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ABSTRACT

Discovery of a Higgs Boson with the ATLAS Detector

by

Aaron James Armbruster

Chair: Jianming Qian

Details of the discovery of a Higgs boson and measurements of its properties with the AT-

LAS detector are presented, using up to 4.8 and 21 fb−1 of data at
√
s = 7 and 8 TeV,

respectively. The mass of the boson is measured to be mH = 125.5 ±0.2 (stat) +0.5
−0.6 (sys)

GeV using a combination of the H → γγ and H → ZZ(∗) → ℓℓℓℓ channels. At 125.5

GeV, a combination of the H→WW (∗)→ℓνℓν, H → γγ, H → ZZ(∗) → ℓℓℓℓ, H → bb̄, and

H → τ+τ− channels yields a measured signal strength with respect to the Standard Model

of µ̂ = 1.3± 0.2. In this combination the couplings of the boson are explored under various

assumptions motivated by Beyond Standard Model scenarios, with no significant deviations

from the Standard Model observed. Strong evidence for the vector boson fusion production

process is found with an observed (expected) significance of 3.1 (2.5) standard deviations.

Among the individual channels, the search in the H→WW (∗)→ℓνℓν decay mode is outlined

in detail. Combining the full 7 and 8 TeV datasets, the analysis yields strong evidence for this

mode with an observed (expected) significance of 3.8 (3.7) standard deviations at mH = 125

GeV. At this mass, the signal strength in the channel is measured to be µ̂ = 1.01±0.31. The

statistical methods used in these measurements, and particle searches in general, are thor-

oughly detailed. Further, novel techniques are presented, including polynomial interpolation
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of nuisance parameters, procedures for asymptotically approximating quantiles of expected

limits, uncapping of profile likelihood test statistics, and the applications of B-Splines for

interpolating signal distributions in low resolution search channels.
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CHAPTER I

Introduction

“I believe our future depends powerfully on how well we understand this Cosmos, in which we

float like a mote of dust in the morning sky.”

- Carl Sagan

The first scientific experiment recorded by humans was performed by the Greek scholar

Eratosthenes in 240 BC. In his hometown of Syene in Egypt, he knew that at noon on

the summer solstice the sun is directly overhead, such that vertical objects cast no shadow

on the ground. At the same time, an appreciable shadow is cast in Alexandria. Knowing

this, he determined that the Earth was round and accurately measured its circumfrance.

This was the first spark of scientific methodology that led to the fire of modern science.

The last century in particular has seen an explosion of knowledge about the nature of the

universe at small scales. From the discovery of the electron by J. J. Thompson in 1897 to

the development of the Standard Model (SM) of particle physics, the Universe continues to

reveal to us its immense grandness and elegance.

The SM has been remarkably successful at predicting and describing phenomena in the

energy range currently accessible to colliders, and holds against the precision electroweak

tests performed at LEP, SLC, and the Tevatron. It is a SU(3)C×SU(2)L×U(1)Y gauge

theory, where the SU(2)L×U(1)Y portion describes the electroweak force with two charged

(W±) and two neutral (γ/Z) vector bosons. The SU(3)C portion contains eight spin-1 vector
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fields that give rise to the eight massless gluons (g). The gauge bosons mediate interactions

between three families of fermions and themselves. The SU(2)L fields couple to left-handed

fermion doublets, while the U(1)Y field couples to fermions with hypercharge Y. The physical

electroweak bosons are the result of the SU(2)L×U(1)Y symmetry breaking, in the form of

two neutral currents (the massive Z and massless γ) and two massive charged currents (W±).

The mechanism by which particles aquire mass is in the process of being experimentally

verified, which is the subject of this thesis: The Higgs boson arises from a complex scalar field

added to the SU(2)L×U(1)Y theory as a SU(2)L doublet with a non-zero vacuum expectation

value. This non-zero vacuum expectation value generates mass terms for the gauge bosons

and itself, previously required to be zero by the SU(2)L symmetry. It has been sought

after since its proposal in 1964 by Robert Brout, François Englert, Peter Higgs, Gerald

Guralnik, C. Richard Hagen, and Tom Kibble [51, 42, 49] and its incorporation into the

SM by Steven Weinberg in 1967 [73]. It is also attractive because it softens f f̄ → W+W−

scattering. Without this contribution the cross section would diverge at high energies and

violate unitarity [57].

In July 2012, both ATLAS and CMS at the Large Hadron Collider (LHC) announced the

discovery of a boson with properties consistent with the SM Higgs [22, 32], with Tevatron

claiming evidence consistent with the LHC results [47]. The results of the full 7 and 8 TeV

runs (Run I) show that it is likely a CP even scalar particle, and therefore qualifies as a

Higgs boson [12, 17, 15, 33, 18, 11]. Studies of the couplings with the LHC Run I data also

confirm compatibility with the SM Higgs boson with mass near 125 GeV [9, 3]. However,

more data is necessary to ascertain if it is the Higgs boson of the SM or perhaps something

more exotic.
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CHAPTER II

Standard Model of Particle Physics

“Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of

genius - and a lot of courage - to move in the opposite direction.”

- Albert Einstein

The next sections motivate and lay the groundwork for the addition of the Higgs boson

to the SM. This requires an understanding of gauge theories, which are intimately related

to the notion of symmetry. The implications of the invariance of the laws of physics under

transformations are first discussed in Section 2.1. Following the work of Dirac in Section 2.2

that describes the Lagrangian of free fermions, the unification of Quantum Mechanics (QM)

with Maxwell’s laws in Section 2.3 is made possible by adding to the Lagrangian a gauge

field and requiring invariance under U(1)Y transformations. This unification is extended

in Section 2.4 to combine the electromagnetic and weak forces into the electroweak force,

wherein the motivation is provided for the Higgs mechanism covered in Section 2.5. While

not related to the Higgs mechanism, an understanding of Quantum Chromodynamics (QCD)

is essential and is discussed in Section 2.6. In the last section (2.7), the production and decays

of the Higgs relevant to the LHC are discussed.

3



2.1 Noether’s Theorem

Underlying the theory of particles, and physics in general, is symmetry. Noether’s theo-

rem, first proven in 1918 by Emmy Noether, states that for every transformation of a field

φ(x) that leaves the action invariant there exists a conserved current. The invariance of the

action is equivalent to the Lagrangian density L(x), which is a function of both φ(x) and

its derivative ∂µφ(x), being invariant up to a surface term. The action is defined by the

integral of the Lagrangian density (henceforth referred to simply as the Lagrangian) over all

space-time.

S =

∫

L(x)d4x (2.1)

Consider an infinitesimal transformation of the field φ(x)→ φ(x) + δφ(x) that conserves

the action:

0 = δS

=
∫

d4x
{

∂L
∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ)

}

=
∫

d4x
{

∂L
∂φ
δφ− ∂µ

(

∂L
∂(∂µφ)

)

δφ+ ∂µ

(

∂L
∂(∂µφ)

δφ
)}

(2.2)

The third term represents an overall surface term. Assuming no boundary terms on the

action, this term is zero. This indicates that invariance of the action is equivalent to the

Euler-Lagrange equation of motion:

∂L
∂φ
− ∂µ

(

∂L
∂(∂µφ)

)

= 0 (2.3)

Turning this around, one can require that a shift in the Lagrangian induced by a local

transformation of the field must be zero up to a local four divergence:

L(x)→ L′(x) = L(x) + ∂µJ µ(x)⇒ δL(x) = ∂µJ µ(x) (2.4)
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The shift in the Lagrangian can also be written with respect to the field:

δL(x) = ∂L
∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ)

= ∂L
∂φ
δφ− ∂µ

(

∂L
∂(∂µφ)

)

δφ+ ∂µ

(

∂L
∂(∂µφ)

δφ
)

= ∂µ

(

∂L
∂(∂µφ)

δφ
)

(2.5)

Equating the two forms of δL(x), one obtains a conserved current jµ(x):

jµ(x) ≡ ∂L(x)
∂(∂µφ)

δφ+ J µ(x)

∂µj
µ(x) = ∂µ

(

∂L(x)
∂(∂µφ)

δφ
)

+ ∂µJ µ(x) = 0
(2.6)

2.2 Dirac Lagrangian

The Dirac Lagrangian describes the behavior of relativistic spin-1/2 fields ψ(x) in free

space:

LDirac(x) = ψ̄(x)(iγµ∂µ −m)ψ(x) (2.7)

In 4-dimensions he terms γµ are 4×4 matrices satisfying the anti-commutation relation-

ship:

{γµ, γν} = 2gµν (2.8)

where gµν is the metric tensor. In four dimensional Minkowski space, these matrices can

be represented in terms of the Pauli sigma matrices σi, i = 1, 2, 3:

γµ =







0 σµ

σ̄µ 0






(2.9)

σµ and σ̄µ are the four-vector notations for the Pauli sigma matrices, such that σµ ≡ (I, σ)

and σ̄µ ≡ (I,−σ), with σ ≡ (σ1, σ2, σ3). The term ψ̄(x) ≡ ψ†γ0 requires the additional γ0

for the ψ̄ψ term to be Lorentz invariant. The term ψ(x) can be further decomposed into left
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and right handed Weyl spinors:

ψ =







ψL

ψR






(2.10)

Applying the Euler-Lagrange formula to LDirac(x), one obtains the Dirac equation of

motion for ψ(x):

(iγµ∂µ −m)ψ(x) = 0 (2.11)

This represents the equation of motion for a free (non-interacting) fermion. The next

section shows how interactions with the electromagnetic field can be incorporated into the

Lagrangian.

2.3 Quantum Electrodynamics

Quantum Electrodynamics (QED) represents a unification of QM with Maxwell’s laws

that describe how charged fermions interact with the electromagnetic field at low energies,

i.e. far from the W±/Z0 masses:

∇ · E = ρ
ε0

∇ ·B = 0

∇× E = −1
c
∂B
∂t

∇×B = µ0J + µ0ε0
∂E
∂t

(2.12)

E is the electric field, B is the magnetic field, ρ is the electric charge density of space, µ0

is the permeability of free space, and ε0 is the permittivity of free space.

Switching to natural units and introducing the electromagnetic four-potential Aµ =

(φ,A), where E = −∂A
∂t
− ∇φ and B = ∇ × A, and a corresponding field strength ten-

sor F µν = ∂µAν − ∂νAµ, Maxwell’s equations are superseded by the Lagrangian for QED:

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (2.13)
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Dµ ≡ ∂µ − ieAµ is the covariant derivative required for gauge invariance, where e = |e|

is taken to be positive. This term ultimately yields the interaction terms in the Lagrangian

between the fermion and electromagnetic field. Applying the Euler-Lagrange equation with

respect to Aµ, one obtains two of Maxwell’s four equations:

LQED = ψ̄(iγµDµ −m)ψ − 1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

= ψ̄(iγµDµ −m)ψ − 1
4
(∂µAν∂

µAν − ∂µAν∂
νAµ − ∂νAµ∂

µAν + ∂νAµ∂
νAµ)

= ψ̄(iγµ∂µ − eγµAµ −m)ψ − 1
2
(∂µAν∂

µAν − ∂µAν∂
νAµ)

(2.14)

∂L
∂Aµ
− ∂ν( ∂L

∂(∂νAµ)
) = 0

⇒ ∂ν(∂µAν − ∂νAµ) = −eψ̄γµψ
(2.15)

Defining the four current jµ ≡ −eψ̄γµψ, the last equation can be written in a more

elegant form:

∂νF
µν = jµ (2.16)

The conservation of jµ follows directly:

∂µj
µ = ∂µ∂νF

µν

= ∂µ∂ν(∂µAν − ∂νAµ)

= 0

(2.17)

Eq. 2.16 yields four differential equations, one for each index of µ. Writing out the µ = 0

and µ = 1, 2, 3 components separately and writing jµ = (ρ,J) in terms of its temporal and

spatial components ρ and J, respectively, one obtains two of Maxwell’s four equations:

−∇ · ∂A
∂t

+∇2φ = j0 ⇔ ∇ · E = ρ
ε0

∇× (∇×A)− ∂2
A

∂t2
+ ∂

∂t
∇φ = ji ⇔ ∇×B = µ0J + µ0ε0

∂E
∂t

(2.18)

Noting that E and B are functions of A and φ, the last two equations follow directly
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from the identities of second derivatives:

∇×E = − ∂
∂t
∇×A−∇×∇φ = −∂B

∂t

∇ ·B = ∇ · (∇×A) = 0
(2.19)

It is also useful to obtain the equation of motion of fermions by applying the Euler-

Lagrange equation with respect to ψ. With respect to Eq. 2.11, the only additional term is

the interaction term with the field Aµ:

(iγµ∂µ −m)ψ = −eγµAµψ (2.20)

LQED is invariant under a gauge transformation of the field ψ when the gauge field Aµ is

simultaneously transformed:

ψ(x) → ψ′(x) = ψ(x)eiθ(x)

Aµ(x) → A′
µ(x) = Aµ(x) + 1

e
∂µθ(x)

(2.21)

The terms F µν (and therefore F µνFµν) and mψ̄ψ are trivially invariant. The interaction

and kinetic terms each pick up a term differing by a sign and cancel:

ψ̄γµDµψ → ψ̄′γµD′
µψ

′ = ψ̄e−iθ(x)γµ(∂µ − ieAµ(x)− i∂µθ(x))ψeiθ(x)

= ψ̄γµDµψ + ψ̄iγµ∂µθ(x)ψ − ψ̄iγµψ∂µθ(x)

= ψ̄γµDµψ

(2.22)

2.4 Electroweak Unification

QED works well in describing the interactions between charged fermions and the elec-

tromagnetic field, but is not intended or able to describe phenomena arising from the weak

interactions, such as beta decays. For this, we need to extend the model to a larger theory.

The spin-1 gauge fields W a
µ (a = 1, 2, 3) transform under the adjoint of the SU(2)L group
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with associated generators T a = 1
2
σa, where σa are the Pauli matrices. The gauge field Bµ is

associated with U(1)Y . Fermions enter SU(2)L as left-handed doublets ΨL, while the right

handed fermions ψR are SU(2)L singlets that are charged under U(1)Y . ΨL is a doublet

representation of SU(2)L. ψR is a singlet under SU(2)L, but transforms under U(1)Y :

LEW = Ψ̄Liγ
µDL

µΨL + ψ̄Riγ
µDR

µψR − 1
4
W µν

a W a
µν − 1

4
BµνBµν (2.23)

ΨL =







ψ′
L

ψL






(2.24)

ΨL and ψR can be either leptons or quarks. There are three generations of both, which

will remain implicit in the notation:

Leptons : Quarks :






ψ′
L

ψL






=







νL

eL






;







ψ′
L

ψL






=







uL

dL







ψR = eR ; ψR = uR, dR

(2.25)

The covariant derivative contains the four gauge fields that will form the interaction terms

with the fermions. This is different for the left-handed doublets and right-handed singlets:

DL
µ = ∂µ − ig1 Y2Bµ − ig2T aW a

µ

DR
µ = ∂µ − ig1 Y2Bµ

(2.26)

The hypercharge of the fermions is Y = 2Q− 2I3, where Q is the electromagnetic charge

and I3 is the third component of the weak isospin. The eigenvalues of each for the different

fermion flavors are listed in Table 2.1.

g1 and g2 are the coupling constants of the fermions to the gauge fields. The form of the

field strength tensor Bµν of Bµ is identical to that of the photon in QED. W a
µν is the field
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νL eL eR uL dL uR dR
Q 0 -1 -1 +2/3 -1/3 +2/3 -1/3
I3 +1/2 -1/2 0 +1/2 -1/2 0 0
Y -1 -1 -2 +1/3 +1/3 +4/3 -2/3

Table 2.1: Eigenvalues of the electromagnetic charge Q, the third component of the weak
isospin I3, and the weak hypercharge Y = 2Q− 2I3 for the fermions of the SM.

strength tensor of W a
µ . Because the generators T a of SU(2)L do not commute, W a

µν picks up

an additional term:

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ǫ
abcW b

µW
c
ν

Bµν = ∂µBν − ∂νBµ

(2.27)

ǫabc is the antisymmetric tensor that arises due to the commutation relation that is the

SU(2)L algebra. There is no such term in Bµν since the lone U(1)Y generator Y trivially

commutes:

[T a, T b] = iǫabcT c

[Y, Y ] = 0
(2.28)

The extra term inW a
µν from the non-abelian nature of SU(2)L gives rise to self-interactions

among the gauge bosons in this group that aren’t present in U(1)Y [63].

An SU(2)L transformation of the Lagrangian yields the transformed fermion doublet and

gauge fields required for invariance of the Lagrangian:

Ψ′
L = ΨLe

iβa(x)Ta

~W ′
µ = ~Wµ − 1

g2
∂µ~β(x)− ~β(x)× ~Wµ

(2.29)

Mass terms, however, will break this symmetry. Expanding the fermion field in terms of

the left and right handed components shows why this is:

mΨ̄Ψ = mΨ̄(1
2
(1− γ5) + 1

2
(1 + γ5))Ψ

= m(Ψ̄RΨL + Ψ̄LΨR)
(2.30)
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Since only ΨL transforms under SU(2)L, these mass terms are not invariant under the

transformation in Equation 2.29; neither are mass terms M2
aW

a
µW

aµ for the bosons. Fermions

and bosons will have to acquire mass another way (Section 2.5).

In general, the physical bosons that couple to the fermions can be mixtures of the gauge

bosons. The mixing of the W 3
µ and the Bµ can be represented by a rotation by the Weinberg

angle θW , where sin θW ≡ sW ≡ g1√
g21+g22

and cos θW ≡ cW ≡ g2√
g21+g22

:







Aµ

Zµ






=







cW sW

−sW cW













Bµ

W 3
µ






(2.31)

The motivation for this choice of rotation will be more clear when discussing the Higgs

mechanism in Section 2.5. Following from the rotation, Bµ and W 3
µ can be written in terms

of Aµ, Zµ, and θW :

Bµ = cWAµ − sWZµ

W 3
µ = sWAµ + cWZµ

(2.32)

The covariant derivative can be written in terms of the mass eigenstates Aµ, Zµ, and W±
µ
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corresponding to the physical bosons γ, Z, and W±, respectively:

iDL
µ = i

(

∂µ − ig1 Y2Bµ − ig2T aW a
µ

)

=







a11µ a12µ

a21µ a22µ






,

a11µ ≡ i∂µ + 1
2
g1Y Bµ + 1

2
g2W

3
µ

= i∂µ + 1
2
(g1cWY + g2sW )Aµ − 1

2
(g1sWY − g2cW )Zµ

a12µ ≡ 1
2
g2(W

1
µ − iW 2

µ)

= 1√
2
g2W

+
µ

a21µ ≡ 1
2
g2(W

1
µ + iW 2

µ)

= 1√
2
g2W

−
µ

a22µ ≡ i∂µ + 1
2
g1Y Bµ − 1

2
g2W

3
µ

= i∂µ + 1
2
(g1cWY − g2sW )Aµ − 1

2
(g1sWY + g2cW )Zµ

(2.33)

Multiplying the interaction terms with the fermion doublets and rewriting the coefficients

in terms of θW reveals the electroweak fermion-boson interactions:

Ψ̄Liγ
µDL

µΨL =

(

ψ̄′
L ψ̄L

)

γµ







a11µ a12µ

a21µ a22µ













ψ′
L

ψL







= ψ̄′
Lγ

µa11µ ψ
′
L + ψ̄′

Lγ
µa12µ ψL

+ψ̄Lγ
µa21µ ψ

′
L + ψ̄Lγ

µa22µ ψL

= iψ̄′
Lγ

µ∂µψ
′
L + iψ̄Lγ

µ∂µψL

+ 1
2
e(Y + 1)ψ̄′

Lγ
µψ′

LAµ + 1
2
e(Y − 1)ψ̄Lγ

µψLAµ

− 1
2
(g1sWY − g2cW )ψ̄′

Lγ
µψ′

LZµ − 1
2
(g1sWY + g2cW )ψ̄Lγ

µψLZµ

+ 1√
2
g2ψ̄

′
Lγ

µψLW
+
µ + 1√

2
g2ψ̄Lγ

µψ′
LW

−
µ

(2.34)

The identity g1cW = g2sW ≡ e, the electromagnetic charge, has been used in the Aµ
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terms. The right handed singlet terms are similar:

ψ̄Riγ
µDR

µψR = ψ̄Riγµ(∂µ − ig1 Y2Bµ)ψR

= iψ̄Rγµ∂µψR + 1
2
eY ψ̄RγµψRAµ − 1

2
g1sWY ψ̄RγµψRZµ

(2.35)

Inserting the SM fermions in place of ψ′
L, ψL, and ψR and replacing the weak hypercharge

with its corresponding eigenvalues, the seventeen interaction terms come about:

Left−Handed Interactions :

EM
− −eēLγµeLAµ

2
3
eūLγ

µuLAµ
1
6
ed̄Lγ

µdLAµ

Neutral Current

1
2
(g1sW + g2cW )ν̄ ′Lγ

µν ′LZµ
1
2
(g1sW − g2cW )ēLγ

µeLZµ

− 1
2
(1
3
g1sW − g2cW )ūLγ

µuLZµ −1
2
(1
3
g1sW + g2cW )d̄Lγ

µdLZµ

Charged Current

1√
2
g2ν̄Lγ

µeLW
+
µ

1√
2
g2ēLγ

µνLW
−
µ

1√
2
g2ūLγ

µdLW
+
µ

1√
2
g2d̄Lγ

µuLW
−
µ

Right− Handed Interactions :

EM
− −eēRγµeRAµ

2
3
eūRγµuRAµ −1

3
ed̄RγµdRAµ

Neutral Current
− g1sW ēRγµeRZµ

−2
3
g1sW ūRγµuRZµ

1
3
g1sW d̄RγµdRZµ

(2.36)

The addition of an SU(2)L gauge symmetry therefore inseparably unifies the electro-

magnetic and weak forces into the electroweak force. The electroweak Lagrangian is able to

describe a plethora of physics, but leaves many unanswered questions. In particular, why are

the weak bosons and fermions observed to be massive given that mass terms break SU(2)L

symmetry?
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2.5 Higgs Sector

The Higgs boson offers a potential solution to mass terms for weak bosons and fermions

that otherwise violate the SU(2)L symmetry. This requires adding to the electroweak La-

grangian an extra spin-0 scalar field Φ as a complex doublet:

Φ =







φ+

φ0






=

1√
2







φ1 − iφ2

φ3 − iφ4






(2.37)

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2 (2.38)

Here the covariant derivative in the kinetic term is the same as the left-handed equa-

tion 2.26 with YΦ = +1 as the eigenvalue of the weak hypercharge. The term V (Φ) =

−µ2Φ†Φ +λ(Φ†Φ)2 is the potential term of the Lagrangian. If µ2 < 0, V (Φ) has a minimum

at Φ = 0. If µ2 > 0, V (Φ) has a minimum at
√

|Φ|2 =
√

µ2

λ
such that V (Φ) has a non-zero

expectation value. Note that in this form the Lagrangian in Eq. 2.38 is trivially SU(2)L

invariant.

To simplify the coming algebra, it’s useful to work in the unitary gauge [38]. Lextra is

SU(2)L invariant, so we can always make a transformation to this gauge that removes the

upper component of Φ:

U(x)Φ = 1√
2







0

φ(x)







= 1√
2







0

v + h(x)







(2.39)

In the second line the remaining lower component has been expanded around a vacuum

expectation value v by a small perturbation h(x). Minimizing the potential term with respect

to h(x) shows that the minimum occurs at v, corresponding to the minimum
√

|Φ|2 = µ2

λ
of

V (Φ) mentioned above. Writing out the potential term reveals the self-interaction terms of
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the field h(x):

µ2Φ†Φ− λ(Φ†Φ)2 = 1
2
µ2(v2 + h2 + 2vh)− 1

4
λ(v4 + h4 + 4vh3 + 6v2h2 + 4v3h)

= v(µ2 − λv2)h+ (1
2
µ2 − 3

2
λv2)h2 − vλh3 − 1

4
λh4 + const

= λv2h2 − vλh3 − 1
4
λh4 + const

(2.40)

In the last line the substitution µ2 = λv2 was made, which removes the term linear in

h. The remaining parts show the cubic and quartic self-interaction terms. Also revealed is

the mass term λv2h2, yielding MH =
√

2λv. The kinetic term gives the effect on the gauge

bosons:

(DµΦ)†(DµΦ) = 1
2

∣

∣

∣

∣

∣

∣

∣







∂µ − i
2
eAµ + i

2
(g1sW − g2cW )Zµ −i 1√

2
g2W

+
µ

−i 1√
2
g2W

−
µ ∂µ + i

2

√

g21 + g22Zµ













0

v + h







∣

∣

∣

∣

∣

∣

∣

2

= 1
2
(∂µh)2 +

g21+g22
8
v2Z2

µ +
g21+g22

8
h2Z2

µ +
g21+g22

4
vhZ2

µ

+
g22
4
v2W+

µ W
−,µ +

g22
4
h2W+

µ W
−,µ +

g22
2
vhW+

µ W
−,µ

(2.41)

The mass terms
g22
4
v2W+

µ W
−,µ = M2

WW
2
µ ,

g21+g22
8
v2Z2

µ = 1
2
M2

ZZ
2
µ, and 0 = 1

2
M2

AA
2
µ show the

W± and Z bosons masses 1
2
g2v and

√
g21+g22
2

v, respectively, while leaving the photon massless

as observed in nature. Cubic and quartic vertices between the bosons arise as well. It also

predicts the ratio of W and Z masses to be MW

MZ
= cW , which is well established [62]. The

vacuum expectation value v ≈ 246 GeV can also be inferred from these relations. Written

in terms of the field h(x), the Lagrangian is not obviously SU(2)L invariant (though it is!);

this symmetry has been “spontaneously” broken by expanding around v.

The extra doublet can accommodate fermion masses when adding interaction terms be-

tween the fermions and Φ. For the down-type fermions ψL and ψR with corresponding
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Yukawa couplings λd:

Ldown
fermion−Higgs = −λdΨ̄LΦψR + h.c.

= − 1√
2
λd(ψ̄

′
L, ψ̄L)







0

v + h






ψR + h.c.

= − 1√
2
λdvψ̄LψR − 1√

2
λdψ̄LψRh+ h.c.

= − 1√
2
λdvψ̄ψ − 1√

2
λdψ̄ψh

(2.42)

The expansion shows down-type fermion masses md = 1√
2
λdv and the interactions of

the Higgs with fermions. Generating mass is similar for the up-type fermions ψ′
L and ψ′

R.

Adding to the Lagrangian terms where the Higgs field has been rotated reveals these final

mass terms:

Lup
fermion−Higgs = −λuΨ̄LΦ′ψ′

R + h.c.,

Φ′ = −iσ2Φ =







v + h

0







⇒ Lup
fermion−Higgs = − 1√

2
λu(ψ̄′

L, ψ̄L)







v + h

0






ψ′
R + h.c.

= − 1√
2
λuvψ̄

′
Lψ

′
R − 1√

2
λuψ̄

′
Lψ

′
Rh+ h.c.

= − 1√
2
λuvψ̄

′ψ′ − 1√
2
λuψ̄

′ψ′h

(2.43)

Just as with the down-type fermions, the up-type fermion-Higgs interaction terms arise

and the masses mu = 1√
2
λuv are generated.

2.6 QCD

QCD is the theory of the strong force between quarks mediated by gluons. It is described

by the SU(3)C group. There are eight spin-1 massless gluon fields Ga
µ (a=1,...,8). The quarks
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Q are triplets under SU(3)C :

LQCD = Q̄(iγµDµ −m)Q− 1

4
Ga

µνG
µν
a (2.44)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
νG

c
ν is the field strength tensor of Ga

µ. gs is the strong

coupling, and fabc are the associated structure constants of the SU(3)C algebra:

[ta, tb] = ifabctc (2.45)

The eight ta are one-half times the 3x3 Gell-Mann matrices λa, the generators of SU(3)C .

Similar to SU(2)L, the non-commuting SU(3)C algebra gives rise to self-interaction among

the gluons fields [63].

2.7 Higgs at the LHC

There are several Higgs boson production modes at the LHC. The dominant mode is

gluon-gluon fusion (gg → H , denoted ggF), in which a top- and b-quark loop mediates an

effective coupling between the Higgs and two initial state gluons. Vector Boson Fusion (VBF)

occurs through the process qq̄ → q′q̄′V (∗)V (∗) → q′q̄′H (V (∗) = W (∗), Z(∗)), where the vector

bosons are radiated off of two initial state quarks and fuse to give a Higgs boson. There is

a mode where a Higgs is produced in association with a vector boson (V H , V = W,Z), also

known as Higgs-strahlung, which occurs through the process qq̄ → V ∗ → V H . Finally, there

is the tt̄H mode through gg/qq̄→ tt̄H . The Feynman diagrams for each process are shown

in Figure 2.1. The production cross sections versus mH for these processes are also shown

in Figure 2.2.

The Higgs boson has no appreciable lifetime at masses larger than a few GeV and will

decay immediately into final state fermion or boson pairs. The decay into boson pairs can be

divided into two-, three-, and four-body decays, as well as decays into photon pairs, gluon

17



g

g

t H

(a) ggF

H

V

V ∗
q

q
(b) VH

q

H

q

q

q

W±/Z

W∓/Z

(c) VBF

t

H

g

g

t̄

t

t̄

(d) ttH

Figure 2.1: Feynman diagrams for the Higgs production modes accessible at the LHC
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pairs, or Z+photon through loop vertices. Possible decay diagrams are shown in Figure 2.3.

The leading-order partial width to fermions can be written as a function of the fermion

mass [41, 67]:

Γ(H → f f̄) =
1

4π
√

2
GµNcmHm

2
fβ

3
f (2.46)

Gµ is the Fermi constant. Nc is the color factor, which is 3 (1) for quarks (leptons).

mf is the mass of the fermion, and βf =
(

1− 4mf

mH

)1/2

is the fermion velocity in the final

state. Next-to-leading-order QCD corrections are substantial when decaying into light quark

pairs, however, so this requires a slight modification in these cases [27, 52]. In the limit that

mH >> mq:

ΓNLO(H → qq̄) =
3

4π
√

2
GµmHm

2
q

{

1 +
4

3

αs

π

(

9

4
+

3

2
log

m2
q

m2
H

)}

(2.47)

The decay to on-shell electroweak gauge bosons can be written similarly [54, 67]:

Γ(H → V V ) =
1

16π
√

2
Gµm

3
HδV
√

1− 4x(1− 4x+ 12x2), x =
M2

V

m2
H

(2.48)

Here δW = 2 and δZ = 1, and MV is the mass of the boson. When the Higgs mass is

small enough, the decay into vector bosons is still possible with one or both being virtual.

For one virtual boson, the partial width is [53]:

Γ(H → V V ∗) = 3
16π
G2

µM
4
VmHδ

′
VRT (x)

δ′W = 1

δ′Z = 7
12
− 109 sin2 θW + 40

9
sin4 θW

RT (x) = 3(1−8x+20x2
√
4x−1

arccos
(

3x−1
2x3/2

)

− 1−x
2x

(2− 13x+ 47x2)

−3
2
(1− 6x+ 4x2) log x

(2.49)
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Figure 2.3: Possible Higgs boson decays in the SM. (a) shows the leading-order decay into
fermion pairs, (b) shows the two-body decay into vector bosons, (c) shows decay the into light
quarks with QCD corrections, (d) shows the three-body decay into photon pairs through a
W±,∗ loop, (e) shows the decay into a photon+Zγ∗ through a fermion loop, and (f) shows
the decay into gluon pairs through a top-quark loop.
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The decay into two off-shell bosons can be written in integral form [46]:

Γ(H → V ∗V ∗) = 1
π2

m2
H
∫

0

dq21MV ΓV

(q21 −M2
V )2 +M2

V Γ2
V

m2
H
∫

0

dq22MV ΓV

(q22 −M2
V )2 +M2

V Γ2
V

Γ0(q
2
1, q

2
2)

Γ0(q
2
1 , q

2
2) = 1

16π
√
2
Gµm

3
HδV

√

λ(q21, q
2
2;m2

H)
{

λ(q21, q
2
1;m2

H) +
12q21q

2
2

mH

}

λ(x, y; z) = (1− x/z − y/z)2 − 4xy/z2

(2.50)

The loop-induced partial widths H → γγ [41], H → Zγ [31, 26], and H → gg [45, 74]

can also be written at leading order:

Γ(H → γγ) =
Gµα

2m3
H

128
√

2π3

∣

∣

∣

∣

∣

∑

f

NCQfA
H
1/2(τf) + AH

1 (τW )

∣

∣

∣

∣

∣

2

(2.51)

AH
1/2 and AH

1 are form factors for spin-1/2 and spin-1 particles, respectively:

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2

AH
1 (τ) = −[2τ 2 + 3τ + 3(2τ − 1)f(τ)]τ−2

(2.52)

The function f(τ) is defined as:

f(τ) =











arcsin2(
√
τ), τ ≤ 1

−1
4

[

log
(

1+
√
1−τ−1

1−
√
1−τ−1

)

− iπ
]2

, τ > 1
(2.53)

Finally, τi =
m2

H

4M2
i
, with i = f,W . For H → Zγ, the partial width is:

Γ(H → Zγ) =
G2

µM
2
Wαm

3
H

64π4

(

1− M2
Z

m2
H

)3
∣

∣

∣

∣

∣

∑

f

NC
Qf v̂f
cW

AH
1/2(τf , λf) + AH

1 (τW , λW )

∣

∣

∣

∣

∣

2

(2.54)

v̂f = 2I3f − 4Qfs
2
W is the vector coupling of the Z to fermions, while AH

1/2 and AH
1 are
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again form factors as functions of τi =
4M2

i

M2
H

and λi =
4M2

i

M2
Z

:

AH
1/2(τ, λ) = I1(τ, λ)− I2(τ, λ)

AH
1 (τ, λ) = cW

{

4(3− s2W
c2W

)I2(τ, λ) + [(1 + 2
τ
)
s2W
c2W
− (5 + 2

τ
)]I1(τ, λ)

} (2.55)

I1 and I2 are given by:

I1(τ, λ) = τλ
2(τ−λ)

+ τ2λ2

2(τ−λ)2
[f(τ−1)− f(λ−1)] + τ2λ

(τ−λ)2
[g(τ−1)− g(λ−1)]

I2(τ, λ) = − τλ
2(τ−λ)

[f(τ−1)− f(λ−1)]
(2.56)

f(τ) is the same as Eq. 2.53, while g(τ) is given by:

g(τ) =











√
τ−1 − 1 arcsin

√
τ , τ ≥ 1

−
√
1−τ−1

2

[

log
(

1+
√
1−τ−1

1−
√
1−τ−1

)

− iπ
]2

, τ < 1
(2.57)

Lastly, the partial width to gluons is:

Γ(H → gg) =
Gµα

2
sm

3
H

36
√

2π3

∣

∣

∣

∣

∣

3

4

∑

Q

AH
1/2(τQ))

∣

∣

∣

∣

∣

2

(2.58)

AH
1/2 in this case is the same as Eq. 2.52 for H → γγ.

The branching ratio to any single mode is the ratio of the partial width to the total

width, where the total width is the sum of all possible partial widths.

B(H → XX) =
Γ(H → XX)

∑

i

Γ(H → XiXi)
(2.59)

The branching fraction for various modes as a function of the Higgs mass is shown in

Figure 2.4. The values of the branching ratios for various decay modes assuming mH = 125

are shown in Table 2.2, while the cross section for the major production processes is shown

in Table 2.3 [55].
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Figure 2.4: Branching ratio for various decay modes as a function of the Higgs mass mH .
The range of the left plot has an upper bound of 200 GeV to reveal the structure of the
curves at low mH .

Branching ratios (mH = 125 GeV)

H →WW (∗) H → γγ H → ZZ(∗) H → bb̄ H → τ+τ− H → Zγ H → gg
0.215 0.00228 0.0264 0.577 0.0632 0.00154 0.0857

Table 2.2: Branching ratios for various decay modes assuming mH = 125 GeV

Production cross sections (pb, mH = 125 GeV)
ggF VBF WH ZH tt̄H

7 TeV 15.32 1.222 0.5729 0.3158 0.0863
8 TeV 19.52 1.578 0.6966 0.3943 0.1302
14 TeV 49.85 4.180 1.504 0.8830 0.6113

Table 2.3: Cross sections for the major production processes assuming mH = 125 GeV
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CHAPTER III

LHC & ATLAS

“Engineering is the art of organizing and directing men and controlling the forces and materials of

nature for the benefit of the human race.”

- Henry G. Stott

3.1 LHC

The LHC [43] is a proton-proton collider located in Geneva, Switzerland at the European

Organization for Nuclear Research (CERN), which began operation in 2010. Data has been

taken at the three center of mass energies
√
s = 900 GeV, 7 TeV, and 8 TeV. The 26.7

km circumference collider will have a long shutdown from 2013 until 2014, at which time it

will undergo upgrades aimed to increase the center of mass energy to 13 or 14 TeV. Beyond

this, two additional long shutdowns in 2018 and 2022 are planned in order to increase the

instantaneous luminosity to 2× 1034 cm−2s−1 and 5× 1034 cm−2s−1, respectively.

There are four primary detectors along the ring, shown in Figure 3.1: ALICE, LHCb,

ATLAS, and CMS. ALICE is designed to look at heavy ion collisions. LHCb is a dedicated

b-physics detector that operates at low luminosity. ATLAS and CMS are general purpose

detectors with design goals to find new physics in proton-proton interactions, but are also

capable of reconstructing heavy ion collisions and b-quark decays. The work in this thesis
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Figure 3.1: Layout of the LHC ring showing the positions of each experiment at the collision
points as well as injection, beam dump, and beam cleaning regions.

was done with up to 4.8 fb−1 of 7 TeV and 21 fb−1 of 8 TeV data collected with the ATLAS

detector.

The LHC uses protons derived from hydrogen atoms having been stripped of their valence

electrons. The chain of accelerators used to inject the protons into the LHC is shown in

Figure 3.2. Protons are first accelerated to 50 MeV in the Linac2 linear accelerator. From

here, they are injected into the Proton Synchrotron Booster (PSB) and accelerated to 1.4

GeV. At this point the Proton Synchrotron (PS) is able to group protons into bunches of

1.6×1011 and accelerate them to 25 GeV. The final stages are the Super Proton Synchrotron
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Parameter Value Definition
Nb 1.6×1011 Protons per bunch
nb 1368 Bunches per beam
frev 11.25 kHz Revolution frequency [s−1]
γr 4260 Relativistic γ factor
ǫn 2.5 µm Transverse emmittance
β∗ 0.6 β function at interaction point
θc 290 µrad Crossing angle at interaction point
σz 9.4 cm RMS bunch length
σ∗ 19 µm RMS transverse beam size

Table 3.1: Beam parameters for a typical 8 TeV run.

accelerating to 450 GeV and injection into the LHC. This will inject two beams, one travelling

clockwise and one counter-clockwise. The LHC ramp to nominal energy of at least 3.5 TeV

per beam takes around 20 minutes.

The schematics of the superconducting niobium-titanium dipole and quadrupole magnet

assemblies used in the LHC ring are shown in Figure 3.3. The nominal magnetic field strength

of 8.36 T generated from the 11,700 A electric current in each of the 1232 dipoles bends the

path of the proton beams while they travel through the ring. This is made possible by

cooling the niobiuim-titanium coils to 1.9 K with liquid helium. There are 392 quadrupole

magnets that complement the dipoles by stabilizing and focusing the beams.

The instantaneous luminosity is given as a function of the beam parameters and is shown

below. The definitions of the parameters and their values for a typical 8 TeV run are shown

in Table 3.1.

L0 =
N2

b nbfrevγr
4πǫnβ∗

{

1 +

(

θcσz
2σ∗

)2
}−1/2

(3.1)

During collisions, the beam intensity will decay exponentially, such that the integrated

luminosity of a run Lint is a function of the characteristic decay time τL and the length of

the run Trun.

Lint = L0τL

{

1− exp

(

−Trun
τL

)}

(3.2)

Figure 3.4 shows the total integrated luminosity by day for both 7 TeV and 8 TeV runs,
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Figure 3.2: The chain of accelerators at CERN used to inject proton beams into the LHC.
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Figure 3.3: Cross sections of the superconducting dipole (left) and quadrupole (right) magnet
assemblies used in the LHC ring.
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Figure 3.4: Integrated luminosity by day in the 7 (left) and 8 (right) TeV runs.

both the total delivered by the LHC and that which was recorded by ATLAS.

3.2 ATLAS Detector

The ATLAS (A Toroidal LHC Apparatus) detector [20] is one of two general purpose

detectors on the LHC ring. It is a hermetic 4π coverage detector designed primarily to

search for new physics in proton-proton interactions. The layout of the detector is shown in

Figure 3.5. Starting from the beam pipe and working outward, ATLAS is comprised of an

inner detector inside a superconducting solenoid magnet for vertex and track reconstruction,
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Figure 3.5: Layout of the ATLAS detector showing the major subdetectors.

a liquid argon (LAr) electromagnetic (EM) calorimeter for EM particle energy measurement,

LAr and tile hadronic calorimeters for hadronic particle energy measurement, and a muon

spectrometer for the reconstruction of muon tracks. The muon spectrometer is complemented

by eight air-core magnet loops in the barrel and two toroidal magnets in the end-cap.

The coordinate system of the detector is denoted such that the origin is in the center

of the detector at the nominal collision point. The transverse x-y plane lies perpendicular

to the beam line, which is identical to the z-axis. The two halves of the detector split by

the x-y plane are labeled A-side and C-side. A-side is a reference to the half being oriented

towards the Geneva Aeroport, while C-side references its orientation towards Charly’s pub

in Saint Genis-Pouilly, France. The positive y-axis points upwards, the positive x-axis points

towards the center of the LHC ring, and the positive z-axis towards the A-side of the detector.

The alternative r-φ-θ coordinate system is defined with r =
√

x2 + y2, cosφ = x√
x2+y2

,

and cos θ = z√
x2+z2

. For relativistic particles, it is useful to map θ to the pseudo-rapidity

η = − ln tan θ/2, or alternatively to the rapidity y = 1
2

ln E+pz
E−pz

when the particle’s mass is

non-negligible compared to its momentum. ∆η and ∆y are invariant under boosts in the

z-axis. The quantity ∆R =
√

∆φ2 + ∆η2 is used to quantify the η − φ separation between
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Figure 3.6: Layout of the inner detector in the barrel showing the Pixel, SCT, and TRT
detectors and their geometrical configuration.

two particles.

3.2.1 Inner Detector

The inner detector provides tracking and vertex reconstruction for charged particles. It’s

layout is shown is Figure 3.6. It is composed of a high granularity Pixel detector, followed

by a Semi-Conductor Tracker (SCT), and Transition Radiation Tracker (TRT). All three

are divided into barrel and end-cap components, providing coverage within |η| < 2.5 in the

silicon detectors and |η| < 2 in the TRT. The entire inner detector is surrounded by a nearly

homogeneous 2T magnetic field produced by a solenoid magnet. The field points is oriented

with the beam axis, such that positively charged particles passing perpendicular to the field

are bent in the negative φ direction.

Being closest to the interaction point (IP), the Pixel detector has the highest granularity
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and is designed to provide accurate primary and secondary vertex reconstruction. It has three

concentric cylindrical layers in the barrel between 50.5 < R < 122.5 mm and 0 < |z| < 400.5

mm, and three disks in each end-cap between 88.8 < R < 149.6 mm and 495 < |z| < 650

mm. The pixel size in R − φ × z is 50×400 µm2 throughout, with a total of 80.4 million

readout channels. This yields resolutions of 10 µm in R-φ and 115 µm in z for the barrel

and 10 µm in R-φ and 115 µm in R for the end-cap.

The SCT detector sits outside of the Pixel, with four cylindrical layers between 299 <

R < 514 mm and 0 < |z| < 749 mm in the barrel, and nine disks in each end-cap between

275 < R < 560 mm and 839 < |z| < 2735 mm. The layers are composed of pairs of 6.4 cm

daisy-chained silicon strips with a density of 80 µm per strip. The pairs are offset at an angle

of 40 mrad, with one strip parallel to the beam-line. Each strip provides one dimensional

resolution, such that the strips in stereo offer three dimensional space point measurements

when considered with their position in R for the barrel or z for the end-cap. Having a larger

lever arm than the Pixel, the SCT offers a higher momentum resolution.

The outer layer of the inner detector is the TRT, which is composed of straw tracker

drift tubes filled with a 70%/27%/3% Xe/CO2/O2 gas mixture operating at two different

thresholds to distinguish between track hits and transition radiation, and sits between 554-

1082 mm from the IP. The 4 mm diameter tubes are aligned parallel to the beam line in

the barrel and perpindicular in the end-cap. The tubes have a 31 µm tungsten wire as the

anode strung through the center. They have a carbon fiber outer layer for support, the

inside of which is 25 µm thick polyimide film with a 0.2 µm aluminum coating that acts as

the cathode. Between the tubes are materials with varying indices of refraction to induce

transition radiation from relativistic charged particles as they pass through. Because this

radiation is proportional to the boost factor of the particle, it offers some discrimination

between electrons and charged hadrons. The charged particle will also ionize the gas in the

straw tube, and the drift time from the subsequent electron avalanche can be measured,

effectively giving a measurement of the path that the particle traverses in the r-φ plane.
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Figure 3.7: Breakdown of the radiation length by EM calorimeter layer (a, b) and interaction
length by hadronic calormeter component (c) versus η.

3.2.2 Calorimeter

The ATLAS calorimeter is designed to measure the energy of all electromagnetic and

hadronic particles produced in an event. It has a total radiation length (X0) of > 22 (> 24)

in the barrel (end-cap) for EM particles out to |η| < 3.2, and an interaction length (λ)

of 9.7 at η = 0 for hadronic particles with a coverage out to |η| < 4.9. This is shown in

more detail in Figure 3.7. All calorimeters used incorporate a sampling material to induce

a particle shower and an absorbing material to measure the total energy of the shower. The

technology used in each is optimized for the expected particle density with respect to θ and

the intended interacting particle.
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The EM targeted calorimeter is the inner most detector in both barrel and end-cap. The

barrel extends to |η| < 1.475, and the end-cap between 1.375 < |η| < 3.2. It is composed of

alternating layers of lead absorbers, spacers, and copper electrodes, which use liquid argon

as an ionizing medium. Liquid argon was chosen for radiation hardness, speed, and signal

linearity. Non-magnetic stainless steel is inserted every few layers to supply rigidity to the

modules. After sandwiching the layers together, they are bent into an accordion shape in

the azimuthal and longitudinal directions for the barrel and end-cap, respectively, to ensure

a gap-free environment for particles passing through. As particles pass through, the lead will

induce a shower of secondary particles which ionize the liquid argon. A 2 kV electric field

applied to the material by the electrodes allows this signal to be collected and read out so

that one can measure the shower shape and total energy deposited in each cell. The number

of radiation lengths of the calorimeter ranges between 22-30 X0 for the electromagnetic barrel

(EMB) and 24-38 X0 for the electromagnetic end-cap (EMEC), depending on η. Because

there is a cryostat with about 1.5 X0 in front of the calorimeter, a presampler is installed to

correct for energy loss in the region |η| < 1.8.

The technology used in the hadronic calorimeter is different for the barrel and end-cap.

In the barrel is the tile calorimeter (TileCal), which uses plastic scintillators as the sampling

material and steel as the absorber. Because the EMB sits in front of this and has two

interaction lengths, most of the showering will already have taken place before the particles

reach the tile. In any case, an additional eight interaction lengths of material are used,

which provides sufficient containment for measurement of jets and missing energy. Fiber

optic cables readout the scintillator signals to photomultipliers, from which the signal can

be digitized.

The hadronic end-cap calorimeter (HEC) uses copper plates as the absorber, with sam-

pling accomplished similar to the EM calorimeter. It is divided into two wheels, the front

holding 25 copper plates, each 25mm thick, and the rear holding 17 plates at 50mm thickness.

Including the EMEC, there is a total of 12 interaction lengths in the HEC.
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Figure 3.8: Layout of the calorimetry system

Finally, the forward calorimeter (FCAL) provides calorimetry in the region 3.2 < |η| <

4.9. It is separated into one EM and two hadronic modules. Each cell is a copper cathode

with a liquid argon medium. The EM module uses copper rods as the anode, while the

hadronic modules use tungsten, providing between 9.5-15 interaction lengths.

3.2.3 Muon Spectrometer

The ATLAS Muon Spectrometer sits outside of the calorimeter, and was designed with

the intent of measuring 1 TeV muons to 10% precision in 1/pT . Monitered Drift Tube (MDT)

chambers are composed of 3 cm tubes filled with a 93% Ar/7% CO2 mixture pressurized

to four bars (three bars over atmosphere), with a 50 µm diameter tungsten wire anodes in

the center. The anode is held at a potential of 3080 V with respect to the tube casing,

which is at ground voltage. Muons passing through the tube ionize the gas, causing an

electron avalanche that is collected by the anode. The collection time can be modeled as a

function of the drift radius, giving the muon’s closest approach to the wire, and thus one

dimension of its position in the tube. The MDT chambers have three layers in the barrel
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between R1 < R < R2, and three wheels in each end-cap. This provides coverage out

to |η| < 2.7, with the exception of the inner most end-cap wheel, which extends to 2.0 in

|η|. In place of the MDTs here are high granularity Cathode Strip Chambers (CSC) in the

region 2 < |η| < 2.7. Each chamber consists of 192 cathode strips aligned perpendicular to

anode wires, with 48 more strips parallel to them. Charged particles induce an avalanche of

electrons in the gas that fills the chamber, which gives measurement of the hit position. In

both barrel and end-cap, the MDT tubes are oriented perpindicular to both the beam pipe

and the radial axis. Eight air core toroidal magnets in the barrel and two end-cap toroids

produce a magnetic field in the φ direction, such that muons are bent in θ.

Resistive Plate Chamber (RPC) detectors are used in the barrel for the muon trigger. Re-

sistive plates separated by 2 mm are held at a voltage of 9.8 kV. A 94.7/5/0.3% C2H2F4/Iso-

C4H10/SF6 gas mixture between the plates ionizes as muons pass through it, giving the muon

position with a > 98.5% reconstruction efficiency. These detectors sit above or below the

MDT chambers as in Figure 3.9.

The triggering in the end-caps is done by Thin Gap Chambers (TGCs). These chambers

also provide a measurement of the muon’s azimuthal coordinate. 55/45% CO2/n-pentane

gas is held between two or three plate layers. Azimuthally segmented anode wires between
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the plates are held at a voltage of 2.9 kV, which collects the ionization produced by muons

passing through.

3.3 Forward Detectors

There are three special purpose forward detectors in ATLAS. LUCID (LUminosity mea-

surement using Cerenkov Integrating Detector) is placed at ±17m from the IP at a radial

distance of 10 cm (|η| ≈ 5.8) from the beamline. It is composed of 20 aluminum gas vessels

pointing to the IP, which contain C4F10 pressurized to 1.2-1.4 bar. Photomultiplier tubes

housed in the gas vessels measure the Cerenkov radiation of particles resulting from p-p

inelastic scattering. ZDC (Zero-Degree Calorimeter) is ±140m from the IP and measures

forward (|η| > 8.3) neutrons from heavy ion collisions, which is correlated with the centrality

of the collisions. Finally, ALFA (Absolute Luminosity For ATLAS), sitting at ±240m in-

side Roman pots, is constructed from scintillating fiber trackers. A luminosity measurement

is extracted via the optical theorem, which relates the elastic scattering amplitude in the

forward direction with the total cross section.
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CHAPTER IV

Event Reconstruction

“Measure what is measurable, and make measurable what is not so.”

- Galileo Galilei

4.1 Trigger System

Given high instantaneous design luminosity at the LHC, L ∼ 1034 cm−2s−1, corresponding

to 25ns per bunch crossing, the full amount of raw data produced would be impossible to

record and analyze given today’s technology and resources; even if possible to record, the vast

majority of collisions are uninteresting. The ATLAS trigger system is designed to selectively

reduce the information throughput by rapidly filtering out uninteresting collisions at high

efficiency. This is achieved through a three part sequential process consisting of a Level 1

(L1) hardware trigger and a software based High Level Trigger (HLT), which is itself divided

into a Level 2 (L2) and Event Filter (EF). The full chain reduces the 40 MHz nominal

collision rate down to ∼400 Hz with a bandwidth of 500 MB/s.

4.1.1 L1 Trigger

The L1 hardware trigger is designed to pass events at around 75 kHz using information

from the calorimeter and muon spectrometer. Raw data is cached in Read Out Buffer (ROB)
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queues in the detector electronics. One or more ROBs are grouped into a Read Out System

(ROS), from which the trigger logic can pull information. Several Regions of Interest (RoI)

are defined for each event within the L1 algorithms for use in the HLT.

The L1 calorimeter trigger coarsely sums transverse energy in towers of ∆η × ∆φ =

0.1 × 0.1 in the central region and in larger and more irregular sizes in the 2.5 < |η| < 4.9

region. The energy is summed separately for the EM and hadronic calorimeters. Two

processor systems, the cluster processor and the jet and energy-sum processor, run in parallel

to make a trigger decision. The cluster processor is used for e/γ/τ based triggers. It identifies

clusters of 2 × 2 EM towers as RoIs, in which any of the 1× 2 or 2× 1 tower clusters must

pass a programmable threshold, as shown in Figure 4.1. The 12 tower ring surrounding each

RoI is also used for isolation thresholds. The jet and energy-sum processor works similarly,

but identifies larger 4 × 4, 6 × 6, and 8 × 8 tower RoIs centered around local maximums of

2 × 2. This processor sums transverse energy from both EM and hadronic towers in order

to form the trigger decision.
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The L1 muon trigger uses information from the RPC in the barrel and TGC in the

end-caps, which are composed of planes of between two and four chambers. Hits in these

detectors are used to give a rough reconstruction of the pT , η, and φ of the muon, as shown

in Figure 4.2.

4.1.2 High Level Trigger

The HLT uses full inner detector, calorimeter, and muon spectrometer information within

the RoIs defined at L1, with few exceptions. At L2, the inner detector uses two inside-out

algorithms starting from the Pixel and SCT detectors to reconstruct tracks. The tracks are

then processed by a Kahlman filter, after which TRT information is used to improve the

pT resolution and electron identification performance. The inner detector EF reconstruction

shares software with the offline reconstruction, which is extended to support RoIs. The algo-

rithm is similar to L2: track seeds from the Pixel and SCT are preselected with momentum
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and impact parameter requirements, to which a combinatorial Kahlman filter is applied.

Low quality tracks are rejected, and the remaining ones use additional TRT information to

perform a final fit, from which the track parameters are extracted. The final trigger decision

at the EF level is able to use the full information from the event to form a decision and is

not restricted to the RoIs as in L2.

4.2 Electrons

Electrons are reconstructed based on energy deposited in the EM calorimeter as well as

inner detector tracks. Information from the hadronic calorimeter is also used to discriminate

from hadronic particles faking electrons. Two primary algorithms are used. The stan-

dard algorithm performs an outside-in reconstruction, first reconstructing EM clusters then

matching to inner detector tracks. The second non-standard algorithm is inside-out, first

reconstructing tracks and second projecting to the EM calorimeter to search for a matching

cluster. The non-standard algorithm is not covered here, though it should be mentioned

that it is useful for low energy electron reconstruction and for finding electrons within jets.

The EM seeded algorithm uses clusters with ET > 3 GeV. Inner detector tracks are

extrapolated to the EM calorimeter. Tracks are required to match the cluster position

within a window of ∆η × ∆φ = 0.05 × 0.1. The ratio of energy deposited in the EM

calorimeter to track momentum (E/p) is required to be less than 10. At this point various

quality selections can be applied to clusters and tracks. A simple cut based method classifies

electrons into three classes of quality, each with various degrees of true electron efficiency

and fake rejection. The exact cut based selections are optimized in seven η bins and six pT

bins.

• Loose electrons are defined as electron candidates passing requirements on hadronic

leakage as well as lateral shower shape and cluster width variables based on the middle

layer of the EM calorimeter. These offer the best efficiency, but the lowest background
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rejection.

• In addition to the selections for loose electrons, medium electrons are required to

pass quality cuts on strips in the first layer of the EM calorimeter as well as inner

detector tracks. In particular, cuts are applied to Emax2−Emin, the difference between

the second most energetic and least energetic cell in the first EM layer; to Rmax2 =

Emax2/(1 + 9 × 10−3 ET

GeV
); to wstot, the shower width over strips covering 2.5 cells of

the second layer; to ws3, the shower width over three strips centered around the most

energetic cell; to Fside, the fraction of energy deposited around the shower core; to the

number of hits in the pixel detector; to the sum of hits in the silicon detectors (pixel

+ SCT); and to d0, the transverse impact parameter of the track. These selections

increase background rejection by a factor of 3 or 4 and reduce reconstruction efficiency

by ∼ 10%.

• In addition to selections on medium electrons, tight electrons must satisfy cuts on the

number of vertex layer hits; on the number of TRT hits; on the ratio of high threshold to

total TRT hits; on the difference in η and φ between the cluster and track; and on E/p.

At this point two different selections can be chosen depending on the expected electron

topology: A tight calorimeter isolation requirement based on cells within ∆R < 0.2 of

the EM cluster, or tighter TRT selections based on already selected TRT variables.

4.2.1 Gaussian Sum Filter

The energy loss an electron incurs while traversing through matter has a significant

impact on both the efficiency of reconstruction and the quality of the reconstructed track

parameters. The material budget of ATLAS as shown in Figure 4.3 highlights the need

to mitigate this effect. An analytical parametrization developed by Beth and Heitler [50]

describes the probability for an electron to retain a fraction z =
Ef

Ei
of it’s initial energy after
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traversing t radiation lengths though a material:

f(z) =
1

Γ( t
ln 2

)
[− ln z]

t
ln 2

−1 (4.1)

Secondary processes such as the Landau-Pomeranchuk-Migdal or Ter-Mikaelian effects

become important at higher energies, such that the validity of Eq. 4.1 breaks down and

GEANT4 simulations must be used to correctly describe the energy loss. A Gaussian Sum

Filter (GSF) technique [4] can be employed to refit the track to better account for electron

bremsstrahlung radiation. Assuming the track’s trajectory can be approximated by a sum

of weighted Gaussian functions, a Kahlman filter can be run in parallel on each, such that

each component represents a different contribution to the full Beth-Heitler spectrum. The

standard electron reconstruction is then performed with the refitted track. Figure 4.4 show

the impact on the momentum and impact parameter resolution, respectively.
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Figure 4.4: Impact of the GSF algorithm on the electron track resolution and impact pa-
rameter.

4.2.2 Electron Performance

Figure 4.5 shows the electron reconstruction efficiency versus pT and η for both 7 TeV

and 8 TeV data. Figure 4.6 shows the identification efficiency versus the number of primary

vertices for the three cutbased quality criteria for 8 TeV data. This was measured using the

tag-and-probe method on Z → e+e− events in data [21].

4.3 Muons

Muons are reconstructed using information in the muon spectrometer, inner detector,

and calorimeter. Stand Alone (SA) muon trajectories use hits in the three Muon Spectrom-

eter (MS) stations to seed the reconstruction algorithm. The trajectory is extrapolated back

to the beam line to obtain the final angular and impact parameters. The muon’s energy is

further corrected based on parametrized calorimeter energy loss. SA tracks can be combined
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with reconstructed ID tracks and refit to give a final combined muon. The STACO (STAtis-

tical COmbination) algorithm uses a χ2
match as a figure of merit to determine the best pairings

between SA and ID tracks, where χ2
match = (TMS −TID)T(CMS −CID)−1(TMS −TID). T

is the vector of five track parameters and C is its covariance matrix. The final refit track

vector is then computed as T = (C−1

ID
+ C−1

MS
)−1(C−1

ID
TID + C−1

MS
TMS).

Two additional reconstruction algorithms are available to further increase the muon ef-

ficiency. One algorithm identifies segmented tagged muons by extrapolating ID tracks to

the MS and identifying straight track segments (SA tracks missing hits in at least one MS

station) consistent with the extrapolated hypothesis. A second algorithm extrapolates ID

tracks to the calorimeter and searches for energy deposits consistent with a minimum ion-

izing particle. These algorithms are able to increase muon efficiency, but can potentially

increase background rates due to the less stringent requirements on the MS track.

4.3.1 Muon Performance

Figure 4.7 shows the muon reconstruction efficiency versus η for combined muons based

on tag and probe studies on early 7 TeV data. As can be seen in the figure, the efficiency

loss in the |η| ≈ 0 and |η| ≈ 1.4 regions is high, which is the motivation for the additional

reconstruction algorithms outlined at the end of the previous section.

4.4 Jets and Missing Transverse Energy

There are multiple jet reconstruction algorithms used in ATLAS in order to accommo-

date the needs of different physics analyses. Certain properties can be attributed to the

algorithms that describe their stability from a theoretical standpoint. The property that the

reconstructed jet multiplicity of an event is insensitive to additional soft particles not coming

from the fragmentation of a hard scattered parton is called infrared safety. Collinear safety

describes an algorithm that is insensitive to how the transverse momentum is distributed

among collinear decay products; that is, jet reconstruction should not depend on the decay
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panel at the bottom shows the ratio between the measured and predicted efficiencies.

of a particle into two additional collinear particles. The jet algorithm must also be computa-

tionally practical, such that it scales well with event particle multiplicity. Before describing

the algorithms, the procedure for reconstructing individual clusters within the calorimeter

will first be mentioned.

The ATLAS calorimeters are comprised of about 200,000 cells in which energy can be

deposited. Individual cell energies in an event are lumped together to yield reconstructed

particle level objects. There are two methods for doing so. The first, topological cell clusters,

is seeded by cells with a signal significance Γ = Ecell/σnoise,cell above some threshold S.

Adjacent cells in all three dimensions are added indiscriminately of their Γ. Cells neighboring

these are then added if their signal significance is larger than a secondary threshold N . A

ring of guard cells with significance Γ > P is finally added. Typical values of S, N , and P

are 4, 2, and 0, respectively. After the cell has been reconstructed, local maxima of energy

within the cell is searched for. If multiple maxima are present, the cluster is split using a

splitting algorithm.

An alternative to topological cell based clusters are signal tower based reconstruction.

Calorimeter tower signals are reconstructed using 2-d towers with a grid size of ∆η ×∆φ =

0.1 × 0.1. Energy in cells in the radial direction are summed indiscriminately into towers.

Similar to topological clusters, signal towers are grouped into clusters based on a 4-2-0
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approach. Starting from a seed tower with large signal significance, neighboring towers

with a secondary significance threshold are added, followed by neighboring neighbors with

a tertiary threshold. Being a two dimensional cluster, signal tower clusters are simpler but

have no defined angular direction without additional vertex information.

4.4.1 Jets

Many localized streams of particles result from the fragmentation of hadronized partons

produced within an event. The tracks and calorimeter deposits left by these particles can

be reconstructed as jets. There are two common jet reconstruction algorithms in ATLAS.

Fixed cone algorithms directly sum the four vectors of particles within a cone of some ∆R,

typically 0.4 or 0.6, into a jet object as follows. Reconstructed calorimeter clusters are sorted

by pT . The largest of these, if above the seed threshold, is taken as the jet center. All objects

within a cone of the specified ∆R are added to the jet. The jet center is recomputed using

all objects inside the cone, and the summation is repeated with this new jet center. This

is repeated until the jet center does not change. The final set of particles within the cone

is removed from the initial sorted list, and the procedure is repeated for the remaining jets

until no more seeds above threshold are available. This algorithm is not infrared safe, as

soft radiation between two jets can potentially cause them to merge and change the jet

multiplicity.

An alternative to the fixed cone algorithm is a kT algorithm. kT algorithms iteratively

sum individual particles into a jet object based on a distance metric between each particle

until some condition is met. For each pair i, j of calorimeter objects, the metric dij =

min(p2T,i, p
2
T,j)

∆Rij

R
is computed, as well as di = p2T,i for each single object. If the minimum of

all dij and di is from a pair, the i, j pair is merged into a single object. If the minimum is a

single object, that object is termed a jet and removed from the list of objects. This process

is repeated until no objects are left. The parameter R is typically chosen to be 0.4 or 0.6,

depending on the needs of the physics analysis.
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Similar to the kT algorithm is an anti-kT algorithm, in which the metrics are defined

to be dij = min(p−2
T,i, p

−2
T,j)

∆Rij

R
and di = p−2

T,i. For the H → WW (∗) → ℓνℓν analysis, for

example, the anti-kT algorithm with R = 0.4 is used. The kT and anti-kT algorithms are

both infrared and collinear safe.

4.4.2 Missing Energy

Following the conservation of momentum, the magnitude of the vector sum of the trans-

verse momentum in an event must be exactly zero. In the case of massless particles, this

is equivalent to the transverse energy, though the latter is more commonly used. The pres-

ence of non-interacting particles such as neutrinos or, potentially, dark matter in an event

can therefore be indirectly detected by the presence of a non-zero transverse energy vector.

The magnitude of the negative of this vector is called the missing energy of an event, or

6ET ≡ |
∑

i

~pT,i|. There are two primary methods for reconstructing 6ET within ATLAS.

4.4.2.1 Cell Based 6ET

Cell-based 6ET reconstruction uses calorimeter cell energies with noise suppression re-

quirements. Cell energies are calibrated with global calibration weights. As muons escape

the calorimeter with minimal energy loss, corrections from muon energy are required. A

non-negligible component of energy is lost in the cryostat as it is about half an interaction

length deep and must be taken into account. The x, y missing energy components can be

written as the sum of these three terms.

6EFinal
x,y = 6ECalo

x,y + 6EMuon
x,y + 6ECryo

x,y (4.2)

The 6ECalo
x,y term is the negative sum of transverse energies in reconstructed topological

cluster cells. These terms require an additional calibration based on the object associated

with the cluster, with priority given in the order of electrons, photons, muons, hadronic taus,
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b-jets, and light jets. This results in a more precise 6ET given the more relevant object level

calibrations. Cells not associated with a reconstructed high-pT object default to the global

calibration scheme.

The 6EMuon
x,y term is derived from the pT of stand alone muon tracks reconstructed in the

muon spectrometer: 6EMuon
x,y = −

∑

RecMuons

Ex,y. Muons entering the calculation are required

to have an inner detector track match if they’re within the ID coverage of |η| < 2.5 in order

to reduce the contribution from fake muons, as these can induce substantial missing energy

up to the pT of the fake muon.

The 6ECryo
x,y is determined indirectly through the correlation of energy between the last

layer of the LAr calorimeter (EEM3) and the first layer of the hadronic calorimeter (EHAD):

6ECryo
x,y = −

∑

recJets

wCryo
√

EEM3 × EHAD, where wCryo is a calibration weight. A similar pro-

cedure is used for the end-cap cryostats.

4.4.2.2 Object Based 6ET

An object based missing energy calculation can be used to reduce the impact of low-pT

objects, underlying event, and pileup. The 6ET can be considered a sum of high-pT and

low-pT terms. The high-pT term derives from the energy of fully reconstructed electrons,

photons, muons, and taus, each at their respective calibrations. Hadronic jets above some

threshold not associated with any of these objects are then added to this. Cells that are

not associated with any high-pT reconstructed objects are finally added to obtain the low-pT

term.

4.4.2.3 Missing Energy Performance

Figure 4.8 shows the missing energy resolution versus the number of primary vertices for

Z → µµ events in 8 TeV data.
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4.4.3 Flavor Tagging

The identification of jets originating from b-quarks is important for the efficient selec-

tion of heavy flavor processes such as tt̄, as well as for the rejection of such processes as

backgrounds to other many analyses. Due to the relatively long lifetime of B-hadrons, jets

originating from the fragmentation of b-quarks have a characteristic displaced secondary ver-

tex as well as tertiary vertices from the subsequent c-parton fragmentation. As a result, the

tracks within these jets will tend to have impact parameters inconsistent with the event’s pri-

mary vertex (PV), where the impact parameter is defined to be the point of closest approach

of the reconstructed track to the PV. The efficient reconstruction and precision identification

of tracks and vertices is therefore essential for tagging b-jets. Several algorithms are used

within ATLAS to perform this task [2].

Tracks used as inputs to the b-tagging algorithms are required to pass several quality

selections in order to reject tracks originating from other long lived particles such as KS and

Λ. Tracks are required to have pT > 1 GeV. At least two hits in the pixel are required,

with a minimum of one being in the innermost layer. A cut of |d0| < 1 mm is made on the

transverse impact parameter, and |z0| sin θ < 1.5 mm on the longitudinal impact parameter.

SV1, one of the secondary vertex based algorithms, uses a looser set of selections: pT > 400
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MeV, |d0| < 3.5 mm, and only one hit in the pixel detector. Further, no more than one track

hit can be shared among any two tracks.

There are two algorithms based solely on the impact parameters of tracks. The JetProb

algorithm performs a simple quadrature sum of the impact parameter significance of all

candidate tracks in the jet. The more advanced IP3D algorithm uses a likelihood ratio (LR)

technique using 2D smoothed histograms of d0/σd0 and z0/σz0 taken from Monte Carlo (MC)

simulation for b- and light-jets.

Two tagging algorithms based on secondary vertices in the event are SV0 and SV1.

Secondary vertices are identified starting with the set of all two-track pairs associated to the

jet and far from the PV. Track pair vertices consistent with the PV or material interactions

are removed. The remaining pairs are formed into an inclusive vertex. The track with the

poorest χ2 is iteratively removed until the χ2 of the inclusive vertex is above some threshold.

SV0 uses the signed 3D decay length significance L3D/σL3D
of the vertex as a discriminator.

SV1 is LR based, using 1D histograms from L3D/σL3D
, the number of two track vertices,

and the ∆R between the jet axis and the line between the primary and secondary vertices.

2D histograms are also used based on the invariant mass of all tracks associated with the

vertex and the ratio of the sum of the energies of the tracks in the vertex to the sum of the

energies of all tracks in the jet.

JetFitter is an algorithm based on the decay chain inside the jet. This applies a Kahlman

filter to find a common line of flight between the b- and c-quark decay vertices and the PV. A

LR approach is then taken using variables similar to the SV1 algorithm, using the additional

information from the b- and c-quark decay vertices.

Combinations of the above variables can be made to improve performance. In particular,

the IP3D and SV1 discriminating variables can be directly added since they are both LR

based. An IP3D and JetFitter combination can also be formed using an artificial neural

network.
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4.4.3.1 Flavor Tagging Performance

Figure 4.9 shows the efficiency of the MV1 tagger. MV1 is the output of a neural network

that uses JetFitter+IP3D, IP3D, and SV1 as inputs.
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CHAPTER V

Statistics

“It is somewhat like having four girlfriends at once ... There are certain advantages, because some

of them will do things that others won’t, but it is really really important to remember which one

you’re dealing with at any one time.”

- Roger Barlow, on the definitions of probability

This chapter seeks to give a comprehensive overview of the frequentist statistics methods

used at the LHC, and of particular modeling strategies incorporated within ATLAS.

5.1 Formalism

5.1.1 Likelihood Function

At the heart of any statistical analysis is the likelihood function. The likelihood function

should condense all details of an analysis into a single equation, from which the minimal set

of information required to describe that analysis can be sufficiently reconstructed. A simple

example is the single bin number counting experiment with expected signal S, background

B, and observed events N. A single parameter of interest µ normalizes S such that µ = 0

corresponds to the null hypothesis and µ = 1 corresponds to the nominal signal hypothesis.

S, B, and N are simple constants, so the likelihood is a function of only µ. In this case the
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likelihood is just the Poisson probability of the observed and expected events:

L(µ) = P (N |µS +B) (5.1)

An extension of this is to normalize B from a Control Region (CR) of pure background

with observed events NCR and expected background BCR using a normalization factor θ:

L(µ, θ) = P (N |µS + θB)P (NCR|θBCR) (5.2)

This is a minimal form of a likelihood in which all moving parts are present: The first

Poisson is the part of the likelihood is the signal-rich component, in which all of the inter-

esting information about µ is contained; µ is a parameter of interest (POI), θ is a nuisance

parameter (NP), and N is the observed data. The second Poisson is the auxiliary constraint

that constrains θ, and NCR is an auxiliary measurement, commonly referred to as a global

observable and alternatively denoted as θ̃.

If the true values of the parameters of the likelihood (POI and NP) are unknown, common

practice is to estimate them by finding the value that maximizes the likelihood. Explicity, the

Maximum Likelihood Estimator (MLE) of θ is denoted as θ̂µ and is a function of µ. Likewise,

the true value of µ can also be estimated with µ̂. The profiled likelihood L(µ, θ̂µ) will be

of significant importance when constructing test statistics. For large models, numerical

techniques must be used to find θ̂ and µ̂. In the minimal likelihood, the unconditional µ̂ and

θ̂ can be solved analytically:

θ̂ = NCR

BCR

µ̂ = (N −NCR
B

BCR
)/S

(5.3)

The conditional solution for θ̂µ, where µ is held at some constant value, can also be found,
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leading to a quadratic equation:

θ̂µ =
B(NCR +N)− µS(B +BCR)

2B(B +BCR)
×
{

1 +

√

1− 4µSNCRB(B +BCR)

(B(NCR +N)− µS(B +BCR))2

}

(5.4)

This simple model will be used frequently throughout this chapter. A more general form

of the likelihood can be written:

L(µ, θ) = Ldata(N |~µ, θ)×A(θ̃|θ) (5.5)

Ldata(N |µ, θ) represents the portion of the likelihood particular to your local data N =

{x1, ...,xq} with corresponding weights w = {w1, ..., wq}, which, in general, can represent a

set of q data points on a multi-dimensional observable x each with some weight wi. This

is elaborated upon in Section 5.1.1.1. The n parameters of interest µ = {µ1, ..., µn} are

the parameters one wishes to make a statement about. The m nuisance parameters θ =

{θ1, ..., θm} are free variables that represent other unknown quantities. A(θ̃|θ) =

p
∏

i

Ai(θ̃i|θi)

represents an independent auxiliary likelihood that condenses measurements about the p

global observables θ̃ = {θ̃1, ..., θ̃p} into smaller forms. As long as A(θ̃|θ) is statistically

independent from N and is unaffected by µ this is a valid approximation. An individual

Ai(θ̃i|θi) could represent, for example, the measurement of the jet energy scale (JES) θ̃JES.

5.1.1.1 Extended Likelihoods

The likelihood formalism can be extended to parametric models where the expected

number of events is a function of not only the parameters α = {µ, θ} but some observables

x. x might be, for example, some invariant mass, angular quantity, time of flight, etc...

. The differential distribution of expected events can be defined as f(x, α) such that the

total expected is E(α) =
∫

f(x, α)dx. For each observed data point xi with weight wi, the

differential probability of observing such event is (f(xi, α)/E(α))wi. The likelihood is then

the product over the differential probability for the q observed events, along with the Poisson
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probability for the total number of events N =

q
∑

i

wi and any auxiliary constraints A(θ̃|θ)

on α:

L(α) = P (N |E(α))×A(θ̃|θ)×
q
∏

i

(

f(xi, α)

E(α)

)wi

(5.6)

A common technique is to use binned histograms templates for expected signal and back-

ground rates for some observable distribution. This can be conceptualized as an extended

likelihood with Nbins discontinous PDFs, each containing Ni observed events:

Lbinned(α) = P (N |E(α))×A(α̃|α)×
Nbins
∏

i

(

f(xi, α)

E(α)

)Ni

(5.7)

This is mathematically equivalent to a simple product over Poisson probabilities up to a

multiplicitive constant:

P (N |E)×
Nbins
∏

i

(

f(xi)

E

)Ni

=
{

ENe−E

N !

}

×
{

Nbins
∏

i

(

Ei

E

)Ni
}

=

{

EN

N !

Nbins
∏

i

e−Ei

}

×
{

1
EN

Nbins
∏

i

ENi
i

}

= 1
N !
×

Nbins
∏

i

ENi
i e−Ei

= 1
N !
×

Nbins
∏

i

Ni!×
Nbins
∏

i

ENi
i e−Ei

Ni!

= const×
Nbins
∏

i

P (Ni|Ei)

(5.8)

5.2 Statistical Methods

5.2.1 Test Statistics

As the value of a likelihood function is arbitrary up to a multiplicitive constant, it holds

little meaning on its own (not to be confused with the meaning held in the interpretation

of its functional form). It is typical to bring meaning to its value by comparing it at two

different points in parameter space. In particular, a test statistic Q = −2 ln L(N |α1)
L(N |α2)

holds
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meaning as a metric to distinguish between two different hypotheses α1 and α2 given the

same set of data N . The hypothesis in the numerator (α1) is usually refered to as the null,

and the denominator (α2) the alternate. Although any function of the data can technically

be used as a test statistic, the use of the likelihood ratio is motivated by the Neyman-Pearson

lemma [60], which states that in the absence of unknown parameters, the likelihood ratio

has the highest statistical power. Power in this case is defined as the probability to reject

the null hypothesis when the null hypothesis is false.

When considered in relation to its corresponding conditional ensemble of all possible

values, the value of the test statistic can be mapped to a probability, commonly refered to as

a p-value, that quantifies the consistency of the two hypotheses with the data. The definition

of consistency depends on the conditional parameters under which the ensemble is generated

and the integrated range of the sampling distribution (see section 5.2.3).

5.2.2 Test Statistics used at the LHC

Three likelihood ratios are commonly used at the LHC. The most common is the Profile

Likelihood Ratio (PLR) λ(µ), and the alternate PLR λ̃(µ):

λ(µ) =
L(µ, θ̂µ)

L(µ̂, θ̂)
(5.9)

λ̃(µ) =











L(µ,θ̂µ)
L(µ̂,θ̂) , µ̂ > 0

L(µ,θ̂µ)
L(0,θ̂(0)) , µ̂ ≤ 0

(5.10)

The third is the Ratio of Profiled Likelihoods (RPL) λRPL, which can in fact be written

as a function of the PLR:

λRPL = L(1,θ̂(1))
L(0,θ̂(0))

= L(1,θ̂(1))
L(µ̂,θ̂)

L(µ̂,θ̂)
L(0,θ̂(0))

= λ(1)
λ(0)

(5.11)

The standard test statistic used at the LHC is the Profile Likelihood Test Statistic
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(PLTS), which is constructed from the PLR. The PLTS has several variations depending

on the hypothesis being tested and the allowed range of the parameter of interest.

The test statistic tµ uses the PLR λ(µ) and has no restrictions on µ. This test statistic

is generally used to quantify compatibility of the data with the µ hypothesis:

tµ = −2 lnλ(µ) (5.12)

The alternate test statistic t̃µ is similar to tµ, but uses the the alternate PLR λ̃(µ). This

is used when one is interested in restricting the range of µ̂ to be physical:

t̃µ = −2 ln λ̃(µ) (5.13)

The discovery test statistic q0 is used to quantify the rejection of the null hypothesis in

the case of an excess in the data:

q0 =











−2 lnλ(0), µ̂ > 0

0, µ̂ ≤ 0
(5.14)

When one is interested in setting an upper limit on µ, the test statistic qµ can be used.

This test statistic does not penalize cases where µ̂ is larger than the tested µ. That is, an

excess of signal-like events should not be considered evidence against the signal:

qµ =











−2 lnλ(µ), µ̂ < µ

0, µ̂ ≥ µ
(5.15)

Again, q̃µ can be written for cases in which one wishes to restrict µ̂ to be physical:

q̃µ =











−2 ln λ̃(µ), µ̂ < µ

0, µ̂ ≥ µ
(5.16)
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λRPL can be used to form the final test statistic considered here, which quantifies com-

patibility between two fixed hypotheses:

qRPL = −2 lnλRPL

= −2 lnλ(1) + 2 lnλ(0)
(5.17)

5.2.2.1 Uncapped Test Statistics

One downside of the q0, qµ, and q̃µ test statistics just shown, is that information is

lost when the conditions that lead to q = 0 are met. This problem can be alleviated by

’uncapping’ the test statistic, allowing it to take on negative values when these conditions

are met:

q0 → r0 =











−2 lnλ(0), µ̂ > 0

+2 lnλ(0), µ̂ ≤ 0
(5.18)

qµ → rµ =











−2 lnλ(µ), µ̂ < µ

+2 lnλ(µ), µ̂ ≥ µ
(5.19)

q̃µ → r̃µ =











−2 ln λ̃(µ), µ̂ < µ

+2 ln λ̃(µ), µ̂ ≥ µ
(5.20)

Note that both λ(µ) and λ̃(µ) are only able to take on values between 0 and 1, such that

−2 lnλ(µ) and −2 ln λ̃(µ) are positive definite and +2 lnλ(µ) and +2 ln λ̃(µ) are negative

definite.

As will be seen in the following section, this is equivalent to populating the negative side

of the ensemble of q, while before this information was lost in the delta function at q = 0.

5.2.3 Procedure for Computing P-Values

This section outlines the frequentist procedures used at the LHC for generating pseudo-

experiments with the purpose of computing p-values and calibrating confidence intervals.
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Starting with a test statistic Q, we are interested in obtaining the distribution of Q,

namely f(Q|α′) (read: probability distribution of Q assuming the α′ hypothesis is true) un-

der repeated experiments. It is assumed that Q is constructed from a likelihood L(N |µ, θ)

with n parameters of interest µ = {µ1, ..., µn}, nuisance parameters θ, and auxiliary measure-

ments θ̃ with associated auxiliary constraints A(θ̃|θ). α′ = {µ′, θ′} is the set of hypothesized

parameters used to generate the ensemble. N represents the dataset on which L is com-

puted. For each pseudo-experiment, pseudo-data Npseudo is generated by sampling from its

associated PDF within L. Similarly, pseudo-auxiliary-measurements θ̃pseudo are generated by

sampling from its associated auxiliary constraint A.

In this way, the meaning of the auxiliary measurements and constraints is made clear.

All information of some more detailed independent likelihood LA ∼ A used to extract the

nominal value of a parameter, which is now the auxiliary measurement used in L, is condensed

into the auxiliary constraint A. Randomizing the auxiliary measurements according to its

auxiliary constraint should be equivalent to including the full likelihood LA(NA|θ) in place

of A, generating NA through this likelihood, and using this in subsequent estimates of the

corresponding nuisance parameter θ.

A subtle point is that a value of the nuisance parameters must be chosen around which

to randomize the pseudo-data and the auxiliary measurements. For parameters that have

no a auxiliary constraint, such as the normalization of a background from a control region,

an obvious choice is to profile the observed data to extract an estimate of the parameter.

The general recommendation for LHC physics is to profile all nuisance parameters on the

observed data while fixing the parameters of interest to their hypothesized value µ′. In this

way one can write the distribution of Q as f(Q|µ′, θ̂(µ′)).

The probability for obtaining a value of Q greater than the observed value Qobs, the p-

value, is obtained from integrating f(Q|α′) upwards: p =
∫∞
Qobs

f(Q|α′)dQ. In some cases, the

p-value is defined to be the integral of the complementary side: p′ = 1−p =
∫ Qobs

−∞ f(Q|α′)dQ.

The p-value, p, is a frequentist statement about the conditional probability of Q under
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repeated measurements assuming the α′ hypothesis is true.

For quantifying an excess, the test statistic r0 can be used to obtain the p-value p0. p0

is the probability of obtaining a value of r0 more discrepant than the observed r0,obs under

the assumption that the null hypothesis µ′ = 0 is true. The median expected p-value p0,exp

can be obtained from the same distribution but integrating from the median expected value

of r0, namely r0,exp. r0,exp is obtained from the median of the distribution of r0 under the

nominal alt hypothesis µ′ = 1. This is shown more clearly in Figure 5.1:

p0 =

∞
∫

r0,obs

f(r0|0, θ̂(0))dr0

p0,exp =

∞
∫

r0,exp

f(r0|0, θ̂(0))dr0

r0,exp = med{r0|µ′ = 1, θ̂(1)}

(5.21)

For upper limits, the test statistics rµ and r̃µ can be used. The procedure for each is the

same, but r̃µ is used more frequently, so this will be used in all notations. For an observed

r̃µ,obs, the p-value pµ is the probability of rejecting the µ hypothesis assuming µ is true if

r̃µ > r̃µ,obs is the criteria for rejection. The expected under the null is defined similar to the

expected p0:

pµ =

∞
∫

r̃µ,obs

f(r̃µ|µ, θ̂µ)dr̃µ

pµ,exp =

∞
∫

r̃µ,exp

f(r̃µ|µ, θ̂µ)dr̃µ

r̃µ,exp = med{r̃µ|µ′ = 0, θ̂(0)}

(5.22)

For the p-value pb, 1 − pb represents the power of the test, with larger values of 1 − pb
indicating a larger power. This is defined from the same distribution that r̃µ,exp is obtained:

pb =

r̃µ,obs
∫

−∞

f(r̃µ|0, θ̂(0))dr̃µ (5.23)
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Figure 5.1: Distribution of the test statistic r0 for both null (µ = 0) and alternate (µ = 1)
hypotheses. The observed p-value p0 is shown in the shaded area. The observed and expected
value of the test statistic are also shown.
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Figure 5.2: Distributions of the test statistic rµ for both µ = 0 and µ = 1 hypotheses, along
with the p-values pb and pµ.

The quantity CLs = pµ
1−pb

is frequently used for upper limits in place of pµ. The motivation

is clear from the formula. In the case of strong downward fluctuations of the data, the p-

value pµ will tend to reject µ even if the test has no power to. By normalizing to the power,

this feature is alleviated, but by no means removed. In the case of testing µ = 0, CLs→1,

so that CLs can never reject the null, whereas pµ would by definition reject the null with a

probability α when α < pµ is the condition for rejection. The expected value of CLs under

the null is exactly twice pµ,exp, given that the expected value of pb is 0.5. For increasingly

strong upward fluctuations of the data, pb → 0, such that CLs→ pµ.

Figure 5.2 shows graphical representations of the p-values pµ and pb, and how they are

obtained from the sampling distribution of the test statistic rµ.
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5.3 Systematics

Uncertainties are included in the likelihood in two parts. The first is the auxiliary

constraint on the nuisance parameter that represents the uncertainty. The second is the

parametrization of how the terms in the data part of the likelihood respond to changes in

the nuisance parameter. The expected rates are typically represented as the nominal rate

multiplied by a response function:

E(θ) = E0ν(θ) (5.24)

Here E0 is the nominal expected rate, and ν(θ) is the response function due to the nuisance

parameter θ. The exact form of the auxiliary constraint and response function depend on

the source of the uncertainty. The typical cases used in Higgs analyses are outlined here.

5.3.1 Statistical Uncertainties

Statistical uncertainties follow a Poisson distribution and can therefore use a Poisson as

an auxiliary constraint. These uncertainties could be due to MC statistical uncertainties, for

example.

A(θ̃|θ) = P (θ̃|θM)

ν(θ) = θ
(5.25)

M is a constant, and is the nominal value of θ̃. In the case of MC statistical uncertainties,

M would be the effective number of MC events in the selected sample.

5.3.1.1 Barlow Beeston

In a binned likelihood, each bin can have an associated nuisance parameter θ representing

the MC statistical uncertainty for a subset of the expectation in that bin. Because the

likelihood can be factorized into a θ dependent and θ independent component, the MLE of
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θ can be found analytically:

L = Lother × P (N |θE + E0)P (θ̃|θM) (5.26)

The likelihood Lother is independent of the particular θ we’re interested in. The first

Poisson represents the bin in the histogrammed distribution, while the second is the auxil-

iary constraint on the nuisance parameter θ. M is the effective number of MC events for

the expectation E. E0 some extra expectation in this bin that is not associated with M .

Maximizing the likelihood is equivalent to minimizing the Negative Log Likelihood (NLL).

Differentiating the NLL with respect to θ and evaluating at θ̂ gives a quadratic equation:

−d lnL
dθ
|θ̂ = − EN

Eθ̂+E0
+ E − θ̃

θ̂
+M = 0

E(E +M)θ̂2 + (E0(E +M)− Eθ̃)θ̂ − EN −E0θ̃ = 0
(5.27)

θ̂ can then be solved for using the usual quadratic formula.

5.3.2 Normalization Systematics

Normalization systematics are systematics which strictly affect the normalization of a sig-

nal or background in a distribution. Sources of systematics can also have both normalization

and shape components with each treated in a factorized way. The normalization components

are treated with a unit Gaussian distributed nuisance parameter and an exponential response

function:

A(θ̃|θ) = G(θ̃|θ, 1)

ν(θ) = κθ
(5.28)

In this way, the sampling distribution of some expected number of events E(θ) = E0κ
θ,

namely dP
dE

, is a log-normal centered at E0, as shown in Figure 5.3. This follows from a
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Figure 5.3: Prior probability versus the expected number of events E(θ) for both log-normal
(E(θ) = E0(1 + ǫ)θ) and Gaussian (E(θ) = E0(1 + ǫθ)) treatments for various values of ǫ.

change of variables of the normally distributed θ:

dP
dE

= dP
dθ

dθ
dE

= 1√
2π

exp(−1
2
θ2) 1

E lnκ

= 1√
2πE lnκ

exp
{

−1
2

(

lnE−lnE0

lnκ

)2
}

(5.29)

κ is typically determined asymmetrically by measuring E(1) and E(−1). In the case that

E(1) = 1
E(−1)

, the solution for κ is the same for the two boundary conditions. E(1) 6= 1
E(−1)

represents an asymmetric uncertainty and can be dealt with in a bifurcated way. The

asymmetric values of κ are κ+ = E(1)
E0

and κ− = E0

E(−1)
, such that E(θ) is conditional up to

the sign of θ:

E(θ) =











E0κ
θ
+ θ ≥ 0

E0κ
θ
− θ < 0

(5.30)

This treatment is factorized for each systematic, such that the total expectation due to

N normalization systematics is written as E(~θ) = E0

N
∏

i=1

νi(θi).

An alternative is to use expectations distributed as truncated Gaussians:

E(θ) =











E0(1 + δ+θ) θ ≥ 0

E0(1 + δ−θ) θ < 0
(5.31)
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δ+ and δ− can be similarly determined by computing E(1) and E(−1). Log-normally

distributed expectations have an advantage over truncated Gaussians in that they’re positive

definite over the full range of θ, while truncated Gaussians lead to negative expected events

when θ < −1
δ
, hence E(θ) must be truncated at zero in cases that θ satisfies this condition.

Log-normals are the default sytematics in Higgs analyses due to this property.

5.3.3 Shape Systematics

Shape systematics must be treated differently for binned and unbinned distributions.

Unbinned distributions need consideration on a case-by-case basis and are not covered in

this section. For binned distributions, shape systematics are treated with a unit Gaussian

distributed nuisance parameter and a piecewise linear response function. The binned distri-

bution for a discrete observable x is computed for the nominal expectation as E0(x), and in

generally separately for the two boundaries θj = ±1, yeilding E±
j (x). For N shape system-

atics, the expected events in the bin corresponding to the observable value xi can be written

like so:

E(xi, ~θ) = max(0, E0(xi) +

N
∑

j=1

δEj(xi, θj)),

δEj(xi, θj) =











(E+
j (xi)− E0(xi))θj , θj ≥ 0

(E−
j (xi)− E0(xi))θj , θj < 0

(5.32)

For each normally distributed nuisance parameter θj , the distribution dP
dE(xi,θj)

is a trun-

cated Gaussian as shown in Figure 5.3, where the truncation is in place to keep the expected

events positive definite. The motivation for piecewise linear (truncated Gaussian) rather

than piecewise exponential (log-normal) interpolation is mostly historical. Earlier versions

of RooFit could not elegantly handle the integration required to normalize the piecewise

exponential interpolation scheme, and so the piecewise linear scheme was adopted. The two

methods are equivalent to first order, so for small shape systematics the difference should

also be small.
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5.3.4 Nuisance Parameter Interpolation

If the response function ν(θ) for a normally distributed nuisance parameter θ is asym-

metric around θ = 0, a kink in the likelihood and a discontinuity in its first derivative appear

at θ = 0. This can lead to numerical instabilities in the maximum likelihood fit and a delta

function in the sampling distribution of θ̂ at θ̂ = 0. A solution to this is to use a smoothing

polynomial ν0(θ) for the interval −θb < θ < θb such that ν(θ) and at its lth derivative ν(l)(θ)

are continuous at the boundaries θ = ±θb and at θ = 0. Given that computing the bound-

aries ν(±1) is common practice, θb is usually taken to be 1. The response function ν(θ) is

then divided into three regions.

ν(θ) =























ν+(θ) θ ≥ θb

ν0(θ) −θb < θ < θb

ν−(θ) θ ≤ −θb

(5.33)

Continuity up to the (n− 1)th derivative requires a polynomial of degree 2n (n is taken

to be 1 greater than the derivative to simplify the algebra). This requirement stems from

imposing the boundary conditions ν
(ℓ)
± (±θb) = ν

(ℓ)
0 (±θb) for ℓ = 0, .., n − 1. The resulting

polynomial and its ℓth derivative can be written in the form of a series:

ν0(θ) = 1 +

2n
∑

p=1

caθ
a

ν
(ℓ)
0 (θ) =

2n
∑

p=ℓ

cpp(p− 1)(...)(p− ℓ+ 1)(θ)p−ℓ

(5.34)

The continuity requirements ν
(ℓ)
± (±θb) = ν

(ℓ)
0 (±θb) can be represented by a (2n × 2n)
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matrix equation:













































θ θ2b ... θ2nb

1 2θb ... 2nθ2n−1
b

...

... 0 n! ... (2n+1)!
(n+1)!

θn+1
b

−θ (−θb)2 ... (−θb)2n

1 −2θb ... 2n(−θb)2n−1

...

... 0 n! ... (2n+1)!
(n+1)!

(−θb)n+1













































×













c1
...

c2n













=













































ν+(θb)− 1

ν
(1)
+ (θb)

...

ν
(n)
+ (θb)

ν−(−θb)− 1

ν
(1)
− (−θb)

...

ν
(n)
− (−θb)













































(5.35)

The (ℓ, p)th element of the (2n × 2n) matrix can be condensed into a more convenient

form:

Aℓ
p =



































(p+1)!
(p−ℓ+1)!

(θb)
p−ℓ+1 p ≥ ℓ− 1, ℓ ≤ n

0 p < ℓ− 1, ℓ ≤ n

(p+1)!
(p−ℓ+1)!

(θb)
p−ℓ+1(−1)p+1 p + n ≥ ℓ− 1, ℓ > n

0 p + n < ℓ− 1, ℓ > n

(5.36)

Inverting the matrix A and multiplying both sides of the matrix equation yields an

equation for the coefficients cp:

cp =
n
∑

ℓ=0

(A−1)ℓpν
(ℓ)
+ + (A−1)ℓ+n+1

p ν
(ℓ)
− (5.37)

The minimum polynomial order required to avoid large numerical instabilities is four,

corresponding to continuity up to the first derivative. However, the more robust MINUIT

algorithms require computing the second derivative also, so a sixth order polynomial has

become the standard within Higgs analyses. The two most common forms of ν±(θ) are

exponential, corresponding to the normalization systematics outlined in section 5.3.2, and

linear, corresponding to Section 5.3.3. The coefficients of the sixth order solution for the
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Coefficient Linear Exponential
c1

1
2
(ǫ+ + ǫ−) 1

8θb
(15A0 − 7θbS1 + θ2bA2)

c2
15
16θb

(ǫ+ − ǫ−) 1
8θ2b

(−24 + 24S0 − 9θbA1 + θ2bS2)

c3 0 1
4θ3b

(−5A0 + 5θbS1 − θ2bA2)

c4 − 10
16θ3b

(ǫ+ − ǫ−) 1
4θ4b

(12− 12S0 + 7θbA1 − θ2bS2)

c5 0 1
8θ5b

(3A0 − 3θbS1 + θ2bA2)

c6 − 3
16θ5b

(ǫ+ − ǫ−) 1
8θ6b

(−8 + 8S0 − 5θbA1 + θ2bS2)

Table 5.1: Coefficients of the solution for the sixth order polynominal interpolation for both
linear and exponential extrapolation schemes.

two extrapolation cases are shown in Table 5.1. In the exponential case, symmetric and

asymmetric terms are first defined to simplify the algebra:

S0 = 1
2

(κ+ + κ−)

A0 = 1
2

(κ+ − κ−)

S1 = 1
2

(κ+ log κ+ − κ− log κ−)

A1 = 1
2

(κ+ log κ+ + κ− log κ−)

S2 = 1
2

{

κ+ (log κ+)
2

+ κ− (log κ−)
2
}

A2 = 1
2

{

κ+ (log κ+)
2 − κ− (log κ−)

2
}

(5.38)

The interplolation for normalization systematics is tested for the four models shown in

Table 5.2. These have varying degrees of asymmetrical systematics. Model 4 is symmetric

and acts as a control model for the interpolation, since the response function does not

necessarily reduce to the standard exponential interpolation in the case that the asymmetry

is zero. The sampling distributions of the nuisance parameter for the four models are shown

in Figure 5.4. It can be seen that even in cases of very small asymmetries, such as Model

3, the kink in the likelihood can still cause a substantial delta function in the sampling

distribution of the nuisance parameter. The control model shows no strange features in

either interpolation schemes, as desired.

One shortcoming of this interpolation method is that it is not positive definite for all
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Figure 5.4: Sampling distributions of the nuisance parameter for the four models listed in
Table 5.2 with and without the polymonial interpolation scheme.
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Model NSig NBkg NObs κ+Bkg κ−Bkg

1 50 200 200 1.2 1.05
2 50 200 200 1.12 1.08
3 50 200 200 1.105 1.095
4 50 200 200 1.1 1.1

Table 5.2: Parameters of models used to test nuisance parameter interpolation.

values of the boundaries ν(±θb). For exponential extrapolation with very large asymmetries,

the standard 6th order polynomial can become negative. These are extreme cases, however.

It has been observed that higher order polynomials can handle larger asymmetries without

becoming negative, but this comes at the price of performance since the higher order terms

must be computed many times for each likelihood evaluation. Figure 5.5 shows both a

well behaved positive definite and an extreme case for ν(θ). Figure 5.6 shows the same

configurations for a 10th order polynomial where it is now well behaved.

5.3.5 Jet Binned Uncertainties

Several Higgs analyses separate channels by exclusive jet bins and require careful treat-

ment of QCD scale systematics. Scale uncertainties on N-jet inclusive cross sections are

taken as independent as opposed to the uncertainties on exclusive cross sections, resulting

in anti-correlated migration-like uncertainties between jet bins. Further, these correlations

need to be derived such that the log-normal treatment for normalization systematics still

holds. This is addressed through the Stewart-Tackmann procedure [71]. Many Higgs anal-

yses use exclusive 0- and 1-jet channels to target the gg→H production, and an inclusive

2-jet channel to target VBF Higgs production. The gg→H signal, having zero jets at leading

order, is therefore subject to this procedure. Denote the three relevant inclusive production

cross sections as σtot, σ≥1, and σ≥2, with associated relative uncertainties εtot, ε≥1, and ε≥2.

Denote the parton level exclusive jet fractions as f0 and f1, and the inclusive 2-jet fraction

f≥2. The exclusive cross sections are therefore σ0 = σtot − σ≥1 and σ1 = σ≥1 − σ≥2. We

desire to compute the exclusive cross sections as a function of the nuisance parameters θtot,
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(a) Interpolation for a typical asymmetry
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(b) Interpolation for a mild asymmetry
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(c) Interpolation for an extreme asymmetry

Figure 5.5: 6th order polynomial response term interpolation for a typical (a), mild (b) and
an extreme (c) asymmetry.
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(a) Interpolation for a typical asymmetry
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(b) Interpolation for a mild asymmetry
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(c) Interpolation for an extreme asymmetry

Figure 5.6: 10th order polynomial response term interpolation for a typical (a), mild (b) and
an extreme (c) asymmetry.
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θ≥1, and θ≥2. The 0-jet exclusive cross section can be derived as follows:

σ0(θtot, θ≥1) ≈ σtot(1 + εtotθtot)− σ≥1(1 + ε≥1θ≥1)

= σtot − σ≥1 + σtotεtotθtot − σ≥1ε≥1θ≥1

= σ0 + 1
f0
σ0εtotθtot − f1+f≥2

f0
σ0ε≥1θ≥1

≈ σ0(1 + 1
f0
εtotθtot)(1− f1+f≥2

f0
ε≥1θ≥1)

≈ σ0(1 + εtot)
1
f0

θtot(1 + ε≥1)
− f1+f≥2

f0
θ≥1

≡ σ0

(

κ
1
f0
tot

)θtot
(

κ
− f1+f≥2

f0
≥1

)θ≥1

(5.39)

The 1-jet exclusive derivation follows similarly:

σ1(θ1, θ≥2) ≈ σ≥1(1 + ε≥1θ≥1)− σ≥2(1 + ε≥2θ≥2)

= σ≥1 − σ≥2 + σ≥1ε≥1θ≥1 − σ≥2ε≥2θ≥2

= σ1 +
f1+f≥2

f1
σ1ε≥1θ≥1 − f≥2

f1
σ1ε≥2θ≥2

≈ σ1(1 +
f1+f≥2

f1
ε≥1θ≥1)(1− f≥2

f1
ε≥2θ≥2)

≈ σ1(1 + ε≥1)
f1+f≥2

f1
θ≥1(1 + ε≥2)

− f≥2
f1

θ≥2

≡ σ1

(

κ
f1+f≥2

f1
≥1

)θ≥1
(

κ
− f≥2

f1
≥2

)θ≥2

(5.40)

The 2-jet inclusive process is nearly trivial:

σ≥2(θ≥2) = σ≥2(1 + ε≥2θ≥2)

≈ σ≥2(1 + ε≥2)
θ≥2

≡ σ≥2(κ≥2)
θ≥2

(5.41)

5.3.6 Branching Ratio Uncertainties

Branching ratio uncertainties require a slight modification to insure that the property
decays
∑

i

BRi(θi) = 1 is true for all values of θi, which is broken in both exponential (BRi(θi) =

BRi,0(1 + εi)
θi) and linear treatments (BRi(θi) = BRi,0(1 + εiθi)). This can be solved by a
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simple normalization of each term to the sum of all:

BRi(θi) =
BRi,0(1 + εi)

θi

∑

j

BRj,0(1 + εj)
θj

(5.42)

This has the consequence that, even outside of combination, branching ratio uncertainties

from every channel have a small but non-zero impact on each individual channel.

5.4 Asymptotics

Under certain conditions, the distribution of a test statistic can be approximated analyti-

cally. The formula describing the distribution depends on the test statistic used. This section

will outline the asymptotic approximations in the case of a single parameter of interest.

5.4.1 Approximate Sampling Distributions

As the sample size of a model increases, the sampling distribution of µ̂ under the µ′

hypothesis approaches a normal distribution centered at µ′ with width σ:

f(µ̂|µ′)→ 1√
2πσ

e−
(µ̂−µ′)2

2σ2 (5.43)

If the test statistic Q is monotonic in µ̂ there exists a one-to-one correspondence between

Q and µ̂, such that f(µ̂|µ′) can be transformed into the distribution of Q through a change

of variables:

f(Q|µ′) = f(µ̂|µ′)

∣

∣

∣

∣

dµ̂

dQ

∣

∣

∣

∣

(5.44)

Through the Wald approximation [72], −2 lnλ(µ) is parabolic around µ̂ up to higher
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order terms. A similar statement can be made for −2 ln λ̃(µ):

−2 lnλ(µ) =
(

µ−µ̂
σ

)2
+O(1/

√
N)

−2 ln λ̃(µ) =











−2 ln L(µ,θ̂µ)
L(µ̂,θ̂) , µ̂ > 0

−2 ln L(µ,θ̂µ)
L(0,θ̂(0)) , µ̂ ≤ 0

=











−2 lnλ(µ), µ̂ > 0

−2 lnλ(µ) + 2 lnλ(0), µ̂ ≤ 0

= O(1/
√
N) +











(

µ−µ̂
σ

)2
, µ̂ > 0

(

µ
σ

)2 − 2µµ̂
σ2 , µ̂ ≤ 0

(5.45)

For the uncapped test statistic r̃µ, the relevant substitutions are as follows:

µ̂ =























1
2
(µ− r̃µ

µ/σ2 ), µ̂ ≤ 0

µ− σ
√

r̃µ, 0 < µ̂ < µ

µ+ σ
√

−r̃µ, µ̂ ≥ µ

∣

∣

∣

dr̃µ
dµ̂

∣

∣

∣
=























2µ
σ2 , µ̂ ≤ 0

2
√

r̃µ

σ
, 0 < µ̂ < µ

2
√

−r̃µ

σ
, µ̂ ≥ µ

(5.46)

The µ̂ conditionals µ̂ ≤ 0, 0 < µ̂ < µ, and µ̂ ≥ µ correspond to test statistic conditionals

r̃µ ≥ (µ−µ′

σ
)2, 0 < r̃µ < (µ−µ′

σ
)2, and r̃µ < 0, respectively. This along with the substitutions
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above yield the approximate sampling distribution:

f(r̃µ|µ′) =































1
2
√
2π(µ/σ)

e
− 1

2

(

r̃µ−(µ2−2µµ′)/σ2

2µ/σ

)2

r̃µ ≥ (µ−µ′

σ
)2

1

2
√

2πr̃µ
e
− 1

2

(√
r̃µ−µ−µ′

σ

)2

0 < r̃µ < (µ−µ′

σ
)2

1

2
√

−2πr̃µ
e
− 1

2

(

−
√

−r̃µ−µ−µ′

σ

)2

r̃µ ≤ 0

(5.47)

Integrating gives the corresponding cumulative function F (r̃µ|µ′):

F (r̃µ|µ′) =























Φ( r̃µ−(µ2−2µµ′)/σ2

2µ/σ
), r̃µ ≥ (µ

σ
)2

Φ(
√

r̃µ − µ−µ′

σ
), 0 < r̃µ < (µ

σ
)2

Φ(−
√

−r̃µ − µ−µ′

σ
), r̃µ ≤ 0

(5.48)

Φ(x) is the cumulative distribution function of the standard normal distribution:

Φ(x) =
1√
2π

x
∫

−∞

exp

(

−t
2

2

)

dt (5.49)

The p-value pµ corresponds to the case µ = µ′, with pµ = 1−F (r̃µ|µ), while pb corresponds

to µ′ = 0, with pb = F (r̃µ|0).

The approximate sampling distributions for the test statistic rµ are similar, with the

modification that the 0 < rµ < (µ−µ′

σ
)2 conditional extends to all rµ > 0:

f(rµ|µ′) =











1

2
√

2πrµ
e−

1
2(√rµ−µ

σ )
2

rµ > 0

1

2
√

−2πrµ
e−

1
2(−

√−rµ−µ
σ)

2

rµ ≤ 0
(5.50)

The cumulative function follows:

F (rµ|µ′) =











Φ(
√
rµ − µ−µ′

σ
), rµ > 0

Φ(−√−rµ − µ−µ′

σ
), rµ ≤ 0

(5.51)
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For r0, the sampling distributions are nearly identical:

f(r0|µ′) =











1
2
√
2πr0

e
− 1

2

(√
r0−µ−µ′

σ

)2

r0 > 0

1
2
√
−2πr0

e
− 1

2

(

−√−r0−µ−µ′

σ

)2

r0 ≤ 0
(5.52)

Finally, the cumulative function:

F (r0|µ′) =











Φ(
√
r0 − µ−µ′

σ
), r0 > 0

Φ(−√−r0 − µ−µ′

σ
), r0 ≤ 0

(5.53)

The distributions and cumulative functions for the remaining test statistics follow.

• tµ
f(tµ|µ′) = 1

2
√

2πtµ

[

e
− 1

2

(√
tµ−µ−µ′

σ

)2

+ e
− 1

2

(√
tµ+

µ−µ′

σ

)2
]

F (tµ|µ′) = Φ(
√
tµ − µ−µ′

σ
) + Φ(

√
tµ + µ−µ′

σ
)− 1

(5.54)

• t̃µ

f(t̃µ|µ′) = 1

2
√

2πt̃µ
e
− 1

2

(√
t̃µ+

µ−µ′

σ

)2

+















1
2
√
2π(µ/σ)

e
− 1

2

(

t̃µ−(µ2−2µµ′)/σ2

2µ/σ

)2

, t̃µ ≥ (µ
σ
)2

1

2
√

2πt̃µ
e
− 1

2

(√
t̃µ−µ−µ′

σ

)2

, t̃µ < (µ
σ
)2

F (t̃µ|µ′) = Φ(
√

t̃µ + µ−µ′

σ
) +











Φ( t̃µ−(µ2−2µµ′)/σ2

2µ/σ
), t̃µ ≥ (µ

σ
)2

Φ(
√

t̃µ − µ−µ′

σ
), t̃µ < (µ

σ
)2

(5.55)

• qµ
f(qµ|µ′) = Φ(µ

′−µ
σ

)δ(qµ) + 1

2
√

2πqµ
e
− 1

2

(√
qµ−µ−µ′

σ

)2

F (qµ|µ′) = Φ(
√
qµ − µ−µ′

σ
)

(5.56)
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• q̃µ

f(q̃µ|µ′) = Φ(µ
′−µ
σ

)δ(q̃µ) +














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), q̃µ ≥ (µ
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Φ(
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q̃µ − µ−µ′
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), q̃µ < (µ
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(5.57)

• q0
f(q0|µ′) = (1− Φ(µ

′

σ
))δ(qµ) + 1

2
√
2πq0

e
− 1

2

(√
q0−µ′

σ

)2

F (q0|µ′) = Φ(
√
q0 − µ′

σ
)

(5.58)

Finally, the sampling distribution for qRPL follows a Gaussian distribution with mean

E[q] = 1−2µ′

σ
and variance V [q] = 4

σ2 . This gives the following cumulative function.

F (qRPL|µ′) = Φ

(

qRPL − (1− 2µ′)/σ2

2/σ

)

(5.59)

This leads to an important statement about the sampling distributions of test statistics

that can be written as a function of the PLR: The shape of the distributions depend only on

the tested µ, the hypothesized µ′, and the variance of µ. Of these, the variance is the only

model dependent quantity. As such, the variance merits exploration.

5.4.2 The Variance of µ

The variance of µ, namely σ2, can be conceptualized from the distribution f(µ̂|µ′). The

p-value that is the tail probability of obtaining a result µ̂ > µ given a hypothesized µ′ can

be converted into a significance Z, as shown in Figure 5.7. Z is the number of σ that µ is
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Figure 5.7: The sampling distribution f(µ̂|µ′) can be used to derive σ(µ, µ′). Slight non-
Gaussian behavior of the distribution causes dependence on both µ and µ′.

from µ′, such that σ is recovered by simply dividing µ− µ′ by Z:

p(µ, µ′) =

∞
∫

µ

f(µ̂|µ′)dµ̂

Z(µ, µ′) = Φ−1(1− p(µ, µ′))

σ(µ, µ′) = µ−µ′

Z(µ,µ′)

(5.60)

The dependence of σ on µ and µ′ is shown explicitly here. If f(µ̂|µ′) is a perfect Gaussian,

Z(µ, µ′) is linear in µ − µ′ and so σ(µ, µ′) is constant. Unfortunately this is only the case

for very idealistic models. Practically, σ(µ, µ′) must be estimated at each µ and µ′. The

dependence of σ on µ and µ′ depends on the size of the systematics in the model and their

posterior correlation with µ. For small systematics and small Z, this dependence tends to

be weak and linear. For models with large systematics, f(µ̂|µ′) can become non-Gaussian

very quickly and lead to non-linear behavior in σ.

Given a single dataset, the variance can be estimated with the test statistic following the
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Model NSig NBkg NObs σSig σBkg σCommon

1 50 200 200 - - -
2 50 200 200 10% 10% 10%
3 50 200 200 - - 10%
4 50 200 200 - 10% -
5 50 200 200 10% - -
6 50 200 250 - - 10%

Table 5.3: Parameters of models used in tests to derive asymptotic bands. Model 6 is
identical to Model 3 with the exception of the observed data, which has been changed to
test the effects of the profiling on the results.

Wald approximation:

tµ ≈
(

µ− µ̂
σ

)2

=⇒ σ ≈ |µ− µ̂|√
tµ

(5.61)

We are interested in the value of σ that characterizes the distribution of the test statistic.

This corresponds to the median test statistic value, and can therefore be characterized by

tµ,Aµ′
, which is the test statistic tµ evaluated on the µ′ Asimov dataset:

σ(µ, µ′) ≈ |µ− µ
′|

√

tµ,Aµ′

(5.62)

Figure 5.8 shows examples for the six models outlined in Table 5.3. Each is a high

statistics simple number counting experiment with single background and various degrees of

systematics.

5.4.3 Exclusion Bands

A consequence of the µ and µ′ dependence of σ is that the expected bands of an exclusion

limit require a reformulation beyond what one obtains from assuming σ is constant. The

bands one obtains from the exact procedure obtained with pseudo-experiments takes this

dependence into account naturally. It is therefore required that the asymptotic procedure

is formulated to follow the results obtained from pseudo-experiments as closely as possible.

The aim of this section is to derive such an asymptotic procedure within the q̃µ formalism.
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Figure 5.8: The value of σ(µ, µ′) as a function of µ for various values of µ′. Some instabilities
(for example, the green curve in Model 2) result from values of tµ,Aµ′

close to zero.
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Note that for limits, the use of q̃µ is equivalent to its corresponding uncapped r̃µ.

5.4.3.1 Toy Procedure

As a testbed for comparison, high statistics toy results are first used to compute the

expected limit and bands for a single bin counting experiment in several configurations. The

parameters for the models are outlined in Table 5.3. The sampling distributions f(q̃µ|µ) and

f(q̃µ|0) are computed for several points in µ and are shown in Figure 5.9. The two p-values

pµ =
∫∞
q̃µ
f(q̃

′

µ|µ)dq̃
′

µ and pb =
∫ q̃µ
−∞ f(q̃

′

µ|0)dq̃
′

µ are used to compute the ratio CLs(µ; q̃µ) =

pµ
1−pb

. For some value µ, a calibrated value of q̃µ, denoted q̃95µ , can be found that satisfies

CLs(µ; q̃95µ ) = 0.05. q̃95µ is the value of the test statistic required for the upper limit to be µ

on a given dataset. The 95% upper limit on µ for some given dataset is therefore found by

scanning the test statistic until it crosses this calibrated value.

Given the q̃95µ curve, the expected limit and bands are obtained from µ′ = 0 pseudo-

experiments. For each pseudo-experiment, the 95% confidence level upper limit µup is found

by scanning q̃µ until the crossing q̃µup = q̃95µ is found. From the ensemble one obtains the

distribution f(µup|0). The N th quantile of this distribution represents µup+N , the quantiles

of the expected upper limit.

At this point it becomes important to distinguish between two key stages of this proce-

dure when translating to asymptotics. The first is the procedure to obtain the q̃95µ curve.

This will rely only on the validity of asymptotics and the correct approximation of σ to

characterize f(q̃µ|µ) and f(q̃µ|0). The second is the procedure to obtain the distribution

f(µup|0) and µup+N given the q̃95µ curve. Estimating q̃95µ only requires solving the transcen-

dental equation CLs(µ; q̃95µ ) = 0.05 given the analytical asymptotic formula for the p-values

pµ and pb. Estimating µup+N involves finding a mapping from f(µ̂|0) to f(µup|0) and is more

involved.
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Figure 5.9: Sampling distributions of the test statistic q̃µ for the six models shown in Table 5.3
with asymptotic overlays. Model 1 shows discreteness due to the absence of systematics, so
the asymptotic overlay is left out. Note that Model 2 shows a deviation from asymptotics
in the distribution under the µ′ = 0 hypothesis, likely due to the large systematics in the
model.
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5.4.3.2 Estimating µup+N

Consider the distribution f(µ̂|0) derived from pseudo-experiments. Assuming that the

Wald approximation holds and that σ is constant, toys with µ̂ = Nσ are characteristic of

the expected N th quantile band, with N = 0 representing the median. In this case the value

of the test statistic at the N th quantile upper limit is qµup+N
≈ (

µup+N−Nσ

σ
)2 (qµ is used in

this case to simplify the algebra). Recalling that CLs = pµ
1−pb

, with pµ = 1 − Φ[
√
qµ] and

1− pb = Φ[µ
σ
−√qµ], at µup+N the critical exclusion value is computed as so:

α = (1− Φ[
µup+N−Nσ

σ
])/Φ[

µup+N

σ
− µup+N−Nσ

σ
]

= (1− Φ[
µup+N

σ
−N ])/Φ[N ]

(5.63)

Solving for µup+N , one obtains µup+N = σ{Φ−1[1 − αΦ(N)] + N}. This is referred to as

Method 1 and is the leading order approximation of µup+N . If σ is µ dependent, the terms

in the denominator of α no longer cancel and the equation for α is transcendental in µup+N .

Further, σ is also a function of µup+N , and in general this dependence cannot be quantified

analytically.

A more rigorous approach for determining the expected N th quantile of an upper limit,

refered to as Method 2, requires the correct estimation of the σ terms in the equation for

α. Starting with the distribution f(µ̂|0) and again invoking the Wald approximation, there

should exist a one-to-one monotonic mapping of f(µ̂|0) onto f(µup|0). It follows that the N th

quantile of f(µ̂|0) also maps to the N th quantile of f(µup|0). The procedure for estimating

µup+N can thus be thought of as two separate issues. The first is the correct estimation of

f(µ̂|0); in particular, it’s N th quantile. The second is the correct estimation of the mapping of

f(µ̂|0) onto f(µup|0). The estimation of the N th quantiles of f(µ̂|0) follows from section 5.4.2:

σ(µ, 0) = µ
N(µ,0)

=⇒ N(µ, 0) = µ
σ(µ,0)

=
√

−2 lnλA0(µ)
(5.64)
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Denoting the expected N th quantile of f(µ̂|0) as µN
A , it’s seen that, for some given N , µN

A

is given by the solution to
√

−2 lnλA0(µ
N
A ) = N . Table 5.4 shows the exact and estimated

values of µN
A for each model. The agreement is generally good at the percent level.

Less straight forward is the estimation of the f(µ̂|0)→ f(µup|0) mapping. It is clear that

µ̂ = µN
A characterizes the value of µ for the pseudo-experiments that lie on the N th quantile.

More subtle are the values of the nuisance parameters that characterize the quantiles, denoted

as θNA . These correspond to the median values of nuisance parameters for pseudo-experiments

having an upper limit of µup+N . The method for estimating θNA will be explored through

inspection.

Each model is fully specified by µ and θ, where θ is the nuisance parameter representing

the systematic in the model. The distributions of the unconditional estimators of these

parameters for each model, µ̂ and θ̂, are shown in Figures 5.10- 5.14. The median value

of θ̂ within a small window of the quantiles of µ̂ is shown by the open circles for the N =

−3,−2, ...,+3 quantiles of µ̂. θNA ≡ θ̂(µN
A ) at the quantiles is shown by the open triangles,

which follows closely the open circles. This shows that θ̂(µN
A ) can provide an asymptotic

estimate of the value of θ̂ that characterizes the quantiles of the upper limit.

Given both µN
A and θNA , an Asimov dataset, denoted AN , can be constructed that charac-

terizes pseudo-experiments falling on the N th quantile. Recall that in the exact toy procedure

the upper limit of each pseudo-experiment is found from the solution to q̃µup = q̃95µup
. It fol-

lows that µup+N is also characterized by the solution to q̃µup+N ,AN = q̃95µup+N
. This is the

effective procedure to estimate the f(µ̂|0)→ f(µup|0) mapping.

The full procedure to compute the fully asymptotic µup+N can be summarized as follows:

• Construct a µ′ = 0 Asimov dataset, and with it solve
√

−2 lnλA0(µ
N
A ) = N to find µN

A .

• Simultaneously, extract θNA ≈ θ̂(µN
A ) from the maximum likelihood fit in the numerator

of λA0(µ
N
A ).

• Construct the Asimov dataset AN with the parameters µN
A and θNA .
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Figure 5.10: Two dimensional sampling distribution of µ̂ vs θ̂ for Model 2.
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Figure 5.11: Two dimensional sampling distribution of µ̂ vs θ̂ for Model 3.
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Figure 5.12: Two dimensional sampling distribution of µ̂ vs θ̂ for Model 4.
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Figure 5.13: Two dimensional sampling distribution of µ̂ vs θ̂ for Model 5.
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Figure 5.14: Two dimensional sampling distribution of µ̂ vs θ̂ for Model 6.
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Figure 5.15: Visualization of the improved method for computing the asymptotic bands.
In black is the distribution of µ̂ under the background-only hypothesis. The quantiles of
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the corresponding expected limit quantile. The cyan curve shows that these values of µ̂ are
well estimated asymptotically. In red are the curves of q̃µ computed with Asimov datasets
constructed with the asymptotically estimated µ̂ quantiles. The quantiles of the expected
limit correspond to the crossing of these curves with the asymptotic q̃95µ function in green.

• With AN , solve q̃µup+N ,AN = q̃95µup+N
to find µup+N . The q̃95µ curve can be obtained with

the analytical asymptotic expression for CLs, which is computationally inexpensive.

The procedure is visualized in Figure 5.15. It can also be condensed into a simple

transcendental equation for µup:

µup+N = N1σ(µN , 0) +N2σ(µup+N , µ
N)

N1 =
√

−2 lnλA0(µ
N1
A )

N2 =
√

q̃95
µup+N ,AN

(5.65)

The results from Method 1, Method 2, and the exact toy procedure for all six models are

shown in Table 5.5. It can be seen that Method 2 is in better agreement with the toy results
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than Method 1. Similar tests have shown that deviations in Method 1 are exaggerated in

models with large systematics that cause σ to become highly µ dependent, while Method 2

replicates the toy results.
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Model 1
-3 -2 -1 0 1 2 3

µN -0.82 -0.56 -0.29 0 0.28 0.58 0.88
µN
A -0.79 -0.54 -0.28 0 0.29 0.59 0.91

Model 2
-3 -2 -1 0 1 2 3

µN -1.86 -1.22 -0.61 -0.01 0.61 1.27 2.01
µN
A -1.87 -1.22 -0.60 0 0.62 1.29 2.04
θNs -0.65 -0.30 -0.02 0.127 -0.01 -0.24 -0.74
θNA,s -0.80 -0.37 -0.10 0 -0.09 -0.35 -0.74

θNb 2.32 1.39 0.63 -0.05 -0.63 -1.09 -1.40
θNA,b 2.24 1.43 0.66 0 -0.59 -1.02 -1.36

θNc 1.45 1.11 0.63 0.02 -0.63 -1.34 -2.12
θNA,c 1.46 1.07 0.59 0 -0.65 -1.36 -2.09

Model 3
-3 -2 -1 0 1 2 3

µN -1.22 -0.86 -0.46 -0.01 0.49 1.05 1.67
µN
A -1.21 -0.85 -0.45 0 0.50 1.07 1.70
θNc 2.37 1.58 0.76 -0.01 -0.80 -1.67 -2.53
θNA,c 2.37 1.59 0.80 0 -0.81 -1.62 -2.44

Model 4
-3 -2 -1 0 1 2 3

µN -1.55 -1.00 -0.49 -0.01 0.46 0.91 1.34
µN
A -1.53 -1.00 -0.49 0 0.47 0.92 1.36
θNb 2.66 1.67 0.79 -0.01 -0.80 -1.52 -2.11
θNA,b 2.64 1.71 0.83 0 -0.77 -1.48 -2.12

Model 5
-3 -2 -1 0 1 2 3

µN -0.86 -0.56 -0.28 0 0.28 0.58 0.90
µN
A -0.82 -0.55 -0.28 0 0.29 0.60 0.94
θNs -0.69 -0.32 -0.028 -0.01 -0.01 -0.27 -0.65
θNA,s -0.85 -0.39 -0.097 0 -0.09 -0.35 -0.75

Model 6
-3 -2 -1 0 1 2 3

µN -1.22 -0.86 -0.46 -0.01 0.49 1.05 1.67
µN
A -1.21 -0.85 -0.45 0 0.50 1.07 1.70
θNc 2.37 1.58 0.76 -0.01 -0.80 -1.67 -2.53
θNA,c 2.37 1.59 0.80 0 -0.81 -1.62 -2.44

Table 5.4: Estimated and exact values of parameters that characterize the N th quantile
expected upper limits on µ. The bias in θNs is related to the asymptotic breaking shown in
Figure 5.9
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Model 1
Expected +2σ +1σ -1σ -2σ

Method 1 0.58 1.08 0.81 0.42 0.31
Method 2 0.58 1.11 0.82 0.42 0.32
Toys 0.58 1.10 0.81 0.42 0.31

Model 2
Expected +2σ +1σ -1σ -2σ

Method 1 1.27 2.36 1.76 0.91 0.68
Method 2 1.27 2.56 1.82 0.91 0.71
Toys 1.26 2.55 1.81 0.89 0.64

Model 3
Expected +2σ +1σ -1σ -2σ

Method 1 1.04 1.94 1.45 0.75 0.56
Method 2 1.04 2.14 1.51 0.73 0.54
Toys 1.04 2.13 1.51 0.72 0.53

Model 4
Expected +2σ +1σ -1σ -2σ

Method 1 0.90 1.68 1.25 0.65 0.48
Method 2 0.90 1.64 1.24 0.66 0.50
Toys 0.90 1.63 1.23 0.65 0.49

Model 5
Expected +2σ +1σ -1σ -2σ

Method 1 0.59 1.10 0.82 0.43 0.32
Method 2 0.59 1.17 0.84 0.43 0.33
Toys 0.59 1.15 0.84 0.42 0.31

Model 6
Expected +2σ +1σ -1σ -2σ

Method 1 1.01 1.89 1.41 0.73 0.54
Method 2 1.01 2.08 1.47 0.71 0.52
Toys 1.01 2.07 1.47 0.71 0.52

Table 5.5: Quantiles of expected upper limits on µ for the two asymptotic methods in
comparison with the full toy result.
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CHAPTER VI

Search in the H →WW (∗)→ ℓνℓν Channel

“Our feeblest contemplations of the Cosmos stir us - there is a tingling in the spine, a catch in the

voice, a faint sensation, as if a distant memory, of falling from a height. We know we are

approaching the greatest of mysteries.”

- Carl Sagan

6.1 Overview

The H → WW (∗) → ℓνℓν decay mode features a relatively large branching fraction

throughout the mH > 110 GeV search region. It is characterized by two high pT oppositely

charged leptons and large missing transverse energy. The spin-0 nature of the Higgs yields a

dilepton system with low mℓℓ due to the small opening angle between the lepton pair. The

primary production modes that contribute to this channel are gluon-gluon fusion and vector

boson fusion (see Section 2.7). Between these two, the gg → H mode has a production cross

section around 10 times that of VBF at low mH for
√
s = 8 TeV. The gg → H production

mode has zero jets at leading order, but large radiative corrections due to the gluons in

the initial state lead to a large fraction of events with one high pT jet. In contrast to this,

the VBF production topology gives two high pT forward jets at leading order, with large

longitudinal separation between them. The different signal and background topologies that

lead to different background levels and compositions of the 0-, 1-, and ≥2-jet final states
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make it beneficial for this analysis to have dedicated search channels each. Further, the

gg → H → WW (∗) and qq̄ → Hqq̄ → WW (∗)qq̄ modes differ from a physics standpoint, in

that gg → H → WW (∗) mode depends on the coupling of the Higgs to both fermions and

bosons, while qq̄ → Hqq̄ → WW (∗)qq̄ depends only on the coupling to bosons. The 2-jet

inclusive analysis is therefore considered to be a dedicated search for the VBF production

mechanism. Signal contributions from the associated production mode are also included and

contribute between 1-5% depending on jet multiplicity.

The search is further divided by final state lepton flavor combinations. This is primarily

because of the large Z/γ∗ → ℓℓ background in the same flavor (ee, µµ, denoted SF) final

state, which is small in the different flavor (eµ, µe, denoted DF) state. The DF channel is

separated into eµ and µe based on the leading lepton due to different electron and muon

performance at low pT as well as differing rates of backgrounds due to fake leptons.

The two neutrinos in the final state prevents full reconstruction of the invariant mass of

the Higgs. Because of this, the analysis is largely a number counting experiment, although

mT =

√

(Eℓℓ
T + 6ET )2 − (pℓℓ

T + ~6ET )2, the transverse mass, can be used to give some small

measure of sensitivity to mH as well as additional separation between signal and background.

The bulk of this chapter represents the analysis on the 8 TeV dataset. Details specific to

the 7 TeV analysis are specified in Section 6.12.

6.2 Data and Monte Carlo Samples

Table 6.1 shows the Monte Carlo (MC) samples used in this analysis along with the cross

section times branching ratio (σ×B) for each physics process. The branching ratio assumes

and sums over leptonic decays of W/Z bosons, with the exception of the top backgrounds

and VH signal samples, which are inclusive. Some cross sections include generator level

selections, which are mentioned in the comments.

The ggF signal corresponds to mH = 125 GeV. The ggF cross section is computed at next-

to-next-leading-order (NNLO) in QCD scale [37, 35, 70, 64, 25, 65] using the MSTW2008
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Process Generator σ · B (pb)
ggF POWHEG+PYTHIA8 0.441
VBF POWHEG+PYTHIA8 35 · 10−3

WH/ZH PYTHIA8 127 · 10−3

qq̄/g →WW POWHEG+PYTHIA6 5.68
qq̄/g →WW+2j Sherpa, no QCD vertices 0.039
gg →WW GG2WW+HERWIG 0.16
tt̄ MC@NLO+HERWIG 238.1
tW/tb MC@NLO+HERWIG 28
tqb AcerMC+PYTHIA6 88
inclusive W ALPGEN+HERWIG 37 · 103

inclusive Z/γ∗ ALPGEN+HERWIG 16 · 103

Z/γ∗+2j Sherpa, no QCD vertices 1.178
Z(∗)Z(∗) → 4l POWHEG+PYTHIA8 0.73
W (Z/γ∗)(m(Z/γ∗) > 7GeV) POWHEG+PYTHIA8 0.825
W (Z/γ∗)(m(Z/γ∗) < 7GeV) MADGRAPH+PYTHIA6 11.0
Wγ ALPGEN+HERWIG 369

Table 6.1: Monte Carlo generators used to model the signal and background processes in
which all of the W and Z decay channels are included in the corresponding product of the
cross section (σ) and branching fraction (B) at

√
s= 8 TeV. Masses are given in units of

GeV.

PDF set [58]. Next-to-leading-order (NLO) electroweak and next-to-next-leading-log (NNLL)

QCD corrections are applied [24, 23]. The VBF cross section is computed at NNLO and

includes NLO QCD and NLO EW corrections. The VH cross sections are computed up to

NNLO in QCD scale and include NLO EW corrections. The branching fractions were cal-

culated with PROFECY4F [29, 28] and the total width was calculated with HDECAY [19].

Several generators are used to simulate the hard scatter (HS), parton shower (PS), hadro-

nisation, and underlying event (UE). PYTHIA6 or PYTHIA8 is used for the signal and some

background processes for simulating PS, hadronisation, and UE. In cases that HERWIG is

used for hadronisation and PS, JIMMY is used for UE. SHERPA is used for HS and PS for

VBF-like background processes such as qq′ → Zqq′ and qq′ →W+W−qq′. Full simulation of

the ATLAS detector with GEANT4 is used for almost all processes, with the exception of

the qq/gg →WW and single top backgrounds, which uses fast simulation to increase Monte
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Carlo statistics. The CT10 parton density function (PDF) set is used for POWHEG and

MC@NLO, while CTEQ6L1 is used for ALPGEN, MADGRAPH, PYTHIA6, and PYTHIA8.

The Wγ and Wγ∗ NLO K-factors are computed with MCFM. For Wγ, K = 1.15. For

Wγ∗, K = 2.01, which is computed on the phase space 0.5 < mℓℓ < 7 GeV, pleadT > 25 GeV,

psub−lead
T > 15 GeV, and |ηℓ| < 2.8.

The data collected uses inclusive single electron and muon triggers with a 24 GeV pT

threshold and loose isolation. This is 90% efficient for electrons and 90% (65%) efficient for

muons in the end-cap (barrel) based on tag-and-probe studies using Z events in data, and

was measured as a function of pT , η, and data-taking period. The total integrated luminosity

is 20.7 fb−1 after offline data-quality selection.

6.3 Object Selection

This section gives an overview of the selection of physics objects used in the analysis.

6.3.1 Trigger

The analysis uses unprescaled single lepton triggers. The ee channel uses an “or” between

the EF e60 medium1 and EF e24vhi medium1 triggers. The e60 refers to a 60 GeV trigger

threshold. The higher pT trigger is used to recover efficiency loss at high pT . The “vh” in

the e24 trigger refers to the fact that it uses η and pT dependent thresholds, and includes

a hadronic leakage cut at L1. The “i” indicates that the lepton must be isolated. The µµ

channel uses an “or” between the EF mu36 tight and EF mu24i tight triggers. Similar to

electrons, the “i” indicates that the muon must be isolated. The eµ channel uses an “or”

between all four triggers.

The per-lepton efficiency is calculated from MC and corrected for based on tag-and-probe

studies in data. The per-event scale factor can be written as a function of this per-lepton
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scale factor.

SFEvent =
1− (1− ǫleadMC × SF lead)× (1− ǫsubMC × SF sub)

1− (1− ǫleadMC)× (1− ǫsubMC)
(6.1)

ǫleadMC and ǫsubMC are the per-lepton trigger efficiencies from MC for the leading and sub-

leading leptons, respectively, and SF refers to the per-lepton scale factor determined from

tag-and-probe.

6.3.2 Electrons

Electrons are selected with pT > 15 GeV and |ηcluster| < 2.47, excluding the barrel/end-

cap transition region 1.37 < |ηcluster| < 1.52. Cuts are applied to the calorimeter shower

shape, track quality, track-cluster matching, and transition radiation energy criteria accord-

ing to the ATLAS Tight++ identification menu. A cut is applied to the transverse impact

parameter divided by its uncertainty, d0
σ(d0)

< 3. The longitudinal impact parameter pro-

jected onto the beam axis is required to satisfy |z0 sin θ| < 0.4mm. The electron is required

to be isolated both in the sum of calorimeter cluster ET and the sum of track pT relative to

the electron’s own pT in a cone of ∆R < 0.3 around the electron. The calorimeter isolation

requirement is topoEtcone30/pT =
∑

cell

(Ecell
T )/pT < 0.16, where the effects of pileup are es-

timated and subtracted from the numerator. The track isolation is optimized separately for

two electron pT regions, and is required to satisfy pTcone30/pT =
∑

track

(ptrackT )/pT < 0.12 for

15 < pT < 25 GeV and
∑

track

(ptrackT )/pT < 0.16 for pT > 25 GeV. Tracks with pT > 400 MeV

are included in the sum for the 8 TeV analysis, while this is increased to 900 MeV in the

7 TeV analysis. The isolation and impact parameter selections are primarily optimized to

reject the large W+jets background. pT dependent efficiency corrections are applied to the

Monte Carlo based on Data/MC comparisons with a tag-and-probe method.

100



6.3.3 Muons

The analysis uses muons satisfying pT > 15 GeV and |η| < 2.5. A track is required

to be reconstructed in both the inner detector and muon spectrometer. The final muon

four-momentum is taken from a combination of the two using the STACO algorithm. Muon

combined performance quality cuts are required on the inner detector track as follows. The

number of hits in the inner most tracking layer (B-Layer) are required to be at least one. The

number of hits in the pixel detector are required to be at minimum one. The number of hits

in the SCT are required to be at least five. The number of pixel and SCT holes associated

with the track should be less than three, where a hole indicates a position in the detector

where the track should have left a hit. Denote the number of hits in the TRT as nhits
TRT and

the number of outliers as noutliers
TRT , with n ≡ nhits

TRT + noutliers
TRT . A TRT outlier can either be

a straw tube that has a signal that is not crossed by a nearby track or a sequence of hits

that do not fit well when combined with SCT and Pixel measurements. For 0.1 < |η| < 1.9,

n > 5 and noutliers
TRT < 0.9n is required. For |η| ≤ 0.1 or |η| ≥ 1.9, if n > 5 then noutliers

TRT < 0.9n

is required.

Muons/jet overlap is treated as described in section 6.3.4. Similar to electrons, selections

are made to calorimeter and track isolation relative to the muon’s pT , as well as to d0

significance and z0 sin θ, while data-driven pT dependent corrections for these are applied to

the MC efficiency with tag-and-probe. These selections are targeted to reject non-prompt

and W+jets background. The impact parameter requirements are d0
σ(d0)

< 3 and |z0 sin θ| <

1.0mm. The calorimeter isolation criteria is EtConeCor30/pT < 0.014pT (GeV) − 0.15 and

EtConeCor30/pT < 0.20. The calorimeter isolation variable is corrected for its dependence

on the number of primary vertices in the event to account for high pileup [75]. The track

isolation requirement is PtCone30/pT < 0.01pT (GeV)− 0.105 and PtCone30/pT < 0.15.
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6.3.4 Jets

Jets are reconstructed using the Anti-kT algorithm with a distance parameter R=0.4 [30]

and are required to fall within |η| < 4.5. Jet cleaning is applied according to the criteria

proposed by the jet performance group [1]. The pT threshold of the jet is 25 GeV for

|η| < 2.5 and 30 GeV for 2.5 < |η| < 4.5. Jets overlapping muons are removed from the

set of selected jets. To suppress pileup jets, the jet vertex fraction (JVF) [59] is required to

satisfy |JV F | > 0.5, where JVF is defined as the fraction of the sum of track momentum

in the jet associated with the primary vertex, where all tracks with pT > 400 MeV are

considered. This is defined to be -1 for jets falling outside tracking coverage, hence the

absolute value effectively removes the selection where no tracks can be reconstructed. The

asymmetric pT threshold is designed to reduce the effect of pileup in the forward region.

Using a Z → µµ enriched data sample, the JVF cut is optimized to reject pileup jets while

maintaining a high efficiency for non-pileup jets.

6.3.4.1 b-Tagging

The b-tagging algorithm used in the analysis is the MV1 algorithm with an 85% working

point. MV1 is the output of a neural network that uses JetFitter+IP3D, IP3D, and SV1 as

inputs. The details of these three inputs can be found in Section 4.4.3. This is used in both

1- and 2-jet analyses to suppress top events and to define the top control regions.

6.3.5 Missing Transverse Energy

The base for the missing transverse energy used in the analysis is 6ET
ref,final. This is

a prioritized sum of cells from final state reconstructed objects using their corresponding

calibrations, and of cells not associated with reconstructed objects. The latter is called the

Cell Out Energy Flow (COEF) missing transverse energy.

6Eref,final
x(y) = 6Ee

x(y) + 6Eγ
x(y) + 6Eτ

x(y) + 6E jets
x(y) + 6ECOEF

x(y) + 6Eµ
x(y) (6.2)
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Cells within |η| < 4.9 are considered. The order of the sum in the equation represents

the priority given to calibration, with highest priority starting from the left. Muons are

considered out to |η| < 2.7. Corrections to the muon term are added for muons reconstructed

as tracks in the inner detector but not in the MS. Low pT tracks that do not make it to the

calorimeter are also re-added.

In the 0- and 1-jet analyses, 6ET rel is used in place of 6ET .

6ET rel =











6ET , ∆φ ≥ π/2

6ET sin ∆φ, ∆φ < π/2
(6.3)

∆φ in this case is the absolute value of the azimuthal angle between the 6ET direction and

the nearest lepton or jet. This is designed to reduce fake 6ET induced by the calorimeter’s

intrinsic energy resolution.

In the 2-jet analysis, a third 6ET ( 6ET
STVF) is introduced to better handle 6ET induced by

pileup jets. The 6ET
jets term only uses jets with |JV F | > 0. The Soft Term Vertex Fraction

(STVF) weights the 6ET
COEF term. STVF is the ratio of the sum of pT of tracks coming

from the first PV but unmatched to reconstructed physics objects to all tracks unmatched

to reconstructed physics objects.

STV F =
∑

PV tracks

pT/
∑

tracks

pT (6.4)

To qualify as coming from the first PV, tracks in the numerator must satisfy |d0| < 1.5mm

and |z0 sin θ| < 1.5mm.

Lastly, the SF channels use track based missing transverse momentum, 6pT , to further

reject Z/γ∗. Tracks must satisfy pT > 500 MeV, |η| < 2.5, |d0| < 1.5mm, |z0 sin θ| < 1.5mm,

and must have at least one (six) hits in the Pixel (SCT) detector. Lepton tracks that fail

the track selections but pass the criteria to be used in the standard 6ET are also used. All

electrons passing the medium++ quality criteria with |η| < 2.47 are considered. All STACO
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combined muons are also used. If the lepton is an electron, the cluster energy is used instead

of its track momentum.

6.4 Event Preselection

Before separation by jet multiplicity, a common preselection is applied to reduce the major

backgrounds. Events are required to have a primary vertex consistent with the beamspot

position, with at least three associated inner detector tracks with pT > 400 MeV. Event

cleaning is applied to reject cosmic rays, beam background, and calorimeter noise. Exactly

two oppositely charged leptons (electrons or muons) are required that satisfy psubleadingT > 15

GeV and pleadingT > 25 GeV. The dilepton invariant mass is required to be at least 10 GeV

for DF and 12 GeV for SF. For SF, mℓℓ must also fall outside of a ±15 GeV window around

the Z-pole. In the 0- and 1-jet analysis 6ET rel > 25 GeV is applied to DF, while for SF this

is increased to 45 GeV to further supress Drell-Yan background. For the 2-jet analysis 6ET is

used rather than 6ET rel due to the high jet multiplicity and is required to be at least 20 GeV

in DF and 45 GeV in SF. In SF, 6ET
STVF is also required to be larger than 35 GeV in the

2-jet bin. For SF, frecoil (see Section 6.9) should be greater than 0.05 in 0-jet, while f extended
recoil

should be greater than 0.2 in 1-jet. Figure 6.1 shows the distributions for the different 6ET

definitions in various jet multiplicities. Also shown is frecoil in the 0-jet SF channel.

After all preselection cuts, the jet multiplicity is shown in Figure 6.2 for DF and SF

separately. At this stage the DF channel is dominated by dileptonic top background, while

SF has similar contributions from both top and Z → ℓℓ.

At this point, events are further divided by jet multiplicity. Different topological selec-

tions are applied to each multiplicity to target the suppression of different backgrounds and

while retaining signal efficiency under dissimilar event topologies. Table 6.2 compactly sum-

marizes the signal region event selection for all jet multiplicities and lepton flavor categories.

These are elaborated on in the following sections.
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Figure 6.1: Missing transverse momentum distributions for events after pre-selection for (a)
6ET rel for Njet≤ 1, (b) pmiss

T,rel for Njet≤ 1, and (c) 6ET
STVF for Njet≥2 modes. The plot in (b)

is made after the requirement on 6ET rel and the one in (c) after the requirement on 6ET . The
plot in (d) shows the frecoil distribution in ee+µµ events passing the Njet=0 selection after
mℓℓ< 50 GeV for simulated DY, non-DY and signal processes. The shaded area (too small
to be visible in these figures) represents the uncertainty on the signal and background yields
from statistical, experimental, and theoretical sources. The signal is overlaid as a red curve
in (a) and (b); in (c), the ggF signal is stacked at the bottom while the VBF signal is overlaid
as a thick black line.
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Figure 6.2: Jet multiplicity for events in 8 TeV data. The plots are shown for the (a) eµ+µe
and (b) ee+µµ channels after pre-selection and 6ET rel> 25 GeV and > 45 GeV, respectively.
The signal is too small to be seen, but falls mostly in the 0-jet bin. The shaded area
represents the uncertainty on the signal and background yields from statistical, experimental,
and theoretical sources.

6.5 0-jet Analysis

Events with zero selected jets must satisfy further topological selections. The opening

angle between the dilepton system and the 6ET direction, ∆φ
ℓℓ, 6ET

, must be greater than π
2
.

Further selections are pT,ℓℓ > 30 GeV, mℓℓ < 50 GeV, and ∆φℓℓ < 1.8 radians. The transverse

mass is fit rather than cut on to obtain the final result, but a cut of 0.75×mH < mT < mH

is considered to give a representation of the event counts in the signal rich region of mT .

Table 6.3 shows the expected signal and background events along with the number observed

in data after each cut in the SF and DF channels in this jet category.

Figure 6.3 shows the mℓℓ and ∆φℓℓ distributions in the DF channel before the mℓℓ selec-

tions. Figure 6.4 shows the transverse mass for both DF and SF channels after all selections.

6.6 1-jet Analysis

In addition to the mℓℓ and ∆φ selections of the 0-jet analysis, the 1-jet analysis applies

additional cuts to suppress the top and Z→ ττ backgrounds. Events where the jet is tagged
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Category Njet=0 Njet=1 Njet≥2

Pre-selection

Two isolated leptons (ℓ= e, µ) with opposite charge
Leptons with pT

lead > 25 and pT
sublead > 15

eµ+µe: mℓℓ> 10
ee+µµ: mℓℓ> 12, |mℓℓ −mZ |> 15

Missing transverse
momentum and
hadronic recoil

eµ+µe: 6ET rel> 25 eµ+µe: 6ET rel> 25 eµ+µe: 6ET > 20
ee+µµ: 6ET rel> 45 ee+µµ: 6ET rel> 45 ee+µµ: 6ET > 45

ee+µµ: pmiss
T,rel> 45 ee+µµ: pmiss

T,rel> 45 ee+µµ: 6ET
STVF> 35

ee+µµ: frecoil< 0.05 ee+µµ: frecoil< 0.2 -

General selection
- Nb-jet=0 Nb-jet=0
∆φℓℓ, 6ET

>π/2 - ptotT < 45

pℓℓT > 30 eµ+µe: Z/γ∗→ττ veto eµ+µe: Z/γ∗→ττ veto

VBF topology

- - mjj > 500
- - ∆yjj > 2.8
- - No jets (pT > 20) in rapidity gap
- - Require both ℓ in rapidity gap

H→WW (∗)→ℓνℓν
topology

mℓℓ< 50 mℓℓ< 50 mℓℓ< 60
∆φℓℓ< 1.8 ∆φℓℓ< 1.8 ∆φℓℓ< 1.8
eµ+µe: split mℓℓ eµ+µe: split mℓℓ -
Fit mT Fit mT Fit mT

Table 6.2: Selection listing for 8 TeV data. The criteria specific to eµ+µe and ee+µµ are
noted as such; otherwise, they apply to both. Pre-selection applies to all Njet modes. The
rapidity gap is the y range spanned by the two leading jets. The mℓℓ split is at 30 GeV.
The modifications for the 7 TeV analysis are given in Section 6.12 and are not listed here.
Energies, masses, and momenta are in units of GeV.

as a b-quark are vetoed. The ττ invariant mass mττ is computed assuming the neutrinos

from the leptonic tau are collinear with the τ decays [68]. If the fraction of energy carried

by the visible decay products for the two taus, xτ1 and xτ2, are positive, then mττ must fall

outside of a ±25 GeV window around the Z-pole. Table 6.4 shows the expected signal and

background events along with the number observed in data after each cut for the SF and

DF channels in this jet category.

Figure 6.5 shows the mℓℓ distribution after the Z → ττ veto and the ∆φℓℓ distribution

after the mℓℓ cut in the DF channel. Figure 6.6 shows the transverse mass for both DF and

SF channels after all selections.
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Figure 6.5: Kinematic distributions in the Njet=1 channel: mℓℓ after the Z→ττ veto (left)
and ∆φℓℓ after the cut on mℓℓ (right), The signal is added on top of the background. The
WW and top backgrounds are scaled to use the normalisation derived from the corresponding
control regions described in the text. The shaded area represents the uncertainty on the
signal and background yields from statistical, experimental, and theoretical sources.

 [GeV]Tm

50 100 150 200 250 300

E
ve

nt
s 

/ 1
0 

G
eV

0

20

40

60

80

100

120

140
 Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets
  H [125 GeV]

ATLAS Preliminary
­1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 1 jetνeνµ/νµνe→
(*)

WW→H

 [GeV]Tm

50 100 150 200 250 300

E
ve

nt
s 

/ 1
0 

G
eV

0

10

20

30

40

50

60

70

80

90
 Data  stat)⊕ SM (sys 

 WW γ WZ/ZZ/W

t t  Single Top

 Z+jets  W+jets
  H [125 GeV]

ATLAS Preliminary
­1 Ldt = 20.7 fb∫ = 8 TeV, s

 + 1 jetνµνµ/νeνe→
(*)

WW→H

Figure 6.6: Distribution of the transverse mass, mT, for 8 TeV data. The plots are shown for
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Figure 6.4
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(a) eµ+µe channel

Selection Nobs Nbkg Nsig

Njet=0 9024 9000± 40 172± 2
∆φℓℓ, 6ET

>π
2

8100 8120± 40 170± 2

pℓℓT > 30 5497 5490± 30 156± 2
mℓℓ < 50 1453 1310± 10 124± 1
∆φℓℓ < 1.8 1399 1240± 10 119± 1

NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

4900± 20 370± 10 510± 10 310± 10 2440± 30 470± 10
4840± 20 360± 10 490± 10 310± 10 1690± 30 440± 10
4050± 20 290± 10 450± 10 280± 10 100± 10 320± 5
960± 10 110± 6 69± 3 46± 3 18± 7 100± 2
930± 10 107± 6 67± 3 44± 3 13± 7 88± 2

(b) ee+µµ channel

Selection Nobs Nbkg Nsig

Njet=0 16446 15600± 200 104± 1
∆φℓℓ, 6ET

>π
2

13697 12970± 140 103± 1

pℓℓT > 30 5670 5650± 70 99± 1
mℓℓ < 50 2314 2390± 20 84± 1
pmiss
T,rel > 45 1032 993± 10 63± 1

∆φℓℓ < 1.8 1026 983± 10 63± 1
frecoil < 0.05 671 647± 7 42± 1

NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

2440± 10 190± 5 280± 6 175± 6 12300± 160 170± 10
2430± 10 190± 5 280± 6 174± 6 9740± 140 160± 10
2300± 10 170± 5 260± 6 167± 5 2610± 70 134± 4
760± 10 64± 3 53± 3 42± 3 1410± 20 62± 3
650± 10 42± 2 47± 3 39± 3 200± 5 19± 2
640± 10 41± 2 46± 3 39± 3 195± 5 18± 2
520± 10 30± 2 19± 2 22± 2 49± 3 12± 1

Table 6.3: Selection table for Njet=0 in 8 TeV data. The observed (Nobs) and expected (Nexp)
yields for the signal (Nsig) and background (Nbkg) processes are shown for the (a) eµ+µe
and (b) ee+µµ channels. The composition of Nbkg is given on the right. The requirements
are imposed sequentially from top to bottom. Energies, masses, and momenta are in units
of GeV. The uncertainties shown are only those due to limited MC statistics.

(a) eµ+µe channel

Selection Nobs Nbkg Nsig

Njet=1 9527 9460± 40 97± 1
Nb-jet = 0 4320 4240± 30 85± 1
Z→ττ veto 4138 4020± 30 84± 1
mℓℓ < 50 886 830± 10 63± 1
∆φℓℓ < 1.8 728 650± 10 59± 1

NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

1660± 10 270± 10 4980± 30 1600± 20 760± 20 195± 5
1460± 10 220± 10 1270± 10 460± 10 670± 10 160± 4
1420± 10 220± 10 1220± 10 440± 10 580± 10 155± 4
270± 4 69± 5 216± 6 80± 4 149± 5 46± 2
250± 4 60± 4 204± 6 76± 4 28± 3 34± 2

(b) ee+µµ channel

Selection Nobs Nbkg Nsig

Njet=1 8354 8120± 90 54± 1
Nb-jet = 0 5192 4800± 80 48± 1
mℓℓ < 50 1773 1540± 20 38± 1
pmiss
T,rel > 45 440 420± 10 21± 1

∆φℓℓ < 1.8 430 410± 10 20± 1
frecoil < 0.2 346 320± 10 16± 1

NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

820± 10 140± 10 2740± 20 890± 10 3470± 80 60± 10
720± 10 120± 10 720± 10 260± 10 2940± 70 40± 10
195± 4 35± 2 166± 5 65± 3 1060± 10 20± 2
148± 3 21± 1 128± 5 52± 3 64± 4 5.1± 0.8
143± 3 20± 1 125± 5 51± 3 63± 4 4.5± 0.7
128± 3 17± 1 97± 4 44± 3 25± 2 3.1± 0.6

Table 6.4: Selection table for Njet=1 in 8 TeV data. More details are given in the caption of
Table 6.3.
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6.7 2-jet Analysis

The 2-jet selections are geared to select signal events from the VBF production mech-

anism. The selections were optimized treating the ggF process as a background to further

enhance the VBF signal above all other physics processes. The event must contain at least

two selected jets. A Z → ττ and b-jet veto are made as in the 1-jet analysis. To further

suppresses the top background, ptotT = |pℓℓ
T + p

jj
T + 6ET | must be less than 45 GeV, where p

jj
T

only contains contributions from the tag jets. Further selections are made on the two jets

with the highest pT . The dijet invariant mass mjj is required to be larger than 500 GeV.

The rapidity gap between the jets must satisfy |∆yjj| > 2.8. The top background will tend

to have more soft gluon radiation than the VBF signal, which mostly falls into the central

region of the detector. To suppress the top background events are therefore vetoed if they

contain additional selected jets with pT > 20 GeV between the two highest pT jets. Events

with leptons outside of the two tag jets in rapidity are also vetoed. mℓℓ < 60 GeV and

∆φ < 1.8 is finally required. Table 6.5 shows the expected signal and background events

along with the number observed in data after each cut in the SF and DF channels in this jet

category.

Figure 6.7 shows the |∆yjj| distribution after the ptot
T selection as well as mjj after the

cut on |∆yjj| for both DF and SF channels. Figure 6.8 shows the mℓℓ and ∆φℓℓ distributions

after the outside lepton veto. Finally, figure 6.9 shows the transverse mass distribution for

DF and SF after all selections.

6.8 Control Regions

Background rich control regions (CRs) close in phase space to the signal region (SR)

are used to normalize the main backgrounds. There are seven control regions used in total.

There are 0- and 1-jet control regions for the WW background, 1- and 2-jet control regions

for the top background, and 0-, 1-, and 2-jet control regions for Z → ττ . Nearly all of the
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Figure 6.7: The ∆yjj and mjj distributions after the ptotT < 45 GeV cut. ptotT is defined as the
total transverse momentum of all leptons, jets and missing ET passing the selection. The mjj

distribution is shown after the ∆yjj > 2.8 cut. The shaded area represents the uncertainty
on the signal and background yields from statistical, experimental, and theoretical sources.
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Figure 6.8: The mℓℓ and the ∆φℓℓ distributions after the outside lepton veto cut, accepting
events with leptons between the two tagging jets. ∆φℓℓ is shown after the mℓℓ< 60 GeV
cut. The shaded area represents the uncertainty on the signal and background yields from
statistical, experimental, and theoretical sources.
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Figure 6.9: Distribution of the transverse mass, mT, for 8 TeV data. The plots are shown for
the eµ+µe (left) and ee+µµ (right) channels in the Njet≥2 mode. More details are given in
Figure 6.4
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(a) eµ+µe channel

Selection Nobs Nbkg Nsig,VBF

Njet≥2 48723 47740± 80 43± 1
Nb-jet = 0 5852 5690± 30 31± 1
ptotT < 45 4790 4620± 30 27± 1
Z→ττ veto 4007 3840± 30 25± 1
∆yjj > 2.8 696 680± 10 12± 0.2
mjj > 500 198 170± 4 7.5± 0.1
No jets in y gap 92 77± 2 6.3± 0.1
Both ℓ in y gap 78 59± 2 6.1± 0.1
mℓℓ < 60 31 16± 1 5.5± 0.1
∆φℓℓ < 1.8 23 12± 1 5.1± 0.1

Nsig,ggF NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

67± 1 940± 10 300± 20 41800± 70 2370± 20 1800± 30 440± 10
49± 1 690± 10 200± 10 2930± 20 350± 10 1300± 20 171± 5
41± 1 590± 10 160± 10 2320± 20 290± 10 1100± 20 126± 4
38± 1 540± 10 140± 10 2150± 20 260± 10 600± 20 108± 4
9.5± 0.3 100± 2 25± 3 380± 10 55± 3 95± 5 19± 2
2.9± 0.2 34± 1 5.6± 0.6 93± 3 11± 1 19± 2 4.4± 0.7
1.7± 0.2 25± 1 2.8± 0.4 30± 2 5.2± 0.8 9± 1 3.1± 0.6
1.6± 0.1 19± 1 2.1± 0.3 22± 1 4.3± 0.7 7± 1 2.4± 0.5
1.5± 0.1 3.8± 0.4 0.7± 0.2 4.5± 0.7 0.7± 0.3 4.4± 0.8 1.0± 0.4
1.3± 0.1 3.5± 0.4 0.6± 0.2 3.7± 0.7 0.7± 0.3 1.9± 0.5 0.6± 0.3

(b) ee+µµ channel

Selection Nobs Nbkg Nsig,VBF

Njet≥2 32877 32300± 100 26± 0.7
Nb-jet = 0 65388 6370± 80 19± 0.6
ptotT < 45 4903 4830± 70 17± 0.5
∆yjj > 2.8 958 930± 30 8.1± 0.2
mjj > 500 298 245± 6 5.5± 0.1
No jets in y gap 147 119± 4 4.7± 0.1
Both ℓ in y gap 108 85± 3 4.5± 0.1
mℓℓ < 60 52 40± 2 4.0± 0.1
∆φℓℓ < 1.8 42 34± 2 3.7± 0.1

Nsig,ggF NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

40± 1 540± 6 180± 10 24540± 60 1390± 20 5420± 90 190± 10
30± 1 390± 5 130± 10 1750± 20 200± 10 3810± 80 58± 4
24± 1 340± 4 92± 5 1370± 10 170± 10 2790± 70 43± 3
6.2± 0.3 61± 2 12± 1.3 252± 6 35± 2 560± 30 6± 1
2.1± 0.2 23± 1 4.1± 1.1 62± 3 9± 1 142± 5 1.4± 0.6
1.1± 0.1 17± 1 2.8± 1.1 19± 1 4.1± 0.7 74± 3 0.7± 0.4
0.9± 0.1 12± 1 2.3± 1.1 14± 1 3.1± 0.6 51± 3 0.3± 0.3
0.8± 0.1 3.2± 0.3 1.6± 1.1 3.7± 0.6 0.8± 0.3 30± 2 0.1± 0.2
0.7± 0.1 2.8± 0.3 1.6± 1.1 3.3± 0.5 0.7± 0.3 25± 2 0.1± 0.2

Table 6.5: Selection table for Njet≥2 in 8 TeV data. More details are given in the caption of
Table 6.3. In this table, the Nsig,ggF is included in Nbkg; the Nsig,V H is included in Nsig,VBF,
but the contributions are negligible after the VBF-related criteria. The y gap is described
in Table 6.2.

control regions mentioned here use only events from the e/µ + µ/e channels, where both

DF channels have been summed together. The exception is the 2-jet top CR, where both

DF and SF are summed to increase statistics. Each control region is therefore a single bin.

Associated with each control region is an independent normalization parameter for the target

background. There is cross-talk between the backgrounds in the control regions such that

the normalization parameters must be fit simultaneously. For example, the WW control

region in 1-jet contains substantial top background. The top normalization in this region

must therefore be simultanously determined using information from the 1-jet top control

region.

Experimental and theoretical systematic uncertainties are considered on the extrapolation

between signal and control regions, as well as on the extrapolation between the various control
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regions. MC statistical uncertainties on the extrapolation are effectively taken into account

through their implementation as described in Section 5.3.1. The relevant quantity to describe

the extrapolation factor is the ratio of acceptances in each region. For a background B, this

is αB ≡ εSRB
εCR
B

for the CR→SR extrapolation and βB ≡ ε
CR1
B

ε
CR2
B

for the CR2 →CR1 extrapolation.

Theoretical uncertainties on the quantities α and β are typically applied to the expectation of

the target background in the region to which the background is extrapolated. Experimental

uncertainties are applied on the absolute acceptances in all regions. These two methods are

equivalent and lead to the same effective uncertainty on the background, but the uncertainty

on the ratio of acceptances is more straight forward to compute for sources like QCD scale,

PDF uncertainties, or modeling uncertainties.

The WW CRs are defined similar to the SR. The mT and ∆φℓℓ cuts are dropped. The

region 50 < mℓℓ < 100 GeV is used in 0-jet and mℓℓ > 80 GeV is used in 1-jet. A WW

validation region with mℓℓ > 100 GeV is also used in 0-jet to validate the CR→SR WW

extrapolation. This is described later in Section 6.8.1. The top CRs drop the selections on

mT , ∆φℓℓ, and mℓℓ. For Z → ττ , all cuts are dropped after preselection with the exceptions

∆φℓℓ > 2.8 and mℓℓ < 80 GeV.

Table 6.6 shows a summary of the yields in each control region. Figure 6.10 shows the

transverse mass distribution in the WW CR for the 0- and 1-jet channels. Figure 6.11 shows

the transverse mass for the top CR for the 1- and 2-jet channels.

6.8.1 Control Region Validation

The extrapolation from the WW CR to the SR in 0-jet is validated using a similarly

defined region. A two category likelihood is used where the first is the standard 0-jet WW

CR with 50 < mℓℓ < 100 GeV, and the second is the mℓℓ > 100 GeV region. The method

of computing systematics on the backgrounds and extrapolation is identical to the standard

analysis. The likelihood can be parametrized such that the ratio of WW normalizations

between the regions, α ≡ µWW1

µWW2
, is the parameter of interest and the WW normalization in
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Figure 6.10: mT distributions in the WW control region in the Njet=0 (left) and Njet=1
(right) analyses, before normalising the simulation to the rate in data. Only eµ+µe channels
and
√
s = 8 TeV data are shown. The top backgrounds are scaled using the normalisation

derived from the corresponding control regions described in the text. The shaded area
represents the uncertainty on the signal and background yields from statistical, experimental,
and theoretical sources.
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Figure 6.11: Distributions of mT in Njet=1 (left) and Njet≥2 (right) top background control
regions. The distributions are normalised to the data. The right-most bin in Njet≥2 repre-
sents the overflow. The shaded area represents the uncertainty on the signal and background
yields from statistical, experimental, and theoretical sources.
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Estimate Nobs Nbkg Nsig

WW
Njet=0 2224 1970± 17 31± 0.7
Njet=1 1897 1893± 17 1.9± 0.3

Z/γ∗→ττ
Njet=0 1935 2251± 31 2.5± 0.2
Njet=1 2884 3226± 34 7.5± 0.3
Njet≥2 212 224± 7 0.6± 0.1

Top
Njet=1 4926 4781± 26 12± 0.5
Njet≥2 126 201± 5 1.6± 0.1

NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

1383± 9.3 100± 6.8 152± 4.4 107± 4.3 68± 10 160± 3.6
752± 6.8 88± 5.5 717± 9.5 243± 6.7 37± 7.5 56± 2.5

61± 1.9 8.5± 1.1 4.5± 0.8 2.7± 0.6 2113± 31 61± 3.8
117± 2.7 22± 3.1 570± 8.4 50± 3 2379± 32 88± 4.3
13± 1 4± 1 44± 3 5± 1 148± 6 9± 1

184± 3.7 43± 9.5 3399± 20 1049± 13 72± 3.1 35± 2.2
6.4± 0.4 1.0± 0.3 157± 4 26± 2 9± 1 0.3± 0.4

Table 6.6: Control region yields for 8 TeV data. The observed (Nobs) and expected (Nexp)
yields for the signal (Nsig) and background (Nbkg) processes are given. The composition of
Nbkg is given on the right. For Njet≥2, Nsig,ggF is added to Nbkg. In general, no normalisation
factors are applied with the following exception: the top and Z/γ∗→ττ normalisation factors
are applied for the corresponding estimates in the WW CRs. All uncertainties are statistical.

the validation region is a nuisance parameter. The test statistic q = −2 ln L(α=1)
L(α̂) is used to

quantify compatibility. This is therefore testing the hypothesis that the two normalizations

are equal to the hypothesis that they take on their independent unconditional values. q is

asymptotically distributed as a χ2 with one degree of freedom. The two sided probability for

obtaining q larger than that that which is observed is p = 2(1 − Φ(
√
q)). This corresponds

to a statistical significance Z = Φ−1(1 − p) = Φ−1(2Φ(
√
q)− 1). In the 8 TeV dataset, the

test gives a statistical significance of 1.3 standard deviations.

This test is not able to be performed in the 1-jet channel because no validation region

with alternate mℓℓ criteria can be defined that would give sensitivity to the extrapolation

validity.

6.9 Pacman

The Z/γ∗ background in the SF channels is estimated using the Pacman method. After

the pℓℓT cut, the Z/γ∗→ ℓℓ background that remains will be boosted in one direction, and

balanced in the other by soft hadronic activity. Processes with real 6ET in the form of

neutrinos, however, will tend to be balanced by real missing energy. The soft hadronic
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Figure 6.12: Scheme representing the Z/DY estimate procedure (the Pacman method).

activity in the quadrant opposite the dilepton axis can therefore be used to discriminate the

Z/γ∗ background from processes with real 6ET . This method is represented in Figure 6.12.

The variable to quantify this activity, frecoil, is defined for the 0-jet channel as:

frecoil =
|
∑

jets |JVF| × p̃jet
T |

pℓℓT
(6.5)

The requirements pT > 10 GeV, |η| < 4.5, and 3π
4
< ∆φ(ℓℓ, jet) < 5π

4
are applied to the

jets included in the numerator. The frecoil distribution normalized to unit area is shown in

Figure 6.13 for signal, DY, and the non-DY background for events in the 0-jet signal region.

The Z/γ∗ rejection versus signal efficiency is also shown.

The method can be extended to the 1-jet channel. In this case the dilepton system

is already balanced by a hard jet for Z/γ∗, though the dilepton+jet system will still be

balanced by the soft activity. The frecoil variable can therefore be modified and redefined

as f extended
recoil . In addition to the pT and |η| selection, jets in the numerator must now pass

3π
4
< ∆φ(ℓℓj, jet) < 5π

4
. That is, they must be in the quadrant opposite the dilepton+jet

system. The denominator is also modified to be pℓℓjT . f extended
recoil is shown in Figure 6.14 for

signal, DY, and non-DY backgrounds in the 1-jet signal region. Also shown is the Z/γ∗

rejection versus signal efficiency for f extended
recoil .

A cut of 0.05 is applied to frecoil in 0-jet and 0.2 to f extended
recoil in 1-jet. Because these

variables rely on soft hadronic activity, it is not expected that the MC will estimate the

efficiency well. The data-driven method used to estimate the frecoil and f extended
recoil efficiencies
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Figure 6.13: Left: Rejection of Z/DY background is plotted versus signal efficiency
(“ROC” curves) for different hadronic recoil energy variables in the 0-jet signal region (af-
ter the ∆φℓℓ<1.8 cut; therefore the full preselection has been applied, and 6ET rel>45 GeV,
pmiss
T,rel>45 GeV, pℓℓT>30 GeV, mℓℓ<50 GeV). Right: shape of frecoil in the 0-jet signal region

for Z/DY background, non-DY backgrounds (i.e. top, W+ jets, WW and other diboson
backgrounds) and 125 GeV Higgs signal.
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Figure 6.14: Left: Rejection of Z/DY background is plotted versus signal efficiency (“ROC”
curves) for the standard and extended definitions in the 1-jet signal region. Right: shape
of f extended

recoil in the 1-jet signal region for Z/DY background, non-DY backgrounds (i.e. top,
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Njet WW top Z/γ∗→ττ Z/γ∗→ℓℓ W + jets WZ/ZZ/Wγ
= 0 eµ+µe CR CR CR MC Data MC+VR
= 0 ee+µµ CR from eµ+µe CR from eµ+µe CR from eµ+µe Data Data MC+VR
= 1 eµ+µe CR CR CR MC Data MC+VR
= 1 ee+µµ CR from eµ+µe CR from eµ+µe CR from eµ+µe Data Data MC+VR
≥ 2 eµ+µe MC CR from eµ+µe+ee+µµ CR MC Data MC
≥ 2 ee+µµ MC CR from eµ+µe+ee+µµ CR from eµ+µe Data Data MC

Table 6.7: Background treatment summary. The estimation procedures for various back-
ground processes are given in four categories: normalised using a control region (CR); data-
driven estimate (Data); normalised using the MC (MC); and normalised using the MC, but
validated in a control region (MC+VR). The “from eµ+µe” denotes that for the ee+µµ in
the same Njet mode, the eµ+µe region is used instead. The “from eµ+µe+ee+µµ” denotes
that the four regions are merged.

is described in Section 6.13.1.

6.10 Backgrounds

This section describes how the major backgrounds are estimated. WW and top (tt̄ and

single top, including tW, tb, and tqb) are the leading backgrounds in all jet bins. There are

further contributions from Z/γ∗ → ℓℓ, Z/γ∗ → ττ with leptonic taus, W+jets with one fake

lepton, and non-WW diboson, including WZ(∗), Wγ, Wγ∗, and ZZ. Table 6.7 summarizes

the major backgrounds and how they are estimated in each channel.

6.10.1 WW

In the 0- and 1-jet channels, the WW background is normalized using a control region

close in phase space to the signal region, as described in Section 6.8. In the 2-jet channel,

this background is taken from MC, and includes additional electroweak contributions from

vector boson scattering.

6.10.2 Top

In the 1- and 2-jet channels, the top background is normalized using a control region

close in phase space to the signal region, as described in Section 6.8. In the 0-jet channel, a
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data-driven method is used. A 2-jet inclusive control region requiring at least one b-tagged

jet at the preselection stage is used to estimate the probability for top events to lose a

jet, PBtag,data
1 . Contributions due to non-top backgrounds are subtracted from the control

sample. Probing jets in the control sample are defined as jets that are at least 0.1 away from

the a tagged jet in ∆R. PBtag,data
1 is therefore the ratio of the number of events with no

probing jets to the total number of events. The corresponding quantity in MC is PBtag,MC
1 .

The probability for a top event to end up in the 0-jet bin is PEstimated
2 =

(

PBtag,data
1

PBtag,MC
1

)2

×PMC
2 .

The scale factor
PEstimated
2

PMC
2

=
(

PBtag,data
1

PBtag,MC
1

)2

can therefore be used to correct the MC in the 0-jet

bin.

6.10.3 Z/γ∗→ ττ

In all channels, the Z/γ∗→ττ background is normalized using a control sample close in

phase space to the signal region, as described in Section 6.8

6.10.4 Z/γ∗→ ℓℓ

In the DF channels, the Z/γ∗→ℓℓ contribution is small and estimated from MC. In the

SF channels, a data-driven method is used to estimate the background. For details on the

method, see sections 6.9 and 6.13.1.

6.10.5 W+jets

A data-driven method is used to estimate the W+jets background in all regions. The

lepton from the W → ℓν decay should be well modeled from MC, but the kinematics and

fake rate of the second lepton is not. A W+jets enriched control sample used to estimate

the probability for a jet to fake a lepton. Events in this sample must have one lepton which

passes the standard lepton selections. The sample is split into two disjoint pass-fail samples.

In the fail sample, a second lepton must fail the standard criteria, but pass a looser criteria.

In the pass sample, a second lepton must pass the standard criteria. A fake factor fℓ is
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Figure 6.15: mT distributions for the same-charge Wγ validation region: in the zero-jet
(left) and one-jet (right) selection. The eµ and µe channels are combined. The shaded area
represents the uncertainty on the signal and background yields from statistical, experimental,
and theoretical sources.

defined as the ratio of the pass to the fail sample and is computed as a function of η and pT .

The fail sample can also be defined for events in the standard event selection, in which one

lepton passes and one fails the ID criteria, but also passes the looser selections. The W+jets

contribution can be estimated with the events in this fail sample weighted by fℓ.

6.10.6 WZ/ZZ/Wγ/Wγ∗

Non-WW diboson backgrounds are estimated purely from MC. This is validated with

a same-sign validation region, in which all standard selection criteria are applied, but the

leptons have like signs. The validation region also receives contributions from W+jets, which

can be estimated as in Section 6.10.5. The transverse mass distribution for this region is

shown in Figure 6.15 separately for the DF and SF channels.

6.11 Systematics from Auxiliary Measurements

Systematics originating from external measurements can be divided into three classes.

There are theory systematics on cross sections and the shapes of kinematic variables due to

QCD scale, choice of parton density functions, and MC generator. There are experimental
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systematics due to unknowns in object reconstruction and detector and collider performance,

e.g. jet energy scale (JES), electron efficiency, and luminosity. Finally, there are uncertainties

due to limited MC simulation statistics. The latter is covered in Section 5.3.1. The former

are treated lognormally as discussed in Section 5.3. The sources considered are expanded

upon here.

6.11.1 Theory Systematics

Systematics due to QCD scale inputs to theoretical calculations are computed by varying

the renormalization and factorization scale up and down independently by a factor of two

around its nominal value, with the maximum deviations from nominal taken as the ±1σ

uncertainty. This uncertainty is assumed to be uncorrelated among signal and background

production processes. The QCD scale uncertainty on the ggF cross section is the dominant

systematic on the final µ measurement. The uncertainty on the total and N-jet inclusive

cross sections are all taken to be uncorrelated and amount to 8%, 20%, and 70% for the 0-,

1-, and 2-jet bins for mH = 125 GeV. The uncertainty must be written within the exclusive

jet bins and is treated according to Section 5.3.5. In the 2-jet bin, special consideration

is made for the VBF selections. In particular, the central jet veto requires an additional

uncertainty on the 3-jet inclusive cross section, which is treated as an extension to the 0-

and 1-jet jet binned uncertainties. The QCD scale uncertainty on the VBF production cross

section is small at around 1%. The scale uncertainties on production cross sections on the

VH process as well as all backgrounds processes that are not estimated with data-driven

methods are also considered.

The QCD scale uncertainties on kinematic acceptance for various processes are considered

and computed as above. In cases where backgrounds are estimated from some auxiliary con-

trol region R1 and extrapolated to a second region R2, the uncertainty on the extrapolation

coefficient
N

R2
MC

N
R1
MC

are considered and implemented in the expected rate in R2. The uncertainty

on acceptance is assumed to be uncorrelated from the uncertainty on total production cross
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section, and also between jet bins.

Systematics due to PDFs are computed as in [55, 56] for all processes to which they are

applicable. These systematics are assumed to be correlated between processes with similar

production modes, and grouped into the three categories gg, qg, and qq̄. For example, both

WZ and VBF Higgs processes are initiated through qq̄ and so the uncertainty on the two are

taken to be correlated. Uncertainties on acceptance due to PDFs are also computed and are

taken to be uncorrelated with the uncertainty on the total cross section similar to the QCD

scale treatment.

Systematics due to MC modeling, underlying event, and parton showering on acceptance

are finally considered by comparing various MC generators and taking the envelope as the

±1σ variation. These are non-negligible on the ggF Higgs signal and the extrapolation from

WW and top control regions to the signal region.

6.11.2 Experimental Systematics

Experimental sources of systematics are treated as correlated between signal and back-

ground processes for each source. For each systematic, the source is varied by ±1σ and

the variation of the expected rate is computed. These are provided as the boundary values

to the treatment outlined in Section 5.3.2. Systematics are considered from lepton energy

scale (LES), resolution (LER), and efficiency, jet energy scale (JES) and resolution (JER),

b-tagging efficiency, trigger efficiency, luminosity, and on the W+jets fake-factor.

The systematics due to LES and JES are propogated to the 6ET and 6ET
STVF calculations.

Further uncertainties on 6ET and 6ET
STVF are considered from jets with pT < 20 GeV and

low energy calorimeter deposits not associated with reconstructed objects. The systematics

on LES are further propogated to 6pT . Further uncertianties are applied to 6pT scale and

resolution due to sources not induced from charged leptons by comparing Z events in data

and MC as a function of the total hard pT of the event.

The JES systematics are divided into various experimental sources, each of which is
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taken to be uncorrelated. These include the η intercalibration of jets from the central to

the forward region, high-pT jets, MC non-closure, topologies with close-by jets, quark/gluon

composition and calorimeter response, b-jet energy scale, in-time and out-of-time pile-up,

and in-situ jet energy corrections.

LER, LES, lepton and trigger efficiency uncertainties are estimated from Z → ℓℓ, J/ψ →

ℓℓ, and W → ℓν decays. The electron efficiency uncertainty is between 2-5%, while the

others are less than 1%.

The uncertainty on the W+jets fake factor is considered as a function of lepton pT , and

is around 40%.

The uncertainty on the total integrated luminosity is taken to be 3.6%.

6.11.3 Summary of Systematics

Table 6.8 shows the main systematics on the signal and background broken down by

source. The extrapolation uncertainties on the control regions are shown in Table 6.9. These

are futher broken down by source for the extrapolation of the WW background in Table 6.10.

Due to anticorrelation of many major systematics between the backgrounds, the uncer-

tainty on the total background is lower than the individual backgrounds. Table 6.11 shows

the expected events for the signal and total background along with the observed events,

and the breakdown by each background source after a cut on the transverse mass. The

uncertainty on the expected rates are also given.

6.12 7 TeV Analysis

The analysis of the 7 TeV data follows the 8 TeV analysis closely to allow for a robust

combination of the two. Underlying event and pile-up is simulated with PYTHIA6 as opposed

to PYTHIA8 at 8 TeV, though PYTHIA6 is still used for the WW background at 8 TeV. The

JVF selections were loosened due to the lower pileup conditions in 2011. The SF channels

were similarly optimized due to the lower Z/γ∗ levels. Finally, the 2-jet analysis uses a cut
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Signal processes (%) Background processes (%)
Source Njet=0 Njet=1 Njet≥2 Njet=0 Njet=1 Njet≥2
Theoretical uncertainties
QCD scale for ggF signal for Njet≥ 0 13 - - - - -
QCD scale for ggF signal for Njet≥ 1 10 27 - - - -
QCD scale for ggF signal for Njet≥ 2 - 15 4 - - -
QCD scale for ggF signal for Njet≥ 3 - - 4 - - -
Parton shower and UE model (signal only) 3 10 5 - - -
PDF model 8 7 3 1 1 1
H→WW branching ratio 4 4 4 - - -
QCD scale (acceptance) 4 4 3 - - -
WW normalisation - - - 1 2 4

Experimental uncertainties
Jet energy scale and resolution 5 2 6 2 3 7
b-tagging efficiency - - - - 7 2
frecoil efficiency 1 1 - 4 2 -

Table 6.8: Leading systematic uncertainties on the expected event yields for the 8 TeV anal-
ysis. The first four rows are calculated for inclusive Njet modes and redistributed to exclusive
ones. The QCD scale uncertainties on the inclusive ggF cross sections are anti-correlated
between the exclusive Njet modes. Sources contributing less than 4% to any column, and
individual entries below 1%, are omitted.

Estimate Stat. (%) Theory (%) Expt. (%) Crosstalk (%) Total (%)

WW
Njet=0 2.9 1.6 4.4 5.0 7.4
Njet=1 6 5 4 36 37

Top
Njet=1 2 8 22 16 29
Njet≥2 10 15 29 19 39

Table 6.9: Total relative uncertainties on backgrounds that are normalised using control
regions (CR). The statistical component (Stat.) is from the CR yields; the theoretical un-
certainties (Theory) are from the α extrapolation parameter; the experimental (Expt.) un-
certainties are given. The approximate uncertainties on the normalisation of other processes
in the CR (Crosstalk) are given. The WW and top in Njet=1 are anti-correlated due to the
b-jet selection, so that the uncertainties partially cancel.

on mT < 150 GeV rather than binning the distribution due to lower MC statistics.

The mT distributions for the DF and SF channels in each 0- and 1-jet bins are shown in

Figure 6.16. Table 6.12 shows the expected events by jet bin after an mT cut.
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Figure 6.16: Distribution of transverse mass, mT, for 7 TeV data. The plots are shown for the
eµ+µe (left) and ee+µµ (right) channels in the Njet=0 (top) and Njet=1 (bottom) modes.
The visible signal is stacked on top of the background. The shaded area represents the un-
certainty on the signal and background yields from statistical, experimental, and theoretical
sources. Table 6.2 lists the selection order and Section 6.12 describes the modifications made
with respect to the 8 TeV analysis.
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Channel Range (GeV) QCD scale (%) PS, UE (%) PDF (%) Modeling (%)

Njet=0
eµ+µe 10<mℓℓ< 30 0.9 0.2 1.5 −1.2
eµ+µe 30≤mℓℓ< 50 0.9 0.8 1.1 −1.4
ee+µµ 12<mℓℓ< 50 1.0 0.3 1.1 1.7

Njet=1
eµ+µe 10<mℓℓ< 30 1.6 0.5 2.0 −5.1
eµ+µe 30≤mℓℓ< 50 1.5 0.5 1.8 −5.0
ee+µµ 12<mℓℓ< 50 1.4 0.6 1.7 −3.1

Table 6.10: Uncertainties on the extrapolation parameters α for the WW background in the
Njet=0 and =1 channels. Uncertainties due to the QCD scale, PDF, parton shower (PS),
underlying event (UE), and modeling of the NLO qq, gq→WW processes are given. Each
source, represented by a column, is assumed to be uncorrelated, but for a given source the
uncertainties are assumed to be fully correlated among all signal regions with Njet=0 and
=1. A relative sign between two entries in a column indicates anti-correlation between those
signal regions for that source of uncertainty.

Njet Nobs Nbkg Nsig

= 0 831 739± 39 97± 20
= 1 309 261± 28 40± 13
≥ 2 55 36± 4 10.6± 1.4

NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

551± 41 58± 8 23± 3 16± 2 30± 10 61± 21
108± 40 27± 6 68± 18 27± 10 12± 6 20± 5
4.1± 1.5 1.9± 0.4 4.6± 1.7 0.8± 0.4 22± 3 0.7± 0.2

Table 6.11: Summary selection table for 8 TeV data. The observed (Nobs) and the expected
(Nexp) yields for the signal (Nsig) and background (Nbkg) processes are given in a window
of mT. The composition of Nbkg is given on the right. The eµ+µe and ee+µµ channels are
combined. The Nsig sums the ggF and VBF contributions. The selection modifications with
respect to Table 6.2 are discussed in Section 6.12. The uncertainty on Nbkg accounts for the
correlations among the sources.

Njet Nobs Nbkg Nsig

= 0 154 161± 11 25± 5
= 1 62 47± 6 7± 2
≥ 2 2 4.6± 0.8 1.4± 0.2

NWW NV V Ntt̄ Nt NZ/γ∗ NW+ jets

113± 10 12± 2 5± 1 4± 1 6± 2 21± 5
16± 6 5± 1 10± 3 6± 2 5± 2 5± 1
0.7± 0.2 - 0.7± 0.5 0.1± 0.1 2.4± 0.6 0.3± 0.1

Table 6.12: Summary selection table for 7 TeV data for events in a window of mT. The
uncertainty on Nbkg accounts for the correlations among the sources. More details are given
in the caption of Table 6.11.

6.13 Statistical Treatment

The core philosophy of the statistical model in the analysis is that major backgrounds

are normalized through dedicated control regions, which are described in section 6.8. Back-
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grounds without control regions are taken either from MC simulation, or estimated with a

data-driven method as described in section 6.10. The full transverse mass distribution after

all selections is used to extract the signal. The shape is taken from template histograms for

each signal and background process. In the DF 0- and 1-jet channels, the signal region in

each channel is further divided by 10 < mℓℓ < 30 GeV and 30 < mℓℓ < 50 GeV to take

advantage of different signal and background compositions and systematics. This is not done

in the SF 0- and 1-jet channels due to poor Z/γ∗ MC statistics. For the 0- and 1-jet channels,

in order to minimize the effects of limited MC statistics and to avoid empty bins that could

cause technical issues, the mT distribution is first remapped such that the total nominal

background is flat in each category. Five, three, and four bins are used in the 0-, 1-, and

2-jet channels, respectively. The number of bins are chosen to maximize sensitivity while al-

lowing for a robust remapping given limited MC statistics. In the 2-jet channel the binning is

manually selected to have boundaries at 50, 80, and 130 GeV, with all underflow and overflow

included in the first and last bins, respectively. The full likelihood can be generally written as

L(µ, θ) =

signal regions
∏

i

LSR
i (µ, θ)×

control regions
∏

i

P (NCR
i |λi(µ, θ))×

systematics
∏

i

A(θ̃i|θi)

µ is a strength parameter multiplying the total signal such that µ = 0 corresponds to

the background only likelihood and µ = 1 to the nominal signal + background likelihood.

Each control region enters as a single Poisson, written explicitely in the formula, to avoid

over constraints on the nuisance parameters.

Systematics follow the procedures outlined in section 5.3. Normalization systematics

smaller than 0.5% are neglected to increase the computational performance of the model.

Similarly, shape systematics with a maximum deviation less than 1% in all bins are neglected.

Shape systematics are further examined to veto unphysical variations that arise simply due

to limited MC statistics. MC statistical uncertainties derived from the nominal distributions

are applied to the total background in each bin according to section 5.3.1.
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Upper limits using CLs, p-values, and 68% confidence intervals are computed using

asymptotic formulae described in Section 5.4.

6.13.1 Statistical Treatment of Pacman

Special consideration must be made to accommodate the Pacman method. The primary

motivation is to estimate from data the frecoil efficiency for Z/γ∗ (εDY) and non-DY back-

grounds (εNDY), and the normalization of Z/γ∗ in the signal region using events that fail

the frecoil cut. The signal efficiency (εS) is nearly identical to the non-DY backgrounds, and

the difference taken from MC is applied as both a systematic and a correction. The regions

used to estimate these quantities have all cuts applied except mT , mℓℓ, and ∆φ. The Z/γ∗

efficiency can be constrained using SF events within a ±15 GeV window around the Z-pole.

The non-DY efficiency is constrained mostly from the DF SR. This is possible due to the very

low Z/γ∗ background in the DF SR and because the frecoil shape is similar between signal

and background. The Pacman-relevant components of the likelihood are written below.

Lpacman =

P (NDF SR
pass |λDF SR

NDY εNDY)×

P (NDF SR
fail |λDF SR

NDY (1− εNDY))×

P (NSF SR
pass |λSF SR

NDY εNDY + λSF SR
S εS(εNDY) + µSF SR

DY λSF SR
DY εDY)×

P (NSF SR
fail |λSF SR

NDY (1− εNDY) + λSF SR
S (1− εS(εNDY)) + µSF SR

DY λSF SR
DY (1− εDY))×

P (NSF Z
pass |λSF Z

NDY ε
NDY + µSF Z

DY λSF Z
DY εDY)×

P (NSF Z
fail |λSF Z

NDY (1− εNDY) + µSF Z
DY λSF Z

DY (1− εDY))

(6.6)

The signal region terms show only a single Poisson as a representation, though in the

full likelihood the SR pass regions are the binned mT distributions. There are systematics

applied to the extrapolation of εNDY from the DF SR to the SF SR, and to the extrapolation

of εDY from the Z-peak to the SF SR. Finally, since εS is not identical to εNDY, a correction
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and systematic are applied to the signal by writing εS as a function of εNDY.

εS(εNDY, θ) = εNDY × CS(εNDY)× κS(εNDY)θ

= εNDY ×
(

1− (1− f0) ε
NDY(1−εNDY)

εNDY
0 (1−εNDY

0 )

)

×
(

1 + ∆ εNDY(1−εNDY)

εNDY
0 (1−εNDY

0 )

)θ (6.7)

CS(εNDY) is the correction term to correct for the difference between the non-DY back-

ground and signal frecoil efficiency. κS(εNDY)θ is a modified lognormal response term for the

nuisance parameter θ and relative systematic ∆. εNDY
0 is the nominal value of εNDY from

data. f0 is the ratio of the signal to the non-DY frecoil efficiency from MC. The parametriza-

tion is chosen such that CS and κS satisfy the boundary conditions CS(1) = κS(1) = CS(0) =

κS(0) = 1, with CS(εNDY
0 ) = f0 and κS(εNDY

0 ) = 1 + ∆.

6.14 Results

The combined 7+8 TeV results are as follows. Figure 6.17 shows the value of p0 and the

95% upper limit on the signal strength µ. At mH = 125 GeV, the observed (expected) p0 is

8×10−5 (1×10−4), corresponding to 3.8 (3.7) standard deviations. The observed (expected)

excluded mass range is mH > 133 (mH > 119) GeV. Note that the search range only extends

to mH = 150 GeV, so exclusion statements cannot be made about masses larger than this.

Figure 6.18 shows the value of µ̂ versus mH and the contour of the likelihood for µ versus

mH .

At mH = 125 GeV, the measured value of µ is µ̂ = 1.01±0.21 (stat.) ± 0.19 (theo. sys.)

± 0.12 (expt. sys.) ± 0.04 (lumi.) = 1.01± 0.31 (tot.). The breakdown of the uncertainty

on µ by source is shown in Table 6.13.

To address the statistical significance of the VBF production mechanism, the signal

expectation can be reparametrized such that α = µVBF+VH

µggF+ttH
is the parameter of interest and

µggF is a nuisance parameter which is profiled. In this way the test statistic r0 is a statement

mostly about the VBF process, with a small VH contribution that must be included due to
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Category Source Uncertainty, up (%) Uncertainty, down (%)

Statistical Observed data +21 −21
Theoretical Signal yield (σ · B) +12 −9
Theoretical WW normalisation +12 −12
Experimental Objects and DY estimation +9 −8
Theoretical Signal acceptance +9 −7
Experimental MC statistics +7 −7
Experimental W+jets fake factor +5 −5
Theoretical Backgrounds, excluding WW +5 −4
Luminosity Integrated luminosity +4 −4
Total +32 −29

Table 6.13: Leading uncertainties on the signal strength µ for the combined 7 and 8 TeV
analysis.

being similarly mediated through vector bosons. Figure 6.19 shows the delta log likelihood

versus α for the full 0+1+2-jet analysis and the contour of µVBF+VH× BWW

BSM
WW

versus µggF+ttH×
BWW

BSM
WW

. The statistical significance of the VBF process is asymptotically
√

∆ lnL(α = 0),

which corresponds to an observed (expected) significance of 2.5 (1.6) standard deviations.

Figure 6.20 shows the background subtracted transverse mass distribution with the ex-

pected signal at 125 GeV overlayed. The individual 7 and 8 TeV results are summarized in

Table 6.14. The measured value of the total inclusive pp→ H production cross section at 8

TeV is shown in equation 6.8. The theoretical uncertainty on the total inclusive cross section

and branching ratio is factorized out of this number since it is included in the expected SM

Higgs production cross section shown below it.

(σ · B)obs, 8 TeV = 6.0± 1.1 (stat.)± 0.8 (theo. syst.)± 0.7 (expt. syst.)± 0.3 (lumi) pb

= 6.0± 1.6 pb

(σ · B)exp, 8 TeV = 4.8± 0.6 (cross section)± 0.2 (branching ratio) pb

= 4.8± 0.7 pb

(6.8)

The compatibility between the 7 and 8 TeV results was tested using the same method

described in Section 6.8.1, with the modification that the parameter of interest is defined as
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8 TeV 7 TeV
Obs. Exp. Obs. Exp.

p0 1× 10−5 2× 10−4 0.5 0.04
Significance 4.3 3.5 0 1.8

µ̂ 1.26±0.35 1±0.33 0±0.6 1±0.6

Table 6.14: Summary of individual 7 and 8 TeV results for a 125 GeV Higgs. The expected
is computed assuming a signal strength µ = 1.

α = µ2012

µ2011
. The two results are found to be compatible at the 1.8σ level.
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CHAPTER VII

Higgs Combination

“If I have seen further than others, it is by standing on the shoulders of giants.”

- Isaac Newton

This section gives details of the combination of search channels and measurements of the

properties of the new boson. Several parametrizations of the likelihood are explored that

are motivated by possible Beyond Standard Model (BSM) scenarios. Section 7.1 gives an

overview of the search channels used througout the chapter, while Section 7.2 describes the

procedure used for combination as well as the results for the alternative parametrizations

employed to explore the Lagrangian structure of the Higgs.

7.1 Overview of Channels

The Higgs searches in ATLAS are divided by decay mode. The five currently accessible

modes at low mH are H→WW (∗)→ℓνℓν, H → γγ, H → ZZ(∗) → ℓℓℓℓ, H → bb̄, and

H → τ+τ−. Within each subchannel are targeted searches for each production process,

namely gluon-gluon fusion, vector boson fusion, associated production, and production in

association with top quark pairs. Table 7.1 shows a brief summary of the categories and

integrated luminosity used for the SM search channels.
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Higgs Boson Subsequent
Sub-Channels

∫

L dt
Decay Decay [fb−1]

2011
√
s =7 TeV

H → ZZ(∗) 4ℓ {4e, 2e2µ, 2µ2e, 4µ} 4.6

H → γγ –
10 categories

4.8{pTt ⊗ ηγ ⊗ conversion} ⊕ {2-jet VBF}
H →WW (∗) ℓνℓν {ee, eµ, µe, µµ} ⊗ {0-jet, 1-jet, 2-jet VBF} 4.7

H → ττ

τlepτlep {eµ} ⊗ {0-jet} ⊕ {ℓℓ} ⊗ {1-jet, 2-jet, pT,ττ > 100 GeV, V H} 4.6
τlepτhad {e, µ} ⊗ {0-jet, 1-jet, pT,ττ > 100 GeV, 2-jet} 4.6
τhadτhad {1-jet, 2-jet} 4.6

V H → V bb
Z → νν Emiss

T ∈ {120− 160, 160− 200,≥ 200 GeV } ⊗ {2-jet, 3-jet} 4.6
W → ℓν pWT ∈ {< 50, 50− 100, 100− 150, 150− 200,≥ 200 GeV } 4.7
Z → ℓℓ pZT ∈ {< 50, 50− 100, 100− 150, 150− 200,≥ 200 GeV } 4.7

2012
√
s =8 TeV

H → ZZ(∗) 4ℓ {4e, 2e2µ, 2µ2e, 4µ, 2− jet VBF, ℓ− tag} 20.7

H → γγ –
14 categories

20.7{pTt ⊗ ηγ ⊗ conversion} ⊕ {2-jet VBF} ⊕ {ℓ-tag, Emiss
T -tag, 2-jet VH}

H →WW (∗) ℓνℓν {ee, eµ, µe, µµ} ⊗ {0-jet, 1-jet, 2-jet VBF} 20.7

H → ττ

τlepτlep {ℓℓ} ⊗ {1-jet, 2-jet, pT,ττ > 100 GeV, V H} 13
τlepτhad {e, µ} ⊗ {0-jet, 1-jet, pT,ττ > 100 GeV, 2-jet} 13
τhadτhad {1-jet, 2-jet} 13

V H → V bb
Z → νν Emiss

T ∈ {120− 160, 160− 200,≥ 200 GeV } ⊗ {2-jet, 3-jet} 13
W → ℓν pWT ∈ {< 50, 50− 100, 100− 150, 150− 200,≥ 200 GeV } 13
Z → ℓℓ pZT ∈ {< 50, 50− 100, 100− 150, 150− 200,≥ 200 GeV } 13

Table 7.1: Summary of the individual channels entering the combined results presented
here. In channels sensitive to associated production of the Higgs boson, V indicates a W or
Z boson. The symbols ⊗ and ⊕ represent direct products and sums over sets of selection
requirements, respectively.

7.1.1 H →WW (∗) → ℓνℓν

The H→WW (∗)→ℓνℓν channel [14] is discussed in detail in Chapter VI, though a brief

summary follows. The H →WW (∗) → ℓνℓν search channel is characterized by large missing

energy and two high pT isolated leptons with low dilepton mass due to the spin-0 nature of

the Higgs. The search is divided into 0- and 1-jet exclusive analyses with a 2-jet inclusive

analysis targeted for VBF production. The final state lepton combinations are divided into

four categories: ee, µµ, eµ, and µe, where the latter two are distinguished by the flavor of

the lepton with highest pT . Due to the neutrinos in the final state, the invariant mass of the

hypothetical Higgs cannot be fully reconstructed, therefore the transverse mass distribution
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is fit.

7.1.2 H → γγ

The H → γγ channel [13] is able to fully reconstruct the hypothesized Higgs mass through

the diphoton invariant mass mγγ . At least two high pT photons are required with pleadingT > 40

GeV and psub−leading
T > 30 GeV. Events are divided into various categories depending on the

event topology, as shown in Figure 7.1.

In each category, the mγγ spectrum is fit to a continuous function. The background

model varies from category to category, as described in Ref. [5], between a fourth order

Bernstein polynomial, an exponential of a second-order polynomial, or a single exponential.

The parameters of the background model are fit from the data. The signal is modeled with

a Crystal Ball [44, 61, 69] plus Gaussian function. The choice of both signal and background

functions is validated with MC. The inclusive distribution of mγγ along with the fit to both

background-only and signal+background is shown in Figure 7.2.

7.1.3 H → ZZ(∗) → ℓℓℓℓ

The H → ZZ(∗) → ℓℓℓℓ channel [12] is characterized by four high pT isolated leptons.

At mH = 125 GeV, one pair of leptons should be consistent with the Z-pole mass with

the second pair coming from the off-shell Z∗. Because there are no neutrinos in the final

state, the hypothetical Higgs mass mH can be fully reconstructed. This channel suffers

from a relatively low expected rate, however, due to the small branching fractions of both

H → ZZ(∗) and the leptonic decays of each Z. Even so, an even smaller background and

peaked signal yields a large signal to background ratio. The distribution of m4ℓ for this

channel is shown in Figure 7.3.

The analysis is separated into ggF-, VBF-, and VH-like categories as follows. Events with

at least two high-pT jets, where jets must be at least 25 (30) GeV for |η| < 2.5 (2.5 ≤ |η| <

4.5), are considered for the VBF and VH categories. If the two highest pT jets are separated
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Figure 7.1: Flow-chart of the event categorization in the H → γγ channel, giving the order
of selection of the different categories.
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Figure 7.2: Distribution of mγγ in the H → γγ channel. This includes the maximum
likelihood fits to both background-only and signal+background.

by at least three units of pseudo-rapidity and have an invariant mass mjj > 350 GeV, the

event is put into the VBF category, otherwise it is placed in the VH category. If the event

does not fall into either of these, it is placed in the ggF category. Further, if any event has

additional leptons that pass the lepton selection criteria beyond the standard four are placed

in the VH category. For the signal, the four-lepton invariant mass m4ℓ is parametrized using

a Keys PDF [34] to model the signal shape and B-Splines (see Appendix A) to parametrize

the expected rate and systematic uncertainties as a function of mH . The background and

data are modeled with binned template histograms.

7.1.4 H → bb̄

The H → bb̄ decay mode [7, 8] is accessible in the associated production process V H, V =

W,Z. Three channels are considered in total. One mode is the case that the vector boson is a

W which decays into a lepton and neutrino. The other two are for V = Z, where the Z-boson
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decays into either lepton pairs or invisibly into two neutrinos. The analysis is separated into

different categories depending on pVT , the pT of the boson. In the 0-lepton mode, three pVT

categories are used for each 2- and 3-jet channels, yielding six 0-lepton categories. For the

1- and 2-lepton modes, five pVT categories are used, yielding a total of 16 final categories.

The final discriminant is the invariant mass of the two b-jets mbb, which is modeled with a

binned likelihood. The distribution for each lepton category is shown in Figure 7.4.

7.1.5 H → τ+τ−

The H → τ+τ−analysis [6] divides the search into three main categories based on the

decay mode of the hypothetical τ leptons: τlepτlep, τlepτhad, τhadτhad. Each of these final

states is further subdivided into several search channels based on the flavor of the leptonic

tau decay, the jet multiplicity, and the pT of the reconstructed ττ system. Object preselection

in the channel is as follows. Electrons are required to pass ET > 15 GeV and fall within

|η| < 2.47, excluding the transition region 1.37 < |η| < 1.52. Muons must satisfy pT > 10

GeV and |η| < 2.5. Track and calorimeter isolation is used for both electrons and muons.

Hadronic tau decays are characterized by either one or three associated charged hadrons.

To reconstruct hadronic taus, either one or three tracks with pT > 1 GeV are required to

fall within ∆R < 0.2 of the tau candidate, and the total charge of the tau candidate decay

products must be ±1. A BDT is used based on tracking and calorimeter information to

discriminate between real hadronic taus and fake jets. Jets themselves are reconstructed

with the anti-kT algorithm with a distance parameter of R = 0.4, and are required to have

pT > 25 GeV and fall within |η| < 4.5.

The categorization of the τlepτlep channel is summarized in Table 7.2. There is a 1-jet,

2-jet VBF, 2-jet VH, and a boosted channel in the 8 TeV analysis. Each of these are further

divided by lepton flavor, being ee, eµ, and µµ. For the 7 TeV analyses there is also a 0-jet

eµ category, yielding a total of 12 and 13 categories for 8 TeV and 7 TeV, respectively. In

the τlepτhad channel there are a total of 8 categories for each 7 and 8 TeV analyses. For each
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Figure 7.4: H → bb̄ invariant mass for each category integrated over pVT
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2-jet VBF Boosted 2-jet VH 1-jet
Pre-selection: exactly two leptons with opposite charges

30 GeV < mℓℓ < 75 GeV (30 GeV < mℓℓ < 100 GeV)
for same-flavor (different-flavor) leptons, and pT,ℓ1 + pT,ℓ2 > 35 GeV

At least one jet with pT > 40 GeV (|JV F | > 0.5 if |ηjet| < 2.4)
6ET > 40 GeV ( 6ET > 20 GeV) for same-flavor (different-flavor) leptons

Hmiss
T > 40 GeV for same-flavor leptons

0.1 < x1,2 < 1
0.5 < ∆φℓℓ < 2.5

pT,j2 > 25 GeV (JVF) excluding 2-jet VBF pT,j2 > 25 GeV (JVF)
excluding 2-jet VBF,
Boosted and 2-jet VH

∆ηjj > 3.0 pT,ττ > 100 GeV excluding Boosted mττj > 225 GeV
mjj > 400 GeV b-tagged jet veto ∆ηjj < 2.0 b-tagged jet veto
b-tagged jet veto

–
30 GeV < mjj < 160 GeV

–
Lepton centrality and CJV b-tagged jet veto

0-jet (7 TeV only)
Pre-selection: exactly two leptons with opposite charges

Different-flavor leptons with 30 GeV < mℓℓ < 100 GeV and pT,ℓ1 + pT,ℓ2 > 35 GeV
∆φℓℓ > 2.5

b-tagged jet veto

Table 7.2: The categorization of the H → τlepτlep analysis. The JVF cut is |JV F | > 0.75 for
7 TeV data, the lepton centrality is not applied for 7 TeV analysis, and the 0-jet category is
not used for 8 TeV data analysis.

electron and muon lepton flavor, there are 0-, 1-, and 2-jet categories along with a boosted

category similar to the τlepτlep channel. These are outlined in more detail in Table 7.3.

Finally, the τhadτhad has a boosted 1-jet and 2-jet VBF category as outlined in Table 7.4.

The final discriminant used in the likelihood is the ττ invariant mass, which is reconstructed

using the Missing Mass Calculator (MMC) [40] technique, except in the τlepτlep channel for

7 TeV data, which uses collinear approximation.

7.2 Combination

Given a set of N likelihoods Li(µi, θi) from individual channels with a set of parameters

of interest µi and nuisance parameters θi, a combined likelihood can be formed by a simple

multiplication of the data portion of Li, namely Ldata
i , along with a multiplication of all

unique auxiliary constraints Aij. This assumes the data portion of the individual likelihoods
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7 TeV 8 TeV

VBF Category Boosted Category VBF Category Boosted Category
⊲ pT

τhad-vis >30 GeV – ⊲ pT
τhad-vis >30 GeV ⊲ pT

τhad-vis >30 GeV
⊲ 6ET >20 GeV ⊲ 6ET >20 GeV ⊲ 6ET >20 GeV ⊲ 6ET >20 GeV
⊲ ≥ 2 jets ⊲ pHT > 100 GeV ⊲ ≥ 2 jets ⊲ pHT > 100 GeV
⊲ pT

j1, pT
j2 > 40 GeV ⊲ 0 < x1 < 1 ⊲ pT

j1 > 40, pT
j2 >30 GeV ⊲ 0 < x1 < 1

⊲ ∆ηjj > 3.0 ⊲ 0.2 < x2 < 1.2 ⊲ ∆ηjj > 3.0 ⊲ 0.2 < x2 < 1.2
⊲ mjj > 500 GeV ⊲ Fails VBF ⊲ mjj > 500 GeV ⊲ Fails VBF
⊲ centrality req. – ⊲ centrality req. –
⊲ ηj1 × ηj2 < 0 – ⊲ ηj1 × ηj2 < 0 –
⊲ pT

Total < 40 GeV – ⊲ pT
Total < 30 GeV –

– – ⊲ pT
ℓ >26 GeV –

• mT <50 GeV • mT <50 GeV • mT <50 GeV • mT <50 GeV
• ∆(∆R) < 0.8 • ∆(∆R) < 0.8 • ∆(∆R) < 0.8 • ∆(∆R) < 0.8
•
∑

∆φ < 3.5 •
∑

∆φ < 1.6 •
∑

∆φ < 2.8 –
– – • b-tagged jet veto • b-tagged jet veto

1 Jet Category 0 Jet Category 1 Jet Category 0 Jet Category
⊲ ≥ 1 jet, pT >25 GeV ⊲ 0 jets pT >25 GeV ⊲ ≥ 1 jet, pT >30 GeV ⊲ 0 jets pT >30 GeV
⊲ 6ET >20 GeV ⊲ 6ET >20 GeV ⊲ 6ET >20 GeV ⊲ 6ET >20 GeV
⊲ Fails VBF, Boosted ⊲ Fails Boosted ⊲ Fails VBF, Boosted ⊲ Fails Boosted
• mT <50 GeV • mT <30 GeV • mT <50 GeV • mT <30 GeV
• ∆(∆R) < 0.6 • ∆(∆R) < 0.5 • ∆(∆R) < 0.6 • ∆(∆R) < 0.5
•
∑

∆φ < 3.5 •
∑

∆φ < 3.5 •
∑

∆φ < 3.5 •
∑

∆φ < 3.5
– • pT ℓ − pT τ < 0 – • pT ℓ − pT τ < 0

Table 7.3: Event requirements applied in the different categories of the H → τlepτhad analysis.
Requirements marked with a triangle (⊲) are categorization requirements, meaning that if an
event fails that requirement it is still considered for the remaining categories. Requirements
marked with a bullet (•) are only applied to events passing all categorization requirements
in a category; events failing such requirements are discarded.

are independent.

Li(µi, θi) = Ldata
i (µi, θi)×

Mi
∏

j

Aij(θ̃ij |θij)

Lcombined(µ, θ) =

(

N
∏

i

Ldata
i (µi, θi)

)(

Mtot
∏

j

Aj(θ̃j |θj)
) (7.1)

The combined set of nuisance parameters θ = θ1 ∪ θ2 ∪ ... ∪ θMtot is the set of unique

parameters out of all individual sets θi. Similarly, µ = µ1∪µ2∪ ...∪µNtot is the set of unique

parameters of interests of all individual sets µi. Correlation of parameters between channels

is handled through this non-duplication of auxiliary constraints and unique parameters.
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Cut Description
Preselection No muons or electrons in the event

Exactly 2 medium τhad candidates matched with the trigger objects
At least 1 of the τhad candidates identified as tight
Both τhad candidates are from the same primary vertex
Leading τhad-vis pT > 40 GeV and sub-leading τhad-vis pT > 25 GeV, |η| < 2.5
τhad candidates have opposite charge and 1- or 3-tracks
0.8 < ∆R(τ1, τ2) < 2.8
∆η(τ, τ) < 1.5
if 6ET vector is not pointing in between the two taus, min {∆φ( 6ET , τ1),∆φ( 6ET , τ2)} < 0.2π

VBF At least two tagging jets, j1, j2, leading tagging jet with pT > 50 GeV
ηj1 × ηj2 < 0, ∆ηjj > 2.6 and invariant mass mjj > 350 GeV
min(ηj1, ηj2) < ητ1, ητ2 < max(ηj1, ηj2)
6ET > 20 GeV

Boosted Fails VBF
At least one tagging jet with pT > 70(50) GeV in the 8(7) TeV dataset
∆R(τ1, τ2) < 1.9
6ET > 20 GeV
if 6ET vector is not pointing in between the two taus, min {∆φ( 6ET , τ1),∆φ( 6ET , τ2)} < 0.1π.

Table 7.4: Summary of the event selection and categories for the H → τhadτhad channel.

Higgs Decay Mode µ̂ (mH=125.5 GeV)

V H → V bb −0.4± 1.0
H → ττ 0.8± 0.7

H → WW (∗) 1.0± 0.3
H → γγ 1.6± 0.3

H → ZZ(∗) 1.5± 0.4

Combined 1.30± 0.20

Table 7.5: Summary of the best-fit values and uncertainties for the signal strength µ for the
individual channels and their combination at a Higgs boson mass of 125.5 GeV.

The measured global signal strengths in each individual channel as well as the combined

is shown in Table 7.5 for mH = 125.5 GeV. Figure 7.5 shows these for the masses 124.5,

125.5, and 126.5 GeV. Finally, the combined p0 versus mH can be seen in Figure 7.6.

7.2.1 Hypothesis Testing

With the exception of the spin analyses, hypothesis testing is performed using the PLR

as described in Chapter V. The test statistic used is tnµ = −2 ln Λ(µ), where µ = {µ1, ..., µn}

are n parameters of interest. tnµ is asymptotically distributed as a χ2 with n degrees of
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Figure 7.5: µ̂ for the individual and combined channels for the three masses (a) 124.5, (b)
125.5, and (c) 126.5 GeV

147



 [GeV]Hm
115 120 125 130 135

0p

­2410

­2110

­1810

­1510

­1210

­910

­610

­310

1

310

610

910

Observed
SM expected

ATLAS Preliminary

­1Ldt = 13­20.7 fb∫ = 8 TeV, s

­1Ldt = 4.6­4.8 fb∫ = 7 TeV, s

σ0
σ2

σ4

σ6

σ8

σ10

Figure 7.6: Expected and observed p0 for the combined likelihood versus mH .

freedom. For n = 1, the 68% and 95% confidence intervals are defined by −2 ln Λ(µ) < 1

and −2 ln Λ(µ) < 4, respectively, while for n = 2 the thresholds are 2.3 and 6.0.

7.2.2 Higgs Boson Mass

The two high resolution channels H → γγ and H → ZZ(∗) → ℓℓℓℓ are used to measure

the mass [10]. The remaining channels have a low resolution and contribute negligibly to the

mass sensitivity. The hypothesized mass mH is the parameter of interest in the combined

likelihood between the two channels. The signal strengths in each channel are treated as

uncorrelated, though within each individual channel the production and decay modes use a

common µ factor. The curve of −2 ln Λ(mH) for the two channels along with the combination

of the two is shown in Figure 7.7.

A summary of the masses measured in the individual channels and in combination is

shown in Table 7.6. The uncertainty is systematically dominated. In the H → γγ channel,

e/γ mass scale systematics dominate the measurement due to the two photons in the final

state. The H → ZZ(∗) → ℓℓℓℓ channel includes approximately equal contributions from
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149



Channel Measured Mass (GeV)

H → ZZ(∗) → ℓℓℓℓ 124.3+0.6
−0.5 (stat) +0.5

−0.3 (sys)
H → γγ 126.8±0.2 (stat) ±0.7 (sys)
Combined 125.5±0.2 (stat) +0.5

−0.6 (sys)

Table 7.6: Measured mass for both H → ZZ(∗) → ℓℓℓℓ and H → γγ channels along with
the combined mass measurement.

both electron and muon scale systematics, as the final state can include both electrons and

muons. The two channels are therefore only partially correlated.

The discrepancy in the mass can be quantified by defining a parameter of interest

∆m ≡ m4ℓ − mγγ . The curve −2 ln Λ(∆m) versus ∆m is shown in Figure 7.8. The value

of
√

−2 ln Λ(∆m = 0) asymptotically gives the significance of the discrepancy. This is ob-

served to be 2.4 standard deviations, corresponding to a p-value 0.015. This was also tested

with rectangular constraints on the mass scale systematics in place of the standard Gaussian

constraints, which gives a p-value of 0.08, corresponding to 1.8 standard deviations. Further

information can be extracted from the 2D contour of −2 ln Λ(m4ℓ, mγγ), shown in Figure 7.9.

7.2.3 Production and Decay

For the remaining property measurements [9], three assumptions are made about the

boson. It is assumed that the particle is a CP even scalar, which is well motivated from the

results in Ref. [16, 12]. The resonance is assumed to correspond to the same particle in each

channel. Finally, the width is assumed to be narrow. In this way the production times decay

can be factorized: (σ × B)(ii→ H → jj) = σii · Γff

ΓH
.

It is useful to parameterize the number of signal events nk
Signal in each channel k such

that a parameter of interest µ scales each production and decay.

nk
Signal =

(

∑

µiσi,SM × Ak
if × εkif

)

× µfBf,SM × Lk (7.2)

σi = µiσi,SM is then the hypothesized production cross section for the process i, and
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Bf = µfBf,SM is the hypothesized branching fraction for the decay mode f . The global SM

strength parameter µ can be recovered by setting each product µiµf to µ. This model with

a global µ is not a well motivated BSM scenario, however, and fixing one or more µi or µf

to its SM value may conceal tensions between SM and data, which contains in it the true

values from nature.

A simple extension of the global µ is the division into ggF and VBF production processes.

Because no channel offers substantial constraint on the tt̄H process and the contribution is

small to all channels, this is assumed to scale like ggF. Similarly, the VH mode is assumed to

scale like VBF (though this assumption is relaxed later). When considering the individual

channels, the decay cannot be factorized from the production. The contour µVBF+VH× Bf

Bf,SM

versus µggF+t̄tH× Bf

Bf,SM
is therefore the simplest extension of the global model. This contour

is shown in Figure 7.10 for each individual channel.

If one considers a slice through the contour defined by µVBF+VH = αµggF+t̄tH, the param-

eter of interest becomes α = µVBF+VH

µggF+tt̄H
. The branching fraction for each channel cancels in

this parameter and so a combined likelihood can be considered. This can be visualised in

Figure 7.11.

The value of −2 ln Λ as a function of µVBF+VH

µggF+tt̄H
is shown in Figure 7.12. The value of

√
−2 ln Λ when µVBF+VH

µggF+tt̄H
= 0 is the significance of production through vector bosons. Also

shown is −2 ln Λ as a function of µVBF

µggF+tt̄H
, where the VH production process is profiled. In

this case
√
−2 ln Λ at µVBF

µggF+tt̄H
= 0 is a statement purely about production through VBF.

For the test of production through vector bosons, a significance of 3.3σ is observed, with

an expected significance of 2.7σ. Similarly, the VBF only production of observed with 3.1σ

significance and 2.5σ expected.

Similar to the statements purely about production, a parameter of interest can be formed

that makes a statement purely about Higgs decay, as visualized in Figure 7.13 for H →

ZZ(∗) → ℓℓℓℓ and H → γγ. With the parameter of interest as ρXX
Y Y = B(XX)BSM(Y Y )

BSM(XX)B(Y Y )
,

µggF+t̄tH × µB(Y Y ) and µVBF+VH

µggF+tt̄H
are profiled in each channel. The curve −2 ln Λ(ρ) for each
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Figure 7.12: Likelihood curves for the ratios (a) µVBF+V H/µggF+tt̄H and (b) µVBF/µggF+tt̄H

for the H → γγ, H → ZZ(∗) → ℓℓℓℓ, H→WW (∗)→ℓνℓν, and H → τ+τ− channels and their
combination for a Higgs boson mass hypothesis of mH = 125.5 GeV. The branching ratios
and possible non-SM effects coming from the branching ratios cancel in µVBF+V H/µggF+tt̄H

and µVBF/µggF+tt̄H , hence the different measurements from all four channels can be compared
and combined. For the measurement of µVBF/µggF+tt̄H , the signal strength µV H is profiled.
The dashed curves show the SM expectation for the combination. The horizontal dashed
lines indicate the 68% and 95% confidence levels.

ργγZZ , ργγWW , and ρZZ
WW is shown in Figure 7.14.

7.2.4 Couplings

The leading order couplings with respect to the SM can be measured with a reparametriza-

tion of the likelihood in terms of detectable production and decay modes. Details and rec-

ommendations for this are outlined in Ref. [48]. The parametrization is shown explicitely

in Table 7.7. Decay modes which are undetectable or which there is no sensitivity to must

be assumed to scale as something similar to that which is detectable. For example, the

partial width to µ+µ− is assumed to scale like the width to τ+τ−, since they are both

fermionic in nature. Two examples are represented by Figure 7.15. The first shows how the

gg → H → γγ process scales in terms of detectable couplings. The second shows how the

gg → tt̄H → tt̄µ+µ− would have to be modified to scale with measurable parameters.

The effective loop vertices gg → H and H → γγ can be written both as effective coupling
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Figure 7.13: Visualization of the organization of decay modes into the parameter of interest
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BSM(γγ)B(ZZ)
, as well as the profiled production processes.

scale factors κg and κγ, respectively, or it can be assumed that the particle content within

the loops is known. When no assumption is made about the content, the effective couplings

are profiled. The total width scale factor κH is treated similarly. Further, depending on the

model considered, assumptions can be made about which parameters scale coherently with

each other. Three primary models are considered. A description of these follows.

7.2.4.1 Fermion versus Vector Couplings

In the case that the fermion versus vector boson couplings are tested, it’s assumed that

all fermion couplings scale together as κF and all vector boson couplings scale together as κV .

This can be divided into three submodels. In the first, it’s assumed that only SM particles

enter the production and decay. In this case, the functional form of κH and κγ are fixed.

In the second submodel, the assumption about κH is relaxed and the parameter is profiled.

The motivation of this is that the Higgs may couple substantially to non-SM particles that

have not been detected, which would modify κH . In the third and final submodel, both κH

and κγ are profiled. If the hypothetical non-SM particles in the second submodel exist and

couple to photons, they may enter and modify the H → γγ loop as well. Table 7.8 shows a

summary of fermion versus vector coupling models considered.
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Figure 7.14: Likelihood curves for pairwise ratios of branching ratios normalized to their SM
expectations (a) ργγ/ZZ , (b) ργγ/WW and (c) ρZZ/WW of the H → γγ, H → ZZ(∗) → ℓℓℓℓ,
and H→WW (∗)→ℓνℓν channels, for a Higgs boson mass hypothesis of mH = 125.5 GeV.
The dashed curves show the SM expectation.
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Figure 7.15: Visualization of (a) how the gg → H → γγ rate scales with coupling ratios,
and (b) an example of how a currently undetectable mode is written in terms of a detectable
one.
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production processes

σggF
σSM
ggF

=

{

κ2g(κb, κt, mH)
κ2g

σVBF

σSM
VBF

= κ2VBF(κW , κZ , mH)

σWH

σSM
WH

= κ2W

σZH
σSM
ZH

= κ2Z

σt̄tH
σSM
t̄tH

= κ2t

Total width
ΓH

ΓSM
H

=

{

κ2H(κi, mH)
κ2H

Detectable decay modes
ΓWW

ΓSM
WW

= κ2W

ΓZZ

ΓSM
ZZ

= κ2Z

Γbb̄

ΓSM
bb̄

= κ2b

Γττ

ΓSM
ττ

= κ2τ

Γγγ

ΓSM
γγ

=

{

κ2γ(κb, κt, κτ , κW , mH)
κ2γ

ΓZγ

ΓSM
Zγ

=

{

κ2(Zγ)(κb, κt, κτ , κW , mH)

κ2(Zγ)

Currently undetectable decay modes
Γtt̄

ΓSM
tt̄

= κ2t

Γgg

ΓSM
gg

=

{

κ2(H→gg)(κb, κt, mH)

κ2g
Γcc̄

ΓSM
cc̄

= κ2t

Γss̄

ΓSM
ss̄

= κ2b

Γµµ

ΓSM
µµ

= κ2τ

Table 7.7: Parametrization of the production cross section, partial width, and total width
with respect to their SM values into coupling ratio parameters κi. The undetectable modes
are written in terms of similar detectable ones. The total width and effective coupling ratios
can be written as both stand-alone parameters and as functions of other coupling ratios.
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Fermion versus Vector Coupling Models

Model Free Parameters

SM Particles Only
κF (= κt = κb = κτ = κg)
κV (= κW = κZ)

Free Total Width
λFV = κF

κV
← POI

κV V =
κ2
V

κH

Free Total Width λFV = κF

κV
← POI

+ Free γγ loop κV V =
κ2
V

κH

λγV = κγ

κV

Table 7.8: Summary of free parameters for the three submodels within the κF − κV model.

In the submodel with no additional SM particles, the two parameters κF and κV are

treated independently. The likelihood scan for each is shown in Figure 7.16 along with

the 2D contour of κF versus κV . The second minimum in the κF -κV plane is due to the

fermion-vector boson interference in the H → γγ loop, shown in Figure 7.17. The fermions

and bosons enter the loop with opposite signs, such that the matrix element squared gives a

polynomial with a negative-signed term.

In the submodels where the assumptions are relaxed, the ratio λFV = κF

κV
is used to

scan the likelihood. The results of this are shown in Figure 7.18. When κγ is profiled, the

degeneracy in λFV is no longer broken as the interference term in the H → γγ loop is not

present explicitely in the likelihood. In this case the likelihood is arbitrary up to the sign of

λFV since both κF and κV enter as squared everywhere.

7.2.4.2 Custodial Symmetry

Custodial symmetry [36] is highly constrained in the electroweak sector by both theory

and experiment. It is therefore interesting to test this in the Higgs sector. For this, the vector

couplings to W and Z bosons are separated, and the parameter λWZ = κW/κZ is tested.

This is tested in two submodels, outlined in Table 7.9. In the first, the total width and

couplings to fermions are profiled. In the second, the effective coupling κγ is also profiled.

The results for the two submodels are shown in Figure 7.19.
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Figure 7.16: Fits for 2-parameter benchmark models probing different coupling strength
scale factors for fermions and vector bosons, assuming only SM contributions to the total
width: (a) Correlation of the coupling scale factors κF and κV ; (b) the same correlation,
overlaying the 68% CL contours derived from the individual channels and their combination;
(c) coupling scale factor κV (κF is profiled); (d) coupling scale factor κF (κV is profiled).
The dashed curves in (c) and (d) show the SM expectation. The thin dotted lines in (c)
indicate the continuation of the likelihood curve when restricting the parameters to either
the positive or negative sector of κF .
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Figure 7.17: Visualization of the interference between fermions and bosons in the H → γγ
decay loop that gives rise to the two minima in the κF − κV model.
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Figure 7.18: Likelihood curves for λFV = κF

κV
the fermion-vector boson model where (a) the

assumption on the particle content in the total width is relaxed and (b) the assumptions
on both the total width and the H → γγ decay loop are relaxed. The second minimum
disappears in (b) since the effective coupling κγ that gives rise to it is profiled.

161



Custodial Symmetry Models

Model Free Parameters

Free Total Width
λWZ = κW

κZ
← POI

κZZ =
κ2
Z

κH

λFZ = κF

κZ

Free Total Width
Above, + λγZ = κγ/κZ+ Free γγ loop

Table 7.9: Summary of free parameters for the two submodels within the κW − κZ model
that tests custodial symmetry in the Higgs sector.
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Figure 7.19: Fits for benchmark models probing the custodial symmetry through the ratio
λWZ = κW/κZ in two scenarios: (a) no assumption on the total width (b) additionally, no
assumption on the H → γγ decay loop. The dashed curves show the SM expectation. The
thin dotted lines in (a) indicate the continuation of the likelihood curve when restricting the
parameters to either the positive or negative sector of λFZ .

7.2.4.3 Probing Non-SM Contributions

The final model aims to probe potential couplings to non-SM particles. These can enter

in the effective loops κg and κγ if the non-SM particles couple to gluons or photons. If they

have a mass less than half the Higgs mass, they can substantially modify κH as well. There

is therefore motivation to test the contributions in two scenarios. The first assumes that the

non-SM particles can enter κg or κγ but do not satisfy the criteria to substantially modify

κH . The second allows for the possibility of the latter scenario, and so κH is reparametrized
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Vertex Loop Models

Model Free Parameters Example

SM only in Total Width
κg σ(gg → H) · B(H → γγ) ∼ κ2

gκ
2
γ

0.085κ2
g+0.0023κ2

γ+0.91κγ

Free Total Width
κg

σ(gg → H) · B(H → γγ) ∼ κ2
gκ

2
γ ·(1−BRinv.,undet.)

0.085κ2
g+0.0023κ2

γ+0.91
κγ

BRinv.,undet.

Table 7.10: Summary of free parameters for the two submodels that test for additional non-
SM particles interacting with the Higgs in the scenarios that the total width both is and is
not substantially affected by the new particles.

terms of the branching fraction to these invisible or undetected particles, BRundet.
inv. . Table 7.10

shows the details of parametrization.

Since the Higgs itself is assumed to be SM, all non-loop coupling ratios κi are fixed to

their SM value of unity. For the first submodel, the likelihoon scans of κg and κγ are shown

in Figure 7.21 along with their 2D contour. The likelihood scan of BRundet.
inv. in the second

submodel is shown in Figure 7.22.

7.2.5 Summary

Table 7.11 summarizes the results of the global µ model, mass, and coupling measure-

ments. Figure 7.23 further shows the summary of the coupling measurements centered

around their corresponding SM expectation. All measurements agree within 2σ of the

expected SM value. Because all results are based on the same data and are a simple

reparametrization of the same likelihood, all deviations are highly correlated, so the plot

should not be used in a χ2 compatibility of the Higgs with the SM.
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Figure 7.20: Visualization of non-SM scenarios that modify (a) the H → γγ decay loop and
(b) the total width of the Higgs

Global Production Decay
m̂H = 125.5+0.5

−0.6 GeV ZV BF+V H = 3.3 (2.7 exp) ργγZZ = 1.1+0.4
−0.3

µ̂ = 1.3± 0.2 ZV BF = 3.1 (2.5 exp) ργγWW = 1.7+0.7
−0.5

ρWW
ZZ = 1.6+0.8

−0.5

Couplings

Vector/Fermion
SM Particles

κV ∈ [−0.88,−0.75] ∪ [0.73, 1.07]
κF ∈ [0.91, 0.97] ∪ [1.05, 1.21]

+Free ΓH λV F ∈ [−0.94,−0.8] ∪ [0.67, 0.93]
+Free Γγγ λV F = 0.85+0.23

−0.13

Custodial Sym
Free ΓH λWZ ∈ [0.64, 0.87]
+Free Γγγ λWZ = 0.80± 0.15

Loop Vertices
Non-loop κi = 1

κg = 1.08± 0.14
κγ = 1.23+0.16

−0.13

Inv./Undet. Decays BRundet.
inv. < 0.6 (95% CL)

Table 7.11: Summary of property measurements of the Higgs.
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Figure 7.21: Fits for benchmark models probing contributions from non-SM particles in
the H → γγ and ggF loops, assuming no sizeable extra contributions to the total width:
(a) correlation of the coupling scale factors κγ and κg; (b) coupling scale factor κγ (κg is
profiled); (c) coupling scale factor κg (κγ is profiled). The dashed curves in (b) and (c) show
the SM expectation.
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Figure 7.22: Fit for benchmark model probing contributions from non-SM particles in the
total width. The dashed curves show the SM expectation.
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CHAPTER VIII

Conclusion

“Life is pretty simple: You do some stuff. Most fails. Some works. You do more of what works. If

it works big, others quickly copy it. Then you do something else. The trick is the doing something

else.”

- Leonardo da Vinci

This dissertation (the length by date of which can be seen in Figure 8.1) has outlined the

analysis of the ATLAS data that led to the discovery of a Higgs boson and the measurement

of its properties. All properties measured as well as tests under BSM conditions show

consistency with a SM Higgs boson. The mass of the boson is measured to be mH =

125.5±0.2 (stat) +0.5
−0.6 (sys) GeV, while the signal rate with respect to the SM is measured to

be µ̂ = 1.30±0.20 at this mass. The details of the H→WW (∗)→ℓνℓν analysis are elaborated

upon as well, where a statistical significance of 3.8σ is observed, with 3.7σ expected at

mH = 125 GeV.

An unfortunate outcome of adding a Higgs to the SM and nothing else is that the parti-

cle suffers from a quadratic ultraviolet divergence in mass resulting from fermion and gauge

boson loop diagrams. This would effectively bring the mass of the Higgs to the Planck scale

unless there is an extreme fine-tuning of SM parameters. An elegant solution to this fine-

tuning problem is to introduce an additional symmetry, dubbed Supersymmetry, between

fermions and bosons that causes the loop diagrams to cancel, bringing the quadratic diver-
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Figure 8.1: Length of this dissertation in pages by date. The periods of zero slope in-
clude efforts towards the Hadron Collider Physics conference and HSG3 workshop in Lisbon,
Christmas break, and a mini-statistics worshop. Certain periods of heightened activity orig-
inate from mass figure additions and realizations of impending doom.

gence down to a logarithmic and renormalizable one. A convenient outcome of this addition

is that it is also able to provide a dark matter candidate particle with properties consistent

within current observations and limits [39]. This would also indicate that the new boson is

only one of five supersymmetric Higgs bosons. One of the goals of the LHC program in the

coming years, as well as that of many other physics and astrophysics experiments, will be

to either exclude or substantiate this possibility; or, perhaps, something unexpected will be

found that will revolutionize the way we think about particle physics.
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APPENDIX A

Appendix A: B-Spline Interpolation

All low resolution channels in the Higgs analysis use discretely binned likelihoods with

signal distributions computed at fixed mass points. The spacing of these points is several

times larger than the high mass resolution of the H → γγ and H → ZZ(∗) → ℓℓℓℓ channels,

which use parametric signal models. Because of this, histogram interpolation needs to be

employed to obtain the signal distributions required to test signal hypotheses at arbitrary

points. This section outlines a method using B-Splines that can be used to provide analytical

interpolation for the low resolution channels.

A.1 Introduction to B-Splines

B-Splines (short for basis splines) are parametric curves constructed from a set of order n

basis polynomials bi,n(t) and m+1 knots ti, with t0 ≤ t1 ≤ ... ≤ tm. A set of control points Pi

defined over a subset of the knots t ∈ [tn, tm−n−1], which are the points we wish to interpolate

between, multiply the basis polynomials to obtain the B-Spline curve S(t) =
m−n−2
∑

i=0

Pibi,n(t).
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The polynomials bi,n(t) are defined recusively:

bi,0(t) =











1, ti ≤ t < ti+1

0, otherwise
, i = 0, ..., m− 2

bi,n(t) = t−ti
ti+n−ti

bi,n−1(t) + ti+n+1−t
ti+n+1−ti+1

bi+1,n−1(t), i = 0, ..., m− n− 2

(A.1)

Note that the basis polynomials are dependent only on the spacing between the knots

and are independent of any overall scaling between them. They are also independent of the

control points. Figure A.1 shows an example interpolation of the gg→H production cross

section with the basis polynomials overlayed. B-Splines have several important properties:

• Each control point Pi affects S(t) on the interval [ti, ti+n+1).

• S(t) is n-times differentiable at each knot.

• Given a set of splines Sj(t) =

m−n−1
∑

i=0

Pijbi,n(t), if
∑

j=0

Pij = 1 for each i, then
∑

j=0

Sj(t) =

1 for all t (partition of unity property). This is important for preserving probability

during PDF interpolation.

• A B-Spline of degree 1 linearly interpolates each Pi.

• S(t) is positive definite as long as each Pi is also positive.

A.2 B-Splines for Histogram Interpolation

B-Splines can be used to interpolate each individual bin of a histogram between mass

hypotheses (mass-wise interpolation). This not equivalent to interpolating the distribution

being binned in the histogram (observable interpolation), which would require an expensive

integration to model within the likelihood. Thus, the likelihood is still binned with the

jth bin represented by a B-Spline curve Sj(mH) parametrized in mH . In this case, the

knots ti become the coarse mass points mH,i at which the signal distributions are available.
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Figure A.1: B-Spline interpolation of the gg → H production cross section versus mH . The
colored points are the control points representing the cross section (scaled by 20) that enter
the spline. The colored curves are the basis polynomials that multiply the control points of
their corresponding color, which, when summed, give the interpolating spline.

One option for the control points Pij is the expected events in bin Eij , however it’s more

convenient to interpolate the total expected events Ej =

bins
∑

i

Eij and normalized probability

densities pij =
Eij

Ej
separately. This is because the latter will take advantage of the partition

of unity property, while also being more physically motivated. The cross section, branching

fractions, and acceptance are easier to model in a dedicated normalization spline, while the

pure signal shape can be dedicated to the PDF splines.

To better understand the features of this interpolation scheme, a simple gaussian testbed

is used. Figure A.2 shows the histogrammed distributions of a gaussian with various hy-

pothesized mean values αi and width 0.2. αi is equivalent to the fixed mH,i points that

we have in mind to interpolate between. Figure A.3 shows the spline interpolation of each

bin in Figure A.2. There are two important notes. The first is the difference in the axes.

The x-axis in Figure A.2 represents the observable of the distribution being binned. This is

different from the x-axis of Figure A.3, which is the hypothesized mean of the gaussian. The

second, which follows from the first, is that the expected events of each bin in Figure A.2

is represented as a curve in Figure A.3. The control points for each curve in Figure A.3 is
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Figure A.2: Histogrammed gaussian distribution for various mean values α versus the recon-
structed (or observable) α, all with width 0.2.

thus the bin content for each hypothesized αi in Figure A.2. Figure A.3 shows two spline

interpolations. One is for a high order spline (n = Nα − 2), and one is for a low order

spline (n = 3). The spline tends to underestimate the curvature of the distribution, with the

effect increasing with the order of the spline. This bias will propagate to results obtained

from the model if left untreated. To alleviate the bias, an iterative reweighting sequence

P n+1
ij = P 0

ij − (Sn
ij(αi) − P 0

ij) is applied to the control points in order to aid the spline in

passing closer to the control points. This sequence preserves the partition of unity property

and naturally converges towards SN
ij (αi) = P 0

ij for sufficiently large N . For the gaussian

model, N = 5 provides sufficient convergence.

To understand the effects of limited MC statistics on the spline, the histograms are filled

with entries drawn from true gaussian distributions. The number of entries is further drawn

from a Poisson distribution with a mean of 5,000. For this test, the interpolation factorizes

the normalization component of the spline from the shape component. Figures A.4- A.5

shows the interpolation splines for different initial seeds. One can see that the reweighting
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Figure A.3: Each colored curve represents a B-Spline interpolation of one bin in Figure A.2.
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that removed the bias causes the low order spline to follow the statistical fluctuations to a

much higher degree than the high order spline, which is much smoother. For the purpose of

reconstructing the true distribution, the high order spline seems preferable. One drawback

of this is that high order splines are computationally expensive, since the recursive sequence

to obtain bi,n(t) must be redone for each t. To capture the advantages of each low and high

order spline, a hybrid spline can be constructed with a second and final reweighting of a low

order spline to the reweighted high order spline. In this case, the control points at each knot

need only be computed once at the time of construction. Each subsequent computation of

bi,n(t) can use these cached control points for low n. The final low order interpolation spline

follows the reweighted high order spline almost exactly.

Potential biases and systematics from the method are evaluated by generating an en-

semble with a procedure identical to the one used to obtain the four pseudo-experiments

above. A binned likelihood L(µ, α) is constructed. µ is a parmameter that multiplies the

overall normalization, while α is the interpolation parameter. For each pseudo-experiment

the maximum likelihood estimators µ̂(αi) and α̂(µ = 1) are computed for each αi. The

uninterpolated likelihood for each fixed αi, L(µ, αi), is also constructed as a control. The

difference of the median of the distribution of µ̂ between the interpolated and control model,

as well as the difference of the median of the distribution of α̂ from αi, represent biases

induced by the method. The standard deviation of each estimator represents systematics

from the method that arise due to MC statistics. Figure A.6 shows the median and standard

deviation of the distribution of µ̂− 1 and α̂−αi for the fixed model and interpolated model

before reweighting, while Figure A.7 shows these after reweighting. For µ̂ the bias from the

non-reweighted spline is clear, but is completely corrected by the reweighting. Further, as

can be seen by the smaller standard deviation in the interpolated model, systematics due

to MC statistics are reduced by the interpolation. This is caused by the smoothing of the

gaussian distribution from the high order spline. Additional information from neighboring

αi points allows a better estimate of the observable distribution at a fixed value of α. The
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Figure A.4: Spline interpolations for two pseudo-experiments generated from gaussian dis-
tribution. The left plot shows the interpolation of the normalized histogram PDF, while the
right shows the interpolation of the normalization of the histogram.
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Figure A.5: Spline interpolations for two pseudo-experiments generated from gaussian dis-
tribution. The left plot shows the interpolation of the normalized histogram PDF, while the
right shows the interpolation of the normalization of the histogram.
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Figure A.6: Measurement of the bias induced by the spline interpolation in both the mea-
sured normalization and in the reconstructed mean value of the gaussian before the reweight-
ing procedure.
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Figure A.7: Measurement of the bias induced by the spline interpolation in both the mea-
sured normalization and in the reconstructed mean value of the gaussian after the reweighting
procedure. The bias in the normalization disappears. The bias in the reconstructed mean is
alleviated but still present at the endpoints.

bias in α̂ before reweighting is alleviated but not completely solved by the reweighting. It

is, however, within the 1σ interval of the distribution. This bias is only present at the end-

points. For point sufficiently far away (greater than the order of the spline), the bias is not

present.
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A.3 Application to Higgs Searches

The procedure outlined in the last sub-section is applied to the three low resolution

channels in the low mass Higgs search: H → WW (∗) → ℓνℓν, H → bb̄, and H → τ τ̄ .

Further consideration is required for the treatment of systematics in these channels. Both

shape and normalization systematics, as outlined in Section 5.3, are present in the likelihood,

and in general are mH dependent. Interpolation of these is therefore required.

For a binned distribution with a discrete observable xi, the expected events at each Higgs

mass m can be written as follows:

Em(xi; ~θ) = (E0m(xi) +

shape
∑

j

(Ejm(xi)− E0m(xi))θj)×
flat
∏

k

κθkkm (A.2)

E0m(xi) represents the nominal distribution. For each shape systematic, there is a rep-

resentative unit gaussian distributed nuisance parameter θj and varied distribution Ejm(xi).

For each normalization systematic, there is a NP θk and response function κθkkm. This is a

simplistic form, however, given the polynomial nuisance parameter interpolation described

in Section 5.3.4. The general form of the expected events can be written as:

Em(xi; ~θ) = RmS(p0m(xi), ~pm(xi), ~θshape)Km(~θnorm)F (~θnorm) (A.3)

Rm represents the nominal expected events at each m, such that Em = Rm when ~θ are at

their nominal values. S is the response function for the shape systematics, which in turn is

a function of the nominal and varied histogram PDFs p0m(xi) and ~pm(xi), respectively. Km

represents the mass dependent response function to the normalization systematics, and F the

mass independent normalization systematics response function that needs no interpolation.

The spline is employed such that Rm, p0m(xi), ~pm(xi), and Km are the control points of

spline functions R(m), p0(xi;m), ~p(xi;m), and K(~θnorm;m), respectively, yielding in total

M+3 spline functions for M shape systematics. The total expected events for an observable
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Figure A.8: Interpolation of the normalization (left) and shape (right) of the transverse mass
of the ggF signal in the eµ− 0j signal region in the H→WW (∗)→ℓνℓν analysis.

distribution is finally obtained:

E(xi, ~θ;m) = R(m)S(p0(xi;m), ~p(xi;m), ~θshape)K(~θnorm;m)F (~θnorm) (A.4)

K(~θnorm;m) requires a special note. Due to its unfactorizable dependence on the nuisance

parameters ~θnorm, it has no unique reweighting. As a consequence, it is treated with a

standard 3rd order spline with no reweighting. So long as the systematics are not heavily

mass dependent, this bears negligible side effects due to end-point fringing.

The splines R(m) and p0(xi;m) are shown in Figure A.8- A.10 for select distributions in

each channel. The splines K(~θnorm;m) for the WW model is also shown in Figure A.11 for

the MLEs θ̂ evaluated at µ = 0, µ = 1, and µ̂. Figure A.12- A.14 shows µ̂ versus mH for the

individual models, while Figure A.15 shows the µ̂ and p0 versus mH for the combined WW,

ττ , and bb parametrized likelihood.
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Figure A.9: Interpolation of the normalization (left) and shape (right) of the invariant bb̄
mass of the WH (top) and ZH (bottom) signal in the signal region in the H → bb̄ analysis.
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Figure A.10: Interpolation of the normalization (left) and shape (right) of the reconstructed
τ+τ− mass of the τhadτhad (top), τlepτhad (center), and τlepτlep (bottom) signal in the signal
region in the H → τ+τ− analysis.
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Figure A.11: Interpolation of the mass dependent normalization systematic ggF signal re-
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analysis.
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Figure A.12: The best fit signal strength versus mH for 7 TeV (left) and 8 TeV (right) data
in the H→WW (∗)→ℓνℓν analysis for the spline interpolated signal, such as that shown in
Figure A.8, and the standard fixed-point MC analysis.
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Figure A.13: The best fit signal strength versus mH for 7 TeV data in the (a) WH, (b), ZH,
Z → ℓℓ, and (c) ZH, Z → νν analyses for the spline interpolated signal, such as that shown
in Figure A.9, and the standard fixed-point MC analysis with ALR interpolation [66]. Some
deviation occurs between the two at the interpolated points and is due to known features in
the ALR interpolation.
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Figure A.14: The best fit signal strength versus mH for 7 TeV data in the (a) τlepτlep, (b),
τlepτhad, and (c) τhadτhad analyses for the spline interpolated signal, such as that shown in
Figure A.10, and the standard fixed-point MC analysis.
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Figure A.15: The (a) best fit signal strength and (b) p0 versus mH for 7+8 TeV data for the
combined WW+ττ+bb model for the spline interpolated signal in black, and the standard
fixed-point MC analysis with ALR interpolation in red. The arching between 115 and 120
GeV in the red curve is due to known features in the ALR interpolation method.
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