
Semantic networks for hybrid processes

by

Dhananjay Anand

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2013

Doctoral Committee:

Professor Dawn Tilbury, Co-Chair
Associate Research Scientist James Moyne, Co-Chair
Assistant Professor Ryan Eustice
Professor Ian Hiskens
Ya-Shian Li-Baboud, National Institute of Standards and Technology

© Dhananjay Anand 2013

All Rights Reserved

For those who came before.

ii

ACKNOWLEDGEMENTS

I would like to thank Rackham Graduate School, the NSF Engineering Research

Center for Reconfigurable Manufacturing Systems, NSF grants EEC 95-92125 and

CMS 05-28287 and NIST Award No. 60NANB11D183 for financial support at various

points during my doctoral work. I would also like to thank Ya-Shian Li-Baboud, Prof.

Ian Hiskens and Prof.Ryan Eustice for serving on my dissertation committee.

I am grateful for Professor Dawn Tilbury’s guidance as my PhD advisor. Her

patient charity towards my disorganization and tolerance of abused commas are only

the start of her immeasurable contributions towards this goal. I feel proud calling

myself her student because it implies that I might have imbibed some of the focus,

diligence and clarity of thought that she applies to all her endeavors.

In Dr.James Moyne I am honored to have, an academic advisor with infectious

passion for learning and a multitalented role model for life. Though I doubt I am the

only victim of his zest and genuine affection towards those around him, I feel, (like

the rest of us) that my relationship with him is both unique and priceless.

The RFT aisle will always hold a special place in my heart thanks to Lindsay

Allen, William Harrison, Josh Langsfeld, Alex Sobolev, Jeff Fletcher, Deepak Sharma,

Lucia Seno, Steve Vozar and many others. Dr.S. Krishnan, Debapriya Chatterjee,

Devaky Kunneriath, Hilary Hill, Rupa Krishnan, Katie Laventall, Juil Yum and Julien

Amelot; you are all walking standards for talent, persistence and kind heartedness

and it is a continuing privilege being friends with you on Facebook.

Finally, I want to express my deep gratitude to my parents, grandparents and

extended family. Your unwavering confidence may have rubbed off on me just a little

bit. And on looking back over this journey I am thankful for its adhesive properties.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Major contributions . 4

1.2.1 Model adaptation methods using semantic models . 4
1.2.2 Model adaptation methods using declarative network

descriptions . 5
1.3 Application areas . 5
1.4 Dissertation overview . 7

1.4.1 Background . 7
1.4.2 Performance of networks, synchronization and model

adaptation . 7
1.4.3 Model adaptation methods using model semantics

and declarative network interconnections 8
1.4.4 Targeted model adaptation 9
1.4.5 Modifying the model structure to improve targeted

adaptation . 9
1.4.6 Distributed control using semantic networks 10

II. Background and Related work 12

2.1 Model adaptation for networked dynamic systems 12
2.1.1 State estimation for networked systems 13
2.1.2 Parameter estimation for large models 15

iv

2.1.3 Reconfiguring the structure of a model in a distributed
system . 16

2.2 Semantic modeling . 18

III. Networked state estimation . 20

3.1 Introduction . 20
3.2 Network performance characterization 21

3.2.1 Performance specifications 22
3.2.2 Performance evaluation of Ethernet networks 23

3.3 Distributed Clocks . 23
3.3.1 Performance objectives for networked clock synchro-

nization . 27
3.3.2 Performance evaluation of clock synchronization al-

gorithms . 28
3.4 State estimation over Ethernet networks 33

3.4.1 Review of existing methods for networked state esti-
mation . 34

3.5 State estimation using synchronized clocks 35
3.5.1 Control problem formulation 36
3.5.2 Strategy 1: Reference forecasting 40
3.5.3 Strategy 2: Estimation and propagation 42
3.5.4 Results . 44

3.6 Summary . 45

IV. Model adaptation methods using model semantics 47

4.1 Introduction . 47
4.2 Modeling and control for electrical networks 48

4.2.1 Accurate real-time models 49
4.2.2 Standardized model design 49

4.3 Using clock accuracy to guide model synthesis in distributed
systems . 50

4.3.1 Model Order Deduction 50
4.3.2 Use Case . 52
4.3.3 Building models with timing constraints 55
4.3.4 Results . 57

4.4 Semantic models facilitate updating model structure 62
4.4.1 Modelica description 64
4.4.2 Adaptation using semantic rules 65
4.4.3 Sensitivity based decomposition 67
4.4.4 Application . 69

4.5 Summary . 73

v

V. Targeted model adaptation for large compositional models
with declarative topology descriptions. 75

5.1 Introduction . 75
5.2 Problem Statement . 78
5.3 Motivating example: Electrical Power Network 80

5.3.1 Modeling the power network 82
5.3.2 Discrepancies between the model and the physical

system . 86
5.3.3 Parameter identification in response to model dis-

crepancy - standard approach 87
5.4 Guided Decomposition for Model Adaptation 92

5.4.1 Step 1: Detect discrepancies 93
5.4.2 Step 2: Identify adaptation candidates 97
5.4.3 Step 3: Select the best next measurement to refine

the set of candidates - Guided Decomposition Approach100
5.4.4 Step 4: Identify parameters of the model-components

in Cmin . 102
5.5 Application of the method to the 5-bus example 103
5.6 Conclusion . 109

VI. Modifying model topology to reduce noise and complexity in
yield analysis for manufacturing process workflows 110

6.1 Introduction . 110
6.2 Graph representation for manufacturing processes 115

6.2.1 Serial-Parallel lines 116
6.2.2 Independent source vertices 117
6.2.3 Latent effects . 118
6.2.4 Loops or cycles . 118

6.3 A scheme for comparing the outputs of M and P 120
6.4 A review of Bayesian methods for diagnosis 124
6.5 Abstraction and Relaxation methods for process graphs . . . 127

6.5.1 Folding correlated vertices 128
6.5.2 Clustering strongly connected vertices 131
6.5.3 Relaxing latent effects 133

6.6 Strategic structure recovery 135
6.7 Improvements in noise tolerance 136
6.8 Application of the method to process graphs 138
6.9 Conclusion . 141

VII. Distributed control using semantic networks and models . . 144

7.1 Introduction . 144

vi

7.2 Impact of PEVC loads on a distribution network: Problem
Statement . 147

7.2.1 Tariffs for small and large customers 149
7.2.2 Electrical network constraints 150

7.3 Incentive based charging using the proposed hierarchical im-
plementation . 152

7.3.1 Centralized charging trajectory optimization 152
7.3.2 Decentralized incentive arbitration 157

7.4 Results & Conclusions . 161
7.5 Future work . 165

VIII. Conclusions and Future work . 168

8.1 Adaptation and control using semantic models 169
8.2 Model adaption, diagnosis and control using declarative repre-

sentations of model topology 170
8.3 Future work . 171

8.3.1 Extensions to the theory 172
8.3.2 New application areas 173

BIBLIOGRAPHY . 176

vii

LIST OF FIGURES

Figure

2.1 The model M and the physical process P operate in parallel and
receive the same input y. Differences between the model output ŷ
and the physical measurement y are used to adapt the model using an
adaptation algorithm. Both outputs are subject to disturbances such
as sensor noise and network delays. Three properties of the model
may be updated: the state vector x̂, the set of model parameters λ̂
and the structure of the model Γ̂. 13

3.1 The round trip time for 60byte packets over a wired Ethernet con-
nection between two nodes. The data is collected under nominal
network cross-traffic (about 40% of the maximum bandwidth). The
mean value is 0.502 ms, and the maximum delay is 46% larger than
the mean. 24

3.2 Histogram of the the delay values in Figure 3.1. The figure shows
most of the delay values clustered about the mean and a small number
of outliers clustered around 0.7 ms. 24

3.3 The average (and 1σ spread) of message delays for a point to point
wireless network. The plots a and b correspond to industrial net-
works operating indoors and outdoors respectively. Both plots (a and
b) show the delays for a packet switched wireless network reporting
sampled values. Plot c shows delays for an IEC-61850 datagram used
in an electrical substation. 25

3.4 The clock offset and frequency jitter observed between two clocks
synchronized using the Network Time Protocol (NTP) over a wired
Ethernet connection. The network configuration for this experiment
emulates a typical industrial implementation. The plot shows that
the accuracy of NTP is insufficient for real-time sampling and high
speed I/O requirements. 29

viii

3.5 The clock offset and frequency jitter observed between two clocks
synchronized using the Network Time Protocol (NTP) over an IEEE
802.11g wireless link. The network configuration for this experiment
emulates a typical industrial implementation. The plot shows that
the accuracy of NTP is insufficient for most applications in substation
and industrial automation. 30

3.6 Clock offsets for four networked clocks synchronized using the Preci-
sion Time Protocol (PTP). The network configuration for this exper-
iment emulates an electrical substation. The graph shows that under
normal operating conditions PTP is able to deliver sufficient clock
accuracy for even the most critical functions specified in Tables 3.1
and 3.2. 31

3.7 The drift of four local clocks upon loss of the synchronization signal
(highlighted in green) and resynchronization after a synchronization
update is received. The plot shows that the required clock accuracy
for real time control and data acquisition is violated when PTP com-
munication is lost for > 60 seconds. In 1000 seconds, the system
is no longer able to support most control functions. The network
configuration for this experiment emulates an electrical substation. . 32

3.8 A schematic of a 2 element hybrid process. x̂ is a model based esti-
mate of x. The adaptation algorithm updates x̂ based on differences
between y and ŷ. 32

3.9 A schematic showing the control layout for the networked master–
slave pair. The blocks dΦ, dΨ, and dΩ symbolize network delays be-
tween the respective components. MCΦ and MCΨ are the motor
controllers. yΦ(k) is the trajectory of Φ and uΨ(k) and uΦ(k) are the
control signals sent to the motors. Φ and Ψ denote the two individual
dynamic systems. 37

3.10 A block diagram of the control algorithm on both modules. Both
controllers use state feedback gains to track the reference, the slaved
system is additionally regulated through gain LΨ to minimize the
error residual ŷ − y . 38

3.11 A schematic of the same control layout shown in Figure 3.9. Mod-
ules E and P denote the Estimation and Propagation blocks added to
compensate for delays dΦ, dΨ, and dΩ. 41

3.12 A simulated result showing the Mean Squared Error between Master
and Slave systems with and without an observer. 44

ix

3.13 A simulated result showing the improvement in estimator perfor-
mance when the input data (data used for system ID) is time stamped. 45

4.1 Schematic representation of the π-model for a single phase power
transmission line. The center section represents a single π section,
and many π-sections in series model the transmission line. 52

4.2 Schematic representation of a hybrid process with coupled interac-
tion between physical elements and mathematical elements. PMUs
provide physical measurements at the terminal ends of a transmis-
sion line connecting two substations. A model of the transmission
line is used in conjunction with physical measurements to provide an
estimate of the state of the two generating substations. 54

4.3 Schematic representation of the decision inputs when clock accuracy
is added to the MODA system. The current model order is r, such
that r < n where n is the maximum model order available. 56

4.4 265 kV, 60 Hz transmission line voltage waveforms under circuit
breaker closure condition. The output response presented in plots
A and B correspond to models using 20 and 90 π-sections respectively. 58

4.5 Frequency response of models using 20 π-sections (Plot-A) and 90
π-sections (Plot-B). Plot-B shows that the model with 90 π-sections
has a higher gain at higher frequencies. 59

4.6 Max norm of MODA algorithm applied to the transmission line model.
The norm drops below a tolerance of 0.01 at 86 π-sections 60

4.7 Error norm due to clock uncertainty in sampling and time-stamping.
The clock errors are assumed to be normally distributed with σ = 4µs
The norm exceeds 0.025 at 48 π-sections. 61

4.8 Optimal model choice the number of π-sections for the model of
the transmission line is a tradeoff between the FD-MODA algorithm
(δGr

n) and the cost function related to timing uncertainty (δGr∗
n ×Tsim). 62

4.9 A model of a PMDC motor described in the Modelica language. . . 65

4.10 A schematic view showing the individual components and connections
in the Modelica motor model. 69

4.11 Percentage error between the estimated output ẑ and the physical
output z with a complaint motor shaft. 70

x

4.12 The left pane shows the Modelica model of the original system with
augmented components. The two right panes show the Modelica
equations for the two most likely structural candidates. 71

4.13 Figure showing three cases where a sensitivity analysis reveals the
presence of passive components. 72

4.14 Figure showing four candidates selected for performance evaluation.
The two most likely candidates after evaluation are highlighted. . . 73

5.1 A schematic for a general model adaptation mechanism. M is tuned
in response to a function of the error residual g(Y, Ŷ). 76

5.2 A schematic diagram of the four generator microgrid. 78

5.3 The diagram shows schematic view of the signal flow in the moti-
vating example. Our focus in this chapter is the adaptation of M
involving components shown within the rectangle. 81

5.4 The figure shows the power output from four micro-generators (G1, G2, G3, G4)
overlayed on the input schedule marked with a dotted line. 85

5.5 The figure shows a plot comparing the model estimate θ̂5 against the
measurement θ5. A difference in the parameter values for G2 between
M and P is manifested as a large difference between θ̂5 and θ5. . . 86

5.6 The plot shows the execution time for the SSEST algorithm with in-
creasing number of generators. The execution time reflects the super-
linear relationship between computational complexity and model size
(and corresponding size of λ̂). The error-bars show the spread of ex-
ecution times for ten repeated executions with randomly generated
initial estimates for λ̂. 90

5.7 A compositional model of the 5-bus circuit from Figure 5.2. The
modelM is made up of several model components mi shown as grey
rectangular boxes. Each model component has an output Ŷmi

. . . . 92

5.8 The figure shows a flowchart of the proposed guided decomposition
method. The steps in the diagram are explained in Sections 5.4.1
through 5.4.4. 94

5.9 Output of the classifier g(Y, Ŷ) for the data shown in Figure 5.5. The
figure shows that the threshold σclass = 0.1 is violated for all three
successive updates to the generator schedule. 96

xi

5.10 The figure show two steps of the candidate generation process. The
minimal candidates are shown in bold and the dotted lines define a
boundary below which candidates have been absolved. 100

5.11 The figure illustrates the network hierarchy in the model used to
calculate the link utilization cost for each measurement. 106

5.12 Graphical illustration of the model decomposition process. Measure-
ments are drawn from the components marked with an asterisk fol-
lowing the order in Table 5.1. The shaded regions in the figure show
the shrinking space of probable candidates after probing steps 1, 2,
3 and 6. 107

5.13 Sub-Figure A shows the output of mG2 before and after adaptation.
Sub-Figure B shows the output of the full model M after adapta-
tion. Close matching is observed between the two systems once the
parameters for mG2 have been corrected. 108

6.1 The schematic shows a nine step manufacturing process (P) and a
model of four front-end processes (M). The figure also shows two
sites where physical measurements are available from P 112

6.2 The schematic shows the parallel implementation of a measurement
forecast model m2 and a physical process p2 in Step-2 of the manu-
facturing line. The figure also shows that measurement z2 depends
on Step-1 as well as other external inputs. 113

6.3 A graph representation of a four step sequential process workflow. . 115

6.4 A graph representation of a serial-parallel line. 117

6.5 A graph representation of a manufacturing line including external
factors represented by vertices 13, 14 and 15. 119

6.6 The figure shows a simple process flow shown as a directed graph.
The numbered nodes represented steps in the workflow. Step 3,6 and
9 are executed by the same tool. 128

6.7 The figure shows the process workflow after instances {3, 6, 9} of a
single tool have been folded into a single vertex 1′. 131

6.8 The figure illustrates the resulting graph after the set strongly con-
nected vertices in Figure 6.7 have been abstracted into a cluster. . . 132

xii

6.9 The figure shows the graph G4. Vertices 13,14 and 15 have been
abstracted into auxiliary variables. 134

6.10 A digraph representation of a 35µm semiconductor fabrication pro-
cess after vertices representing multiple instances have been folded.
Vertices (a,b,c,d,e,f) correspond to latent effects. 140

6.11 A graph showing the probability of the true candidate c∗ as the di-
agnosis process updates its posterior probability with each new mea-
surement replacement. Subplot-A shows that p(c∗) does not reach
the successful termination condition when diagnosis is applied to the
simplified graph. Subplot-B shows the continuation of the diagno-
sis process after one cluster has been reversed using the structure
recovery algorithm. The diagnosis terminates successfully after 15
iterations. 140

6.12 A graph showing the probability of the true candidate c∗ as 20 re-
placements are sequentially performed. The cross markers show the
trajectory for the naive inclusion of all uncertainties and the solid
line shows the improved convergence when our proposed method is
used. 141

7.1 A schematic diagram of a electric distribution circuit. A single dis-
tribution transformer supplies a mixture of commercial buildings (i,
ii, iii) and residential loads. The network also features twelve PEVCs
on five circuits (a,b,c,d,e). 147

7.2 Load profile for a large residential building at the University of Michi-
gan recorded over a 24-hour period. Under price tariffs such as D6,
which are typically used for large buildings, peak loads are heavily
penalized with a monthly capacity charge, proportional to the high-
est peak power recorded in the month. In this example, the peak
power, for the month so far, is set hypothetically at 350 kW. If the
day’s peak load exceeds this level, then the capacity charge will be
increased significantly. However, if additional loads can be supplied
without exceeding the peak, then any additional PEVC load will be
charged at low cost. 148

7.3 Over a 24-hour period, the aggregate building load on the distribu-
tion transformer peaks at ∼ 1000kW , whereas the transformer limit
is ∼ 1250kW . The peak in aggregate building load coincides with
anticipated peak hours for PEV charging (during the evening hours).
This plot highlights the need for active regulation of PEVC loads to
ensure that T limit is not violated. 151

xiii

7.4 A schematic representation of the proposed control system hierarchy
for the distribution network in Figure 7.1. The dashed brackets indi-
cate peer groups. Peer groups are made up of PEVC loads together
with building loads for improved load leveling within each group and
at the substation level. 153

7.5 Building load data from Figure 7.2 overlaid on a similar days forecast
for the same day. 156

7.6 If every PEVC continually loads the network at Pmax, the transformer
limit (T limit = 1250kW) is clearly violated. By centrally optimizing
the charging load for every connected PEV, the total load on the
distribution transformer is limited to T limit even during the peak
charging hours between 1600 and 2200 hrs. 156

7.7 An object-oriented modeling approach used for the decentralized con-
trol within peer groups. The schematic shows generic model objects
for PEVCs and building loads which are instantiated with relevant
parameters when required. A dynamic program is used to find a value
for ui[k] which minimizes the group cost. 158

7.8 The actual load data for the building shown in Figure 7.2 together
with PEVCs, overlaid on a similar days forecast for the building
alone, as used for central trajectory optimization. The PEVC loads
have been controlled so that the sum of building and PEVC loads
(grey solid line) does not exceed the monthly peak threshold for the
building (black dashed line). 162

7.9 The total load for Peer Group (1). The prevailing peak load thresh-
old for building (i) is shown at 425 kW. The lower line (gray dashed)
shows the building load without PEVCs. The highest line (gray dot-
ted) shows the group load if all PEVCs follow centrally optimized
trajectories, without local control. The solid black line shows the
combined load of all PEVC and building loads in Peer Group (1),
when local load control is used. Excursions above the peak load
threshold are mostly prevented. 163

7.10 Charging trajectories for four PEVCs in circuit (a). The dashed line
shows the centrally optimized trajectory for PEVCs generated using
an 8-hour load forecast to ensure load leveling at the distribution
transformer. The solid black line shows the locally regulated charging
trajectory for PEVCs in circuit (a) when grouped into Peer Group (1).164

xiv

7.11 A graph representation of the network of interconnections within a
peer group. Interconnections include physical connections between
peers as well as logical interconnections introduced by the peer as-
signment algorithm. 167

xv

ABSTRACT

Semantic networks for hybrid processes

by

Dhananjay Maroli Anand

Chair: Dawn Tilbury

Simulation models are often used in parallel with a physical system to facilitate con-

trol, diagnosis and monitoring. Model based methods for control, diagnosis and

monitoring form the basis for the popular sobriquets ‘intelligent’, ‘smart’ or ‘cyber-

physical’. We refer to a configuration where a model and a physical system are run

in parallel as a hybrid process. Discrepancies between the model and the process may

be caused by a fault in the process or an error in the model. In this work we focus on

correcting modeling errors and provide methods to correct or update the model when

a discrepancy is observed between a model and process operating in parallel. We then

show that some of the methods developed for model adaptation and diagnosis can be

used for control systems design.

There are five main contributions.

The first contribution is an analysis of the practical considerations and limitations

of a networked implementation of a hybrid process where all signals between the model

and the process are communicated over a digital network. The analysis considers both

the delay and jitter in a packet switching network as well as limits on the accuracy

of clocks used to synchronize the model and process.

xvi

The second contribution is a semantic representation of models, and the network of

interconnections between a model and the physical process as well as between model

components. This semantic representation enables improvements to the accuracy and

scope of algorithms used to update the model. By adding semantic information about

the fidelity of the model, model uncertainty can be balanced against signal uncertainty

originating from the communication network. By also including semantic information

about the physical properties of model components, the structure of interconnections

between model components may be automatically reconfigured if needed.

The third contribution is a diagnostic approach to isolate the key model compo-

nents responsible for a discrepancy between model and process. Using a structure

preserving realization of a system of ODEs, a Bayesian inference strategy is used to

explore the interconnections between component states and reason about observed

discrepancies. The method is demonstrated to work on an electrical circuit model

with a determined causal direction.

The fourth contribution is an extension of the diagnostic strategy to include

larger graphs with cycles, model uncertainty and measurement noise. The method

uses graph theoretic tools to simplify the graph thereby making the problem more

tractable. The method is applied to a semiconductor manufacturing line and shown to

improve the computational feasibility, noise tolerance and accuracy of the diagnosed

result.

The fifth contribution is a simulation of a distributed control system to illustrate

the key contributions of this work. Using a coordinated network of electric vehicle

charging stations as an example, a consensus based decentralized charging policy is

implemented using the semantic modeling approach and declarative descriptions of

the interconnection network. By reasoning about the model semantics, it is shown

that the network structure can be automatically reconfigured to maximize the per-

formance of the coordinated charging of electric vehicles.

xvii

CHAPTER I

Introduction

1.1 Motivation

As simulation models (and the computers that run them) become more powerful,

they can be used to improve perception of an ongoing process. Simulation models can

also be used to consider “what-if” analyses, i.e. to try out different scenarios both

going into the future as well as in reverse e.g., to determine what possible faults in a

system are consistent with the current observations.

Development work for high performance simulations is an area of research specific

to a particular domain and/or application. The physics of combustion in engines,

the dynamic response of electro-mechanical machines, the energy consumption in a

manufacturing cell, and the performance of control software can all be simulated with

continually improving fidelity. In many cases this improvement comes with the devel-

opment of custom modeling methods for each application. The diversity in modeling

strategy is also a result of the varied motivations for building simulations. Motivations

may be academic impetus to better understand a process (e.g., biological systems),

or the need to reduce the economic pressure of installing expensive infrastructure

without accurate knowledge of expected behavior (e.g., manufacturing processes).

Simulations also serve as proxies for future hardware in situations where diagnostic

and runtime tests are hard to implement, as with electrical networks.

1

Mathematically modeling a physical process offers insight and understanding about

its operation. This insight is still valuable after the physical process has been deployed

or is operating in the field. Therefore the use of models to estimate the state of a

parallel ‘real’ process is a natural extension to their use as virtual substitutes.

Recognizing this growing power of simulation models, research in the area of

cyber–physical systems presents the idea of a hybrid process [68], in which a high-

fidelity simulation model is run in conjunction with the actual process. A specific

instance of a hybrid process is where a model of the full physical process is run in

parallel with the process to estimate measurements that may not be available, in

order to diagnose problems in the physical process or to predict the behavior of the

physical process over time. We focus on this configuration of a cyber–physical system

in this dissertation.

In an ideal world, the simulation model and its initial conditions exactly match

the physical process, the environment model is also perfect and there are no un-

modeled noises or disturbances. In this case the simulation model will exactly track

the physical process, and can be run in parallel in open-loop, when initialized correctly.

An example application is in the tele–operation of mobile robots where a model

available locally may be used to estimate the state of a remote robot system and to

provide feedback to an operator.

The use of models as observers or predictors is particularly useful for larger sys-

tems made up of several interconnected sub-systems that may each belong to a dif-

ferent physical domain. Interdependencies in these larger systems (and their models)

are potentially convoluted, necessitating a formal representation for the interactions

between components of a hybrid process. Prior work on the representation of net-

works of interdependent agents uses the notion of a semantic network [130], [139].

A semantic network is a graphical notation for representing knowledge in pat-

terns of interconnected vertices and edges. Computer implementations of semantic

2

networks were first developed for artificial intelligence and machine translation, but

earlier versions have long been used in philosophy, psychology, and linguistics. We

adopt a semantic network as a directed graph to represent the dependencies between

components in a hybrid process, where each vertex is a semantic representation of a

component (or object) and each edge represents a dependence between vertices with

the option to include domain specific ontology when required. Ontology renders a

shared vocabulary and taxonomy to the model, including definitions of objects and

their properties and relations.

Representing a network of dynamic systems as a semantic network of logical ob-

jects offers similar benefits in scaling and modularity to what Object Oriented Pro-

gramming provides. The trend is reminiscent of the motivations behind using digi-

tal networks to connect dynamic systems: agility, reconfigurability, modularity and

inter-operability. As will be described in more detail later, representing a network

of dynamic systems in a semantic framework facilitates greater reconfigurability and

scaling than current strategies.

The advantages of semantic modeling are highlighted in the research presented

in this dissertation through analysis and innovation of methods used to address dis-

crepancies between a model and a physical process for large systems with several

interconnected components.

There will always be some level of mismatch between a model and the actual

physical process. The environment can never be exactly modeled, and noise and

disturbances cannot be eliminated. Even a fully semantic description is still subject

to uncertainty in modeling or noise in the measurements. There is an opportunity,

therefore, to study the interaction between a model and physical process when there

is a discrepancy between the two. We do not consider the case of faults in the

physical process here but focus, instead, on updating the model when a discrepancy

is observed. Classical estimation theory for dynamic systems provides several tools

3

for updating models and managing signal uncertainty [17], [3] [100], [145].

However, when models of dynamic systems are expressed as semantic graphs,

we explore methods to leverage both conventional estimation methods as well as

graph theoretic concepts of belief propagation, logical consensus, and information

entropy to improve the performance, scalability and scope of model adaptation in

large, distributed, networked, heterogeneous hybrid processes.

1.2 Major contributions

The contributions of this work fall into two broad categories:

1.2.1 Model adaptation methods using semantic models

In a networked implementation of a hybrid process, signals between a model and

the process are transmitted over a shared data network. The network introduces

delays and jitter in the communication which must be addressed when an algorithm

is designed to update a model.

We show, after evaluating the delay and jitter profiles of common networks, that

the performance of model adaptation algorithms can be improved by using seman-

tic representations of key performance parameters in the model. Improvements are

demonstrated via three use cases.

In the first case, knowledge about the effect of communication delays (between

the model and process) on the model-process discrepancy is provided. Using this

knowledge, a state estimator is designed to adapt to changing delays and jitter in the

network. This is presented in Chapter III.

In the second case, semantic knowledge about the relationship between commu-

nication constraints, measurement uncertainty and model order is provided. Using

this information, the resolution or accuracy of the model is automatically adjusted to

adapt to changing network conditions. In the third case, semantic assertions about

4

the physical nature of each component within the model are provided. The descrip-

tions facilitate automatic reconfiguration of the model components when the structure

of the model needs to be updated. Using the semantic description, every proposed

reconfiguration is a physically feasible solution and can be scored based on its likeli-

hood of satisfactorily resolving a discrepancy. Cases two and three are presented in

Chapter IV.

1.2.2 Model adaptation methods using declarative network descriptions

In some cases a model is made up of several heterogenous model components

connected together. For very large compositional models, it is advantageous to isolate

and adapt as small a subset of model components as possible.

Assuming that a formal description of the interconnections between the compo-

nents is provided, we propose a graph theoretic methodology to systematically explore

the topology of interconnections and identify components that are the root cause of a

discrepancy. The methodology is applied to practical topologies for electrical networks

and manufacturing lines. Several specific contributions are made in order to apply

the methodology to very large graphs, systems with limited observability, processes

with measurement uncertainty and models comprised of components from different

physical domains. These contributions are presented in Chapters V and VI.

1.3 Application areas

Semantic networks have been used in many applications where it is necessary for

computers to infer meaning from a data set. Common application domains include:

• Natural language processing: sentence semantics are commonly used in pro-

grams used to detect plagiarism in natural language text.

• Robotics and automation: semantic models of maps and cause-effect relation-

5

ships facilitate high-level interactions between a robot and a human.

• Protein kinetics: databases of protein molecules with added semantics about

their mutual interactions allows experimenters to query the database with de-

sired chemical behaviors instead of manually searching through names.

• Google and Facebook graph search: semantic libraries for commonly searched

information are designed to give meaningful answers to natural language queries

rather than a list of links.

We will focus on two application areas in this dissertation:

Manufacturing processes: Manufacturing processes, e.g. for automobiles, semi-

conductors and chemical products, are becoming increasingly high value, high

throughput and highly automated. The need for improving quality, speed and

efficiency (reducing defects and power consumption) have led to the use of dig-

ital networks and model based control methods. Manufacturing processes are

well suited for semantic representation since each manufacturing step can be

modeled to include semantic propositions such as energy cost, causes of defects

and throughput constraints. The network of interconnections between process

steps is usually well defined and a clear ontology exists for the dependency be-

tween process steps (some steps have to precede some others, some act on the

same feature of the product while some are independent).

We present a case study of an industrial DC motor drive circuit equipped with

semantic propositions in Chapter IV. In Chapter VI we present a diagnosis

methodology for semiconductor manufacturing lines by using a formal definition

of the topology of dependencies between manufacturing steps.

Electrical power networks: Distribution networks for electrical power also are

well suited for representation as a semantic network. Electrical machinery used

6

in a distribution network are usually drawn from a finite set of machine types

and their behaviors can be represented in semantic form. A declarative descrip-

tion of the interconnection network is available in the form of a circuit diagram

including a vocabulary (voltage, current, phase) for the information shared over

the network.

We use semantic propositions to automatically adapt a model for an electrical

transmission line in response to changes in measurement uncertainty in Chapter

IV. We use declarative description of an electrical circuit to target specific

parameter in need of adaptation in Chapter V and show that semantic models

in conjunction with declarative topology descriptions may be used to efficiently

coordinate between a network of electrical vehicles charging stations in Chapter

VII.

1.4 Dissertation overview

The objective of this dissertation is to develop tools for constructing, investigating,

diagnosing, and adapting semantic models when used in a hybrid process configura-

tion.

1.4.1 Background

In Chapter II, the concepts and tools used throughout this document are in-

troduced and defined. Prior work in the area of networked model adaptation and

semantic modeling is presented.

1.4.2 Performance of networks, synchronization and model adaptation

Since one of the motivations for this work is to improve model adaptation for

systems where information is shared over a digital communication network, we present

7

a summary of results showing the performance of commonly used digital networks in

Chapter III. Protocols used in the manufacturing domain and in the monitoring and

control of electrical substations are evaluated. The performance of a hybrid process

also depends on the level of synchronization between the model and the process which

in turn depends on the accuracy of the internal clocks used to ensure that the model

operates in lock-step with reality. We also present an evaluation of Ethernet based

clock synchronization algorithms used in the application areas of interest. Finally, a

model adaptation method using precise clocks and inbuilt compensation for network

effects is presented and the limitations discussed.

1.4.3 Model adaptation methods using model semantics and declarative

network interconnections

In Chapter IV we present two specific cases where semantic information about

a model is used to improve the performance of model adaptation for a networked

implementation of a hybrid process.

In the first case, information about the relationship between the number of Markov

parameters in a model to the accuracy of the model output, and information about

the relationship between clock accuracy and measurement uncertainty in a physical

process is considered. A semantic representation of the system is used to establish

an associative relationship between the choice of model order and the measurement

uncertainty, and used to optimize the choice of model order for a given clock accuracy.

In the second case, a model is assumed to be constructed from several model

components. Assuming that information about the physical nature and relative com-

patibility of individual model components is provided, a framework for automated

reconfiguration of model components is presented. Additionally, a semantic reward

function is designed to score every proposed reconfiguration so that only ‘meaningful’

topologies are generated after each combinatorial reconfiguration.

8

1.4.4 Targeted model adaptation

In Chapter V we consider a large networked system with tight integration between

physical components and their models which is typical of manufacturing systems

and electrical networks. We address a scenario where it is necessary to adapt the

model while satisfying network constraints. Specifically, the adaptation strategy must

efficiently utilize the limited access to measurements over the communication network

while meeting the scale of complexity expected in a large networked system such as

a regional electrical power distribution network.

Assuming that the model (like the physical process) is made up of several inter-

connected components where the topology of interconnections is explicitly known, a

topology exploring diagnostic procedure is proposed in order to identify and isolate

specific model components in need of adaptation. By restricting adaptation to the

smallest set of components possible, we show that the computational complexity of

the adaptation problem is significantly reduced.

The work in this chapter also addresses technical challenges in transforming a

conventional state-space model for a system into a topology that is compatible with

the topology exploration procedure by using a topology preserving realization for the

state-space model.

We use a 5-bus power system as a test case. The test case shows how the methods

presented might be used in a wide area network implementation where component

level measurements are expensive to obtain.

1.4.5 Modifying the model structure to improve targeted adaptation

In Chapter VI we apply the diagnostic procedure outlined in Chapter V to a man-

ufacturing process. Here the diagnostic process is used to isolate key manufacturing

process steps affecting the end-of-line quality of a product. The Bayesian inference

algorithms used for diagnosis incur a heavy computational penalty when applied to

9

large topologies with repetitions, un-modeled interactions and re-entrants, all of which

are commonly found in manufacturing workflows. We are able to improve the perfor-

mance of the diagnostic inference process by ‘folding’ and ‘clustering’ vertices, where

possible, to simplify the analysis. We also include the effect of un-modeled interac-

tions by using a memory efficient auxiliary relaxation. Finally, we present a method

to strategically reverse the simplifications, when necessary, so that the accuracy of

the diagnosed result is not compromised.

The analysis process is shown to be effective at identifying the root cause of global

yield discrepancies in a semiconductor manufacturing workflow. It is also shown that

auxiliary relaxation improves the convergence properties of the inference algorithm

and reduces the net uncertainty in the final result.

1.4.6 Distributed control using semantic networks

In Chapter VII we present a decentralized approach to regulate the cumulative

electric load in a distribution circuit by coordinating between a network of electric

vehicle charging stations. The coordination strategy utilizes semantic models for the

charging stations as well as a formal representation of the network of interconnections

between charging stations to automatically synthesize a decentralized control policy.

A consensus based implementation of the control policy is used to coordinate the

charging load between a peer group of charging stations to ensure that connected elec-

tric vehicles are charged as desired while abiding by the power constraints of the local

distribution circuit. A semantic representation of each consumer’s objectives is used

in conjunction with a declarative description of power constraints in the distribution

circuit to produce an optimal control law for each charging station.

The proposed method operates in accordance with a resource allocation schedule

provided by the power utility. However, by applying reasoning to the semantic net-

work of constraints and objectives, a topology generation mechanism organizes sub-

10

sets of charging stations into “peer groups”. The peer groups mitigate disturbances

in load regulation and follow the utility schedule using a peer-to-peer arbitration

algorithm. By eliminating the need for a central controller to compensate for load

disturbances, the proposed solution reduces the computational requirements of the

resource allocation program while improving the robustness and the response time of

a coordinated peer group of chargers.

11

CHAPTER II

Background and Related work

2.1 Model adaptation for networked dynamic systems

Automated methods to adapt mathematical models of dynamic systems have been

an area of focus since the advent of modern control theory and our contribution can

be put in the context of the previous literature in the area. Notable early work by

[151], [15], [32] and [100] offer algorithmic approaches to updating model parameters

and estimating the internal state. The focus of much of the early work in the area

was on uncertainty of the model, noise in the measurements and intermittence of

observations. All of these concerns are still valid today, and despite the decades of

advancements the fundamental concerns facing a model adaptation algorithm remain

unchanged.

Figure 2.1 shows a generic configuration of a hybrid process with an automated

model adaptation algorithm. Noisy measurements are used to update a model when

there is a difference between the model output ŷ and the physical measurement y.

Three properties of the model may be updated in response to the observed difference;

the internal state of the model (x̂), model parameters (λ̂) and the structure or topol-

ogy of the model (Γ̂). The prior work in updating each of these three properties have

evolved somewhat independently. We will present some perspective on the state of

the art in each of the three research domains below.

12

𝑦

Residual Function
𝑔(𝑦, 𝑦) 𝑢

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑦
(Γ , 𝜆 , 𝑥) 𝑀

𝑃

 Network
interface/

Measurement
noise

 Network
interface/

Measurement
noise

(Γ, 𝜆, 𝑥)

Figure 2.1: The model M and the physical process P operate in parallel and re-
ceive the same input y. Differences between the model output ŷ and the
physical measurement y are used to adapt the model using an adaptation
algorithm. Both outputs are subject to disturbances such as sensor noise
and network delays. Three properties of the model may be updated: the
state vector x̂, the set of model parameters λ̂ and the structure of the
model Γ̂.

2.1.1 State estimation for networked systems

A state estimator for the physical process P is comprised of the model M and a

closed loop adaptation algorithm designed to update the internal state x̂ ofM. x̂ is an

estimate of the true state x of P and is updated using potentially noisy measurements

y. The most ubiquitous recursive estimation technique in control is the discrete-time

Kalman filter [135] – modeling the value of a measurement as a signal convolved with

a random process whose parameters are related to the characteristics of a sensor or

the communication channel.

The standard assumption in classical control theory is that data transmission re-

quired by a control algorithm can be performed with infinite precision. However due

to the advent of digital communication technology, it is becoming more common to

employ finite capacity networks for the exchange of information between components.

Examples include complex dynamical processes in advanced aircraft, spacecraft, auto-

13

motive, industrial and power systems. Bandwidth constraints on the communication

channel are often major obstacles to control system design using classical theory.

The use of networks has created a new chapter of control theory that deals with

networked systems and combines together the control and communication issues,

taking into account all the limitations on communication between sensors, controllers,

and actuators. Recently there has been a good deal of research activity in this field.

The focus has been on modeling and analyzing limited capacity channels in terms of

quantization effects, channel errors, dropouts and time delays. Many of the major

results in this domain treat a network as a noisy channel with known stochastic

properties in order to derive an analytical closed form solution for a state estimator.

In [66] and [157], the authors proposed to place a Kalman filter on the sensor side

of a communication link in order to iteratively generate a linear statistical model

for quantization and data loss in the channel. [159] considered Bernoulli packet

losses (and delays) between the plant and the model and posed the estimator design

as an H∞ optimization problem. [137] considered a suboptimal but computationally

efficient estimator that can be applied when the arrival process for measurements over

a network is modeled as a Markov chain, which is more general than the assumption

of a Bernoulli process. Another direction in the research proposes a systems level

approach where networked control systems (network, plant, model, sensor, controller

and actuator) are modeled as Markovian jump linear systems (MJLSs) [58].

Other non-analytical or simulation based approaches include [116] who present

an LQG optimal estimator with non-parametric but bounded delays between sen-

sors and the model, and between the model and the actuator. Signal conditioning

methods are also widely researched as more computational resources are becoming

cheaply available. For example, [117] and [96] use a combination of model based delay

compensation and dropout interpolation for each measurement communicated over a

network.

14

There is also an extensive literature, inspired by Shannon’s results on the maxi-

mum bit-rate that a channel with noise can reliably carry, whose goal is to determine

the minimum bit-rate that is needed to stabilize an estimator through feedback [76],

[93].

Our contribution to networked state estimation, presented in Chapter III, is an

analysis of fundamental limits on state estimation accuracy based on empirical ob-

servations of network delays in manufacturing systems and power networks. The

accuracy of distributed clocks and the time reference as a limiting factor on accuracy

are presented in detail. We also consider the accuracy of sensors, models and the net-

work in the design of an estimator and present a design tradeoff to maximize system

level performance.

2.1.2 Parameter estimation for large models

If the model M contains a set of parameters λ, then a parameter estimation

procedure may be used to find a probability distribution for each element in λ that

best fits the measurements from P . The principle of maximum likelihood estimation

(MLE) [48] states that the desired probability distribution for λ is the one that makes

the observed data Y most likely. The MLE for λ is sought by searching the multi-

dimensional parameter space and the algebraic complexity of the search/convergence

equations is exponential in the number of parameters. Algorithms for MLE can be

found in the active and well established fields of system identification [99] and adaptive

systems [27].

Recent improvements to MLE algorithms address the exponential scaling concerns

in order to consider larger models. The convergence improvements sacrifice some

optimal properties of the MLE such as the efficiency and sufficiency condition [127].

The tradeoff of performance versus optimality differs depending on the domain. In

[78] a formulation suited to financial data is presented where a very large number of

15

data samples are available. With very large data sets the authors are able to improve

the lowest-possible variance of each parameter. In [142] non-parametric distributions

are considered for the very large models used for predicting the evolutionary dynamics

of genetic markers. Models for gene expression tend to be fairly uncertain justifying

an improvement in asymptotic consistency of the parameters against an increase in

variance of each parameter.

MLEs have widespread application in the modeling of power systems [57], [133].

The MLE is commonly used to estimate the static state of an electrical network.

With the recent interest in dynamic state estimation for power systems, faster and

more numerically efficient MLEs have begun to appear in literature. The authors

in [124] discuss a dynamic parameter tuning system, based on an MLE, for large

power networks. Similar MLE based techniques have also been proposed for modeling

consumers or loads [110]. Both power system parameter estimation methods use

heuristics in the form of a bounded probability distribution on the parameter space

or manually inserted constraints on some parameters to improve the convergence rate.

Our approach, presented in Chapter V, addresses the challenge of scale for large

parameter estimation problems by decomposing the model and isolating a subset of

parameters that warrant adaptation. Our method is compatible with standard MLE

algorithms and suited for systems made up of multiple components such as electrical

networks and manufacturing lines, where restricting an MLE to the smallest set of

parameters possible offers significant computational savings and accuracy improve-

ments.

2.1.3 Reconfiguring the structure of a model in a distributed system

Most model adaptation methods assume that the structure of the system is given

a priori. However, there is also well established research on identifying the structure

of a system based on its input-output properties. The domain covers the area of

16

fuzzy logic [94], neural networks [12, 97] and non-linear system identification [67].

The end result of structure/topology identification is an automatically synthesized

interconnected structure of model elements. For example, using an un-supervised

neural framework, a model made up of a network of neurons with interconnections

and weights may be obtained. Apart from physical similarities to biological neural

networks [162], the neural structure rarely exhibits physical similarity to the system

being identified.

Structure identification of power system models [118] is also widely researched.

In the surveyed cases, power systems are modeled as networks of interconnected lin-

ear dynamic systems [132]. The structure identification methodology is reduced to a

MIMO case of Markov parameter identification. The decomposition of a non-linear

process into cascaded linear blocks is another commonly used method for identify-

ing multi-periodic models for gear chatter and harmonic distortion [94]. Theoretical

decomposition techniques also exist for cascaded or parallel Hammerstein-Weiner pro-

cesses [67].

For more non-linear, multi-physics systems such as protein structures [83] or man-

ufacturing processes [126], a supervised neural network is a common approach. Like

the other methods mentioned here, a neural model is capable of producing good

input-output correspondence with the process. However, the lack of physical insight

in many of the methods presented here is a significant limitation.

We use several declarative forms to represent the structure of a model in our

research. In all cases we retain the physical analogue to the real physical system as

far as possible. In some cases we show that semantic information about component

compatibility in the physical system or a reward function based on physical feasibility

can be used to improve structural adaptation methods.

17

2.2 Semantic modeling

As defined in [139], a semantic network is a notation for representing knowledge

in patterns of interconnected vertices or edges. Semantic networks are commonly

used to represent formal logic in philosophy and linguistics, but can also be used to

represent knowledge for any system with a formal set of definitions (vertices) and

assertions (edges). Once a semantic network is constructed, it can also be used to

support an automated system for reasoning about knowledge [140].

The two types of semantic elements we will use to build a semantic network are

“Definitional models” that form the vertices and “Assertional descriptions” of the

network of interconnections that form the edges.

A definitional model represents a component by specifying the genus or general

type and the differentiae that distinguish particular instances of the genus. Say for

example that a new motor is designed and features a thermal cut-out feature. The

definition the motor model is greatly enhanced with the knowledge that most of the

motor is made up of components from the ‘motor genus’ but this instance of the motor

features one special differentiator in the form of the thermal cutout. The definitional

representation can be used to include semantic information about the performance of

a model as well. Continuing our example, consider that the motor model also includes

a voltage sensor with a specified noise profile. The voltage sensor may be defined as

an instance of a general genus of noisy sensors. Using the definitional hierarchy for

every instance of a sensor, a computer program can be written to aggregate all noisy

sensors in a large interconnected system with several motors and assess the cumulative

uncertainty in a given measurement.

Clearly, we also require a formal description of the network of interconnections

between the definitional models to build a semantic graph. We use an assertional

network to explicitly declare an entity-relationship map between definitional models.

The assertional network expresses the relationships between entities using assertions

18

such as Motor1↔electrically connected to↔Sensor1, where ‘Sensor1 ’ and ‘Mo-

tor1 ’ are instances of definitional models and ‘electrically connected to’ is an

assertion. Other assertions that are commonly used include A↔occurs after↔B or

A↔causally follows↔B↔causally follows↔C.

Semantic representations of large electrical networks consist of definitional models

of components such as transformers and switches. Definitional models for manufac-

turing lines include drilling operations and welding operations. Assertional declara-

tions are made to describe the network of electrical interconnections between various

electrical components or the sequence in which various machining operations are per-

formed.

A combination of definitional models and topological assertions allow us to equip a

model with tools and information required for improved model adaptation, diagnosis

and control.

We use the language Modelica® [51] for semantic modeling. Modelica is an object-

oriented, equation-based, multi-domain modeling language primarily aimed at phys-

ical systems. The model behavior is based on ordinary and differential algebraic

equation systems combined with discrete events. Modelica allows the semantic model

to be constructed acausally so that causal constraints (or assertions) may be added

when needed. In addition, Modelica provides a pervasive definitional hierarchy for

every model component enabling a large model made up of many components to be

constructed compositionally.

19

CHAPTER III

Networked state estimation

The work presented in this chapter appears in proceedings of the 2009 and 2010

IEEE International Conference on Automation Science and Engineering and the 2009

International IEEE Symposium on Precision Clock Synchronization for Measurement,

Control and Communication ([9], [8], [10]).

3.1 Introduction

In process control, the quantities one is interested in cannot always be measured

directly. State estimation is a technique that reconstructs the state vector of a physical

process using a model in combination with available measurements from the process.

When measurements are reported over a communication network, they may be lost

or delayed due to finite communication bandwidth and communication interference.

In order to effectively design a state estimator which is capable of reconstructing the

process state over a network, it is necessary to first characterize the nature of delays

and transmission loss in practical networks. We present a comprehensive record of

network delays and loss for commonly used Ethernet based communication networks

under several operating conditions in our prior work [9]. This data can be used to

propose some likely delay distributions for network components including in network

installations for electrical substations and industrial plants. In this chapter we will

20

present a summary of our experimental results characterizing delay and jitter for

digital communication networks.

In studying estimator/observer based methods to mitigate the effects of network

delays, we will focus on another implementation problem common in networked con-

trol, that of clock synchronization. Most state estimation algorithms used for net-

worked systems require precise knowledge of time across the network. Clocks that

are synchronized over an Ethernet network are also affected by network delay and

jitter and have limited precision. We evaluate the performance of two clock synchro-

nization algorithms operating on industrial and substation networks in [10] and then

subsequently are able to include the effect of finite precision clocks and empirically

derived network delay profiles to design a state estimator for control networks [8].

3.2 Network performance characterization

Network performance considerations for control applications vary as widely as the

context in which the term “networked control” is used. In a process control application

in a chemical plant, for example, process parameters may be sampled by sensors once

every few minutes all the way down to once every few milliseconds [103]. While

both of these may be low data bandwidth applications, the fast sampling sensor will

need to access the transmission medium at a higher frequency, placing much higher

demands on the Medium Access Control (MAC) layer than the slow sensor. Similarly,

a network designed to support supervisory work flow control and a network carrying

signals from the safety system may both feature high network utilization, but the

time criticality of the transmissions from the safety system demands prioritization

over other transmissions in case of medium access contention. Also, the size of the

data frames communicated over Networked Control Systems (NCSs) vary greatly from

several bytes in a low level sensor/actuator interface to several thousand bytes in a

high level Human Machine Interface (HMI).

21

Table 3.1: Performance specifications for industrial process control (automotive man-
ufacturing). Performance requirements are classified by the maximum ac-
ceptable delay for a message to be received.

Poll interval Message size # of nodes Range
High Speed I/O 10ms ∼ 64 Bytes 50 10m
Medium Speed I/O 100ms to 1s ∼ 64 Kilobytes 50 30-60m
Low Speed I/O 1hour > 1 Megabyte 100+ 100+ m

In the following section we will present a summary of our survey to identify net-

work performance specifications for industrial control networks and control networks

in electrical substations.

3.2.1 Performance specifications

Industrial process control networks are divided into three operational classes: High

speed I/O for applications such as automated carriers on electrified monorail systems,

medium speed I/O for applications such as mobile PLC test stands and low speed

I/O for applications such as remotely monitored utility meters. The requirements for

each of these classes from a control system designer’s perspective are tabulated in

Table 3.1 [128].

In the case of substation monitoring and control, the IEEE Power Engineering

Society has defined communication performance requirements for substation telecom-

munications in IEEE Standard 1646 [74]. The standard broadly classifies the com-

munication delivery time requirements for substation automation into four classes

presented in Table 3.2.

Tables 3.1 and 3.2 provide a general sense for the rate at which messages are

expected to be transmitted over the network. The message rate is also an indication

of the maximum update frequency that can be expected when designing a state

estimator.

22

Table 3.2: Performance specifications for electrical substations

Poll interval Message size # of nodes Range
Configuration updates >100ms ≥ 10 KBytes 100+ 100 Km
Non-critical measurement data 10ms to 100ms ∼ 10 Bytes 50+ 30-200m
Event notification messages 2ms to 10ms ∼ 4 Bytes 50+ 100m
Real time sampled measurements < 2ms ∼ 4 Bytes 10-100 100m

3.2.2 Performance evaluation of Ethernet networks

The communication delays in a network are rarely deterministic, the possibility of

large outliers and jitter are not captured in the performance specifications in Tables

3.1 and 3.2.

We conducted experiments to more accurately measure the time taken by an

Ethernet network to transmit data packets between two nodes. The Ethernet link was

restricted to a point to point link and the data packets were generated by a software

emulator for network protocols used for substation automation (IEC-61850) [90] and

industrial automation (EthernetIP/OPC). Figure 3.1 shows a sequence of round trip

delays for a single hop test. Note that the average round trip delay is about 0.5 ms.

The distribution of delay values shown in Figure 3.2 is non-parametric and shows

large outliers that significantly limit the accuracy of networked state estimators and

networked controllers.

Further, as shown in Figure 3.3, the distribution and magnitude of delays for a

industrial grade wireless network is significantly worse.

3.3 Distributed Clocks

In a widely distributed system such as the power grid, it is critical that each

device be aware of the global time at which an operation is performed or measurement

taken so that, for example, the device may be able to coordinate its operation with

other components to collectively deliver uninterrupted power. Precise clocks also

23

0 20 40 60 80 100 120 140 160 180 200
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Packet number

R
ou

nd
 tr

ip
 ti

m
e

(m
ill

is
ec

on
ds

)

Round trip delay for a wired Ethernet connection

Mean = 0.502 milliseconds
Standard Deviation = 0.0367 milliseconds
Kurtosis = 20.9158 milliseconds

Figure 3.1: The round trip time for 60byte packets over a wired Ethernet connection
between two nodes. The data is collected under nominal network cross-
traffic (about 40% of the maximum bandwidth). The mean value is 0.502
ms, and the maximum delay is 46% larger than the mean.

0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

10

20

30

40

50

60

70

80

90

100

Time (milliseconds)

N
um

be
r

of
 s

am
pl

es

Histogam of round trip times

Mean Value

Figure 3.2: Histogram of the the delay values in Figure 3.1. The figure shows most of
the delay values clustered about the mean and a small number of outliers
clustered around 0.7 ms.

24

0 20 40 60 80 100 120
0

2

4

6

0 20 40 60 80 100 120
0

2

4

6

0 20 40 60 80 100 120
0

5

10

15

Distance (meters)

Av
er

ag
e

ro
un

d
tri

p
tim

e
(m

illi
se

co
nd

s)

Average round trip delay and standard deviation versus distance

a

b

c

Figure 3.3: The average (and 1σ spread) of message delays for a point to point wireless
network. The plots a and b correspond to industrial networks operating
indoors and outdoors respectively. Both plots (a and b) show the delays
for a packet switched wireless network reporting sampled values. Plot c
shows delays for an IEC-61850 datagram used in an electrical substation.

25

enable simulation models to interact with physical sensors to create as accurate of a

representation of the grid as possible [84] and [22].

In order to perform coordinated tasks, a device’s local clock needs to be synchro-

nized to a global time reference. Time stamps based upon this synchronized time

are applied to measurements and provide a reference to the time at which the mea-

surement occurred. The measurements can then be ordered by any user to provide

a time-line of events or a snapshot at a particular instant of time. The authors in

[19] present a discussion on the importance of clock synchronization for power grid

devices.

A device which is playing an increasingly important role in grid health monitor-

ing is the PMU (phasor measurement unit). PMUs are used in wide area monitor-

ing and protection schemes to compare voltage and current measurements collected

throughout the grid at specific instants in time. The PMUs collect this information

and transmit it with an associated timestamp to a PDC (phasor data concentrator),

where data from multiple PMUs collected at the same point in time are combined to

provide a snapshot of the grid condition.

The accuracy of the data packets, also known as synchrophasors, is determined by

the TVE (total vector error), which is required to be less than 1 percent [104]. The

error arises from inaccuracies in the initial measurement, internal processing time,

and errors with the timestamp. To illustrate the importance of clock synchronization

on PMU performance, a timestamp error of 26µs will lead to a 1 percent TVE. In

order to maintain an acceptable TVE in the presence of the other errors mentioned

above, PMU clocks should be synchronized to within 1µs of UTC. More information

can be found in [154] and [104].

An important and often overlooked factor of device performance is the local os-

cillator within devices. These oscillators are responsible for providing the basic unit

of time for the device, as well as the basis for the local approximation of global time.

26

While oscillators have varying accuracies depending on the material and housing, each

individual oscillator will display unique drift and offsets. If devices are to be used in

coordination with one another effectively, this variation in oscillator offset and drifts

must be minimized. Clock synchronization techniques address this issue by periodi-

cally correcting the local estimated time to reflect the accepted global time. Current

technology can theoretically synchronize standard quartz clocks to within 100 ns of

the global reference within a local area network [19]. These methods will be discussed

further in Section 3.3.1.

With this accurate knowledge of global time, devices can be coordinated to per-

form actions or take measurements at a specific instant in time. However, the accuracy

of this performance is bounded by the accuracy of the device’s local time estimation.

For example, if a device were to apply a 1 ms accurate timestamp as a measurement

is taken, the measurement could have occurred at any point within the 1 ms win-

dow. Therefore, increasing the performance of device clock synchronization can only

improve measurement capabilities.

3.3.1 Performance objectives for networked clock synchronization

Advanced network protocols such as the IEEE 1588 Precision Time Protocol

(PTP) provide clock synchronization within 1 µs across an Ethernet network [42].

Additional communication mediums such as fiber-optics may provide a platform to

further increase synchronization accuracy. Model fidelity can also be improved as

more accurate clock synchronization will lead to lower noise introduced by clock vari-

ations. The remainder of the section will detail the types of networked synchronization

algorithms commonly found in industrial and power networks.

PMUs are currently synchronized to UTC (coordinated universal time) via GPS.

This system is capable of providing clock synchronization within 100 ns of UTC

depending on the wiring of the antenna and the availability of the GPS signal [19].

27

Table 3.3: Performance specifications for clock synchronization algorithms

Communication medium Time accuracy Network type
GPS Satellite < 100 ns Planet wide
PTP Ethernet < 1 µs 30-200m
IRIG-B Dedicated network < 100 ns Kilometers
NTP Ethernet 1− 100 ms ∼1000 Kilometers

GPS synchronization is ideal for wide area networks since no wiring is needed between

locations, but does not provide economical synchronization within a local network.

As the number of devices on a network requiring synchronization increases, additional

antennas must be installed and the cost of the network quickly escalates. IRIG-B and

PPS are often used to extend GPS synchronization to devices [19].

A promising solution is the introduction of PTP into the synchronization path.

PTP is an Ethernet specific clock synchronization protocol that is capable of providing

synchronization of all clocks on a local network to within 1 µs. This level of synchro-

nization can be used to extend the time accuracy of a GPS clock received through

one antenna to all devices on the same Ethernet network. Table 3.3 compares im-

portant performance characteristics of various synchronization protocols. Additional

information on PTP can be found in [42] and [92].

The precision and accuracy of the PTP, like other networked clock synchronization

algorithms, is compromised by asymmetric and variable packet transmission delays

and processing delays in network protocol stack [115]. We performed extensive ex-

perimentation to profile and understand the practical limits on clock precision for

industrial and power networks [92], [10], [5], [4]. A summary of our findings is pre-

sented in Section 3.3.2.

3.3.2 Performance evaluation of clock synchronization algorithms

We developed a testbed to establish methods for measuring and testing the accu-

racy and reliability of clock synchronization algorithms, as well as to characterize fac-

28

10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

Time (Minutes)
Jit

te
r (

m
illi

se
co

nd
s)

Magnitude of clock jitter for a wired Ethernet connection

10 15 20 25 30 35 40 45 50 55 60

6

4

2

Time (Minutes)

O
ffs

et
 (m

illi
se

co
nd

s)

Magnitude of clock offset values for a wired Ethernet connection

Mean = 5.0132 milliseconds
Standard Deviation = 0.6127 milliseconds

Mean = 0.4091 milliseconds
Standard Deviation = 0.1352 milliseconds

Figure 3.4: The clock offset and frequency jitter observed between two clocks syn-
chronized using the Network Time Protocol (NTP) over a wired Ethernet
connection. The network configuration for this experiment emulates a
typical industrial implementation. The plot shows that the accuracy of
NTP is insufficient for real-time sampling and high speed I/O require-
ments.

tors impacting synchronization performance using commercially available products.

We conducted tests on hardware and software developed by commercial vendors.

Grand Masters, Boundary/Transparent Clocks and Ordinary Clocks were tested for

interoperability between manufacturers, and compliance with the objective in Ta-

ble 3.3. Scenarios were designed to test several PTP parameters (such as different

sync rates), or the type of topology used (star, ring, high availability seamless ring).

The resulting conclusions are presented in [5], [92] and [10].

Figures 3.4, 3.5, 3.6 and 3.7 show a few highlighted results from our experiments.

In the next section we will demonstrate a state estimation method that incorporates

measurements of clock offset and to compensate for variable communication delay.

29

10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

Time (Minutes)

Jit
te

r (
m

illi
se

co
nd

s)

Magnitude of clock jitter for a wireless connection

10 15 20 25 30 35 40 45 50 55 60
2

0

2

4

Time (Minutes)

O
ffs

et
 (m

illi
se

co
nd

s)

Magnitude of clock offset for a wireless connection

Mean = 2.8271 ms
Standard Deviation = 4.8624 ms

Mean = 0.2834 ms
Standard Deviation = 0.5420 ms

Figure 3.5: The clock offset and frequency jitter observed between two clocks syn-
chronized using the Network Time Protocol (NTP) over an IEEE 802.11g
wireless link. The network configuration for this experiment emulates
a typical industrial implementation. The plot shows that the accuracy
of NTP is insufficient for most applications in substation and industrial
automation.

30

occurs in an MRP ring, the topology is able to maintain the

synchronization performance over the network of four switches.

Packet loss is minimized, thus maintaining the communication

between the GM and the OC. Therefore, the accuracy of the

synchronization is not affected.

4.2 B. Network traffic bursts
Due to fault conditions in the substation, which may result in

short but frequent bursts of traffic, this test scenario emulates

what would occur when substation data is sampled at high

frequencies in order to detect transient fault occurrences. We

conjectured that static heavy traffic loads would not impact IEEE

1588 because TCs are able to compensate for the jitter by time-

stamping at the ingress and egress ports, therefore removing the

PDV. An accurate implementation of the TC should be able to

maintain the synchronization accuracy over the four hops. The

traffic bursts occur over the duration of two hours. The traffic is

injected as square steps, with a period of 1 h, where the minimum

network load threshold is at 5 percent and a maximum network

load threshold is at 95 percent with each load lasting for 30

minutes. The traffic injected is based upon the traffic model 1 of

G.8261/Y.1361 [7]. As shown in Figure 7, the IEEE 1588

devices were configured in a linear topology with three hops, with

the slave nodes on the last hop to assess the synchronization

performance. The traffic generator node injects packets at the

specified percentages into the first hop and absorbs the extraneous

traffic from the third hop. To ensure the correct level of traffic is

being generated, a network packet analyzer was used to verify the

quantity and sizes of the packets. We tested two device

implementations on the third hop, TC A and TC B. Results from

both TCs indicate that there were no significant time

synchronization performance setbacks due to the bursts of traffic

as shown in Figure 8. The slaves were able to maintain similar

variation in mean path delay with a maximum offset of less than

200 ns. Heavy traffic, with use of TCs, did not have impact on the

synchronization of the slaves and the ability of the TCs to time-

stamp the messages.

Figure 7: IEEE 1588 topology for network traffic scenario.

Figure 8: Mean path delay and synchronization offset between

Grandmaster and slave nodes through TC B.

4.3 C. Holdover and convergence
The holdover tests provide a view of how the IEEE 1588 nodes

would fare without a Master clock. The holdover durations tested

include 10 s, 100 s, and 1000 s. With accurate time-stamping in

the TC, the IEEE 1588 OCs were able to support holdover

between 10 to 100 s while remaining within 1 μs accuracy. Table

2 provides a sample of the synchronization offsets after the node

establishes contact with the Grandmaster. OC3 holdover ranged

from 200 ns to 2.5 μs at 10 s and 1000 s respectively, whereas a

less stable clock, OC4, drifted 448 ns in 10 s to a drift of 4.7 μs in

1000 s. OC5, which is compromised by a TC introducing a large

timing error drifted significantly with a 2.6 μs offset at 10 s. At

Figure 5: Synchronization offset with link failure

in ring topology using RSTP.
Figure 6: Synchronization offset with link failure

in ring topology using MRP. Figure 3.6: Clock offsets for four networked clocks synchronized using the Precision
Time Protocol (PTP). The network configuration for this experiment em-
ulates an electrical substation. The graph shows that under normal oper-
ating conditions PTP is able to deliver sufficient clock accuracy for even
the most critical functions specified in Tables 3.1 and 3.2.

31

Figure 3.7: The drift of four local clocks upon loss of the synchronization signal (high-
lighted in green) and resynchronization after a synchronization update is
received. The plot shows that the required clock accuracy for real time
control and data acquisition is violated when PTP communication is lost
for > 60 seconds. In 1000 seconds, the system is no longer able to support
most control functions. The network configuration for this experiment
emulates an electrical substation.

𝑦

Residual Function
𝑔(𝑦, 𝑦) 𝑢

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑦
(Γ , 𝜆 , 𝑥) 𝑀

𝑃

 Network
interface/

Measurement
noise

 Network
interface/

Measurement
noise

(Γ, 𝜆, 𝑥)

Figure 3.8: A schematic of a 2 element hybrid process. x̂ is a model based estimate
of x. The adaptation algorithm updates x̂ based on differences between
y and ŷ.

32

3.4 State estimation over Ethernet networks

Performance for an estimator is most often evaluated as an inverse function of the

error between the estimated outputs ŷ and the real measurements y. An adaptation

law familiar to control system designers is to introduce the output error y − ŷ into

the model M as an additional input. Assuming that there is no network and that

P and M are linear systems, the closed loop equations for this estimator design are

shown in Equation 3.1.

P :


x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

M :


x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)

Error dynamics :


e(k) = x(k)− x̂(k)

e(k + 1) = [A− LC]e(k)

(3.1)

In this closed loop formulation, the error dynamics [A − LC] are independent of

the output y. As a result it can be shown that an estimator can be designed such

that the magnitude of the estimation error (e(k)) always converges to zero given

accurate measurements y and identical system matrices (A,B,C) for M and P .

Faster convergence can be achieved by placing the poles of [A− LC].

However, faster convergence comes at the cost of increased sensitivity to noise

in the measurement channel y. For a networked system, noise in the measurement

channel can be caused by variable network delay and imprecise clock synchro-

nization.

33

3.4.1 Review of existing methods for networked state estimation

Modeling the network as uncorrelated additive noise is a very common approach

and is the basis for a majority of networked control research [98]. Many models for

the ‘network noise’ exist in literature commonly cited ones include the Gilbert-Elliot

model, the Rayleigh fading model and the Fritchman model.

If the statistical structure of the network noise is known then one can apply

classical estimation techniques to networked systems. The Kalman optimal estimator

is one such technique. The authors in [135] investigate Kalman filtering for systems

with network noise and identify a threshold condition for the packet loss rate (due to

delay or failure) to guarantee stability of the estimator. Further, the authors in [3]

show that the mean-square error of a state estimate remains bounded if the average

packet loss rate is bounded.

Extending the results on acceptable packet loss rate, the authors in [161] present

a tradeoff between the rate at which updates are transmitted, network bandwidth

requirements and the desired error bound for estimation error. In their state update

strategy, a copy ofM is implemented at the network interface module at the output

of P . This ‘local copy’ of the model is used to gauge the performance of the remote

estimator. The network interface module compares the output of P and the output of

the local copy ofM and when the error exceeds a given limit it transmits the current

value of y to the adaptation algorithm, hence triggering an update.

The state update mechanism in [161] as well as the results in [3] regarding the

accuracy of state estimates require that all models and processes across the network

be perfectly synchronized in time. In reality, clocks used by the models and processes

in the network have to be synchronized over the network as well, and therefore have

limited precision. In Section 3.5, we present a brief description of a proposed state

estimator that is designed to counteract the presence of clock offsets and jitter between

nodes.

34

3.5 State estimation using synchronized clocks

Clock synchronization and time stamping of measurements is useful for state es-

timation especially when the data is aggregated from distributed sources. As long

as the time stamp resolution is less than half the measurement interval, nodes can

reorder measurements when they are received out of order based upon their time

stamp. In addition, measurements recorded at one point on the network are valid

globally as all clocks on the network are synchronized to a single reference. State es-

timation algorithms can also determine the absolute time at which the measurements

were obtained, instead of estimating this time based on when measurements were re-

ceived. Diagnostic information about the clock offset and relative clock drift between

distributed sources can be used to modify parameters in the state estimator. The

effect of network jitter (variation in communication delay) can also be compensated

in a real-time fashion thereby greatly improving the performance of state estimation

and control algorithms operating in a cluttered, delay prone network.

We propose a networked state estimator which incorporates the IEEE 1588 Preci-

sion Time Protocol (PTP) [73] for accurate time synchronization and time stamping.

The proposed state estimator is well suited for situations where the sampling in-

terval is non-deterministic for each measurement sample and opens up avenues for

truly modular control design. The design also alleviates the need for deterministic

performance guarantees on the communication network.

Our control methodology is based on model generated estimates, and state and

signal estimates are only as good as the local model. Since the system is designed

with no a-priori model distribution step, the fundamental bounded model uncertainty

can be derived from the timing uncertainty. Feeding this uncertainty through the

dynamics of the model provides (assuming linear superposition) a bounded error

magnitude of the estimates. Studies of stability and control performance of model

based control techniques in the sub class of systems we deal with in this paper are

35

presented in [108].

3.5.1 Control problem formulation

Our control problem was selected to practically illustrate potential improvements

in control performance with precise clock synchronization and low-level data time-

stamping. The primary control goal is to track a reference phase command r(k)

from a remote source as shown in Figure 3.9. Additionally, slave system (Ψ) must

attempt to reduce error between its output and that of the master system (Φ). Both

motors have local controllers (MCΦ) and (MCΨ), implemented as state feedback

gains. The controllers have full state measurements and receive reference commands

and communicate relative phase error over an Ethernet network. The input to the

plant is voltage and the output is motor shaft position. Phase synchronization in these

plants is a DC motor position control problem. Each system has an inherent pole at

the origin, making it a Type 1 system. The dynamics of a Type 1 system integrate

control inputs, thereby increasing the effects of jitter and measurement delay. The

signal flow schematic in Figure 3.9 shows all of the delays (dΦ, dΨ and dΩ) considered.

The master–slave pairing presented here represents a sub–problem in a more

generic class of distributed and networked systems, such as in [125]. In a peer to

peer system with distributed agents this master may be dynamically selected using

some form of overarching distributed consensus algorithm, similar to that discussed

in [30]. In order to ensure good collective performance of the master and a clus-

ter of neighboring slaves, it is necessary to explore methods for improving control

communication to the group and within it.

The scheme presented in this section examines a strategy to mitigate network

effects in a manner which is transparent to the control algorithm. Figure 3.10 shows

the control algorithm using state feedback to place the poles of system Φ and Ψ to

track the reference command r(k).

36

ΦMC

)(kr

)(ΦΦ − dkr

Φd

)(kuΦ

Φ

ΩdReference Signal

ΨMC

)(kyΦ

)(ΨΨ − dkr)(kuΨ

Ψ
Ψd

Figure 3.9: A schematic showing the control layout for the networked master–slave
pair. The blocks dΦ, dΨ, and dΩ symbolize network delays between the
respective components. MCΦ and MCΨ are the motor controllers. yΦ(k)
is the trajectory of Φ and uΨ(k) and uΦ(k) are the control signals sent to
the motors. Φ and Ψ denote the two individual dynamic systems.

37

Ψ

Φ

ΦB ΦC∫

ΦA

+
+

Ψu

Φr Φx)1(+Φ kx Φy

Estimation and
Propagation

Forecasted
Reference

+
+

ΦK
Φu

Φd

Ψ

ΨB ΨC∫

ΨA

+
+

+
+

ΨK

+
+

ΨL

−
+

Φy
r

ΨyΨx)1(+Ψ kx

Ψu

Ψr

Estimation and
Propagation

Ωd
Ψd

Figure 3.10: A block diagram of the control algorithm on both modules. Both con-
trollers use state feedback gains to track the reference, the slaved system
is additionally regulated through gain LΨ to minimize the error residual
ŷ − y

38

It is necessary to consider the physical limits of the hardware before using state

feedback to arbitrarily place poles. We tested a hardwired setup to establish the

performance limits of our electronic hardware. The resulting system was used as

the archetype for the state feedback controller. Equation 3.2 shows the recursive

equations for the controlled dynamics in systems Φ and Ψ. Clearly, when running

in isolation with zero measurement noise, no network lag, and perfectly modeled

dynamics, the two closed–loop systems Φ and Ψ with feedback gains (KΦ) and (KΨ)

can be manipulated to have identical dynamics, represented by (Acl). The output

matrix C was chosen to be identical in both systems since the output position is a

direct measurement of one of the state variables.

xΦ(k + 1) = (AΦ +BΦKΦ)xΦ(k) +BΦr(k)

xΨ(k + 1) = (AΨ +BΨKΨ)xΨ(k) +BΨr(k)

y(k) = Cx(k) (3.2)

Once Φ and Ψ are connected as shown in Figure 3.9 the dynamics of Ψ are designed

to ensure that Ψ tracks the output of Φ. Using a state observer (L) as shown in Figure

3.10 we are able to inject additional control effort into Ψ at every sampling interval,

which is a function of the error residual yΦ− yΨ or correspondingly C(xΦ− xΨ). The

dynamics driving the evolution of the error residual, e(k), are shown in Equation 3.3.

As shown in the equation, the separation principle still holds and the poles of the

system driving the error dynamics can be placed independent of the closed loop poles.

The observer dynamics presented here, similar to the control design, do not consider

the impacts of dΦ, dΨ, and dΩ, or their stochastic nature.

39

e(k) = xΦ(k)− xΨ(k)

e(k + 1) = xΦ(k + 1)− xΨ(k + 1)

e(k + 1) = [(AΦ +BΦKΦ)xΦ(k) +BΦr(k)]

−[(AΨ +BΨKΨ − LC)xΨ(k) +BΨr(k) + LCxΦ(k)]

e(k + 1) = (Acl − LC)xΦ(k)− (Acl − LC)xΨ(k)

e(k + 1) = (Acl − LC)e(k)

(3.3)

In our testbed we combine two strategies to mitigate the impact of network de-

lays; one is a method of forecasted waypoints to improve the quality of the reference

command, and the other is a strategy of inline estimation and propagation used for

the observer. A schematic diagram of the enhanced system is presented in Figure

3.11. We use the same control system for the new setup to study the improvement in

performance. We assume that the sampling process [k, k + 1, ...] is synchronous over

all distributed elements. This simplifies the presentation of equations and analysis,

but is not a necessary assumption. With time stamping there are several solutions

for re–sampling, ranging from linear interpolation to model based smoothing [99].

3.5.2 Strategy 1: Reference forecasting

We assume for the purposes of this testbed that the reference input is a tabulated

a-priori set of points which the controllers must track. This assumption comes from

a view that topological hierarchy is necessary in large distributed systems to ensure

proper scaling. This hierarchy is established from a performance perspective as well,

in that often times a supervisory controller manages several sub-controllers, and has

sampling time or a time constant that is significantly larger than that of it’s sub-

40

ΦMC

):(ΦΦ + dkkr

)(kuΦ

Φ

ΩdΦ̂

PTPNode

E

UTC
Synchronized
Grandmaster

Clock Input
Buffer

Forecasted
Reference

):(knkky −Φ

Φd

)(krΦ

ΦdΨd Ωd are PTP Estimated Delays

Ψ

ΨMC

)(kyΦ
r

):(ΨΨ + dkkr

Ψd
)(kuΨ

Φ
r

PTPNode

P

Input
Buffer

)(krΨ

Figure 3.11: A schematic of the same control layout shown in Figure 3.9. Modules
E and P denote the Estimation and Propagation blocks added to com-
pensate for delays dΦ, dΨ, and dΩ.

processes. This simplifies the global control design problem into modular components

where the assumption is that the dynamics are decoupled between tiers (sub-processes

are at steady state before supervisory action is taken). If there were a need for the

supervisor to regulate the dynamic state of the sub-controllers, then the use of Model

Predictive Control is warranted [98].

In the current case, the problem of random delays in the reference signal is com-

pensated for by using an input buffer on the individual control modules and ag-

gregated data transmissions to systems Φ and Ψ of the form [r(k)...r(k + dΦ)] and

[r(k)...r(k+ dΨ)] with corresponding time-stamp vectors [t|k...t|k+n)]. Our discretiza-

tion strategy is shown in Equation 3.4.

r|t=UTC at poll(k) =


r(t± δt) if measurement is present

0 otherwise

(3.4)

41

While this is a conceptually simple solution, it is difficult to implement physically due

to the unavailability of estimates for dΦ and dΨ. With the PTP implementation we

are able to draw estimates of the network delay between any two network components

by comparing the delay values computed by the PTP algorithm. The PTP algorithm

uses a time calibrated peer to peer probe message to estimate the network delay. The

algorithm uses the delay estimates to compute the relative clock offsets between node

clocks. We intercept the delay estimation messages from the PTP network modeling

service and use them to estimate reference delays. To accommodate differences in

state since the last PTP update cycle we use additional points in the reference table

to get [r(k)...r(k + d + nTs)], where Ts is the sampling time. n is automatically

updated based on network conditions. Judging from delay distribution presented in

[9], n = 5 was found to be the average margin for the testbed network. The input

buffer module records these vector tables and presents a valid r(k) on being polled

by the control recursion.

3.5.3 Strategy 2: Estimation and propagation

We adopt a two step process to introduce synchronous estimates for yΦ into Ψ. At

the first step we generate a time stamped vector table of input and output values from

Φ, [r(k− nk)...r(k)] and [yΦ(k− nk)...yΦ(k)] where yΦ(k) is the current output mea-

surement and yΦ(k − nk) is an output measurement from n samples ago. n is picked

to ensure a non-singular regressor matrix [99] for the system identification process. In

our system, this value is manually fixed to be equal to the clock drift sampling inter-

val (∼ 200 ms). Sample selection for system identification is explored in significantly

more detail in [99]. As this vector table is transmitted to the Estimation and Propa-

gation module (which is physically co-located with the slave system), it incurs a delay

dΩ. We use this time stamped vector table for parametric system identification with

an assumed linear 2nd order structure. An Auto-Regressive Moving Average (ARMA)

42

model [99] is used to identify the system parameters and generate an identified model

(̂(AΦ +BΦKΦ) , B̂Φ). We do not consider the case where individual samples are lost

since they are packaged in vector tables. For a case where individual samples might

be lost, the authors in [14] present a strategy for managing lost samples during sys-

tem identification over unreliable networks. To populate the regressor matrix we use

a similar policy as in the input buffer mentioned in Section 3.5.2. A comparison of

the output of the identified system using the tabulated vector time table against a

one with streaming data from Φ is shown in Figure 3.13. Once the identification

model is updated, we have a local model of Φ at Ψ validated against a measured

dataset up to ŷΦ(k − dΩ). We use this estimation model ̂(AΦ +BΦKΦ) to propagate

yΦ forward to ~yΦ(k) using the recursion shown in Equation 3.5. The structure of the

output matrix C can be easily converted using similarity transformations to coincide

with our assumptions in Equation 3.3. The inputs [r(k − dΩ)...r(k)] required for the

propagation module are pulled from the input buffer for system Ψ.

~xΦ(k + 1) = ̂(AΦ +BΦKΦ)~xΦ(k) + B̂Φr(k)

~yΦ(k) = C~x(k) (3.5)

The evolution of output signals as they move through the Estimation and Propagation

modules are summarized in Equations 3.6 and 3.7 respectively. The resulting closed–

loop dynamic equation for the slave system Ψ is presented in Equation 3.8.

yΦ(k − dΩ − nk : k − dΩ) E // ŷΦ(k − dΩ) (3.6)

ŷΦ(k − dΩ) P // ~yΦ(k) (3.7)

43

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Time (secs)

M
ea

n
S

qu
ar

e
E

rr
or

MSE without observer
MSE with Reference forecasting +
 Estimation and Propagation

Figure 3.12: A simulated result showing the Mean Squared Error between Master and
Slave systems with and without an observer.

xΨ(k + 1) = (AΨ +BΨKΨ)xΨ(k) +BΨr(k) + L(~yΦ(k)− yΨ(k))

xΨ(k + 1) = (AΨ +BΨKΨ − LC)xΨ(k) +BΨr(k) + L~yΦ(k)

(3.8)

3.5.4 Results

Figure 3.12 shows a simulated comparison of the Squared Tracking Error between

Φ and Ψ when they are running in isolation and when the proposed estimator is

introduced. The plot shows significantly reduced error in the latter case (close to two

orders of magnitude lower) after the initial spin–up phase of the estimator. The large

error during spin–up is attributed in part to our aggressive placement of observer

poles and the initial clock offset between Φ and Ψ. Figure 3.13 shows the output of

Ψ using a state estimator with and without time stamped measurements. The plot

shows that time stamps improve estimator performance.

44

2050 2055 2060 2065 2070 2075 2080 2085
202

203

204

205

206

207

208

Time steps

P
os

iti
on

Reference output
Estimator output with uncompensated network jitter
Estimator output using time stamped data

Figure 3.13: A simulated result showing the improvement in estimator performance
when the input data (data used for system ID) is time stamped.

3.6 Summary

In this chapter we discussed the limitations of networked state estimation and

outlined two contributing factors, variable network delay and inaccurate clocks. We

presented a summary of our experiments to profile network delays and jitter for

typical industrial networks and substation networks. We then presented empirical

studies of clock synchronization algorithms. Using the results from our experiments

we proposed a modified networked state estimator which not only considered the

additive noise due to network jitter but also compensated for delay on each network

packet by estimating the clock offsets between networked nodes.

Our experiment shows that, as long as precise time stamps and clocks are available,

the results of [3] are valid for large substation networks and industrial networks. That

is, the stability of a linear state estimator only depends on the gross update frequency.

As long as the analytically computed update frequency is met, network jitter, clock

drift and clock offsets may be compensated individually to cumulatively improve the

accuracy of the state estimate.

45

The work presented in this chapter demonstrates the use of a simple semantic

definition relating the clock offset between nodes in a network to design parameters of

the state estimator. Ordinarily, clock synchronization and networked state estimation

are addressed independently and are not designed to interact. We show that providing

limited access to certain variables used by the clock synchronization algorithm (clock

offset estimates, syntonization heartbeat counters and peer to peer delay estimates)

greatly improve the performance of a state estimator and open up new design options

for compensating network delay.

46

CHAPTER IV

Model adaptation methods using model semantics

The work presented in this chapter appears in proceedings of the 2010 IEEE

Symposium on Precision Clock Synchronization for Measurement, Control and Com-

munication and the proceedings of the 2011 ASME Dynamic Systems and Control

Conference ([7], [6]).

4.1 Introduction

In this chapter we present two case studies where semantic assertions are used for

model adaptation. In particular, assertions connecting the performance of a model

to key structural attributes are used to design algorithms to adapt the structure of a

model.

In the first case, system level assertions are made relating the order of the model

to the system level performance of a hybrid process. Factors such as the accuracy

of sensors, the accuracy of clock synchronization and cost of network utilization are

used to optimize the choice of model order.

In the second case, the problem of reconfiguring the structure of a model is con-

sidered when the model made up of discrete model components. The structure of

the modelM is updated so that its output matches the output of the corresponding

physical process P . The combinatorial scale of the reconfiguration problem is reduced

47

by including syntactic constraints on each model component. Further, semantic as-

sertions are used to evaluate and rank each feasible reconfiguration so as to find the

‘best’ reconfiguration that resolves any difference between the outputs of M and P .

Both cases are presented using illustrative examples of hybrid processes in the

electrical power network.

4.2 Modeling and control for electrical networks

The present and future operations of power networks rely on critical advances in

wide area monitoring and control. Advances in communication and network topolo-

gies have made it possible to aggregate information from many nodes separated by

vast distances in a timely manner. Improvements in computational power and speed

have increased the complexity of simulation models that can be used for control. The

convergence of these two factors means that a distributed system such as the power

grid can be controlled over a network with unprecedented accuracy.

A key enabler in this transition towards advanced timing requirements is the

phasor measurement unit (PMU). The following is a brief list of PMU specifications,

more information can be found in [154] and [104]:

• The PMU is a high fidelity sensor capable of sampling voltage and current

waveforms at rates up to 10, 000 Hz.

• The synchrophasor is a vector measurement that is reported at a rate of up to

60 Hz.

• These compiled reports are time-stamped, accurate to within 1 µs of coordinated

universal time (UTC).

• Synchrophasors from multiple PMUs and their corresponding time stamps to-

gether provide a snapshot of grid conditions.

48

Mathematical modeling of the energy grid is another key enabler that, when used

in conjunction with accurate sensing and network communication, is vital for im-

proved analysis and control. An example of models and PMUs working in unison is

model based estimation [84]. The Smart Grid Interoperability Standards Roadmap

published by the National Institute of Standards and Technology [44] lists several

challenges in controlling widely distributed electrical distribution assets and lists sev-

eral requirements for the next generation grid control infrastructure. One of the

highlighted aspects in the roadmap is the need for accurate real-time models and

standardized model design.

4.2.1 Accurate real-time models

Since an electrical network can contain hundreds to tens of thousands of compo-

nents depending on the application [22], it is impractical to solve full-model equations

in reasonable time for real-time model integration. Commonly, a reduced model is

used for real-time control and estimation functions. The reduced model is simple

enough to meet the speed of simulation required for control, but also reflects enough

of the characteristics of the system to be useful. Automated or assisted model or-

der reduction/deduction is a powerful tool to reach this optimal choice for model

order. The transmission line example described in Section 4.3.2 demonstrates a sys-

tem where the starting point is a simple model that can be scaled up in model order

automatically until a performance bound is reached.

4.2.2 Standardized model design

The Smart Grid Interoperability Roadmap specifically addresses the need for a

standardized modeling approach for the diverse set of resources connected to an elec-

trical network. As a specific case, the roadmap discusses the advent of small dis-

tribution circuits with self contained demand response and generation capabilities.

49

Such circuits can be found in university campuses, large manufacturing plants and

some residential neighborhoods. They are commonly called a microgrid [125, 89].

A network of microgrids may be connected to a larger utility grid which is an elec-

trical network managed by a regional power transmission and distribution service.

The microgrid exports or imports power from this larger network, but is also able

to disconnect from it and run independently. Keeping with the philosophy of micro-

grid autonomy, control design within the microgrid is not standardized by the utility.

The interface between the microgrid and the utility grid however needs to be tightly

regulated. In order to strike this balance, the utility must be able to estimate the

internal state of a microgrid when it is connected to the grid. Real-time measure-

ments from the microgrid are at a premium since the network infrastructure cannot

support a wide area implementation where all the data from every microgrid resource

is published out into the wide area network. The utility therefore uses a model for the

microgrid to estimate the internal state. If the model of the microgrid is made up of

standard model components, the utility is better equipped to accurately estimate its

internal state. The structural adaptation method in Section 4.4.4 demonstrates how

the model of the microgrid (made up of standard components) may be automatically

updated when changes are made to the physical structure of the microgrid circuit.

4.3 Using clock accuracy to guide model synthesis in dis-

tributed systems

4.3.1 Model Order Deduction

In order to pose model synthesis of a power transmission line as a problem for

automated modeling, we will first define the order deduction process in spirit. A

power transmission line can be expressed as a spatially distributed vector field of

voltages and currents. These voltages and currents are subject to transformations

50

through a system of differential algebraic equations.

A common modeling simplification used for transmission lines is to use a lumped

parameter formulation, where the transmission line is expressed as a finite set of in-

terconnected “capacitive, inductive and dissipative” elements as shown in Figure 4.1.

Networks of these elements can be assembled into discrete units representing other

power system components such as busses, switches, etc. A further simplification is to

say these functional blocks are linear and the parameters are time-invariant. These

assumptions are common in electrical system modeling as seen in [57]. The authors

in [47] discuss a few example cases of model reduction for non-linear circuits. The

assumption of lumped linear models does not detract from the motivation or the al-

gorithmic approach, but allows us to use the order of coupled ordinary differential

equations to mathematically express “complexity”.

Model order deduction is an automated approach to finding a ‘proper’ model.

The basic strategy is to start with a simple model for a dynamic system and then to

iteratively add complexities (model order in linear systems) until a stop condition is

reached. Several exit conditions and details about the basic algorithm are presented

in [80], [153] and [144]. For a linear model of the transmission line, states are added

to the state space model in the form of generalized inductive and capacitive elements

at each node and in the interconnects until a proper model order is reached.

We use the frequency domain model order deduction algorithm (FD-MODA) pre-

sented in [153] to deduce a proper model. We first determine a frequency range of

interest (FROI). The authors in [80] specify that the model should be accurate at fre-

quencies 2-6 times the maximum input frequency. The maximum input frequency ωin

in our case is the upper limit of the envelope of frequencies input to the transmission

line. For this paper we will set this at 3000Hz based on the work presented in [77]

and on the fundamental limits of the sampling process in a PMU. The upper limit

for the FROI is ωmax = 15kHz. According to the FD-MODA algorithm, a proper

51

section π

in
ω

Model order is increased

as additional Pi-sections are used to

model the transmission line

Figure 4.1: Schematic representation of the π-model for a single phase power trans-
mission line. The center section represents a single π section, and many
π-sections in series model the transmission line.

order r is reached when model order r+ 1 does not appreciably change the frequency

response, G, of the system within the FROI. As the lumped parameter models are

divided into finer and finer submodels, a threshold is reached when the frequency

response and continuum model of the system are close enough. Equation 4.1 gives

the stop condition for the FD-MODA algorithm.

δGr
n = max

ω∈FROI
|G

r+1(jω)

Gr(jω)
− 1| < TOLm (4.1)

where, ω ∈ FROI = [0, ωmax) and the frequency response convergence tolerance

TOLm is picked as necessary. In our case TOLm = 0.01, or 1% error in the model

frequency response. Further, if the model of the system is made up of m connected

components with ranks [r1, r2...rm] FD-MODA increases the rank of the system model

iteratively while minimizing r =
∑
ri, i.e. increasing the rank of the most sensitive

component before the others. n is the highest possible model order (or rank) of G.

4.3.2 Use Case

The linear system presented here is that of a power transmission line modeled

as a π-model. Figure 4.1 shows the scalable π-model of the transmission line. The

number of sections (highlighted in the schematic) can be arbitrarily scaled up using

52

the FD-MODA algorithm. This is an ideal candidate for an example since the model

properties approach continuum behavior as it is discretized into finer and finer π-

sections. The system parameters (inductance, capacitance and impedance) for each

π-section also change as the order is increased. We use the MATLAB SimPower-

Systems simulation package to develop our models. Since we are only modeling one

homogenous element, we can directly attempt to meet the condition in Equation 4.1

without having to run through the iteration step to find the most sensitive sub-model.

If there were other components in the system such as capacitor banks, filters, loads

and generators, then the general class FD-MODA algorithm discussed in [153] may

be used.

An example use case highlighting the need for a FD-MODA optimized π-model

is in the estimation of the state of a feeder line between shared transmission assets

where the PMUs are only available at the terminal nodes. Consider an application as

shown in Figure 4.2 where a 10 kilometer long 26.5KV transmission line connects two

substations both with captive spinning reserves (small generators designed to com-

pensate for transient load fluctuations). The closed loop control of these generators

is achieved through measurements from the local PMU and estimates of transmission

line state and the state of the remote substation. The switching station located some-

where along the transmission line switches in the remote generator when required.

This switching event sets off a transient state on the feeder line which is measured by

both PMUs at the local and remote end. The standing practice to prevent a para-

sitic oscillation resulting from this perturbation is to estimate the effect of this event

on the transmission line, which requires an accurate representation of the transient

phenomenon across the transmission line. Since it is infeasible to string phase sensors

over the entire length of the feeder line to build this estimate, a mathematical model

of transmission line is used instead in conjunction with available sensor data to build

a model-in-the-loop estimator. In such a case, the model of the transmission line

53

Transmission

Line Model

Generator

with Spinning

Reserves

Generator

with Spinning

Reserves

PMU PMU

Switching

Station
Transmission

Line

Transmission

Line

Switching Station Node

Estimation

Generator Node

Information

(Synchrophasors)

Generator Node

Information

(Synchrophasors)

Mathematical Models

Physical Elements

Figure 4.2: Schematic representation of a hybrid process with coupled interaction
between physical elements and mathematical elements. PMUs provide
physical measurements at the terminal ends of a transmission line con-
necting two substations. A model of the transmission line is used in
conjunction with physical measurements to provide an estimate of the
state of the two generating substations.

becomes critical in monitoring the state of the transmission line. These models must

account for the electro-magnetic properties of the transmission line and the methods

for sampling the line. Since the performance of this model is subject to the same data

quality and reporting constraints as the sensors in the network, clock performance

begins to play a role in the model performance as well. For example, any noise (clock

error) in time stamping process at the switching station would manifest as errors in

the model generated estimate of the state of the remote node. Similarly, the loss of

clock precision on the PMU sampler would corrupt the correlation between the real

PMU measurements and the modeled signal. Ideally this information must be incor-

porated into the model in order to optimize the hybrid performance of the collective

system.

54

4.3.3 Building models with timing constraints

With the pervasive use of switched IP networks for the current implementation

of grid control, there is growing interest in using IEEE 1588 Precision Time Protocol

(PTP) within power system networks to synchronize clocks. PTP could potentially

provide the necessary accuracy for synchrophasor measurements from PMUs as dis-

cussed in Chapter III.

In order to integrate mathematical models into a network architecture with net-

work clock synchronization, we first need to be able to express the dynamic clock

uncertainty in the network as a form of process noise in the mathematical model for

the integrated system. Some strategies for introducing sampling effects and commu-

nication corruption into the modeling of distributed systems are presented in [160]

and [82]. A form of frequency bounded stochastic truncation can be used to identify

process uncertainty close to the sampling frequency. While this is a useful tool for

controller design, we still have to understand the stochastic properties of clock error

and translate that to uncertainties in the model.

Since we are using the FD-MODA algorithm for model synthesis and we are only

interested in the maximum difference in the frequency response, we will attempt

to treat the timing inaccuracy as a form of “noise” injected at the output of the

model. The authors in [160] show that superposition holds true for linear systems

with random time delays; we can therefore introduce a time corrupted form of the

input signal to an identical system model to yield the ‘noisy’ output yr∗n and then claim

that ‖yr∗n − yrn‖ is a suitable measure of output side sensitivity to clock uncertainty.

To stay true to the FD-MODA algorithm we will use frequency response over the

range of interest as the sensitivity metric for ‖yr∗n − yrn‖. To achieve this we use the

exit condition shown in Equation 4.2. TOLc is the allowed tolerance for change in

frequency response of the system due to inaccurate data reconstruction with given

time stamp accuracy. In our case TOLc = 0.0025 or one quarter of the tolerated

55

Switching event
-model of the

transmission line
π

1+r

nG

nr <

)(*
ttt stampstamp δ+=

-model of the
transmission line
π

1+r

nG

1+r
y

*1+ry

Augmented
MODA

-model of the
transmission line

r

nG

π ry

]4,4[sst µµδ −∈
)(*

ttt samplingsampling δ+=
Sampling intervalEvent time stamp

]4,4[sst µµδ −∈

stampt Sampling
Interval

s

f
t

sampling

sampling

µ3.333

1

=

=

Figure 4.3: Schematic representation of the decision inputs when clock accuracy is
added to the MODA system. The current model order is r, such that
r < n where n is the maximum model order available.

56

model error. The choice for TOLc is a design parameter and picked in this case based

on practical experiments involving model based estimation on clock synchronized

controllers discussed in [8].

δGr∗
n =

√
(G(r+1)∗(jω)−Gr+1(jω))2

(Gr+1(jω))2
> TOLc (4.2)

4.3.4 Results

We use the FD-MODA algorithm on a π-section model of a power transmission line

introduced in Section 4.3.2. The π model converges to a high fidelity representation

of the phase and frequency dynamics of a real life conductor carrying AC waveforms

(within TOLm). To decide on a satisfactory level for this granularity of division, we

use an augmented form of the FD-MODA technique [80]. We perform the increased

order sensitivity test to find if increasing the model order makes a significant con-

tribution to the frequency response characteristics of the system. Additionally, we

perform another test to check if the added model order ends up reducing the effec-

tive performance of the system because of loss in frequency response precision as the

system approaches the limits of clock accuracy. This clock accuracy is a function

of synchronization method used as discussed in Chapter III. Figure 4.3 outlines our

simulation approach used to introduce clock inaccuracies in the model integration

process where we attribute a random delay in the interval [−4µs, 4µs] to both the

switching event, which excites the dynamics of the transmission line, and the sam-

pling interval within the PMU to simulate drift in the PMU sampling clock. Details

are discussed in the subsequent sub-sections.

4.3.4.1 Model response with changing model order

The transmission line model described in Section 4.3.2 was subjected to a 265KV

60Hz AC input waveform. Figures 4.4-A and 4.4-B show the input output characteris-

57

0 50 100 150 200 250
−300

−200

−100

0

100

Time (ms)

O
ut

pu
t V

ol
ta

ge
 (K

V
)

Output Voltage with 20 π Sections

0 50 100 150 200 250
−300

−200

−100

0

100

Time (ms)

O
ut

pu
t V

ol
ta

ge
 (K

V
)

Output Voltage with 90 π Sections

B

A

Figure 4.4: 265 kV, 60 Hz transmission line voltage waveforms under circuit breaker
closure condition. The output response presented in plots A and B cor-
respond to models using 20 and 90 π-sections respectively.

tics of the transmission line model with 20 and 90 π-sections respectively. Both plots

show the response of the model to a circuit breaker ”close” event at 0.002 seconds.

Figures 4.5-A and 4.5-B show the magnitude spectrum for the frequency response of

the 20 and 90 π-section models respectively. As the model order is increased, the

response to higher frequencies is significantly increased, which is especially visible on

Figure 4.5 close to 100KHz. The FD-MODA algorithm was applied to the transmis-

sion line model with FROI=15 KHz in order to meet the desired tolerance TOLm.

The model order was iteratively increased by the algorithm until the error norm of

the frequency response between order r and r + 1 was less than 1%, which occurred

on the addition of the 86th π-section. Figure 4.6 shows that there is also a significant

improvement in model performance within the FROI with increasing order.

58

10
2

10
3

10
4

0

20

40

60
Single−Sided Amplitude Spectrum of V(t)/I(t) with 20 π Sections

Frequency (Hz)

|G
ai

n|
 (d

B
)

10
2

10
3

10
4

0

20

40

60
Single−Sided Amplitude Spectrum of V(t)/I(t) with 90 π Sections

Frequency (Hz)

|G
ai

n|
 (d

B
)

A

B

Figure 4.5: Frequency response of models using 20 π-sections (Plot-A) and 90 π-
sections (Plot-B). Plot-B shows that the model with 90 π-sections has a
higher gain at higher frequencies.

59

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Pi Sections

δ
G

r n

Improving model performance by increasing model order

Figure 4.6: Max norm of MODA algorithm applied to the transmission line model.
The norm drops below a tolerance of 0.01 at 86 π-sections

4.3.4.2 Model response with timing uncertainty

The simulations discussed in Section 4.3.4.1 do not account for the possibility

of time corruption in the process of reporting and sampling data. Uncertainty in

the exact time at which the switching event occurred and uncertainty in the trigger

signal for the sampling process were added to the simulation. The assumption is

that as the model order is increased the model exhibits increased sensitivity to clock

corruption. This phenomenon is confirmed in Figure 4.7 where we see a growing

error norm due to clock uncertainty as the model order is increased. Intuitively, the

higher order models have a larger spectral radius and therefore are more sensitive

to time uncertainty. The error norm in the figure is calculated assuming a time-

stamp error between the limits [−4µs, ..., 4µs]. This range was chosen based on the

nominal performance of the precision time protocol (PTP) presented in Chapter III

and based on observations made on wide area implementations of PTP presented in

60

20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4
x 10

−3

Number of Pi Sections

δ
G

r * n

Time Corrupted Error Norm

Figure 4.7: Error norm due to clock uncertainty in sampling and time-stamping. The
clock errors are assumed to be normally distributed with σ = 4µs The
norm exceeds 0.025 at 48 π-sections.

[107]. The authors experimented with PTP over an undersea network connecting

ocean observatories and off shore sensors spanning an area of tens of kilometers. The

results in [107] show that at steady state the system offsets have a zero mean with

frequent offset corrections of up to ±4µs.

We then invoked the FD-MODA algorithm with an additional exit condition rep-

resented by Equation 4.2 to ensure TOLc is not violated. The resulting deduced

model had 48 π-sections, showing that it is not possible to meet both given perfor-

mance parameters TOLm and TOLc. The designer is now faced with the choice of

either improving the timing accuracy within the network or to compromise on the

desired model fidelity. In this use case, a model with 48 π-sections satisfies TOLc but

has a model error of about 1 percent, which is ten times the desired value for TOLm.

Applications which might require higher fidelity models also mandate much tighter

synchronization to support the model complexity.

From the perspective of optimal design it is convenient to integrate δGr
n and δGr∗

n

61

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Pi Sections

P
er

fo
rm

an
ce

 N
or

m

Design Tradeoff

Cost Function
FD−MODA

Figure 4.8: Optimal model choice the number of π-sections for the model of the trans-
mission line is a tradeoff between the FD-MODA algorithm (δGr

n) and the
cost function related to timing uncertainty (δGr∗

n × Tsim).

into a single performance metric. This is a very application dependent choice, but in

the case of our example we decided to penalize increasing model fidelity against the

product of the growing error norm due to clock uncertainty and increasing computing

cost expressed as simulation time in seconds Tsim. The optimal choice is the intersec-

tion of the trajectories of δGr
n and (δGr∗

n ×Tsim). Figure 4.8 shows this design tradeoff,

indicating that the optimal design for our use case is a model with 45 π-sections.

4.4 Semantic models facilitate updating model structure

For large scale modeling, especially in the case of the electrical network, models are

built out of assemblies of sub-models. A model for a voltage transformer for example

is made up of an assembly of an ideal transformer, several inductances, resistances

and non-linear hysteresis models. Knowledge about the exact arrangement of these

components in the transformer model allows us to identify the value of the internal

62

parameters and to update the correct state when needed.

The use of commercial models makes it difficult to be sure about the internal

structure of the model. It is often required that we first identify the internal model

structure based on its input-output properties. There is well established research in

the domain of model structure identification, the domain covers the area of fuzzy

logic [94], neural networks [12, 97] and other model based reasoning techniques. Most

structure identification techniques use a specific structural syntax. For example,

using an un-supervised neural network to identify the blackbox input-output model

we obtain a model made up of a network of neurons with interconnections and weights.

Since the neural structure has no physical meaning, the parameters identified by

the parameter update algorithm for the neural model as well as the internal state

of the neurons have no physical similarity to the plant. While neural networks are

often capable of producing good input-output correspondence with the plant, the lack

of physical insight about the internal structure of a neural network is a significant

limitation.

In the upcoming sections we will make an argument for a semantic modeling

scheme to satisfy the need for physical value to the measurements from the model

while retaining the ability to automatically adapt the structure. We will show that

the semantic form is compatible with all three update mechanisms discussed in this

section and in addition will simplify implementation of the structural adaptation

process.

The semantic approach for model description draws from the area of knowledge

based engineering (KBE) [140]. The sentiment of KBE is to design a computer model

with the aim of realizing problem-solving capabilities comparable to a domain expert.

In the form we use KBE, semantic modeling implies that we represent the model

for an electrical machine as an assembly of subcomponents or building blocks, such

as transmission lines, ideal switches, relays and transformers, many of which recur

63

multiple times in an electrical network. While the models for specific subcomponents

may be considered to be proprietary or ‘black-box’, the component interfaces to the

outside world are standard and it is possible to construct a larger macro model by

explicitly specifying the relationships between individual subcomponents [64]. An

analogy for the design approach is to compare the structure of the macro model to

the structure of a sentence in the English language. The semantic constraints we

apply to the components within the model are similar to the grammatical constraints

placed on the assembly of words into a sentence.

4.4.1 Modelica description

For the analysis presented here we will use the Modelica modeling platform [61, 43]

to describe the semantic relationships between subcomponents. Modelica is an object-

oriented equation-based modeling language primarily aimed at physical systems. The

model behavior is based on ordinary and differential algebraic equations combined

with discrete events; it uses acausal modeling and so makes it easier to reuse sub-

components since equations do not specify a signal flow direction. In addition to

reuse of components it facilitates automated or guided evolution of models and has

multidomain modeling capability. A model definition of a simple DC motor is shown

in Figure 4.9 to highlight the salient features of the language. The macro model

‘dcmotor’ is made up of several subcomponents, ‘Resistor’, ‘Inductor’ etc. These

individual subcomponents are invoked by the motor model, but no information is

known about the internal properties of these subcomponents. The ‘equation’ section

of the definition shows the semantic structure of the model. In the case of the simple

motor example the structure is straightforward showing a serial relationship between

a voltage source, a resistor, an inductor and so on. The semantic definition also con-

tains additional information about the compatibility of the subcomponents. In the

motor, the model includes knowledge that rotational components, such as the inertia

64

model dcmotor

 Modelica.Electrical.Analog.Basic.Resistor r1;

 Modelica.Electrical.Analog.Basic.Inductor i1;

 Modelica.Electrical.Analog.Basic.EMF emf1;

 Modelica.Mechanics.Rotational.InertiaLoad l1;

 Modelica.Mechanics.Rotational.ViscousFriction b1;

 Modelica.Electrical.Analog.Basic.Ground g;

 Modelica.Electrical.Analog.Sources.ConstantVoltage v;

equation

 connect(v.p,r1.p);

 connect(v.n,g.p);

 connect(r1.n,i1.p);

 connect(i1.n,emf1.p);

 connect(emf1.n,g.p);

 connect(emf1.flange_b, load.flange_a);

end dcmotor;

Figure 4.9: A model of a PMDC motor described in the Modelica language.

and the viscous friction bearing, can be connected together whereas a voltage source

cannot be connected to a load inertia. One can imagine that for larger models the

connection between subcomponents can become fairly nebulous; however, there are

several techniques specially suited to making sense of large semantic graphs [139].

With the representation shown in Figure 4.9 we have sufficient information to un-

derstand the structure of the model and its components. If the component definitions

used are global then the components can be reused by several macro models greatly

reducing the memory and complexity of a large model based control system such as

an electrical grid.

4.4.2 Adaptation using semantic rules

With the semantic architecture just presented we can revisit the problem of struc-

tural adaptation discussed in Section 4.4. Two immediate benefits emerge from the

new definition.

First, the model structure has a real physical foundation. The subcomponents

are selected from a vocabulary of physically meaningful elements and the connections

between them can be understood by a user with knowledge about the working of the

real physical system.

65

Second, the description carries with it knowledge about component compatibility

and the physical units of the data exchanged between components. This knowledge

allows an automated adaptation algorithm to only apply plausible modifications to

the model rather than randomly iterating through all possible arrangements of el-

ements. With more and more semantic meta-data added to the model, the search

space of plausible models can be greatly reduced to the point where it is possible

to deterministically guarantee the convergence of the search algorithm to a unique

‘good’ model [56].

To understand the application of the semantic adaptation method to the electri-

cal grid consider the following use case: A regional utility company uses models to

estimate the state of all the distributed generators connected to a particular substa-

tion. One of the models shows consistently bad performance. Attempting to address

the estimation errors, the frequency of measurement updates is increased at cost of

network bandwidth and an effort is made to reassess the model parameters, however

neither of these strategies yield satisfactory results. A field technician is able to use

engineering intuition to recognize that the model errors may be due to a structural

error in the model.

With the semantic description for the model we have the tools we need to auto-

matically test a structural hypothesis and verify the response. Let us say he proposes

a general hypothesis that the generator in question probably has compliant shaft re-

sulting in an un-modeled oscillatory response to step loads. As step 1, we are able

to invoke a spring component into the macro model of the generator and using the

‘equation’ definition we have the ability to introduce the component anywhere in the

model structure. In a model with n subcomponents we have O((n + 1)!) possible

candidates with the addition of 1 spring. If we apply the similar adaptation policy

to the motor model shown in Figure 4.9 we find that there are O(104) candidates

evaluated by brute force trial.

66

Since the semantic description is already equipped with knowledge about the phys-

ical significance of each component, as step 2 we can use the semantic knowledge to

reduce the search space to only the physically meaningful candidates. The proposed

compliant shaft for example can be connected only to other rotary mechanical com-

ponents with compatible physical units (angular velocity, phase and torque). The

application of this simple constraint to the model in Figure 4.9 reduces the number

of candidates to O(102).

One other aspect must be considered before empirically testing all the candidate

models. For a very large model with multiple outputs not all the subcomponents

within the model have significant impact on the output measurement of interest.

If the model performance is being evaluated based on an output measurement ẑ

which is a subset of the set of all outputs ŷ, it is advantageous for the adaptation

algorithm to only address the subcomponents directly related to the output value ẑ

while minimally impacting unrelated components. We call this step 3 in the candidate

selection process, sensitivity based decomposition.

4.4.3 Sensitivity based decomposition

The principle behind the sensitivity decomposition process is to evaluate the like-

lihood of one model candidate over another based on the sensitivity of the model

output ẑ to the addition of the proposed subcomponent. We propose that it is only

justified to evaluate a candidate model when the addition of a new component sig-

nificantly affects the model’s output. By sorting candidates based on sensitivity we

are limiting the introduction of ‘passive’ components in the adaptation process. For

example if we used a recursive adaptation algorithm where several hypotheses are it-

eratively implemented, then sorting the hypotheses in decreasing order of sensitivity

automatically applies the hypothesis with most impact first, greatly improving the

insight awarded by the process and the speed of model convergence. Sensitivity based

67

decomposition can be applied to conventional state space models based on the impact

that adding the subcomponent has on the dominant eigenvalues of the system [152].

In the case of the semantic model, the model output ẑ = f(ẑ1, ..., ẑn, x1, ..., xp) is a

function of the outputs of n subcomponents ẑ1, ..., ẑn and p model inputs x1, ..., xp.

The sensitivity of the output to the subcomponents and the inputs is given by the

gradient vector ∇f = [∂f
∂ẑ1
... ∂f
∂xp

]. The adjoint function ∇f is expensive to compute

with a large number of terms.

The technique we use to evaluate sensitivity in semantic models is a variation of

Algorithmic Differentiation [63]. In particular, we adapt the reverse gradient eval-

uation method for our purposes. Briefly, the approach is as follows: Consider the

schematic representation of the motor model in Figure 4.10. The output of the

model is the output of the nth subcomponent. The gradient vector for the nth sub-

component is given by ∇zn. Exploiting the knowledge that there is only one other

semantic connection to component n, we see that ∇zn = ∂zn
∂zn−1

. Then, by chain rule

we have ∂zn
∂zn−2

= ∇zn.∇zn−1. Propagating the gradient computation backwards from

the output to the inputs x1 and x2, we get the adjoint function ∇f . The algorithmic

complexity of the process is O(n), as opposed to executing the algorithm without

a-priori semantic knowledge where the complexity is close to O(n!). It is now feasible

to compute ∇f ∗ for every candidate model from step 2 and order them in decreasing

order of the sensitivity metric f∗

∂z∗
where z∗ is the output of the proposed component.

Using the ‘best few’ from the ordered set of candidates a test and verification

program can be implemented where the candidates are run alongside the original

model to evaluate the model with the best fidelity to the real measurements z. The

‘best few’ candidates also provide physical insight to support further refinement of

the model structure.

68

Voltage

source
Resistor

Ground

Inductor EMF Inertia

Spring

𝒛 𝒏 𝒛 𝒏−𝟏 𝒛 𝒏−𝟐 𝒛 𝒏−𝟑 𝒛 𝒏−𝟒 𝒙𝟏

𝒙𝟐 𝒙 ∗ 𝒛 ∗

Figure 4.10: A schematic view showing the individual components and connections
in the Modelica motor model.

4.4.4 Application

We implemented the presented approach in a simulation using a Matlab model of

a Maxon-RE25, 10 Watt, Brushed, PMDC motor. For the sake of simplicity and ease

of analysis we consider the Matlab model of the motor (a 3rd-order linear state space

model) to be our plant. The motor shaft drives a rotary inertia Jload = 5 ∗ Jmotor so

that the total rotary inertia in the system is Jm = Jmotor + Jload. A shaft encoder

is mounted on the load which provides measurements of the absolute angle θ. The

input to the motor is a variable terminal voltage vref . The output of the state space

model is a measurement z = θ.

The semantic model we used to study adaptation was a model for an ideal PMDC

motor written in the Modelica language, similar to the model in Figure 4.9. All

the subcomponent parameters were set to be identical to the plant parameters. The

performance of the semantic model was evaluated based on the error in the estimates

of the output angle. The model error is given by |(z − ẑ)/z|. A closed loop state

update mechanism was implemented to ensure that the model error was less than 1%

for a sine input vref = sin(2πt) + η(t) where η(t) is a zero mean normally distributed

random disturbance ℵ(0, 0.01 ∗max(vref)).

We introduced a structural change to the plant model by connecting the load

rotor Jload to the motor through a compliant shaft so the rigid shaft assumption

Jm = Jmotor + Jload no longer holds. The addition of the rotary spring adds two

additional states to the state space model of the system and results in very different

69

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [secs]

P
er

ce
nt

ag
e

er
ro

r
in

 th
e

es
tim

at
ed

 o
ut

pu
t [

%
]

Figure 4.11: Percentage error between the estimated output ẑ and the physical output
z with a complaint motor shaft.

system behavior. The new state vector for the plant is [i, θ̇motor, θmotor, θ̇load, θload]
T ,

as opposed to the state vector [i, θ̇, θ]T for the ideal motor model. The semantic

estimator model is retained with an ideal motor structure.

Figure 4.11 shows a trace of the percentage error between the new plant model and

the semantic estimator model with a closed loop state update mechanism (discussed

in Chapter III) in place. The plot shows that the model errors are frequently above

1% and that the state update mechanism is unable to compensate for the errors

introduced due to structural differences between the plant model and the estimator

model.

We followed the structural adaptation process to identify the structurally altered

plant model. To start, we seeded the system with a hypothesis that any combination

of one, two or three components could potentially be added to the model to improve

the performance. The components provided were: a load rotor with inertia Jload, an

ideal gear-box with gear ratio G = 1 : 2, and a torsional spring with stiffness K.

70

 model dcmotor
Electrical.Analog.Basic.Resistor r1;
Electrical.Analog.Basic.Inductor i1;
Electrical.Analog.Basic.EMF emf1;
Mechanics.Rotational.Inertia load1, load2;
Mechanics.Rotational.Spring spring;
Mechanics.Rotational.Gain gear;
Electrical.Analog.Basic.Ground g;
Electrical.Analog.Sources.ConstantVoltage v;

 equation
 connect(v.p,r1.p);
 connect(v.n,g.p);
 connect(r1.n,i1.p);
 connect(i1.n,emf1.p);
 connect(emf1.n,g.p);
 connect(emf1.flange_b, load1.flange_a);
 connect(load.flange_c, load2.flange_a);
 end dcmotor;

equation
 connect(v.p,r1.p);
 connect(v.n,g.p);
 connect(r1.n,i1.p);
 connect(i1.n,emf1.p);
 connect(emf1.n,g.p);
 connect(emf1.flange_b, load1.flange_a);
 connect(load1.flange_b, spring.flange_a);
 connect(spring.flange_b, load2.flange_a);
end dcmotor;

equation
 connect(v.p,r1.p);
 connect(v.n,g.p);
 connect(r1.n,i1.p);
 connect(i1.n,emf1.p);
 connect(emf1.n,g.p);
 connect(emf1.flange_b, load1.flange_a);
 connect(load1.flange_b, spring.flange_a);
 connect(spring.flange_b, gear.flange_a);
 connect(gear.flange_b, load1.flange_a);
end dcmotor;

Candidate 1

Candidate 2

Figure 4.12: The left pane shows the Modelica model of the original system with aug-
mented components. The two right panes show the Modelica equations
for the two most likely structural candidates.

The left pane in Figure 4.12 shows the three new components added to the Modelica

vocabulary while the equation definition of the model is still that of an ideal motor.

Evaluating candidates by brute force we find that there are 10 ∗ 9! + 6 ∗ 8! + 3 ∗ 7! =

3.8 × 106 candidates. Refining the search space with the semantic knowledge about

compatibility we get 10 ∗ 4! + 6 ∗ 3! + 3 ∗ 2! = 282 candidates.

We can now apply the sensitivity analysis as discussed in Section 4.4.3, taking

special care to reject models where candidates have passive components with respect

to both output velocity and torque. An example of few candidates with passive

components are shown in Figure 4.13 with the passive elements shown with dotted

lines. The results of the sensitivity analysis are easy to intuitively interpret; Case 1

shows that three rigidly coupled rotors have no dynamics between them and behave

as one rotor, Case 2 shows that a spring with no load torque is essentially a mass-less

shaft and Case 3 shows that the entire motor model is in effect passive when driving

an ideal gear train with no torque feedback.

71

Voltage

source
Resistor

Ground

Inductor EMF Inertia Inertia
Load

Inertia

Voltage

source
Resistor

Ground

Inductor EMF Inertia Spring
Load

Inertia

Voltage

source
Resistor

Ground

Inductor EMF Gear Gear Gear

CASE 1

CASE 2

CASE 3

Figure 4.13: Figure showing three cases where a sensitivity analysis reveals the pres-
ence of passive components.

4.4.4.1 Results

At the end of the sensitivity analysis we manually selected the ‘best few’ candidates

since we don’t yet have a robust automated algorithm to rank candidates based

on sensitivity when multiple components are added to the system. We selected 4

candidates shown in Figure 4.14 to test and verify against our plant model. For

the verification process each model was run over a 5 second operation sequence in

parallel with the plant and the 2 models with the lowest average error were selected

as proposed structural updates.

The Modelica models for the two most likely candidates as selected by the verifica-

tion process are shown in the right panes of Figure 4.12 and for illustration purposes

the corresponding schematic diagrams are highlighted in Figure 4.14.

An interesting physical aspect is highlighted by the selection of Candidate 3 where

two instances of the inertia element JMotor are selected. We know that JLoad =

5 ∗ JMotor, therefore with the gear ratio G = 1 : 2 the effective load inertia at the

output end of the spring is JMotor

G2 = 4 ∗ JMotor ≈ JLoad. Hence the dynamic response

of Candidate 3 is very close to Candidate 1. This case is another instance where using

72

Voltage

source
Resistor

Ground

Inductor EMF Inertia
Load

Inertia
Spring

Voltage

source
Resistor

Ground

Inductor EMF Gear
Load

Inertia
Spring

Voltage

source
Resistor

Ground

Inductor EMF Inertia Gear Spring

Candidate 1

Candidate 2

Candidate 3

Voltage

source
Resistor

Ground

Inductor EMF Spring
Load

Inertia
Inertia

Candidate 4

Inertia

Figure 4.14: Figure showing four candidates selected for performance evaluation. The
two most likely candidates after evaluation are highlighted.

the semantic definition aids in analytical insight into model behavior.

4.5 Summary

When models are used in a hybrid process configuration, they may need to be

adapted in response to parameters external to the model such as the sampling rate

of sensors on the physical process or the delay profile of a communication network.

Models for physical systems are rarely designed with the intent that they be auto-

matically updated/adapted in response to changes in external process parameters.

It is especially difficult to consider the impact of all external parameters that affect

model performance at the time when the model is built.

In Chapter III we used information about relative clock offset, which is an external

parameter, to improve the performance of a model based state estimator. The con-

tribution of this chapter is a demonstration that semantic information about a model

73

can be used to automatically adapt a model’s internal structure, when required, to

meet performance objectives of a hybrid process.

We used two examples of semantic assertions.

In the first example, the inclusion of a relationship between number of π-sections

in a transmission line to the spectral resolution of the model output enabled an au-

tomated approach to optimize the model structure based on the timing uncertainty

of physical sensors. The system level optimization balanced the fidelity of a model

against measurement noise in the physical components. The result confirmed the

intuitive impression that there is a practical limit on the spectral resolution of a

mathematical model used in a hybrid process configuration since the physical com-

ponents have finite accuracy and resolution.

In the second example, we demonstrated a method to automatically update the

structure of a compositional model made up of several component models. The com-

binatorial space of all possible compositions is refined by including syntax for the

interconnections between component models based on physical feasibility. A seman-

tic assertion relating the sensitivity of the model output to each proposed structural

modification is then used as a reward function to rank the set of feasible compositions.

The method is applied to an example consisting of a DC motor connected to a rotary

inertia load by a flexible shaft.

While semantic information about model order and model composition enabled

automated adaptation of model structure, the algorithms presented in this chapter

do not scale well with the size of the model. As seen in Section 4.4.3, a declaration of

the network of interconnections between model components significantly improved the

combinatorial complexity of the adaptation problem. In the upcoming chapters we

will further explore the use of declarative descriptions of model topology to improve

the computational complexity and convergence properties of adaptation and diagnosis

algorithms.

74

CHAPTER V

Targeted model adaptation for large compositional

models with declarative topology descriptions.

The work presented in this chapter has been submitted to the IEEE Transactions

on Automation Science and Engineering.

5.1 Introduction

The hybrid process shown in Figure 5.1-a, is made up of a model M that em-

ulates a physical process P . A closed-loop model adaptation algorithm is used to

adapt M when necessary in order to minimize the residual function g(Y, Ŷ). Y and

Ŷ correspond to outputs of P and M respectively. When the adaptation algorithm

works as expected, the errors between model and process can be neglected or accom-

modated assuming that Ŷ tracks Y with sufficient fidelity. When M represents a

large system with hundreds of tunable parameters, the advantages of decoupling the

adaptation strategy from functions that use the model, such as control and planning,

are significant.

In this chapter we propose a step-by-step method to adapt a system level model

made up of component models. Our method strategically draws internal measure-

ments (where available) from the physical system P to first isolate only those com-

75

𝑌𝑚4
 𝑌

Residual Function
𝑔(𝑌, 𝑌) SCADA

𝑈

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑌 𝑚4
 𝑌

m1

m2

m3

m4

m5 m6

p1

p2

p3

p4

p5 p6

𝑈

𝑌 𝑚1
 𝑌 𝑚2

 𝑌 𝑚4

𝑌𝑚1
 𝑌𝑚2

 𝑌𝑚4

𝑀

𝑃

𝑈, 𝑌 𝑚𝑗
 𝑌 𝑚𝑖

pi

𝑈, 𝑦𝑗 𝑦𝑖

mi

Parameter vector : 𝝀 𝒊
Internal state vector: 𝒙 𝑖

Output vector: 𝒚 𝒊

a

b

Figure 5.1: A schematic for a general model adaptation mechanism. M is tuned in
response to a function of the error residual g(Y, Ŷ).

76

ponents inM that require adaptation. We show that this model deconstruction step

significantly reduces the computational complexity of the model adaptation problem.

Our method is suited to large networked systems where communication bandwidth

is at a premium and the scale of the system-level model makes it impractical to use

conventional methods for system identification. The control infrastructure for the

electrical power grid is a good candidate to illustrate the proposed approach and so

we apply our results to an electrical circuit shown in Figure 5.2.

In our analysis we make the following assumptions:

1. Large models are comprised of smaller component models. In Figure 5.1-a, M

is comprised of component models mi assembled compositionally to derive the

desired output Ŷ .

2. The assembly of component models follows the object-oriented paradigm [114]

(using a modeling language like Modelica [43]) so that each component model

is a discrete reusable model block that can be treated as a model on its own,

takes variable inputs, performs a function on them, and returns values Ŷmi
.

3. The network of interconnections between component models mi within M is

called the topology of the model - denoted Γ. In Figure 5.1-a, if Γ denotes the

topology ofM thenM = Γ{mi} with a set of model parameters λ̂ and internal

state x̂.

4. Each component model corresponds to a real physical component pi in P as

shown in Figure 5.1-b. That is, P = Γ{pi}(λ, x).

5. Each component model has a set of tunable parameters denoted λ̂i, internal

state x̂i and a set of outputs Ŷmi
. The output of the model is a function of one

or more component outputs. In Figure 5.1-a, the model output Ŷ = Ŷm4 .

In the following section we will more formally present the general problem, and

77

𝐺3

𝐺4

𝐺1

𝐺2

𝑃𝑔,1

𝑃𝑔,4

𝑃𝑔,3 𝑃𝑔,2

𝑏1

𝑏2

𝑏5

𝑏3

𝑏4

𝜃5

𝐸3, 𝛿3
𝑇

𝐸4, 𝛿4
𝑇

𝐸1, 𝛿1
𝑇

𝐸2, 𝛿2
𝑇

𝑃5, 𝑄5, 𝑉5, 𝜃5
𝑇

Battery

Inverter

Controller

[𝑉4, 𝜃4]𝑇
PV Cell

Controller

Synchronous
Generator

[𝑉3, 𝜃3]𝑇

[𝑉1, 𝜃1]𝑇

[𝑉2, 𝜃2]𝑇

𝑆 4
3

+
𝑗𝐵

4
3

Figure 5.2: A schematic diagram of the four generator microgrid.

outline the specific adaptation problem that we address. In Section 5.3 we will present

a motivating example in the domain of electrical power distribution and outline the

challenge in adapting models of large electrical networks. In Section 5.4 we will present

our method for decomposing the model in order to simplify the adaptation challenge

and then apply our method to the motivating example in Section 5.5. In Section 5.6

we will summarize our contributions and discuss some future improvements to extend

the scope of our method.

5.2 Problem Statement

Referring to Figure 5.1, assume that a physical system P has an object-oriented

modelM that is run in parallel with the operating physical system; the same inputs

U are applied to both the system P and the model M. For each component output

Ymi
there is a corresponding output Ypi . That is, every model component mi ∈M has

an analogous component pi ∈ P . The internal state vector x̂ and the parameter set

λ̂ ofM is a union of the states and parameters of the individual component models.

78

The set of states and parameters in P are denoted x and λ respectively.

Reflecting the practical challenges in measuring Ypi(∀pi ∈ P) we assume that

network bandwidth limitations restrict the number of real-time measurements that

can be drawn from the physical system [72] and apply a cost to each measurement

drawn. In essence, sufficient number of measurements are not available from the

physical system at all times to fully reconstruct the state x.

A discrepancy between the outputs ofM and P or ‖Y − Ŷ ‖ > σ may signify some

sort of incorrect model parameter, unmodeled disturbance or fault in the system. We

do not address faults here. We focus on updating the model parameters to address

the discrepancy, using the following step wise approach:

1. Express the dynamics of the model using a structure preserving state space

realization.

2. Identify sets of model components within the system model M that must be

adapted to resolve the discrepancy. Each set of model components that could

be adapted to resolve the discrepancy is called an adaptation candidate ci ∈ C.

3. Draw measurements Ypi from the components pi of the physical system P to

differentiate between the candidates until either no more measurements are

available or the smallest set of candidates Cmin ⊆ C has been isolated.

4. Isolate and extract the state space representation corresponding to each model

component mi ∈ Cmin.

5. Update the internal parameters of each partitioned component model using

appropriate parameter identification methods to resolve the discrepancy ‖Y −

Ŷ ‖ > σ and restore good agreement between M and P .

This chapter provides a model decomposition strategy for large systems where

the direct application of parameter identification algorithms is not practical. Con-

79

ventional decomposition methods use Spectral or Eigen norms to sort and isolate key

system states whereas our approach exploits knowledge of the physical structure to

extract critical subcomponents.

Our method offers three advantages over the existing methods:

1. Physical interpretation of the system states is retained: No basis transforma-

tions are applied during the decomposition. As a result, the isolated components

are physically atomic and the state of the decomposed system is a subset of the

original state vector.

2. Prior knowledge of observability constraints is not required: The algorithm

draws measurements one at a time and does not require guarantees on state

observability. For systems with very limited measurements, prior probabilities,

expert intuition or historical evidence may be used to refine the candidate space.

3. The method is compatible with most graph search and parameter identification

algorithms: Our approach uses computationally efficient graph exploration tools

to decompose the system and conventional parameter estimation methods for

the decomposed system.

5.3 Motivating example: Electrical Power Network

Recently significant efforts have been devoted to modeling the dynamic behavior

of power networks, especially in the context of distributed generation and advanced

metering [57]. Our motivating electrical system is a simplified version of the Con-

sortium for Electric Reliability Technology Solutions (CERTS) Microgrid Testbed

Demonstration [89] as shown in Figure 5.2. This illustrative problem was selected

since it also addresses many of the challenges listed within the Smart Grid Interop-

erability Standards Roadmap published by the National Institute of Standards and

Technology (NIST) [44]. The specific challenge from the roadmap document that

80

Receive current set
point from 𝐺4

Compute an optimal
generator schedule.

SC
A

D
A

Discrepancy
between
signals?

𝜃5 𝜃 5

Done

ℳ = Γ{mi}

(𝜆 , 𝑥)

Model

No

Yes
Adapt model

𝑃𝑔4

Transmit 𝑃𝑔1:4

𝑥

𝑃𝑔4

Compute set-points

𝑃𝑔1, 𝑃𝑔2, 𝑃𝑔3

Subject to:
Σ𝑃𝑔𝑖 = 1𝑀𝑊,

𝜃𝑚𝑖𝑛 < 𝜃 5 < 𝜃𝑚𝑎𝑥

Model

𝜃 5 satisfies
constraints?

Yes

𝑃𝑔1:4

No

𝒫 = Γ{pi}
(𝜆, 𝑥)

Physical Process

Generator
schedule is

updated every
10secs.

ℳ = Γ{mi}

(𝜆 , 𝑥)

Figure 5.3: The diagram shows schematic view of the signal flow in the motivating
example. Our focus in this chapter is the adaptation of M involving
components shown within the rectangle.

81

we address is the lack of tools to provide a regional power distribution service with

the ability to reliably predict the behavior of a network of distributed ‘microgrids’

[125]. The circuit shown in Figure 5.2 is a simple microgrid where the objective is

to integrate a set of four distributed micro-generators labeled G1 to G4 into the elec-

tric grid. The micro-generators each have local controllers, but are dispatched by

a remote SCADA (Supervisory Control and Data Acquisition) system. Supervisory

control is also used to regulate the interface between the microgrid and the larger

utility managed power system at Bus-5.

The schematic diagram in Figure 5.3 shows the application of a SCADA system

used to optimally dispatch a set of distributed micro generators [57]. As in most

cases, the remote SCADA system uses a model of the microgrid circuit to optimize

the generator schedule [18]. In our example, the power output of the inverter G4 is

uncontrolled by the SCADA system and varies in time with changes in the available

battery power and solar flux. In response to a change in the set point Pg4 for G4, the

SCADA system optimizes the schedule for the synchronous generators G1, G2 and

G3 to retain 1MW cumulative supply from the microgrid. A model of the circuit is

used to estimate the voltage phase angle θ5 at Bus-5 for every schedule.

5.3.1 Modeling the power network

Individual micro-generators may differ from others in the microgrid not only in

their system parameters but also in their structure and design. In our example G4 is a

battery based DC power source charged using a Photovoltaic cell, coupled to the AC

circuit through an inverter, and is structurally dissimilar to the synchronous rotary

machines used for G1, G2 and G3. In order to scale the model-based control approach

to a wide area network with potentially hundreds of micro-generators, each with a

particular design and certain response characteristics, it is necessary to abstract the

model of each generator in the circuit into a simplified generic model. We will use the

82

classical linearized version of the swing model [57] to model the microgrid in Figure

5.2.

To state the problem more generally, consider a power network with n genera-

tors and m > n buses indexed by [G1, . . . , Gn] and [b1, . . . , bm], respectively. Let

[b1, . . . , bn] be the generator buses, each one connected to exactly one generator, and

let [bn+1, . . . , bm] be the load buses. As usual in transient studies, the generator

dynamics are given by the transient constant-voltage behind reactance model [110].

With the ith machine, we associate the voltage modulus Ei, the rotor angle δi, the in-

ertia Ji, the damping coefficient Di, the transient reactance zi, and a reference power

signal Pg,i. With the ith bus we associate the voltage modulus Vi, the phase angle θi,

the active and the reactive power demands Pi and Qi, respectively.

With this notation the simplified dynamics of the i-th generator i ∈ [1, . . . , n] are

given by Equation 5.1:

δ̇i(t) = ωi(t),

Jiω̇i = Pg,i(t)−
EiVi
zi

sin(δi(t)− θi(t))−Diωi(t)
(5.1)

We denote with Sjk and Bjk the conductance and susceptance of the branch lines

between buses bj and bk. Then the net active (P) and reactive (Q) power flow out of

each bus bi is given by the non-linear power flow equation:

Pi =

m∑
j=1,j 6=i

ViVjBij sin(θi − θj) +

m∑
j=1,j 6=i

ViVjSij cos(θi − θj)

Qi =
m∑

j=1,j 6=i
ViVjSij sin(θi − θj)−

m∑
j=1,j 6=i

ViVjBij cos(θi − θj)
(5.2)

A linear small signal model can be derived from the non-linear model under assump-

tions that angular differences in phase and magnitude differences in line voltage across

83

the network are small. In brief, the assumptions are: ∀i, j ∈ [1 . . .m] & ∀k ∈ [1 . . . n],

|θi − θj| � 1, |δk − θj| � 1, Sij = 0, and Ek = Vi = Vj = 1. The linearized equations

for power about a synchronized network in steady state yields the dynamic linearized

swing equation and the algebraic DC power flow equation. These equations can be

assembled into a state-space model for the network, producing a small signal version

of the structure-preserving power network model derived in [118].


I 0 0

0 J 0

0 0 0



δ̇(t)

ω̇(t)

θ̇(t)

 = −


0 −I 0

Lgg D Lgl

Llg 0 Lll



δ(t)

ω(t)

θ(t)

+


0(1:n)

Pg(1:n)

P(1:m)

 (5.3)

The matrix L =

Lgg Lgl

Llg Lll

 ∈ R(n+m)×(n+m) is the Laplacian matrix [21] of a suscep-

tance weighted graph of interconnections between busses and generators. Following

the notation in [118], Lgg is diagonal, Lll is invertible, and Llg = LTgl. Equation 5.3

is used to predict the change in voltage phase angle at each of the buses θ1...5 and

the response of each of the generators in the circuit in response to changes in the

generator schedule [Pg1, Pg2, Pg3, Pg4]. As stated earlier, this model is critical to

the performance of any scheduling or control algorithm that might be employed by

the SCADA system to dispatch the three controllable generators. Returning to our

motivating example, given a generator schedule [Pg1, Pg2, Pg3, Pg4], the modelM is

used to estimate the expected dynamic response of the generators in the circuit.

We will assume that the generators are of a PV-type [57], and therefore we can

decompose the set of differential algebraic equations in Equation 5.3 into two sys-

tems, Mg and Mf , by ignoring the interaction between the generator states and

bus states represented by sub-matrix Llg. The resulting systems Mg and Mf are

solved sequentially to constitute the output of M. Mg is a sub-model representing

84

0 5 10 15 20 25 30

0

0.2

0.4

0.6

P
1

Pg
1

0 5 10 15 20 25 30

0

0.2

0.4

0.6
P

ow
er

 O
ut

pu
t (

M
W

)

P
2

Pg
2

0 5 10 15 20 25 30

0

0.2

0.4

0.6

Time (Secs.)

P
4

Pg
4

0 5 10 15 20 25 30

0

0.2

0.4

0.6

P
3

Pg
3

Figure 5.4: The figure shows the power output from four micro-generators
(G1, G2, G3, G4) overlayed on the input schedule marked with a dotted
line.

the generator dynamics using a set of ordinary differential equations in the explicit

LTI form (ẋ = Ax + Bu). Mf is a sub-model representing the algebraic constraints

on the relative phase angle between adjacent buses in the circuit in the form α = xβ.

By decoupling the systems in this way, we simplify the simulation and parameter

identification process.

The response of model, Mg for all four generators is shown in Figure 5.4 as the

schedule is changed once every 10 seconds. The model Mf is used to estimate the

phase angle at all the buses in the circuit. The solid line in Figure 5.5 shows the

model estimated phase angle θ̂5 at the utility interface bus, Bus-5.

85

0 5 10 15 20 25 30
0.02

0.03

0.04

0.05

0.06

Time (Secs.)

O
ut

pu
t P

ha
se

 L
ea

d
(R

ad
.)

θ5

θ̂5

Figure 5.5: The figure shows a plot comparing the model estimate θ̂5 against the
measurement θ5. A difference in the parameter values for G2 betweenM
and P is manifested as a large difference between θ̂5 and θ5.

5.3.2 Discrepancies between the model and the physical system

Referring to the flow chart in Figure 5.3, we see that the physical circuit P returns

a measurement of the phase angle at every time step (Y = θ5). Also the output of

M is Ŷ = θ̂5. Using the available measurement from P , we can compare Y and

Ŷ to identify when the difference between the two signals is beyond an acceptable

threshold. If the threshold is violated we say there is discrepancy between P andM.

Our analysis in this chapter addresses the problem of model adaptation when a

discrepancy occurs between M and P . We use a full AC non-linear model of the

circuit, constructed from the power flow equations [5.2], as a proxy for P . For M

we continue to use the linear model based on Equation 5.3. The outputs from P

comprise the ‘ground truth’ for the adaptation algorithm and the outputs of M are

evaluated against the ground truth to trigger model adaptation.

Consider the modelM with internal state x̂ and a set of model parameters λ̂. In

our example the system parameters that comprise the set λ̂ are the coefficients Ji,

Di in Equation 5.1, the values for coupling reactance zi at each generator and the

susceptance values of each branch line Bjk. The state x̂ includes the phase angles at

86

each of the five buses θ̂1...5 and at the four generator terminals δ̂1...4.

Referring to Figure 5.1, when a discrepancy is detected between Ŷ and Y ,M may

be adapted by correcting its internal state or by tuning its parameters. A common

approach used to adapt the model state x̂ is the “Dynamical State Observer” [100].

A state observer assumes a perfect model of the plant dynamics and knowledge of the

internal parameter set λ. An error correcting function L(Y − Ŷ) is used to generate

an estimate x̂ of the true state of the system x. For a linear observer, the error

correcting term becomes L(Y − Ŷ) where the matrix L is called the observer gain.

Several algorithms exist to find the optimal L under constraints such as the presence

of measurement noise [71].

For models with incorrect system parameters, a state observer (that assumes per-

fect modeling) may fail to converge to the true state. Parameter estimation may then

be necessary to tune model parameters λ̂ in response to error between Y and Ŷ . We

focus on the problem of parameter estimation in this chapter.

In Figure 5.5, θ5 and θ̂5 are significantly different. The difference in the output

values is caused due to incorrect model parameters (λ̂ 6= λ). This is a fairly common

failure mode in models that are assembled compositionally. It results, most often,

from the use of generic or nominal values for parameters that are difficult to physically

obtain. In our example we assume that the system parameters for G1, G2 and G3

are all identical when constructingM. The discrepancy seen in Figure 5.5 is present

because the actual parameter values for generator G2 are different in P than in M.

5.3.3 Parameter identification in response to model discrepancy - stan-

dard approach

In response to the discrepancy shown in Figure 5.5, we will first apply standard

techniques to adapt the parameter set λ̂ in M. We will show that computational

complexity of the parameter identification algorithm increases super-linearly with the

87

number of parameters inM. This analysis provides justification for the need to first

decompose M and target only those components in need of adaptation. Besides the

computational resources required, we also discuss other penalties incurred by directly

applying standard parameter identification techniques to the full model.

Equation 5.4 shows a state space representation for the sub-modelMg with input

UMg := [Pg1, · · · , Pgn]T , output ŶMg := [P̂1, · · · , P̂n]T and internal state x̂Mg :=

[δ̂(t), ω̂(t)]T .

˙̂xMg =

 I 0

0 J


−1  0 I

−Lgg −D

 [x̂Mg] +

 I 0

0 J


−1  0

I

UMg

ŶMg = [Lgg, 0n×n][x̂Mg]

(5.4)

Equation 5.4 for an n generator, m bus circuit can be represented by a generic linear

model of the form:  ˙̂xMg

ŶMg

 =

 A B

C D


 x̂Mg

UMg


x̂Mg ∈ R2n

ŶMg , UMg ∈ Rn

(5.5)

Subspace Identification [148], [81] could be used to estimate the parameter matrix

Λ̂ =

 A B

C D

 using sampled input-output data drawn from P .

The subspace identification algorithm is as follows:

1. Obtain N sampled measurements of the inputs UPg and outputs YPg .

2. Construct a block Hankel matrix W =

 UPg

YPg

 of the past measurements of

the inputs and outputs.

88

3. Obtain N+ additional measurements of the inputs and outputs. Find the

oblique projection of the row space of the output matrix Y +
Pg

along the row

space of the input matrix U+
Pg

on to the row space of the Hankel matrix W .

(O = Y +
Pg
/U+
Pg
W).

4. Factorize the oblique projection matrix to get O = Ū S̄V̄ ∗. Subspace identifica-

tion theory [81] proves that the extended observability matrix Od = Ū S̄1/2.

5. Specify a desired model order and use the extended observability matrix to

estimate a discrete state trajectory x̂Mg(k)|k∈[1,N] .

6. Identify the parameter matrix Λ̂ while constraining the solution to the structure

shown in Equation 5.4 (we use the SSEST algorithm to solve the constrained

estimation problem).

Once the parameters Λ̂ of Mg have been identified, the algebraic constraints in

sub-modelMf are formulated into a linear system of equations as shown in Equation

5.6. Using a least squares approach we can identify the parameter matrix Lll using

sampled measurements of the phase angles θ(1:m)(k) and the net power-flows at each

bus P(1:m)(k). Since the parameter matrix Lll is a sub-block of the Laplacian matrix

of interconnections, buses with no branch lines connecting them correspond to zero

elements in Lll. Since we assume that the structure of interconnections in the model

is known, only the non-zero elements in Lll need to be identified. A constrained least

squares formulation is used to enforce the desired properties for the matrix Lll.

0(m×1) = −Lll.θ(k) + P(1:m)(k) (5.6)

We use the Matlab® implementation of the SSEST and LSQLIN algorithms to solve

Equations 5.4 and 5.6 respectively. Figure 5.6 shows the time taken to execute steps 3

through 6 of the identification algorithm for an increasing number of generators inMg.

89

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

Number of Generators

S
S

E
S

T
 E

xe
cu

tio
n

T
im

e
(S

ec
s.

)

Figure 5.6: The plot shows the execution time for the SSEST algorithm with increas-
ing number of generators. The execution time reflects the super-linear
relationship between computational complexity and model size (and cor-
responding size of λ̂). The error-bars show the spread of execution times
for ten repeated executions with randomly generated initial estimates for
λ̂.

Clearly, the computational resources required to identify λ̂ do not scale proportionally

with the size of the model. We observe that there are three primary implementation

challenges in directly identifying λ̂ for the full model M; they are discussed in brief

below and our proposed solution is presented in the following section.

5.3.3.1 Computational complexity

The parameter identification algorithm scales poorly with the number of param-

eters to be identified. The computational complexity of the Matlab® SSEST+PEM

algorithm shows an O(n4 + N2) relationship with system state [106]. Similarly, the

constrained least squares solver LSQLIN is O(m3). The computational complexity

of the parameter identification problem for typical electrical microgrids with several

dozen buses makes the standard approach impractical. A test scale microgrid featured

in [52], for example, features 34 busses with 3 generators [52].

90

5.3.3.2 Observability of the global system state

Parameter identification by the subspace method fails in Step-3 when the Hankel

Matrix is singular. Therefore, for a unique realization of the parameter matrix Λ̂ in

an n generator modelMg we need the rank condition rank(Y +
Pg
/U+
Pg
W) = 2n to hold.

Similarly, for a unique least squares solution for the parameters of an m bus

modelMf , we need the regressor matrix (xTx) to be invertible. That is, for a unique

solution for parameter matrix Lll in Equation 5.6 we need access to the phase angle

θi and the net power flow Pi ∀i ≤ m, at each time step (k ∈ [1, N]).

5.3.3.3 Real-time reporting of measurements

Control networks for power systems use switched Ethernet communication for wide

area communication [90]. Switched networks are rarely able to ensure deterministic

reporting rates for sampled data since current network protocols utilize a best effort

transmission mode where data packets are delayed during transmission to regulate

throughput. The transmission delays are typically non-deterministic especially under

heavy traffic conditions resulting in reduced data quality at the receiving end [3].

While modern electrical power systems are well instrumented and measurements may

be available from almost every bus on the network, the reduced data quality adversely

affects the accuracy of parameter estimation methods [7].

This section presented a motivating example of a 5-bus electric power grid and

highlighted three challenges in applying existing parameter identification methods

namely computational complexity, unobservable states and lack of real-time mea-

surements. Section 5.4 will propose an approach that addresses these challenges.

Then, Section 5.5 will demonstrate our proposed approach on the same motivating

example.

91

ŶB43

ŶB21

Ŷb4

ŶB15Ŷb2
ŶG1

ŶG4

ŶG3

Ŷb3 ŶB31

ŶG2

Ŷb1

Pg1

Ŷ (θ̂5, P̂5)

G4Pg4 B31

G1

G3

G2

B15

Pg3

B21

Pg2

b1
b2

b3b4

b5

B43

Figure 5.7: A compositional model of the 5-bus circuit from Figure 5.2. The model
M is made up of several model components mi shown as grey rectangular
boxes. Each model component has an output Ŷmi

.

5.4 Guided Decomposition for Model Adaptation

This section presents the main contribution of this chapter: A systematic method

to decompose a model into smaller and smaller components until only those com-

ponents that are in need of adaptation are presented to the parameter identification

process. This approach also takes into account network communication constraints

and incomplete state observability.

The following assumptions are made about the system:

1. The model M is constructed compositionally using model components mi and

an explicit description of the interconnections between model components ex-

pressed using the syntax Γ{·}. By ignoring the interaction in sub-matrix Llg, as

in Section 5.2, Γ{mi} can be represented as a directed acyclic graph as shown

in Figure 5.7. The figure also shows the outputs from each model component

Ŷmi
.

2. The syntax Γ{·} is also used to compose P . The output Ypi of every physical

component pi ∈ P can be measured, when required, at a cost VYpi .

3. For every measurement channel Ypi drawn from P and Ŷmi
drawn from M,

a discrepancy classifier g(·, ·) is provided so that g(Ypi , Ŷmi
) returns a value

for the binary decision variable DŶmi
indicating the presence of a significant

discrepancy (DŶmi
= 1) or not.

92

4. The classifier g(Y, Ŷ) is not affected by intermittent mismatches between P and

M. That is, the classification DŶ for any given model output Ŷ is valid under

all expected inputs U and remains unchanged untilM is adapted to resolve the

discrepancy.

5. Every model component can be classified into one of a finite set of known

model classes or genotypes (e.g., model class ∈ {generator, bus, branch}). The

model class must be known in order to construct the state space model for each

component using the structure shown in Equation 5.3.

6. Each component model mi inM is amenable to the parameter estimation tech-

niques used in Section 5.3.3. That is, when a Hankel matrix is assembled from

the outputs Ypi to identify the parameter matrix Λ̂mi
for model mi, it satisfies

the necessary rank condition.

The flow chart in Figure 5.8 shows a schematic overview of the proposed method

and each step in the process is discussed in detail below:

5.4.1 Step 1: Detect discrepancies

First, our algorithm marks the comparison between Y and Ŷ and all available

internal points of comparison between Ypi and Ŷmi
as either good or discrepant by

setting DŶ (or DŶmi
) to 0 or 1 respectively. From the perspective of practicality, it

is necessary to flag a discrepancy only when the difference between Ypi and Ŷmi
is

significant.

In general terms, a discrepancy can be classified as significant when the magni-

tude of a discrepancy classifier function g(Ypi , Ŷmi
) is greater than a specified threshold

σclass. The choice of the function g(·, ·) varies based on the type of data being classi-

fied. Common statistical metrics include the magnitude of the Squared Bias (SB), the

magnitude of the Root Mean Square Error (RMSE) or the magnitude of the Standard

93

𝑌, 𝑌

Step-2

𝒟𝑌 = 0

Step-3

Step-4

Done

𝒞

𝒞𝑚𝑖𝑛

𝑔(𝑌, 𝑌)

Λ mi
(∀mi∈ 𝒞𝑚𝑖𝑛)

𝒟𝑌 =1

Step-1

𝑌𝑝𝑖
(𝑝𝑖 ∈ 𝒫)

 g(𝑌𝑝𝑖
, 𝑌 𝑚𝑖

)

ℳ = Γ{mi}

(𝜆 , 𝑥)

Figure 5.8: The figure shows a flowchart of the proposed guided decomposition
method. The steps in the diagram are explained in Sections 5.4.1 through
5.4.4.

94

Deviation weighted Correlation between signals [11].

The choice of function g(·, ·) is also heavily influenced by the function of the

model. For a model used to schedule generators at the SCADA level, the classifier

function may focus on the steady state equilibria of the system for a given input. In

such a case it might be prudent to use a bias function to detect deviations between

the expected equilibrium and the true equilibrium. Active damping or transient

suppression functions use models to identify the spectral properties of the power flow

dynamics in an electrical network, highlighting the oscillatory modes of the system

in the frequency domain, in such a case g(·, ·) may be chosen to classify discrepancies

in the frequency domain. A survey of control-theoretic and other signal processing

techniques commonly used to classify discrepancies can be found in [120].

In our application, we will restrict ourselves to the time domain and focus on the

error between Y and Ŷ at steady state. That is, for each step change in the generator

set-point Pgi, we ignore the initial transients in the response and classify the error

between the outputs once both systems have reached their steady state values for the

current set-point. The classifier compares sampled measurements from the physical

circuit Y (k) and the corresponding output from the model Ŷ (k). As the model is

decomposed into smaller components further along the process, the same classifier is

used to compare internal measurements Ypi(k) to their corresponding model generated

estimates Ŷmi
(k).

In order to achieve the desired classifier characteristics, a first-order filter is used

to filter the fractional error signal (Y (k)−Ŷ (k))

Ŷ (k)
. Referring to the dynamic response

of the generators in Figure 5.4, we see that the set-point is changed once every 10

seconds, by designing a filter with a time constant of 5 seconds we find that most of

the transients in the system response are filtered out. Once the error signal is filtered,

a magnitude threshold σclass = 10% is used to classify the output Ŷ (k) as discrepant

or not.

95

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (Secs.)

M
ag

ni
tu

de
 o

f t
he

 F
ilt

er
ed

N

or
m

al
iz

ed
 O

ut
pu

t E
rr

or

σclass

g(Y, Ŷ)

Figure 5.9: Output of the classifier g(Y, Ŷ) for the data shown in Figure 5.5. The fig-
ure shows that the threshold σclass = 0.1 is violated for all three successive
updates to the generator schedule.

Further, we define a classification epoch that spans the 10 second interval during

which the set-point is unchanged, and we reset the classifier when Pgi is updated.

That is, every time Pgi is updated the filter state is reset and the classification process

is reinitialized. If the threshold σclass is crossed during the 10 second interval, then

the model output Ŷ is classified as discrepant. Since the data from P are received as

sampled values, the classification epoch of 10 seconds is discretized into K samples.

The classifier used for the analysis is shown in Equation 5.7. The output of the

classifier for the same experimental run shown in Figure 5.5 is shown in Figure 5.9.

We see that the threshold is violated for three consecutive generator updates resulting

in the classification DŶ = 1. The consequence of the positive classification is that

model adaptation is now required in order to resolve the discrepancy.

DŶ =


1, if supk∈[1,K]

∣∣∣ (1−τ)
(Z−τ)

(Y (k)−Ŷ (k))

Ŷ (k)

∣∣∣ > 0.1

0, otherwise

(5.7)

96

5.4.2 Step 2: Identify adaptation candidates

Before we attempt to resolve the discrepancy in the model output, we first im-

plement a strategy to decompose M and isolate only those components that require

adaptation. The decomposition method relies on systematic exoneration of particular

model components by logically reasoning about observed discrepancies and the known

topological dependency between components. The result of the reasoning process is a

set of hypotheses. Each hypothesis proposes one or more model components that pos-

sibly have incorrect parameters. The systematic decomposition procedure tests each

hypothesis and refines the set to ultimately yield a selection of model components in

M that have a high probability of being in need of adaptation.

This inference process is similar to that of diagnostic inference where the challenge

is to identify a root cause fault responsible for an observed discrepancy [36], [119]

and [149]. Our decomposition method uses many of the same tools as conventional

diagnostic inference, except in our case they are used to identify a set of model

components that are the root cause of the discrepancy between Ŷ and Y .

Starting from the result of the first step of the decomposition process, which

was the classification DŶ = 1, we now delve into the compositional structure Γ

of M (shown in Figure 5.7), to see that the output Ŷb5 from model component b5

is abstracted as the model output Ŷ . The objective of the reasoning process is to

propose a set of model components that need to be adapted to resolve the discrepancy.

For this simple example, we can do this by manual inspection of the component

hierarchy and deduce that the observed discrepancy does not absolve any of the

internal components of the model. Every model component mi could potentially be

malfunctioning resulting in the discrepancy in the output. A set of model components

that could not all be functioning normally based on the observed discrepancy is called

the conflict set. For the discrepancy DŶb5 the conflict set is a set of all the components

in the model. The conflict is denoted: DŶb5 :< G1···4, b1···5, B15, B31, B21, B43 >.

97

As more measurements are received from the physical system new conflicts may

emerge. In order to automate the recognition of conflicts, Modelica [43], [114] is

used to model individual system components. Using Modelica we are able to build

a compositional model of the electric circuit and automatically inspect the model to

identify conflict sets for each observed discrepancy. In simple terms a conflict set for a

given discrepancy is a set of components that constrain the value of the model output

identified as discrepant. See [101], [34], [26] and [119] for a more detailed presentation

of conflict recognition for similar model types.

The next step of the reasoning process is to propose a set C of adaptation candi-

dates. Each candidate ci ∈ C is a hypothesis for a set of model components that must

be adapted as a group in order to resolve the discrepancy. For the example in Fig-

ure 5.7, we can see that if DŶ = 0 then C = ∅ (no component needs to be adapted).

If DŶ = 1 then the conflict set includes all the components in the model. Based on

this conflict set, any component in the model is a valid hypothesis for an adaptation

candidate. Therefore C is the power set of the conflict DŶb5 :< · > minus the empty

set. For a model with n components, where no candidate is absolved |C| = 2n − 1.

Several techniques exist to efficiently refine the set C. A simple approach is to

use some additional information about the system to discard or reinforce some of the

candidates in the set. Fault diagnosis methods for large complex systems frequently

use a rule-based or case-based reasoning approach to select candidates based on prior

experience or domain expertise.

We assume that we have no additional information about M beyond the knowl-

edge of its compositional structure and therefore use a model-based inference tech-

nique to refine the candidate set. There are several diagnosis algorithms in the re-

search and commercial space including RAZ’R [131], LYDIA [46], DSI Express [62]

or RODON [101] that use model-based reasoning to diagnose physical systems. The

specific model-based reasoning algorithm we use is the General Diagnostic Engine

98

(GDE) [34] and [36].

The diagnosis algorithm requires:

1. Knowledge of the topological syntax Γ{·}.

2. Knowledge of the output from each model component Ŷmi
.

3. Access to corresponding physical measurements Ypi .

4. A discrepancy classifier g(·, ·).

5. The ability to test hypotheses against model components mi as required.

The algorithm builds a diagnostic lattice of the system as shown in Figure 5.10

depicting the space of all possible candidates in the model. The diagnostic process

proceeds as more measurements from the internal components of P are received, com-

pared against corresponding signals in M and classified. Each classified comparison

between Ypi and Ŷmi
results in a modification to the conflict set of the system. That

is, a new set of components are determined that cannot all be functioning normally

if the observed discrepancy is true. When new conflicts are detected, any previous

candidates that no longer fully explain the conflict are discarded. The GDE algo-

rithm features methods to manipulate these sets efficiently by only manipulating sets

of components representing the smallest subset of components that still qualifies as a

candidate (called a minimal candidate).

Figure 5.10 shows the first two steps of the candidate selection process. In response

to the first conflict DŶb5 :< · >, since none of the components can be absolved,

|C| = 2n − 1. By drawing an additional measurement (Yb1), we observe that DŶb1 =

1 which generates a new conflict DŶb1 :< · >. The observations DŶb5 and DŶb1

considered together are inconsistent with the candidates [b5], [B15] and [b5, B15] and

are consequently eliminated. As more measurements are received from P additional

candidates are either absolved or reinforced to further refine the candidate space.

99

[𝐵21𝐵31𝐵43]

[]

[𝑏5] [𝐵15]

[𝐺1𝐺2𝐺3]

[𝐺1𝐺2] [𝐵31𝐵43] [𝐺1𝐺3] [𝑏5𝐵15]

𝒟𝑌 𝑏5
+ 𝒟𝑌 𝑏1

: < 𝐺1…4𝑏1…4𝐵21𝐵31𝐵42 >

 𝒟𝑌 𝑏5
: < 𝐺1…4𝑏1…5𝐵15𝐵21𝐵31𝐵42 >

Figure 5.10: The figure show two steps of the candidate generation process. The
minimal candidates are shown in bold and the dotted lines define a
boundary below which candidates have been absolved.

In the upcoming section we will present a strategy to seek the best measurements

from P from the perspective of shrinking the candidate space to isolate the true

adaptation candidate with the fewest number of measurements.

5.4.3 Step 3: Select the best next measurement to refine the set of can-

didates - Guided Decomposition Approach

The decomposition approach we have discussed until now assumes that measure-

ments from P can be drawn at will. Assuming that this is true, we can attach a

diagnostic value to each prospective measurement Ypi from P . Intuitively, measure-

ments that result in greater differentiation between candidates are more valuable to

the decomposition algorithm.

In a situation where there are several candidates generated in response to a con-

flict, we strategically extract measurements from P to differentiate between the can-

didates to isolate the true candidate with the fewest measurements. We do this using

an approach called guided probing from fault diagnosis literature [34].

Referring to the diagnostic state illustrated in Figure 5.12, there are 12 potential

measurements that can be drawn from P to further refine the set C. For every

comparison between Ypi and Ŷmi
resulting in DŶmi

= k, (k = 1 or 0), the candidates

100

in C can be divided into three categories:

1. The set of candidates that remain if DŶmi
= k, called RD=k

i .

2. The set of candidates that are eliminated if DŶmi
6= k, called SD=k

i .

3. The set of candidates that cannot be eliminated irrespective of the value of

DŶmi
, called Ui.

The probability of each candidate being the true adaptation candidate can be

computed using Bayes’ rule. The conditional probability for each candidate is up-

dated for each new measurement drawn from P . Equation 5.8 shows the conditional

probability for the first step of the decomposition process.

p(ci|DŶmi
= k) =

p(DŶmi
= k|ci)p(ci)

p(DŶmi
= k)

(5.8)

The equation for conditional probability is reformulated for each category of can-

didates (See [34] for proof of this reformulation).

p(cj|DŶmi
= k) =


0, cj 6∈ RD=k

i

p(cj)

p(DŶmi=k)
, cj ∈ SD=k

i

p(cj)/2

p(DŶmi=k)
, cj ∈ Ui

(5.9)

Some information may be available a-priori about the likelihood of some com-

ponents over others. For example, generators may be more likely to have incorrect

model parameters than bus elements. Using this information we can set the initial

candidate probability p(ci) in Equation 5.9.

Given the conditional probabilities for each candidate based on a measurement

from P , we can use a value function to evaluate all the future choices for Ypi at

every step. Continuing to use methods discussed in [34] we use information (or

Shannon) entropy of the cumulative candidate probabilities (H = −
∑
pi log(pi)) as

101

a cost function for each potential measurement. Equation 5.10 shows the change in

expected entropy for each possible measurement Ypi . The total expected entropy cost

is a sum of both possible outcomes for DŶmi
. The best possible next measurement

from a diagnostic point of view is the measurement that minimizes ∆He.

∆He(Ypi) =p(DŶmi
= 1) log p(DŶmi

= 1) + p(DŶmi
= 0) log p(DŶmi

= 0) + p(Ui) log 2

Where,

p(DŶmi
= 1) =

∑
cj∈SD=k

i

p(cj) +

∑
cj∈Ui

p(cj)

2

(5.10)

This guided decomposition approach is applied to our power systems model in

Section 5.5.

5.4.4 Step 4: Identify parameters of the model-components in Cmin

Once the model is decomposed and the set of high probability candidates Cmin

has been isolated, we can apply the parameter identification methods discussed in

Section 5.2 to resolve the model discrepancy.

A challenge in implementing this step of the process is that the parameter iden-

tification approach uses a state space model of the system while the decomposition

process uses a compositional model. Therefore, before we can use the parameter iden-

tification algorithm we first have to produce a state space model for each component

mi ∈ Cmin.

From Section 5.1 we know that M = Γ{mi}(λ̂, x̂). The object-oriented modeling

language we use explicitly portrays a model as a function of the compositional topol-

ogy Γ, the set of model parameters λ̂ and its internal state x̂. This description syntax

is used for all the component models mi ∈ M as well so that model component mi

can be expressed as a function of Γmi
, λ̂mi

and x̂mi
.

102

The state-space representation for mi is not unique. Some general techniques

used to algorithmically generate state space models from compositional models can be

found in [147] and [79]. In the case of our motivating example we exploit the structure

conserving Laplacian representation for the state-space model shown in Equation 5.3

and the assumption that Llg = 0 to constrain the structure of the state-space model

produced from the compositional form.

Equation 5.3 provides a specific format for each component model with knowledge

of the relevant state variables x̂mi
, parameters λ̂mi

and the classification of model com-

ponents into dynamic models (such as Generators) in sub-matrix Lgg and algebraic

models (such as buses and branch-lines) in sub-matrix Lll.

The object-oriented description of the model components in the modeling language

Modelica gives us the ability to define model classes in the manner we need. Each

model component mi is an instantiation of a pre-defined model class.

Once state-space models for the model components in Cmin have been formed,

the identification of the system parameters is a direct application of the methods in

Section 5.3.3.

In Section 5.5 we will show the results of the candidate isolation and parameter

identification techniques applied to our electrical network example.

5.5 Application of the method to the 5-bus example

Let us start with the flowchart in Figure 5.8. We know (based on the result in Fig-

ure 5.9) that DŶ = 1. Therefore we proceed to Step-2 and explore the compositional

structure of M.

Based on the discrepancy DŶb5 = DŶ = 1, we generate the conflict DŶb5 :<

G1···4, b1···5, B15, B31, B21, B43 > and the corresponding candidate set C as shown in

Figure 5.10.

In Step-3 we use the candidate refinement method discussed in Section 5.4.3.

103

One of the assumptions we made when proposing the cost function ∆He was that

measurements Ypi could be drawn at will from P . This is a fairly strong assumption

from the perspective of practical implementation. We make this assumption for power

distribution circuits in the light of some recent advances in networking technology and

the enhanced penetration of the sensing and metering throughout the power grid that

we outline below:

Reporting rates and data quality Networked solutions for real-time data acqui-

sition and control over local area networks are fairly common place. This tech-

nology is mostly driven by requirements in the domain of industrial automation

[112]. Recently the focus of this research has grown to include the automation of

power distribution and monitoring. With this change in focus comes several new

challenges mainly involving the great increase in physical scale from a network

spanning tens of meters to tens of kilometers and the increase in the number

of networked nodes from hundreds to thousands. Solutions for the challenges

of increased scale include improvements to the backhaul network to support

the demand for bandwidth [90] and specifications for data quality required for

networked state estimation [91].

For all the simulations in this chapter, we abide by the data reporting rates

proposed in [74]. That is, we sample data no faster than the proposed real-time

transmission rate for regional distribution networks. By limiting the sampling

rate, we assume that there are no issues related to data quality and that mea-

surements reported from P are perfect. The extension of this work to a case

where measurement data quality is uncertain is a natural next step.

On-demand availability of measurements A significant development in the net-

work communication protocols used for controlling and monitoring power sys-

tems is the proposed IEC-61850 networking standard [72]. IEC-61850 is an

104

object-oriented messaging protocol [75], which means that the design of the pro-

tocol includes designated message classes for sampled values, commands etc. as

well as a standardized communication model for every networked node. From

a control perspective, it is possible to uniquely identify data on the network by

translating its address into data-type, source and function.

This technology is critical to the practical application of our methods since it

allows the decomposition algorithm to evaluate the bandwidth utilization cost

and efficiently address each desired physical measurement Ypi .

Pervasive sensing infrastructure In our analysis we assume that it is possible

to measure the output of every physical component pi ∈ P . This assumption

is motivated by electric grid instrumentation roadmaps in [44] and [38]. The

roadmap documents propose a greater penetration of sensors at the level of

electric distribution as well as the use of advanced PMUs to offer unprecedented

access to measurements from within electric microgrids.

While we assume that measurements are available from every component for

the analysis in this chapter, this assumption is not essential to its implemen-

tation. With the use of the the IEC-61850 protocol, it is possible to identify

measurements that are not available and to attribute a high enough cost to

them that they are never invoked by the decomposition algorithm.

For now we will use a simple link model [155] to calculate the network utiliza-

tion cost UYpi for each measurement Ypi . Assuming finite bandwidth availability,

Total Bandwidth Utilization = ΣUYpi + ΣUPgi = 1.

For a flat network, the utilization cost for each network transmission is the same.

However, most communication networks are hierarchical. The IEC-61850 protocol

also implements a virtual communication hierarchy by logically grouping nodes.

Figure 5.11 is an illustration of a communication hierarchy applied to our power

105

𝑆𝐶𝐴𝐷𝐴
𝑠𝑦𝑠𝑡𝑒𝑚

𝑌𝑏1⋯5
, 𝑃𝑔1⋯4

𝑌𝐵15
, 𝑌𝐵21

, 𝑌𝐵31
, 𝑌𝐵43

𝒰𝑌𝑝𝑖
= 3𝒰𝑛

𝒰𝑌𝑝𝑖
= 2𝒰𝑛

𝒰𝑌𝑝𝑖
= 𝒰𝑛

𝑌𝐺1⋯4

Figure 5.11: The figure illustrates the network hierarchy in the model used to calcu-
late the link utilization cost for each measurement.

grid example. Un is the per link utilization cost. In order to satisfy the total band-

width constraint, 9 × Un + 4 × 2Un + 4 × 3Un = 1. Therefore, UYbi ,UPgi = 0.0345,

UYBjk
= 0.069 and UYGi

= 0.1034.

The total cost for drawing a measurement Ypi for the decomposition process is

VYpi = UYpi + (∆He(Ypi) + 1). Table 5.1 shows the total cost VYpi calculated at

each step of the decomposition process. The signal with the lowest cost is shown

in bold lettering and is drawn from P . Once a measurement is drawn, the inference

process discussed Section 5.4.3 is repeated to calculate the new candidate probabilities

resulting in a new set of values for VYpi for the remaining measurements. Figure 5.12

is a graphical illustration of the decomposition process as measurements are drawn

in the order specified in Table 5.1. The shaded regions in the figure illustrate the

shrinking space of probable candidates as new measurements are added.

Step-3 of the decomposition process terminates when either one candidate is iden-

tified with high enough probability or when no other measurements are available. In

the case of our example, the process terminates when Cmin = [G2]. Table 5.1 also

shows the probability of candidate [G2] after each probing cycle. We see that the like-

lihood of [G2] as an adaptation candidate increases continuously until the termination

condition p(cj) > 0.9 is reached.

Proceeding to Step-4, we see that G2 is a generator model of the form shown

106

6

 3

2 1

Figure 5.12: Graphical illustration of the model decomposition process. Measure-
ments are drawn from the components marked with an asterisk follow-
ing the order in Table 5.1. The shaded regions in the figure show the
shrinking space of probable candidates after probing steps 1, 2, 3 and 6.

Table 5.1: Measurement costs VYpi and the conditional probability of candidate [G2]
after each new measurement.

VYpi YG1
YG2

YG3
YG4

Yb1 Yb2 Yb3 Yb4 Yb5 YB21
YB31

p([G2])
Initial 1.00 1.00 0.54 0.59 1.00 0.43 0.35 0.47 0.32 0.39 0.36 0.12

Probe-1 0.48 0.57 0.57 1.00 0.63 0.44 0.44 0.54 - 0.39 0.45 0.07
Probe-2 0.50 1.00 0.54 0.59 0.68 0.61 0.35 0.47 - - 0.36 0.21
Probe-3 0.49 0.85 1.00 1.00 0.85 0.74 - 1.00 - - 0.51 0.38
Probe-4 - 1.75 1.00 1.00 1.98 1.69 - 1.00 - - 0.50 0.72
Probe-5 - 0.70 1.00 1.00 0.71 0.68 - 1.00 - - - 0.99

in Equation 5.5 and accordingly apply the subspace identification algorithm to it

as discussed in Section 5.3.3. The model for the generator has two dynamic states

(n = 2) and assuming that the sampling frequency is 10Hz for a data collection

period of 10secs., N = 100. Therefore the complexity of the subspace identification

algorithm O(n4 +N2) = O104 as opposed to O105 for the entire system.

Figure 5.13 shows the output of M and P after the parameters for generator

model for G2 have been corrected. The figure shows that good correspondence has

been restored between the two systems.

107

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (Secs.)

G
2

P
ro

du
ct

io
n

(M
W

)

YG2

ŶG2 before adaptation

ŶG2 after adaptation

0 5 10 15 20 25 30
0.02

0.03

0.04

0.05

0.06

Time (Secs.)

O
ut

pu
t P

ha
se

 L
ea

d
(R

ad
.)

θ5

θ̂5 after adaptation

A

B

Figure 5.13: Sub-Figure A shows the output of mG2 before and after adaptation. Sub-
Figure B shows the output of the full modelM after adaptation. Close
matching is observed between the two systems once the parameters for
mG2 have been corrected.

108

5.6 Conclusion

This chapter addresses some of the challenges in adapting simulation models of

large systems in a networked setting. An electrical power system is used as an il-

lustration of such a system. The core contribution is an approach to simplify the

adaptation of a system level model vis-à-vis updating its internal parameters. The

strategy presented here systematically decomposes the system model while isolat-

ing model components that need to be updated. This targeted adaptation approach

significantly reduces the complexity of the parameter identification process.

The decomposition algorithm compares the output of specific model components

to corresponding outputs in the physical system in order to either absolve or reinforce

hypotheses for sets of model components that require adaption. A framework is also

proposed to optimize the decomposition algorithm, trading off the cost of obtaining

a measurement against its contribution towards differentiating between hypotheses.

The method presented in this chapter assumes some specific conditions in its im-

plementation. These pertain to the application domain of electrical power systems

(known topology), modeling methods (compositional models, structure preserving

state-space form) and network properties (access to real time measurements).

109

CHAPTER VI

Modifying model topology to reduce noise and

complexity in yield analysis for manufacturing

process workflows

In this chapter we extend the topological exploration and inference methods

present in Chapter V and propose methods to simplify model topology and relax

the effects of measurement noise to improve the performance of the inference process.

The work presented in this chapter has been submitted to IEEE Transactions on

Semiconductor Manufacturing.

6.1 Introduction

In this chapter we will apply the diagnostic approach developed in Chapter V to

isolate sources of yield loss in a large semiconductor manufacturing process. Yield is

defined as the ratio of the number of usable parts after the completion of a manu-

facturing process to the number of potentially usable items at the beginning of the

process. It is an important performance metric for manufacturing facilities, and the

economic significance of yield loss is particularly highlighted in the high value, high

throughput and highly automated manufacturing processes used to produce semicon-

ductor integrated circuits [88].

110

The schematic in Figure 6.1 shows a simple semiconductor manufacturing work-

flow (P). For the rest of our analysis in this chapter we will only consider front-end

processes in P . Front-end processes refer to the processing steps applied to the silicon

wafer to build up or etch semiconductor structures. The output of the front end pro-

cess is a matrix of fully formed dies on a wafer. Yield assessed by end-of-line sample

testing is called the “wafer sort yield”. The front end processes in Figure 6.1 are in-

dicated with a dashed line. The wafer sort yield of P depends on the performance of

each manufacturing step pi as well as on variations in process variables such as tem-

perature, voltage, ion concentration and particle contamination [25], [55], [87]. Wafer

measurements (such as dimensions of important features, thickness of deposits, chem-

ical properties of dopant layers) and measurements of process parameters (such as

plasma temperature) may be available from intermediate steps in the process, though

the number of measurement sites and frequency of measurement is typically limited

due to cost and throughput constraints. In Figure 6.1, intermediate measurements are

only available from process steps p2 and p4. All wafer measurements and parameter

measurements from pi are collectively called zi. Since only a small sample of wafers

are subject to end-of-line testing, wafer classification algorithms are used to estimate

yield on every wafer based on available in-process measurements Z = {z2, z4} [16],

[60], [69], [29], [13]. While wafer classification methods partially replace the need for

exhaustive end-of-line testing, classification is usually done at the end of the manu-

facturing line once all measurements corresponding to a particular wafer have been

collected. If a wafer (or die) is classified as defective, there is no mechanism to correct

or reverse the defects.

Modern process control techniques envision a prediction driven approach for qual-

ity control [111]. Accurate forecasts of process measurements based on process models

and historical data allow the system to reactively mitigate the effect of random qual-

ity variations as well as to reject defective wafers early in the workflow if further

111

Process parameter variations
and latent effects

Wafer in
Cleaning
and Prep.

Photo
mask

Oxide
Growth

Poly
mask

Metal
deposition

Sample
testing

Cutting and
Packaging

Finish

𝒫

(Measurements) 𝒵 Calculated
wafer sort yield

ℳ

Photo mask Oxide Growth Poly mask
Metal

deposition

𝑝1 𝑝2 𝑝3 𝑝4

𝑚1 𝑚2 𝑚3 𝑚4

𝑧2 𝑧4

Classifier
training

(Forecasted measurements) 𝒵
Forecasted

wafer sort yield

Wafer
classifier (𝜷)

𝑧 4

Wafer
classifier (𝜷)

𝑧 2

Measured
wafer sort yield

Figure 6.1: The schematic shows a nine step manufacturing process (P) and a model
of four front-end processes (M). The figure also shows two sites where
physical measurements are available from P .

processing is deemed imprudent [37] [41], [113].

Measurement forecasts for each wafer are provided by the model (M) of the

manufacturing process shown in Figure 6.1. M is comprised of model components

m1 · · ·m4 corresponding to process steps p1 · · · p4. Each model component mi is used

to forecast measurements of wafer properties and process parameters of the corre-

sponding process step pi. With accurate modeling we can compositionally assemble

model components together (M:= m1 → m2 → · · ·m4), as shown in Figure 6.1, in or-

der to forecast measurements for the entire line and therefore forecast the end-of-line

yield.

Figure 6.2 shows three process steps (1, 2 and 3) of the manufacturing line. The

model m2 and the corresponding physical process p2 may be thought of as one abstract

‘step’ (Step-2) in the process. m2 takes historical measurements from p2 as well as

external inputs such as the measurement forecasts from preceding steps and internal

model parameters to forecast the expected measurement ẑ2 (for a particular wafer) at

the end of Step-2. Assuming the forecast is accurate, it is commonly used by predictive

112

Physical
process (𝑝2)

Measurement
forecast

model (𝑚2)

Wafer
metrology and

parameter
measurements

(if available)

Current step (𝟐) Previous
step (𝟏)

Next step
(𝟑)

𝑧2

Wafer (+𝑆𝑡𝑒𝑝 1) Wafer (+𝑆𝑡𝑒𝑝 1,2) Wafer (+𝑆𝑡𝑒𝑝 1,2,3)

External inputs to the model (includes forecasts of upstream metrology, forecasted
measurements of process parameters and estimates of latent effects)

Measurement
forecast

model (𝑚1)

Measurement
forecast

model (𝑚3)
Forecasted
measurements

Physical
process (𝑝1)

Physical
process (𝑝3)

𝑧 1 𝑧 2 𝑧 3

Figure 6.2: The schematic shows the parallel implementation of a measurement fore-
cast model m2 and a physical process p2 in Step-2 of the manufacturing
line. The figure also shows that measurement z2 depends on Step-1 as
well as other external inputs.

process control algorithms [37] [113] to correct variables in p2 to compensate for minor

process drifts. Larger differences between the forecast and the actual measurement

require investigation into the source of the discrepancy. Each model component mi

forecasts a measurement at the end of step i and the forecasts are carried forward

through successive model components culminating in a forecast for end-of-line wafer

sort yield.

The problem we are addressing in this chapter is that a discrepancy or mismatch

is observed between the “Forecasted wafer sort yield” using M and the “Calculated

wafer sort yield” P for a manufacturing process. Clearly, this discrepancy could result

from a mismatch between any subset of preceding process steps pi (i ∈ {1 · · · 4}) and

their corresponding forecast models mi. Our objective is to perform a forensic analysis

by comparing Ẑ and Z to isolate the steps responsible for an observed end-of-line

yield discrepancy.

Typical manufacturing process workflows have hundreds of steps and only a few

sites where physical measurements are available. Further, measurements from a single

step depend on upstream steps (which may not be directly measurable), internal

113

process parameters and other external factors. Clearly, the analysis to identify the

steps responsible for an end-of-line discrepancy is not trivial and a formal analysis

technique is needed to maximize the diagnostic impact of available measurements. We

use Bayesian inference to analyze the network of dependencies between process steps

and iteratively exonerate or implicate key steps when measurement comparisons are

made. However, computational complexity and uncertainty in measurements due to

poor data quality limit the size of the manufacturing workflow to which the Bayesian

diagnosis approach can be applied directly.

Our contributions to the identification and isolation of sources of yield loss in a

semiconductor manufacturing line are:

1. A graph theoretic formulation to represent a manufacturing line as a network of

dependencies and a case study of a semiconductor manufacturing line, presented

in Section 6.2.

2. A method for systematic comparisons between model forecasts and measured

data suited for use with a Bayesian diagnosis scheme, presented in Section 6.3.

3. Graph abstraction and relaxation strategies to reduce the complexity of the

diagnosis process, presented in Section 6.5.

4. An algorithm to strategically reverse some of the graph simplifications, when

needed, to refine the inference result, presented in Section 6.6.

5. A solution verified to reduce the net uncertainty and noise in the inferred result

of the diagnostic analysis, presented in Section 6.7.

The analysis techniques we develop in this chapter make no assumption about

the physical properties of the individual steps and can be used with any process that

can be reduced to a network of causal dependencies. An application of the method

114

1z0 2 3 4 z4

Figure 6.3: A graph representation of a four step sequential process workflow.

to a full scale model of a manufacturing line is presented in Section 6.8 and the

contributions of the chapter are summarized in Section 6.9.

6.2 Graph representation for manufacturing processes

We will represent a manufacturing process as a graph of edges and vertices. In

the context of semiconductor manufacturing, Step-2 in Figure 6.2 represents a front

end process such as a plasma etching step. The physical process p2 corresponds to a

specific instance of a tool and a process recipe used to perform the etching operation.

Step-2 is also equipped with instrumentation to measure wafer and process parameters

at the output of p2. The model m2 used to forecast measurements may be based on

process physics, such as the model provided in [65] to predict the profile of etched

geometry using chemical kinetics, or based on statistical inference as in [129] and [134].

All the elements contained in Step-2 can be abstracted into an atomic representation

called a vertex.

Step-2 interacts with adjacent steps through an explicit set of dependencies, such

as the order in which steps are executed. In Figure 6.2, Step-2 sequentially follows

Step-1 and every product processed at Step-2 is first processed at Step-1. Step-2 is

therefore causally dependent on Step-1, represented by an edge from Step-1 to Step-2

in graph representation.

A set of components with a declarative description of dependencies between com-

ponents is said to have a compositional structure [123]. The sequence of process steps

(Step-1 → Step-2 → Step-3) shown in Figure 6.2 is compositional in nature. We will

use a directed graph (digraph) notation to represent the compositional structure of a

115

manufacturing process. A graph is a general mathematical abstract used to express

networks of co-dependent objects, processes or agents [21]. It is expressed as a pair

G = (V , E) comprising a set V of vertices together with a set E of edges which are

2-element subsets of V . In case the dependency between vertices is asymmetric, the

set E is made up of ordered pairs of vertices such that e = (x, y) ∈ E is considered

to be directed from x to y. y is the direct successor of x and x is said to be a direct

predecessor of y. The graph in Figure 6.3 represents the compositional structure of a

4-step manufacturing process in a serial line configuration where process steps occur

sequentially from 1 to 4. Realistic manufacturing lines are generally more complex

in construction than the structure in Figure 6.3 incorporating branches and parallel

segments to improve reliability, balance production throughput and accommodate

greater product diversity [85].

Additionally, the presence of models within each step introduces additional depen-

dencies in the compositional description. Models used in the prediction framework

take as inputs (and therefore depend on) several external factors including process

variables and forecasted measurements from other steps. The compositional repre-

sentation of a real manufacturing workflow can therefore become quite complex when

every step is represented along with all its dependencies.

We will now describe graphs that capture the structural features of realistic semi-

conductor manufacturing workflows.

6.2.1 Serial-Parallel lines

Semiconductor manufacturing lines are usually designed to distribute operations

between process stations in such a way as to minimize production bottlenecks and

maximize overall throughput and yield. The optimization of a manufacturing line

to achieve all goals is achieved in part by modifying the arrangement of individual

process steps in the workflow. A common modification used to improve line balance

116

1 2 3 4
5

8

6 7
12 z12

9 10 11

Figure 6.4: A graph representation of a serial-parallel line.

is to perform exclusive or repeating operations in parallel, introducing serial-parallel

segments within the workflow [85]. Figure 6.4 shows a graph of a 12-step serial-

parallel line. The presence of parallel segments in the line introduce branches in the

graph. In Figure 6.4, vertices 4 and 12 are branch vertices.

6.2.2 Independent source vertices

Manufacturing processes frequently include steps where components are intro-

duced into the line somewhere between the beginning and the end. In the context

of semiconductor manufacturing, mask application or metal deposition steps might

be considered entrant processes. In the graph notation we represent entrant pro-

cesses as a source vertex (in-degree = 0). The edge (15, 5) in Figure 6.5 indicates the

introduction of an entrant process 15 at Step-5.

Similar notation is also used to represent dependencies of a step on process pa-

rameters such as supply gas pressure or supply voltage [55]. In Figure 6.5, vertex

15 could represent a process parameter that affects the output of vertex 5. A single

parameter may also influence multiple vertices. Consider for example, a shared high

voltage supply or a common plasma generator. Shared process parameters are rep-

resented by source vertices with out-degree > 1. In Figure 6.5, vertex 13 influences

the output of both vertices 3 and 9. While not all process parameters may be instru-

mented for measurement, if a measurement is available then we assume that its value

is deterministically known and included in the set of physical measurements Z. If a

process parameter is unmeasured, its involvement in the observed yield discrepancy

can be inferred based on the output measurements of other downstream vertices.

117

6.2.3 Latent effects

Based on discussions with semiconductor manufacturing experts, being able to

include the effects of exogenous errors, random defects and measurement uncer-

tainty is essential for the practical application of Bayesian diagnostic tools. These

non-deterministic latent effects are un-modeled and often distributed throughout the

manufacturing process. They are cumulatively manifested as a maximum practical

threshold for the end-of-line yield, i.e a finite probability that a manufactured wafer

will be defective even if every controllable process variable is tuned correctly. This

defect probability is assumed to be attributed to a set of latent effects that could

include the probability of damage due to contaminants, preexisting defects in the

wafer substrate or any other unattributed stochastic process [87]. The number of

latent effects used to justify the cumulative defect probability is somewhat arbitrary,

but if information is available on the relative contribution of each latent effect to the

cumulative defect rate, and further if a direct causal connection is found between a

certain latent effect and subset of process steps, then it can be introduced into our

digraph representation as a source vertex vl with an error contribution pvl .

Consider, for example, that the processes represented by vertices 7, 11 and 12

share the same part handling equipment or wafer transfer system. While no explicit

model may exist for the performance of the handling equipment, a statistical error rate

(p14) recording a probability of misalignment or damage may be available. Vertex 14

represents the wafer transfer system’s contribution to the cumulative defect rate with

the additional information that it directly affects vertices 7, 11 and 12.

6.2.4 Loops or cycles

The analysis method in this chapter is directly applicable to connected acyclic

digraphs such as Figure 6.5. However, manufacturing lines often contain loops where

certain steps are repeated multiple times. It is therefore necessary to relax the acyclic

118

1 2 3 4

5

8

6

7

12 z12

9

10
11

15

14

13

Figure 6.5: A graph representation of a manufacturing line including external factors
represented by vertices 13, 14 and 15.

condition and admit small loops (or cycles) [156]. Let P1(uv) and P2(vu) be two

different simple paths between vertices u and v; then the walk P1 + P2 contains a

cycle. Assume P1 is a forward path in the directional sense of a digraph, then we

specify a ‘small’ cycle as a limit on the length of P1 (|P1| ≤ Lf). While there is no

formal method to limit Lf , we use the heuristic Lf = |E1|
30

. Based on the sample set

of graphs of practical semiconductor production lines that we have access to, graphs

that meet this small cycle condition are compatible with the methods presented in

this chapter.

Let the graph in Figure 6.5 be called G1 = (V1, E1). G1 captures key structural

attributes of a realistic manufacturing process and will serve as a running example to

explain our technique throughout this chapter. Note that the vertex set V1 represents

all steps, process parameters and latent effects considered in the manufacturing line.

Every measurement zi ∈ Z1 represents a set of physical observations from a vertex

vi ∈ V1. Since we assume that some of these vertices are not directly measured,

then typically |Z1| < |V1|. However, depending on the modeling detail, a forecasted

measurement may be available for every vertex in V1. We are only concerned with

forecasted measurements ẑi ∈ Ẑ1 that have a corresponding physical measurement

zi ∈ Z1 so that we may draw comparisons between the two. It is assumed for the rest

of this chapter that |Ẑ1| = |Z1|.

119

6.3 A scheme for comparing the outputs of M and P.

As discussed in Section 6.1, our objective is to isolate a subset of vertices in V1

that can be identified as sources of yield loss. We trigger the start of our comparison

analysis when a discrepancy is recorded between the calculated wafer sort yield and

the forecasted wafer sort yield. Our definition of a ‘discrepancy’ is described below:

Suppose |V| = m and |Z| = n. Elements zi ∈ Z are variables representing specific

measurement sites in the process. Each wafer sample [x] exiting the line is a specific

instance Z[x] of the available measurements. The wafer sort yield for wafer [x] can be

calculated based on Z[x] using a measurement based classifier [55], [60]. A classifier

uses measurements Z to group produced wafers based on a metric of interest. If the

metric chosen is the quality of the wafer, then a classifier may be used to classify

[x] based on the type, severity and number of defects. Without loss of generality,

we can restrict the measurement based wafer classification of calculated wafer sort

yield to a binary choice. Each wafer is classified as acceptable or defective based

on available measurements Z[x] for the wafer. We use a data driven classification

approach discussed in [16], [33] and [29] to classify each wafer.

First, a linearly independent basis of k principal features F = {f1, · · · , fk} is

identified for the set of possibly correlated measurements Z. Assume F is a linear

normed basis and T : Zn → Fk is a norm preserving orthogonal transformation. Let

I and I ′ be two adjacent regions of F. A hyperplane H = {α · f = a ∀f ∈ F}

separates I and I ′ if I and I ′ lie on opposite sides of H. A support vector machine

(SVM) [141] model is used to define H in order to provide a maximal marginal

separation [163] between acceptable wafer samples and defective wafer samples. I

and I ′ are accordingly labeled the acceptable region and the defective region of F.

The development of F, T and H together comprise the training process for the wafer

classifier. Once the classifier is trained, every wafer sample Z[x] may be classified as

either defective or acceptable.

120

For brevity we denote the classification algorithm as a function β(·) acting on a

wafer sample so that β(Z[x]) = 1 if wafer x is classified as defective and β(Z[x]) = 0

otherwise.

The classifier β(·) is also used on the forecasted measurements Ẑ[x] to predict

yield excursions for wafer x before production is complete. If β(Ẑ[x]) = 1 then

remedial action may be taken preemptively during production or the production on

wafer x may be aborted to limit the resource investment on x. We are interested in a

case where the wafer x is erroneously forecasted to be acceptable during production

(β(Ẑ[x]) = 0) and then re-classified as defective (β(Z[x]) = 1) once the wafer reaches

the end of the manufacturing line and all the elements in Z[x] are acquired. This is

a serious condition since the prediction framework using M was unable to predict a

yield excursion for wafer x resulting in an irrecoverable defective wafer. We call this

condition a discrepancy.

The opposite case where β(Ẑ[x]) = 1 and β(Z[x]) = 0, while unlikely, may also

be considered a discrepancy and can be easily considered in our analysis. We limit

ourselves to the former case for ease of illustration.

We also know that the wafer has been classified as defective after all available

measurements have been considered. We assume this classification is more reliable

than a classification based on a prediction and so we use β(Z[x]) = 1 as a ground

truth for our diagnostic analysis and attempt to identify where the misclassification

β(Ẑ1[x]) = 0 originated. It must be pointed out that the choice of ground truth or

datum is purely a notational convenience allowing us to call β(Ẑ[x]) = 0 a discrepancy

and β(Ẑ[x]) = 1 not, without specifying that β(Z[x]) = 1 at every stage.

The observed discrepancy β(Ẑ[x]) = 0 is a symptom of one or more model com-

ponents mi ∈ M differing in their behavior from their corresponding process step,

we call this a model-process conflict. The goal of our analysis is to identify a subset

of conflicted steps responsible for the end-of-line discrepancy.

121

A straight forward approach to isolate steps is to assume independence between

measurement sites z ∈ Z and to compare the output of each measurement site zi to

a corresponding forecast ẑi such that a norm ‖zi − ẑi‖ > δi indicates a discrepancy

originating from Step-i. This approach is not practically feasible since measurement

sites often show strong mutual correlation resulting in a feature basis F of significantly

reduced dimension (n >> k). The resulting kernel space of T implies a surjective

mapping from Z to F and the lack of a unique inverse transformation (T (−1) : F→ Z).

In other words, the decision plane H ∈ F is ill posed when mapped on to Z. As a

result, the marginal separation metric defined on F cannot be reduced to an error

norm between an individual measurement site zi ∈ Z and a corresponding forecast

ẑi ∈ Ẑ.

We need a systematic approach to draw comparisons between elements in Z and

Ẑ in order to reason about the comparisons and propose best candidates for sources

of end-of-line yield loss.

Returning to the graph notation for Figure 6.5, each vertex represents a process

step and we can infer from the classification β(Ẑ1[x]) = 0 that at least one vertex in

the set V1 is conflicted. The set of all possibly conflicted vertices is called a conflict

set.

The objective of our analysis is to find the minimal conflict set c∗ ⊆ V1 that

completely explains the observed discrepancy; i.e., c∗ only contains vertices that

must all be conflicted in order to explain the observed discrepancy. We start with

all possible candidates ci for c∗. The set of all possible candidates is called the

candidate set C. It is easy to see that C is the power set of V1 or C = 2V1 =

{[∅], [1], [2], · · · , [1, 2, 3], · · · , [1, 2, 3, 4, 5, 6], ...}. The candidate [∅] is discarded from C

after the classification β(Z1[x]) = 1 since it does not explain the discrepancy. The

remaining candidates are reinforced by the observation since any combination of ver-

tices in V1 are valid candidates for c∗.

122

We begin by designing a replacement strategy for G1. Consider a measurement

site zi ∈ Z drawn at random. We can substitute the measurement zi in place of

the corresponding ẑi ∈ Ẑ to produce the hybrid data sample (Ẑ[x] \ ẑi[x]) ∪ zi[x] for

wafer x. We call this operation a single point replacement denoted D(zi) (essentially

constraining a single vertex to its datum value). By applying the wafer classifier to

the hybrid data sample, we see that both outcomes β(D(zi)) = 1 and β(D(zi)) = 0

are possible.

The outcome β(D(zi)) = 1 implies that the end-of-line discrepancy can be resolved

by replacing the predicted measurement ẑi with the real measurement zi. Suppose a

simple forward path Phi exists from vh to vi where vh is the first vertex with a physical

measurement along the path P̄hi, then the vertices touched by Phi comprise the set

VPhi
. Intuitively, the vertex or vertices that lie in the set {VPhi

} \ vh may have a role

to play in the discrepancy and therefore any suitable candidate for c∗ must include

the set {VPhi
} \ vh.

Now suppose β(D(zi)) = 0. This means the substitution has not corrected the

end-of-line discrepancy, implying that the vertices responsible for the discrepancy are

not fully contained in the set {VPhi
} \ vh. As a result, any candidate comprised only

of vertices in {VPhi
} \ vh can be exonerated. Both outcomes for β(D(zi)) result in

refinement of the set C and the algorithm proceeds as more replacements are made

on G1.

Recall that the mapping from Z to F is surjective in nature. As a result, the projec-

tion of D(zi) on F is not unique and it is possible that T ((Ẑ \ ẑi)∪zi) ∈ span T (Ẑ \ ẑi).

Consequently, the inference problem is under-constrained when substitutions are

made one at a time. We address this problem by increasing the number of simul-

taneous substitutions by one after a round of n single point replacements. At the

limit, n−1 simultaneous substitutions are made generating
∑n−1

r=1
n!

r!(n−r)! = 2n−2 re-

placements. The practical limit on the number of simultaneous replacements required

123

depends on the graph structure. In most cases, we find that limiting the algorithm

to one (D(zi)) and two (D(zi, zj)) point replacements (n
2+n
2

replacements) results

in sufficient candidate differentiation for conflict convergence. In future references to

replacements, we use D(vi) instead of D(zi) for notational convenience. D(vi) implies

that the zi replaces predicted output ẑi for vertex vi.

The replacement policy presented here offers a systematic approach to exhaus-

tively compare the outputs ofM and P , but makes no effort to simplify the problem.

This replacement strategy becomes computationally complex for large graphs and at

the worst case, when (n− 1) simultaneous substitutions are needed, is intractable for

larger problems such as practical semiconductor manufacturing lines. We will quan-

tify this complexity in Section 6.4 and then present methods to simplify the problem

while reducing noise in the diagnosis process in Sections 6.5 through 6.7.

6.4 A review of Bayesian methods for diagnosis

With every new replacement, we analyze the graph, compute the impact on C and

refine it by discarding candidates that are no longer valid. The formal strategy we use

to achieve this refinement is the Bayesian inference algorithm GDE presented in [36],

[119] and [149]. Our refinement strategy uses the same basic inference framework as

used in Chapter V, but additionally considers special structural properties of graphs

used to model semiconductor manufacturing lines.

We begin by assigning a prior probability to each candidate p0(ci) ∀ci ∈ C by using

a-priori knowledge about the likelihood of some conflicts over others if available. For

example, an oxide growth step may be more likely to have incorrect model parameters

than a metal deposition step. For the analysis in this chapter, we assume a uniform

probability distribution across the elements in V1 (all model components are equally

likely to be conflicted) to compute the prior candidate probabilities for our analysis.

The output of the classifier (β(D(·))) is observed after each replacement event. The

124

refinement algorithm systematically exonerates or reinforces particular candidates by

logically reasoning about the observed value for β(D(·)) and the known topological

dependency between vertices. At each step, the inference algorithm proposes a hy-

pothesis for a set of candidates with a high probability of being the minimal candidate

c∗. With each new replacement considered, the algorithm tests the previous hypoth-

esis and updates the candidate probabilities to ultimately isolate the true minimal

candidate c∗ that is consistent with all available observations of β(D(·)). We addi-

tionally specify that the choice for c∗ must meet the confidence threshold p(c∗) ≥ 0.95.

When the confidence threshold is reached, the diagnosis process terminates success-

fully.

We can break down the inference approach into two operations that are repeated

for each replacement event:

Op-1 Using the known relationship between elements in V1 (represented by E1), each

candidate in C is tested for consistency against β(D(·)). This is in essence a

graph search problem and a detailed description of graph search algorithms used

for diagnosis can be found in [101], [34], [26] and [119].

Op-2 Any previous candidates that no longer fully explain all previous observations

are discarded. The GDE algorithm can manipulate these sets efficiently by only

considering the smallest subsets of vertices that still qualify as candidates.

Given the observation β(D(·)) = k, (k = 1 or 0), Op-1 divides the candidates in

C into three categories:

1. The set of candidates that remain if β(D(·)) = k, called Rβ(D(·))=k.

2. The set of candidates that are eliminated if β(D(·)) 6= k, called Sβ(D(·))=k.

3. The set of candidates that cannot be eliminated irrespective of the value of

β(D(·)), called U .

125

In Op-2, the probability of each candidate in C is updated using Bayes’ rule.

Equation 6.1 shows the posterior probability for the first refinement step.

p
(
cj|β

(
D(·)

)
= k
)

=
p
(
β
(
D (·)

)
= k|cj

)
p0(cj)

p
(
β
(
D (·)

)
= k
) (6.1)

The equation for the posterior probability is reformulated for each category of

candidates (See [34] for proof).

p
(
cj|β

(
D(·)

)
= k
)

=



0, cj 6∈ Rβ(D(·))=k

p(cj)

p
(
β
(
D(·)
)

=k
) , cj ∈ Sβ(D(·))=k

p(cj)/2

p
(
β
(
D(·)
)

=k
) , cj ∈ U

(6.2)

The binary classification for β(D(·)) is a decidedly simplistic representation of all

the possible differences that might exist between a model and real measurements. We

restrict ourselves to a binary choice for β(D(·)) to simplify notation but as shown in

[34] this is not a limitation of the inference algorithm.

Complexity of the algorithm

We have found that the modeling formalism presented in Section 6.2 can be scaled

to a full size semiconductor manufacturing line. The authors in [146] and [86] discuss

other research efforts to represent a plant wide model using compositional semantics.

Our observation about such a modeling approach, like theirs, is that modeling a

plant with sufficient detail results in very large graphs. As an example, a graph

representation using workflow models for a simplified ‘textbook’ DRAM process [158],

had 134 vertices and 182 edges. Discussions with industry partners indicate that the

graph representation may be two or three times as large for a practical manufacturing

process [88].

126

The computational requirements of the inference algorithm are a limiting factor

to the size of the graph that can be considered. In Op-1 of the inference process we

use a graph traversal algorithm to propagate the observation through the topology

to identify the conflict set. Graph traversal is O(V + E).

In Op-2 of the inference process, the set C is manipulated and updated. As the

authors in [34] show, the complexity of the refinement process is the same as a binary

sort of C which is O(2V).

Since both steps are repeated for after each replacement, the complexity of the

inference process is O(22|V|). In practical terms, we find that the superlinear rela-

tionship of computational complexity to graph size limits an implementation of the

algorithm to less than 100 vertices on a typical modern desktop computer.

In the following sections we will present abstraction and relaxation methods specif-

ically suited for graphs of manufacturing process models. We will show that we are

able to improve the scalability of the inference algorithm and improve the confidence

margins for set c∗.

6.5 Abstraction and Relaxation methods for process graphs

As discussed in Section 6.2, we use a causal model for our representation because

topological primitives such as predecessors and successors which are easily identified

in a digraph are also used directly as a template for deductive reasoning.

Human diagnosticians excel at inferring and deducing the conflict set c∗ at the

root of a discrepancy by including in their analysis statistical correlation, hypothetical

constraints and sometimes even unobservable entities in order to make observations

fit the mold of a causal schema. The authors in [121] point out that human inference

is rapid, sometimes at the expense of precision, due to the compulsive urge to make

theories fit a causal structure. Expert diagnosticians make better choices for these

“intuitive” causal constraints and therefore are able to retain the accuracy of the

127

13

3

9

14

7

12

11

15

5
4

10

6
1 2

8
z12

Figure 6.6: The figure shows a simple process flow shown as a directed graph. The
numbered nodes represented steps in the workflow. Step 3,6 and 9 are
executed by the same tool.

inferred result.

We will now introduce three simplification strategies that might be considered

intuitive by a diagnostician. In a graph theoretic sense these hypothetical constraints

enable us to either abstract or release some of the dependencies in the causal digraph.

The simplifications reduce the computational complexity of the inference problem by

reducing the number of vertices and edges that have to be considered for analysis.

6.5.1 Folding correlated vertices

In semiconductor manufacturing processes, etching and deposition steps may re-

peat several times in the workflow with different process recipes being used for each

instance. In many cases the same etching or deposition tool is used for multiple

instances.

Let us start with the graph G1 = (V1, E1) shown in Figure 6.6. The graph is

structurally identical to Figure 6.5 however, vertices 3, 6 and 9, shown as boxes,

illustrate three steps in the process that use the same tool (Tool-A). Let the set

FA := {3, 6, 9} represent the set of instances of Tool-A. Given that Tool-A is used

multiple times in a manufacturing process, the analysis can be simplified by assuming

that a yield discrepancy arising from vi ∈ FA is correlated with the rest of the vertices

in FA. For our analysis we set the conditional conflict probability between elements

in FA = 1, i.e. p(β(D(vi))|β(D(vj))) = 1 ∀v ∈ FA.

128

In essence, assuming that conflicts are correlated between instances of a tool is an

example of a hypothetical constraint or an expert’s intuition. In order to reintroduce

this simplifying constraint into the causal schema of a directed graph, we substitute

vertices in FA with a single ‘folded’ vertex v′i.

In Figure 6.7 we graphically show the resulting graph G2 after the vertex fold-

ing operation. The folded vertex in the figure is labeled 1′. Note that β(D(v′i)) =∨
β(D(2F

A
)) i.e. β(D(v′i)) is a disjunction of binary classifications applied to every

subset of FA.

We say that G1 collapses into G2, denoted G1BG2, iff there exists a homomorphism

h : G1 → G2, that is to say, a mapping V1 → V2 such that, if {x, y} ∈ E1 then

{h(x), h(y)} ∈ E2. We also specify four additional constraints on the collapse operator

B:

(1) The transformed graph G2 is a connected graph.

(2) Folded vertices form a vertex cut on G2.

(3) The small cycle constraint |P (x, y)| < Lf is not violated.

(4) A planar embedding exists for G2 i.e. an isomorphism for G2 exists such that no

edges cross each other except at common vertices.

We implement G1 B G2 using a recursive fold-then-test algorithm for a given fold set

FA ⊆ V1 as shown in Algorithm 1.

For typical graphs, constraints (1) and (2) are rarely violated. In some cases the

merging of FA → v′1 terminates due to a violation of constraints (3) or (4). In such

a case we spawn a new folded vertex v′2 and apply h : F → v′2 to the remaining

elements in FA. As a result, multiple folded vertices may be generated for a single

fold set. This commonly occurs when the same tool reappears regularly throughout

the process or when instances of a tool repeat after many (> Lf) intermediate process

steps.

129

Algorithm 1: Vertex folding

Data: G1 = (V1, E1), FA, Lf
Result: G2 = (V2, E2)
Subroutines:

P (xy): Finds the longest path from x to y.
merge(V , E): Merges vertices in set V and produces the resulting

contracted edge set E ′ using the vertex identification method in [136].
Test-1 (G): Tests if G is connected.
Test-2 (G): Tests if v′i is a cut vertex for G.
Test-3 (G): Tests if G satisfies the Boyer-Myrvold planarity condition [23].

Main routine:
Partially order FA by a breadth first predecessor-successor relationship (FA is
a causal set when G1 is acyclic).
1→ i, V1 → V2

while FA 6= ∅ do
Select the first two vertices x, y ∈ FA.
if |P (xy)| < Lf then

Vertex set V A
i = {x, y}

v′i, E ′2 = merge(V A
i)

V ′2 = V2 \ V A
i ∪ v′i

G ′2 = (V ′2, E ′2)
if Test-1(G ′2) & Test-2(G ′2) & Test-3(G ′2) then
V2 = V ′2, E2 = E ′2, G2 = (V2, E2)
FA = FA \ y

end

else
FA = FA \ x
i++

end

end

130

1' 7

10

4

13

14

11 12

15 5

z12

1 2

8

Figure 6.7: The figure shows the process workflow after instances {3, 6, 9} of a single
tool have been folded into a single vertex 1′.

6.5.2 Clustering strongly connected vertices

Consider the output of the folding operation G1 B G2 shown in Figure 6.7. The

folding operation introduces strongly connected components (or cycles) in G2 even

when G1 is acyclic. Cycles may also be present in G1 prior to folding. In [122] the

authors point out that when a graph contains cycles, there is no exact solution to

the Bayesian inference process since some of the causal paths are circular. If an

asymptotic result is obtained, then it varies based on the particular structure of the

graph and the search algorithm used [109] [150]. We remove circular reasoning traps

and restore exactness in the converged result of our diagnostic analysis by abstracting

vertices in a cycle into a ‘cluster’ of co-dependent elements.

To identify clusters we use the notion of a strongly connected component (SCC)

which is maximal subgraph of a directed graph such that for every pair of vertices

(x, y) in the subgraph, there is a directed path from x to y and a directed path from

y to x. The algorithm described in [143] is a numerically efficient method to identify

SCCs in a graph. Once SCCs have been isolated, SCC subgraphs may be abstracted

into ‘clusters’ in order to find an acyclic embedding for G2. The reader is directed

131

L1

1' 4 5 8

7

10

13

14 12

11

15

1 2

z12

Figure 6.8: The figure illustrates the resulting graph after the set strongly connected
vertices in Figure 6.7 have been abstracted into a cluster.

to the work presented in [20], [39] and [2] for tree decompositions suited to Bayesian

inference over generalized directed graphs.

We use the cluster-tree elimination [35] approach on folded graph G2 to generate an

augmented tree G3 whose vertices are either clusters representing SCCs or unaltered

vertices from the underlying subtrees in G2. It is possible that the cluster-tree for G2

is a degenerate graph with no underlying tree structure. However, the constraints

we placed on the size of re-entrant cycles in Section 6.2 and on the folding algorithm

in Section 6.5.1 primarily serve to restrict the cardinality of an SCC and to retain

intervening subtrees between abstracted SCCs.

Figure 6.8 is a cluster tree for Figure 6.7 showing an abstract cluster L1 for SCC

{1′, 4, 5, 8} made up of loops {1′, 4, 5} and {1′, 4, 8}. Note that the cluster abstract is

graphically similar to a vertex in that it inherits the inclusive disjunction β(D(Li)) =∨
β(D(2Li)). We refrain from referring to the cluster abstract as a vertex since the

elements in Li are not aggregated when generating the candidate set C. In other

words, Li is treated like a single vertex for Op-1 of the Bayesian diagnosis process

presented in Section 6.2 but not for Op-2.

132

6.5.3 Relaxing latent effects

In Section 6.2, we discussed the introduction of source vertices {13, 14, 15} to rep-

resent either process parameters or latent effects in a manufacturing process. Vertices

representing deterministic process parameters are treated like regular vertices, where

the forecasted value ẑi for a process parameter may be a baseline or expected value.

Latent effects, however, are never measurable and have no explicit model forecasts.

We assume that latent effects, represented by vertices ei ∈ E, are simply specified as

a finite prior probability on classification k.

Consider for example the finite probability of wafer misalignment (which always

results in a defective wafer) represented by vertex 14 in Figure 6.8, denoted by a prior

probability p14(k = 1). Vertex 14 can never be absolved since it cannot be measured.

Also, since an implicit upstream dependence of vertices is encoded into our inference

problem, vertex 14 is culpable for observations from its successor vertices 7, 11 and

12. We can, therefore, always implicate vertex 14 for discrepancies observed from its

direct successors by specifying that the probability of classification k after replacing

ẑ7 with z7 is affected by the added possibility of wafer misalignment represented by

the cumulative probability p14(k) +
(
p
(
β (D(7)) = k

))
.

We also relax latent effects with multiple direct successors into independent iden-

tically distributed (IID) random variables acting parallelly on each direct successor.

It is also possible for multiple latent sources to impact a single vertex or cluster as

seen with vertices 13 and 15 on L1 in Figure 6.8. In such a case we aggregate the

latent sources using an opinion pool. Several pooling methods are presented in [50],

but extending our IID assumption, our aggregate probability is a linear sum of all

incident latent sources. These assumptions allow us to remove source vertices and

outgoing edges corresponding to latent effects from G3, but incorporate their influence

on their direct successors using auxiliary variables pei(k) for all vertices ei that corre-

spond to latent effects. pei(k) is ‘attached’ to each direct successor of ei. Figure 6.9

133

L1

1' 4 5 8

7

10

12 z12

11

1 2

Figure 6.9: The figure shows the graph G4. Vertices 13,14 and 15 have been abstracted
into auxiliary variables.

shows the graph G4 with latent sources removed. Auxiliary variables corresponding

to their respective latent effects are attached to the vertices (and clusters) shaded in

grey.

Auxiliary variables are included in the diagnostic analysis as follows. Note that

the marginal likelihood p (β (D(·)) = k) in Equation 6.1 is a normalizing constant

for the posterior probability p(cj|β(D(·)) = k). For a system with no latent effects,

p (β (D(·)) = k) =
∑
p(cj) ∀cj ∈ Sβ(D(·))=k since we marginalize out the conditional

probability for each candidate cj ∈ Sβ(D(·))=k to get the prior probability of classi-

fication p (β (D(·)) = k). If set Aux contains all the auxiliary variables attached to

candidates in Sβ(D(·))=k, then Equation 6.3 provides the normalizing constant for each

new computation of posterior candidate probability.

p (β (D(·)) = k) =
∑

p(cj) +
∑

pvi(k) (6.3)

∀cj ∈ Sβ(D(·))=k, pvi ∈ Aux

Abstractly, we can consider an auxiliary variable to be a representation of un-

certainty in each diagnostic step. While latent effects are a source of uncertainty,

auxiliary variables may also be used to encode measurement uncertainty at each

measurement site as well as uncertainty in the classification algorithm.

The abstraction and relaxation methods presented in Sections 6.5.1, 6.5.2 and 6.5.3,

applied sequentially, transform the native process graph G1 in Figure 6.6 with 15 ver-

134

tices and 18 edges to the graph G4 shown in Figure 6.9 with 7 vertices and 8 edges.

The reduction in the size of the process graph significantly reduces the number of

computations required to implement the diagnosis procedure in Section 6.4.

6.6 Strategic structure recovery

The graph simplification strategies presented in Section 6.5 reduce the computa-

tional requirements of the diagnosis process at the cost of reducing the granularity

with which the probabilities of candidates in C are differentiated. Consider the vertex

clustering strategy in Section 6.5.2, where the posterior probabilities of all candi-

dates containing vertices that lie in a cluster are updated as a group. For a k vertex

cluster,
∑n

j=1
k(n−1)!
(n−j)!j! candidates are processed as a group preventing iterative dif-

ferentiation between candidates inside the group. The auxiliary relaxation strategy

in Section 6.5.3 removes edges and vertices related to latent effects to reduce the

memory requirements for analysis, but also limits the posterior probability of candi-

dates attached to auxiliary variables by modifying the marginal likelihood as shown

in Equation 6.3.

The practical consequence of the simplifications applied to the process graph is

that once the diagnosis process is applied there is a greater possibility that no clear

choice for c∗ is found. Note that c∗ = ci s.t. p(ci) = max{p(C)} in keeping with

the Bayesian inference strategy used for diagnosis. Recall that the diagnosis process

terminates successfully only when p(c∗) ≥ 0.95.

If a suitable c∗ is found, there is a possibility that it may include a cluster ver-

tex or a vertex with an attached auxiliary variable. To account for this possibility,

we say that the diagnosis terminates successfully on a simplified graph only when

p(c∗) ≥ 0.95 and when every vertex in c∗ has been fully reversed to the native state

prior to simplifications. When the termination condition is not met for a simplified

process graph after all replacements have been considered, a strategy is needed to

135

reverse abstractions and to restore relaxed constraints in order to provide sufficient

granularity to identify c∗. Since reversing simplifications also increases the complex-

ity of the analysis, we adopt a strategy of ordered iterative structure recovery to

maximize the diagnostic value of each reversal.

Suppose L = {L1 · · ·Ln} is the set of all clusters in G4 and E = {e1 · · · em},

Aux = {a1 · · · am} represent the set of latent vertices and the corresponding auxiliary

variables respectively. Then the net uncertainty in the group of candidates with

at least one vertex in Li ∈ L is used to rank the Li against other clusters in L.

Similarly, the net uncertainty in a group of candidates containing at least one vertex

attached to an auxiliary variable ai is used to rank ei against other latent sources in

E. We use the information (or Shannon) entropy [49] of the candidate group as a

metric of net uncertainty. HLi = −
∑
p(ci) log(p(ci)) (∀ci with at least one vertex

in Li). Then max{HL ∪ HE} corresponds to an element Li or ei which is either

unfolded or reintroduced into the graph to produce a new graph G5. The iterative

structure recovery scheme is detailed in Algorithm 2. Note that a cluster reversal

operation dissolves any logical disjunction used for measurements from vertices in the

cluster and the reintroduction of a latent source vertex generates
∑n

j=1
(n−1)!

(n−j)!j! new

candidates. The diagnosis process is reinitialized on G5.

6.7 Improvements in noise tolerance

Noise, in the diagnostic context, is the net uncertainty in each inference step. The

auxiliary variables used to represent latent effects are a source of noise since they

represent the uncertainty in each classification D(·) and consequently any inference

drawn from it. The introduction of auxiliary variables modifies the marginal proba-

bility of each Bayesian update as shown in Equation 6.3. By substituting the noise

marginal from Equation 6.3 into Equation 6.1, we see that when the set of auxiliary

variables Aux is non-empty, every update to the posterior candidate probability is

136

Algorithm 2: Structure recovery

Data: G4 = (V4, E4), E,A,L, C
Result: G5 = (V5, E5)
Initialize: HLi = 0, Hei = 0 ∀Li ∈ L and ∀ei ∈ E
foreach cj ∈ C do

foreach Li ∈ L do
if cj contains vertex v such that v ∈ Li then

HLi = HLi − p(cj)log(p(cj))
end

end
foreach ei ∈ E do

if cj contains vertex v such that ai attached to v then
Hei = Hei − p(cj)log(p(cj))

end

end

end
HLi
max = max{HLi} ∀Li ∈ L

Hei
max = max{Hei} ∀ei ∈ E

if {HLi
max > Hei

max} ∧ {Li contains a folded vertex} then
Restore the internal cycle structure of Li
Unfold vertices in Li
Return: G5 = (V5, E5)

else
Restore the vertex ei and corresponding edges
Return: G5 = (V5, E5)

end

137

reduced by a factor of ρ given by Equation 6.4.

ρ =

∑
p(cj)∑

p(cj) +
∑
pvi(k)

(6.4)

∀cj ∈ Sβ(D(·))=k, pvi ∈ Aux

Note that ρ penalizes the convergence rate of the diagnosis process as well as limits

the maximum probability for c∗. A naive strategy to include noise or uncertainty in

each Bayesian update would be to aggregate all auxiliary variables into the noise

marginal to represent the net uncertainty in each classification. In other words, every

auxiliary variable in the graph G4 is a member of set Aux.

However, as seen in Equation 6.4, the performance of the diagnosis process is

improved by minimizing |Aux|. In our proposed approach, we minimize |Aux| at

each iteration of Equation 6.1 by only considering auxiliary variables attached to

the candidates in set Sβ(D(·))=k for each new substitution considered. As vertices are

absolved during the diagnosis process, the number of auxiliary variables in Aux is

also reduced showing incrementally increasing improvements in the convergence rate.

While the cumulative improvement in the convergence rate of the proposed approach

is heavily dependent on the graph structure and the number of latent sources, we

observe that the improvements are most significant during the final iterations as ρ→ 1

allowing the diagnosis process to maximize the probability of the true candidate c∗.

6.8 Application of the method to process graphs

Our approach was applied to an example of a 35µm semiconductor fabrication

process. The workflow featured 106 steps with 93 unique tools. Six latent sources

were considered in the analysis, each impacting up to 5 different steps. Figure 6.10

shows a folded representation of the workflow. 8 clusters were identified in the graph

138

and latent sources were relaxed into auxiliary variables to yield a 40 vertex graph.

The discrepancy identification algorithm was manually restricted to only consider

single point replacements in order to aid the presentation of results in this section.

It was assumed that 20 steps in the process were instrumented for measurement,

using which, the simplified graph was diagnosed as prescribed in Section 6.4. The

computational requirements for diagnosing the simplified graph showed an O(260)

proportional reduction compared to the native graph. The true adaptation candidate

c∗ for our example process was known a-priori and Figure 6.11(A) shows the proba-

bility of the true adaptation candidate p(c∗) as each new substitution was considered.

The figure shows that p(c∗) was reinforced after each iteration, however its final prob-

ability after 20 single point replacements were made did not meet our termination

condition (p(c∗) = 0.64 < 0.95).

At this point the structure recovery algorithm was initiated and one cluster was

unfolded reintroducing 8 vertices into the graph. Figure 6.11(B) shows the evolution

of p(c∗) after the diagnosis process is re-applied to the graph after unfolding a single

cluster. The recovered structure allowed greater differentiation between candidates

and p(c∗) was reinforced further until it reached our successful termination condition

after 15 single point replacements.

Another illustrative example was designed using the graph in Figure 6.10 to high-

light the improvements in noise tolerance and convergence rate using our proposed

auxiliary relaxation approach. A true candidate was manually selected and the diag-

nosis process was run twice. Every auxiliary variable was included in the marginal

in the naive case and our proposed approach for selecting relevant auxiliary variables

was used in the other case. Figure 6.12 shows a comparison of convergence trajecto-

ries for the naive case and our approach (shown as a solid line) over 20 replacement

steps. The figure shows that the proposed approach has significantly improved noise

tolerance evidenced by the higher probability for c∗ by the end of 20 iterations. The

139

Wafer Marker

Wafer Scrubber(Start)

VF Pre-Oxide

VF LPCVD Nitride

SEM_Photo

Nitride Etch

Resist Strip_1

SEM_Etch_1

VF LPCVD Nitride_1

VF Field Oxide_1

W.S. Nitride Strip

 Photo Litho_1

High Energy IMP_1

W.S. Pre-doped poly PR Strip_2

VF POLY OXIDE_1 Photo Litho_2

Resist Strip_2

W.S. Pre-doped poly PR Strip_3

VF Pre-Oxide

Photo Litho_3

High Energy IMP_2

Resist Strip_3

Photo Litho_4

Resist Strip_4

VF Gate Oxide

VF LPCVD Undop Poly

Backside Poly Etch

SEM_Photo_1

Poly Etch - Thin poly

Resist Strip_5

SEM_Etch_2

VF LPCVD Doped Poly

Sheet Resistance(DIFF)

HF Vapor Etch

WSix-CVD

Sheet Resistance(TF)

PETEOS ARC

Resist Strip_6

SEM_Etch_3

Photo Litho_6

High Current IMP_1

W.S. Post-XSi PR Strip_1

VF Poly Oxide_2

Resist Strip_7

High Current IMP_2

Resist Strip_8

VF LPCVD TEOS(Post Ti)

SEM_Photo_4

Oxide Etch - Poly Via Resist Strip_9 High Energy IMP_3

SEM_Photo_5

Resist Strip_10

SEM_Etch_5

Photo Litho_8

High Current IMP_3

Resist Strip_11

SACVD PMD BPSG

VF BPSG Flow

PETEOS Cap_1

CMP Oxide_ILD

Oxide Etch - Cont

W.S. Post-XSi PR Strip_4
SEM_Etch_6

High Current IMP_4

Photo Litho_9

Ti/TiN sputter - Glue

RTA - TiSi2

W-CVD

W Etchback

AlCu Multi sputter

SEM_Photo_7

UV Curing - MET

Metal Etch_1

Resist Strip_12

PETEOS Cap_2

CMP Oxide_IMD

Oxide Etch - MET Via

Resist Strip_13SEM_Etch_7

W-CVD_2

Wet Etchback

AlCu Multi sputter_2

UV Curing - MET_2

Metal Etch_2

Resist Strip_14

Ox. PASS. Dep.

Nitride PASS Dep

Photo Litho_11

Oxide Etch - PAD

VF Alloy
Backside Grind end

a b

c

d e
f

Figure 6.10: A digraph representation of a 35µm semiconductor fabrication process
after vertices representing multiple instances have been folded. Vertices
(a,b,c,d,e,f) correspond to latent effects.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Diagnostic iteration

P
ro

ba
bi

lit
y

of
 th

e
tr

ue
 c

an
di

da
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ro

ba
bi

lit
y

of
 th

e
tr

ue
 c

an
di

da
te

Diagnostic iteration

A B

Figure 6.11: A graph showing the probability of the true candidate c∗ as the diagno-
sis process updates its posterior probability with each new measurement
replacement. Subplot-A shows that p(c∗) does not reach the success-
ful termination condition when diagnosis is applied to the simplified
graph. Subplot-B shows the continuation of the diagnosis process after
one cluster has been reversed using the structure recovery algorithm.
The diagnosis terminates successfully after 15 iterations.

140

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 th

e
tr

ue
 c

an
di

da
te

Diagnostic iteration

Naive inclusion of noise sources
Proposed approach

Figure 6.12: A graph showing the probability of the true candidate c∗ as 20 replace-
ments are sequentially performed. The cross markers show the trajectory
for the naive inclusion of all uncertainties and the solid line shows the
improved convergence when our proposed method is used.

convergence rate of the diagnosis process is also enhanced for every iteration.

6.9 Conclusion

In this chapter we present a diagnostic strategy to isolate sources of yield loss

resulting from a discrepancy between measurements from a manufacturing process

and its model. The manufacturing process and its model together comprise a hybrid

process. Each process step is semantically defined based on its impact on the end of

line yield. An explicit description of the interconnections between process steps is also

provided. The model of the manufacturing workflow is therefore a semantic network.

This representation of the manufacturing process enables the use of a Bayesian infer-

ence process to isolate process steps responsible for end of line yield loss. Our primary

contributions in this chapter are tools and methodologies to pose a manufacturing

process as a Bayesian diagnosis problem. We address specific challenges in doing so

by developing a graph structure to represent the dependencies in a manufacturing

141

process and then address challenges of computational complexity, measurement and

process noise. An itemized listing of our contributions is presented below:

1. A graph representation for manufacturing processes employing a model based

prediction framework for quality control. The graph notation is used to repre-

sent both the physical structure of the manufacturing line as well as the net-

work of dependencies between atomic model components. The graph notation is

compatible with Bayesian diagnosis algorithms and includes latent effects that

are not explicitly measured or modeled. The graph representation also consid-

ers structural properties of semiconductor manufacturing lines such as loops,

branches and entrant processes.

2. A systematic approach to investigate the impact of individual process steps on

the wafer sort yield of a given process. The substitution approach we propose

is compatible with current measurement based yield calculation methods and

provides a stream of discrepancy observations required for Bayesian diagnosis.

3. A set of graph simplification strategies to reduce the number of vertices and

edges in the graph, making the application of the approach to larger and more

realistic manufacturing lines computationally feasible. The reduction strategy

includes identifying and folding multiple instances of a single machine, abstract-

ing circular sub-graphs and relaxing the influence of disturbances and noise on

the process.

4. A strategy to reverse specific simplifications one at a time when doing so im-

proves the accuracy of the final result. The entropy contribution of each poten-

tial reversal is used as a metric for its strategic value in improving the accuracy

of the final result.

5. An analysis of noise sources that reduce the rate of convergence of the diagnosis

process and limit confidence in the final result. A method to reduce the impact

142

of noise from latent effects is presented. The method prunes the set of noise

sources at every diagnostic step to only consider latent effects that directly

impact probable sources of yield loss. The method is demonstrated to improve

both the rate of convergence and the confidence in the final result.

143

CHAPTER VII

Distributed control using semantic networks and

models

In this chapter we formulate a hierarchical control problem that establishes a

foundation on which we can apply many of the research concepts presented in this

dissertation. The results presented in this chapter are preliminary in nature and

intended to highlight how semantic modeling and declarative descriptions of topology

might be employed to improve the decentralized, model-based control of multiple

agents. An extended abstract of this work was invited for submission in a special

issue on Control Theory and Technology of the IEEE Transactions on Smart Grid

(TSG). The chapter also provides a discussion of future improvements and extensions

to the work by using semantic networks.

7.1 Introduction

The rising number of Plug-in Electric Vehicles (PEVs) is a growing concern for the

distribution utilities, as they anticipate difficulties in accommodating the additional

PEV charging load [53].

Network upgrades are a trivial solution to the above issue, but would require

massive investment by the distribution utilities, whose costs are ultimately passed

144

to consumers. The benefits of coordinated charging of PEVs to preempt overloading

of the distribution system are widely discussed in academic publications. Citing

improvements in cost and energy efficiency, the authors in [102] and [54] propose

broadcasting incentives to all connected PEVs, in order to discourage charging during

demand peaks and encourage charging when demand is low. Incentives (or penalties)

may be computed using heuristic tariff rules [40], as are in use today, or by deriving a

Nash-equilibrium incentive profile at the substation level, to manifest a valley-filling

behavior for the aggregate PEV charging load [105], [138]. A key assumption in

the substation level broadcast incentive approach is that the PEVs are price takers:

their individual objectives or strategies have no significant effect on the price. The

Nash-equilibrium incentive scheme lacks robustness to varying incentive response of

individual consumers and non-deterministic communication delays, especially if PEV

loads represent a significant fraction of overall load on distribution networks. The

broadcast incentive approach, however, easily scales to a very large PEV population.

The authors in [70] implement PEV charging control at the distribution-transformer

level. Their approach reconciles the conflicting objectives of the distribution utility to

regulate (or restrict) the gross consumer demand on the network, and the individual

objectives of each connected PEV (i.e. to charge at an acceptable rate). Their ap-

proach uses a centralized agent to compute an incentive signal so that the aggregate

charging load is maintained within utility limits. Additionally, a model predictive

control (MPC) scheme is used to reject load disturbances.

With potentially hundreds of connected PEVs in a single distribution network,

the communication overhead involved in actively regulating the PEV population,

while addressing concerns of robustness for the closed loop system, severely limits the

practical scale of the MPC approach [45]. Additionally, most existing coordination

strategies do not consider the commercial incentives that were already in place to

discourage high peak loads among large customers, before the advent of PEV charg-

145

ing stations (PEVCs). Where such large customers add PEVCs to their buildings,

they may reduce costs by the active regulation of the PEVC loads. It seems likely

that future schemes for the coordination or control of PEV charging will be imple-

mented at least partially through commercial incentives, similar to those used for

larger customers today. The existing incentives have naturally evolved to discourage

peak overload situations, so they are of interest not only as consumer incentives, but

also as surrogate measures for network load constraints.

Our approach shows how the local coordination of charging among small groups

of PEVCs (∼4 PEVCs) could be designed to respond to existing pricing structures in

such a way as to reduce the risk of overload for a much larger network, without the

need for bandwidth-intensive communication with a central controller at the distri-

bution substation. This hierarchical coordination is achieved by “grouping” PEVCs

with selected building loads, so that together they can form a more constant load,

and peak building loads can be mitigated by temporary reductions in charging power.

Charging rates for the group are then optimized using a cost function based on ex-

isting utility tariffs for large customers, which effectively penalizes load peaks. This

strategy has commercial as well as load-balancing advantages. For example when

PEVCs are added to a single commercial building, with no change in tariff structure,

we show how customers can charge their vehicles at much lower cost than is normally

possible in residential areas.

This chapter is organized as follows. In Section 7.2 we present a motivating ex-

ample of a power distribution network, consumer incentives and network constraints.

The section also highlights the negative impact of uncoordinated PEV charging on

the network and on consumer costs. In Section 7.3 we present our approach for hier-

archical coordination of PEVCs using incentive arbitration. In Section 7.4 we present

quantitative results showing improvements of our approach applied to the motivating

example and summarize our contributions. Finally, we propose future extensions to

146

Commercial
 load

Residential load +PEVC Commercial load
 +PEVC circuit

PEVC farm

Distribution Substation

(a) (b) (c)

(d) (e)

(i) (iii) (ii)

Figure 7.1: A schematic diagram of a electric distribution circuit. A single distribu-
tion transformer supplies a mixture of commercial buildings (i, ii, iii) and
residential loads. The network also features twelve PEVCs on five circuits
(a,b,c,d,e).

the work, utilizing topology generation and semantic modeling in Section 7.5.

7.2 Impact of PEVC loads on a distribution network: Prob-

lem Statement

The hypothetical distribution network we use for our analysis is shown in Fig-

ure 7.1. The network reflects a small district, such as a university campus or a business

park, supplied by a distribution substation. A population of N PEVCs is connected

to the network. The dynamic state of each PEVC n ∈ N := {1, . . . ,N} at time

step k is represented by the state vector xn[k] := [Sn[k], Pn[k],Wn[k]]T , (Sn[k] ∈ R+,

Pn[k] ∈ R+ and Wn[k] ∈ Z+), where 0 ≤ Sn[k] ≤ 1 is the normalized instantaneous

state of charge of the PEV connected to n. Pmin
n ≤ Pn[k] ≤ Pmax

n is the instan-

taneous power draw by n. Wn represents the binary operational state of PEVC n.

Wn = 1 when n is actively charging a PEV, else Wn = 0. The distribution network

also supportsM commercial and residential loads, the dynamic state of each building

m ∈ M := {1, . . . ,M}, at time step k, is represented by a measurement of building

Lm[k] kW.

147

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

B
u

il
d

in
g

 l
o

a
d

 (
k
W

)

Time (hours)

Usage rate
Peak rate
Penalty rate

 Available surplus
for low cost charging

Peak load for the month

Building load

Penalty load threshold

Figure 7.2: Load profile for a large residential building at the University of Michigan
recorded over a 24-hour period. Under price tariffs such as D6, which
are typically used for large buildings, peak loads are heavily penalized
with a monthly capacity charge, proportional to the highest peak power
recorded in the month. In this example, the peak power, for the month
so far, is set hypothetically at 350 kW. If the day’s peak load exceeds this
level, then the capacity charge will be increased significantly. However,
if additional loads can be supplied without exceeding the peak, then any
additional PEVC load will be charged at low cost.

148

7.2.1 Tariffs for small and large customers

The distribution network in Figure 7.1 includes several large commercial con-

sumers. Large consumers are usually subject to tiered pricing plans such as the

Michigan-D6 tariff scheme [40]. The D6 tariff heavily penalizes large peak loads via

a capacity charge, proportional to the highest single load recorded within one month,

combined with a relatively low charge for energy usage. In simplified form, energy

is charged at the low rate of $0.04 per kWh, but there is an additional monthly ca-

pacity charge of $15 per kW of the maximum power peak during the month. This

forms a strong incentive to minimize load peaks. As an example, consider the load

profile shown in Figure 7.2, which records the load of a large residential building at

the University of Michigan over a 24 hour period, and suppose that this load is billed

under the D6 tariff. If PEVC loads are added to this load at “off-peak” times (e.g

0100 to 0600 hrs), such that the monthly peak load is not increased, then the cost

of PEV charging is only $0.04 per kWh. However, if a PEVC load is added during

a peak period (e.g. 1600 to 2200 hrs.), increasing the monthly peak load, then the

cost for PEV charging would then be around $0.16 per kWh, 4 times higher than

the off-peak equivalent. There is therefore a heavy penalty for increasing the peak

load of the building beyond whatever threshold it would otherwise have reached. For

illustrative purposes, the peak load threshold in Figure 7.2 is set at 350kW.

We include the above capacity charge in our control system design in order to

ensure that it acts to reduce consumer costs while also reducing peak loads. Further,

large load excursions (greater than a penalty load threshold) are even more heavily

penalized. In Figure 7.2 the penalty threshold is set at 400kW, purely for the purpose

of illustration.

149

7.2.2 Electrical network constraints

We assume that a single transformer located at the distribution substation supplies

power to all the loads in the network, such that the aggregate instantaneous power

flowing through the transformer is given by Equation 7.1.

T [k] =
∑
n∈N

(Wn[k] · Pn[k]) +
∑
m∈M

Lm[k] (7.1)

T [k] ≤ T limit represents a simplified limit constraint on the transformer. The limit

constraint is a simplification of typical supply constraints used for substations [110],

[59]. The assumption of a simplified limit constraint on the transformer is not a

requirement of our approach but is used merely for ease of illustration. Figure 7.3

shows the transformer limit constraint and the aggregate building load in the distri-

bution network over a typical 24-hour period. The figure highlights a key motivation

for regulating the PEVC load on the circuit, i.e. the anticipated peak PEV charging

hours in the late evening (1600-2200hrs.) coincide with peak building loads on the

network. In the upcoming sections, we will focus our analysis on the 8-hour period

between 1600hrs. and 2400hrs.

Listed below are several assumptions we make about our hypothetical distribution

network:

• Tariffs such as Michigan-D6 are used for all building loads.

• Legislation is implemented so that all PEVCs exceeding 1.8kW (120V, 15A)

load must be approved by the relevant utility, to ensure that they comply with

communication and control standards required for coordinated load regulation.

• On rare occasions, the utility may communicate a “distress” signal to all PEVCs

in an overloaded network, mandating a temporary reduction in power. However,

owing to the local control mechanism described below, this action should be

150

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A
gg

re
ga

te
 B

u
ild

in
g

Lo
ad

, k
W

Time (Hours)

Available surplus
capacity for PEV charging

𝑇𝑙𝑖𝑚𝑖𝑡

Aggregate Building Load Anticipated peak hours
for PEVC load.

Figure 7.3: Over a 24-hour period, the aggregate building load on the distribu-
tion transformer peaks at ∼ 1000kW , whereas the transformer limit is
∼ 1250kW . The peak in aggregate building load coincides with antici-
pated peak hours for PEV charging (during the evening hours). This plot
highlights the need for active regulation of PEVC loads to ensure that
T limit is not violated.

necessary only on rare occasions, and for this reason, we do not consider it in

this study.

• All PEVCs are guaranteed at least 1.8kW (Level 1 charging rate) during their

charging periods, apart from rare occurrences such as equipment failure.

• PEVs connected to active PEVCs can expect charge completion over an 8-

hour period or less, and they are provided with an estimated completion time,

but they are always subject to a small probability of unplanned delay due to

overloaded networks, equipment failure, etc.

151

7.3 Incentive based charging using the proposed hierarchical

implementation

Figure 7.4 shows a schematic representation of our hierarchical control implemen-

tation. By delegating control objectives and constraints to small groups of loads, we

aim to reduce the communication between a load regulator at the substation and

each PEVC. By delegating control functions, the scalability of closed loop load lev-

eling is improved. The hierarchical approach also allows groups of loads to optimize

local objectives, such as varying charging requirements of each PEV and specific tariff

schemes for each building.

In Section 7.3.1, we first optimize charging trajectories for the entire PEVC pop-

ulation in the distribution network. The optimized trajectories are computed based

on simple charging models for connected PEVs, and load forecasts for the non-PEV

loads in the network. Then, each centrally optimized PEVC charging trajectory is

assigned to a “peer group”. A peer group is a logical network of peers made up of a

few PEVCs and building loads. Within each peer group we implement a decentralized

control methodology to address the objectives of individual PEVs and/or buildings.

The decentralized controller, presented in Section 7.3.2, uses a consensus approach

to address load disturbances, and utilizes object-oriented models for PEV charging

dynamics and building costs.

7.3.1 Centralized charging trajectory optimization

The principal objective of coordinated charging is to abide by network constraints

at all times. We formulate substation objectives as proposed in [70] and formulate

the PEV charging dynamics and network constraints as a mixed integer program, to

optimize the charging trajectories for all connected PEVs.

The evolution of a PEV connected to PEVC n is assumed to follow the simplified

152

Trajectory pool

Peer
assignment

Charging
Trajectory
Optimizer

Simulation
environment

EV charging parameters
and load forecasts

Substation
Constraints

Peer Group (4) Peer Group (3) Peer Group (1) Peer Group (2)

(a) (b) (c)

(d) (e) (i)
(iii) (ii)

Figure 7.4: A schematic representation of the proposed control system hierarchy for
the distribution network in Figure 7.1. The dashed brackets indicate peer
groups. Peer groups are made up of PEVC loads together with building
loads for improved load leveling within each group and at the substation
level.

153

dynamic recursion in Equation 7.2,

Sn[k + 1] = Sn[k] +

[
Wn[k]

ηn · Ts
Qn · 60

]
Pn[k] (7.2)

where Sn is the normalized state of charge, Pn is the charging power in kW, Wn is

the binary charging status of the PEVC, ηn is the charging efficiency and Qn is the

battery capacity in kWh. The indices [k] and [k + 1] correspond to time instants (t)

and (t+ Ts) ∀t ∈ R+. Ts is the update interval in minutes.

An optimal trajectory Pn[1 : K] ∀n ∈ N minimizes the cost function in Equa-

tion 7.3 and is subject to the constraints in Equations 7.4(a-e). Pn[1 : K] is a vector

of charging loads for PEVC n over K time steps. The parameters used to optimize

the distribution network in Figure 7.4 are provided in Table 7.1. Parameter values

are selected based on published data for typical PEV charging characteristics [59] and

electrical network constraints furnished by the University of Michigan, Utilities and

Plant Engineering Department.

arg min
Pn∈N [1:K]

∑
n∈N

[
(1[K×1] − Sn[1 : K])T I[K×K](1[K×1] − Sn[1 : K])

]
(7.3)

0 ≤ Sn[k] ≤ 1 (7.4a)

Pmin
n ≤ Pn[k] ≤ Pmax

n (7.4b)

Wn[k] ∈ {0, 1} (7.4c)

Wn[k] ≥ (1− Sn[k]) (7.4d)

T [k] ≤ T limit (7.4e)

In order to meet the global supply constraint represented by Equation 7.4(e) over

154

Table 7.1: Parameters used to optimize PEV charging trajectories for the distribution
network shown in Figure 7.4. Values for Pmax

n , ηn and Qn are randomly
drawn from within the specified limits.

Parameter Value
N 12 PEVCs

T limit 1.25 MW
Ts 15 minutes
K 32 (8 hours)
Pmin
n 2 kW

Pmax
n [10− 15] kW
ηn [0.7− 0.9]
Qn [40− 50] kWh

the optimization epoch ([1 : K]), it is necessary to include the aggregate building

load as shown in Equation 7.1.

We use the “similar days” load prediction algorithm [28] in which load histories

from similar days (weekdays for weekdays, holidays for holidays etc.) are averaged to

forecast building loads for the time interval [1 : K]. Figure 7.5 compares 24-hour load

data from Figure 7.2 (dashed line) and the forecasted load (solid line) for the same

day. Load forecasts for all buildings in the distribution network are added together to

forecast the aggregate building load on the distribution transformer. Figure 7.6 shows

the forecasted aggregate building load. The figure also demonstrates the impact of

uncoordinated PEV charging on the distribution transformer.

Optimized charging trajectories for the PEVC population N are computed for

eight hours into the future based on load forecasts. Figure 7.6 shows the predicted

total load (solid black line) on the distribution transformer based on forecasted build-

ing load and optimized charging trajectories for all active PEVCs. The figure also

shows that, under ideal circumstances, the transformer constraint in Equation 7.4(e)

is obeyed, even under peak load conditions.

155

200

250

300

350

400

450

0 4 8 12 16 20 24

B
u

ild
in

g
Lo

ad
 (

kW
)

Time (Hours)

Actual Building Load

Forecasted Building Load

Figure 7.5: Building load data from Figure 7.2 overlaid on a similar days forecast for
the same day.

700

800

900

1000

1100

1200

1300

1400

15 16 17 18 19 20 21 22 23 24

Su
b

st
at

io
n

 L
o

ad
 (

kW
)

Time (hours)

𝑇𝑙𝑖𝑚𝑖𝑡

PEVs start charging
at 1615 hrs.

All PEVs charging at 𝑃𝑚𝑎𝑥

All PEVs charging at 𝑃𝑚𝑖𝑛

Forecasted aggregate
building load

Centrally optimized
PEV load trajectory

Figure 7.6: If every PEVC continually loads the network at Pmax, the transformer
limit (T limit = 1250kW) is clearly violated. By centrally optimizing the
charging load for every connected PEV, the total load on the distribu-
tion transformer is limited to T limit even during the peak charging hours
between 1600 and 2200 hrs.

156

7.3.2 Decentralized incentive arbitration

The operating conditions for a real distribution network are rarely ideal. Actual

building loads differ from forecasts and all PEVCs cannot be expected to rigidly follow

a centrally optimized charging trajectory. We propose a local decentralized control

strategy designed to ensure that smaller groups of PEVCs and buildings reject load

disturbances in order to achieve the substation goals of peak limiting and load leveling.

We also show that the local controller may be additionally used to minimize the cost

of energy for buildings and PEVCs while abiding by substation level constraints.

In Figure 7.1, a circuit of PEVCs (PEVC circuit (c)) is shown physically connected

to the power supply of a single commercial building (iii). In this case, the total PEVC

energy is metered and billed together with the building load. Building (iii) and PEVC

circuit (c) can together be considered a “peer group”. In Figure 7.4, PEVC circuit

(c) and commercial building (iii) are together called Peer Group (3).

In cases where PEVCs are added to the existing circuit of a single commercial

building, as in Peer Group (3), a local controller may be used to actively regulate

PEVC load in circuit (c) to ensure that the building load for building (iii) reaches

daily peaks no higher, or minimally higher, than it would without PEVCs. The

marginal cost of energy for PEVC charging would then, in the limiting case, be as

low as $0.04 / kWh. By participating in a peer group, PEVs are able to benefit from

the low commercial sub-peak rate for energy.

PEVC circuits (a) and (b), which are directly connected to the distribution net-

work independently of buildings, for example in a public parking lot, may also be

logically included in a peer group with buildings fed by the same substation. By

assigning PEVC circuit (a) and building (i) to Peer Group (1), a local load controller

for Peer Group (1) may be able to reduce the energy cost for both the building and

charging PEVs.

We propose a decentralized dynamic program, implemented using a peer-to-peer

157

PEVC model parameters

Battery capacity (𝑄)

Maximum charging load (𝑃𝑚𝑎𝑥)

Initial State of Charge (𝑆𝑖𝑛𝑖𝑡)

Charging parameters (𝛾(1), 𝛾(2), 𝛾(3))

Battery
charger
model

PEV
battery
model

PEV disutility
function

𝑢𝑖 𝑘

𝑆𝑖 𝑘

𝑊𝑖 𝑘
𝒞𝑖
𝑃𝐸𝑉𝐶[𝑘]

𝑃𝑖 𝑘

PEVC model object

Building cost parameters

Peak load (𝐿𝑝𝑒𝑎𝑘)

Tariff parameters (𝜏(1), 𝜏(2)) 𝐿𝑗 𝑘

𝒞𝑗
𝑙𝑜𝑎𝑑[𝑘]

Building cost
function

 𝑃𝑖[𝑘]

𝑖∈𝑁

Building model object

Find 𝑢𝑖 𝑘 to
minimize group cost

(𝒞𝑖
𝑃𝐸𝑉𝐶[𝑘]+𝒞𝑗

𝑙𝑜𝑎𝑑[𝑘])

Dynamic program

Figure 7.7: An object-oriented modeling approach used for the decentralized con-
trol within peer groups. The schematic shows generic model objects for
PEVCs and building loads which are instantiated with relevant parame-
ters when required. A dynamic program is used to find a value for ui[k]
which minimizes the group cost.

158

consensus policy, to control PEVC loads within each peer group. Consider a peer

group made up of a subset of PEVCs N ⊂ N and a subset of building loads M ⊂M.

Each active PEVC (i ∈ N) is assumed to be a rational agent seeking to minimize the

disutility function shown in Equation 7.5. The disutility function expresses deviations

from an ideal three-stage charging profile for a Li-Ion battery [95], as a pseudo-cost

CPEV C . Each building load (j ∈M) is also an agent in the peer group and is subject

to the energy costs. Equation 7.6 encodes a building’s energy tariff and a quadratic

penalty on peak load excursions as pseudo-cost Cload. An optimal choice for charging

incentive ui at every time step k minimizes the cumulative pseudo-cost (CG shown in

Equation 7.7) of all the peers in a group. We use a dynamic program to determine

the optimal incentive for each PEVC in the peer group, subject to the constraints in

Equation 7.8(a-e).

The sum of centrally optimized trajectories Pi[1 : K] ∀i ∈ N is used as a constraint

for the peer group, as shown in Equation 7.8(a). The aggregate load from all the

locally controller peer groups, therefore, never exceeds the T peak.

The hierarchical combination of global optimization at the substation level and

local control at the peer group level improves the scalability of PEVC load regulation

since centralized re-computation of Pi[1 : K] ∀i ∈ N is only required when load

disturbances result in a violation of the group constraint in Equation 7.8(e).

CPEV Ci [k] =


γ

(1)
i (Pmax

i − ui[k])2 if Si[k] ≤ 0.5

γ
(2)
i (1− Si[k])2 if Si[k] ≤ 0.9

γ
(3)
i (ui[k]− Pmin

i)2 if Si[k] < 1

(7.5)

159

Cloadj [k] = τ
(1)
j [k]

(∑
i∈N

ui[k] + Lj[k]

)
+

τ
(2)
j [k]((

Lpeakj +
∑

i∈N P
min
i

)
−
(∑

i∈N ui[k] + Lj[k]
))2

(7.6)

arg min
ui∈N [k]

[
CG[k] =

(∑
i∈N

CPEV Ci [k] +
∑
j∈M

Cloadj [k]

)]
(7.7)

0 ≤ Si[k] ≤ 1 (7.8a)

Pmin
i ≤ ui[k] ≤ Pmax

i (7.8b)

Wi[k] ∈ {0, 1} (7.8c)

Wi[k] ≥ (1− Si[k]) (7.8d)∑
i∈N

ui[k] ≤
∑
i∈N

Pi[k] (7.8e)

The centralized trajectory optimizer used to optimize the entire PEVC population

in Section 7.3.1 uses a simplified representation of PEV dynamics (Equation 7.2).

In reality, battery charging dynamics for PEVs vary significantly between man-

ufacturers. Further, the response of Equation 7.5 to changes in u also varies widely

across the population based on design or user preferences. We capture the diversity

of elements in N in our local control scheme by defining a ‘PEVC model object’

[43] for a typical PEV charger [102] which can be instantiated with relevant model

parameters at the time of execution. Figure 7.7 shows a schematic representation of

our object-oriented modeling approach.

We consider three design parameters: Battery capacity, initial state of charge and

160

maximum charging rate. Additionally, we include three parameters (γ(1), γ(2), γ(3))

that represent the local policy of each PEV to the incentive signal and state of charge.

A ‘Building model object’ is also defined which captures the generic D6 tariff

structure. The building model object is instantiated with parameters pertaining to

the specific building being considered. In our case, the monthly peak threshold and

two scaling parameters (τ (1), τ (2)) are necessary to assess the actual cost of energy.

We use Modelica [43] to develop model objects. Each object is compiled into

a stand-alone executable program which is agnostic to execution environment and

may be in parallel across multiple computers. The modularity of the object-oriented

modeling approach enables a decentralized implementation of the dynamic program to

optimize u, where each PEVC (i ∈ N) implements a full copy of the local controller.

Each copy of the local controller includes object models and cost functions for all

PEVCs and buildings in the peer group.

At every time step k, N solutions for the optimum incentive signal ui[k] ∀i ∈ N

are generated. A consensus algorithm [30] is used to ‘elect’ an incentive signal that

satisfies Equation 7.7. As discussed in [24], a peer group of agents seeking asymptotic

consensus are bound by a set of topological communication constraints. An intuitive

example of a topological constraint is that every agent in a peer group must be able to

communicate with every other agent. In a graph theoretic sense, the peer group must

be a connected graph [21]. There are several other topological conditions discussed

in literature. We discuss the topological considerations for a peer group as a part of

future work in Section 7.5.

7.4 Results & Conclusions

We implemented the proposed hierarchical control scheme on the distribution

network shown in Figure 7.4. Figure 7.8 shows the total load on the distribution

transformer. The gray solid line shows the expected total load of all the buildings and

161

16 17 18 19 20 21 22 23 24

800

900

1000

1100

1200

1300

Time (hours)

P
ow

er
(k

W
)

Tlimit

T[k] with centrally optimized PEVC load
T[k] with proposed hierarchical control

Figure 7.8: The actual load data for the building shown in Figure 7.2 together with
PEVCs, overlaid on a similar days forecast for the building alone, as used
for central trajectory optimization. The PEVC loads have been controlled
so that the sum of building and PEVC loads (grey solid line) does not
exceed the monthly peak threshold for the building (black dashed line).

PEVCs together if building load forecasts are accurate and PEVCs follow the centrally

optimized charging trajectory perfectly. The solid black line shows the aggregate load

on the substation transformer when local controllers are used for each peer group. As

evidenced in the figure, our selection of parameters (τ (1), τ (2), γ(1), γ(2), γ(3)) was

fairly conservative, resulting in an aggregate transformer load that is significantly

lower than its peak limit of 1250 kW (dashed grey line). In the case of uncoordinated

charging, the transformer limit would be routinely exceeded.

Figure 7.9 illustrates the effect of local control on Peer Group (1). If all the

PEVCs in circuit (a) charged at the rate specified by the central optimizer, the ag-

gregate peer group load (grey dotted line) would significantly exceed the prevailing

building (i) peak load threshold (solid grey, thin line). Large excursions over the peak

load threshold result in heavy cost penalties for both the building and PEVs. The

local controller, however, leads to a total load (solid black, thick line) that is mostly

prevented from exceeding the prevailing peak load threshold.

Figure 7.10 shows individual PEVC charging trajectories for all four PEVCs in

162

16 17 18 19 20 21 22 23 24
350

400

450

500

Time (hours)

P
ow

er
(k

W
)

Total load for Peer Group (1)
 Building (i) load
Peak load threshold for building (i)
Total load for Peer Group (1) without local control

Figure 7.9: The total load for Peer Group (1). The prevailing peak load threshold for
building (i) is shown at 425 kW. The lower line (gray dashed) shows the
building load without PEVCs. The highest line (gray dotted) shows the
group load if all PEVCs follow centrally optimized trajectories, without
local control. The solid black line shows the combined load of all PEVC
and building loads in Peer Group (1), when local load control is used.
Excursions above the peak load threshold are mostly prevented.

Peer Group (1). The dashed grey line shows the trajectories initially determined by

central optimization. The solid black line shows the actual trajectories of the four

PEVCs when they are subject to local control. As seen in the figure, the four PEVCs

have been dynamically re-balanced after starting, to take account of unexpected de-

viations from predicted levels, both in PEVCs and in the building load. The sudden

drop in charging rate seen in the load profiles for PEVC 2, 3 and 4 occur when the

disutility function in Equation 7.5 switches to between charging stages. While indi-

vidual PEVC may be dynamically rebalanced, the constraints on the local controller

ensure that the total load for group never exceeds the load scheduled by the central

optimizer.

In summary, the problem of optimizing the charging load of a fleet of PEVs rep-

resents an area with growing research potential. The methods we present in this

chapter address the challenges of modeling and control from the perspective of large

scale implementation without altering the core optimization algorithm being used.

163

16 17 18 19 20 21 22 23 24
0

20

P
ow

er
 (

kW
)

Actual PEV trajectory
Centrally optimized PEV trajectory

16 17 18 19 20 21 22 23 24
0

20

P
ow

er
 (

kW
)

16 17 18 19 20 21 22 23 24
0

20

P
ow

er
 (

kW
)

16 17 18 19 20 21 22 23 24
0

20

P
ow

er
 (

kW
)

Time (Hours)

Figure 7.10: Charging trajectories for four PEVCs in circuit (a). The dashed line
shows the centrally optimized trajectory for PEVCs generated using an
8-hour load forecast to ensure load leveling at the distribution trans-
former. The solid black line shows the locally regulated charging trajec-
tory for PEVCs in circuit (a) when grouped into Peer Group (1).

164

Together they comprise an implementation framework which is agnostic to the pre-

ferred charging policy.

We have demonstrated the use of object-oriented modeling to address some of the

challenges associated with the multi-agent coordination required to minimize con-

sumer energy costs, while also reducing network overloading. We also show how

existing tariff schedules, as applied to large commercial customers, are naturally

compatible with our optimization approach. We demonstrated how utilities could

accommodate multiple PEVC’s without significant capacity increases, and simulta-

neously, PEV owners could access charging energy, via existing tariff schedules, at

costs 3-4 times lower than peak rates.

7.5 Future work

The successful operation of our hierarchical control formulation depends on the

effectiveness of each peer group at minimizing energy costs within each group while

providing the desired load leveling properties at the substation level.

An effective peer group must satisfy the following objectives:

• The aggregate PEVC load in a peer group must be sufficient to maximally

leverage periods of low building load.

• Each PEVC in a peer group must be able to receive accurate measurements of

building load and the state of other PEVCs.

• The topology of the communication network connecting members of a peer

group must facilitate the convergence of a consensus algorithm on the optimal

incentive signal ui ∀i ∈ N .

• The peer group must reject un-modeled behavior from other PEVCs (within

limits).

165

This chapter has not addressed the mechanism by which we intend to assign peer

groups. As a next step in our research, we intend to design an algorithm to generate

peer groups in order to satisfy the listed peer group objectives.

Factors to be considered when assigning peers to groups can be broadly classified

into two categories:

1) Semantic expressions for how the properties of individual peers (e.g., Pmax and

Lpeak) affect the performance of the local controller.

2) Topological requirements for the network of interconnections between peers to

ensure that an asymptotic consensus incentive can be found.

Clearly, both these factors are aspects of a semantic network. For example, the en-

ergy cost function (Cload) for a building and the expression of PEV disutility (CPEV C)

are both semantic definitions, and can be used to assess the the implications of in-

troducing a new peer into a peer group. By evaluating the change in group cost in

response to different potential peers and incentive inputs, we can develop a metric

of robustness for a peer group depending on the aggregate rational response of each

peer group to varying building loads and un-modeled PEVC behavior. An aggregate

rational response is a property of a population of agents (in this case PEVCs) consid-

ered en-masse. Drawing from the domain of multi-agent or distributed cooperative

systems [24], [31], we specify that every peer group must be tolerant to Byzantine,

Altruistic and Rational members (BAR-T) [1] and can show that a BAR-T peer group

exhibits aggregate disturbance mitigation.

A peer assignment algorithm can also be designed to ensure that the topology

within each peer group meets the requirements of the consensus algorithm. As seen

in Figure 7.11, each peer group may be declaratively represented as a graph of in-

terconnections. The graph provides information about physical interconnections be-

tween buildings and PEVCs. For example, PEVC circuit (c) is physically connected

to building (iii). Since one of the constraints of a consensus algorithm is that every

166

Peer Group (1)

(a) (b)
(c) (d) (e)

Peer Group (4)

Building PEVC Physical interconnection Logical interconnection

Peer Group (2) Peer Group (3)

(i)
(iii)

(ii)

Figure 7.11: A graph representation of the network of interconnections within a peer
group. Interconnections include physical connections between peers as
well as logical interconnections introduced by the peer assignment algo-
rithm.

peer in a network be able to communicate with every other peer, a peer group must

be a connected graph. PEVC circuit (c) may, therefore, be grouped with building

(iii) to form Peer Group (3).

In some cases, no dedicated physical communication link exists between agents,

e.g. between PEVC circuit (a) and building (i). Here, we can use the logical address-

ing feature of the IEC-61850 protocol to programmatically create a virtual (or logical)

connection between agents (when possible). The IEC-61850 protocol is a virtual net-

working protocol for power system substations. One of its features is the ability to

construct a virtual communication hierarchy between substation devices [72]. Once

a logical connection is formed, a peer-to-peer communication link may be established

so that the network traffic associated with incentive arbitration is communicated over

a dynamically created virtual local area network. In the case of PEVC circuit (a)

and building (i), a logical connection between the two agents enables the formation

of Peer Group (1) as illustrated in Figure 7.11.

As seen in this chapter, the hierarchical control of PEVC charging loads is an in-

teresting application for semantic networks and for the analysis methods presented in

previous chapters. Several other application areas and future extensions for semantic

networks are discussed in Chapter VIII.

167

CHAPTER VIII

Conclusions and Future work

This dissertation addressed modeling, diagnosis and control problems inherent in

systems that can be described as hybrid processes. Keeping these systems functioning

well requires addressing discrepancies between a dynamic physical process and a cor-

responding model. Our research developed means to address discrepancies in hybrid

processes when measurements from the physical process are noisy, bandwidth limited,

delayed by a communication network or expensive to obtain. These limitations are

motivated by industrial manufacturing systems and electrical power systems where

the size of models and the use of digital communication networks pose significant

challenges to conventional methods for model adaptation, diagnosis and control. The

main contributions of this research, as well as its future work, fall into two categories:

1. Adaptation and control using semantic models.

2. Model adaption, diagnosis and control using declarative representations of model

topology.

We define the term “Semantic networks” to collectively represent both these cate-

gories.

168

8.1 Adaptation and control using semantic models

Our contributions demonstrate the use of semantic information to adapt and con-

struct models to achieve the performance goals of a hybrid process. We presented

three use cases to showcase specific improvements.

In the first case, a networked state estimator was considered as an example of

a hybrid process. Measurements from the physical process were transmitted over a

packet switching network. The network introduced random delays to each communi-

cated packet which significantly affected the performance of the state estimator. We

showed, after evaluating the delay and jitter profiles of common networks, that the

accuracy of the estimated state can be improved by using precise knowledge of time

at each measurement site in the network. Using estimates of clock offset and oscilla-

tor jitter for each sensor in the network, a state estimator was designed to adapt to

changing delays and jitter in the network. This work was presented in Chapter III.

In the second case, a model with variable fidelity was used in a hybrid process

configuration. Semantic information relating the choice of model order to the ac-

curacy of the model based estimates was used to develop an automated approach to

tradeoff the fidelity of the model against the measurement uncertainty associated with

the physical measurements in the network. Measurement uncertainty included sensor

noise, network delays and clock uncertainty.

In the third case, a model structure adaptation approach was proposed for models

that are compositionally assembled from several component models. Combinatorial

options for the modified model structure were restricted to physically feasible choices by

defining a syntax based on physical compatibility between component models. We also

used a metric to rank combinatorial choices based on sensitivity of the compositional

model to each proposed structural modification. The second and third cases were

presented in Chapter IV.

Finally, we demonstrated the use of semantic assertions to improve the perfor-

169

mance of a large scale decentralized control problem for a network of agents. Seman-

tic assertions were used to generate small peer groups of agents with decentralized

control policies, local objectives and local constraints. As shown in Chapter VII, the

decentralized controller were able to achieve local objectives while satisfying global

constraints more effectively when the delegation of control authority followed the

semantic guidelines.

8.2 Model adaption, diagnosis and control using declarative

representations of model topology

Models for systems that span multiple physical domains or models that represent

a compositional system made up of several interconnected components can be often

represented as a graph.

The graph representation explicitly describes the network of interconnections of

the model without capturing the purpose or behavior of the model. The graph no-

tation however can be used in and of itself to diagnose and adapt the model when

needed.

Chapters V and VI demonstrated a diagnostic methodology to isolate model com-

ponents (or vertices) in a graph that may need to be adapted. The computational

complexity of model adaptation is significantly reduced by first isolating only those

model components that warrant adaptation. In Chapter V, the diagnostic approach

was applied to an electrical circuit. We also demonstrated a structure preserving

state space realization for the electrical circuit that enabled automated transforma-

tions between the state space and graph forms of the model. Using the diagnostic

tools and the structure preserving realization, a parameter identification methodology

was proposed which is computationally efficient and well suited for large compositional

models.

170

In Chapter VI, the vertex isolation approach was expanded to include a wider class

of graphs. Specifically, graphs with loops, repeating vertices and un-modeled distur-

bance effects were considered. Three graph simplification strategies were proposed to

suit the application domain of a semiconductor manufacturing plant. The proposed

simplification strategies included methods to collapse cycles or loops into an abstract

vertex, methods to remove vertices corresponding to repeating tools, and stochastic

relaxation of un-modeled disturbances.

Lastly, the topology of a communication network connecting a set of electric ve-

hicle (EV) charging stations was considered in Chapter VII and a case study was

presented demonstrating the use of a declarative model for the network topology to

improve the performance of a networked control system. The topology of intercon-

nections between interacting agents in a consensus network plays a significant role in

ensuring that a peer mediated control strategy approaches stable consensus. A declar-

ative representation of the communication network connecting a set of EV charging

stations enables the expression of the state of consensus in the network as a linear

dynamic system. By inspecting the conditions under which the consensus dynamics

are stable, we were able to propose an algorithm to automatically construct a network

topology for a group of charging stations.

8.3 Future work

Semantic networks are well suited to domains where a system made up of many

interacting components has to be modeled as a whole. Future extensions to the work

presented in this dissertation include extensions to the theory as well as broadening

the approach to new application areas.

171

8.3.1 Extensions to the theory

There are several improvements to the theory that we would like to consider in

the future. Chapters III and IV demonstrated three case studies highlighting the

advantages of introducing system level semantic definitions in a model. All three case

studies offer plenty of scope for improvement.

In Chapter III we proposed using clock offsets and jitter to dynamically modify the

design of a networked state estimator. The state estimator used for the case study was

a simple implementation of a Luenberger observer. We would like to be able to provide

a set of model synthesis tools for a general class of dynamic systems so that clock

synchronization moves from being a consideration purely during implementation to

being one of the factors influencing early design choices and mathematical modeling.

In Chapter IV we presented a combinatorial model adaptation algorithm designed

to intelligently insert additional model components to update the structure of a model.

One major challenge remaining for the algorithm is to improve the scalability of the

approach, to see if and how it can be applied to dozens or hundreds of model com-

ponents with different fidelities and purposes interacting across a wide-area network.

Modifications to the proposed method may be necessary. With the advances in mem-

ory, computing speed, and multi-core processors, there are possibilities for paralleliza-

tion of the adaptation algorithm. More work can be done on deriving the sensitivity

of a model’s outputs to its different subcomponents with improvements to the al-

gorithmic differentiation algorithm. In addition, the brute force search method we

use to exhaustively identify all the potential candidates before pruning with semantic

constraints can be significantly improved by using concepts in formal model based

reasoning [26].

The parameter isolation and adaptation approach proposed in Chapter V assumes

perfect data quality for all the measurements transmitted from the physical process.

Including probabilistic data quality measures obtained from the NIST 61850 test net-

172

work [5] will allow more realistic models for the probability for false or intermittent

observations. Data quality is a significant factor to consider while calculating the

network utilization cost. Additionally, the analogous state-space form to the compo-

sitional model used in the chapter is a special structure preserving realization suited

for models of electrical networks. A more general approach is required for application

to other systems. And finally, model adaptation is not restricted to identifying the

correct model parameters. In the case of a compositional model, it may also be possi-

ble to identify changes in the model structure (such as a change in the configuration

of branch lines). A future improvement would be to develop a combined strategy for

parameter identification and topology adaptation.

In Chapter VI we experimented with using auxiliary variables to represent un-

certainty in each measurement, a more thorough analysis of the impact of uncertain

process models and measurement noise will add to formally understanding the conver-

gence properties of the diagnosis algorithm in real operating conditions. On a similar

note, we assume latent effects are uncorrelated while industrial practitioners claim

they frequently are. Any knowledge about correlation between random factors can

be used to improve the opinion pooling of auxiliary variables. A similar strategy may

be used to accommodate unknown or non-parametric distributions for latent sources.

8.3.2 New application areas

In the course of our research, we have discovered that there are several domains

beyond power systems and manufacturing, where the use of semantic modeling and

declarative representations of model topology can be used to improve diagnosis, model

adaptation and control. Listed below are a few potential application areas to explore.

i) Design automation for complex systems: When designing complex engineered

systems such as automobiles and consumer electronics it is practically impossi-

ble to imagine the full impact of early design choices on the performance of the

173

finished product. For critical systems such as space craft and medical devices,

rigorous testing and validation is applied at every stage of the design process, at

the expense of time and cost. If a semantic network was to be used to describe

the design workflow then it would be possible for designers to appreciate the

system level consequences of each design choice (or change). Semantic asser-

tions that relate design choices to system performance can be inserted based

on previous design efforts, allowing a designer to benefit from the collective

experience of past designs for similar products.

ii) Sensor fusion: At several points in our research we have been asked by reviewers

to consider the case of sensor noise and measurement uncertainty. While it is

true that system level inference is sometimes sensitive to sensor noise, there is

also a case to be made for using a semantic information to directly address the

problem of reducing measurement uncertainty. Information about the operating

limits or modes of individual sensors, for example, could be used in conjunction

with classical sensor fusion techniques when the outputs from multiple sensors

are fused into a single measurement. In most cases, the performance of a sensor

is dependent on several parameters, many of which are co-dependent. Using

a semantic definition of sensor performance would enable designers to auto-

mate sensor selection and optimize their preferred sensor fusion technique more

effectively.

iii) Workflow optimization: The work we presented in Chapter VI on diagnosing

semiconductor process workflows can be extended to workflow optimization in

other areas. One such area that shows promise is the workflow optimization of

inpatient procedures in a hospital.

A patient interned in a hospital is generally subjected to several interventions

before discharge, and there is potential for significant reduction of cost and

174

risk to the patient if the intervention steps can be optimized to reduce time

and redundancy. Any optimization procedure is limited by the fact that each

patient is unique and the interventions applied are frequently updated while

the patient is in the hospital. It is possible to imagine a graph representation

linking cause and effect relationships, (surgery precedes post-op care, diagnostic

updates causally follow lab tests, etc.), and a set of semantic definitions, (surgery

times are related to the severity of a condition, lab tests have a known cycle

time, etc.). Once a workflow is represented as a semantic network, it can be

optimized by analyzing the impact of each intervention on the overall inpatient

experience.

iv) Collaborative control: The study of collaborative control for networked multi-

agent systems is a mature field of research with over a decade of results. Most

research in the area is centered around consensus algorithms and perturbation

studies when a set of interacting agents are modeled using algebraically coupled

differential equations. With the advent of cheap high performance computing,

there have been recent efforts to simulate the behavior of collaborative net-

worked agents using model based reasoning. By modeling a network of agents

as a semantic network, it is possible to study the emergent behavior of a system

without explicitly solving a large system of equations. The methods presented in

this dissertation can be modified to improve the computational complexity and

accuracy of reasoning methods applied to collaboratively controlled muti-agent

systems.

There are several other potential extensions and application areas that have come

up during discussions with colleagues, reviewers and experts. Having spent five years

on the work presented here, we hope that the future of Semantic networks for hybrid

processes is both bright and exciting. Thank you for reading this dissertation.

175

BIBLIOGRAPHY

176

BIBLIOGRAPHY

[1] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. BAR fault tolerance for cooperative services. In
Proc. Association for Computing Machinery Symposium on Operating Systems
Principles, 2005.

[2] X. Allamigeon. Strongly connected components of directed hypergraphs.
arXiv:1112.1444, 2011.

[3] P. Almstrom, M. Rabi, and M. Johansson. Networked state estimation over a
gilbert-elliot type channel. In Proc. IEEE Conference on Decision and Control,
2009.

[4] J. Amelot, D.M. Anand, T. Nelson, G. Stenbakken, Y. Li-Baboud, and
J. Moyne. Towards timely intelligence in the power grids. In Proc. Precise
Time and Time Interval Systems and Applications Meeting, 2012.

[5] J. Amelot, J. Fletcher, D. Anand, C. Vasseur, Y. Li-Baboud, and J. Moyne.
An ieee 1588 time synchronization testbed for assessing power distribution re-
quirements. In Proc.IEEE International Symposium on Precision Clock Syn-
chronization, 2010.

[6] D. M. Anand, D. M. Tilbury, and J. Moyne. Running simulation models in
parallel with physical systems for improved estimation performance: Semantic
models facilitate updating model state, parameters, and structure. In Proc.
ASME Dynamic Systems and Control Conference, 2011.

[7] D.M. Anand, J. G. Fletcher, Y. Li-Baboud, J. Amelot, and J. Moyne. Using
clock accuracy to guide model synthesis in distributed systems: An application
in power grid control. In Proc. IEEE International Symposium on Precision
Clock Synchronization, 2010.

[8] D.M. Anand, J.G. Fletcher, Y. Li-Baboud, and J. Moyne. A practical imple-
mentation of distributed system control over an asynchronous ethernet network
using time stamped data. In Proc. IEEE International Conference on Automa-
tion Science and Engineering, 2010.

[9] D.M. Anand, J.R. Moyne, and D.M. Tilbury. Performance evaluation of wireless
networks for factory automation applications. In Proc. IEEE International
Conference on Automation Science and Engineering, 2009.

177

[10] D.M. Anand, D. Sharma, Y. Li-Baboud, and J. Moyne. EDA performance
and clock synchronization over a wireless network: Analysis, experimentation
and application to semiconductor manufacturing. In Proc. IEEE International
Symposium on Precision Clock Synchronization, 2009.

[11] Theodore Anderson. An Introduction to Multivariate Analysis. John Wiley,
1958.

[12] P.J. Antsaklis. Neural networks for control systems. IEEE Trans. Neural Net-
works, 1:242–244, 1990.

[13] M. Asada. Wafer yield prediction by the mahalanobis-taguchi system. In IEEE
International Workshop on Statistical Methodology, 2001.

[14] V.S. Asirvadam and M.J.O. Elamin. Wireless system identification for linear
network. In Proc. IEEE International Colloquium on Signal Processing and
Applications, 2009.

[15] A.V. Balakrishnan and V. Peterka. Identification in automatic control systems.
Automatica, 5:817–829, 1969.

[16] R. Baly and H. Hajj. Wafer classification using support vector machines. IEEE
Trans. Semiconductor Manufacturing, 25:373–383, 2012.

[17] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation
with applications to tracking and navigation: theory algorithms and software.
Wiley-Interscience, 2001.

[18] M.E. Baran and F.F. Wu. Network reconfiguration in distribution systems
for loss reduction and load balancing. IEEE Transactions on Power Delivery,
4:1401–1407, 1989.

[19] K Behrendt and K Fodero. The perfect time: An examination of time-
synchronization techniques. In Proc. Western Protective Relay Conference,
2006.

[20] Roderick Bloem, Harold Gabow, and Fabio Somenzi. An algorithm for strongly
connected component analysis in n log n symbolic steps. In Formal Methods in
Computer-Aided Design. Springer, 2000.

[21] B. Bollobas. Graph theory: An introductory course. Springer Verlag, NY, 1979.

[22] E. Bompard, R. Napoli, and Fei Xue. Analysis of structural vulnerabilities
in power transmission grids. International Journal of Critical Infrastructure
Protection, 2:5–12, 2009.

[23] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified O(n)
planarity by edge addition. Journal of Graph Algorithms and Applications,
8:241–273, 2004.

178

[24] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast proto-
cols. Journal of the Association for Computing Machinery, 32:824–840, 1985.

[25] E. Bruls. Quality and reliability impact of defect data analysis. IEEE Trans.
Semiconductor Manufacturing, 8:121–129, 1995.

[26] Peter Bunus and Karin Lunde. Supporting model-based diagnostics with
equation-based object oriented languages. In Proc. 2nd International Work-
shop on Equation-Based Object-Oriented Languages and Tools, 2008.

[27] Chengyu Cao and N. Hovakimyan. L1 adaptive controller for nonlinear systems
in the presence of unmodelled dynamics: Part II. In Proc. ACC, 2008.

[28] Ying Chen, Peter B Luh, Che Guan, Yige Zhao, Laurent D Michel, Matthew A
Coolbeth, Peter B Friedland, and Stephen J Rourke. Short-term load forecast-
ing: Similar day-based wavelet neural networks. IEEE Trans. Power Systems,
25:322–330, 2010.

[29] Chen-Fu Chien, Wen-Chih Wang, and Jen-Chieh Cheng. Data mining for yield
enhancement in semiconductor manufacturing and an empirical study. Expert
Systems with Applications, 33:192–198, 2007.

[30] Han-Lim Choi, L. Brunet, and J.P. How. Consensus-based decentralized auc-
tions for robust task allocation. IEEE Trans. on Robotics, 25:912–926, 2009.

[31] A. Clement, H. Li, J. Napper, J.-P. Martin, L. Alvisi, and M. Dahlin. BAR
primer. In Proc. IEEE International Conference on Dependable Systems and
Networks, 2008.

[32] Henry Cox. On the estimation of state variables and parameters for noisy
dynamic systems. IEEE Trans. Automatic Control, 9:5–12, 1964.

[33] J.A. Cunningham. The use and evaluation of yield models in integrated circuit
manufacturing. IEEE Trans. Semiconductor Manufacturing, 3:60–71, 1990.

[34] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 1987.

[35] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38:353–366, 1989.

[36] J. deKleer and J. Kurien. Fundamentals of model-based diagnosis. In Proc.
IFAC SafeProcess, 2003.

[37] E. Del Castillo and A. Hurwitz. Run-to-run process control: Literature review
and extensions. Journal of Quality Technology, 29:184–196, 1997.

[38] DHS. National power grid simulation capability: Needs and issues. Technical
report, U.S. Department of Homeland Security Science and Technology Direc-
torate, 2008.

179

[39] R. Diestel. Graph theory. Graduate texts in Mathematics, 2005.

[40] DTE Energy. DTE electric company rate book for electric service. Technical
report, The Detroit Edison Company, 2013.

[41] T.F. Edgar, S.W. Butler, W.J. Campbell, C. Pfeiffer, C. Bode, S.B. Hwang,
KS Balakrishnan, and J. Hahn. Automatic control in microelectronics manu-
facturing: Practices, challenges, and possibilities. Automatica, 36:1567–1603,
2000.

[42] John C. Eidson. Measurement, Control, and Communication Using IEEE 1588.
Springer London, 2006.

[43] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Modelica - the new
object-oriented modeling language. In Proc. 12th European Simulation Multi-
conference, 1998.

[44] EPRI. Report to NIST on the smart grid interoperability standards roadmap.
Technical report, Electric Power Research Institute, 2009.

[45] C. Farmer, P. Hines, J. Dowds, and S. Blumsack. Modeling the impact of
increasing phev loads on the distribution infrastructure. In Proc. HICSS, 2010.

[46] Alexander Feldman, Jurryt Pietersma, and Arjan van Gemund. All roads lead
to fault diagnosis: Model-based reasoning with LYDIA. In Proc. Belgium-
Netherlands Conference on Artificial Intelligence, 2006.

[47] Lihong Feng. Review of model order reduction methods for numerical simula-
tion of nonlinear circuits. Applied Mathematics and Computation, 167:576–591,
2005.

[48] Ronald Aylmer Fisher and Statistiker Genetiker. Statistical methods for research
workers, volume 14. Oliver and Boyd Edinburgh, 1970.

[49] Hans Follmer. On entropy and information gain in random fields. Probability
Theory and Related Fields, 26:207–217, 1973.

[50] Simon French. Aggregating expert judgement. RACSAM, 105:181–206, 2011.

[51] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Press, 2004.

[52] Q. Fu, A. Solanki, L.F. Montoya, A. Nasiri, V. Bhavaraju, T. Abdallah, and
D. Yu. Generation capacity design for a microgrid for measurable power quality
indexes. In Proc. IEEE Innovative Smart Grid Technologies Conference, 2012.

[53] M.D. Galus and G. Andersson. Power system considerations of plug-in hybrid
electric vehicles based on a multi energy carrier model. In Proc. IEEE Power
and Energy Systems: General Meeting, 2009.

180

[54] Lingwen Gan, U. Topcu, and S. Low. Optimal decentralized protocol for electric
vehicle charging. In Proc IEEE Conference on Decision and Control, 2011.

[55] R.M. Gardner, J. Bieker, and S. Elwell. Solving tough semiconductor manufac-
turing problems using data mining. In IEEE/SEMI Advanced Semiconductor
Manufacturing Conference and Workshop, 2000.

[56] M. Gerdin and J. Sjoberg. Nonlinear stochastic differential-algebraic equations
with application to particle filtering. In IEEE Conference on Decision and
Control, 2006.

[57] J.D. Glover, M.S. Sarma, and T. J. Overbye. Power Systems Analysis and
Design. CL-Engineering, 2007.

[58] Alim PC Goncalves, André R Fioravanti, and José C Geromel. Markov jump
linear systems and filtering through network transmitted measurements. Signal
Processing, 90:2842–2850, 2010.

[59] Q. Gong, S. Midlam-Mohler, V. Marano, and G. Rizzoni. Distribution of PEV
charging resources to balance transformer life and customer satisfaction. In
Proc. IEEE-IEVC, 2012.

[60] B.E. Goodlin, D.S. Boning, H.H. Sawin, and B.M. Wise. Simultaneous fault
detection and classification for semiconductor manufacturing tools. Journal of
the Electrochemical Society, 150:G778–G784, 2003.

[61] A. Goucern. Multi-domain modelling and simulation. IEEE Review, 45:85–87,
1999.

[62] Eric Gould. Modeling it both ways - hybrid diagnostic modeling and its ap-
plication to hierarchical system designs. In Proc. Annual Systems Readiness
Technology Conference, 2004.

[63] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation, Second Edition. SIAM, 2008.

[64] Thomas R. Gruber. Ontolingua: A mechanism to support portable ontologies,
1992.

[65] W. Guo, B. Bai, and H.H. Sawin. Mixing-layer kinetics model for plasma etching
and the cellular realization in three-dimensional profile simulator. Journal of
Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 27:388–403,
2009.

[66] Vijay Gupta, Babak Hassibi, and Richard M Murray. Optimal LQG control
across packet-dropping links. Systems & Control Letters, 56:439–446, 2007.

[67] R Haber and H Unbehauen. Structure identification of nonlinear dynamic
systems- a survey on input/output approaches. Automatica, 26:651–677, 1990.

181

[68] W. Harrison, D. Tilbury, and C. Yuan. From hardware-in-the-loop to hybrid
process simulation: An ontology for the implementation phase of manufacturing
systems. IEEE Transactions on Automation Science and Engineering, 9:96–109,
2012.

[69] Q.P. He and J. Wang. Fault detection using the k-nearest neighbor rule for
semiconductor manufacturing processes. IEEE Trans. Semiconductor Manu-
facturing, 20:345–354, 2007.

[70] R. Hermans, M. Almassalkhi, and I.A. Hiskens. Incentive-based coordinated
charging control of plug-in electric vehicles at the distribution-transformer level.
In Proc. American Control Conference, 2012.

[71] D. Hyland and D. Bernstein. The optimal projection equations for fixed-order
dynamic compensation. IEEE Trans. on Automatic Control, 29:1034–1037,
1984.

[72] IEC TC-57. IEC 61850 communication networks and systems in substations.
Technical report, International Electrotechnical Commission, 2004.

[73] IEEE Sensor Technology Committee. Standard for a precision clock synchro-
nization protocol for networked measurement and control systems. Technical
report, IEEE, 2002.

[74] IEEE Substation Committee. Standard communication delivery time perfor-
mance requirements for electric power substation automation. Technical report,
IEEE, 2005.

[75] IEEE WG-802.1Q. 802.1Q: Virtual LANS. Technical report, IEEE, 2006.

[76] Orhan C Imer, Serdar Yüksel, and Tamer Başar. Optimal control of LTI systems
over unreliable communication links. Automatica, 2006.

[77] Joe-Air Jiang, Ying-Hong Lin, Jun-Zhe Yang, Tong-Ming Too, and Chih-Wen
Liu. An adaptive PMU based fault detection/location technique for trans-
mission lines. pmu implementation and performance evaluation. IEEE Trans.
Power Delivery, 2000.

[78] Søren Johansen and Katarina Juselius. Maximum likelihood estimation and
inference on cointegrationwith applications to the demand for money. Oxford
Bulletin of Economics and statistics, 1990.

[79] Dean Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System Dynam-
ics: Modeling and Simulation of Mechatronic Systems. Wiley., 2006.

[80] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System
Dynamics: Modeling & Simulation of Mechatronic Systems. Wiley, 2006.

182

[81] Tohru Katayama. Subspace Methods for System Identification. Springer-Verlag
London, 2005.

[82] P.A. Kawka and A.G. Alleyne. Stability and performance of packet-based feed-
back control over a markov channel. In Proc. American Control Conference,
2006.

[83] DG Kneller, FE Cohen, R Langridge, et al. Improvements in protein secondary
structure prediction by an enhanced neural network. Journal of molecular bi-
ology, 1990.

[84] P. Korba, M. Larsson, and C. Rehtanz. Detection of oscillations in power
systems using kalman filtering techniques. In Proc. IEEE Conference on Control
Applications, 2003.

[85] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and
H. Van Brussel. Reconfigurable manufacturing systems. CIRP Annals-
Manufacturing Technology, 1999.

[86] P.R. Kristoff and D.P. Nunn. The process specification system for MMST.
IEEE Trans. on Semiconductor Manufacturing, 1995.

[87] N. Kumar, K. Kennedy, K. Gildersleeve, R. Abelson, C. M. Mastrangelo, and
D. C. Montgomery. A review of yield modelling techniques for semiconductor
manufacturing. International Journal of Production Research, 2006.

[88] Way Kuo and Taeho Kim. An overview of manufacturing yield and reliability
modeling for semiconductor products. Proceedings of the IEEE, 1999.

[89] R.H. Lasseter, J.H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp,
E. Linton, H. Hurtado, and J. Roy. CERTS microgrid laboratory test bed.
IEEE Transactions on Power Delivery, 2011.

[90] D.M. Laverty, D.J. Morrow, R. Best, and P.A. Crossley. Telecommunications
for smart grid: Backhaul solutions for the distribution network. In Proc. IEEE
Power and Energy and Society, 2010.

[91] H.Y. Li and B. Yunus. Assessment of switched communication network avail-
ability for state estimation of distribution networks with generation. IEEE
Transactions on Power Delivery, 2007.

[92] Ya-Shian Li-Baboud, X. Zhu, D.M. Anand, S. Hussaini, and J.R. Moyne. Semi-
conductor manufacturing equipment data acquisition simulation for timing per-
formance analysis. In Proc. IEEE International Symposium on Precision Clock
Synchronization, 2008.

[93] Daniel Liberzon and João P Hespanha. Stabilization of nonlinear systems with
limited information feedback. IEEE Trans. Automatic Control, 2005.

183

[94] Faa-Jeng Lin, Rong-Jong Wai, and Chun-Ming Hong. Hybrid supervisory con-
trol using recurrent fuzzy neural network for tracking periodic inputs. IEEE
Trans. Neural Networks, 2001.

[95] David Linden and Thomas B Reddy. Handbook of batteries. McGraw-Hill,
2002.

[96] Qiang Ling and Michael D Lemmon. Optimal dropout compensation in net-
worked control systems. In Proc. IEEE Conference on Decision and Control,
2003.

[97] G.P. Liu, V. Kadirkamanathan, and S.A. Billings. Variable neural networks for
adaptive control of nonlinear systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, 1999.

[98] G. P. Liu et al. Design and stability analysis of networked control systems with
random communication time delay using the modified MPC. International
Journal of Control, 2006.

[99] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1987.

[100] D. Luenberger. Introduction to dynamic systems : Theory, models, and appli-
cations. Wiley, 1979.

[101] Karin Lunde, RÅdiger Lunde, and Burkhard Munker. Model-based failure
analysis with rodon. In Proc. European Conference on Artificial Intelligence,
2006.

[102] Zhongjing Ma, D. Callaway, and I. Hiskens. Decentralized charging control for
large populations of plug-in electric vehicles: Application of the Nash certainty
equivalence principle. In Proc. IEEE Conference on Control Applications, 2010.

[103] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. Wireless sensor networks for habitat monitoring. In Proc. Association
for Computing Machinery International Workshop on Wireless Sensor Networks
and Applications, 2002.

[104] K.E. Martin. Exploring the IEEE standard C37.118-2005 synchrophasors for
power systems. IEEE Trans. on Power Delivery, 2008.

[105] A.S. Masoum, S. Deilami, P.S. Moses, M.A.S. Masoum, and A. Abu-Siada.
Smart load management of plug-in electric vehicles in distribution and resi-
dential networks with charging stations for peak shaving and loss minimisation
considering voltage regulation. IET Generation, Transmission, Distribution,
2011.

[106] T. McKelvey. SSID - MATLAB toolbox for multivariable state- space model
identification. Technical report, Dept. of EE, Linkoping University, 1994.

184

[107] A. Milevsky and J. Walrod. Development and test of IEEE 1588 precision
timing protocol for ocean observatory networks. In OCEANS, 2008.

[108] L. A. Montestruque and P. J. Antsaklis. On the model-based control of net-
worked systems. Automatica, 2003.

[109] J.M. Mooij and H.J. Kappen. Sufficient conditions for convergence of the sum-
product algorithm. IEEE Trans. on Information Theory, 2007.

[110] Lia Toledo Moreira Mota and Alexandre Assis Mota. Load modeling at elec-
tric power distribution substations using dynamic load parameters estimation.
International Journal of Electrical Power & Energy Systems, 2004.

[111] J. Moyne and B. Schulze. Yield management enhanced advanced process control
system part I: Description and case study of feedback for optimized multiprocess
control. IEEE Trans. Semiconductor Manufacturing, 23:221–235, 2010.

[112] J. R. Moyne and D. M. Tilbury. The emergence of industrial control networks for
manufacturing control, diagnostics, and safety data. Proceedings of the IEEE,
95:29–47, 2007.

[113] James Moyne, Enrique delCastillo, and Arnon Hurwitz, editors. Run-to-Run
Control in Semiconductor Manufacturing. CRC Press, 2001.

[114] I.R. Navarro, M. Larsson, and G. Olsson. Object-oriented modeling and sim-
ulation of power systems using modelica. In IEEE Power Engineering Society
Meeting, 2000.

[115] T. Neagoe, V. Cristea, and L. Banica. NTP versus PTP in computer networks
clock synchronization. In Proc. IEEE International Symposium on Industrial
Electronics, 2006.

[116] Johan Nilsson, Bo Bernhardsson, and Björn Wittenmark. Stochastic analysis
and control of real-time systems with random time delays. Automatica, 34:57–
64, 1998.

[117] Johan Nilsson et al. Real-time control systems with delays. PhD thesis, Ph. D.
dissertation, Department of Automatic Control, Lund Institute of Technology,
1998.

[118] F. Pasqualetti, A. Bicchi, and F. Bullo. A graph-theoretical characterization of
power network vulnerabilities. In Proc. American Control Conference, 2011.

[119] R.J. Patton, C.J. Lopez-Toribio, and F.J. Uppal. Artificial intelligence ap-
proaches to fault diagnosis. In IEE Colloquium on Condition Monitoring, 1999.

[120] Ron Patton, Paul Frank, and Robert Clark. Issues of fault diagnosis for dy-
namic systems. Springer, London, 2000.

185

[121] J. Pearl. Causality: models, reasoning, and inference. Cambridge Univiversity
Press, 2000.

[122] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

[123] Andreas Peikert, Josef Thoma, and Steven Brown. A rapid modeling tech-
nique for measurable improvements in factory performance. In Proc. Winter
simulation Conference, 1998.

[124] John Pierre, Dan Trudnowski, Matt Donnelly, Ning Zhou, Francis Tuffner, and
Luke Dosiek. Overview of system identification for power systems from mea-
sured responses. In System Identification, 2012.

[125] M. Prodanovic and T.C. Green. High-quality power generation through dis-
tributed control of a power park microgrid. IEEE Trans. on Industrial Elec-
tronics, 53:1471–1482, 2006.

[126] Chenkun Qi, Han-Xiong Li, Xianchao Zhao, Shaoyuan Li, and Feng Gao. Ham-
merstein modeling with structure identification for multi-input multi-output
nonlinear industrial processes. Industrial & Engineering Chemistry Research,
50:11153–11169, 2011.

[127] Herbert E Rauch, CT Striebel, and F Tung. Maximum likelihood estimates of
linear dynamic systems. AIAA journal, 3:1445–1450, 2012.

[128] Mike Read, Gary Workman, and D.M. Anand. Performance specifications for
industrial networks. Technical report, USCAR Plant Controllers Committee,
2009.

[129] A.D. Richards and H.H. Sawin. Atomic chlorine concentration measurements
in a plasma etching reactor: A simple predictive model. Journal of Applied
Physics, 62:799–807, 1987.

[130] Richard H Richens. Interlingual machine translation. The Computer Journal,
1:144–147, 1958.

[131] Martin Sachenbacher, Peter Struss, and Claes M. Carlen. A prototype for
model-based on board diagnosis of automotive systems. In AI Communications,
2000.

[132] Borhan M Sanandaji, Tyrone L Vincent, and Michael B Wakin. Exact topology
identification of large-scale interconnected dynamical systems from compressive
observations. In Proc. American Control Conference, 2011.

[133] F.C. Schweppe and D.B. Rom. Power system static-state estimation, part i, ii,
iii. IEEE Transactions on Power Apparatus and Systems, 1970.

186

[134] C. Shan, P. Tianhong, L. Zhengming, and J. Shi-Shang. Statistical key vari-
able analysis and model-based control for improvement performance in a deep
reactive ion etching process. Journal of Semiconductors, 6:10–25, 2012.

[135] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S.S.
Sastry. Kalman filtering with intermittent observations. IEEE Trans. on Au-
tomatic Control, 49:1453–1464, 2004.

[136] Robert Duane Skaggs. Identifying Vertices in Graphs and Digraphs. PhD thesis,
University of South Africa, 2007.

[137] S Craig Smith and Peter Seiler. Estimation with lossy measurements: jump
estimators for jump systems. IEEE Trans. Automatic Control, 2:25–39, 2003.

[138] E. Sortomme, M.M. Hindi, S.D.J. MacPherson, and S.S. Venkata. Coordi-
nated charging of plug-in hybrid electric vehicles to minimize distribution sys-
tem losses. IEEE Transactions on Smart Grid, 2:198–205, 2011.

[139] John F. Sowa. Principles of Semantic Networks. Morgan Kaufmann, 1991.

[140] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering:
Principles and methods. In Data & Knowledge Engineering, 1998.

[141] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine clas-
sifiers. Neural processing letters, 9:293–300, 1999.

[142] Koichiro Tamura, Daniel Peterson, Nicholas Peterson, Glen Stecher, Masatoshi
Nei, and Sudhir Kumar. Mega5: molecular evolutionary genetics analysis using
maximum likelihood, evolutionary distance, and maximum parsimony methods.
Molecular biology and evolution, 28:2731–2739, 2011.

[143] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972.

[144] J.H. Taylor and B.H. Wilson. A frequency-domain model-order-deduction algo-
rithm for nonlinear systems. In Proc. IEEE Conference on Control Applications,
1995.

[145] FE Thau. Observing the state of non-linear dynamic systems. International
Journal of Control, 17:471–479, 1973.

[146] K.W. Tobin, T.P. Karnowski, and F. Lakhani. Technology considerations for
future semiconductor data management systems. Semiconductor Fabtech, 12,
2005.

[147] Antti Valmari. Compositional state space generation. In Advances in Petri
Nets, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 1993.

[148] P. Van Overschee and B. De Moor. Subspace Identifcation for Linear Systems.
Dordrecht: Kluwer, 1996.

187

[149] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Kewen Yin, and
Surya N. Kavuri. A review of process fault detection and diagnosis: Part
I: Quantitative model-based methods. Computers and Chemical Engineering,
27:293–311, 2003.

[150] Yair Weiss. Correctness of local probability propagation in graphical models
with loops. Neural Computation, 12:1–41, 2000.

[151] Bernard Widrow. Rate of adaptation in control systems. ARS Journal, 32:1378–
1385, 1962.

[152] B. H. Wilson and J. L. Stein. An algorithm for obtaining proper models of
distributed and discrete systems. Journal of Dynamic Systems, Measurement,
and Control, 117:534–540, 1995.

[153] B. H. Wilson and J.H. Taylor. A frequency domain model-order-deduction al-
gorithm for linear systems. ASME Journal of Dynamic Systems, Measurement,
and Control, 120:185–192, 1998.

[154] R. E. Wilson. PMUs. IEEE Potentials, 13:26–28, 1994.

[155] Dapeng Wu and R. Negi. Effective capacity: a wireless link model for support
of quality of service. IEEE Trans. Wireless Communications, 2:630–643, 2003.

[156] Ge Xia and Yong Zhang. On the small cycle transversal of planar graphs.
Theoretical Computer Science, 412:3501–3509, 2011.

[157] Yonggang Xu and Joao Pedro Hespanha. Estimation under uncontrolled and
controlled communications in networked control systems. In In proc.IEEE Con-
ference on Decision and Control, 2005.

[158] M. Yamawaki. Embedded dram process technology. In Symposium on Semi-
conductors and Integrated Circuits Technology, 1998.

[159] Fuwen Yang, Zidong Wang, YS Hung, and Mahbub Gani. H-infinity control for
networked systems with random communication delays. IEEE Trans. Automatic
Control, 51:511–518, 2006.

[160] J.K. Yook, D.M. Tilbury, and N.R. Soparkar. A design methodology for dis-
tributed control systems to optimize performance in the presence of time delays.
In Proc. American Control Conference, 2000.

[161] J.K. Yook, D.M. Tilbury, and N.R. Soparkar. Trading computation for band-
width: reducing communication in distributed control systems using state esti-
mators. IEEE Trans. on Control Systems Technology, 10:503–518, 2002.

[162] Wenwu Yu and Jinde Cao. Adaptive QS time-varying synchronization and
parameters identification of uncertain delayed neural networks. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 16, 2006.

188

[163] K. Zhang, I.W. Tsang, and J.T. Kwok. Maximum margin clustering made
practical. IEEE Trans. Neural Networks, 20:583–596, 2009.

189

