is concluded in section 4.3.   

 
Figure 4.1 Scatter Plot of Spatial Data between Regions 

4.1. Sequential Monitoring of HDM Data 

A method is proposed to sequentially monitor process variation at both global and 

local scales using full resolution HDM data. The iterative approach is shown in Figure 

4.2. At both scales, the process is first monitored by using a PCA-filtered principal curve 

regression method in conjunction with multivariate control charts. The idea is to reduce 

the data dimension through PCA and to parameterize the principal curve fitted through a 

non-parametric method, thereby constructing a model-based test statistic for process 
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monitoring. If an out of control condition is detected, localized monitoring is performed, 

in which the part surface is divided into a number of regions, and each region is 

monitored independently using EWMA charts. This aids in localizing the surface region 

where the defect is occurring, which supports diagnosis of variation sources.  

 

Figure 4.2 Proposed HDM data monitoring Framework 

 

4.1.1. Preprocessing of HDM Data 

The HDM data should be preprocessed for efficient statistical analysis. Two pre-

processing steps are required: data decomposition and data reduction through 

partitioning.  

HDM data decomposition 

One challenge with monitoring schemes for HDM data is that the large scale variation 

may mask the variation change at a smaller scale. Potential sources of variation 

responsible for shape deformations are cutting forces, fixture errors and tool path 

deviation, while the sources for responsible for small scale feature variation may be 
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tooling related. Thus, it becomes difficult to differentiate between the variation patterns 

in both scales and conduct root cause diagnosis.  

It is necessary to separate the large scale variation from the small scale variation 

(refer to Figure 4.3). The trend surface that characterizes surface shape can be obtained 

by interpolating the point cloud data into a grid using a large smoothing parameter. The 

surface that contains small scale features can be obtained by subtracting the trend surface 

from the original surface. Such decomposition allows the monitoring of process stability 

at two different levels. The first is concerned with the stability of the shape and overall 

spatial variability of the data over time. The second is the monitoring of smaller scale 

features. 

 

Figure 4.3 Decomposition of HDM Data 

HDM Surface Partition 

The metrology using laser holographic interferometry produces scattered data for x, y, 

and z coordinates on a machined flat surface. For variation control purposes, the primary 

concern is to analyze z values (response) that are spatially distributed along the x and y 

directions. Since the points in the vicinity of each other usually show strong linear 
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correlation, they can be grouped into one region Ri. A finer partition {Ri}
n

i 1  resulting in 

more regions, will better delineate the surface topography. The averaged height values z  

in each region partitioned on the surface can be used as the response and a group of { ijz }

n

i 1 , j=1,2,…m, give the HDM data representation over n regions on each of a total of m 

part surfaces. The reasons for surface partitioning are: (1) to reduce the data redundancy 

and dimensionality by grouping the data points with similar responses; and (2) to produce 

a response in each region that follows a normal distribution (by the central limit theorem 

in applied statistics) to facilitate statistical monitoring.  

Surface partitioning may be difficult for a non-rectangular surface or a surface with 

more complex spatial patterns (e.g., holes and grooves etc., such as the part surface in 

Figure 4.3) on it. The regions may not be of equal size because of the existence of empty 

zones. As a result, the average value z  in distinct regions may follow different normal 

distributions and make statistical monitoring of overall features infeasible. One way to 

deal with this problem is to project the scattered HDM data onto rectangular grids 

through interpolation and extrapolation methods, as discussed in section 3.1.1.2. 

4.1.2. Large Scale Monitoring using Parameterized Principal Curve  

4.1.2.1.Principal curve modeling 

The principal curve modeling method is a generalization of PCA that captures the 

nonlinear variation pattern among spatial data. It is defined as a smooth and self 

consistent (not self-intersecting) curve f(t) passing through the middle of a p-dimensional 

data cloud. Figure 4.4 shows an example of two-dimensional data (R1 vs. R36) and their 

principal curve fitted by projecting the data points onto it in an “orthogonal sense” [20].  
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For a collection of p-dimensional data from m parts zj=[z1 z2… zp]
T
, j=1,2,…m, 

assume that μ and Σ are the mean vector and covariance matrix, respectively. Also denote 

λi as the eigenvalues and ei their corresponding eigenvectors. The Hastie-Stuezle 

algorithm for data projection searches for an estimate f̂ (.) that minimizes
2ˆ|| ||jj

 z f . 

The procedure can be stated as follows: 

 Set initial values for projection as f0(t)= μ+te1, which represents principal direction of 

the distribution of z and set h=0. 

 For each point p on the projected curve, calculate the average of values in the 

neighborhood N(p) of p, i.e., 
( )

1/ i

i N

n z



p

; let h=h+1. 

 Construct a new curve fh(t)  using p‟ and replace fh-1(t); 

Continue the iteration until estimation error 
2|| ||j hj

 z f  does not change. For high-

dimensional data, it is difficult to visualize the principal curve as shown in Figure 4.4. 

Instead, we can inspect the projection of the principal curve at each region with respect to 

t. Figure 4.5 shows an example of a principal curve projected onto 2 regions. It can be 

seen that the principal curve increases with t in region 33 while region 36 shows an 

increasing trend along with oscillatory patterns. This indicates that region 33 (on the edge 

of the part) and region 36 (on the corner) were bent upward over the 15 parts.  

However, visual inspection of a principal curve from multiple regions is not an 

objective method to evaluate the process behavior. A quantitative method is required to 

monitor the nonlinear variation patterns. 
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Figure 4.4 An Example of a Principal /Curve for 2-D case 

 
Figure 4.5 Principal Curve projection at Regions 33 & 36 

For statistical monitoring purposes, it is necessary to know the underlying distribution 

of the metric of interest. Although a principal curve can efficiently capture the variation 

in multi-dimensional data, the distribution of a certain point p‟ on the curve is not known. 

One can observe from Figure 4.4 that the value of p‟ shows a positive correlation with the 

original data that are close to p‟. Motivated by this phenomenon, it is reasonable to 

parameterize the principal curve by building a regression model linking the original data 

to their projection p‟ on the curve [85]. If the model accurately predicts the principal 

curve, the prediction error will follow a normal distribution.  

Therefore, a parameterized principal curve model can be proposed as follows: 
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0, , ,,
... , 1,2,...a a i a i ij a i j ai i j

y z z z a p                               (4-1) 

where yk is the kth projected point on the principal curve, zi is the averaged z-values in the 

ith region, and εk is the noise. When the data are filtered with PCA, zi will be replaced by 

its score vector wj in the space spanned by {e1 e2,…, ek}, i.e., 

0, , ,,
... , 1,2,...a a i a i ij a i j ai i j

y w w w a k                                    (4-2) 

Stacking up Eq. (5.2) over all the principal components, one can write 

1 ( 1)[ ]n k n n l l k n k      Y I W B E ,                                              (4-3) 

where Yc=[yc1 yc2… yck], Wc=[wc1 wc2…wck wc1wc2…], each column in B consists of [β0,a  

βi,a βij,a…]
T
, i=1,2,…n, I is an all-one vector, and [ε1 ε2...εk]

T
~N(0, Σk×k). The subscripts 

indicate the matrix sizes. The covariance matrix Σ̂  will be estimated by a generalized 

least square estimation procedure by minimizing 
1( [ ] ) ( [ ] )T  Y I W B Σ Y I W B . The 

coefficient matrix B̂  can be found by 1ˆ ˆ ˆ([ ] [ ]) [ ]T TB I W Σ I W I W ΣY .  The terms in Z 

can be chosen according a model selection procedure, e.g., forward selection. 

The overall feature monitoring is briefly summarized as follows: 

Step 0. Data preprocessing. Project HDM onto rectangular grids and partition the 

surface into regions as shown in Section 2.1. A finer partition is preferred for 

monitoring spatial variation pattern; 

Step 1.  Initialization. Let h=0. Assume a simple model for each row in W, denoted as 

w
(0)

=[w1 w2…wk]. The total number of terms except intercept is q0=k. Then 

estimate (0)
β̂ , ε

(0)
=y-[1 w

(0)
]β

(0)
, and residual sum of squares  RSS

(0)
=

(0) 2

1
[ ]

n

cc


 ; 
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Step 2.  Model expansion. Add more terms to w
(h)

 (e.g., interaction terms wiwj or 

quadratic terms w 2

i
) and let h=h+1. In total, w

(h)
 contains qj parameters. 

Estimate ( )ˆ h
β , ε

(h)
=y-[1 w

(h)
]β

(h)
, and residual sum of squares  RSS

(h)
=

( ) 2

1
[ ]

n h

cc


 ; 

Step 3.  Model comparison. Calculate an F test statistic  

( ) ( 1)

1

( 1)

[ ] /( )

/( 1)

j j

j j

j

j

RSS RSS q q
F

RSS n q







 


 
.                                            (4-4) 

If F>
1 , 1( )

j j jq q n qF 
   , which is the 100(1-α)% percentile of an F distribution with 

degrees of freedom qj-qj-1 and n-qj-1, continue the model expansion in Step 2. 

Otherwise, the model expansion in Step 2 cannot significantly improve the 

model accuracy and the smaller model will be chosen as the final model. 

By multivariate statistics, the prediction error ε is distributed as N(0,

* 1

0 0 *

1
(1 [1 ]{[1 ] [1 ]} )T

i T

i

  
  

 
w W W Σ

w
), where w *

i
 represents the new measurements 

projected onto the same subspace span{e1 e2,…, ek} Therefore, one can establish a 

control chart for monitoring ε̂  using 100(1-α)% prediction ellipsoid: 

* 1 *

* 1

0 0 ,*

ˆ ˆˆ{ [1 ] } ( ) { [1 ] }

1 ( 1)
(1 [1 ]{[1 ] [1 ]} )[ ] ( ),

T

i i k i i k

T

i p n l pT

i

n

n l

p n l
F

n l p






 

  


   
  

  

y w β Σ y w β

w W W
w

                             (4-5) 

where W0 represents the measurements under the baseline conditions.  

It has been found that HS algorithm [21] for fitting a principal curve could be 

sensitive to those points that are far from the data cloud (outliers), especially for high-

dimensional data. False alarms will increase as the data dimension increases. Therefore, 

PCA based data reduction is a very necessary step to reduce the false alarm rate.  
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If the HDM data do not show a strong nonlinear pattern, principal components can be 

directly monitored by T
2
 Hoteling chart. The T

2
 test statistics for the ith sample can be 

estimated by 

2

,2

,1
,

, ( )
k a j T

j a j a ja
a j

w
T w


   e z z ,                                    (4-6) 

where λa and ea, a=1,2…k, and z  are defined in the same way as above, where the Phase I 

control limit is 

2/)1(,2/,1

2)1(



 kmkB

m

m
UCL  ,                                            (4-7) 

and the Phase II control limit is  

kmkF
mpm

mmk
UCL 




 ,,12

)1)(1(
 ,                                                     (4-8) 

where m is the number of observations for each region and α=0.10. 

4.1.2.2. Global Monitoring Case Study using PCA filtered Parameterized Principal 

Curve 

The proposed global monitoring method was applied to a set of simulated HDM data 

obtained via FEM prediction. These simulated parts are similar to the data obtained from 

the laser holographic interferometry system. To create the HDM data, a fine mesh was 

used to generate 52,300 elements in total. This simulation ignored the smaller scale 

features (e.g., tool marks) caused by machine tools.   

Figure 4.6 shows the simulated aluminum alloy part with the top surface being milled 

followed by a drilling process on its side surface. The part was clamped on a fixture plate 

and located by a round pin on the left and a diamond pin on the right. The material 
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properties are given in Table 4.1. The fixture on the left side was assumed to vary along 

the vertical directions following N(0, 0.2
2
 mm

2
). The data can be used to monitor the 

stability of the process and analyze the impact of the drilling and clamping on the quality 

of the top surface.  

The data on each surface were first projected onto rectangular grids and partitioned 

into numerous regions. Since no small scale features were available, a partition with 6×6 

regions was adequate to capture the spatial pattern in this case. The bottom panel of 

Figure 4.1 shows scatter plots of paired average height data from different regions, where 

both linear (upper panels) and nonlinear patterns (lower panels) can be identified. 

Table 4.1 Material Properties for FEM Simulation 

Material AA2024 Poisson‟s 

ratio 

0.33 

Young‟s 

Modulus 

70 Gpa Ultimate 

stress 

469 

Mpa 

Yield stress 324 Mpa Elongation 20% 

 

For monitoring purposes, nine of the samples were used to establish a baseline 

condition, while six parts were used as testing data. Two additional parts were simulated 

to have larger variation (±0.2mm) and mean-shifts (+0.2mm) in regions R1~R3. These 

were used as samples 7 and 8 in the testing data set, and served as nonconforming parts 

under a faulty process condition.  

As shown in [20], if the distribution of multi-dimensional data can be approximated 

as piecewise linear, PCA can be used as a pre-processing step to reduce the data 

dimension without losing the variation information. Piecewise nonlinearity is not 
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uncommon in many manufacturing applications. In this case, the principal curve can be 

approximated by a set of hyper straight lines connected to each other. Assume there are k 

(≤p) dominant eigenvalues. Denote P as the transformation matrix consisting of the first k 

eigenvectors {ea} 1

k

a
 of covariance matrix Σ. Thus, the PCA score vectors can be 

estimated by wj= [ ]T

j P z z , where wj=[w1j w2j,…, wkj]
T
 is a k×1 vector and z  is the 

average vector of m parts. 

 

(a) Part and machining operation                 (b) Surface partition 

Figure 4.6 Part and Machining Operation for Case Study 

 

Figure 4.7 shows the first four eigenvalues of the covariance matrix for the data from 

36 partitioned regions. It can be seen that the first four principal components explain 

more than 90% of the total variation among the 36 regions. Thus, only the first four 

principal components need to be monitored and the data dimension is significantly 

reduced. 

 

Figure 4.7 Scree Plot based on PCA 
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Applying Equations 4-1 ~ 4-4  to the PCA filtered data in the case study, it was found 

that a linear model is adequate (j=1) to predict the variation of the principal curve. Table 

2 lists the intercepts and the coefficients in front of 4 principal components. The 

coefficients for the insignificant variables are not shown. Figure 4.8 displays a 

multivariate control chart for the case study data based on Equation 4-5 , where the 

nonconforming samples 7 and 8 have been successfully detected to be out-of-control.  

 

Table 4.2 Model Coefficients for the first 4 Principal Components 

 

 

Figure 4.8 Multivariate Control Chart based on the Parameterized Principal Curve Model 

Figure 4.9 shows the direct monitoring of principal components using T
2
 control chart 

(k=4) for 36 regions. The left panel is the Phase I control chart and the right one gives the 
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Phase II control monitoring 8 samples. Samples 7 and 8 are also detected to be out-of-

control.  

It can be observed that Figure 4.8 and Figure 4.9  (Phase II) exhibit a similar pattern, 

which implies that the linear variation patterns in the data from 36 regions are more 

significant compared with nonlinear patterns. This phenomenon is quite common in 

multiple simulations of bending variation caused by clamping and drilling. 

 

Figure 4.9 T
2
 control Chart for Monitoring Principal Components 

 

4.1.3. Localized Monitoring using Spatial Clustering 

The global monitoring using the parameterized principal curve method is unable to 

pinpoint the surface region where the defect occurs; hence, the purpose of localized 

monitoring is to identify the out-of-control surface region in order to provide insight to 

the root cause of the variation.  Localized monitoring methodology first partitions the part 

into k regions, and focuses on monitoring part-to-part variation in each of the individual 

regions by using conventional control charts.  
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4.1.3.1. Spatial clustering analysis 

The selection of regions for localized monitoring requires careful consideration. A 

very fine partition can generate regions highly correlated to each other, thus leading to a 

large number of redundant regions for inspection and computational inefficiency. 

Conversely, a small number of regions might not accurately represent part surface 

differences or spatial characteristics.   

This section presents a partitioning method using spatial clustering analysis to obtain 

an estimate of the number of regions required to capture the spatial variation pattern of 

the part. There are a number of statistical clustering methods. The K means algorithm 

[78, 86] is a clustering analysis technique which partitions n observations into k clusters 

that minimize each cluster‟s within sum of squares (WSS), such that the objective 

function is  

 
 



k

i Sz

ij
s

ij

z

1

2)(minarg  ,                                          (4-9) 

where zj is the mean surface height for the j
th

 region, k is the number of desired clusters,  

Sj are the sets formed by partitioning into k groups such that Sj = (S1,….Sk), and µi is the 

centroid of each set. 

The selection of the partition number (clusters) k is important as the number of groups 

should be adequate to capture spatial variability. The most popular methods for the 

selection of k are the Calinski criterion, the SSI criterion and the elbow test based on a 

scree plot. The method utilized in this research is the elbow test, as the other criterions 

did not converge upon repeated iterations. To select the variable k, a plot of the WSS 
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versus the number of groups is created. The best value of k is deemed to be the one where 

the WSS has decreased significantly (i.e. there is a „bend‟ in the plot). 

The procedure to find the k clusters for the regions is below. 

Step 0.  Select the number of k clusters to classify observations into, using any selection 

criteria method (e.g. elbow method, Calinski, or SSI). 

Step 1.  Select initial values for centroids, {ci}
k
.  

Step 2. Generate k clusters such that each observation is grouped with the nearest ci. 

Step 3. Find the centroids for each new cluster. These centroids of become the new 

cluster generator {ci}
k
. 

Step 4.  Iterate steps 1 through 3 until the results converge and cluster assignments are 

unchanged. 

4.1.3.2. Monitoring Procedure 

By first partitioning the part into an arbitrary, but sufficiently large n regions, the K 

means algorithm can be utilized to group the regions that have similar means into k 

clusters, where k<n. Based on the spatial configuration, these k clusters can be further 

subdivided into p subclusters, where each subcluster consists of regions that are spatially 

adjacent to each other. These subclusters can then be monitored individually. This will 

reduce the computational load of monitoring n regions, but at the same time ensure that 

the spatial complexity of the part is captured.  

The proposed localized monitoring procedures are stated below.  
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Step 0.  Project the data onto rectangular grids as outlined in Section 2.1.  

Step 1.  Calculate the average part for the last m parts if the out-of-control has been 

detected by the overall monitoring (at least m = 10 recommended) 

Step 2.  Tessellate the average part surface into n rectangular regions, where n is 

selected by the operator depending on part complexity (at least n = 25 

recommended). 

Step 3.  Find the clustering of the observations into k clusters by using K means 

algorithm. 

Step 4.  Create p final clusters based on the spatial arrangement of the k clusters (p ≥ k). 

If a cluster consists of regions that are not adjacent to each other, divide each 

cluster into as many subclusters as necessary so that each new subcluster 

consists only of contiguous regions.   

Step 5.  Calculate the average for each region, iz  for all i = {1,..,p}. 

Step 6.   Monitor each zi, using individual EWMA charts. If an out-of-control condition 

exists in region i, find the source of variation and probable cause. 

4.1.4. Small Scale Monitoring using Variograms 

The iterative procedure as described in Figure 4.2 can also be applied to monitoring 

the part small scale features (such as surface waviness). Using conventional SPC 

techniques for the localized monitoring to isolate the defective region for small scale 

features provides some information for root cause diagnosis, but is limited in calculating 

the scope and exact location of the process change. This section proposes a new 
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methodology for the localized monitoring of small scale features. The methodology uses 

spatial statistics to provide further insight to diagnose variation sources. 

One common measure of spatial variability is the variogram, which quantifies the 

spatial dissimilarity of a surface as a function of the lag between surface points [87-89]. 

This chapter proposes the use of variogram functions to characterize the part surface 

topography, and to use these variogram profiles to monitor the spatial variability of the 

small scale features. 

The variogram is defined as  

2γ(h) = Var[z(u) - z(u + h)] = E{[z(u) – z(u+h)]
2
},                         (4-10)                                                                              

where z is a stationary random function with mean m and variance σ
2
 for all locations u 

in the study area. The variogram is therefore the square of the expected difference 

between two data values which are separated by a distance vector h. It is also common to 

use the quantity γ(h), referred to as a semi-variogram for interpretation and analysis. 

Figure 4.10 shows a theoretical semi-variogram.  

Applied to HDM data, the variogram can be thought of as the spatial dissimilarity of 

the surface height as a function of radial distance. The variogram thereby is a non-linear 

function that characterizes the surface texture waveform in two dimensions. Using a two 

dimensional variogram captures more information than using a single trace of the part 

surface height, therefore by using the variogram profiles to monitor part to part variation, 

out of control conditions can be detected in both the x and y directions. In addition, 

variograms can provide better insight to root cause variation identification, as 
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abnormalities in the variogram pattern can be used to determine the location of the 

disturbance.  

 

Figure 4.10 Theoretical Variogram 

Due to the surface complexity of the case study data, the approach used was to isolate 

critical patches, or regions and monitor them independently. The procedure for small 

scale monitoring based on the variogram is as follows: 

Step 0.  Extract surface information at r different regions of interest for n normal 

production parts. 

Step1. Calculate gij(h), where i = 1…n, and j = 1…r.  

Step 2.  Calculate Phase I control limit for each region r, where

 
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1

)( hhhh  , and LCLr(h) = 0.  

Step 3.  Monitor each gir (h), using the control limits established in step 2 in r control 

charts. If an out-of-control condition exists in region r, find the source of 

variation and probable causes. 
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4.1.5. Case Study 

The proposed sequential monitoring methodology was applied to an automotive 

engine head case study. Parts were measured using an HDM measurement system with an 

x-y resolution of 150 μm and z-height resolution of 1 μm. The parts were mounted by a 

trained operator onto measurement fixtures and placed beneath the laser system housing 

for scanning. While it is possible to have an in-line measurement system while using this 

measurement device, the parts for this study were measured off-line.  

4.1.5.1. PCA Monitoring for Overall Process Diagnosis 

As mentioned in section 4.1.2, in many applications, the spatial variation pattern can 

be approximated by a linear or piece-wise linear relationship [20]. Thus, this case study 

only considers the linear correlation pattern and uses PCA to reduce the data dimension. 

Six normal condition parts were used as training data, and the seventh defective part was 

used as a test data. It was found that four principal components explained 95% of the 

variation in the data. These principal components were monitored using a Hotelling T
2
 

[36] chart for individual sample sizes, which is shown in Figure 4.11. The out of control 

condition was detected using the PCA multivariate chart, which demonstrates that a 

linear pattern model is adequate to capture the spatial correlation on machined deck faces 

of engine heads. 
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.  

Figure 4.11 T
2
 control chart for Engine Head Principal Components 

4.1.5.2. Localized monitoring using Spatial Clustering 

 

Figure 4.12 shows the scree plot of the WSS versus the number of k groups for the 

case study data. Based on the elbow test, k = 5 was selected. 

 

Figure 4.12 Scree Plot for Selection of k 
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Figure 4.13 shows the partition results using the case study samples, with n = 100 and k= 

5. Note that there are now p=26 regions to be monitored instead of 100. By decreasing 

the number of regions monitored, the false alarm rate will most likely decrease. 

 
Figure 4.13 K-means partition for Average Part 

Each of the 26 regions was monitored individually using the first 6 in-control data 

samples to establish the Phase I control limits. The control charts used were individual 

EWMA charts with parameters λ = 0.8 and 3-sigma limits. The 7 samples were plotted 

using the Phase I control limits, and the control chart was able to detect the defective part 

in Regions 9 and 12 as seen in Figure 4.14. 

 
Figure 4.14 Localized Monitoring using Spatial Clustering 
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Localized monitoring using Variograms 

Figure 4.15 shows the r regions of interest that were monitored for the case study 

data. In this case the regions were chosen due to their critical position in the engine head, 

and the areas where surface defects are most common. There are 10 regions in total, from 

n = 7 parts. 

 
Figure 4.15 Patch Selection for Case Study Data 

Figure 4.16 shows an example of the surface data from sample 5, Region 9. As it can 

be seen from the figure, the variogram captures the wave pattern and overall shape of the 

part. The variogram also indicates that when the distance between points is very large, the 

dissimilarity increases. Towards the edges of the data set, the part has larger amplitude 

peaks, which would explain this large jump in the variogram. 

 
Figure 4.16 Surface and Variogram for Part 5, Patch 9 
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Figure 4.17 shows the variograms for each of the parts plus the upper control limit as 

described in step 2 above. The variogram is able to detect the out of control condition of 

the defective part (sample 7). Because the magnitude of the sample 7 variogram is higher 

than the rest, this indicates that the waviness amplitude is higher for sample 7. This 

higher variogram magnitude possibly indicates a chipped tool, which causes higher 

vibration thereby affecting the waviness of the surface. The variogram for sample 7 also 

shows an increasing trend in variation with increased lag which the other parts do not 

exhibit. 

 

Figure 4.17 Variogram-based Control Chart 

 

4.2. Progressive Monitoring of Multi-resolution Data under Bayesian Framework 

This section develops a framework for monitoring the fusion of process data and 

HDM data based on the surface model proposed in Equations 2-1~2-2. The framework 

involves two steps as shown in Figure 4.18, including  

 A training phase, in which normal production parts are used to establish a baseline 

correlation model. For each part, the generalized covariance and cross-covariance 
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models are calculated based on the training data which are collected by employing 

a HDM system to scan the entire surface; and 

 An implementation phase, in which the incoming production parts are monitored 

and Bayesian inference is used to update the correlation parameters. For 

monitoring purposes, the measurement should provide information on global 

trend and fine-scale details of a surface. Therefore, the surface of each part should 

be measured by a low-resolution metrology system in conjunction with high-

resolution measurements that are performed on preselected local regions. The data 

are used though the established models to estimate a sampling distribution of 

surface shapes (or equivalently, percentiles at each point). Based on the 

distribution, a new monitoring algorithm will be developed to establish control 

limits and identify the locations of out-of-control (OOC) areas. Additional high-

resolution measurements on OOC surface areas could be necessary to identify the 

nature of the defects. Normal parts will be used to update surface model 

parameters. 

 The remainder of this section discusses the monitoring algorithm development, 

which consists of the estimation of the statistical distribution of the surface model to 

establish control limits, and monitoring procedures. 
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Figure 4.18 Proposed Monitoring Framework 

 

4.2.1. Fusion Model based Inference 

 To determine the control limits, the distribution of the predicted surface height, (Z1 … 

Zk) at the k prediction locations, are needed. Prediction intervals using conventional 

spatial statistics are based on measuring a single surface, and cannot reflect the part-to-

part variation in a manufacturing scenario. As such, the distribution of surface points 

should be estimated by using the sampling distribution of the prediction obtained from a 

number of parts. Using the hierarchical spatial model as described in Equations 2-1~2-2 it 

is assumed that this predictive distribution of surface points are contingent on the 
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distribution of the parameters β, w and τ
2
. Thus, these models can be solved by using 

Bayesian inference in three steps [57] The first one estimates the marginal likelihood of 

the surface distribution as 
2 2

0( ) | , , ~ ( ( ) | [1 ] , )TN Z s β w Z s U β w . The second 

model estimates the marginal distribution spatial process, w, which is normal given σ
2
 

and ϕ as 
2 2| , ~ ( , ( ))N   w 0 R . Combining the two models, the third model estimates 

the marginal likelihood for Z as normal using the parameter prior distributions β, τ
2
, σ

2
 

and ϕ as 

 ))(,] 1([~,,,|)( 2222
IRβUβsZ  TN ,                                     (4-11)                  

where I is the identity matrix and the ijth entry of the matrix R is 2 ( ;|| ' ||)).s s     The first 

step models the marginal likelihood of Z(s) as a multivariate normal with a mean 

influenced by U and the residuals, w. The marginal likelihood of the residuals is assumed 

to have a normal distribution with a mean of zero and standard deviation dependent on 

the correlation parameter ϕ. And finally, the marginal likelihood of Z based on the 

parameters β, τ
2
, σ

2
 and ϕ is assumed, where these parameters are assigned a prior 

distribution based on a sampling of parts. Due to the difficulty in solving these models 

analytically, a Markov Chain Monte Carlo (MCMC) method is used to estimate the 

sampling distribution of predicted points, which allows for the calculation of the 

percentiles needed to establish prediction control limits from a set of in-control training 

data.  

Another inference needed is on estimating and updating correlation model parameters 

during monitoring. When the HDM measurement on each part is time-consuming, it is 

not feasible to collect adequate amount of high-dimensional data in order to accurately 

estimate the model parameters. Additionally, the process baseline could shift (e.g., due to 
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regular maintenance for tool change) and the resultant data pattern update under the 

normal condition should be captured by the surface model. Thus, Bayesian inference can 

be employed to update the spatial and cross correlation parameters progressively once 

incoming production parts are measured. After establishing the distributions of the 

parameters φ=[β, τ
2
, σ

2
, ϕ] the new posterior distribution, f(φ|Z(s0), U(s1)), can be 

obtained, i.e.,  

               
0 1 0 1( | ( ), ( )) ( ) ( ( ), ( ) | )f f fφ Z s U s φ Z s U s φ                                       (4-12) 

where f(φ) is the prior distribution of the parameters, and f(Z(s0),U(s1)|φ) is the 

likelihood. The above integral can be approximated by a sampling approach such as 

Bayesian inference using Gibbs sampling (BUGS). This posterior distribution then 

becomes the prior distribution for the next incoming part. 

4.2.2. Single Linkage Clustering Monitoring using Surface Fusion Model 

 The established surface model considering cross correlations can determine the 

sampling distribution of predicted surface points p(Z(s)|Z(s0), U(s1)) as determined by 

Equation 4-12. The surface manufacturing process can be monitored by comparing each 

of the predicted surface points to a prediction limit with a desired Type I error. The 

prediction limits can be established by using the percentiles of the distribution of 

prediction points determined by Equation 4-12. However, due to the large number of 

prediction locations, using individual control charts for each point could be sensitive to 

prediction errors or noise, potentially increasing false alarm rates. To compensate for this 

increased probability of false alarms, researchers have used correction factors, such as the 

Bonferroni correction, which distributes the total desired Type I error (α) into each of the 

monitoring charts. The Bonferroni method will yield a very conservative control strategy 
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in the presence of a large number of points, as the individual chart alpha error will be 

very small. This method could inflate the control limits, resulting in very few false 

alarms, but a high misdetection rate of out of control (OOC) areas.  Another candidate 

method for monitoring of HDM data is to use a multivariate control chart (e.g., T
2
 chart). 

But directly applying such a chart on full resolution part surface data potentially leads to 

singular covariance matrices for high-density spatial data. In addition, when monitoring 

surface data, the multivariate charts are able to detect defects, but not locate them. Thus, 

a strategy is needed to efficiently monitor the surface prediction data with reduced false 

alarms and locate defective areas.   

This section proposes to monitor the predicted surface points that are outside of the 

normal prediction limit, or the out of limit (OOL) points. Due to the prediction error, it is 

very likely that a normal part surface will have some predicted points falling outside of 

the normal prediction limits. Thus, comparing each predicted point to its prediction limit 

is not an effective monitoring strategy for a large number of data points. We consider the 

true out of control condition as occurring in three different situations when (1) the 

number of individual OOL points is high, (2) the number of OOL points is low but 

spatially clustered, or (3) the number of OOL points in one part surface is both large and 

highly clustered.  

Figure 4.19 shows the examples of such conditions; part 1 is an example of an „in-

control‟ surface, as it is normally expected that there will be several spatially random 

OOL points.  Pattern 2 has a similar number of OOL points; however they are clustered 

on the wing section of the part and thus it is more likely that the surface defects occur in 

that spot. Different patterns, such as those shown in Patterns 1-7, reflect different OOC 
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conditions and may indicate distinct root causes to aid in problem resolution  Thus, the 

situations patterns 1-6 should be distinguishable from each other and from the in-control 

part . 

 

Figure 4.19 Spatial distribution Patterns of Out of Limit Points 

Considering the  OOC scenarios, the recommended characteristics for monitoring a 

data cloud can be the number of OOL points per surface, the size of the largest cluster of 

OOL points and the number of clusters in a part that are larger than a threshold size, sc. 

For example, the first characteristic can detect patterns 2-4 in Figure 4.19; the second 

characteristic can detect patterns 1-2 and 4, and the third characteristic to be able to 

identify multiple cluster locations such as patterns 3-4. Denote k as the number of OOL 

Wing section 

A few OOL 

points clustered 

One large cluster 
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points on the surface of part i, clust is the number of clusters found in the part, Ni,clust as 

the size of each cluster clust in part i, and Sj  as a binary variable with value 1 when 

cluster j has a size larger than sc and 0 otherwise.  The three quality characteristics can be 

represented by 

ikx 1  ,        )max( ,2 clustiNx  , and         



clust

j

jSx
1

3                           (4-13) 

Abnormal surface variations can be detected by jointly or individually monitoring 

statistics x1-x3. This method can also identify faulty patterns and locates defective areas. 

To calculate x2 and x3, it is necessary to identify OOL point clusters on a surface and 

determine sc. Different from centroid method based clustering, this chapter proposes to 

monitor OOL point clusters that are created by a single-link merge criterion, as motivated 

by engineering knowledge on surface defects, i.e., many surface defects connected 

locally are of the same type (pores, scratches, burrs etc.). Using a single-linkage 

clustering algorithm can help distinguish between defects, and aims to find clusters such 

that each point in the cluster is less than a distance d away from at least one other point in 

the cluster. The following hierarchical agglomerative algorithm is proposed, as depicted 

in Figure 4.20.  

Step 0.   Find all n OOL points oi in the surface i=1…n.   

Step 1.  Calculate the upper triangular matrix D of size n x n with elements dij, where 

each dij is the distance between zi and zj for i=1…n-1 and j=1+i….n. Create an 

indicator matrix (E) of size n×n where each entry is eij=1 if dij<d and eij =0 

otherwise. Denote the cluster that point i belongs to as Ei. The initial Ei is a 

collection of points with eij=1 in the ith row of E.   
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Step 2. For each column of matrix E representing point i, find the rows where eij=1. 

Combine the rows of matrix E where eij =1 to form clusters, i.e., Ei  Ei∪Ej.  

Step 3.  Continue combining clusters (rows) in Step 2 until there are no more overlapping 

eij‟s in any pair of clusters Ej. The final clusters correspond to each row in E, 

with cluster elements denoted by eij=1.  

The proposed algorithm has an advantage when there is no initial knowledge of the 

number of clusters present in the data and the largest possible cluster size is desired. This 

algorithm has a complexity of O(n
3
) and other alternative algorithms for single-linkage 

clustering can be used [90].      

 
Figure 4.20 Clustering Algorithm Steps 

 

Once the OOL clusters have been identified on the part surface, each quality 

characteristic in Equation 4-13 can be calculated and monitored by using individual 

control charts. Different OOC surface patterns detected based on which quality 

characteristic is OOC, as described in Table 4.3, which summarizes the OOC patterns of 

these three variables and their corresponding surface defective patterns as seen in Figure 

4.19. It is important to note that some of the patterns might not have a practical 
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significant difference depending on the application that is being analyzed. For example, 

Pattern 5 displays more scattered OOL points than Pattern 4 but is otherwise the same. If 

a manufacturer is mostly concerned with identifying the defective clusters, both of these 

patterns are indicative of small defects on the surface.  

Table 4.3 OOC pattern based on individual control chart points 

 

In addition, once an OOC condition is detected, the defective area can be located by 

identifying the centroid of the clusters as determined by the clustering algorithm. An area 

with a large number of scattered OOL points could indicate a non-local problem 

occurring such as surface shape change and surface texture degradation on the entire area 

or a measurement error. If a point is in-control, the corresponding surface measurements 

can be used to update the covariance parameters as outlined in section 3.1. The summary 

of the proposed algorithm is as follows: 

A. Training 

Step A.0  Take t full resolution HDM part measurements from an in-control process. 

Step A.1  For each part 

 Calculate the raw covariance and cross-covariance values of the primary 

variable and secondary variables using Equation 2-2.  

x1 

Number of OOL pts

x2 

Max cluster size

x3 

Number of clusters 

greater than size sc
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IC IC IC In control part 
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 Choose the best fitting theoretical covariance, and estimate the covariance 

parameters.  

Step A.2 Estimate the distributions of parameters from Step A.1. Using MCMC, estimate 

the (1-α)
th

 percentile at each of the prediction points given certain significant 

level α. The percentile for each point will be used to establish the prediction 

limit in the implementation phase. 

B. Monitoring implementation 

Step B.0 Measure an incoming part from the process using a combination of LDM and 

HDM measurements. 

Step B.1 Predict the observations at each of the desired prediction points using the 

median of the parameters obtained in step A.1 for the covariance and cross-

covariance.  Compare each of the prediction points to the prediction limits. If 

there are OOL points, use the clustering algorithm and plot the three individual 

control charts for x1, x2 and x3 to detect and locate the OOC (defective) 

patterns. If an OOC condition is found, measure the part at the specified cluster 

location with HDM if it is necessary to confirm the nature of the defect. 

Otherwise, if there are no OOC continue to Step B.2.  

Step B.2. Use Bayesian inference to update the parameters to reflect the process changes 

as outlined in Section 3.1.  

One note to practitioners is that further data reduction can be implemented before 

calculating the predictions for each desired location point. By using a clustering 

algorithm, points with similar height values that are clustered spatially can be treated as a 

single region and approximated by one single prediction point. This data preprocessing 
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could significantly reduce the number of prediction calculations and the computational 

load.   

A discussion on the selection of d 

The value of d affects sc. An appropriate choice for the threshold distance that 

determines a cluster, d, is of importance in this algorithm. A d that is too small will result 

in smaller clusters which may jeopardize defect detection, while a d that is too large may 

generate false alarms. One method of estimating d is to use engineering knowledge, e.g., 

the value of d should be the smallest surface defect that needs to be detected, and larger 

than the metrology resolution. 

If there is little process knowledge, a data driven approach can be used to determine  

d. Such an approach should be based on minimizing the spatial spread within each cluster 

while maximizing the distance between the clusters. An iterative algorithm for 

determining d based on the single-linkage clustering can be proposed as follows. With 

each iteration w=1, 2, 3…,  d will increase by a predetermined value, and each d is used 

to create clusters based on the single-linkage clustering as outlined before.  Each of the w 

clustering schemes has l clusters that are of size 2 or greater. The optimal d should be 

selected by  

( )
max

( )

w

w
w

d

d




,                                                       (4-14) 

where ( ) min( )w

w betweend D    is the minimum distance between two clusters in iteration w 

and D
w

between is the distance between cluster centroids;  ( ) max( )w

w withind D   reflects the 
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spatial spread of each cluster and D
w

within = max min ( , )w

i j
ji

D p p is the maxmin of the 

distance between OOL points pi and pj within each cluster. 

4.2.3. Case Study 

The methodology was applied to an automotive engine head deck face machining 

process. The measurement is to evaluate the surface flatness of the engine head joint face. 

In the manufacturing plant, the surface flatness is currently assessed through two 

measures:  the overall flatness, which is the range of surface height variation, and the 25 

mm span flatness, which is the surface variation range in a 25 mm square region. The 

manufacturing plant uses a coordinate measurement machine (CMM) to make traces, as 

seen in the second panel of Figure 1.1, to calculate both flatness measures. Each of the 

CMM measurements contains approximately 800 points which roughly outline the 

surface topography. In addition, a profilometer is used to measure fine-scale details on 

predetermined surface areas. Although the surface flatness and 25 mm span flatness are 

the critical features used to monitor the process, these two measurements may be 

insufficient to identify abnormal local variations. This study applies the proposed 

algorithm to monitor local surface variations and shape changes.  

Since ten automotive engine heads (Parts 1-10) were already measured by an HDM 

system (a laser holographic interferometer with lateral resolution 150 µm) at a Ford 

engine plant, without losing generality, we used these measurements to generate 

simulated CMM and profilometer data for simplicity. The HDM measurements also 

provide training data and validation for implementation phase. Two of these parts have 

defective areas possibly due to chatter during machining that are on a spot in the top right 
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wing area (Part 9) and a few spots in a bridge area between the bores (Part 10). The 

procedure of generating the simulated data from the real HDM data is as follows. From 

each HDM surface measurement, 100 points were selected to simulate the CMM plant 

measurements, and four patches (size 5×5 mm
2
) consisting of 50 points each were chosen 

to simulate the profilometer data Eight automotive engine heads were used as the training 

data, and an additional two defective engine heads used as implementation data to 

validate the methodology. 

4.2.3.1. Cross and Spatial Correlation 

In the automotive engine machining process, there are several process variables that 

are correlated to surface height, such as MRR or axial cutting force variations. When the 

feed rate, depth of cut and tool path are assumed constant, the MRR can be measured 

using the cutting arc length as determined by part geometry. As shown in Section 2.1 and 

in the scatterplot in Figure 4.21 the MRR is highly correlated to ZHD. Thus, considering 

the ease of measurement and such a positive correlation pattern, the MRR variable was 

selected as a secondary variable to predict the surface.  

 

Figure 4.21 Scatter Plot of MRR vs. Surface Height 

                  

Surface height (10-3)

MRR
R2 = 0.6
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4.2.3.2. Monitoring of surface variations 

Ten parts were measured using an HDM laser interferometry system. Eight parts were 

normal, in-control parts, and 2 were defective parts. For each of the in control training 

parts, the theoretical exponential variograms were calculated based on the full HDM data 

set. Based on these theoretical variograms, the distributions for each of the unknown 

parameters were estimated:  

)504.1,2(~

)35.0,2(~

)3,1.0(~

()~
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                                                    (4-15) 

Based on the parameter distributions, MCMC was used to find the prediction 

distributions at each prediction location for each surface. The corresponding 95th 

percentile of each prediction point was used as a prediction limit for each individual 

point.   

Figure 4.22 shows the predictions for one of the normal parts and the two defective parts. 

It can be observed that Part 9 had a relative higher spot in the top right wing area while 

Part 10 had several higher spots on the bridges areas which may be due to excessive 

vibration or chatter. 

After estimating the predictions at each of the prediction locations, the summary 

variables were calculated, as shown in Table 1, where x1 =number of OOL points per 

surface,  x2 = size of the biggest cluster of the OOL points and x3 is the number of clusters 

of size 5 and larger. To obtain x2 and x3, the single-linkage clustering algorithm presented 

in Section 3.2 was used based on d = 450μm, which was selected considering the size of 

chatter defect of interest, i.e., 750μm.   
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Figure 4.22 (a) Normal Part (b) Defective Part 

Using the measurements in Table 4.4, the three characteristics were plotted on individual 

control charts (Montgomery, 2010) over the ten parts, and the results shown in  

Figure 4.23. A c chart was chosen for x1 and x3 since they are count data, and an 

individual control chart was chosen for x2. As seen in the control charts, both Part 9 and 

10 result in OOC points in the charts. Part 9 is OOC for x1 and x2, which indicates that the 

number of clusters is low, but these clusters are large.  Part 10 is OOC for all three 

quality characteristics, thus indicating that there are many clusters of large size.  

Table 4.4 Values of Quality Characteristics for Monitoring 

 

(a) Normal

(c) Part 10

Simulated defects

(b) Part 9

Simulated defects

Part x1 x2 x3 Part x1 x2 x3

P1 8 1 4 P6 8 1 4

P2 4 1 0 P7 9 1 5

P3 7 1 3 P8 4 2 0

P4 5 1 1 P9 35 24 4

P5 10 2 5 P10 183 110 10
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Figure 4.23 Surface Variation Monitoring 

As shown in Figure 4.24, the methodology was able to identify defective clusters 

effectively. The centroids from the identified clusters can pinpoint the location of the 

defective surface areas. 

 

Figure 4.24 OOL points for Normal and Defective Parts 

4.3. Chapter Summary 

This chapter presents an improved sequential strategy to monitor a high precision 

machining process using HDM data and applies it to an automotive engine head 

machining process. The overall spatial features were monitored using a multivariate PCA 

chart. When an out of control condition was detected, the defective surface region was 
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localized by using individual EWMA control charts. To reduce computational load, K-

means clustering was used to determine the partition of the part surface efficiently. 

Finally, a variogram-based profile monitoring was proposed to monitor small scale 

features and localize defects. This method was able to detect a defective sample, as well 

as characterize the defect.  

In addition, a measurement and monitoring method for surface variation control for 

process and HDM fusion data is proposed. An engineering-driven surface model with 

improved prediction is first established by incorporating the cross correlations between 

surface height and machining process variables in conjunction with the spatial 

correlation. The prediction distributions are estimated using sampling method such as 

MCMC to build control limits based on in-control data. A Bayesian framework is 

adopted to update surface model parameters and control limits for monitoring of high-

dimensional data. Based on the model, a new monitoring method of high-dimensional 

data is established and demonstrated by a case study of an engine head machining 

process.   

Compared with the previous approaches, the proposed method has the following 

advantages:  

 Reduction of measurement cycle time through surface modeling using spatial 

and cross-correlation between the surface data and significant process 

variables: The model reduces the number of measurements needed by 

supplementing lower lateral resolution measurement with process variable 

information which can be quickly measured at lower cost. In addition, if 

confirmation of the nature of defects is necessary, more HDM measurements 
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can be implemented only on the detected areas. Therefore this method is more 

efficient than performing full resolution HDM measurements over the entire 

surface. 

 Progressive measurement strategy for monitoring high-dimensional data 

enabled by the Bayesian framework: The strategy does not require a large 

number of samples at one time to estimate the distribution of model 

parameters and instead collect/update surface information incrementally. 

Thus, the progressive strategy is more time efficient in measuring and 

monitoring high-dimensional data.  

 New single-linkage algorithm for monitoring high-dimensional data: The 

proposed algorithm can jointly detect and locate abnormal surface shape 

variations without significantly increasing false alarm.  
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CHAPTER 5  

MULTISTAGE MODELING AND MONITORING OF HIGH DEFINITION 

METROLOGY DATA 

 

 

In multistage manufacturing processes (MMP), a machined surface may change its 

shape as it goes through each stage because a downstream operation can change the 

surface characteristics generated from a prior upstream operation. For example, Figure 

5.1 shows a workpiece going through a face milling operation (Stage i) that mills its top 

surface followed by a hole drilling operation on its side (Stage i+1). Due to the drilling 

torque, the top surface is twisted, thus creating a local height variation. Monitoring of 

such multistage surface variation is important for root cause diagnosis by identifying the 

effects of the relationships between stages. The multistage surface monitoring is also a 

key enabler of an “inter-stage” compensation strategy to reduce surface variations. For 

example, to compensate for the distortion introduced at a downstream stage, one can 

generate a “reverse” distortion on the part surface at an upstream stage so that the 

downstream stages could create a part with a flat surface (Figure 5.1). Thus, the 

monitoring of the surface variations at intermediate stages can ensure the appropriate 

adjustments are applied to create the desired surface shape.  
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A new methodology is needed to efficiently monitor multistage surface variation. In 

this chapter, a functional morphing approach is used to model the interdependence 

between stages, such that an end-of-line measurement can be morphed backward into a 

surface estimate at any upstream stage. To monitor an intermediate stage, a surface 

prediction is calculated using the surface-process fusion data model proposed in Chapter 

2. Based on the prediction, the abnormal surface variations are detected and located using 

a single-linkage cluster monitoring algorithm, as proposed in Chapter 4.  

 

Figure 5.1 (a) Part surface Changes in Multistage Process (b Two-stage machining Process 

Part Measurements (c) Inter-stage Surface Shape Compensation [3] 

The chapter is organized as follows: Section 5.1 reviews the morphing based 

monitoring algorithm as developed in [3] and identifies the limitations of the approach. 

An improved morphing based monitoring method is developed in Section 5.2, which is 

demonstrated using a two-stage machining process in Section 5.3. Section 5.4 

summarizes this chapter.  
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5.1. Background: Modeling of Multistage Interdependence using Functional 

Morphing  

Previous research using a high-definition metrology (HDM) system modeled the 

between-stage interdependence through a functional morphing method, providing 

opportunities for multistage surface variation improvement. This section provides 

fundamental background of this approach and discusses its limitations. 

The functional morphing concept is briefly reviewed here; for more details, refer to 

[91-93]. Consider a multistage manufacturing process with I stages, consisting of the 

initial part (stage 0) through the final stage I. Assume that the surfaces from stage i and 

i+1 are defined by the surface grids S
i
 and S

i+1
 respectively and iiT ,1 is defined as the 

mapping function from stage i to i+1.  

The cubic Free Form Deformation (FFD) is then defined as  

 
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where (u, v, w) are localized coordinates corresponding to the global coordinates (x, y, z) 

and B0(t), B1(t), B2(t) and B3(t) are the uniform cubic B-Spline blending functions defined 

in Equation 5-2. The lattice points i, j,kΦ  define the FFD volume space. The global 

coordinates (x, y, z) are derived using cubic spline interpolation of their local coordinates 

(u, v, w) and corresponding i, j,kΦ .  
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If surface S
i
 has the dimension of (d1× d2), at the initial stage 0, the local coordinates 

(ua, va, wa) of point 0

aS  in 0S , 21 ... 1 dda  , are determined by 

3 3 3
0 0

0 0 0 0 , ,

0 0 0

( , , ) | ( | ) ( | ) ( | )a a a a l a m a n a l m n

l m n

S u v w B u B v B w
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  Φ                                     (5-3) 

where 
0

Φ is the initial FFD volume space. The notation 0| denotes that   is measured at 

stage 0. The surface grid at any stage S
i
 can be generated by deforming the volume space 

ϕ, such that any point a on S
i
 can be expressed as, 
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where i
Φ is the FFD volume space at stage i.  

Given the initial lattice 0
i, j,kΦ  and the global coordinates (x, y, z), the local coordinates 

(u, v, w) corresponding to the initial lattice can be found. If the lattices in 0
i, j,kΦ  are 

equally spaced, the solution can be simplified to 

,  ,  and 
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where     denotes the floor rounding function. The Φ
i
 are calculated by minimizing a 

distance function, g1, between the two surfaces S
i
 and S

i+1
, such that 
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where α takes values between 0 and 1, and J is the bending energy of the workpiece, 

representing the bending energy that is derived from the strain energy associated with a 

small deflection of a thin plate [3]. A higher α value places more weights on the 

smoothness of the transformation. Inclusion of the bending energy term  reduces the 

solution space for the optimization problem and allows the identification of a mapping 
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function that transforms a surface to an equilibrium state due to the Principle of 

Minimum Potential Energy. Therefore, Equation 5-6 combines data-driven image 

morphing with the bending energy term which provides part physical insights to 

characterize the morphing function. Unlike conventional morphing algorithms in 

computer graphics that focus on transformations between geometries only, the functional 

morphing integrates process physical insights into the geometric mappings, thereby 

characterizing the shape changes in physically meaningful ways. 

Continuous forward mapping determines the volume space at any stage after 

measurement i through the summation of all the mapping functions from stage i to j. 

Define ,j iΦ as  the deformation of FFD volume space from stage i to j; then the volume 

space at stage j can be obtained by 

)(      . 1,,1, jijjiiiijij  
ΦΦΦΦΦΦ                         (5-7) 

Similarly, when the final surface I
IS |  measured at stage I is obtained, the surface 

shape at any previous stage i<I can be estimated by using a backward mapping function, 

which is derived based on the forward mapping function by using the same FFD volume 

space i
Φ  ( Ii ...1 ) at each stage. Given the final surface 

I
IS | , Equation 5-5 can be used to 

determine the local coordinates [   ] |I
Iu v w . Thus, the continuous mapping suggests that the 

FFD volume space at any stage is determined by the summation of all mapping functions 

from stage I to i ( )i I . 

   . 1,,1,   iiiIIIiIi
ΦΦΦΦΦΦ                              (5-8) 

where 
, 1 1,i i i i   Φ Φ . The forward and backward mapping function enables a surface 

prediction based on a single HDM measurement. 
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5.2. Multistage Monitoring using Functional Morphing and Spatial Correlation 

A process monitoring methodology was developed by monitoring the backward 

morphed surfaces, as illustrated in Figure 5.2. An end-of-line measurement is used to 

predict the surface at the intermediate stages by using the appropriate morphing function. 

The predicted surfaces are then monitored at each intermediate stage individually through 

a multivariate chart. This methodology successfully captures the variation propagation 

under normal process conditions, thus eliminating the need for measurements after the 

intermediate stages. 

 
Figure 5.2 Monitoring using Backward Morphing 

When monitoring new incoming surfaces, this method can lead to misdetection or 

false alarm errors that may arise from using a backward morphed prediction calculated by 

in-control training data. Figure 5.3 shows two examples when the prediction from 

backward morphing does not reflect the state of the intermediate stage i accurately. The 

first column in the figure is the observed HDM measurement at the final stage. A false 

alarm will be caused when an abnormal surface is seen in the final stage, but there was no 

abnormality in the intermediate stage. For example, an error in a stage occurring after 
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stage i can propagate to the final stage, resulting in an incorrect backward morphed 

prediction at stage i. Conversely, a misdetection can occur if the morphed prediction at 

the final stage is normal, but the actual surface at stage i has abnormal variation. Thus, 

for root cause diagnosis and control purposes, it is necessary to ensure that the backward 

morphed surface for the intermediate stage is an accurate prediction of the surface shape 

without needing an HDM measurement at each intermediate stage. 

 

Figure 5.3 False alarm and Misdetection Scenarios Using Backward Morphing 

This chapter proposes to reduce false alarms and misdetections of a functional 

morphing based monitoring framework by improving the multistage surface prediction 

through the incorporation of limited intermediate stage measurements and the effect of 

process variables. End-of-line HDM measurements are used to create a backward 

morphed surface prediction at the intermediate stage of interest. Then, the multistage 

surfaces are predicted by developing an improved surface model that combines the 

morphed surface and effect of process variables with low-resolution measurements at 

intermediate stages. Based on the surface model, abnormal surface variations are detected 
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and located by the single-linkage cluster surface monitoring algorithm as developed in 

our previous work.  

It is assumed that surface measurements for multistage monitoring can be carried out 

in two ways: (1) multi-resolution measurements, which can be either from HDM (Figure 

5.4a) or from a combination of metrology systems such as CMM and profilometer 

(Figure 5.4b) and (2) low-resolution measurements over the part surface.  

 
Figure 5.4 Part Surface Measurements using (a) HDM and (b) Multi-resolution Metrology 

(CMM and profilometer) 

The multistage surface monitoring consists of two steps. Consider a multistage 

manufacturing process with I stages. Define the surface ( )iZ s  at stage i, where i= 1…I, at 

locations s=(x,y). In step I, multi-resolution measurements after each stage are measured 

to establish the backward morphing functions. To monitor the process in step II, multi-

resolution measurements are carried out on incoming part surfaces Z
I
(s) at the final stage 

I. By applying the backward morphing function to the observed surface at stage I as in 

(8), we can predict the surfaces at intermediate stages 1…I-1, denoted as ˆ i I

morphZ  . 

Meanwhile, low-resolution measurements at each of the intermediate stages, ( )i
jZ n , are 

carried out at locations nj= (xj,yj), j= 1…l. The final predicted surface at the intermediate 

stage can be estimated by combining morphed prediction and the observed 

measurements, such that   ))(,ˆ( j
iIi

morph
i ZZfZ n . Integrating the limited measurements with 

…
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the backward morphed prediction at the intermediate stages can reduce the false alarms 

and misdetection scenarios shown in Figure 5.3. 

Various models can be adopted to expand f(). As proposed in previous chapters, a 

hierarchical spatial Bayesian approach was chosen due to the complex variation structure 

of the spatial data. The surface model proposed in Chapter 2 can then be expressed as 

              
( ) ( ) ( ) ( )iZ w   s s s s ,    where                                    (5-9) 

                                                   

1 2

2

2

ˆMean           ( )

Covariance   ( )~GP(0, ( ;|| ||))

Error             ( ) ~ (0, )

i I
morph

i j

Z

w

N

  

  

 

 



s

s s s

s

                                        

The mean of the expression, μ(s) is modeled as a deterministic function in terms of 

the backward morphed surface, and the residuals, w(s), are modeled as a spatial process 

with mean zero and variance σ
2
ρ(ϕ), where ρ(ϕ) is the exponential correlation of the form 

exp(-ϕ||s’-s||), and the error ε(s) is normally distributed with mean zero and variance τ
2
.  

The prediction distribution of Z
i
(s) in Equation 5-9 can be estimated by a three step 

data model, such as in Chapter 2.  After the HDM predictions are obtained, the single 

linkage cluster monitoring framework as proposed in Section 4.2 is used to monitor the 

process and locate defective regions when abnormal process variation exists.  

Discussion: surface model improvement using cross correlation 

The number of measurements needed at the intermediate stages can be further 

reduced by utilizing process variables that are highly correlated with the surface shape. A 

correlated process variable U
i
 such as the cutting arc length discussed in Chapter 2 can be 

incorporated into the prediction model for Z
i
 as a covariate such that    
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( ) ( ) ( ) ( )   where iZ w   s s s s  

     1 2 3
ˆ( ) i I i

morphZ U     s .                                              (5-10) 

It is important to note that variables should only be included in the model if they 

improve the prediction accuracy. A variable selection method is needed to determine the 

key process variables that mostly contribute to surface variations. Methods for comparing 

the models, such as subset selection and Lasso method can be used for the variable 

selection.  

The proposed approach for multistage monitoring is summarized in Figure 5.5. 

Compared to the framework in Figure 5.2 , improved predictions are obtained by adding 

low-resolution measurements at the intermediate stages and the effects of process 

variables.   

5.3. Case Study 

The proposed method was applied to a two-stage machining process, such as the one 

seen in Figure 5.1(b). In stage 1, the top surface of one workpiece was milled, and in 

stage 2, one hole was drilled on its side. The workpiece was measured before and after 

each stage while still on the adapter plate using a HDM system based on laser 

holographic interferometry (x-y resolution: 150μm and vertical resolution: 1μm). Figure 

5.6 shows surfaces at each stage after filtering. It can be seen that the drilling induces a 

distortion on the part surface, creating a slight bump in the middle of the part due to 

drilling torque.  
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Figure 5.5 Proposed Monitoring Framework for Multistage Processes 

 
Figure 5.6 Part Surface (a) After Milling and (b) After Drilling 

The measured surface was projected onto a rectangular grid. The optimization 

parameters and morphing function ΔΦ
1,2

 were calculated based on the projected surface. 

A total of fourteen parts were simulated and each part was measured with low resolution 

(10 points) after stage 1 and with high resolution after stage 2. Seven parts were assumed 

to come from a normal process, and for the remaining seven parts a small mean shift was 
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introduced at the milling stage. Figure 5.7 shows an example of a normal surface in dark 

color and a defective surface in gray at each stage. Parts 8-14 have an increasing mean 

shift of up to 3μm at stage 1. At the drilling stage, the defective parts were not noticeably 

different than the normal parts, and the mean shift is only assumed to exist in Stage 1. 

There were no measured data available for correlated process variables and the cross 

correlation patterns are not considered. 

 
Figure 5.7 Normal and Defective Part Surfaces after Stage 1 and 2 

Surface modeling considering multistage interdependence 

A hierarchical model as in Equation 5-10 was fit to the data. To define the parameter 

prior probabilities, the cross covariance parameters for the residuals were calculated from 

four normal parts as shown in Table 5.1.  

Table 5.1 Cross-Covariance Parameters for Model Residuals 
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                                                         (5-11) 

Noninformative priors were chosen for β and ϕ; and the variances τ
2
 and σ

2
 were assumed 

to have an inverse Gamma distribution, which is a conjugate prior to the multinormal 

distribution model assumed for Z. The predicted surface was obtained using Markov 

chain Monte Carlo (MCMC) with Gibbs sampling.  

Surface model validation 

To demonstrate the improved accuracy of the proposed surface model, the results 

from the following three prediction models of the part surface are compared: (1) A spatial 

Kriging model using the limited measured data from Stage 1, (2) the backward morphed 

prediction, and (3) the hierarchical model using the limited measurements and the 

backward morphed surface as a covariate. Figure 5.8 shows the predictions from each of 

the models outlined above for an in-control surface and the corresponding root mean 

squares (RMS). The RMS values show that using either model 2 or model 3 results in a 

more accurate surface prediction for an in-control part. Table 5.2 shows the average RMS 

for the 14 case study parts using each model stratified by normal and defective parts. The 

RMS values indicate that both surface models 2 and 3 are comparable when the process 

is normal (that is, the low-resolution measurements after milling do not improve the 

prediction accuracy). However, when there is a mean shift, model 3 is superior to model 

2. The improved prediction precision is explained by examining how ΔΦ
1,2

 is calculated. 

The morphing function is calculated from normal and in-control parts, thus, if there is a 

change in the multistage interdependence, it will not be reflected in the ΔΦ‟s. Therefore, 
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model 2 will not produce an accurate prediction in the instance where the error is not 

noticeable at the end-of-line measurement. Thus, a surface model which incorporates 

both the low-resolution observations from Stage 1 and the backward morphed prediction 

provides the most robust results. 

 

Figure 5.8 Predicted Surfaces for Several Models 

 

Table 5.2 Average Surface Prediction RMS for each Surface Model 
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Surface Variation Monitoring  

The proposed methodology in [3] uses a Hotelling T
2 

multivariate chart of the 

principal components (PC) of each surface to monitor stage quality. For the purposes of 

comparison, the same method was used on the Stage 1 data using the (a) part estimates 

obtained from morphing and (b) part estimates obtained from the Bayesian model 

combining the morphed estimate with limited measurements. The resulting control charts 

are shown in Figure 5.9.  

 

Figure 5.9 Individual Monitoring Charts for Stage 1 using (a) Morphed Estimates and (b) 

Morphed Estimates Adjusted using Limited Measurements 

It was determined that the first PC contributed to 98% of the variation of the data, and 

thus, only the first PC was used to monitor the process using an individual control chart. 

While the control chart using the combination of measurements was able to capture the 

mean shift, the control chart using only the morphed estimates was not, demonstrating 

that the proposed methodology is able to prevent the missed detection of surface errors at 

intermediate stages.  

The single-linkage clustering monitoring method proposed in Chapter 4 can be used 

to monitor the surface variation for defect location.  The resulting control charts using the 
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single linkage method are shown in Figure 5.10, with the control limits established from 

the seven normal, in-control parts. It can be seen that the simulated mean shift introduced 

after Part 7 was immediately detected due to an increased proportion of defective points 

and large cluster size. 

 

Figure 5.10 Monitoring of OOC Patterns using Control Charts for Upstream Stage 

The single-linkage cluster monitoring method can also locate the defective area by 

identifying the cluster centroids. A visual rendering of the cluster locations for some of 

the normal and defective parts can be seen in Figure 5.11. For the normal parts, there are 

only a few OOL points, each far apart from the rest. The first part after the mean shift, 

Part 8, shows a cluster in the top left corner of the part, and as the mean shift increases, 

the OOL clusters get larger and merge. Therefore, the methodology can effectively detect 

and locate defective surface areas.  
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Figure 5.11 Cluster Locations for Normal and Defective Parts for Upstream Stage 

 

5.4. Chapter Summary 

This chapter presents a monitoring method for multistage surface variation control 

using morphing and multi-resolution surface data. The variation propagation is modeled 

using a functional morphing approach, which also provides a backward morphing 

prediction at the intermediate stages. The final surface prediction at the intermediate 

stages is obtained by using a hierarchical Bayesian model. The surface prediction is then 

monitored using a single-linkage cluster monitoring approach. The methodology was 

applied to a two-stage machining process, where a defective area in the intermediate 

stage was detected and located successfully. 

The proposed method has the following advantages:  

 Measurement reduction for multi-stage surface monitoring: The methodology 

eliminates the need of high-resolution surface measurement after each stage by 
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using the combination of morphed surface predictions, reduced measurements, 

and easy-to-measure process variables to model the surface. 

 Reduction of false alarms and misdetection: The previous functional morphing 

approach uses a deterministic morphing function established from normal parts. 

However, the backward morphed surface prediction leads to misdetections and 

false alarms at the intermediate stage. By establishing a model which incorporates 

in-production measurements at the intermediate stage, the surface prediction 

accuracy increases when abnormal variations are present. 

 

 

 

 

 

 

 

  



112 

 

CHAPTER 6  

CONCLUSION 

 

6.1. Conclusions 

Metrology innovations have enabled new opportunities for HDM data based process 

control of high precision manufacturing processes. This dissertation developed a novel 

surface data-process fusion model to utilize the spatial correlation in surface data and 

cross-correlations between the HDM data and process variables for process control and 

improvements. Based on the surface model, methods were developed for measurement 

system analysis (MSA), surface variation monitoring and inter-stage monitoring using 

HDM data. A detailed summary of the dissertation is given below:  

1. Surface Modeling through Fusion of Process Information and HDM Data. An 

engineering-driven surface prediction model was developed by incorporating the 

cross correlations between surface height and machining process variables in 

conjunction with the spatial correlation. This new model enables HDM based process 

control by reducing the number of HDM measurements required for analysis. A case 

study demonstrates the improved accuracy of the model prediction while decreasing 

the number of HDM measurement points needed.  

2. Measurement System Analysis for HDM using Cross-Correlation. An engineering-

driven MSA method for planar and volumetric HDM systems was developed. The 
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measurement data was pre-processed using the fusion model to improve the precision 

of the measurement interpolation. A comparison of several data reduction techniques 

and their impact on the capability estimate was performed. Case studies were 

conducted which demonstrated the advantages of using the proposed method over 

current industry practices. The proposed method provides an engineering driven MSA 

methodology for HDM data.  

3. Surface Variation Monitoring using HDM. Methods for monitoring processes using 

HDM data and for monitoring multi-resolution fusion data using cross-correlation 

were developed as follows:  

a. Sequential Monitoring for HDM data. In this framework, the HDM data was 

decomposed to efficiently monitor the large and small scale surface variations. 

The large scale HDM data features were monitored using a PCA-filtered principal 

curve regression method, while the small scale features were monitored using a 

variogram approach. When an out of control signal was detected, local monitoring 

identified the location of the defective area through clustering techniques. This 

method is able to locate defective part areas and improves upon existing 

monitoring methods by parameterizing the principal curve to capture the non-

linear spatial variation patterns of the HDM data.  

b. Progressive Bayesian Monitoring for Multi-resolution Data. The fusion model 

proposed in Chapter 2 was utilized to develop a progressive Bayesian monitoring 

framework. The prediction distributions at each measurement point were 

estimated using an MCMC sampling method to build control limits based on in-

control data. The Bayesian framework was adopted to update surface model 
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parameters and control limits for monitoring the HDM data. A single-linkage 

clustering algorithm was developed to monitor and locate defective areas on a part 

without significantly increasing false alarm rates. A case study on an automotive 

engine machining process demonstrated the effectiveness of the proposed method. 

The method enabled the time efficient monitoring of HDM data when limited 

HDM data is available.  

4. Multistage Modeling and Monitoring of HDM Data. A new method was presented 

for multistage surface variation monitoring using morphing and multi-resolution 

surface data. The variation propagation between stages was modeled using a 

functional morphing approach, which also provided a backward morphing 

prediction at the intermediate stages. The final surface prediction at the 

intermediate stages was obtained by using a hierarchical Bayesian model. The 

surface prediction was then monitored using a single-linkage cluster monitoring 

approach. The proposed approach reduced the need for HDM measurements at 

intermediate stages, while reducing the number of false alarms and misdetections. 

The proposed surface prediction model incorporated surface measurements at the 

intermediate stage, thus improving surface prediction accuracy when abnormal 

variations are present.  

6.2. Future Work 

The following represents potential areas of future research: 

 Engineering-driven variable selection. Although a number of candidate process 

variables can be pre-identified based on engineering knowledge for the data fusion 

surface model, different process variables play unequal roles in affecting surface 



115 

 

variations under various machining conditions. For example, the correlation between 

the MRR and surface height is varying as the remaining tool life decreases. To 

enhance surface model interpretability, an engineering-driven variable selection 

method can be developed to determine the key process variables that mostly 

contribute to surface variations. 

 HDM based Closed Loop Feedback Control. Components of this dissertation can be 

incorporated into a closed loop feedback control methodology for two levels of 

surface variation as shown in Figure 6.1 and detailed below. 

 

Figure 6.1 Two level closed loop feedback control 

1. Level 1: Surface variation reduction at a single stage. The proposed MSA and 

monitoring methods may be combined with a previous surface variation reduction 

study [56] for close loop feedback control in an automotive milling process. In 

[56], an algorithm based on the cross-correlation between the MRR and surface 
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profile is utilized to minimize surface spatial variation through cutter path 

adjustment. A closed loop control method can be developed such that after 

detecting abnormal surface variations, the process can be diagnosed and adjusted. 

For instance, if the cross-correlation relationship between the MRR and abnormal 

surface profile changes, feedback to the machining systems can automatically 

adjust the cutter path based on the new updated correlation structure to eliminate 

the process abnormal conditions and minimize the surface variation.  

2. Level 2: Inter-stage Surface Variation Reduction. The proposed morphing-based 

model and monitoring may be used for close-loop feedback control between 

manufacturing stages to reduce multistage surface variation. This task would first 

require the diagnosis of multistage surface variation by separating the effects of 

the variation sources of upstream/downstream stages from the current stage. 

When abnormal surface variation is detected through process monitoring, the 

forward mapping morphing function may be used to automatically introduce 

shape deformation in upstream operations to compensate for end-of-line form 

errors. For instance, in Figure 6.1, the morphing parameters calculated between 

stage 1 and stage 2 may be monitored. An out of control condition would indicate 

a change in the inter-stage surface morphing relationship. The updated morphing 

parameters could be used to quantify the change in the surface variation, and a 

process variable (such as feed rate) adjusted in stage 2 to compensate for this 

change.  

 Surface Model for Data Fusion. The model proposed in Chapter 2 could be further 

improved to incorporate the correlation between parts over time. This might result in 
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more precise surface estimates. Extending the model to include previous part 

information has the potential to further reduce the number of HDM measurement 

points needed for process control.   

 Adaptive HDM systems. Another potential future area of research is adaptive HDM 

systems. To decrease HDM data redundancy and increase system efficiency, adaptive 

algorithms could be developed to determine the resolution required to capture the 

local variation for different part areas. For example, higher resolution measurements 

could be obtained in part areas where monitoring identifies larger surface variation, or 

in the areas where defects are likely to occur. Lower resolution measurements could 

be obtained from areas where there is lower surface variation. The measurement 

resolution could be adjusted and updated with new incoming part measurement 

information. Such measurement strategies will further reduce the number of 

measurements needed to monitor process quality without sacrificing performance of 

the monitoring algorithms.  
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