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CHAPTER I

Introduction and main results

A polytope is the convex hull of a set of finitely many points in Rd. A polytope

P ⊂ Rd is centrally symmetric (cs, for short) if P = −P . A convex body is a compact

convex set with non-empty interior. A face of a polytope (or a convex body) P can

be defined as the intersection of P and a closed halfspace H such that the boundary

of H contains no interior point of P . The 0-dimensional faces are the vertices, and

the 1-dimensional faces (called edges) are line segments connecting pairs of vertices.

A construction of cyclic polytopes, which goes back to Carathéodory [9] and was

studied by Motzkin [22] and Gale [15], presents a family of polytopes in Rd with

an arbitrarily large number N of vertices, such that the convex hull of every set of

k ≤ d/2 vertices is a face of P . Such a polytope is obtained as the convex hull of N

distinct points on the moment curve γ(t) =
(
t, t2, . . . , td

)
in Rd.

The situation with centrally symmetric polytopes is less understood. A centrally

symmetric polytope P is called k-neighborly if the convex hull of every set {v1, . . . , vk}

of k vertices of P , not containing a pair of antipodal vertices vi = −vj, is a face of P .

In contrast with polytopes without symmetry, even 2-neighborly centrally symmetric

polytopes cannot have too many vertices: it was shown in [18] that no d-dimensional

2-neighborly centrally symmetric polytope has more than 2d vertices. Moreover, as
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was verified in [4], the number f1(P ) of edges (1-dimensional faces) of an arbitrary

centrally symmetric polytope P ⊂ Rd with N vertices satisfies

f1(P ) ≤ N2

2

(
1− 2−d

)
.

In this dissertation, we present constructions of following polytopes

• A d-dimensional 2-neighborly centrally symmetric polytope with roughly 3d/2 ≈

(1.73)d vertices (Theorem III.2.1.)

• A d-dimensional centrally symmetric polytopes with N vertices and at least(
1− 3−⌊d/2−1⌋) (N

2

)
≈
(
1− 0.58d

)
N2

2
edges for an arbitarily large N (Theorem

III.2.2.).

These results are published in [6, 7].

For higher-dimensional faces even less is known. It follows from the results of [18]

that no centrally symmetric k-neighborly d-polytope can have more than

⌊d · 2Cd/k⌋ vertices, where C > 0 is some absolute constant. At the same time, the

papers [18, 23] used a randomized construction to prove existence of k-neighborly

centrally symmetric d-dimensional polytopes with ⌊d·2cd/k⌋ vertices for some absolute

constant c > 0. However, for k > 2, no deterministic construction of a d-dimensional

k-neighborly centrally symmetric polytope with 2Ω(d) vertices was known.

Let fk(P ) denote the number of k-dimensional faces of a polytope P . It is proved

in [4] that for a d-dimensional centrally symmetric polytope P with N vertices,

fk−1(P ) ≤ N

N − 1

(
1− 2−d

)(N
k

)
, provided k ≤ d/2.

In particular, as the numberN of vertices grows while the dimension d of the polytope

stays fixed, the fraction of k-tuples v1, . . . , vk of vertices of P that do not form the
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vertex set of a (k−1)-dimensional face of P remains bounded from below by roughly

2−d.

In this dissertation, we present explicit deterministic constructions of following

polytopes.

• A d-dimensional centrally symmetric k-neighborly polytope with at least 2ckd

vertices where ck = 3/20k22k (Theorem III.9).

• A d-dimensional centrally symmetric polytope with N vertices and at least(
1− k2 (2−ck)

d
) (

N
k

)
faces of dimension k − 1 for a fixed k and arbitrarily large

N and d (Corollary III.11).

• A d-dimensional centrally symmetric polytope with N vertices and at least(
1− (δk)

d
) (

N
k

)
faces of dimension k−1 for a fixed k, any δk >

(
1− 5−k+1

)5/(24k+4)

and arbitrarily large N and d (Corollary III.7).

These results are published in [6, 7].

Notice that Corollary III.11 improves Corollary III.7. However, while the con-

struction of polytopes in Theorem III.9 and Corollary III.11 uses the notion of k-

independent sets to improve bounds for explicit constructions, Corollary III.7 can be

constructed in a rather simple way.

Our results on cs polytopes provide new bounds on several problems related to

strict antipodality. Let X ⊂ Rd be a set that affinely spans Rd. A pair of points

u, v ∈ X is called strictly antipodal if there exist two distinct parallel hyperplanes H

and H ′ such that X ∩ H = {u}, X ∩ H ′ = {v}, and X lies in the slab between H

and H ′. Denote by A′(d) the maximum size of a set X ⊂ Rd having the property

that every pair of points of X is strictly antipodal, by A′
d(Y ) the number of strictly

antipodal pairs of a given set Y , and by A′
d(n) the maximum size of A′

d(Y ) taken
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over all n-element subsets Y of Rd. (Our notation follows the recent survey paper

[20].)

We observe that an appropriately chosen half of the vertex set of a cs d-polytope

with many edges has a large number of strictly antipodal pairs of points. Conse-

quently, our construction of cs d-polytopes with many edges implies — see Theorem

III.3 — that

A′(d) ≥ 3⌊d/2−1⌋ − 1 and A′
d(n) ≥

(
1− 1

3⌊d/2−1⌋ − 1

)
n2

2
−O(n) for all d ≥ 4.

Our constructions are based on the symmetric moment curve. Barvinok and Novik

introduced and studied the symmetric moment curve U(t) ∈ R2k in [4], defined by

U(t) =
(
cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t

)
.

In Chapter 2, it is proved that the convex hull Bk of U(t) is local k-neighborly.

Theorem I.1. For every positive integer k there exists a number

π

2
< ϕk < π

such that for an arbitrary open arc Γ ⊂ S of length ϕk and arbitrary distinct n ≤ k

points t1, . . . , tn ∈ Γ, the set

conv
(
U (t1) , . . . , U (tn)

)
is a face of Bk.

It is also verified that the limit of such a ϕk as k goes to infinity is π/2 in Theorem

II.2. These results are published in [5]. Note that Bk is not a polytope but a convex

body.

Besides being of intrinsic interest, centrally symmetric polytopes with many faces

appear in problems of sparse signal reconstruction, see [13], [23]. Typically, such
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polytopes are obtained through a randomized construction, for example, as the or-

thogonal projection of a high-dimensional cross-polytope (octahedron) onto a random

subspace, see [18] and [14].

The rest of the dissertation is structured as follows. In chapter 2 we investigate

the symmetric moment curves and its properties such as local k-neighborliness. In

chapter 3 we provide the deterministic constructions of centrally symmetric polytopes

described above.



CHAPTER II

Symmetric moment curve and its neighborliness

The main object of this chapter is the symmetric moment curve that for a fixed

k lies in R2k and is defined by

U(t) = Uk(t) =
(
cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t

)
.

We note that

U(t+ π) = −U(t) for all t ∈ R.

Since U is periodic, we consider U to be defined on the unit circle S = R/2πZ. In

particular, for every t ∈ S, the points t and t+ π are antipodal points on the circle.

We define the convex body B ⊂ R2k as the convex hull of the symmetric moment

curve

B = Bk = conv
(
U(t) : t ∈ S

)
.

Hence B is symmetric about the origin, B = −B. We note that Bk has a non-empty

interior in R2k since Uk(t) does not lie in an affine hyperplane.

In this chapter, we will prove following main results.

Theorem II.1. For every positive integer k there exists a number

π

2
< ϕk < π

6
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such that for an arbitrary open arc Γ ⊂ S of length ϕk and arbitrary distinct n ≤ k

points t1, . . . , tn ∈ Γ, the set

conv
(
U (t1) , . . . , U (tn)

)
is a face of Bk.

Theorem II.2. Let ϕk be the largest number satisfying Theorem 1.1. Then

lim
k−→+∞

ϕk =
π

2
≈ 1.570796327.

Theorem II.3. Let Γ ⊂ S be an open arc with the endpoints a and b and let Γ be the

closure of Γ. Let t2, . . . , tk ∈ S \Γ be distinct points such that the set Γ∪
{
t2, . . . , tk

}
lies in an open semicircle in S. Suppose that the points U(a), U(t2), . . . , U(tk) lie in

a face of Bk and that the points U(b), U(t2), . . . , U(tk) lie in a face of Bk. Then for

all t1 ∈ Γ the set

conv
(
U(t1), . . . , U(tk)

)
is a face of Bk.

Before we prove the main theorems, we prove technical lemmas in Section 2.1-2.4.

We prove Theorem II.1 and II.3 in Section 2.5 and prove II.2 in Section 2.6. In

Section 2.7, we discuss local neighborliness of generalized moment curves.

2.1 Raked trigonometric polynomials

We consider raked trigonometric polynomials of degree at most 2k − 1:

(2.1) f(t) = c+
k∑

j=1

aj cos(2j − 1)t+
k∑

j=1

bj sin(2j − 1)t for t ∈ S,
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where c, aj, bj ∈ R. We say that deg f = 2k − 1 if a2k−1 ̸= 0 or if b2k−1 ̸= 0.

Equivalently, we can write

f(t) = c+
⟨
C, U(t)

⟩
,

where C = (a1, b1, . . . , ak, bk) ∈ R2k and ⟨·, ·⟩ is the standard scalar product in R2k.

Writing

cosnt =
eint + e−int

2
and sinnt =

eint − e−int

2i

and substituting z = eit, we associate with (2.1) a complex polynomial

(2.2) P(f)(z) = z2k−1

(
c+

k∑
j=1

aj
z2j−1 + z1−2j

2
+

k∑
j=1

bj
z2j−1 − z1−2j

2i

)
.

Hence

(2.3) degP(f) ≤ 4k − 2.

Moreover, if deg f = 2k−1 then for p = P(f) we have deg p = 4k−2 and p(0) ̸= 0.

Since

cos(t+ a) = cos t cos a− sin t sin a and sin(t+ a) = sin t cos a+ cos t sin a,

for any fixed a ∈ S and any raked trigonometric polynomial f(t), the function

h(t) = f(t+ a) for t ∈ S

is also a raked trigonometric polynomial of the same degree.

Definition II.4. We say that a point t∗ ∈ S is a root of multiplicity m (where m ≥ 1

is an integer) of a trigonometric polynomial f , if

f (t∗) = . . . = f (m−1) (t∗) = 0
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and

f (m) (t∗) ̸= 0.

Similarly, we say that a number z∗ ∈ C is a root of multiplicity m of a polynomial

p(z) if

p (z∗) = . . . = p(m−1) (z∗) = 0

and

p(m) (z∗) ̸= 0.

Remark II.5.

(1) We note that

conv
(
U (t1) , . . . , U (tn)

)
for distinct t1, . . . , tn ∈ S is a face of Bk if and only if there exists a raked trigonomet-

ric polynomial f(t) ̸≡ 0 of degree at most 2k − 1 such that (i) each tj, j = 1, . . . , n,

is a root of f of an even multiplicity, and (ii) f has no other roots.

(2) We will often use the following observation: if f is a trigonometric polynomial

with constant term 1 that does not change sign on S then f(t) ≥ 0 for all t ∈ S, since

1

2π

∫
S
f(t) dt = 1.

2.2 Roots and multiplicities

We consider raked trigonometric polynomials f(t) defined by (2.1). In this section

we prove the following main result.

Theorem II.6. Let f(t) ̸≡ 0 be a raked trigonometric polynomial of degree at most

2k − 1, let t1, . . . , tn ∈ S be distinct roots of f in S, and let m1, . . . ,mn be their

multiplicities.
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(1) We have
n∑

i=1

mi ≤ 4k − 2.

(2) If the constant term of f is 0 and the set {t1, . . . , tn} does not contain a pair of

antipodal points, then
n∑

i=1

mi ≤ 2k − 1.

(3) If t1, . . . , tn lie in an open semicircle of S, then
n∑

i=1

mi ≤ 2k.

(4) Suppose that t1, . . . , tn lie in an arc Γ ⊂ S of length less than π, that

n∑
i=1

mi = 2k,

and that t∗ ∈ S \ Γ is yet another root of f . Then t∗ ∈ Γ + π.

To prove II.6, we establish a correspondence between the roots of a trigonometric

polynomial f(t) and those of the corresponding complex polynomial p(z) = P(f)

defined by (2.2).

Lemma II.7. A point t∗ ∈ S is a root of multiplicity m of f(t) if and only if z∗ = eit
∗

is a root of multiplicity m of P(f).

Proof. Let p = P(f). It follows from (2.2) that

(2.4) p
(
eit
)
= e(2k−1)itf(t).

Differentiating (2.4), we infer by induction that

ir
r∑

j=1

dj,re
ijtp(j)

(
eit
)
=

r∑
j=0

ir−jcj,re
(2k−1)it · f (j)(t) for all r ≥ 1,

where the constants cj,r, dj,r are positive integers. Thus, if f (r)(t∗) is zero for r =

0, 1, . . . ,m − 1 and nonzero for r = m, then so is p(r)
(
eit

∗)
, and vice versa. The

statement now follows.
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Proof of II.6.

Part (1) follows from II.7 and bound (2.3).

If f has a zero constant term, then f satisfies

f(t+ π) = −f(t) for all t ∈ S.

Then ti+π is a root of f(t) of multiplicity mi and the proof of Part (2) follows from

Part (1).

To prove Part (3), let g(t) = f ′(t). Then g has a zero constant term. If

n∑
i=1

mi > 2k,

then by Rolle’s Theorem, the total number of roots of g(t) in the semicircle, counting

multiplicities, is at least 2k, and so g(t) ≡ 0 by Part (2), which is a contradiction.

To prove Part (4), we assume without loss of generality that t1, . . . , tn is the order

of the roots on the arc Γ and let Γ̃ be the closed arc with the endpoints t1 and tn.

By Rolle’s Theorem, the total number of roots of g(t), counting multiplicities, in Γ̃ is

at least 2k − 1, and hence the total number of roots of g(t), counting multiplicities,

in Γ̃ ∪
(
Γ̃ + π

)
is at least 4k − 2. See Figure 2.1 for k = 3. If t∗ /∈ Γ̃ ∪

(
Γ̃ + π

)
,

then by Rolle’s theorem there is a root of g(t) outside of Γ̃∪
(
Γ̃ + π

)
, and hence the

total number of roots of g(t) in S, counting multiplicities, is at least 4k − 1. Thus,

by Part (1), g(t) ≡ 0, which is a contradiction.

Lemma II.8. Let t1, . . . , tn ∈ S be distinct points lying in an open semicircle and

let m1, . . . ,mn be positive integers such that

n∑
i=1

mi = 2k.
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t1

t2 t3

t4

0

Figure 2.1: The roots of f(t) (black dots) and the roots of g(t) = f ′(t) (white dots) for k = 3.

Then the following 2k vectors

U (ti)− U (tn) for i = 1, . . . , n− 1,

dj

dtj
U(t)

∣∣∣
t=ti

for j = 1, . . . ,mi − 1 if mi > 1 and i = 1, . . . , n,

dm1

dtm1
U(t)

∣∣∣
t=t1

are linearly independent in R2k.

Proof. Seeking a contradiction, we assume that the vectors are not linearly indepen-

dent. Then there exists a non-zero vector C ∈ R2k orthogonal to all these 2k vectors.

Consider the raked trigonometric polynomial

f(t) = ⟨C, U(t)− U (tn)⟩ for t ∈ S.

Then t1, . . . , tn are roots of f(t). Moreover, the multiplicity of ti is at least mi for

i > 1 and at least m1 + 1 for i = 1. It follows from Part (3) of II.6 that f(t) ≡ 0,

which contradicts that C ̸= 0.

Finally, we prove that a raked trigonometric polynomial is determined, up to a
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constant factor, by its roots of the total multiplicity 2k provided those roots lie in

an open semicircle.

Corollary II.9. Let t1, . . . , tn ∈ S be distinct points lying in an open semicircle, and

let m1, . . . ,mn be positive integers such that

n∑
i=1

mi = 2k.

Then there exists a unique raked trigonometric polynomial f(t) of degree at most

2k − 1 and with constant term 1, such that ti is a root of f(t) of multiplicity mi for

all i = 1, . . . , n. Moreover, f depends analytically on t1, . . . , tn.

Proof. Such a polynomial f(t) can be written as

f(t) = ⟨C, U(t)− U(tn)⟩ for t ∈ S,

where C ∈ R2k is orthogonal to the 2k − 1 vectors

U (ti)− U (tn) for i = 1, . . . , n− 1,

dj

dtj
U(t)

∣∣∣
t=ti

for j = 1, . . . ,mi − 1 if mi > 1 and i = 1, . . . , n.

By II.8, these 2k − 1 vectors span a hyperplane in R2k−1 and hence, up to a scalar,

there is a unique choice of C. By Part (2) of II.6, f has a non-zero constant term

if C ̸= 0. Therefore, there is a unique choice of C that makes the constant term of

f(t) equal 1. By Part (3) of II.6 the multiplicities of the roots ti are exactly mi for

i = 1, . . . , n.

We note that in fact deg f = 2k − 1. This follows from Part (3) of II.6.

We will also need the following deformation construction.

Lemma II.10. Let f(t) be a raked trigonometric polynomial of degree 2k−1 such that

f(−t) = f(t), and let p = P(f) be the corresponding complex polynomial associated
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with f via (2.2). Then p(0) ̸= 0 and the multiset M of roots of p can be split into

2k− 1 unordered pairs
{
ζj, ζ

−1
j

}
for j = 1, . . . , 2k− 1. Moreover, for any real λ ̸= 0,

the multiset Mλ consisting of 2k − 1 unordered pairs
{
ξj, ξ

−1
j

}
defined by

ξj + ξ−1
j = λ

(
ζj + ζ−1

j

)
for j = 1, . . . , 2k − 1

is the multiset of roots of a certain complex polynomial pλ such that pλ = P (fλ) for

a raked trigonometric polynomial fλ(t) of degree 2k − 1 satisfying fλ(−t) = fλ(t).

Proof. This is Lemma 5.1 of [4].

We call fλ(t) a λ-deformation of f .

2.3 Parametric families of trigonometric polynomials

Let Γ ⊂ S be an open arc. We consider raked trigonometric polynomials

(2.5) fs(t) = 1 +
k∑

j=1

aj(s) cos(2j − 1)t+
k∑

j=1

bj(s) sin(2j − 1)t for t ∈ S,

where aj(s) and bj(s) are real analytic functions of s ∈ Γ. We define

gs(t) =
∂

∂s
fs(t),

and so

(2.6) gs(t) =
k∑

j=1

a′j(s) cos(2j − 1)t+
k∑

j=1

b′j(s) sin(2j − 1)t.

The goal of this section is to prove the following result.

Theorem II.11. Let Γ ⊂ S be an open arc, let t2, . . . , tn ∈ S \ Γ be distinct points

such that the set Γ ∪ {t2, . . . , tn} lies in an open semicircle, and let m1, . . . ,mn be

positive integers such that
n∑

i=1

mi = 2k.
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For every s ∈ Γ, let fs(t) be the unique raked trigonometric polynomial of degree

2k − 1 with constant term 1 such that for i = 2, . . . , n the point ti is a root of fs(t)

of multiplicity mi and s is a root of fs(t) of multiplicity m1, cf. II.9. Define

gs(t) =
∂

∂s
fs(t).

Then

gs(t) ̸≡ 0 for all s ∈ Γ.

To prove II.11, we use the notion of the wedge product.

Given linearly independent vectors V1, . . . , V2k−1 ∈ R2k we define their wedge

product

W = V1 ∧ . . . ∧ V2k−1

as the unique vector W orthogonal to the hyperplane spanned by V1, . . . , V2k−1

whose length is the volume of the (2k − 1)-dimensional parallelepiped spanned by

V1, . . . , V2k−1 and such that the basis V1, . . . , V2k−1,W is co-oriented with the stan-

dard basis of R2k. If vectors V1, . . . , V2k−1 are linearly dependent, we let

V1 ∧ . . . ∧ V2k−1 = 0.

Suppose that vectors V1(s), . . . , V2k−1(s) depend smoothly on a real parameter s. We

will use the following standard fact:

(2.7)

d

ds

(
V1(s) ∧ . . . ∧ V2k−1(s)

)
=

2k−1∑
j=1

V1(s) ∧ . . . ∧ Vj−1(s) ∧
d

ds
Vj(s) ∧ Vj+1(s) ∧ . . . ∧ V2k−1(s).

Proof of II.11.
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For s ∈ Γ, consider the following ordered set of 2k − 1 vectors:

(2.8)

U (ti)− U (tn) for i = 2, . . . , n− 1,

dj

dtj
U(t)

∣∣∣
t=ti

for j = 1, . . . ,mi − 1 if mi > 1 and i = 2, . . . , n,

U(s)− U (tn) ,

dj

dtj
U(t)

∣∣∣
t=s

for j = 1, . . . ,m1 − 1 if m1 > 1.

Let C(s) be the wedge product of vectors of (2.8). By II.8, the vectors of (2.8)

are linearly independent for all s ∈ Γ, and hence C(s) ̸= 0 for all s ∈ Γ.

For s ∈ Γ, define a raked trigonometric polynomial

(2.9) Fs(t) =
⟨
C(s), U(t)− U(tn)

⟩
.

We note that Fs(t) ̸≡ 0 for all s ∈ Γ. For i = 2, . . . , n, the point ti is a root of

Fs(t) of multiplicity at least mi and s is a root of Fs(t) of multiplicity at least m1.

By Part (3) of II.6 the multiplicities are exactly mi. Let α(s) be the constant term

of Fs(t). Then

α(s) = −
⟨
C(s), U(tn)

⟩
.

By Part (2) of II.6

α(s) ̸= 0 for all s ∈ Γ.

Therefore,

fs(t) =
Fs(t)

α(s)
.

Seeking a contradiction, let us assume that gs(t) ≡ 0 for some s ∈ Γ.

We have

gs(t) =
∂

∂s
fs(t) =

α(s) ∂
∂s
Fs(t)− α′(s)Fs(t)

α2(s)
.
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If gs(t) ≡ 0, then

α(s)
∂

∂s
Fs(t)− α′(s)Fs(t) ≡ 0,

and (2.9) yields that

(2.10) α(s)C ′(s)− α′(s)C(s) = 0

for some s ∈ Γ. Let us consider C ′(s), the derivative of the wedge product of (2.8).

Applying formula (2.7) we note that all of the 2k − 1 terms of (2.7) except the last

one are zeros since the corresponding wedge product either contains a zero vector or

two identical vectors. Hence C ′(s) is the wedge product of the following ordered set

of vectors

(2.11)

U (ti)− U (tn) for i = 2, . . . , n− 1,

dj

dtj
U(t)

∣∣∣
t=ti

for j = 1, . . . ,mi − 1 if mi > 1 and i = 2, . . . , n,

U(s)− U (tn) ,

dj

dtj
U(t)

∣∣∣
t=s

for j = 1, . . . ,m1 − 2 if m1 > 2 and j = m1.

The wedge products (2.8) for C(s) and (2.11) for C ′(s) differ in two vectors,

A(s) =
dm1−1

dtm1−1
U(t)

∣∣∣
t=s

and B(s) =
dm1

dtm1
U(t)

∣∣∣
t=s

if m1 > 1

and

A(s) = U(s)− U (tn) and B(s) =
d

dt
U(t)

∣∣∣
t=s

if m1 = 1.

The vector A(s) is present in (2.8) and absent in (2.11) while the vector B(s) is absent

in (2.8) and present in (2.11). Therefore, (2.10) implies that the set consisting of the

vector

α(s)A(s)− α′(s)B(s)
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and the 2k − 2 vectors common to wedges (2.8) and (2.11) is linearly dependent.

However, as α(s) ̸= 0, this contradicts II.8.

We will need the following result.

Lemma II.12. Let fs(t) and gs(t) be trigonometric polynomials (2.5) and (2.6)

respectively and let m be a positive integer.

(1) If t∗ ∈ S is a root of fs(t) of multiplicity at least m for all s ∈ Γ, then t∗ is a

root of gs(t) of multiplicity at least m for all s ∈ Γ.

(2) If m > 1 and s is a root of fs(t) of multiplicity at least m for all s ∈ Γ, then s

is a root of gs(t) of multiplicity at least m− 1 for all s ∈ Γ.

Proof. Suppose that

fs (t
∗) = . . . =

∂m−1

∂tm−1
fs(t)

∣∣∣
t=t∗

= 0.

Differentiating with respect to s yields Part (1).

Suppose that

fs(s) =
∂j

∂tj
fs(t)

∣∣∣
t=s

= 0 for j = 1, . . . ,m− 1.

Differentiating with respect to s we obtain

0 =
∂

∂s
fs(t)

∣∣∣
t=s

+
∂

∂t
fs(t)

∣∣∣
t=s

=
∂

∂s

∂j

∂tj
fs(t)

∣∣∣
t=s

+
∂j+1

∂tj+1
fs(t)

∣∣∣
t=s

for j = 1, . . . ,m− 1.

Therefore,

gs(s) =
∂j

∂tj
gs(t)

∣∣∣
t=s

= 0 for j = 1, . . . ,m− 2,

and the proof of Part (2) follows.
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2.4 Critical arcs

This section is devoted to verifying the following result.

Theorem II.13.

(1) For every k ≥ 1 there exists a non-empty open arc Γ ⊂ S with the following prop-

erty: if t1, . . . , tn ∈ Γ are distinct points and m1, . . . ,mn are positive even integers

satisfying
m∑
i=1

mi = 2k,

then the unique raked trigonometric polynomial f(t) of degree 2k − 1 with constant

term 1 that has each point ti as a root of multiplicity mi, has no other roots in S.

Moreover, f(t) ≥ 0 for all t ∈ S.

(2) Let Γ ⊂ S be an open arc as in Part (1) of the maximum possible length and let

a and b be the endpoints of Γ. Then there are positive even integers ma and mb such

that ma +mb = 2k and such that the unique raked trigonometric polynomial f(t) of

degree 2k − 1 with constant term 1 that has a root at t = a of multiplicity ma and

a root at t = b of multiplicity mb also has a root of an even multiplicity in the arc

Γ + π.

(3) Fix positive even integers ma and mb such that ma + mb = 2k. Let Γ ⊂ S be

an open arc of length less than π and let a be an endpoint of Γ. For b ∈ Γ let fb(t)

be the unique raked trigonometric polynomial of degree 2k − 1 with constant term 1

that has a root at t = a of multiplicity ma and a root at t = b of multiplicity mb.

Let x, y, z ∈ Γ be distinct points such that y lies between a and z and x lies between

a and y (See Figure 2.2). Suppose that fy(t) ≥ 0 for all t ∈ S and that fy has a

root (of necessarily even multiplicity) in the arc Γ+ π. Then fx(t) is positive for all

t ∈ S \ {a, x} while fz(t) is negative for some t ∈ S.
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a

x
y

z

0

Figure 2.2: Possible place for a, x, y, z for Theorem II.13(3)

Let us denote for a moment the maximum possible length of an arc Γ satisfying

Part (1) of II.13 by ψk. In II.17 below we prove that ψk = ϕk, the maximum length

of an arc with the neighborliness property of II.1.

Example II.14. Suppose that k = 2. The only possible set of multiplicities in Part

(2) of II.13 is ma = 2 and mb = 2. The polynomial f(t) = 1 − cos 3t has roots at

t = ±2π/3 and a root at t = 0, all of multiplicity 2, while remaining non-negative

on S. Combining Parts (3) and (2) of II.13 we conclude that

ψ2 =
2π

3
≈ 2.094395103.

Suppose that k = 3. The only possible set of multiplicities in Part (2) of II.13 is

ma = 2 and mb = 4. The polynomial f(t) = 1 − cos 5t has roots at t = 0,±2π/5,

and t = ±4π/5, all of multiplicity 2, while remaining non-negative on S. Applying

to f(t) the deformation of II.10 with λ = 1/ cos(π/5) results in the polynomial fλ(t)

that has a root of multiplicity 4 at t = π, roots of multiplicity 2 at the points ±α
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such that

cosα =
cos(2π/5)

cos(π/5)
=

3−
√
5

2
,

and no other roots (See Figure 2.3 for the roots of f(t) and fλ(t)). Hence fλ(t) does

not change its sign on S. Scaling fλ, if necessary, to make the constant term 1, we

ensure that fλ(t) is non-negative on S. It follows by II.13 that

ψ3 = π − α = π − arccos
3−

√
5

2
≈ 1.962719003.

α

t=

α

’

π

0

Figure 2.3: The roots of f(t) (white dots) and the roots of fλ(t) (black dots) for k = 3.

Suppose that k = 4. There are two possibilities for multiplicities ma and mb in

Part (2) of II.13. We have either ma = 2 and mb = 6 or ma = mb = 4. It turns out

that the arc satisfying the latter conditions is shorter. As follows from II.24 below,

we have ψ4 = 2α, where α > 0 is the smallest positive root of the equation

cosα + 1− 1

2
tan2 α +

3

8
tan4 α− 5

16
tan6 α = 0.
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Computations show that

ψ4 =π − arccos

(
− 1

384

(
4768281 + 2688000

√
15
)1/3

+
14693

128
(
4768281 + 2688000

√
15
)1/3 +

61

128

)

≈1.870658533.

In this case, the raked trigonometric polynomial f of degree 7 that has roots of

multiplicity 4 at t = ±ψ4/2, also has a root of multiplicity 2 at t = π.

In general, our computations suggest that in Part (2) of II.13 one should always

choose ma = mb = k if k is even and ma = k + 1 and mb = k − 1 if k is odd, but I

have been unable to prove that.

To prove II.13, we need some technical results on convergence of trigonometric

polynomials.

All raked trigonometric polynomials (2.1) of degree at most 2k − 1 form a real

(2k + 1)-dimensional vector space, which we make into a normed space by letting

∥f∥ = max
t∈S

|f(t)|

for a trigonometric polynomial f . For a complex polynomial p of degree at most

4k − 2 we define

∥p∥ = max
z: |z|=1

|p(z)|.

We note that

∥P(f)∥ = ∥f∥

for any trigonometric polynomial f . We define the convergence of trigonometric and

complex polynomials with respect to the norm ∥ · ∥.
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Lemma II.15. Fix a positive integer m. For a positive integer j, let Aj ⊂ S be a non-

empty closed set and let fj(t) be a trigonometric polynomial of degree at most 2k− 1

that has at least m roots, counting multiplicities, in Aj. Suppose that Aj+1 ⊂ Aj for

all j, and let

B =
∞∩
j=1

Aj.

Suppose further that for some trigonometric polynomial f we have

f = lim
j−→+∞

fj.

Then f has at least m roots, counting multiplicities, in B.

Suppose, in addition, that f ̸≡ 0, m = 2k, B lies in an open semicircle, and that

for every j the multiplicities of all roots of fj in Aj are even. Then the multiplicities

of all roots of f in B are even.

Proof. Let pj = P(fj). By II.7, pj is a complex polynomial that can be written as

(2.12) pj(z) = (z − z1j) · · · (z − zmj) qj(z),

where qj(z) is a complex polynomial of degree at most 4k − 2 −m and z1j, . . . , zmj

are not necessarily distinct complex numbers of modulus 1 whose arguments lie in

Aj. In addition,

lim
j−→+∞

pj = p,

where p(z) = P(f). We infer from (2.12) that the numbers

max
z: |z|= 1

2

|qj(z)|

are uniformly bounded from above, and since all norms on the finite-dimensional

space of complex polynomials of degree at most 4k− 2 are equivalent, it follows that
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the norms ∥qj∥ are uniformly bounded from above. Hence we can find a subsequence

{jn} such that

lim
n−→+∞

qjn = q

for some complex polynomial q and

lim
n−→+∞

zijn = z∗i , where z∗i ∈ B for i = 1, . . . ,m.

Then, necessarily

p(z) = (z − z∗1) . . . (z − z∗m) q(z).

Hence by II.7, the raked trigonometric polynomial f(t) has at least m roots in B,

counting multiplicities. If m = 2k and p ̸≡ 0, Part (3) of II.6 implies that z∗1 , . . . , z
∗
m

are the only roots of p(z) in B. The result follows.

The following lemma plays the crucial role in our proof of II.13

Lemma II.16. Let Γ ⊂ S be an open arc with the endpoints a and b and let Γ be its

closure. Let t2, . . . , tn ∈ S \ Γ be distinct points such that the set Γ ∪ {t2, . . . , tn} lies

in an open semicircle, and let m1, . . . ,mn be positive even integers such that

n∑
i=1

mi = 2k.

For s ∈ Γ, let fs(t) be the unique raked trigonometric polynomial of degree 2k − 1

with constant term 1 that has a root of multiplicity mi at ti for i = 2, . . . , n and a

root of multiplicity m1 at t = s. If both fa(t) and fb(t) are non-negative on S, then

for every s ∈ Γ, the trigonometric polynomial fs(t) is positive on S \ {s, t2, . . . , tn}.

Proof. Let us consider

gs(t) =
∂

∂s
fs(t)
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as in II.11. By II.12, for all s ∈ Γ, the point ti is a root of gs(t) of multiplicity at

least mi for i = 2, . . . , n and s is a root of gs(t) of multiplicity at least m1 − 1. Let

S+ be an open semicircle containing Γ and the points t2, . . . , tn.

Seeking a contradiction, let us assume that ft1 (t
∗) = 0 for some t1 ∈ Γ and some

t∗ ∈ S \ {t1, t2, . . . , tn}. By Part (4) of II.6, t∗ ∈ S+ + π. We have fa (t
∗) ≥ 0 and

fb (t
∗) ≥ 0. Therefore, the function

s 7−→ fs (t
∗)

attains a local minimum in Γ at some point s∗. Then

gs∗ (t
∗) = 0 and fs∗(t

∗) ≤ 0.

Since fs∗(t) has a constant term of 1, we obtain

fs∗(t) + fs∗(t+ π) = 2 for all t ∈ S,

and hence

t∗ + π ̸= s∗, t2, . . . , tn.

Since the constant term of gs∗(t) is 0, Part (2) of II.6 implies that gs∗(t) ≡ 0. This

however contradicts II.11.

Hence for every s ∈ Γ the trigonometric polynomial fs(t) has no roots other than

s, t2, . . . , tn. By Remark II.5(2), we have fs(t) > 0 for all t ∈ S \ {s, t2, . . . , tn}.

Proof of II.13.

To prove Part (1), let us choose a point t∗ ∈ S and let us assume, seeking a

contradiction, that there is a nested sequence of open arcs

(2.13) Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γi ⊃ . . .
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such that
∞∩
j=1

Γj = {t∗} ,

and such that for every j there is a raked trigonometric polynomial fj(t) of degree

2k− 1, with constant term 1, with 2k roots, counting multiplicities, in Γj and a root

somewhere else on the circle. By Part (4) of II.6, that additional root must lie in

Γj +π. Let hj(t) be the scaling of fj to a trigonometric polynomial of norm 1. Then

there is a subsequence of the sequence hj(t) converging to a raked trigonometric

polynomial h. In particular, ∥h∥ = 1, and hence h(t) ̸≡ 0. It follows from II.15 that

t∗ is a root of h of multiplicity at least 2k and that t∗ + π is a root of h. Since both

t∗ and t∗+π are roots of h(t), we obtain that h(t) has a zero constant term and that

t∗ + π is, in fact, a root of h(t) of multiplicity at least 2k. Hence Part (1) of II.6

implies that h(t) ≡ 0, which is a contradiction.

By Remark II.5(2), a trigonometric polynomial with constant term 1 that does

not change its sign on S is non-negative on S. Finally, the example of polynomial

1− cos(2k − 1)t shows that the length of an arc Γ in Part (1) is less than π.

To prove Part (2), we construct a nested sequence of open arcs (2.13) such that

∞∩
j=1

Γj = Γ,

where Γ is the closure of Γ. By our assumption, for every j there is a raked trigono-

metric polynomial fj(t) of degree at most 2k − 1 that has 2k roots counting multi-

plicity in Γj and a root elsewhere, necessarily in Γj + π. As in the proof of Part (1),

let us scale fj(t) to a trigonometric polynomial hj(t) such that ∥hj∥ = 1 and con-

struct the limit trigonometric polynomial h. Then h ̸≡ 0, and by II.15, h has roots

t1, . . . , tn ∈ Γ of even multiplicities m1, . . . ,mn such that m1 + . . .+mn = 2k, and a

root t∗ ∈ Γ + π. By Part (2) of II.6, h has a non-zero constant term.
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We rescale h to a raked trigonometric polynomial f(t) with constant term 1. Then

each ti is a root of f(t) of multiplicity mi and f(t
∗) = 0.

It is easy to see that the endpoints a and b of Γ are roots of f(t). Our goal is to

show that for every i = 1, . . . , n we have either ti = a or ti = b, that is, that there

are no roots inside Γ.

Seeking a contradiction, let us assume that t1 ∈ Γ. We choose an open arc Γ̃ ⊂ Γ

containing t1 and such that ti /∈ Γ̃ for i = 2, . . . , n. For s ∈ Γ̃, let fs(t) be the raked

trigonometric polynomial of II.11 that has a root at t = s of multiplicity m1 and a

root at ti of multiplicity mi for i = 2, . . . , n. In particular,

fs = f if s = t1.

We observe that

fs(t) ≥ 0 for all t ∈ S and all s ∈ Γ̃.

Indeed, if fs(t0) < 0 for some t0 ∈ S then a trigonometric polynomial f̂ with

constant term 1 that has a root of multiplicity m1 at s and roots of multiplicity

mi at some points t̂i ∈ Γ sufficiently close to ti will also satisfy f̂(t0) < 0, which

contradicts the definition of Γ. Hence fx(t) ≥ 0 for all t ∈ S and fy(t) ≥ 0 for all

t ∈ S. II.16 then implies that f (t∗) = ft1 (t
∗) > 0, which is a contradiction.

To prove Part (3), we note that for any b ∈ Γ sufficiently close to a, by Part (1)

of the theorem we have fb(t) > 0 for all t ∈ S \ {a, b}. We can choose such a point

b so that x lies between b and y and then fx(t) > 0 for all t ∈ S \ {a, x} by II.16.

Assume now that fz(t) ≥ 0 for all t ∈ S. Then by II.16 we have fy(t) > 0 for all

t ∈ S \ {a, y}, which is a contradiction.

Lemma II.17. Let ψk be the maximum length of an open arc Γ in II.13 and let ϕk

be the maximum length of an open arc Γ in II.1. Then ψk = ϕk.
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Proof. From Remark II.5(1) it follows immediately that ϕk ≥ ψk.

Let Γ ⊂ S be an open arc of length ψk with the endpoints a and b and let Γ̃ ⊃ Γ

be a closed arc with the endpoints a and c strictly containing Γ and lying in an open

semicircle. By Part (2) of II.13 there exist positive even integers ma and mb such

that ma +mb = 2k and a raked trigonometric polynomial f(t) of degree 2k − 1 and

with constant term 1 that has a root at t = a of multiplicity ma, a root at t = b of

multiplicity mb, and some other root t∗ ∈ Γ + π. For s ∈ Γ̃ let fs(t) be the unique

raked trigonometric polynomial of degree 2k − 1 with constant term 1 that has a

root of multiplicity ma at t = a and a root of multiplicity mb at t = s. Seeking a

contradiction, let us assume that for any distinct t1, . . . , tk ∈ Γ̃, the unique raked

trigonometric polynomial of degree 2k − 1 and with constant term 1 that has roots

of multiplicity two at t1, . . . , tk remains non-negative on the entire circle S. As in

the proof of II.13, using the limit argument, we conclude that fc(t) ≥ 0 for all t ∈ S.

This, however, contradicts Part (3) of Theorem 5.1 since fb has a root in Γ + π.

In view of Remark II.5, it follows that for some distinct t1, . . . , tk ∈ Γ̃, the convex

hull

conv
(
U (t1) , . . . , U (tk)

)
is not a face of Bk. Hence ϕk ≤ ψk.

2.5 Neighborliness of the symmetric moment curve

In this section we prove Theorems II.1 and II.3. Our proofs are based on the

following main result.

Theorem II.18. For every positive integer k there exists a number π > ϕk > π/2

such that if Γ ⊂ S is an open arc of length ϕk, t1, . . . , tn ∈ Γ are distinct points, and
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m1, . . . ,mn are positive even integers such that

n∑
i=1

mi = 2k,

then the unique raked trigonometric polynomial f(t) of degree 2k − 1 with constant

term 1 that has a root of multiplicity mi at ti for i = 1, . . . , n is positive everywhere

else on the circle S.

The proof is based on II.13 and the following lemma.

Lemma II.19. Let f(t) be the raked trigonometric polynomial of degree 2k− 1 with

constant term 1 that has a root of multiplicity 2m at t = 0 and a root of multiplicity

2n at t = π/2, where m and n are positive integers such that m+ n = k. Then f(t)

has no other roots in the circle S.

Proof. We have

f(t) = 1 +
k∑

j=1

aj cos(2j − 1)t+
k∑

j=1

bj sin(2j − 1)t

for some real aj and bj. In addition,

(2.14) f ′(0) = . . . = f (2m−1)(0) = 0 and f ′(π/2) = . . . = f (2n−1)(π/2) = 0.

Let

a(t) =
k∑

j=1

aj cos(2j − 1)t and b(t) =
k∑

j=1

bj sin(2j − 1)t,

so that

(2.15) f(t) = 1 + a(t) + b(t) and f ′(t) = a′(t) + b′(t).

Observe that

(2.16)
d2r−1

dt2r−1
a(t)

∣∣∣
t=0

= 0 and
d2r

dt2r
b(t)
∣∣∣
t=0

= 0
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for any positive integer r, and

(2.17)
d2r

dt2r
a(t)

∣∣∣
t=π/2

= 0 and
d2r−1

dt2r−1
b(t)
∣∣∣
t=π/2

= 0

for any positive integer r.

Combining (2.14) – (2.17) we conclude that t = 0 is a root of a′(t) of multiplicity

at least 2m − 1 and a root of b′(t) of multiplicity at least 2m. Similarly, t = π/2 is

a root of a′(t) of multiplicity at least 2n and a root of b′(t) of multiplicity at least

2n − 1. Since f(0) = 0, we obtain that a(t) ̸≡ 0, and hence a′(t) ̸≡ 0. Also since

f(π/2) = 0, it follows that b(t) ̸≡ 0, and hence b′(t) ̸≡ 0. By Part (2) of II.6, the

trigonometric polynomial a′(t) has a root of multiplicity 2m − 1 at t = 0, a root of

multiplicity 2n at t = π/2 and no other roots in the circle S, while the trigonometric

polynomial b′(t) has a root of multiplicity 2m at t = 0, a root of multiplicity 2n− 1

at t = π/2 and no other roots in the circle.

We conclude that the functions a(t) and b(t) are monotone on the interval 0 < t <

π/2. Since a(0) = −1 and a(π/2) = 0, we infer that a(t) is monotone increasing for

0 < t < π/2, and hence a(t) < 0 for all 0 < t < π/2. Since b(0) = 0 and b(π/2) = −1,

we obtain that b(t) is monotone decreasing for 0 < t < π/2, and therefore b(t) < 0

for all 0 < t < π/2. As

a(t+ π) = −a(t) and b(t+ π) = −b(t),

it follows that a(t) > 0 for π < t < 3π/2 and b(t) > 0 for π < t < 3π/2. Therefore,

(2.18) f(t) ≥ 1 for all π ≤ t ≤ 3π/2.

The latter equation yields the result, as by Part (4) of II.6, a root t∗ of f(t) distinct

from 0 and π/2, if exists, must satisfy π ≤ t∗ ≤ 3π/2.

Proof of II.18. By Part (1) of II.13, there exists a number ϕk > 0 such that if a

raked trigonometric polynomial f(t) of degree 2k−1 and with a constant term 1 has
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roots at t = 0 and t = ϕk with positive even multiplicities summing up to 2k, then

f(t) is positive everywhere else. It follows from II.19 and II.16 that the same remains

true for all 0 < ϕk ≤ π/2. Using the shift f(t) 7−→ f(t + a) of raked trigonometric

polynomials, we conclude that for every arc Γ ⊂ S of length not exceeding π/2, a

raked trigonometric polynomial f(t) of degree 2k − 1 with constant term 1 that has

roots of even multiplicities summing up to 2k at the endpoints of Γ remains positive

everywhere else in S. The proof now follows from Part (2) of II.13.

Proof of II.1 and II.3.

II.1 follows from II.18 and Remark II.5, while II.3 follows from Remark II.5 and

II.19.

2.6 The limit of neighborliness

In this section, we prove Theorem II.2. Our goal is to construct a raked trigono-

metric polynomial fk(t) of degree 2k − 1 such that fk(t) has a root of multiplicity

2k − 2 at t = 0, roots of multiplicity 2 each at t = ±βk for some π/2 < βk < π, and

such that fk(t) ≥ 0 for all t ∈ S. It then follows from II.13 and II.17 that ϕk ≤ βk,

and establishing that βk −→ π/2 as k grows, we complete the proof.

Lemma II.20. The function

f(t) = sin2k−1 t

is a raked trigonometric polynomial of degree 2k − 1.

Proof. We have
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sin2k−1 t =

(
eit − e−it

2i

)2k−1

=
1

(−4)k−1

1

2i

2k−1∑
j=0

(
2k − 1

j

)
(−1)jei(2k−2j−1)t

=
1

(−4)k−1

k−1∑
j=0

(
2k − 1

j

)(
(−1)jei(2k−2j−1)t + (−1)2k−1−jei(2j−2k+1)t

2i

)

=
1

(−4)k−1

k−1∑
j=0

(
2k − 1

j

)
(−1)j sin(2k − 2j − 1)t.

Lemma II.21. For k ≥ 1 let

hk(t) =

∫ t

0

sin2k−1(τ) dτ.

Then hk(t) is a raked trigonometric polynomial of degree 2k − 1 and t = 0 is a root

of hk(t) of multiplicity 2k. Moreover,

hk(t) =
(2k − 2)!!

(2k − 1)!!

(
1− (cos t)

k−1∑
j=0

(2j − 1)!!

(2j)!!
sin2j t

)
,

where we agree that 0!! = (−1)!! = 1.

Proof. From II.20, hk(t) is a raked trigonometric polynomial of degree 2k− 1. More-

over, hk(0) = 0 and h′k(t) = sin2k−1 t, from which it follows that t = 0 is a root of

hk(t) of multiplicity 2k. Since

h1(t) =

∫ t

0

sin τ dτ = 1− cos t,

and since for n > 1,∫ t

0

sinn τ dτ = − 1

n

(
sinn−1 t

)
(cos t) +

n− 1

n

∫ t

0

sinn−2 τ dτ,

we obtain by induction that∫ t

0

sin2k−1 τ dτ =
(2k − 2)!!

(2k − 1)!!

(
1− cos t

k−1∑
j=0

(2j − 1)!!

(2j)!!
sin2j t

)
,

as claimed.
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Lemma II.22. Let hk(t) be the trigonometric polynomial defined in II.21 and let

Fk(t) = sin2(t)hk−1(t)− hk(t).

Then there exists a unique

π

2
< βk < π

such that

Fk (βk) = 0.

In addition,

lim
k−→+∞

βk =
π

2
.

Proof. From II.21, we deduce

Fk

(π
2

)
= hk−1

(π
2

)
− hk

(π
2

)
=

(2k − 4)!!

(2k − 3)!!
− (2k − 2)!!

(2k − 1)!!
> 0 and

Fk(π) = −hk(π) = −2
(2k − 2)!!

(2k − 1)!!
< 0.

Moreover,

F ′
k(t) = 2(sin t)(cos t)hk−1(t)− h′k(t) + sin2(t)h′k−1(t) = 2(sin t)(cos t)hk−1(t).

In particular, F ′
k(t) < 0 for π/2 < t < π, and hence Fk(t) is decreasing on the interval

π/2 < t < π. Since Fk(π/2) > 0 and Fk(π) < 0, there is a unique π/2 < βk < π such

that Fk (βk) = 0.

To find the limit behavior of βk, we use the expansion

(1− x)−1/2 =
∞∑
j=0

(2j − 1)!!

(2j)!!
xj for real − 1 < x < 1.

Substituting x = sin2 t we obtain

∞∑
j=0

(2j − 1)!!

(2j)!!
sin2j t = − 1

cos t
provided π/2 < t < π.
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Hence from II.21, for π/2 < t < π we have

hk(t) =
(2k − 2)!!

(2k − 1)!!

(
1− (cos t)

(
∞∑
j=0

(2j − 1)!!

(2j)!!
sin2j t−

∞∑
j=k

(2j − 1)!!

(2j)!!
sin2j t

))

=
(2k − 2)!!

(2k − 1)!!

(
2 + (cos t)

∞∑
j=k

(2j − 1)!!

(2j)!!
sin2j t

)

and

(2k − 3)!!

(2k − 4)!!
Fk(t) =

2 sin2 t− 2
2k − 2

2k − 1
+ (cos t)

∞∑
j=k

(
(2j − 3)!!

(2j − 2)!!
− 2k − 2

2k − 1

(2j − 1)!!

(2j)!!

)
sin2j t.

It follows that Fk(t) < 0 for every π/2 < t < π such that sin2 t ≤ (2k − 2)/(2k − 1).

Since Fk(t) is decreasing for π/2 < t < π, we conclude that

(2.19) sin2 βk >
2k − 2

2k − 1
,

and hence

lim
k−→+∞

βk =
π

2
,

as desired.

Lemma II.23. Let hk(t) be the trigonometric polynomial defined in II.21 and let βk

be the number defined in II.22. Let

fk(t) = sin2 (βk)hk−1(t)− hk(t).

Then fk(t) is a raked trigonometric polynomial of degree 2k − 1 such that t = 0 is a

root of fk(t) of multiplicity 2k − 2, t = ±βk are the roots of multiplicity 2 each and

fk(t) ≥ 0 for all t ∈ S.

Proof. It follows by II.21 that fk(t) is a trigonometric polynomial of degree 2k − 1

and that t = 0 is a root of fk(t) of multiplicity at least 2k − 2. From the definition
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of βk in II.23, we conclude that t = βk is a root of fk(t). Moreover, since

f ′
k(t) = sin2k−1 t−

(
sin2 βk

)
sin2k−3 t,

we have f ′ (βk) = 0, so the multiplicity of the root at t = βk is at least 2. By Part (3)

of II.6, the multiplicities of the roots at t = 0 and t = βk are 2k−2 and 2 respectively

and there are no other roots of fk(t) in the open arc 0 < t < π. Also, by II.21 and

(2.19), we have

fk(π) = 2 sin2 (βk)
(2k − 4)!!

(2k − 3)!!
− 2

(2k − 2)!!

(2k − 1)!!
> 0.

Since fk(−t) = fk(t), we conclude that t = −βk is a root of fk(t) ≥ 0 of multiplicity

2 and that fk(t) > 0 for all t ̸= 0,±βk.

Proof of II.2. Let ψk be the maximum length of an open arc satisfying Part (1)

of II.13. It follows from II.23 that ψk ≤ βk, and hence from II.17 that ϕk ≤ βk. II.22

then yields the proof.

All available computational evidence suggests that for even k the smallest length

of the arc in Part (2) of II.13 is achieved when the multiplicites ma and mb are equal:

ma = mb = k. The following results provides an explicit equation for the length of

such an arc.

Proposition II.24. Suppose that k is even. Let αk > 0 be the smallest number such

that the necessarily unique raked trigonometric polynomial f(t) of degree 2k− 1 with

constant term 1 that has roots at t = αk and t = −αk of multiplicity k each also

has a root t∗ elsewhere in S. Then t∗ = π and αk is the smallest positive root of the

equation F (α) = 0 where

(2.20) F (α) = cosα + 1 +
k−1∑
j=1

(−1)j
(2j − 1)!!

(2j)!!
tan2j α.
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Proof of II.24. We note that the raked trigonometric polynomial f̃(t) = f(−t)

also has a root of multiplicity k at t = αk and a root of multiplicity k at t = −αk.

By II.9, we must have f̃(t) = f(t), and hence

(2.21) f(t) = 1 +
k∑

j=1

aj cos(2j − 1)t

for some real a1, . . . , ak. Then the raked trigonometric polynomial f ′(t) has roots

at t = αk, −αk, αk + π, and −αk + π of multiplicity k − 1 each as well as roots at

t = 0 and t = π. By Part (1) of II.6, f ′(t) has no other roots and ak ̸= 0. By Part (4)

of II.6, the root t∗ must lie in an open arc Γ with the endpoints αk +π and −αk +π.

From the definition of αk, it follows that f(t) ≥ 0 for all t ∈ Γ, and hence t∗ is a

local minimum of f(t). Thus f ′ (t∗) = 0, and so t∗ = π. Moreover, t∗ = π is a root

of f(t) of multiplicity 2.

We choose

λ =
1

cosαk

in II.10 and consider the λ-deformation fλ(t) of f(t). Let

p = P(f) and pλ = P (fλ) .

Since αk and −αk are roots of f(t) of multiplicity k each, the complex numbers eiαk

and e−iαk are roots of p of multiplicity k each. Then z = 1 is a root of pλ(z) of

multiplicity 2k, and hence t = 0 is a root of fλ of multiplicity 2k.

As t = π is a root of f of multiplicity 2, it follows that z = −1 is a root of p(z)

of multiplicity 2. Thus,

(2.22)
−1 + sinαk

cosαk

and
−1− sinαk

cosαk

are roots of pλ(z).
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Since t = 0 is a root of multiplicity 2k of fλ(t) we must have

fλ(t) = βhk(t) for some real β ̸= 0,

where hk(t) is the trigonometric polynomial of II.24. Therefore,

(2.23) pλ(z) = βz2k−1

(
1−

(
z + z−1

2

)(
1 +

k−1∑
j=1

(2j − 1)!!

(2j)!!

(
z − z−1

2i

)2j
))

.

Substituting either of the roots of (2.22) in (2.23), we obtain the desired equation

F (αk) = 0.

Suppose now that some number 0 < α < π/2 also satisfies the equation F (α) = 0.

Then

(2.24)
−1 + sinα

cosα
and

−1− sinα

cosα

are roots of polynomial q = P (hk), where hk(t) is the trigonometric polynomial of

II.21. Let us choose λ = cosα and let gλ(t) be the λ-deformation of hk(t) as in

II.10. Let qλ = P (gλ). Since the numbers introduced in (2.24) are roots of q, we

conclude that z = −1 is a root of multiplicity 2 of qλ(z), and hence t = π is a root

of multiplicity 2 of gλ(t). Similarly, since t = 0 is a root of multiplicity 2k of hk(t),

we conclude that z = 1 is a root of multiplicity 2k of q(z), and hence the numbers

eiα and e−iα are roots of qλ, each of multiplicity k. Therefore, t = α and t = −α

are roots of gλ(t), each of multiplicity k. It then follows, by minimality of αk, that

α ≥ αk, which completes the proof.

2.7 Neighborliness for generalized moment curves

In this section, we consider local neighborliness for generalized moment curves in

R2k:

M(t) =M(p1, · · · , pk)(t)

= {(cos 2πp1t, sin 2πp1t, · · · , cos 2πpkt, sin 2πpkt) : t ∈ R}
(2.25)
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where pi’s are positive integers. We assume that pi’s are increasing and have the

greatest common divisor 1. A generalized moment curve M(t) in R2k has local

neighborliness property if there exists a number

0 < ϕ < π

such that for an arbitrary open arc Γ ⊂ S of length ϕ and arbitrary distinct n ≤ k

points t1, . . . , tn ∈ Γ, the set

conv
(
M (t1) , . . . ,M (tn)

)
is a face of the convex hull of the curve M(t).

Smilansky [24] studied the generalized moment curves for k = 2 and described

the facial structure of the convex hull of the curves for all p1 and p2. From Theorem

1 in [24], one can check that the convex hull of M(p1, p2) has local neighborliness

property if and only if p1 = 1.

On the other hand, it is well known that the classical moment curvesM(1, 2, · · · , n)

has neighborliness property for a positive integer n (see for example, [9]). For the

symmetric moment curves M(1, 3, · · · , 2n− 1), Theorem II.1 showed that the sym-

metric moment curves has local neighborliness property.

At this point, it is natural to ask when the generalized moment curves have

local neighborliness property. For k > 2, is it still true that M(p1, · · · , pk) has

local neighborliness property if p1 = 1? In this section, we prove that the an-

swer for the above question is no, by presenting a counterexample when k = 5 and

(p1, p2, p3, p4, p5) = (1, 12, 13, 14, 15).

Consider the M-trigonometric polynomial

f(t) = c+
k∑

j=1

aj cos pjt+
k∑

j=1

bj sin pjt.
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Note that for distinct points t1, · · · , tn ∈ S, the convex hull of M(t1), · · · ,M(tn) is

a face of the convex hull of the generalized moment curve M(p1, · · · , pk)(t) if and

only if there exists M -trigonometric polynomial f(t) such that f(t) ≥ 0 for t ∈ S

and equality holds if and only if t is one of ti’s.

We need the following lemma.

Theorem II.25. Let F (t) be a M-polynomial having a root at 0 with multiplicity

2k. Then such F is unique up to constants and it is given by

F (t) = 1 +
k∑

i=1

ai cos pit

where the (column) vector v = (a1, · · · , ak) satisfies Av = (−1, 0, · · · , 0) for A =(
p
2(i−1)
j

)k
i,j=1

.

Proof. Let F (t) be a M -polynomial

F (t) = 1 +
k∑

i=1

ai cos pit+
k∑

i=1

bi sin pit

having a root at 0 with multiplicity 2k. By simplifying

F (k)(0) = 0 for k = 0, . . . , 2k − 1,

we have

1 +
k∑

i=1

ai = 0

k∑
i=1

aip
2i
i = 0 for i = 1, . . . , k − 1

k∑
i=1

bip
2i+1
i = 0 for i = 0, . . . , k − 1.

Therefore, bi = 0 for all i and Av = (−1, 0, · · · , 0) where A and v are defined

above.
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Theorem II.26. Assume thatM(p1, · · · , pk) has local neighborliness property. Then

for a unique M-polynomial F (t) with a constant term 1 having a root at 0 with

multiplicity 2k, we have F (t) ≥ 0 for all t ∈ S.

Proof. SinceM(p1, · · · , pk) has local neighborliness property, for any positive integer

n, there exists an arc Ωn ⊂ S of length at most 1/n containing M(0), distinct points

t1,n, · · · , tk,n ∈ Ωn and a supporting hyperplane Hn which intersects M(t) at M(ti,n)

for i = 1, · · · , k. The set of all affine hyperplanes intersecting the compact set M(S)

is compact in natural topology; for example, if we view the set of affine hyperplanes

in R2k as a subset of the Grassmannian of all linear hyperplanes in R2k+1. Therefore,

the sequence of hyperplanes Hn has a limit hyperplane H and corresponding M -

polynomial F (t). By using a similar argument in the proof of Lemma II.15, one can

show that F (t) has a root at 0 with multiplicity at least 2k and therefore such F (t)

is unique up to constants by Theorem II.25. Since Hn are supporting hyperplanes

of the curve M(t), the limit H(t) is also the support hyperplane of M(t). Therefore,

we can choose F (t) to be

F (t) = 1 +
k∑

i=1

ai cos pit

such that F (t) ≥ 0 for t ∈ S.

In the appendix, equations and graphs of F (t) are given for k = 5, (p1, p2, p3, p4, p5) =

(1, 2, 3, 4, 5), (1, 3, 5, 7, 9), (1, 12, 13, 14, 15). It is shown that F (t) for (p1, p2, p3, p4, p5) =

(1, 12, 13, 14, 15) has at least 8 zeroes other than 0 and it turns negative at some point.

Therefore, M(1, 12, 13, 14, 15) does not have local neighborliness property.



CHAPTER III

Centrally symmetric polytopes with many faces

3.1 Introduction

3.1.1 Cs neighborliness

What is the maximum number of k-dimensional faces that a centrally symmetric

d-dimensional polytope with N vertices can have? While the answer in the class of

all polytopes is classic by now [21], very little is known in the centrally symmetric

case. Here we present several constructions that significantly improve existing lower

bounds on this number.

It was proved in [18] that a cs 2-neighborly d-dimensional polytope cannot have

more than 2d vertices. In Theorem III.2(1) we present a construction of a cs 2-

neighborly d-polytope with about 3d/2 ≈ (1.73)d vertices.

More generally, it was verified in [4] that a cs d-dimensional polytope with N ver-

tices cannot have more than
(
1− 0.5d

)
N2

2
edges. In Theorem III.2(2), we construct

a cs d-dimensional polytope with N vertices (for an arbitrarily large N) and at least(
1− 3−⌊d/2−1⌋) (N

2

)
≈
(
1− 0.58d

)
N2

2
edges.

For higher-dimensional faces even less is known. It follows from the results of

[18] that no cs k-neighborly d-polytope can have more than ⌊d · 2Cd/k⌋ vertices,

where C > 0 is some absolute constant. At the same time, the papers [18, 23]

used a randomized construction to prove existence of k-neighborly cs d-dimensional

41
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polytopes with ⌊d · 2cd/k⌋ vertices for some absolute constant c > 0. However, for

k > 2 no deterministic construction of a d-dimensional k-neighborly cs polytope

with 2Ω(d) vertices is known. In Theorem III.9 and Remark III.10 we present a

deterministic construction of a cs k-neighborly d-polytope with at least 2ckd vertices

where ck = 3/20k22k. We then use this result in Corollary III.11 to construct for

a fixed k and arbitrarily large N and d, a cs d-polytope with N vertices that has a

record number of (k− 1)-dimensional faces. Our construction relies on the notion of

k-independent families [1, 12] (see also [2]).

Through Gale duality m-dimensional subspaces of RN correspond to (N − m)-

dimensional cs polytopes with 2N vertices (For more details, See [18]). If the sub-

space is “almost Euclidean” (meaning that the ratio of the ℓ1 and ℓ2 norms of nonzero

vectors of the subspace remains within certain bounds, see [18] for technical details),

then the corresponding polytope turns out to be k-neighborly. Despite considerable

efforts, see for example [17], no explicit constructions of “almost Euclidean” sub-

spaces is known for m anywhere close to N . Our polytopes give rise to subspaces of

RN of codimension O(logN) and it would be interesting to find out if the resulting

subspaces are indeed “almost Euclidean”.

3.1.2 Antipodal points

Our results on cs polytopes provide new bounds on several problems related to

strict antipodality. Let X ⊂ Rd be a set that affinely spans Rd. A pair of points

u, v ∈ X is called strictly antipodal if there exist two distinct parallel hyperplanes H

and H ′ such that X ∩ H = {u}, X ∩ H ′ = {v}, and X lies in the slab between H

and H ′. Denote by A′(d) the maximum size of a set X ⊂ Rd having the property

that every pair of points of X is strictly antipodal, by A′
d(Y ) the number of strictly

antipodal pairs of a given set Y , and by A′
d(n) the maximum size of A′

d(Y ) taken
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over all n-element subsets Y of Rd. (Our notation follows the recent survey paper

[20].)

The notion of strict antipodality was introduced in 1962 by Danzer and Grünbaum

[10] who verified that 2d − 1 ≤ A′(d) ≤ 2d and conjectured that A′(d) = 2d − 1.

However, twenty years later, Erdős and Füredi [11] used a probabilistic argument to

prove that A′(d) is exponential in d. Their result was improved by Talata (see [8,

Lemma 9.11.2]) who found an explicit construction showing that for d ≥ 3,

A′(d) ≥ ⌊( 3
√
3)d/3⌋.

Talata also announced that ( 3
√
3)d/3 in the above formula can be replaced with

( 4
√
5)d/4. (It is worth remarking that Erdős and Füredi established existence of

an acute set in Rd that has an exponential size in d. As every acute set has the

property that all of its pairs of vertices are strictly antipodal, their result implied an

exponential lower bound on A′(d). A significant improvement of the Erdős–Füredi

bound on the maximum size of an acute set in Rd was recently found by Harangi

[16].)

Regarding the value of A′
d(n), Makai and Martini [19] showed that for d ≥ 4,(

1− const

(1.0044)d

)
n2

2
−O(1) ≤ A′

d(n) ≤
(
1− 1

2d − 1

)
n2

2
.

Here we observe that an appropriately chosen half of the vertex set of a cs d-

polytope with many edges has a large number of strictly antipodal pairs of points.

Consequently, our construction of cs d-polytopes with many edges implies — see

Theorem III.3 — that

A′(d) ≥ 3⌊d/2−1⌋ − 1 and A′
d(n) ≥

(
1− 1

3⌊d/2−1⌋ − 1

)
n2

2
−O(n) for all d ≥ 4.

The rest of the chapter is structured as follows. In Section 2, we present our
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construction of a cs 2-neighborly d-polytope with many vertices as well as that of a cs

d-polytope with arbitrarily many vertices and a record number of edges. Section 3 is

devoted to applications of these results to problems on strict antipodality. In Section

4, we construct centrally symmetric polytopes with many faces of given dimension

which generalizes results for the number of edges in Section 2. Finally, in Section 5

we provide a deterministic construction of a cs k-neighborly d-polytope and of a cs

d-polytope with arbitrarily many vertices and a record number of (k − 1)-faces.

We also frequently use the following well-known fact about polytopes: if T :

Rd′ −→ Rd′′ is a linear transformation and P ⊂ Rd′ is a polytope, then Q = T (P ) is

also a polytope and for every face F of Q the inverse image of F ,

T−1(F ) = {x ∈ P : T (x) ∈ F} ,

is a face of P .

3.2 Centrally symmetric polytopes with many edges

In this section we provide a construction of a cs 2-neighborly polytope of dimension

d and with about 3d/2 ≈ (1.73)d vertices as well a construction of a cs d-polytope with

N vertices (for an arbitrarily largeN) that has about
(
1− 3−d/2

) (
N
2

)
≈
(
1− 0.58d

) (
N
2

)
edges. Our trick allows us to halve the dimension of the polytope from [6] while keep-

ing the number of vertices almost the same as before.

For an integer m ≥ 1, consider the curve Φm : S −→ R2(m+1) where

(3.1) Φm(t) :=
(
cos t, sin t, cos 3t, sin 3t, . . . , cos(3mt), sin (3mt)

)
.

Note that Φ1 = U2. The key to our construction is the following observation.

Lemma III.1. For an integer m ≥ 1 and a finite set C ⊂ S, define

P (C,m) = conv (Φm(t) : t ∈ C) .
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Then P (C,m) is a polytope of dimension at most 2(m + 1) that has |C| vertices.

Moreover, if the elements of C satisfy

3it1 ̸≡ 3it2 mod 2π for all t1, t2 ∈ C such that t1 ̸= t2,

and all i = 1, 2, . . . ,m− 1,

(3.2)

then for every pair of distinct points t1, t2 ∈ C that lie on an open arc of length

π(1− 1
3m

), the interval [Φm(t1),Φm(t2)] is an edge of P (C,m).

Proof. To show that P (C,m) has |C| vertices, we consider the projection R2(m+1) −→

R4 that forgets all but the first four coordinates. Since Φ1 = U2, the image of P (C,m)

is the polytope

P (C, 1) = conv (U2(t) : t ∈ C) .

By Theorem II.1, the polytope P (C, 1) has |C| distinct vertices: U2(t) for t ∈ C.

Furthermore, the inverse image of each vertex U2(t) of C(m, 1) in P (C,m) consists

of a single vertex Φm(t) of P (C,m). Therefore, Φm(t) for t ∈ C are all the vertices

of Pm without duplicates.

To prove the statement about edges, we proceed by induction on m. As Φ1 = U2,

the m = 1 case follows from [24] (see Theorem II.1 and II.14).

Suppose now that m ≥ 2. Let t1, t2 be two distinct elements of C that lie on an

open arc of length π(1− 1
3m

). There are two cases to consider.

Case I: t1, t2 lie on an open arc of length 2π/3. In this case, the above projection of

R2(m+1) onto R4 maps P (C,m) onto P (C, 1), and according to the base of induction,

[Φ1(t1),Φ2(t2)] is an edge of P (C, 1). Since the inverse image of a vertex Φ1(t) of

P (C, 1) in P (C,m) consists of a single vertex Φm(t) of P (C,m), we conclude that

[Φm (t1) , Φm (t2)] is an edge of P (C,m).
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Case II: t1, t2 lie on an open arc of length π(1 − 1
3m

), but not on an arc of length

2π/3. (Observe that since 3t1 ̸≡ 3t2 mod 2π, the points t1 and t2 may not form an

arc of length exactly 2π/3.) Then 3t1 and 3t2 do not coincide and lie on an open arc

of length π(1− 1
3m−1 ). Consider the projection of R2(m+1) onto R2m that forgets the

first two coordinates. The image of P (C,m) under this projection is

P (3C,m− 1), where 3C := {3t mod 2π : t ∈ C} ⊂ S,

and since the pair (3C,m − 1) satisfies eq. (3.2), by the induction hypothesis, the

interval

[Φm−1 (3t1) , Φm−1 (3t2)]

is an edge of P (3C,m − 1). By eq. (3.2), the inverse image of a vertex Φm−1(3t) of

P (3C,m− 1) in P (C,m) consists of a single vertex Φm(t) of P (C,m), and hence we

infer that [Φm (t1) , Φm (t2)] is an edge of P (C,m).

We are now in a position to state and prove the main result of this section. We

follow the notation of Lemma III.1.

Theorem III.2. Fix integers m ≥ 2 and s ≥ 2. Let Am ⊂ S be the set of 2(3m − 1)

equally spaced points:

Am =

{
π(j − 1)

3m − 1
: j = 1, . . . , 2(3m − 1)

}
,

and let Am,s ⊂ S be the set of 2(3m − 1) clusters of s points each, chosen in such a

way that for all j = 1, . . . , 2(3m − 1), the j-th cluster lies on an arc of length 10−m

that contains the point π(j−1)
3m−1

, and the entire set Am,s is centrally symmetric. Then

1. The polytope P (Am,m) is a centrally symmetric 2-neighborly polytope of dimen-

sion 2(m+ 1) that has 2(3m − 1) vertices.
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2. The polytope P (Am,s,m) is a centrally symmetric 2(m+1)-dimensional polytope

that has N := 2s(3m − 1) vertices and at least N(N − s− 1)/2 > (1− 3−m)
(
N
2

)
edges.

Proof. To see that P (Am,m) is centrally symmetric, note that the transformation

t 7→ t+ π mod 2π

maps Am onto itself and also that Φm(t+ π) = −Φm(t). The same argument applies

to P (Am,s,m).

We now show that the dimension of P (Am,m) is 2(m+1). If not, then the points

Φm(t) : t ∈ Am are all in an affine hyperplane in R2(m+1), and hence the 2(3m − 1)

elements of Am are roots of a trigonometric polynomial of the form

f(t) = c+
m∑
j=0

aj cos(3
jt) +

m∑
j=0

bj sin(3
jt).

Moreover, am and bm cannot both be zero as by our assumption f(t) has at least

2(3m−1) roots, and so the degree of f(t) is at least 3m−1 > 3m−1. Thus the complex

polynomial P(f) defined by eq. (2.2) is of the form

P(f)(z) = dmz
2·3m+dm−1z

3m+3m−1

+dm−2z
3m+3m−2

+· · ·+cz3m+· · ·+dm, where dm ̸= 0.

Note that since m > 1, 3m + 3m−1 < 2 · 3m − 2. In particular, the coefficients of

z2·3
m−1 and z2·3

m−2 are both equal to 0. Therefore, the sum of all the roots (counted

with multiplicities) of P(f) as well as the sum of their squares is 0. As degP(f) =

2 · 3m, the (multi)set of roots of P(f) consists of {eit : t ∈ Am} together with two

additional roots, denote them by ζ1 and ζ2. The complex numbers eit : t ∈ Am form

a geometric progression, and it is straightforward to check that

∑
t∈Am

eit = 0 and
∑
t∈Am

e2it = 0.
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Hence for the sum of all the roots of P(f) and for the sum of their squares to be

zero, we must have

ζ1 + ζ2 = 0 and ζ21 + ζ22 = 0.

Thus ζ1 = ζ2 = 0, and so the constant term of P(f) is zero. This however contradicts

the fact that the constant term of P(f) equals dm, where dm ̸= 0. Therefore, the

polytope P (Am,m) is full-dimensional.

Finally, to see that P (Am,m) is 2-neighborly, observe that it follows from the

definition of Am that if t1, t2 ∈ Am are not antipodes, then they lie on a closed arc

of length π(1 − 1
3m−1

), and hence also on an an open arc of length π(1 − 1
3m

). In

addition, since 3m − 1 is relatively prime to 3, we obtain that for every two distinct

elements t1, t2 of Am, 3
it1 ̸≡ 3it2 mod 2π (for i = 1, . . . ,m − 1). Part (1) of the

theorem is then immediate from Lemma III.1.

To compute the dimension of P (Am,s,m), note that if it is smaller than 2(m+1),

then P (Am,s,m) is a subset of an affine hyperplane in R2(m+1). As all vertices of

this polytope lie on the curve Φm, such a hyperplane corresponds to a trigonometric

polynomial of degree 3m that has at least N = 2s(3m−1) ≥ 4(3m−1) > 2 ·3m roots.

This is however impossible, as no nonzero trigonometric polynomial of degree D has

more than 2D roots.

To finish the proof of Part (2), note that since each cluster of Am,s lies on an open

arc of length

10−m <
π

2

(
1

3m − 1
− 1

3m

)
that contains the corresponding element of Am, and since multiplication by 3i modulo

2π maps Am bijectively onto itself, it follows that

• 3it1 ̸≡ 3it2 mod 2π (for i = 1, . . . ,m − 1) holds for all distinct t1, t2 ∈ Am,s.

(Indeed, for t1, t2 from the same cluster, the points 3it1 and 3it2 of S do not
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coincide as 3m/10m < 2π, and for t1, t2 from different clusters, 3it1 and 3it2 do

not coincide as the distance between them along S is at least π
3m−1

− 2·3m
10m

> 0.)

• Every two points t1, t2 ∈ Am,s lie on an open arc of length π(1− 1
3m

) as long as

they do not belong to a pair of opposite clusters.

Thus Lemma III.1 applies and shows that the interval [Φm(t1), Φm(t2)] is an edge of

P (Am,s,m) for all t1, t2 ∈ Am,s that are not from opposite clusters. In other words,

each vertex of P (Am,s,m) is incident with at least N − s− 1 edges. This yields the

promised bound on the number of edges of P (Am,s,m) and completes the proof of

Part (2).

3.3 Applications to strict antipodality problems

In this section we observe that an appropriately chosen half of the vertex set of

any cs 2k-neighborly d-dimensional polytope has a large number of pairwise strictly

antipodal (k − 1)-simplices. The results of the previous section then imply new

lower bounds on questions related to strict antipodality. Specifically, in the following

theorem we improve both Talata’s and Makai–Martini’s bounds.

Theorem III.3.

1. For every m ≥ 1, there exists a set Xm ⊂ R2(m+1) of size 3m − 1 that affinely

spans R2(m+1) and such that each pair of points of Xm is strictly antipodal. Thus,

A′(d) ≥ 3⌊d/2−1⌋ − 1 for all d ≥ 4.

2. For all positive integers m and s, there exists a set Ym,s ⊂ R2(m+1) of size

n := s(3m − 1) that has at least(
1− 1

3m − 1

)
· n

2

2
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pairs of antipodal points. Thus, A′
d(n) ≥

(
1− 1

3⌊d/2−1⌋−1

)
· n2

2
− O(n) for all

d ≥ 4 and n.

One can generalize the notion of strictly antipodal points in the following way: for

a set X ⊂ Rd that affinely spans Rd, we say that two simplices, σ and σ′, spanned by

the points of X are strictly antipodal if there exist two distinct parallel hyperplanes

H and H ′ such that X lies in the slab defined by H and H ′, H ∩ conv(X) = σ, and

H ′ ∩ conv(X) = σ′. Makai and Martini [19] asked about the maximum number of

pairwise strictly antipodal (k− 1)-simplices in Rd. The following result gives a lower

bound to their question.

Theorem III.4. There exists a set of ⌊(d/2) · 2cd/k⌋ points in Rd with the property

that every two disjoint k-subsets of X form the vertex sets of strictly antipodal (k−1)-

simplices. In particular, there exists a set of ⌊ d
2k

· 2cd/k⌋ pairwise strictly antipodal

(k − 1)-simplices in Rd. Here c > 0 is an absolute constant.

The key to our proofs are the results of Section 2 and paper [18] along with the

following observation.

Lemma III.5. Let P ⊂ Rd be a full-dimensional cs polytope on the vertex set V =

X ⊔ (−X). If U1, U2 are subsets of X such that U1 ∪ (−U2) is the vertex set of

a (|U1| + |U2| − 1)-face of P , then σ1 := conv(U1) and σ2 := conv(U2) are strictly

antipodal simplices spanned by points of X. In particular, if P is 2-neighborly, then

every pair of vertices of X is strictly antipodal, and, more generally, if P is 2k-

neighborly, then every two disjoint k-subsets of X form a pair of strictly antipodal

(k − 1)-simplices.

Proof. Since τ1 := conv(U1 ∪ (−U2)) is a face of P , there exists a supporting hy-

perplane H1 of P that defines τ1: specifically, P is contained in one of the closed
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half-spaces bounded by H1 and P ∩ H1 = τ1. As P is centrally symmetric, the

hyperplane H2 := −H1 = {x ∈ Rd : −x ∈ H1} is a supporting hyperplane of P

that defines the opposite face, τ2 := conv((−U1) ∪ U2). Thus P , and hence also X,

is contained in the slab between H1 and H2. Moreover, since U1, U2 are subsets of

X, it follows that −U1 and −U2 are contained in −X, and hence disjoint from X.

Therefore,

Hi ∩ conv(X) = Hi ∩ P ∩ conv(X) = τi ∩ conv(X) = conv(Ui) = σi for i = 1, 2.

The result follows.

Proof of Theorem III.3: Consider the sets Am and Am,s of Theorem III.2. Define

A+
m = {t ∈ Am : 0 ≤ t < π},

and define A+
m,s by taking the union of those clusters of Am,s that lie on small arcs

around the points of A+
m. In particular, |A+

m| = 3m − 1 and |A+
m,s| = s(3m − 1). Let

Xm :=
{
Φm(t) : t ∈ A+

m

}
⊂ R2(m+1) and Ym,s :=

{
Φm(t) : t ∈ A+

m,s

}
⊂ R2(m+1).

Theorem III.2 and Lemma III.5 imply that each pair of points of Xm is strictly

antipodal, and each pair of points of Ym,s that are not from the same cluster is

strictly antipodal. The claim follows.

Proof of Theorem III.4: It was proved in [18, 23] (by using a probabilistic con-

struction) that if k, d, and N satisfy

k ≤ cd

1 + log N
d

,

where c > 0 is some absolute constant, then there exists a d-dimensional cs polytope

on 2N vertices that is 2k-neighborly. Solving this inequality for N , implies existence

of a d-dimensional cs polytope on ⌊d · 2cd/k⌋ vertices that is 2k-neighborly. This

together with Lemma III.5 yields the result.
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3.4 Cs polytopes with many faces of given dimension

In this section, we prove the following theorem.

Theorem III.6. Fix an integer k ≥ 1. For a non-negative integer m, consider the

map Ψk,m : S −→ R6k(m+1) defined by

Ψk,m(t) =
(
U3k(t), U3k(5t), . . . , U3k (5

mt)
)
.

For a positive even integer n, let Am,n ⊂ S be the set of n5m equally spaced points,

Am,n =

{
2πj

n5m
: j = 0, . . . , n5m − 1

}
,

and let

P = Pk,m,n = conv
(
Ψk,m(t) : t ∈ Am,n

)
.

Then

1. The polytope P ⊂ R6k(m+1) is a centrally symmetric polytope with n5m distinct

vertices:

Ψk,m(t) for t ∈ Am,n

and of dimension d ≤ 6k(m+1)− 2m⌊(3k+2)/5⌋; moreover, if n > 2(6k− 1),

then the dimension of P is equal to 6k(m+ 1)− 2m⌊(3k + 2)/5⌋.

2. Let t1, . . . , tk be points chosen independently at random from the uniform dis-

tribution in Am,n (in particular, some of ti may coincide). Then the probability

that

conv
(
Ψk,m (t1) , . . . ,Ψk,m (tk)

)
is not a face of P does not exceed

(
1− 5−k+1

)m
.
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We obtain the following corollary.

Corollary III.7. Let Pk,m,n be the polytope of Theorem III.6 with N = n5m vertices

and dimension d ≤ 6k(m+ 1)− 2m⌊(3k + 2)/5⌋. Then

fk−1 (Pk,m,n) ≥
(
N

k

)
−
(
1− 5−k+1

)m Nk

k!
.

The construction of Theorem III.6 produces a family of centrally symmetric poly-

topes of an increasing dimension d and with an arbitrarily large number of vertices

such that for any fixed k ≥ 1, the probability pd,k that k randomly chosen vertices of

the polytope do not span a face decreases exponentially in d. However, it does not

start doing so very quickly: for instance, to make pd,k < 1/2 we need to choose d as

high as 2Ω(k).

Proof of Theorem III.6. We observe that the transformation

t 7−→ t+ π mod 2π

maps the set Am,n onto itself and that

Ψk,m(t+ π) = −Ψk,m(t) for all t ∈ S.

Hence P is centrally symmetric. Consider the projection R6k(m+1) −→ R6k that

forgets all but the first 6k coordinates. Then the image of Pk,m,n is the polytope

(3.3) Qk,m,n = conv
(
U3k(t) : t ∈ Am,n

)
.

By Theorem II.1, the polytope Qk,m,n has n5m distinct vertices: U3k(t) for t ∈ Am,n.

Furthermore, the inverse image of each vertex U3k(t) of Qk,m,n in Pk,m,n consists of a

single vertex Ψk,m(t) of Pk,m,n. Therefore, Ψk,m,n(t) for t ∈ Am,n are all the vertices

of Pk,m,n without duplicates.
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To estimate the dimension of P = Pk,m,n, we observe that for all t ∈ S, the fifth

coordinate of U3k(t) coincides with the first coordinate of U3k(5t) while the sixth

coordinate of U3k(t) coincides with the second coordinate of U3k(5t), etc. Taking

into account all coincidences of coordinates, the polytope P lies in a subspace of

dimension 6k(m+1)−2m⌊(3k+2)/5⌋, and hence dimP ≤ 6k(m+1)−2m⌊(3k+2)/5⌋.

Moreover, if n > 2(6k − 1), then an argument identical to the one used in the

proof of Theorem III.2 (by counting roots of trigonometric polynomials) shows that

dimP = 6k(m+ 1)− 2m⌊(3k + 2)/5⌋.

We prove Part (2) by induction on m. The statement trivially holds for m = 0.

Let us assume that m ≥ 1 and consider the map ϕ : Am,n −→ Am−1,n defined by

ϕ(t) = 5t mod 2π.

Then

ϕ (Am,n) = Am−1,n

and for every t ∈ Am−1,n, the inverse image ϕ−1(t) of t consists of 5 equally spaced

points from Am,n. We note that if t is a random point uniformly distributed in Am,n,

then ϕ(t) is uniformly distributed in Am−1,n. The proof of the theorem will follow

from the following two claims.

Claim I. Let t1, . . . , tk ∈ Am,n be arbitrary, not necessarily distinct, points. If

(3.4) conv
(
Ψk,m−1 (5ti) , i = 1, . . . , k

)
is a face of Pk,m−1,n then

(3.5) conv
(
Ψk,m (ti) , i = 1, . . . , k

)
is a face of Pk,m,n.
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Claim II. Let s1, . . . , sk ∈ Am−1,n be arbitrary, not necessarily distinct, points.

Then the conditional probability that

conv
(
Ψk,m(ti) : i = 1, . . . , k

)
is not a face of Pk,m,n given that

ϕ (ti) = si for i = 1, . . . , k

does not exceed 1− 5−k+1.

To prove Claim I, we consider the projection R6k(m+1) −→ R6km that forgets the

first 6k coordinates. The image of Pk,m,n under this projection is Pk,m−1,n and if (3.4)

is a face of Pk,m−1,n then

conv
(
Ψk,m (xij) : ϕ (xij) = ϕ (ti) for i = 1, . . . , k

and j = 1, 2, 3, 4, 5
)(3.6)

is a face of Pk,m,n as it is the inverse image of (3.4) under this projection. The face

(3.6) is the convex hull of at most 5k distinct points and no two points xij in (3.6)

are antipodal. Since a set of up to 6k distinct points U3k (xij) no two of which are

antipodal is linearly independent, the face (3.6) is a simplex. Therefore, the set (3.5)

is a face of (3.6), and hence also a face of Pk,m,n. Claim I now follows.

To prove Claim II, we fix a sequence s1, . . . , sk ∈ Am−1,n of not necessarily distinct

points. Then there are exactly 5k sequences t1, . . . , tk ∈ Am,n of not necessarily

distinct points such that ϕ (ti) = si for i = 1, . . . , k. Choose an arbitrary t1 subject

to the condition ϕ (t1) = s1. Let Γ ⊂ S be a closed arc of length 2π/5 centered at t1.

Then for i = 2, . . . , k there is at least one ti ∈ Γ such that ϕ(ti) = si. By Theorem

II.1, for such a choice of t2, . . . , tk, the set

(3.7) conv
(
U3k (ti) : i = 1, . . . , k

)
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is a face of the polytope Qk,m,n defined by (3.3). Considering the projection

Pk,m,n −→ Qk,m,n

as above, we conclude that (3.5) is a face of Pk,m,n as it is the inverse image of (3.7).

Hence the conditional probability that (3.5) is not a face is at most

5k−1 − 1

5k−1
= 1− 5−k+1.

3.5 Constructing k-neighborly cs polytopes

The goal of this section is to present a deterministic construction of a cs k-

neighborly d-polytope with at least 2ckd for ck = 3/20k22k vertices. This requires the

following facts and definitions.

A family F of subsets of [m] := {1, 2, . . . ,m} is called k-independent if for every

k distinct subsets I1, . . . , Ik of F all 2k intersections

k∩
j=1

Jj, where Jj = Ij or Jj = Icj := [m] \ Ij, are non-empty.

The crucial component of our construction is a deterministic construction of k-

independent families of size larger than 2m/5(k−1)2k given in [12].

For a subset I of [m] and a given number a ∈ {0, 1}, we (recursively) define a

sequence x(I, a) = (x0, x1, . . . , xm) of zeros and ones according to the following

rule:

x0 = x0(I, a) := a and

xn = xn(I, a) ≡


∑n−1

j=0 xj if n /∈ I

1 +
∑n−1

j=0 xj if n ∈ I

mod 2 for n ≥ 1.

(3.8)
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We also set

(3.9) t(I, a) := π
m∑
j=0

xj
3j

∈ S.

A few observations are in order. First, it follows from (3.8) that x(I, a) ̸= x(J, a)

if I ̸= J , and that x(I, a) and x(Ic, 1−a) agree in all but the 0-th component, where

they disagree. Hence

t(I, a) = t(Ic, 1− a) + π mod 2π.

Second, since
∑∞

j=1
1
3j

= 1
2
and since all components of x(I, a) are zeros and ones,

we infer from eq. (3.9) that for all 1 ≤ n ≤ m and all 0 ≤ ϵ ≤ 1/3m+1, the point

3n · (t(I, a) + πϵ) of S either lies on the arc [0, π/2) or on the arc [π, 3π/2) depending

on the parity of
n∑

j=0

3n−jxj(I, a) ≡
n∑

j=0

xj(I, a) mod 2.

As, by (3.8),
∑n

j=0 xj(I, a) is even if n /∈ I and is odd if n ∈ I, we obtain that

(3.10) 3n · (t(I, a) + πϵ) ∈ [π, 3π/2) mod 2π for all n ∈ I and a ∈ {0, 1}.

The relevance of k-independent sets to cs k-neighborly polytopes is explained by

the following lemma along with Theorem II.1.

Lemma III.8. Let F be a k-independent family of subsets of [m], let ϵI ∈ [0, 1/3m+1]

for I ∈ F , and let

V ϵ(F) =
∪
I∈F

{t (I, 0) + πϵI , t (I
c, 1) + πϵI} ⊂ S.

Then for every k distinct points t1, . . . , tk of V ϵ(F) no two of which are antipodes,

there exists an integer n ∈ [m] such that the subset {3nt1, . . . , 3ntk} of S is entirely

contained in [π, 3π/2).
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Proof. As t1, . . . , tk are elements of V ϵ(F), by relabeling them if necessary, we can

assume that

tj =

 t(Ij, 0) + πϵIj if 1 ≤ j ≤ q

t(Icj , 1) + πϵIj if q < j ≤ k

for some 0 ≤ q ≤ k and I1, . . . , Ik ∈ F . Moreover, the sets I1, . . . , Ik are distinct,

since t1, . . . , tk are distinct and no two of them are antipodes. As F is a k-independent

family, the intersection (∩q
j=1Ij)∩ (∩k

j=q+1I
c
j ) is non-empty. The result follows, since

by eq. (3.10), for any element n of this intersection, {3nt1, . . . , 3ntk} ⊂ [π, 3π/2).

For I ∈ F , define ϵI = ϵIc :=
∑

i∈I 10
−i−m. Then

3nt1 ̸≡ 3nt2 mod 2π for all t1, t2 ∈ V ϵ(F) such that t1 ̸= t2,

and all 1 ≤ n ≤ m.

(3.11)

Indeed, if t1 and t2 are antipodes, then so are 3nt1 and 3nt2, and (3.11) follows. If

t1 and t2 are not antipodes, then there exist two distinct and not complementary

subsets I, J of [m] such that t1 = t(I, a) + πϵI and t2 = t(J, b) + πϵJ for some

a, b ∈ {0, 1}. Hence, by definition of ϵI and ϵJ ,

π/102m < 3n · π|ϵI − ϵJ | < π(3/10)m,

while by definition of t(I, a) and t(J, b), the distance between the points 3n · t(I, a)

and 3n · t(J, b) of S along S is either 0 or at least π/3m. In either case, it follows

that the distance between 3n (t(I, a) + πϵI) and 3n (t(J, b) + πϵJ) is positive, yielding

eq. (3.11).

We are now in a position to present our construction of k-neighborly cs polytopes.

The construction is similar to that in Theorem III.2, except that it is based on the set

V ϵ(F) ⊂ S, where F is a k-independent family of subsets of [m], instead of Am ⊂ S,

and on a modification of Φm to a curve that involves Uk instead of U2.
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Let Uk : S −→ R2k be the symmetric moment curve. In analogy with the curve Φm

(see eq. (3.1)), for integers m ≥ 0 and k ≥ 3, define the curve Ψk,m : S −→ R2k(m+1)

by

(3.12) Ψk,m(t) :=
(
Uk(t), Uk(3t), Uk(3

2t), . . . , Uk(3
mt)
)
.

Thus, Ψk,0 = Uk and Ψk,m(t+ π) = −Ψk,m(t).

The following theorem is the main result of this section. We use the same notation

as in Lemma III.8. Also, mimicking the notation of Lemma III.1, for a subset C of

S, we denote by Pk(C,m) the polytope conv(Ψk,m(t) : t ∈ C).

Theorem III.9. Let m ≥ 1 and k ≥ 3 be fixed integers, let F be a k-independent

family of subsets of [m], and let ϵI =
∑

i∈I 10
−i−m for I ∈ F . Then the polytope

Pk(V
ϵ(F),m) := conv (Ψk,m(t) : t ∈ V ϵ(F))

is a cs k-neighborly polytope of dimension at most 2k(m + 1) − 2m⌊(k + 1)/3⌋ that

has 2|F| vertices.

Remark III.10. For a fixed k and an arbitrarily large m, a deterministic algorithm

from [12] produces a k-independent family F of subsets of [m] such that |F| >

2m/5(k−1)2k . Combining this with Theorem III.9 results in a cs neighborly polytope

of dimension d ≈ 4
3
km and more than 23d/20k

22k vertices. Of a special interest is

the case of k = 3: the algorithm from [12] provides a 3-independent family of size

≈ 20.092m, which together with Theorem III.9 yields a deterministic construction of

a cs 3-neighborly polytope of dimension ≤ d and with about 20.023d vertices.

Proof of Theorem III.9: As in the proof of Theorem III.2, the polytope Pk(V
ϵ(F),m)

is centrally symmetric since V ϵ(F) is a cs subset of S and since Ψk,m(t + π) =

−Ψk,m(t).
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Also as in the proof of Theorem III.2, the fact that Pk(V
ϵ(F),m) has 2|F| vertices

follows by considering the projection R2k(m+1) −→ R2k that forgets all but the first 2k

coordinates. Indeed, the image of Pk(V
ϵ(F),m) under this projection is the polytope

Pk(V
ϵ(F), 0) = conv (Uk(t) : t ∈ V ϵ(F)) ,

and this latter polytope has 2|F| vertices (by Theorem II.1).

To prove k-neighborliness of Pk(V
ϵ(F),m), let t1, . . . , tk ∈ V ϵ(F) be k distinct

points no two of which are antipodes. By Lemma III.8, there exists an integer

1 ≤ n ≤ m such that the points 3nt1, . . . , 3
ntk of S are all contained in the arc

[π, 3π/2). Consider the projection R2k(m+1) −→ R2k(m+1−n) that forgets the first 2kn

coordinates followed by the projection R2k(m+1−n) −→ R2k that forgets all but the

first 2k coordinates. The image of Pk(V
ϵ(F),m) under this composite projection is

Pk(3
nV ϵ(F), 0) = conv(Uk(3

nt) : t ∈ V ϵ(F)),

and, since {3nt1, . . . , 3ntk} ⊂ [π, 3π/2), Theorem II.1 implies that the set {Uk(3
nti) :

i = 1, . . . , k} is the vertex set of a (k−1)-face of this latter polytope. As, by eq. (3.11),

the inverse image of a vertex Uk(3
nt) of Pk(3

nV ϵ(F), 0) in Pk(V
ϵ(F),m) consists of

a single vertex Ψk,m(t) of Pk(V
ϵ(F),m), we obtain that {Ψk,m(ti) : i = 1, . . . , k}

is the vertex set of a (k − 1)-face of Pk(V
ϵ(F),m). This completes the proof of

k-neighborliness of Pk(V
ϵ(F),m).

To bound the dimension of Pk(V
ϵ(F),m), observe that the third coordinate of

Uk(t) coincides with the first coordinate of Uk(3t) while the fourth coordinate of

Uk(t) coincides with the second coordinate of Uk(3t), etc. Thus Pk(V
ϵ(F),m) is in a

subspace of R2k(m+1), and to bound the dimension of this subspace we must account

for all repeated coordinates. This can be done exactly as in [6, Lemma 2.3].
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Fix s ≥ 2, and let V ϵ(F , s) be a centrally symmetric subset of S obtained by

replacing each point t ∈ V ϵ(F) (in Theorem III.9) with a cluster of s points that all

lie on a sufficiently small open arc containing t. Then the proof of Theorem III.9

implies that the polytope Pk(V
ϵ(F , s),m) is a cs polytope with N := 2s|F| vertices,

of dimension at most 2k(m + 1) − 2m⌊(k + 1)/3⌋, and such that every k vertices

of this polytope no two of which are from opposite clusters form the vertex set of

a (k − 1)-face. Choose a k-element set from the union of these 2|F| clusters (of s

points each) at random from the uniform distribution. Then the probability that

this set has no two points from opposite clusters is at least

k−1∏
i=0

(2|F| − i)s− i

2|F|s− i
≥

k−1∏
i=0

(
1− i

|F|

)
≥ 1− k2

|F|
.

Thus, the resulting polytope has at least(
1− k2

|F|

)(
N

k

)
(k − 1)-faces. Combining this estimate with Remark III.10, we obtain

Corollary III.11. For a fixed k and arbitrarily large N and d, there exists a cs

d-dimensional polytope with N vertices and at least(
1− k2

(
2−3/20k22k

)d)(N
k

)
(k − 1)-faces.

This corollary improves Corollary III.7 asserting existence of cs d-polytopes with

N vertices and at least
(
1− (δk)

d
) (

N
k

)
faces of dimension k − 1, where δk ≈ (1 −

5−k+1)5/(24k+4).



APPENDICES

This appendix illustrates graphs and equations of F (t). See Chapter 2.7.

k:=5k:=5k:=5

M [p ]:=Table[p[[j]]∧(2(i− 1)), {i, 1, k}, {j, 1, k}]M [p ]:=Table[p[[j]]∧(2(i− 1)), {i, 1, k}, {j, 1, k}]M [p ]:=Table[p[[j]]∧(2(i− 1)), {i, 1, k}, {j, 1, k}]

M [{1, 2, 3, 4, 5}]//MatrixFormM [{1, 2, 3, 4, 5}]//MatrixFormM [{1, 2, 3, 4, 5}]//MatrixForm

1 1 1 1 1

1 4 9 16 25

1 16 81 256 625

1 64 729 4096 15625

1 256 6561 65536 390625


B[p , t ]:=Table[Cos[p[[i]] ∗ t], {i, 1, 5}]B[p , t ]:=Table[Cos[p[[i]] ∗ t], {i, 1, 5}]B[p , t ]:=Table[Cos[p[[i]] ∗ t], {i, 1, 5}]

F [p , t ]:=1 +B[p, t].Inverse[M [p]].Table[If[i == 1,−1, 0], {i, 1, k}]F [p , t ]:=1 +B[p, t].Inverse[M [p]].Table[If[i == 1,−1, 0], {i, 1, k}]F [p , t ]:=1 +B[p, t].Inverse[M [p]].Table[If[i == 1,−1, 0], {i, 1, k}]

F [{1, 2, 3, 4, 5}, t]//TraditionalFormF [{1, 2, 3, 4, 5}, t]//TraditionalFormF [{1, 2, 3, 4, 5}, t]//TraditionalForm

−5 cos(t)
3 + 20

21 cos(2t)−
5
14 cos(3t) +

5
63 cos(4t)−

1
126 cos(5t) + 1

Plot[F [{1, 2, 3, 4, 5}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]Plot[F [{1, 2, 3, 4, 5}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]Plot[F [{1, 2, 3, 4, 5}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]

-6 -4 -2 2 4 6

1

2

3

4

F [{1, 3, 5, 7, 9}, t]//TraditionalFormF [{1, 3, 5, 7, 9}, t]//TraditionalFormF [{1, 3, 5, 7, 9}, t]//TraditionalForm

−19845 cos(t)
16384 + 2205 cos(3t)

8192 − 567 cos(5t)
8192 + 405 cos(7t)

32768 − 35 cos(9t)
32768 + 1

62
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Plot[F [{1, 3, 5, 7, 9}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]Plot[F [{1, 3, 5, 7, 9}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]Plot[F [{1, 3, 5, 7, 9}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]

-6 -4 -2 2 4 6

0.5

1.0

1.5

2.0

F [{1, 12, 13, 14, 15}, t]//TraditionalFormF [{1, 12, 13, 14, 15}, t]//TraditionalFormF [{1, 12, 13, 14, 15}, t]//TraditionalForm

−45 cos(t)
44 + 49

99 cos(12t)− cos(13t) + 20
29 cos(14t)−

169 cos(15t)
1044 + 1

Plot[F [{1, 12, 13, 14, 15}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]Plot[F [{1, 12, 13, 14, 15}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]Plot[F [{1, 12, 13, 14, 15}, t]==0, {t,−2 ∗ Pi, 2 ∗ Pi}]

-6 -4 -2 2 4 6

1

2

3

4
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[8] K. Böröczky, Jr., Finite Packing and Covering, Cambridge Tracts in Mathematics, 154, Cam-
bridge University Press, Cambridge, 2004.
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