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ABSTRACT

Focusing Energy Underwater Through Optimization of a Spherical Source Array

by

Nicholas A. Stowe

Chair: Nickolas Vlahopoulos

The concept of focusing energy from multiple underwater sources is of interest as a

potential new approach for defeating underwater threats. An array of spherical shock

sources arranged in a two-dimensional pattern has been suggested to achieve this

aim. The goal of the present research effort is to identify optimal arrangement and

detonation timing schemes for the creation of desired shock waveform characteristics

at the target. First, a physics-based reduced order model has been developed for the

multiple-source array. The reduced order model captures important shock phenomena

including propagation speed, pressure-time histories throughout the fluid domain, and

shock wave interaction phenomena. Rarefaction waves appearing in the array flow

field have also been incorporated.

The development of a reduced order model was prompted by the constraints of

mathematical optimization. Optimization using evolutionary algorithms, which have

been chosen for the present effort, requires the evaluation of an equation, function,

or model hundreds or thousands of times before converging on an optimal solution.

Existing models for underwater shock phenomena are either too crude to capture

complex shock interactions or too computationally expensive for optimization analy-

xvi



sis. The reduced order model developed herein is capable of modeling complex shock

physics while maintaining a relatively inexpensive execution time that enables opti-

mization analysis. An optimization framework has been constructed and is applied

to the design of a rectangular grid array using the reduced order model.

xvii



CHAPTER I

Introduction

“...for there is nothing either good or bad, but thinking makes it so.” -Shakespeare

The well-known Nobel prize is named after Swedish chemist, engineer, and inven-

tor Alfred Nobel. The eponymous awards, at the beginning, were funded by the great

fortune amassed through his most famous invention: dynamite. A safe and stable al-

ternative to other explosive materials available at the time, dynamite was widely used

in the mining and construction industries; the breadth of its use is underscored by the

tremendous profits it generated. Construction of roads, tunnels, and other critical

infrastructure was accelerated by this technology in an age when steam locomotives

were propelling mankind further, faster than it had ever travelled before.

While advancing technologies beneficial to humanity, dynamite also found its place

in more sinister applications. Over time, dynamite was introduced as an energetic

material in devices of war. Explosive devices of all kinds, descendants of these early

mechanisms, are currently threatening shipping and human safety all over the world.

The duality of progress and destruction encapsulated in early applications of dynamite

is reincarnated presently with the concept of a multiple-source explosive array.

This dissertation addresses the design of the multiple-source explosive array and

the physics of the complex fluid flow it creates. The concept is shown in Figure 1.1 for

1



clarity. The dark region represents the target range. Significant nonlinear interaction

of waves produced by the array make it difficult to discern the ramifications of various

design decisions. Mathematical optimization is a critical tool in the decision making

process, therefore, as esoteric tradeoffs can be analyzed in an intelligent and strategic

manner using these methods. This dissertation presents a framework specifically

tailored to analyze the multiple-source explosive array design problem.

Figure 1.1: Multiple-Source Explosive Array Concept

A model for the effects and behavior of the array lies at the heart of the opti-

mization framework. Existing methods for modeling underwater explosions fall short

due to lack of sophistication or untenable computational expense. A physics-based,

reduced-order model has been developed as the core element of the research pre-

sented herein in an effort to satisfy the requirements of reasonable accuracy and

computational speed that are central to effective optimization analysis. This chapter

introduces relevant phenomena associated with underwater explosions, the objective

and scope of the presented research, and a summary of prior developments in this field

which both inform the present work and illustrate the necessity of a new mathematical

representation for underwater shock propagation.
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1.1 Anatomy of an Underwater Explosion

1.1.1 The Shock Wave

When an explosive charge is detonated underwater, the energetic material is

rapidly converted into gas of extremely high temperature and pressure. An expand-

ing pressure wave is then propagated beyond the initial bounds of the charge as the

overpressure is relieved through the outward-propagating wave. Water is compressed,

and the pressure rise across the wave is considered to be discontinuous for all practi-

cal purposes (Cole, 1948). This phenomena is called a shock wave. Shock waves are

characterized by the following notable traits:

• Shock waves propagate much faster than acoustic waves, which travel at the

ambient sound speed in the fluid

• A shock wave compresses the fluid it travels through; this is the mechanism by

which a discontinuous jump in fluid state is achieved

• Shock waves decay both spacially and temporally as energy is transmitted into

the surrounding medium. In the case of shock waves produced by spherical

explosions, the decay profile is roughly exponential in both time and space

1.1.2 The Explosive Gas Bubble

In typical underwater explosions, shock wave effects can be seen at the surface

within milliseconds of detonation. Meanwhile, explosive gases are contained in a

bubble that rises to the surface at a relatively slow rate, typically on the order of

seconds. The explosive gas bubble expands and collapses cyclically along the way,

sending subsequent pressure waves into the fluid before the bubble eventually is vented

at the surface. Shock waves generated by the pulsating bubble have a magnitude that

is typically 15-30% of the peak shock pressure (Murata et al., 1999).
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Bubble effects are highly important when targeting structures at the surface. The

collapse-expansion oscillation period can be tuned so as to excite natural frequencies

in these structures (Vernon, 1986). The threats of interest for the multiple-source

array are deeply submerged, however. Added mass and damping experienced by

submerged structures limit the vibrations induced by bubble collapse shocks. With

this in mind, bubble oscillations have been ignored for the following reasons. Peak

pressures exhibited by bubble collapse shock waves are much lower than the peak

pressure typical of an explosive shock wave. Bubble collapse shock waves also occur

on a much larger time scale than explosive shock waves. By the time the shock wave

produced by a bubble collapse reaches the target, the explosive shock effects will have

damaged the structure sufficiently. Therefore, the magnitude and incidence rate of

bubble collapse shock waves renders them negligible for the multiple-source explosive

array.

1.2 Problem Statement, Objectives, and Scope

There is interest in using an array of small energy sources to direct and focus

pressure waves toward a remote location underwater. The aim is to induce a desired

structural response in a threat located at the target. The structural responses of

interest include exciting a specific natural frequency of the structure, or producing a

total loading sufficient to cause damage. The application envelope is broad, as these

structures may include the seabed itself. For example, an array of shaped charges has

recently been used to bore a hole in the bottom of Lake Mead for the “Third Straw”

construction project (Folchi and Wallin, 2012).

Given the loading parameters necessary to induce the structural response of in-

terest, physics-based, reduced-order models and optimization techniques can be used

to quantify the size and number of discrete energy sources needed to meet the design

objectives. Ideally, the energy source should be reusable or easily reconfigured for
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rapid turnaround. Methods that meet this criterion include air guns, nastic arrays,

and electric spark discharge. For purposes of this analysis, the energy source consists

of multiple small explosive charges, because shock waves produced by underwater ex-

plosions have been studied and are representative of the loading magnitudes necessary

to satisfy the objective. The method described in this thesis can be extended to any

energy source emitting spherical shock waves that can be controlled in a repeatable

manner.

The overarching goal of the present work is to develop a reduced-order model

for shock waves generated by a two-dimensional array of spherical explosives, and

to optimize the array geometry and detonation timing scheme to achieve a desired

pressure waveform at some target in the fluid below. The shock wave produced by

a spherical explosive propagates with a certain speed, has a specific amplitude, and

decays exponentially in both space and time. When multiple charges detonate in the

vicinity of one another, shock waves interact in important ways that significantly in-

fluence the pulse at the focus point. Numerical methods exist to predict the behavior

of the multiple-source array, including these interactions. However, existing numer-

ical methods, such as computational fluid dynamics (CFD), can be computationally

expensive (computations for multiple-source explosive arrays can take weeks). In the

extreme case of large arrays and remote targets, the computational grid size neces-

sary to resolve the shock waves is impossible to implement, even on high performance

computing clusters.

The present work seeks to model important shock physics analytically; that is,

in the absence of numerical integration of conservation equations. This objective is

motivated by the highly iterative nature of optimization algorithms. Optimization

requires several evaluations of an equation, function, or model as the algorithm con-

verges to an optimal solution. Any method used to model the multiple-source array

must therefore combine sufficient fidelity with rapid computational speed. Although
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they are highly accurate, fluid solvers that rely on numerical integration of conser-

vation equations are computationally expensive and thus ill-suited for optimization

work.

An appropriate optimization approach for the design of the explosive array must

be devised. The design problem is complicated by the presence of discrete and contin-

uous design variables (such as the number of sources and the detonation time of each

source) that influence nonlinear shock behavior. Gradient-based optimization algo-

rithms are generally unable to accommodate discrete variables, such as the number

of charges in the multiple-source array. The array design space is also highly multi-

modal, as a variety of detonation timing schemes have the potential to create similar

results at the target point. Multimodal problems are a notorious weakness of hill-

climbing methods. A genetic algorithm has been implemented for the analysis of the

multiple-source array design problem, because it can incorporate discrete variables.

Furthermore, as a stochastic search method, it counteracts multimodal difficulties.

1.3 Existing Shock Modeling Techniques

1.3.1 Analytical Methods

The underwater shock pressure-time profile produced by spherical explosive charges,

referred to here as the shock waveform, has been studied since the early 20th century

(Cole, 1948). The most commonly used model, the so-called ‘Similitude Equations’,

were documented in 1946 (Coles et al., 1946). Coles noted that points represent-

ing peak pressure traced a straight line when plotted on a log-log plot versus charge

weight W cubed over standoff distance R
(
W 1/3

R

)
. A series of tests were undertaken

to determine the slope of this line. Subsequently, curve fitting coefficients were cal-

culated for pressure, momentum, energy, and decay time constant versus the scaled

range.
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Due to high fluid pressures and velocities present in shock waves and given the

short duration of the shock pulse, experimental measurement of shock properties

has always been difficult. As experimental setup and measurement technology ad-

vanced, the similitude coefficients were updated by Arons (Arons , 1953), Slifko and

Farley (Slifko and Farley , 1959), and several others through Swisdak (Swisdak , 1978).

Though they are fast and easy to use, the similitude equations do not provide a com-

prehensive solution for underwater shock modeling. First, the similitude equations

and their associated coefficients do not predict shock propagation speed. Locating

the position of each shock in space and time is critical for accurate modeling of the

interactions of multiple shock waves. Second, 4.76W
1
3 meters (with charge weight

measured in kilograms) has been derived as the outer limit of the similitude equation

applicability range (Richardson et al., 1995). Lastly, the similitude equations provide

no means for capturing complex shock interaction phenomena, instead offering simple

superposition of pressure waves as a multiple shock model.

Theoretical and experimental investigation of underwater shock behavior occurred

simultaneously. Early on, Lamb constructed a solution to the spherical shock problem

that assumed an incompressible fluid (Lamb, 1923). The shock waves produced by

underwater explosions do not behave acoustically in the near-field; indeed the very

presence of a shock wave indicates fluid compressibility. Due to this fundamental

attribute of shock waves, Lamb’s approach exhibited limited accuracy. Penney later

derived a method involving numerical integration of the Riemann equations and in-

cluded a simple equation of state (Penney , 1940). The Riemann equation approach

is limited to cases where dissipation can be neglected. Kirkwood and Bethe proposed

a more analytical solution to the spherical shock problem that employs the second

law of thermodynamics and the assumption that the change in enthalpy behind the

shock front is trivial. The Kirkwood-Bethe approach continues to be used to define

the shock waveform produced by an underwater explosion (Hunter and Geers , 2003).
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Rogers noted that the Kirkwood-Bethe method, though elegant, is somewhat dif-

ficult to use because pressure and particle velocity are not used as the dependent

variables and the solution is an implicit function of range (Rogers , 1977). As an al-

ternative, he developed a weak shock solution for spherical shock waves produced by

underwater explosions. In acoustics, a shock can be characterized as weak when the

particle velocity incited by the shock wave is much less than the sound speed behind

the shock wave (u << c). Underwater shocks generated by small sources can be de-

scribed as weak, given this definition. Rogers’ work has been modified and included

in the analytical model developed in this dissertation.

The solutions described above concern the calculation of pressure, impulse (the

integral of pressure over time), energy, and particle velocity in a fluid that has been

excited by a shock wave. Shock propagation speed has been neglected in these mod-

els, yet it is a critical component of multiple-source explosive array behavior. Two

propagation speed methods have been investigated toward this end. The first finds

its foundation in the energy hypothesis, developed by mathematician T. Y. Thomas

(Thomas , 1957). Its derivation centers on the examination of a spherical control vol-

ume surrounding the shock wave. The result is an algebraic equation that relates the

change in energy across the spherical shock front to the radius of the shock sphere

and the thermal energy contained in that charge. Singh combined Thomas’ equation

with the Rankine-Hugoniot jump equations and the Tait equation of state to deter-

mine the rate of advance of the shock front (Singh and Bola, 1974). In the present

work, this method has been derived with the Tillotson equation of state in place of

the Tait equation with a successful outcome. A second method for the prediction

of shock propagation speed has been developed using weak shock principles and has

been applied in the reduced-order model presented here.
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1.3.2 Numerical Methods

The analytical model developed herein is evaluated using a sophisticated numerical

solver that has been designed to model underwater explosions (Wardlaw et al., 2010).

The CFD code solves the inviscid Euler equations using a second-order Godunov

scheme, an approach proven to be highly accurate for modeling shock propagation

(Landsberg et al., 2003). The CFD solver is capable of modeling multiple explosions

and the interactions of multiple shock waves, while capturing pressure, density, par-

ticle velocity, and internal energy in the fluid at user-specified points for the time

duration of the simulation. All CFD results that have been plotted for comparison

with the analytical model have been calculated for the explosion of spherical TNT

charges in an infinite medium without gravity. The ambient pressure and density of

the fluid is set to conditions on the surface of a body of fresh water (100, 000 Pa and

1000 kg/m3 respectively).

The motivation to develop the reduced-order model is found in the nature of

optimization analysis. Most optimization algorithms are highly iterative. The model

or equation being optimized is evaluated hundreds or thousands of times before a

converged solution is found. Although the CFD solver described above has been

widely validated and offers a high degree of accuracy, it is computationally expensive.

The present model has been assembled using analytical, physics-based methods in an

attempt to capture the problem as accurately as possible while restricting execution

times to be on the order of minutes.

The reader will note that the bulk of the prior research used as a starting point

for the present model was published before 1980. Analytical shock hydrodynamics,

as a field of study, was somewhat abandoned as the underwater shock community

moved on to numerical methods when computational power increased in the 1980’s

and onward. The necessity for a computationally inexpensive multiple-charge model

has not appeared in the literature until now. As a result, the study of the interac-
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tion of spherical shock waves is relatively unexplored field, with the nuances of this

phenomena examined experimentally only recently (Kandula and Freeman, 2008).

1.4 Research Contributions

In order to summarize this chapter and to succinctly detail the technical contribu-

tions brought forward as part of this research, a list describing the novel developments

included in this dissertation is compiled below.

1. Improve upon current shock decay profile modeling methods, including the mag-

nitude of the shock tail

2. Reevaluate shock propagation speed models, suggesting a new nonlinearity pa-

rameter for water and account for shock interactions when determining shock

speed

3. Study and represent rarefaction waves produced by the multiple-source explo-

sive array, including an identification of key drivers of cumulative interaction

effects

4. Present a comprehensive physics based reduced-order model for the explosive

array, incorporating shock interaction and coalescence

5. Develop an optimization framework to assist in the design of the explosive array,

utilizing the analytical model that has been created
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CHAPTER II

Spherical Shock Waves

The pressure pulse generated by single spherical charges of TNT, which comprise

the building blocks of the multiple-source explosive array, must be understood in

order to model the behavior of the comprehensive system. Shock waves emitted by

these charges are characterized by propagation speed, peak shock amplitude, and

temporal and spatial decay. As the array design is optimized, propagation speed of

each wave informs detonation timing scheme selection. In order to quantify the mini-

mum number of sources necessary to achieve the objective, the pressure contribution

from a single source must be calculated. Furthermore, as the shocks produced by

individual explosives do not travel to the target in a vacuum, single-wave behavior

must be sufficiently characterized so that wave interaction effects can be calculated.

This chapter will explore existing methods for modeling shock waves produced by

spherical explosive sources, including additions and modifications to these methods

that have been developed as part of this research effort. Theoretical developments

presented here have been integrated into the physics-based, reduced-order model for

the array that is used for the eventual design optimization analysis. To begin, two

separate methods for predicting the propagation speed of a single shock wave will be

introduced, along with the effects and nuances of the equations of state for water that

are used in propagation speed predictions. CFD results will be used to validate both
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approaches. A technique for characterizing the shape and magnitude of the pressure

and particle velocity waves created by spherical explosions will also be discussed,

including a critical pitfall of the existing method regarding modeling of the shock

tail. A new modification will be implemented, and pressure, impulse, and particle

velocities using the adapted approach will be compared with CFD results for these

quantities.

2.1 Shock Propagation Speed

A central component of the multiple-source explosive array is the independent

detonation of each shock source. In the optimal case, explosions are triggered across

the array in a sequence that best achieves the desired pulse magnitude and duration

at the target point. The propagation speed of each shock en route to the target

must be understood before ideal detonation timing schemes can be identified. Two

methods for predicting shock speed are explored below.

2.1.1 The Thomas Energy Hypothesis

Shocks produced by spherical explosive charges initially travel at speeds much

higher than the speed of sound in the fluid. Each shock wave gradually decelerates

as the radius from the source, or standoff, increases. Specific energy decreases as the

radius of the shock sphere increases. Peak velocity and deceleration are functions

of initial shock properties at the source and the properties of the water into which

the shock propagates. Fluid properties are modeled by an ‘equation of state’. An

equation of state is so called because relationships between selected state variables,

such as pressure, density, and internal energy are quantified in order to define fluid

properties and behavior under various conditions. The Tillotson equation of state

for water is implemented in the numerical solver used to validate the reduced-order
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model. The Tillotson equation is formulated below:

p2 = p1 + ωρ2 (e2 − e1) + A

(
ρ2
ρ1
− 1

)
+B

(
ρ2
ρ1
− 1

)2

+ C

(
ρ2
ρ1
− 1

)3

(2.1)

with ω = 0.28 kg2

m·s2 , A = 2.2 × 109 Pa, B = 9.54 × 109 Pa, and C = 1.457 × 1010

Pa. The variable p represents pressure, ρ represents density, and e represents internal

energy. When used in the calculation of shock propagation speed, state 1 refers to

the local fluid state immediately before the shock arrives, while state 2 refers to the

fluid state at the instant after the shock peak passes.

The Tait equation of state for water is ubiquitous in underwater shock literature

due to its simple algebraic form, and was originally used in the propagation speed

method described in this section. The Tait equation is given by (Singh and Bola,

1974):

p = A

[(
ρ

ρ1

)N
− B

A

]
(2.2)

where ρ1 is the density at a pressure of 1×105 Pa. Singh provides values for the

coefficients of the Tait equation of state, giving A = 2.941×107 Pa, B = 2.94×107 Pa,

and N = 7.25. Equations of state are useful for modeling both shock waves and simple

waves when combined with conservation equations. Each equation of state defines

a Hugoniot curve (or surface, depending on whether two or three state variables are

related) which illustrates the relationship between state variables. Results from early

efforts to quantify these relationships are shown in Figure 2.1, with pressure on the

ordinate and specific volume (1/ρ) on the abscissa.

The Rankine-Hugoniot equations describe the conservation of mass, momentum,

and energy across a discontinuous jump in an inviscid fluid. The jump conditions,

as they are also known, can be derived using the one-dimensional Euler equations.

The Euler equations for conservation of mass, momentum, and energy are, in respec-
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Figure 2.1: Early Hugoniot Experimental Results (Rice and Walsh, 1956)

tive order:

∂ρ

∂t
= − ∂

∂x
(ρu) , (2.3a)

∂ρu

∂t
= − ∂

∂x

(
ρu2 + p

)
, (2.3b)

∂ρE

∂t
= − ∂

∂x

[
ρu

(
e+

1

2
u2 + p/ρ

)]
(2.3c)

where E is total energy and u is particle velocity. This system of equations is hyper-

bolic, and when integrated across a discontinuity using the hyperbolic conservation

law, the following equations result:
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U (ρ2 − ρ1) = ρ2u2 − ρ1u1, (2.4a)

U (ρ2u2 − ρ1u1) = ρ2u
2
2 + p2 −

(
ρ1u

2
1 + p1

)
, (2.4b)

U(ρ2E2 − ρ1E1) = ρ2u2(E2 + p2/ρ2)− ρ1u1(E1 + p1/ρ1) (2.4c)

where U is the rate of advance of the discontinuity, otherwise know as shock front

propagation speed. This set of equations are known as the Rankine-Hugoniot jump

conditions. The initial state, state 1, is assumed to be still water at 100 kPa with

density 1000 kg/m3 in the single shock propagation speed analysis below. Given

a known initial state, the Rankine-Hugoniot jump conditions contain five unknown

variables. Two more equations, therefore, must be identified to solve the system for

shock front propagation velocity U . An equation of state provides a fourth equation.

The Thomas Energy Hypothesis is used to close the system (Thomas , 1957).

Thomas proposed that the change in energy across a discontinuity is proportional

to the total energy Q that is released in the explosion and inversely related to the

radius of the shock sphere R. Given these relations, Thomas described the change in

energy across a spherical shock wave using the following equation:

E2 − E1 =
3αQ

4πR3(ρ2 − ρ1)
(2.5)

where α is a constant describing the explosive material and Q is the thermal energy

contained in the solid explosive sphere prior to detonation. The constant α describes

properties of the explosive detonation wave. Singh set α = 1.7465 for TNT in the

initial application of the Thomas Energy Hypothesis to the shock propagation speed

problem for the shock wave created by an underwater explosion (Singh and Bola,

1974).

The combination of the Rankine-Hugoniot jump conditions with the Thomas En-
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ergy Hypothesis was adapted for underwater explosions by Singh and has been fol-

lowed to this point. In his derivation, Singh employed the Tait equation of state for

water. The Tillotson equation of state has been found to be more accurate than the

Tait equation for underwater explosion analysis, however, and is implemented in the

numerical tool used to validate the reduced-order model. Singh’s approach has been

derived anew using this Tillotson equation of state. The resulting system of equations

can be condensed to the single equation below:

−3αQ

4πR3ρ2
+ p1(v1 − v2)

+ωρ2

(
−3αQ

4πR3ρ2
− 1

2

(
−3αQ

4πR3ρ2
− p1 (v1 − v2)

))
+

A(v1 − v2)
(
v1
v2
− 1

)
+

B(v1 − v2)
(
v1
v2
− 1

)2

+ C(v1 − v2)
(
v1
v2
− 1

)3

= 0

(2.6)

where v is equivalent to 1/ρ. The only unknown in Equation 2.6 is ρ2 (and, hence,

v2). Equation 2.6 can be solved iteratively for v2, and the solution is used to solve

the original Rankine-Hugoniot jump conditions for shock propagation speed U . CFD

simulations have been employed to evaluate the result, along with Singh’s original

derivation. Shock speed predictions are further compared to a wave traveling at the

acoustic sound speed. Setting shock propagation speed equal to the acoustic sound

speed in water is an assumption that has commonly accompanied implementation of

the similitude equations (Shin, 2004). The similitude equations are the most widely

used analytical model for spherical underwater explosions to date, so the assumption

that shock waves travel at the sound speed of the fluid is common.

The detonation of a single 1 g spherical charge of TNT in an infinite, undisturbed

fluid has been simulated using the CFD solver with a 0.01 cm, one-dimensional com-

putational grid extending 30 m out from the charge center. Shock arrival time was
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monitored at 1 m increments. The arrival times predicted by each method were sub-

tracted from the CFD arrival times at each spatial increment for comparison of the

speed predicted by each method. Percent error was not used as a means of comparison

because the percent error of arrival time becomes very small as arrival time increases

at large distances. The maximum arrival time disparity from the CFD-predicted ar-

rival time throughout the entire 30 m range, in seconds, has been tabulated for each

method in Table 2.1 for 1 g and 100 g charges.

Method 1 g charge [s] 100 g charge [s]

Tillotson 1.26e-5 5.57e-5
Acoustic 2.89e-5 1.13e-4
Tait 1.40e-3 1.27e-3

Table 2.1: Maximum Arrival Time Discrepancies from CFD: 0-30 m

The speed generated using Singh’s original method, which incorporated the Tait

equation, correlates poorly with numerical results. The failure is partially due to the

high sound speed it predicts (1538 m/s compared with 1483 m/s by the Tillotson

equation). All CFD simulations were conducted using the Tillotson equation, some-

what dooming the potential of any method incorporating the Tait equation from the

start. It is only appropriate to use the Tillotson equation to generate numerical data

because it has been shown to be more accurate than the Tait equation. The Tillot-

son equation of state has also been used in the original validation cases for the CFD

code. The constant speed assumption is respectably close to the CFD prediction for

the 1 g charge. This can be attributed to the fact that small charges propagate lin-

early everywhere except very close to the charge. Simulations of larger charges were

conducted to demonstrate the weakness of the constant speed assumption, with the

results appearing in Table 2.1. It is evident that the Tillotson method corresponds

to the CFD simulation best for this range of charge sizes. Because of its superiority

over the existing means of shock propagation speed prediction, the Thomas Energy
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Hypothesis combined with the Tillotson equation of state for water and the Rankine-

Hugoniot jump conditions has been identified as a valuable new development in the

prediction of spherical shock propagation speed.

2.1.2 Equation of State Failure

Combination of the Rankine-Hugoniot jump conditions, the Thomas Energy Hy-

pothesis, and the Tillotson equation of state has has been found to accurately describe

the propagation speed of spherical shock waves in undisturbed fluid (Stowe and Vla-

hopoulos , 2012). However, this approach, which has been described above, fails to

accurately determine shock propagation speed in a disturbed fluid. When the shock

wave travels into fluid that is pre-shocked (pressure and density are increased above

ambient values) the propagation speed prediction falls below the sound speed in the

pre-shocked fluid. By definition, shock waves never travel slower than the sound speed

in the fluid. The model, therefore, has failed in this instance.

Figure 2.2 depicts shock propagation speed predicted by the Tillotson equation

for a shock traveling into a still fluid of varying state. In the first case, the fluid state
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Figure 2.2: Shock Propagation Speed Prediction, Energy Hypothesis - Tillotson
Equation Method

is defined by pressure-density pairs that form the points on the Tillotson Hugoniot
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curve. Internal energy is assumed to be constant. This is a reasonable assumption as

the magnitude of the energy jump terms in the Tillotson equation at a 1 m standoff

for the shock wave produced by a 1 g charge are approximately 10000 times less

than the magnitude of the pressure and density terms in the Tillotson equation at

that radius. For the second case, propagation speed for a shock traveling into an

increasingly pressurized fluid with constant density is plotted (with density set to

the ambient value, or 1000 kg/m3). Using constant density should generally result in

an over-prediction of shock propagation speed. Sound speed in the fluid (a function

of pressure and density, since internal energy is neglected) is calculated as well. The

predicted speeds are based on a standoff of 0.5 m from a 1 g charge. Shock propagation

speed predicted using the Energy Hypothesis - Tillotson equation method is not only

less than the sound speed, but it also initially decreases as pressure increases! The net

effect, when this model is included in a multiple source framework, is that trailing

shock waves decelerate rather than accelerate in the wake of a leading shock. For

reference, the isentropic sound speed in water using the Tillotson Equation can be

derived as:

c =

√√√√ωp

ρ
+ ω (e− eo) +

A+ 2B
(
ρ
ρo
− 1
)

+ 3C
(
ρ
ρo
− 1
)2

ρo
. (2.7)

The Energy Hypothesis - Tillotson equation method also exhibits a peculiar be-

havior concerning the internal energy jump predicted across a shock traveling into a

pre-shocked fluid. Figure 2.3 demonstrates a predicted decrease in internal energy as

density of the undisturbed fluid increases beyond a certain threshold. To produce this

plot, the Tait equation (Equation 2.2) was used to approximate pressure-density pairs

which were then substituted into the Tillotson equation (Equation 2.1) to calculate

the corresponding change in internal energy. At very high densities, the predicted

density falls below the energy at standard temperature and pressure (represented by
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the dotted line). This behavior demonstrates the weakness of the Energy Hypothesis

- Tillotson equation approach for disturbed fluids. The shock waves produced by the

multiple-source array travel in heavily disturbed fluids. Although this method has

been validated for spherical shock waves propagating in undisturbed fluid, the results

in Figures 2.2 and 2.3 demonstrate that this approach is ill suited for implementation

in the analytical model for the multiple-source array, where shocks propagate into

heavily disturbed fluid.

The Tait equation of state for water struggles to represent shock waves traveling

into pre-shocked media as well. This is shown in Figure 2.4, where shock propagation

speed is again predicted to be less than the sound speed of the fluid into which the

shock is propagating. In this case, shock speed is calculated using the Rankine-

Hugoniot jump condition for continuity, Equation 2.4a (completely separate from the

Thomas Energy Hypothesis). Assumed particle velocity values have been used in the

calculation and are shown in Figure 2.4 as well.

2.1.3 A New Perspective on an Old Method

The failure of the methods above to predict shock propagation speed in a dis-

turbed fluid is problematic. Shock waves generated by the multiple-source explosive
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array interact with one another and acceleration of trailing waves is a common and

important phenomena to capture. The weak shock formulation provides another av-

enue for shock propagation speed modeling, yielding the following equation for shock

propagation speed (Rogers , 1977):

U = co +
1

2
βu (2.8)

where co is the ambient sound speed in the fluid, β is a nonlinearity parameter for

water, and u is the particle velocity. Shock waves not only compress water, increas-

ing co, but they also accelerate water particles. This twofold effect leads to shock

propagation speeds that are greater than the ambient-pressure sound speed (in di-

rect contradiction to the behavior exhibited in Figures 2.2-2.4). Fluid compression

and acceleration is also the mechanism by which trailing waves catch up to leading

shocks (Courant and Friedrichs , 1948). Trailing waves travel through excited fluid

characterized by a higher sound speed than the fluid into which the leading shock is

propagating. Even simple waves catch the shock because the shock front propagates

at a speed less than the sound speed immediately behind it. An expression for shock

front propagation speed that demonstrates a front traveling slower than the fluid
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behind it falls out of the ‘weak’ derivation of shock speed:

Let the mass flux be given by:

Q = ρu (2.9)

and let the shock be weak, such that particle velocity is much less than sound speed:

Q = Q (ρ) . (2.10)

The Rankine-Hugoniot Jump Condition for mass is given by:

U =
Q (ρ1)−Q (ρ1)

ρ2 − ρ1
. (2.11)

At small perturbations of density, shock propagation speed trends toward character-

istic velocity:

c2 =
∂Q

∂ρ
. (2.12)

Expanding Q about ρ1 using a Taylor series gives:

Q (x) = Q (ρ1) +Q′ (x− ρ1) +
1

2
Q′′ (ρ1) (x− ρ1)2 . (2.13)

Substituting this equation into the continuity jump condition and the characteristic

speed definition (c2 = δQ/δρ) gives:

U = Q′ (ρ1) +
1

2
Q′′ (ρ2 − ρ1) +H.O.T. (2.14)

and :

c (ρ2) = c (ρ1) +Q′′ (ρ1) (x− ρ1) . (2.15)
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Combining these two equations, gives:

U =
c (ρ1) + c (ρ2)

2
(2.16)

and using the definition of sound speed in a disturbed fluid (Whitham, 1974), an

expression for shock front propagation speed in terms of co, u1, and u2 is determined:

U = co +
1

2
β (u1 + u2) . (2.17)

This formulation has been implemented in the reduced-order model to calculate

shock speed in the present model for both still and disturbed fluid, with one significant

deviation from the literature. The highest value for β (also known as the nonlinearity

parameter for water) that the authors have seen is 3.8 (Cooper , 1996). Singh uses a

value of 3. Comparisons with numerical results have been conducted for single 1 g and

single 1 lb charges propagating into undisturbed water and are plotted in Figures 2.5

and 2.6, using Equation 2.17 and β values from Cooper and Singh. A new proposed

value for the nonlinearity parameter for water (5) is also used.

0 50 100 150 200

1400
1500
1600
1700
1800

Standoff, cm

S
h

o
c
k
 S

p
e

e
d

, 
m

/s

 

 

0 50 100 150 200

−2

0

2

4

6

P
e

rc
e

n
t 

E
rr

o
r

U, β=5
U

CFD

% Error, β=5

% Error, Cooper

% Error, Singh

Figure 2.5: Shock Speed Comparisons: Single 1 g Charge

Data for the 1 g case is somewhat noisy due to the extremely fine increments
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Figure 2.6: Shock Speed Comparisons: Single 1 lb Charge

used to monitor shock speed. The computation utilized a spherically-symmetric one-

dimensional mesh and shock velocity was determined by calculating peak pressure

arrival time at monitoring points spaced 0.1 cm apart. For the 1 lb case, shock

arrival time was observed at 10 cm increments. Results for the 1 g case are shown

in Figure 2.5 and results for the 1 lb case are shown in Figure 2.6. Particle velocity

data used to calculate shock front propagation speed was generated using the CFD

code. The only variable in Equation 2.17 not directly taken from CFD results is β.

The correct tuning of β, therefore, should yield a close correlation with the numerical

results. It is evident that the published values for beta fall short in this pursuit,

given the deviation from the shock speed seen in CFD simulations of the near-field.

Analysis has shown setting β = 5 yields a better agreement with the CFD simulations.

The shock propagation speed calculated using the new β value is compared with the

CFD-predicted speed on the ‘Shock Speed’ axes.

Calculating propagation speed using the weak shock formulation and new value

for the nonlinearity parameter in water has been shown to be effective for single

charges above. An added benefit over the Energy Hypothesis - Tillotson equation

approach is that shock speed calculated in the weak sense will always increase when

the initial fluid has been pre-shocked. This is critical and a significant advantage over
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the other methods described earlier in the chapter. The weak shock formulation has

been integrated into the physics-based, reduced-order model as a means of predicting

shock front propagation speed in both still and disturbed media.

2.2 Shock Pressure Waveform

2.2.1 Similitude Equations

Single shock waves are characterized by their pressure waveform as well as propa-

gation speed. The pulse from a single spherical explosive source is comprised of a sharp

peak followed by exponential decay to an equilibrium state. A typical pressure-time

history for a single charge is depicted in Figure 2.7. Optimization of the composite

pressure wave at the target is the objective of the multiple-source explosive array

design. It is critical, therefore, to accurately capture pressure wave behavior at the

target. Shock interactions occur on the path to the target and are largely dependent

on shock amplitude as well. This section details the method used in the analytical

model to define the pressure waveform produced by a single shock.
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Figure 2.7: Typical Spherical Shock Pressure Waveform

2.2.2 Weak Shock Theory, an Adaptation

Singh’s method for calculating propagation speed provides shock properties as a

function of radius. The Rankine-Hugoniot jump conditions describe the jump across
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a shock front, but any temporal effects are left undefined. Impulse, the integral of

pressure over time, is a critical metric for the effectiveness of the array. Because

impulse and the composite waveform at the target must be modeled (not just the

pressure peaks), it is important to calculate state variables as a function of time.

Weak shock theory has been implemented to address this need and is used to predict

temporal and spatial decay of both pressure and particle velocity in the analytical

model.

As developed by Rogers, weak shock theory includes the assumption that the

linear impedance relation accurately relates pressure and particle velocity in water

(Rogers , 1977). The linear impedance relation is:

p = ρocou (2.18)

where ρ0 is the fluid density at ambient pressure. The acoustic velocity behind the

shock front is given by the following relation:

ca = co + βu (2.19)

which gives

u = f{t− [1− (βu/co)](x/co)} (2.20)

for small values of u/co (Blackstock , 1966). As we have seen, the shock front for a

wave propagating into an undisturbed fluid is given by:

cs = co +
1

2
βu (2.21)

meaning that the shock front is constantly being overtaken by the acoustic wave

behind it. Another assumption is that at some radius close to the charge, the pressure-
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time history remains exponential at all time. Therefore,

p = poe
(−t/τo) (2.22)

where τo is the decay time constant of a near-field pressure history. By the linear

impedance relation:

u = uoe
(−t/τo). (2.23)

Use of Equation 2.23 leads to:

û = e−(t̂+ûx̂) (2.24)

with û = u/uo, t̂′ = (t− x/co)/τo, and x̂ = ŝ(û), which is the dimensionless distance

where a point on the waveform that has been trailing the shock front catches up to

the shock front. Finally, this gives

ûm(x̂) = ŝ−1(x̂) (2.25)

and

pm(x̂) = poŝ
−1(x̂). (2.26)

With these equations in place, the function ŝ(û) can be found by performing a

time-based discretization of an original time history near the charge. The distance

where a point behind the shock overtakes a point on the shock can be calculated

and rearranged into a recursive equation that is then transformed into a differential

equation governing ŝ, namely:

1

2
dŝ(t̂)/dt̂ = et̂ + ŝ(t̂). (2.27)

This is solved using the initial conditions ŝ = 0 at t̂ = 0. Rogers implements this

solution in spherical coordinates to develop the expression used in the present model
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to predict peak pressure for a single charge:

pm(R) =
po{[1 + 2(Ro/lo)ln(R/Ro)]

1/2 − 1}
(R/lo)ln(R/Ro)

. (2.28)

An expression for the initial decay time constant as a function of radius using the

equation for peak velocity is also derived, giving:

τ(R) = τo[1 + 2(Ro/lo)ln(R/Ro)]
1/2. (2.29)

As Rogers acknowledges, this is only the initial decay constant. The pressure

decay of an underwater shock wave is not perfectly exponential. A curve fit of an

original pressure history recorded near the source using a single exponential function

is compared to CFD results in the left plot of Figure 2.8. The discrepancy between the
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Figure 2.8: Curve Fit Comparisons, Single Decay Constant and 20 Decay Constants

curves is stark and highlights the fact that single exponential decay is an insufficient

model for the pressure wave produced by a spherical explosive charge. Weak shock

theory has been modified to address this issue. The initial curve is subdivided into

several individual exponential segments, each with a unique decay constant. These

separate curves are propagated in accordance with weak shock theory and fused to-

gether at the points of interest to reconstruct the total waveform. This approach

leads to a much closer curve fit throughout the range of interest and is pictured for
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the original pressure history on the right in Figure 2.8. For this analysis, weak shock

theory is used to model the detonation of TNT. Weak shock theory has also been

successfully used to model other explosive materials (Liddiard and Forbes , 1983).

An original pressure history near the shock source is procured from numerical

results. The number of segments necessary to characterize the initial history varies

with charge size. If an excess of segments is used, the curve fits that define the initial

decay constants at the source become linear - a poor representation of the actual

pressure time curve. At any point in the fluid where the pressure is desired, the

segments are fused together to construct the waveform. The fusion of one segment

to another proceeds as follows. The first segment, which is fitted to the peak section

of the original near-field history, dictates the peak as well as the initial decay. As

time progresses, the first segment will eventually define a pressure that is below the

peak value of the second highest segment. At this time, the second highest segment

is used to define the curve until a time where the peak value of the third segment is

higher than the value of the pressure given by the second segment at that time. At

this moment, the third segment begins to determine the waveform shape and so on.

Impulse histories for a single 1 g spherical charge of TNT are shown for standoffs

of 1 m and 30 m in Figures 2.9 and 2.10. The line titled ‘WS’ on the impulse curve is

the weak shock theory result with only one segment, or decay constant. It is compared

with a curve defined by twenty segments, denoted by ‘Adapted WS’. Twenty decay

constants have been selected because they sufficiently capture the waveform shape

throughout the range of interest. With five decay constants, weak shock theory

predicts impulse within 9.15% of the CFD-calculated impulse at 30 m. Using twenty

decay constants, weak shock theory predicts impulse within 1.41%. The impulse

curves are truncated where the pressure in the CFD simulation becomes negative.

This behavior is related to the gas bubble and the conservation equations. The

negative portion of the pressure wave is not a factor in energy focusing in the range

29



0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

20

40

60

80

100

120

140

Time, s

Im
p
u
ls

e
, 
P

a
*s

e
c

 

 

Adapted WS

WS

CFD

Figure 2.9: Single 1 g Spherical Source Impulse Prediction, 1 m Standoff

0.019 0.02 0.021 0.022 0.023 0.024 0.025

0

1

2

3

4

Time, s

Im
p
u
ls

e
, 
P

a
*s

e
c

 

 

Adapted WS
WS
CFD

Figure 2.10: Single 1 g Spherical Source Impulse Prediction, 30 m Standoff

of interest, however, and has not been included in the model.

At both 1 m and 30 m standoffs, the modified version of weak shock theory suf-

ficiently predicts impulse and greatly improves upon existing methods. As a final

metric, peak pressure predictions calculated by CFD and weak shock theory are com-

pared in Figure 2.11 as well as percent difference in impulse prediction in Figure 2.12.

In the past, weak shock theory has been used to predict impulse in the far-field linear

domain of shock wave propagation (Cudahy and Parvin, 2001). Here, weak shock

theory is shown to model both the near-field and far-field well for a 1 g spherical

charge of TNT.
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Weak shock theory is used to determine particle velocity in the analytical model.

Weak shock theory, therefore, is used not only to predict pressure but is used to pre-

dict shock propagation speed as well. Figure 2.13 demonstrates the accuracy of the

weak shock theory implementation for particle velocity, where u′ is the nondimen-

sionalized particle velocity u/co.

A final modification to weak shock theory has been developed to increase the ac-

curacy of the method. Original histories generated by the numerical tool are recorded

at varying standoffs from the charge. As a shock wave passes each of these standoffs,
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Figure 2.13: Single 1 lb Spherical Source Particle Velocity Comparison

the original history at that point begins to define the weak shock segments, super-

seding histories taken closer to the charge. This correction has been included because

the waveform shape is subject to change slightly as the shock propagates away from

the target. The peak becomes less sharp and the wave tail begins to widen. Recal-

ibrating the shock as it propagates beyond known waypoints is an effective method

of maintaining accuracy in the reduced-order model.

2.3 Chapter Summary

This chapter has described the technical underpinnings used to model the behavior

of a single spherical shock wave. Singh’s propagation speed approach has been red-

erived using the Tillotson equation of state for water. Although this approach yielded

satisfactory results for shocks propagating in undisturbed fluid, the method struggled

to predict speed in a shocked fluid accurately. This is a critical shortcoming in the

context of the multiple-source explosive array because individual shocks interact and

accelerate each other. The weak formulation for shock front propagation speed has

been applied to the problem and an improved value for nonlinearity parameter for

water has been identified.

Weak shock theory, as it pertains to pressure and particle velocity, was derived
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and Rogers’ initial method was improved by discretizing the ‘seed’ waveforms into

segments. This technique enables shock tails to be resolved with higher accuracy,

leading to better predictions downrange. In the next chapter, single shock effects will

be used to determine the magnitude and type of several multiple-source interaction

phenomena.
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CHAPTER III

Multiple-Source Effects

The behavior of shock waves produced by single spherical explosive sources has

been detailed in the previous chapter. The modeling techniques introduced in Chap-

ter II capture propagation and attenuation of solitary shock waves as they propagate

away from their origin. During the preliminary phases of this research effort, it

seemed that modeling single source effects was sufficient to represent the behavior of

the multiple-source explosive array. Several early studies using two-charge line arrays

indicated that the simple superposition of single source results correlated well with

numerical data generated with two-dimensional grids where shocks traveled in the

midst of one another.

The correlation deteriorated, however, when more charges were used or when

charges were spaced closer together. The tail of the composite waveform dropped off

abruptly in these configurations, removing impulse from the shock tail. Interacting

shock waves began to outpace their superposition counterparts as well. Lastly, peak

pressure at the target exhibited unexpected attenuation.

This chapter will identify the physical causes behind each of these unexpected

behaviors. Rarefaction waves, shock coalescence, and shock-rarefaction interactions

will be explained, and the methods used to model these phenomena will be enumer-

ated. reduced-order models for the multiple-source effects discussed here have been
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integrated into the comprehensive analytical model for the multiple-source explosive

array.

3.1 Rarefaction Waves

The near-field becomes chaotic when charges in the multiple-source array are

detonated. Figure 3.1 depicts numerical results for pressure that underscore the com-

plexity of the near-field flow. Shock waves propagate amongst each other and interact

in important ways which influence the composite waveform at the target. Shock waves

are not the only wave type produced by the multiple-source array, however.

Figure 3.1: Complex Near-field Flow from Multiple-Source Explosive Array

As explained in Chapter I, an explosive gas bubble is created during the detonation

process. The bubble expands and contracts cyclically, gradually floating to the surface

where it is vented. Shin gives the bubble oscillation period for a 1 g charge submerged

to 3 m depth to be 0.0271 seconds (Shin, 2004). The shock produced by a 1 g

spherical explosive source reaches the explosive gas bubble of a neighboring source

10 cm away in less than 5×10−5 s. The rate of bubble expansion (and eventually,

contraction), therefore, is slow relative to the speed of shock waves produced by 1 g

charges. Based on the drastically different time scales of bubble period and shock
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propagation, bubble oscillation effects can be neglected in the analytical model for

the multiple-source array.

Although bubble oscillation effects have been ignored, the bubble itself must be

modeled to accurately predict the composite waveform produced by the array. The

existence of gas-filled bubbles in the midst of shock waves leads to waves of a different

kind. Rarefaction, or expansion, waves are unlike shock waves in many regards. A

rarefaction wave relaxes the fluid, reducing pressure, density, and particle velocity,

while a shock wave does the opposite. Rarefaction waves have finite rise times, mean-

ing pressure at the trough (the rarefaction analogue of the shock peak) is not reached

instantaneously. Finally, unlike the tendency of points behind the shock to catch up

to the front due to the increased acoustic speed in the shock wake, a rarefaction wave

spreads as it propagates. The head of the wave travels faster than the tail because

the tail travels in a relaxed fluid.

In most underwater explosion studies, rarefaction waves appear when a shock wave

is incident upon the free surface. Conservation equations at the boundary dictate that

an expansion wave must be reflected back into the fluid to offset the shock effects at

the interface. In the multiple-source explosive array, explosive gas bubbles act as

reflective surfaces, much like the free surface of a body of water. The presence of

gaseous bubbles is accounted for in the analytical model by including theoretical

representations of rarefaction wave strength and rarefaction wave propagation speed.

3.1.1 Rarefaction Strength

3.1.1.1 Conservation at the Interface

The Rankine-Hugoniot jump conditions can be combined with the ideal gas law

to examine the physics present at a shock interface. Two fluid states separated by

an interface is often referred to as the Riemann problem. The jump conditions for a

shock propagating from left to right (in a one-dimensional sense) can be rewritten as
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the following family of equations (Smoller , 1983):

pr
pl

= e−x, (3.1a)

ρr
ρl

=
1 + βe−x

β + e−x
, (3.1b)

ur − ul
cl

=
2
√
τ

γ − 1

1− e−x√
1 + βe−x

(3.1c)

where x = −log
(
pr
pl

)
and γ is the ideal gas constant. The relations across simple

waves, which include rarefaction waves, can be derived for an ideal gas as the following

family of equations (for a shock moving from right to left):

pr
pl

= e−x, (3.2a)

ρr
ρl

= e−x/γ, (3.2b)

ur − ul
cl

=
2

γ − 1

(
1− e−τx

)
. (3.2c)

These families of equations form the basis for the solution to the Riemann shock

tube problem. Shock incidence upon a bubble surface is physically similar to a shock

reaching an interface in a shock tube. Conservation conditions at the boundary are:

pr
pl

= 1, (3.3a)

ρr
ρl

= ex, (3.3b)

ur
ul

= 0. (3.3c)

The three families of equations (the relations across shock waves, relations across

simple waves, and the boundary conditions at an interface between two fluid states)

are used to solve for the wave type and wave magnitude resulting from the collision

of a shock with an explosive gas bubble. A final relation, known as the Lax entropy
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condition, is required to close the system. This condition ensures that the resulting

waves do not exist in such manner that entropy would be destroyed. The Lax entropy

condition, as it pertains to the Riemann problem, can be derived as follows: Let the

fluid on the left of an interface be gas from the explosive bubble and the fluid to the

right of the interface be water. Using Smoller’s notation, we define the following:

A = ρr/ρl, B = pr/pl, C = ur−ul
cl

. Assuming that a vacuum cannot be created

by the shock-bubble collision, the following must hold for a rarefaction wave to be

propagated into the bubble:

√
B

A

2

γ − 1

(
1− e(

γ−1
2γ

log(B))
)
< C <

2

γ − 1

(
1 +

√
B

A

)
. (3.4)

If this inequality does not hold, a shock wave will be transmitted into the bubble.

Similarly, the following must be true for the liquid side:

2

γ − 1

(
1− e(

1−γ
2γ

log(B))
)
< C <

2

γ − 1

(
1 +

√
B

A

)
(3.5)

for a rarefaction to be transmitted into the liquid. Otherwise a shock is propagated

into the liquid side.

These equations form the basis of the reduced-order model for shock-bubble col-

lisions. One final component is missing. The families of equations above have been

derived for an ideal gas. The ideal gas law lends itself to algebraic manipulation due

to its simplified structure. Neither the Tait nor the Tillotson equation can be used in

the above derivation; the algebra cannot be solved. Holl determined a functional form

equivalent to the ideal gas law with the Tait equation, which allowed formulations

from gas dynamics above to be applied in the liquid domain (Holl , 1982).

38



3.1.1.2 The Functional-Form Equivalent Tait Equation

As discussed in Chapter II, equations of state are used to describe the relationships

between state variables in a fluid. The Tait equation of state for water relates pressure

to density, as demonstrated in Equation 2.2. Values of A = 3.31×108 , B = 3.31×108,

and N = 7.25 have been used in the analytical model. Although analyses using the

CFD code have employed the Tillotson equation of state exclusively, the code is able

to incorporate the Tait equation. The values for A, B, and N above come from the

Tait equation definition in the CFD tool. The modified Tait equation, a functional

form equivalent of the ideal gas law, is given as:

P̄1/P̄o = (ρ1/ρo)
N (3.6)

where P̄ = P + B. This equation can be used to determine sound speed in a very

familiar form:

c2 =
NP̄

ρ
. (3.7)

The modified Tait equation can be substituted into the families of equations de-

rived in the previous section to solve the Riemann problem at a gas-liquid interface.

Chen and Cooke were the first to do this, and their development has been imple-

mented into the physics-based, reduced-order model (Chen and Cooke, 1994).

3.1.1.3 Bubble Dynamics on the Shock Time-Scale

To model the cumulative effect of the multiple-source array at the target, the

rarefaction waves produced by the shock-bubble collisions must be characterized. The

method for solving the Riemann problem at a gas-liquid interface provides the means

to solve the interface problem, but the initial state on the gas and liquid sides of the

interface must be defined. Conditions on the liquid side are given by the impending

shock, as modeled according to the methods outlined in Chapter II. The remaining
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unknown is the fluid state on the gas side of the interface.

Numerical experiments were conducted to determine the effect of an incident shock

wave on an explosive gas bubble. Figure 3.2 shows the pressure field near a bubble

at the instant before the shock collides with the bubble, the instant just after col-

lision, and at a time when the rarefaction wave is fully formed (low pressure fields

indicated by the dark blue semi-circles propagate into the pressurized regions and

counter overpressure from shock waves). Figure 3.3 shows density plots in which

the bubble boundary can be clearly seen. The bubble shape and the expansion rate

depicted in the density plots do not appear to be affected by shock collisions.

(a) (b) (c)

Figure 3.2: Rarefaction wave formation as seen in pressure contour plots a) just before
the shock collides with the explosive gas bubble, b) just after the collision,
and c) after rarefaction wave is fully formed

(a) (b) (c)

Figure 3.3: Bubble diameter as seen in density plots a) just before the shock collides
with the explosive gas bubble, b) just after the collision, and c) after
rarefaction wave is fully formed

These results demonstrate that bubble behavior is predictable because shock col-
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lisions do not effect bubble geometry appreciably on the shock time scale. To charac-

terize this behavior, CFD simulations have been conducted to collect bubble radius

and state data as they vary with time. As implemented in the reduced-order model,

the state of the explosive gas is queried from a lookup table that has been assembled

from numerical simulation data. Knowing the initial explosive gas state as well as

the initial state on the liquid side due to the shock, the approach of Chen and Cooke

is applied to determine the rarefaction strength (Chen and Cooke, 1994). Validating

this method is hampered by the difficulty in simulating isolated spherical rarefaction

waves with the CFD tool. As a result, the rarefaction strength calculation is validated

as part of the comprehensive model in Chapter IV.

3.1.2 Rarefaction Speed

Rarefaction waves propagate differently than shock waves in that rarefaction waves

have finite rise time and spread as they propagate. As the rarefaction wave arrives,

the overpressure is attenuated gradually. If a shock had arrived, the overpressure

would jump discontinuously. The finite rise time occurs because of the nature of a

rarefaction wave. The front of a rarefaction wave travels into fluid at an initial state,

while the tail of the wave travels through fluid that has been relaxed from that initial

state. The front travels faster than the tail, therefore, and arrives at the target first.

Therefore, the rarefaction wave spreads as it propagates.

Rarefaction wave speed is calculated using the propagation speed of a nonlinear

simple wave. The state of the fluid into which the rarefaction is propagating is known,

therefore the speed of the head of the rarefaction wave can be calculated. Given the

strength of the rarefaction wave, conditions at the tail of the wave can be determined.

Propagation speed of the tail is determined by the acoustic wave speed in the relaxed

fluid. This method has been integrated into the comprehensive model.
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3.1.3 Numerical Comparisons

In the reduced-order model, the post-collision pressure on the liquid side of the

explosive gas bubble interface is subtracted from the incident shock pressure to de-

termine the initial magnitude of the rarefaction wave. Modeling initial strength alone

is insufficient. Spatial and temporal attenuation of rarefaction waves must be calcu-

lated as well. CFD simulations were used to study rarefaction wave decay, and an

analytical method for predicting rarefaction wave decay in space and time has been

validated.

Pressure histories for three and five charge line arrays have been simulated and

compared with linearly-combined single charge simulations. The superposition runs

were conducted so that the results corresponded with the spacing and detonation

timing of the line array simulations. Identical computational grids were used for both

the line array simulations and the single charge runs. In the line array simulations,

where individual shock waves were free to interact, shock coalescence caused shock

waves to travel faster than the superposition runs. To account for this, peak arrival

time of superposition waves has been modified so that each superposition peak ar-

rives at the same time as its respective line array simulation analogue. As a result,

rarefaction wave effects have been isolated from shock coalescence for examination.

The line array simulations, which included shock-bubble collisions, were conducted

with a very low cavitation floor. The cavitation floor is the minimum pressure per-

mitted by the CFD code. By allowing very low pressures to occur, the true strength

of the rarefaction wave can be determined when compared with superposition. With

the default cavitation floor of 5×104 Pa, the rarefaction troughs are occasionally

truncated before they reach their minimum pressure.

A comparison between line array and superposition results for a three charge line

array is shown in Figures 3.4 and 3.5. Note that the initial sharp trough in the

Figure 3.5 at approximately 2.6×10−4 s is not a rarefaction wave; rather, it is the
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result of differing peak pressure values for superposition and the two-dimensional

analysis.
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Figure 3.4: Three 1 g Source Line Array, Superposition vs Interacting Results, 40 cm
Standoff
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Figure 3.5: Three 1 g Source Line Array, Isolated Rarefaction Waveform, 40 cm
Standoff

For comparison, similar plots are given for the five charge line array in Figures 3.6

and 3.7. Two distinct troughs can be seen in the rarefaction waveform produced by

the five charge line array. The five charge array, when each charge is detonated simul-

taneously, creates three distinct rarefaction waves along the centerline (one from the

center bubble, one from the intermediate bubbles, and one from the outer bubbles).

By the time the wave train has propagated to the standoff shown in Figure 3.7, the

first and second rarefaction troughs have merged.

Rarefaction strength has been plotted versus distance to determine spatial decay

in Figure 3.8. The rarefaction strengths denoted ‘First Wave’ and ‘Second Wave’
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Figure 3.6: Five 1 g Source Line Array, Superposition vs Interacting Results, 40 cm
Standoff
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Figure 3.7: Five 1 g Source Line Array, Isolated Rarefaction Waveform, 40 cm Stand-
off

represent the magnitude of rarefaction troughs produced by the three-charge line

array, such as those appearing in Figure 3.5. Merging of the two discrete waveforms

occurs at 40 cm, after which the rarefaction waves produced by the three-charge line

array propagate as one waveform. Rarefaction strengths determined from the line

array - superposition comparison are compared with a 1/R spatial decay, which is

characteristic of a spherical acoustic wave. The initial rarefaction strength for the

acoustic decay curves is set to the initial observed value from the numerical study.

Figure 3.8 demonstrates that simple acoustic decay is a reasonable approximation for

a reduced-order model and can be used to represent the attenuation of a rarefaction

wave as it propagates through space.
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Figure 3.8: Rarefaction Wave Spatial Decay, Three 1 g Charge Line Array

3.2 Shock Coalescence

The creation of rarefaction waves is an important multiple-source effect and it

must be included in the physics based reduced-order model. Other multiple source

effects are equally important. Shock coalescence, or the tendency of trailing shock

waves to catch up to and merge with leading shock waves, plays a critical role in

the final composite waveform profile at the target. Figure 3.9 shows the progression

of the wave train produced by a five charge line array with each source detonated

simultaneously. Individual shocks interacted with one another and each pressure

history was recorded at the stated standoff out from the center charge in the array.

Superposition results generated by adding pressure histories from solitary shocks are

plotted for comparison.

As waves produced by the multiple-source array propagate toward the target,

trailing waves are accelerated and drawn into leading shocks. Acceleration can be

observed where the interacting peaks outpace their superposition counterparts. The

composite waveform generated from superposition results demonstrates coalescence

as well, but this effect is due to geometry (when the target is moved far from the

array, the distance between each charge becomes negligible and they appear to reach

the target at the same time for simultaneous detonation schemes). Geometric coa-
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Figure 3.9: Superposition vs. interacting shock progression of wave train produced
by five charge line array at a) 10 cm standoff, b) 20 cm standoff, c) 30 cm
standoff, d) 40 cm standoff

lescence occurs at later times and further standoffs than coalescence caused by shock

interaction.

The aggregate effect of trailing wave acceleration is twofold. First, energy is

shifted toward the front of the waveform, as evidenced by the higher first peak seen

at the 30 cm and 40 cm standoffs for the interacting wave simulation when compared

with superposition in Figure 3.9 . Second, impulse is preserved, since the rarefaction

waves arrive later relative to the shock peaks. When the rarefaction waves arrive

later, the shock is able to decay further before being nullified by the rarefaction waves.

Therefore, more energy is delivered to the target as the shock waves escape deleterious

rarefaction effects for a few moments more than they would with no coalescence

modeling.

Recent studies have explored coalescence of spherical shock waves experimentally.

Exploding copper and nichrome wires were used to create blast waves in proximity

to one another, and schlieren photographs were taken to capture the interaction
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(Higashino et al., 1991). Mach stems that can be seen in the images also appear

in field plots from CFD analyses conducted during the present research effort. The

formation of mach stems informs the shock coalescence modeling approach that has

been implemented in the physics based reduced-order model.

Analytical models for shock coalescence do not appear in the literature. Kandula

and Freeman studied shock coalescence experimentally and numerically (Kandula and

Freeman, 2008). The models offered for shock coalescence deal only with the peak

pressure of the coalesced wave, neglecting the coalescence process, which is a gradual

progression. All numerical studies of both 1 g and 1 lb spherical charges indicate

that superposition is a sufficient method for capturing peak pressure of the coalesced

wave front, provided that rarefaction waves and shock-rarefaction interactions are

accounted for. The latter multiple source effect has significant bearing on peak am-

plitudes and is described in the following section.

3.3 Shock-Rarefaction Interactions

A third important multiple-source effect is attenuation that occurs due to the in-

teraction of shock waves and rarefaction waves. In large multiple-source arrays, shock

waves from outer sources overtake rarefaction waves produced by inner source bubble

collisions before the entire wave train collectively reaches the target point. Both shock

waves and rarefaction waves are weakened when shocks overtake rarefaction waves.

The extent of the attenuation is dependent on the state behind the shock before the

interaction (state L), the state between the shock and rarefaction before the interac-

tion (state 0), and the state in front of the rarefaction before the interaction (state

R). The shock tube is used as a model for this process. The instant just before a

trailing shock overtakes a leading rarefaction in a shock tube is shown in Figure 3.10.

The instant after the interaction is shown in Figure 3.11. Two oppositely-propagating

waves always result from a shock-rarefaction interaction in a shock tube. These waves
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Figure 3.10: Shock Tube Diagram - Before Interaction

RL 3

Figure 3.11: Shock Tube Diagram - After Interaction

can be any combination of shocks and rarefactions and the wave type is dependent on

the properties of the fluid. The amplitude of the reflected waves is calculated in a sim-

ilar fashion to the gas-liquid interface problem solved in Section 3.1.1.1. The change

of state across simple waves and shock waves is constrained by physical relationships.

From the method of characteristics, we know the relation across a rarefaction wave

for a polytropic gas is (Courant and Friedrichs , 1948):

ub = ua ±
√

1− µ4

µ2

(
1

ρa

) 1
2

p1/2γa

(
p
(γ−1)/2γ
b − p(γ−1)/2γa

)
(3.8)

where µ2 = γ−1
γ+1

and the plus sign is taken for right-facing waves and the minus sign is

taken for left facing waves. Using the Hugoniot equation and the Rankine-Hugoniot

jump equations for a shock wave, the relation across a shock is defined as:

ub = ua ± (pb − pa)

√
(1− µ2) (1/ρa)

pb + µ2pa
. (3.9)

These equations describe the locus of fluid states b that can be reached from fluid

state a across shock and rarefaction waves. The initial state between the rarefaction

wave and shock (state 0) can be triangulated by determining where the locus of states

across a rarefaction wave from state R intersects with the locus of states across a shock
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wave from state L. For clarity, the locus of possible states that can be reached by

either rarefaction wave or shock wave from an initial state defined on the left (state

L) is plotted in Figure 3.12. The plotted curves represent the states possible to be

reached by a shock and the states possible to be reached from a rarefaction when

the wave is defined by state L. In this case, state L is characterized by zero particle

velocity and a pressure of 1×108 Pa.
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Figure 3.12: Typical P-u Diagram

By plotting these loci with those produced using state R (in Figure 3.13), the

initial intermediary state between the shock wave and the rarefaction wave can be

determined. The intersection of the forward-facing shock arm of the state defined

on the left and the forward-facing rarefaction arm of the state defined on the right

determines the initial state. When the shock passes the rarefaction, the intersection

between the backward-facing rarefaction arm of the state defined on the left and

the forward-facing shock arm of the state defined on the right is found iteratively

using the state loci again. This new intersection defines the new intermediate state

between the new rarefaction and shock wave. The equation that is solved to find the
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Figure 3.13: Typical P-u Diagram for the Interaction of Two Waves

new intermediate state 3 is:

−
(
p0
pr

)β (
pl
p0
− 1

)√√√√ 2

γ (γ − 1)
[
1 + α

(
pl
p0

)] +
2

γ − 1

[
1−

(
p0
pr

)β]
+

(
p3
pr
− 1

)√√√√ 2

γ (γ − 1)
[
1 + α

(
p3
pr

)] − cl
cr

2

γ − 1

[
1−

(
p3
pl

)β]
= 0

(3.10)

where α = γ+1
γ−1 and β = γ−1

2γ
following the notation of Bremner et al. (Bremner et al.,

1960). In Equation 3.10, p3 is the only unknown. The functional form equivalent Tait

equation has been applied to this problem for the first time, applying the conservation

equations described above to problems in the liquid domain.

For the magnitude of shock and rarefaction waves that are present in the wave train

generated by the multiple-source array, all interactions that occur between shocks

and rarefactions yield reflected rarefaction waves of negligible strength (when the

interactions are computed for the shock tube model). CFD simulations, however,

demonstrate that rarefaction waves continue to exist and propagate forward post-

interaction, not backward as seen in the shock tube depicted in Figure 3.11. The

actual post-interaction wave train seen in numerical examples is akin to the shock
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tube setup shown in Figure 3.14. The method used to calculate the final intermediate

state when oppositely-propagating waves result from shock-rarefaction interactions

cannot be used for the instance when the resulting waves propagate in the same

direction. Figure 3.14 illustrates this point. Although the wave types are known, and

R3?

Figure 3.14: Shock Tube Diagram - After Interaction

therefore the conservation relations across each wave are known, the state on the left

is now unknown because it is being acted upon by the rarefaction wave. The system

of equations, therefore, is no longer closed. A heuristic method has been formulated

to capture interaction phenomena in the analytical model. Accurate characterization

of shock-rarefaction interactions remains a prime topic for further study.

3.4 Chapter Summary

Three important multiple-source effects have been identified in this chapter. The

generation and propagation of rarefaction waves critically alters the pressure wave-

form at the target through accelerated decay at the waveform tail. The Riemann

problem for a gas-liquid interface has been solved to characterize the initial magni-

tude of rarefaction waves. Rarefaction wave propagation speed is calculated quite

differently than the approach used for shock propagation speed because rarefaction

waves are simple waves: no discontinuous jumps are present. Conservation equations

across a rarefaction wave, therefore, are much different than the Rankine-Hugoniot

jump conditions. Acoustic models for spatial decay have proven to be reasonable

approximations for rarefaction decay and have been included in the physics based

reduced-order model.
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Shock coalescence presents another significant deviation from superposition results

and has been implemented using the shock propagation speed calculation described in

Chapter II. To the author’s knowledge, the coalescence problem has not been solved

previously to predict the rate of coalescence analytically. Furthermore, superposition

techniques used by existing coalescence methods to predict the magnitude of the

coalesced wave neglect important interaction phenomena that lead to attenuation.

The implementation of specific coalescence modeling techniques will be described in

the following chapter.

Lastly, shock-rarefaction interactions were introduced and analyzed. The shock

tube is used as an inspiration for the modeling techniques employed in the reduced-

order model, as it describes attenuation that must be accounted for when predicting

the pressure pulse at the target. Because the physics governing the multiple-source

array differ slightly from the shock tube model, a heuristic method has been developed

and included in the analytical model to represent the effects of shock-rarefaction

interaction.
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CHAPTER IV

A Physics-Based Reduced Order Model for the

Multiple-Source Explosive Array

Methods for modeling shock waves generated by spherical explosive sources have

been developed in previous chapters. Rarefaction waves are also produced by the

multiple-source explosive array and have been explored. The propagation of each

wave type and their subsequent interaction has been examined. In this chapter,

individual elements of the analytical model will be synthesized into a comprehensive

unit that can be used to accurately simulate the array at a significant computational

savings when compared to existing CFD tools. To begin, the centerline framework is

introduced.

4.1 The Centerline Piecewise-Analytical Model

A framework has been devised to model the interactions of the shock waves and

rarefaction waves produced by the multiple-source array. The structure of the center-

line piecewise-analytical model is shown in Figure 4.1. The method is best described

as a piecewise-analytical model because a set of analytical equations is evaluated at

each computational step. The process is as follows:
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Figure 4.1: Centerline Piecewise-Analytical Model

1. A line perpendicular to the plane of the array (or perpendicular to the coaxial

line of the array, if a line array is being used instead of a grid array) is drawn

from the target point to the array plane. This is referred to as the centerline, or

the computational path on which wave propagation and interaction is tracked.

The centerline is represented in Figure 4.1 by the black dotted line. The point

of intersection shared by the array plane and the centerline is called the starting

point.

2. Each shock is propagated to the starting point from its source as though it is

propagating through an undisturbed fluid. Individual wave propagation to the

starting point is represented by the green and blue arrows in Figure 4.1. The

detonation time for each respective source is added to shock arrival time at the

starting point to calculate an initial arrival time for each shock wave.

3. As each charge detonates, the resulting explosive gas bubble becomes a candi-

date for a shock collision. The first shock to arrive at the bubble surface after

the bubble is conceived reflects off of the bubble and creates a rarefaction wave.

54



4. Once they are created, rarefaction waves propagate to the starting point through

fluid pressurized by a single shock wave, because rarefaction waves always travel

behind at least one shock. Spreading is neglected until the rarefaction wave

reaches the starting point. Therefore, the head and tail of each respective

rarefaction wave arrive at the top of the centerline simultaneously.

5. Once the starting point arrival time of each wave has been computed, an initial

order is established at the starting point.

6. The leading wave now propagates into undisturbed fluid along the centerline,

which has been discretized into small spatial segments. When the first wave

reaches the end of the first computational segment, the arrival time is recorded.

The second wave travels in the wake of the first wave, the third wave travels in

the wake of the first two waves, and so on.

7. The wave train continues from one spatial segment to the next (hence the “piece-

wise” label) and the order of waves is reevaluated at each new segment. The

collective propagation of shock and rarefaction waves is represented by the red

arrow in Figure 4.1. Once the new order has been established, the new first

wave travels into undisturbed water, the new second wave travels in the wake

of the new first wave, and so on until the wave train reaches the target.

4.2 Computational Implementation

The modeling techniques used to characterize the fluid at each computational seg-

ment are explained in this section. Specific implementation approaches and heuristic

methods are described in detail to build on the theoretical foundation laid in Chap-

ter III.
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4.2.1 Single Shock Pressure

The pressure contribution from a single shock is calculated using weak shock the-

ory. Pressure histories produced by the CFD tool are used to initialize the pressure

wave. The original pressure histories are taken not only at the source, but at varied

standoffs (referred to as waypoints) so that the wave profile can be recalibrated as

it propagates toward the target. The advantage of recalibration can be seen in Fig-

ure 4.2. In this case, the advantage of added waypoints is slight, but discernible, as the

curve representing the analytical model with more waypoints correlates better with

CFD results than the curve representing the analytical model with less waypoints.
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Figure 4.2: Weak Shock Waypoint Comparison, 95 cm Standoff

Waypoint frequency and location is somewhat unique to each charge weight. The

number of weak shock segments required to characterize an original history at each

waypoint is also dependent on the charge weight, in that the profile of the shock wave

(its steepness and breadth) is a function of charge weight. When larger charges are

used, peak magnitude increases along with the proportions of the waveform profile.

The number of segments n used at each waypoint and the location of each waypoint

is enumerated in Table 4.1 for 1 g sources. Waypoints used to characterize shock

waves from 1 lb sources are listed in Table 4.2. Each segment represents a unique

exponential curve fit to a specific region of the shock waveform at that waypoint.
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Waypoint Radius (cm) 1 10 50 100
Weak Shock Segments 10 10 10 10

Table 4.1: 1 g Spherical Charge Weak Shock Theory Waypoints

Waypoint Radius (cm) 8 10 20 50 80 400 800
Weak Shock Segments 8 8 8 8 8 8 8

Table 4.2: 1 lb Spherical Charge Weak Shock Theory Waypoints

Sample weak shock segments are shown for the 1 cm waypoint for a 1 g spherical

charge in Figures 4.3 and 4.4

2 3 4 5 6 7 8

x 10
−6

0

2

4

6

8

10

12

14

16

x 10
8

Time, sec

P
re

s
s
u

re
, 

P
a

 

 

Weak Shock Segment
Initial History

Figure 4.3: Weak Shock Near-Field
History Fit, Segment 1
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Figure 4.4: Weak Shock Near-Field
History Fit, Segment 5

When evaluating the magnitude of a shock wave using weak shock theory, both

the radius from the charge center and the retarded time are necessary. Retarded time

is the time elapsed after a shock peak has arrived at a point some location, and is

defined for an acoustic wave as:

tret = t− x/co. (4.1)

The exact location of a trailing wave on a preceding shock tail can be triangulated

given radius and retarded time. This information is used to predict the overpressure

produced by the leading shock at the time the trailing shock reaches that coordinate.
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4.2.2 Single Shock Speed

The propagation speed of weak shock waves is a function of two properties. Sound

speed is a factor, as is particle velocity in the preceding fluid and the particle velocity

behind the shock front. The sound speed used here is calculated as the isentropic

sound speed determined by the Tillotson equation. Internal energy terms in the

Tillotson equation are neglected because they are insignificant compared with pres-

sure and density terms, so that sound speed is a function of pressure and density

exclusively. When a particular shock wave reaches a discrete increment on the com-

putational line, the leading shocks are identified. The time of arrival for the shock of

interest is used to establish the retarded time for each preceding wave, and the radii

to each respective source are known based on the spatial increment. The pressure

of preceding shock and rarefaction waves is superposed to define the fluid pressure

experienced by a trailing wave. The Tait equation is used to estimate fluid gotcha

based on the calculated pressure, and the resulting pressure-density pair is used to

calculate the isentropic sound speed in the fluid with the isentropic sounds speed

equation derived from the Tillotson equation of state.

Certain important interactions are modified as the analytical model distills com-

plex interaction phenomena onto a single computational line. One such effect is the

pressure magnitude of leading waves. At far standoffs, where the shock waves are

close to one another on the computational line, using the retarded time is a good

representation of the effect of leading shocks. In the near-field however, shock waves

interact even before they reach the computational line; without modeling this near-

field contribution, the analytically modeled shock waves arrive late. To remedy this,

near-field pressure from preceding waves has been assumed to be at the maximum;

that is, a retarded time of zero is used to assess the strength of each preceding shock

in the near-field (six charge spacings). Particle velocity effects are less influential and

difficult to predict in the near-field. As a result, retarded time is used to assess the
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particle velocity contribution of leading waves in both the near and far field. Unlike

pressure, the particle velocity attributed to leading shock waves acts in a direction.

Only the vector component of particle velocity along the computational line, there-

fore, is considered for the leading shocks and shock of interest as propagation speed

along the computational line is calculated.

4.2.3 Superposition

Exploration of underwater shock interactions using the CFD code has led to the

conclusion that shock pressures can be superposed. Superposition includes overpres-

sure caused by a shock wave and the relaxation of pressure in the wake of a rarefaction

wave. Superposition appears in two settings within the analytical model. It is used

to determine the fluid state ahead of a certain wave when calculating the propagation

speed of said wave. In the case of pressure, superposition of the peak values is used,

as noted above. Second, the pressure history at the target is comprised of the sum of

shock wave and rarefaction wave pressures, along with their respective arrival times.

4.2.4 Shock Coalescence

Existing spherical shock coalescence modeling methods address the magnitude of

the coalesced wave, but not the spatial rate of coalescence. Coalescence is modeled

in the analytical model by noting the propensity for shock waves in the far field to

merge when a trailing wave catches up to a leading wave. The coalescence method-

ology implemented in the analytical model is called the cow-catcher method. Much

like the devices affixed the front of 19th century steam locomotives, this coalescence

modeling approach enables strong trailing waves to ‘scoop up’ slower leading waves

along the computational line. The cow-catcher method is active for all portions of

the computational line except the extreme near-field (< one charge spacing).

Research on mach stem formation inspired the coalescence approach applied in
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the reduced-order model. The formation of a mach stem between two symmetrical

spherical shock waves in air is shown in Figure 4.5. The developed flow depicted in

the rightmost image shows the coalescence behavior exhibited by two shock waves.

Instead of two distinct waves in the vicinity of the intersection, the tails just aft

of the intersection point have been accelerated and have coalesced with the leading

waves. Although the shock tails are accelerated as they travel behind the respective

Figure 4.5: Formation of Mach Stem for Symmetric Spherical Shocks (Higashino
et al., 1991)

fronts, they do not overtake the fronts. The tails and fronts coalesce in the region

of the intersection. This behavior is replicated by the cow-catcher method. Similar

interaction can be seen for the asymmetric case, depicted in Figure 4.6.

Figure 4.6: Formation of Mach Stem for Asymmetric Spherical Shocks (Higashino
et al., 1991)

The asymmetrical case is a microcosm of the wave interactions present in the

multiple-source explosive array. In the rightmost frame of Figure 4.6, the shock wave

60



on the left is ‘stronger’ at the interaction point than the shock on the right because the

left shock is closest to its source. Despite the fact that it is stronger (and, therefore,

faster) than the larger shock, the tail from the left shock does not overtake the front,

but merges with it. Coalescence of waves with different strengths upholds the cow-

catcher method as a reasonable approach to modeling shock coalescence for both

symmetrical and asymmetrical shock intersections.

4.2.5 Rarefaction Waves

Rarefaction waves play a critical role in the analytical model. They reduce pressure

along the computational line, slowing waves behind them. Rarefaction waves also

interact with shock waves leading to mutual attenuation. Pressure reduction from

shock-rarefaction interactions must be factored into array optimization in order to

accurately predict the pressure history at the target.

The initial strength of a rarefaction wave is a function of the fluid state on both

sides of the explosive gas bubble that initially reflects the rarefaction. Bubble expan-

sion rate and the fluid state within the bubble is codified in a lookup table comprised

of results from numerical experiments. The lookup table is appropriate because of

the negligible effect that shock collisions have on explosive gas bubbles in the millisec-

ond time scale that is relevant for the analytical model. It is possible, therefore, to

simply simulate the bubble using the CFD tool; data collected in this case will bear

a close resemblance to the actual state of a bubble in the midst of other shocks. The

explosive gas bubble of a particular charge becomes a candidate for shock collisions

in the instant after the particular charge is detonated. The first shock to collide with

the bubble is identified, and an iterative process commences to determine the true

bubble radius and, hence, the shock radius, when the collision occurs. This informa-

tion is used to calculate the exact parameters of the collision (the state on the liquid

and gas sides of the interface) and thus the best possible representation of the initial
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rarefaction strength at the bubble surface.

Rarefaction waves are assumed to decay in similar fashion to spherical acoustic

waves. Spherical acoustic wave spatial decay can be derived from the conservation

of energy across the spherical wave front. Since the energy contained in a spherical

simple wave at radius Ro is the same as the energy at some larger radius R, the

conservation of energy gives us (Medwin and Clay , 1997):

4πiRR
2 (δt) = 4πioR

2
o (δt) (4.2)

for a pulse duration δt where i is the intensity, or the sound power per unit area.

Solving for intensity at the larger radius yields:

iR =
ioR

2
o

R2
. (4.3)

Therefore, intensity decays as 1/R2 for a spherical acoustic wave. Because sound

intensity is proportional to the square of sound pressure, the spatial pressure decay

for a spherical simple wave is proportional to 1/R.

The center coordinate to determine R must be established for rarefaction waves.

After it has propagated for a small distance, the rarefaction wave produced by a

shock-bubble collision is approximately concentric with the initial explosive charge.

This behavior has inspired the use of the explosive gas bubble radius at the point of

the collision as the initial radius of the rarefaction wave for spatial decay purposes.

Rarefaction wave radius, therefore, is measured from the center of the charge that

caused the bubble that produced said rarefaction.

Rarefaction waves are so-called ‘simple waves’, meaning no discontinuous jumps

are present. Simple waves travel at the acoustic speed of the fluid into which they

propagate. Acoustic speed is defined in Equation 2.19 on page 26. Once the pressure

contributions of waves ahead of a particular rarefaction wave are calculated at some
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spatial coordinate along the computational line in the analytical model, acoustic

speed is calculated using the superposition particle velocity, superposition pressure,

the Tait-approximated density based on the superposition pressure, and the isentropic

sound speed from the Tillotson equation. The head of the rarefaction wave travels

into fluid of a different state than what the tail sees, because the fluid is relaxed as the

rarefaction wave propagates through it. The head of the rarefaction wave, therefore,

is assumed to propagate at the sound speed dictated by the initial superposition

pressure, density, and particle velocity. Rarefaction tails are assumed to propagate at

the sound speed dictated by the initial superposition pressure minus the rarefaction

strength. Any superposed particle velocity ahead of the rarefaction tail is assumed

to have been nullified, so the rarefaction tail travels at the acoustic speed with u = 0,

also known as the sound speed of the relaxed fluid. The gradient from the high

pressure rarefaction head to the low pressure rarefaction tail is assumed to be linear

and is modeled in such fashion.

4.2.6 Interaction

Shock-rarefaction interactions play a significant role in the attenuation of shock

waves as they propagate to the target point. The theoretical developments described

in Chapter III provide a framework for solving the case where interaction results in

two waves propagating away from one another. All CFD simulations, however, predict

two waves propagating in the same direction post-interaction. This scenario cannot

be solved by the existing theoretical framework because the system of governing

equations becomes open in this instance. Given the goal of the present research effort

(development of a physics-based, reduced-order model), a heuristic method has been

devised.

When shock waves produced by the multiple-source array overtake rarefaction

waves produced by the array, theory predicts the rarefaction wave is all but extin-
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guished (the rarefaction wave that is reflected post-interaction is extremely weak). In

this case, the percent reduction of peak pressure experienced by the shock as a result

of interaction with the rarefaction wave can be defined as:

penalty =
prare

pL − pR + prare
(4.4)

where prare is the strength of the rarefaction wave prior to the interaction, pL is the

pressure behind the shock before it overtakes the rarefaction wave, and pR is the

pressure ahead of the rarefaction wave before it is overtaken. Since the theoretical

solution indicates that the rarefaction wave ceases to exist, rarefaction waves that

have interacted with shock waves become ‘invisible’ for purposes of interaction after

the first interaction in the analytical model. Therefore, one shock may interact with

several rarefaction waves, but one rarefaction may only interact with one shock. The

penalty applied to the shock wave is also applied to the rarefaction, because theory

demonstrates that both waves are attenuated as a result of the interaction.

A shock may interact with several rarefaction waves as it propagates to the target

point. Interaction penalties are applied to the shock overpressure in the following

manner:

pT = po (1− penalty1) (1− penalty2) (1− penalty3) ... (4.5)

with pT being the pressure experienced at the target from the shock of interest and

po being the predicted peak pressure value of that shock wave at the target as pre-

dicted by weak shock theory (essentially the non-interaction pressure). Penalties are

applied to each shock wave as they propagate, and are factored in when determin-

ing the fluid state experienced by following waves on the computational line because

preceding superposition pressure calculations include these penalties. When the pres-

sure history at the target is constructed, penalties are not used to scale the entire

wave, rather, the penalty acts as a pressure ceiling defining the maximum pressure
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magnitude contributed by the penalized wave at the target. Penalty implementation

is demonstrated graphically in Figure 4.7. CFD simulations show that shock waves

that have undergone deleterious interaction effects are broadened at the peak, which

further establishes the penalty application approach as a reasonable method for the

reduced-order model.
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Figure 4.7: Interaction Penalty Implementation

4.2.7 Bulk Cavitation

The multiple-source explosive array will be deployed below the surface of the

ocean. The depth of deployment must be considered, as it plays a critical role in the

ability of the array to transmit strong shock waves in the direction of the target. Rar-

efaction waves resulting from shock-bubble collisions have been addressed previously.

It is important to account for the effects of rarefaction waves originating from the

surface as well. The most critical free surface effect, in terms of the multiple-source

array, is bulk cavitation.

Bulk cavitation has been studied in fields as diverse as ship shock analysis and

marine wildlife conservation (Christian, 1973; Zong et al., 2012). This phenomena is

relevant to ship shock applications because the collapse of the bulk cavitation region

can result in a second shock wave that impacts the structure. Bulk cavitation is
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important for marine wildlife conservation because the near-zero pressures caused

by a rarefaction wave near the surface cause the swimbladders of certain fish to

fatally overextend. This tragic reality highlights the physical phenomena responsible

for bulk cavitation. When the shock generated by a single spherical source reaches

the free surface, the reflected rarefaction wave, in certain instances, can be strong

enough to reduce pressure in the fluid it travels through to the vapor pressure of

water. In those cases, water near the surface is ripped apart. This is why vapor

pressure, or cavitation pressure, is sometimes referred to as the ‘breaking pressure’ of

water. Rarefaction waves created from shock-bubble collisions in the array occur in

a highly pressurized region. Due to significant local pressure, the rarefaction waves

never reduce the total overpressure below the hydrostatic value or, if they do, it is

for a short time duration. This interpretation is corroborated by CFD data which

correlates well with analytical solutions that ignore cavitation.

Empirical methods have been derived to estimate the region where bulk cavitation

is likely to occur after an underwater explosion (Malone, 2000). The upper boundary

of the bulk cavitation zone is a function of atmospheric pressure, hydrostatic pressure,

shock strength, and rarefaction strength. The lower boundary is a function of the

decay rates of the shock and rarefaction wave respectively. Where the shock wave

has weakened such that the rarefaction wave reduces the absolute pressure in the

water to the cavitation pressure, bulk cavitation will occur. The bulk cavitation

regions created by a single 1 g and 1 lb spherical explosive source (of TNT) have been

identified using the model outlined by Malone. Figure 4.8 shows the 1 g charge case

and Figure 4.9 depicts the 1 lb result.

The plotted bulk cavitation regions are axisymmetric about the vertical axis. The

1 g case, for a 1 m charge depth, exhibits a bulk cavitation zone that is never deeper

than 0.5 m. It is concluded, therefore, that placing a multiple-source array of 1 g

charges at a 1 m depth should be sufficient to avoid any interaction between the array
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and the target of shock waves with the cavitated region. The 1 lb charge creates a

much larger bulk cavitation zone, even at a depth of 3 m. Although the cavitated

region extends below the charge depth, the non-cavitated region has a radius of 10 m

at a 3 m depth. The array will be less than 20 m wide (as a constraint); as such, bulk

cavitation effects can be neglected when the array is deployed at a minimum depth

of 3 m.
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Figure 4.8: Bulk Cavitation Zone, 1 g Charge, 1 m Depth
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Figure 4.9: Bulk Cavitation Zone, 1 lb Charge, 3 m Depth
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4.3 1 g Charges

Arrays comprised of spherical 1 g charges were simulated using CFD and compared

to analytical model predictions. Shock waves produced by a single 1 g source have

been studied in terms of magnitude, peak pressure, and impulse (the integral of

pressure over time) in Chapter III. Correlations between numerical and analytical

results were very strong for single sources out to standoff ranges in excess of 30 m. This

section will compare numerical and analytical results for two line array configurations.

Modeling two-dimensional arrays and the associated difficulties will also be discussed.

4.3.1 Line Arrays

Two 1 g charge line array configurations were studied to validate the analytical

model. A line array is arranged such that the explosive charges share a common

axis. The charge spacing used in both instances is 10 cm. At smaller radii, nonlinear

near-field interactions dominate local flow characteristics and result in significant

shock attenuation. The 10 cm spacing is a threshold of sorts, and is the approximate

minimum spacing that can be used for 1 g sources to avoid highly-nonlinear deleterious

near-field effects. Charges have been spaced as closely as possible in order to maximize

the peak pressure generated by the array. The first configuration examined below is

a five charge line array.

4.3.1.1 Five Charge Line Array

A line array comprised of five 1 g TNT sources has been simulated with the CFD

tool to validate the analytical model. The array setup can be seen in Figure 4.10.

All numerical results are computed for an infinite fluid with ambient pressure set

to 100 kPa and ambient density set to 1000 kg/m3. Perfectly reflective boundary

conditions are used and the computational domain size has been selected for each case

so that reflections from the boundaries arrive significantly later than the waveform
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of interest and, therefore, do not contaminate the results. Charges are detonated

simultaneously for the five charge line array test case, and pressure histories have

been simulated at standoffs of 10 cm increments below the center charge. It is critical

to note that the numerical computation used to validate the analytical model lasted

for 6 hours on six processors. The analytical model results were generated in 15

seconds on a single processor. The disparity of computational time illustrates the

necessity of a physics based reduced-order model for optimization analysis of the

multiple-source explosive array.
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Figure 4.10: Five 1 g Charge Line Array Setup

The 10 cm standoff result, shown in Figure 4.11, is especially enlightening. Three

distinct peaks can be seen due to the symmetry of the charge configuration and the

detonation timing. Arrival time of each peak is determined correctly, indicating that

the propagation speed modeling techniques are sufficient at near-field standoffs for

1 g charges. The arrival of two rarefaction waves can be clearly seen with the first

at approximately 1×10−4 seconds and the second shortly thereafter. The magnitude

of both the shock peaks and rarefaction troughs is estimated correctly as well. The

10 cm standoff results are proof that the methods used to predict overpressure (weak

shock theory, rarefaction strength from the Riemann solution at a gas-water interface,

and superposition) are sufficient for a five charge array in the near-field.
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Figure 4.11: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 10 cm Standoff

Analytical and numerical predictions for the next standoff, 20 cm away from the

center charge, are shown in Figure 4.12. The peak prediction and decay of the first

wave is predictably good. The first peak is created by the middle charge and, there-

fore, is essentially the case of a single spherical shock traveling into an undisturbed

fluid. The capability of the analytical model has been proven in this situation. The

prediction of the second peak magnitude is also close to the numerical result, demon-

strating superposition as an effective modeling approach. It should be noted that

sharpness of the shock peaks in numerical results is correlated to the density of the

computational mesh used for the numerical simulation. Even the finest mesh that

discretizes the fluid domain into minuscule elements will round the peaks to some

extent because the peaks are so sharp. Therefore, peak amplitude seen in CFD sim-

ulations will always be reduced from the actual peak value, to some extent. The

coarser the mesh, the greater the rounding effect becomes. Not all peak rounding is

due to numerical nuance, but the second peak in Figure 4.12 most likely exhibits this

behavior. The analytical model is also slightly overpredicting the propagation speed

of the second wave, leading to a small overprediction of peak pressure when waves

are superposed.
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Figure 4.12: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 20 cm Standoff

The two most exciting characteristics of the 20 cm standoff result are the pre-

diction of the rarefaction notch and the shock penalty that is visibly influencing the

third peak. The arrival time, magnitude, and duration of the rarefaction waves fol-

lowing the second peak are predicted perfectly, further validating the rarefaction wave

model in the near-field. The penalty method also yields promising results. The peak

magnitude is predicted correctly and the broadening of the third peak can also be

seen (for comparison, examine the sharper third peak in the numerical results shown

in Figure 4.11). It is the author’s opinion that the heuristic method used to model

shock-rarefaction interactions performs best for single interactions. Subsequent inter-

actions are predicted with reasonable accuracy for a reduced-order model, but this

topic is certainly a significant opportunity for future work.

Results for the intermediate standoffs are shown in Appendix A. Far-field results

for standoffs of 70 and 80 cm are depicted in Figures 4.13 and 4.14 respectively.

These figures show that the rate of coalescence predicted by the analytical model is

close to the numerical result. The penalty assigned to the third peak from the earlier

interaction ensures that the magnitude of the second coalesced peak in Figures 4.13

and 4.14 (to which the original third peak contributes) is not overpredicted at the
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far-field standoffs. The rarefaction waves arrive at the correct time, duplicating the

knuckle seen in the tail of the pressure pulse from the numerical model. Although the

rarefaction waves seem to oscillate around the correct solution, the averaged trend is

correct.
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Figure 4.13: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 70 cm Standoff
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Figure 4.14: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 80 cm Standoff

To demonstrate the importance of the models for nonlinear propagation speed,

coalescence, rarefaction waves, and shock-rarefaction interaction that have been de-

veloped as part of this research effort, the prediction from a linear analytical model

at the 80 cm standoff is shown in Figure 4.15. Weak shock theory was used to gener-
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ate the shock amplitude and decay for the linear model, shock waves were assumed

to propagate at the sound speed in the fluid, and rarefaction waves were neglected

altogether. This setup mimics the state of the art for analytical underwater explosion

models existing prior to the present research effort. The poor correlation is expected,

as the multiple-source array produces complex flow fields that must be modeled with

sophisticated means, even in a reduced-order form.
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Figure 4.15: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 80 cm Standoff - Linear Model

4.3.1.2 Twenty Charge Line Array

A twenty source line array with 1 g charges was also simulated using the CFD tool.

The array was similarly arranged with 10 cm charge spacing, but the target point was

placed 4 m out from the array center. Simultaneous and ‘focused’ timing schemes were

analyzed. The simultaneous case is compared with numerical results in Figure 4.16.

The wave field produced by the twenty charge array is obviously much more complex

than the five charge array. Nonetheless, the troughs predicted by the analytical model

roughly trace the spine of the numerical waveform and the pulse width correlates

very closely. It should be emphasized that the numerical results were computed on a

supercomputer with 100 processors working for 196 hours. The reduced-order mode
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Figure 4.16: Twenty 1 g Charge Line Array Centerline Pressure History, 10 cm
Charge Spacing, 400 cm Standoff

produced the waveform seen in Figure 4.16 in 80 seconds on a single processor. Given

the required computational time for the CFD results, optimization would be infeasible

if the numerical tool was used to predict the behavior of the twenty source array; the

analysis would take months to complete.

A focused timing scheme was also explored. The distance between the target

and each respective charge was used to determine an approximate time of arrival for

each shock. The estimated arrival times were used to specify the detonation timing

of each charge, with the outer charges being detonated first in an attempt to have

each wave arrive at the target simultaneously. The resulting waveform is plotted

in Figure 4.17. The peak pressure and decay profile are captured quite well by the

analytical model. The interaction penalty model, with some refinement, may enable

an even better prediction of the waveform generated by the twenty charge array. One

final observation is important to note regarding large arrays. The analytical model

predicts shock propagation speed and coalescence with a high degree of accuracy

for the five charge array at all standoffs. In the twenty charge case, the analytical

model successfully predicts when shock waves coalesce and when they do not. Accurate

coalescence rate predictions are a critical component of the analytical model. Without
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this capability, the analytical model and the CFD code would give different results

for the same detonation timing scheme.
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Figure 4.17: Twenty 1 g Charge Line Array Centerline Pressure History, 10 cm
Charge Spacing, 400 cm Standoff

4.3.2 Grid Array

The line array examples illuminate the capability of the reduced-order model to

capture important shock phenomena. The proposed design for the multiple-source

array is a grid, however. While the analytical model is able to generate pressure

histories for line arrays and grid arrays alike, numerical tools are more limited. Line

arrays are simulated in two-dimensional computational meshes, since the charges are

spherical and, hence, axisymmetric. CFD simulations of grid arrays, however, require

three-dimensional computational grids. Given the fine grid required to resolve shock

interactions and pressure peaks, the number of elements required for an accurate

analysis of grid arrays using CFD quickly becomes infeasible.

With the computational limitations in mind, a small grid array of 1 g sources

was simulated. The numerical simulation lasted 10 hours on 512 processors. The

analytical model results were generated in 5 seconds on one processor. The array size

is essentially at the limit of what is computationally possible at present using the
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CFD code. The array and standoffs where pressure histories were recorded appear

in Figure 4.18. Pressures were observed directly beneath the front, center charge at
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Figure 4.18: Six Charge Grid Array

10 cm increments. The grid spacing used in the 2x3 array is 10 cm. The composite

waveform at the 10 cm standoff generated by the analytical model is compared to the

numerical simulation in Figure 4.19. Given the complexity of the near-field behavior
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Figure 4.19: Six 1 g Charge Grid Array Pressure History, 10 cm Standoff

in an explosive array, and considering the nuances introduced by the grid geometry,

the correlation is close. Peak amplitude is accurately represented and the decay profile

of each individual wave matches both in profile and duration.

A second near-field result is shown in Figure 4.20. Again, peak magnitude is
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Figure 4.20: Six 1 g Charge Grid Array Pressure History, 20 cm Standoff

predicted correctly, and the decay profile due to the superposition of rarefaction

and shock waves is adequately characterized. A final result from the 2x3 array, the

pressure history at the 100 cm standoff, is depicted in Figure 4.21. The peak is

somewhat overpredicted, but the overall correlation is strong.
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Figure 4.21: Six 1 g Charge Grid Array Pressure History, 100 cm Standoff

It is important to mention that the target region for the full scale multiple-source

array is not the near-field, rather the target point will likely be several array spans

below the array. Analytical model performance in the far-field must be as accurate

as possible, while near-field deviations from numerical simulations can be afforded if

they are relatively minor (as in the case of the second peak which arrives prematurely
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in Figure 4.20). In view of the pertinent target range, and in consideration of the

pressure waveform results that have been presented for line and grid arrays of 1 g

sources, the analytical model has been validated for use in multiple-source explosive

array design optimization for 1 g sources. The following section will compare results

for similar charge arrangements with the source weight increased to 1 lb.

4.4 1 lb Charges

When the multiple-source explosive array concept was first envisioned, the pro-

posed shock sources were not explosives at all. Rechargeable nastic arrays were

studied as a means of imparting and focusing energy in water. Nastic sources are

comprised of a flexible membrane backed by a detonation cavity where hydrogen is

ignited. The explosion deflects the membrane outward, creating a shock wave (much

like an acoustic speaker creates a sound wave). The peak pressure and decay char-

acteristics of the shock waves produced by these devices closely resembled the pulse

created by a single 1 g TNT charge. However, the impulse produced by an array of 1 g

charges too small to impart significant energy at large depths (>30 m). Using larger

1 lb spherical sources has been suggested as a means to marshal sufficient pressures

at deep standoffs. CFD results have been generated for arrays with 1 lb charges and

are compared with analytical model predictions below.

4.4.1 Line Array

Numerical results were computed for a five charge line array with the same fluid

domain setup as in the analyses discussed earlier. Charge spacing was increased to

77 cm (approximately 2.5 ft). A 1 lb TNT charge has a radius of approximately 4 cm.

Using 10 cm spacing, as before, would leave less than 2 cm between the surfaces of

neighboring charges. Detrimental interaction leading to significant weakening of the

pressure pulse at the target would ensue. Just as 10 cm was selected for the 1 g charge
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arrays, 77 cm was selected for 1 lb charges because, with this spacing, neighboring

charges are spaced sufficiently far apart to avoid deleterious near-field interactions.

4.4.1.1 Centerline Results

Pressure histories were examined at further standoffs than the 1 g charge exam-

ples. Figure 4.22 depicts the five 1 lb charge array layout and target distances that

were studied. As before, two near-field and two far-field examples will be presented.

Intermediate cases can be found in Appendix B. It is important to note that the nu-

merical results were generated in 8 hours using six processors. The longest analytical

model computation time (for the 800 cm standoff) was less than 200 seconds.
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Figure 4.22: Five 1 lb Charge Line Array Setup

The 100 cm standoff case is shown in Figure 4.23. The composite waveform

closely resembles that pulse created by the 1 g charge array at a 10 cm standoff. The

resemblance demonstrates that 100 cm can be considered the near-field for a 1 lb

charge array with 77 cm source spacing. The magnitude and decay of the first wave

is predicted accurately, validating the use of weak shock theory for single 1 lb sources

(the first wave travels alone into an undisturbed fluid, just as the wave produced

from a single source would). The magnitude of the second peak is correct as well,

although the second peak is accelerated slightly faster in the analytical model than
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Figure 4.23: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 100 cm Standoff

in the numerical results. Rarefaction wave magnitude and propagation speed also

correlate well with those determined by the CFD code.

Results are shown for the 200 cm standoff in Figure 4.24. The peak pressure corre-

lation between analytical and numerical results is strong for the first wave. The second

wave has begun to coalesce with the first in the analytical results. Had it arrived at
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Figure 4.24: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 200 cm Standoff

the same time as its numerical analogue, the second wave magnitude would more

closely resemble the corresponding numerically-generated peak. Shock-rarefaction

interaction effects somewhat crudely model the third peak, though the disparity is

80



reasonable, and the rarefaction wave magnitude and arrival time seem to perfectly

mimic the output from the numerical solver.

The first far field result is plotted in Figure 4.25. Although the first two waves

coalesced prematurely in the near-field analytical results, the coalescence rate of the

remaining two independent waves is predicted correctly in the far field. Once again,

an average of the rarefaction wave effects yields close correlation with the rarefaction

waves present in the CFD results. The peak magnitude of the second wave is notewor-

thy. In Figure 4.24, the first two peaks, barring the overestimated acceleration of the

second peak, have magnitudes that are very close to the numerical values. The third

peak is less than the numerical value. How, then, could the superposed analytical

peak magnitude in the far-field exceed the numerical value when no shock-rarefaction

interactions occur beyond the near-field?
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Figure 4.25: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 700 cm Standoff

An answer lies in the computational mechanics of the problem. A fine compu-

tational mesh is required when using the numerical tool to simulate shock waves

produced by very small charges. A coarse mesh with large elements is analogous to

decreasing the number of pixels in an image; the result is blurry and approximated.

The line array results for 1 g charges have been computed using a two-dimensional
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mesh (the problem is axisymmetric) with 0.05 cm square elements. Shock peaks can

be clearly visualized at this resolution. The bounds of the computational mesh are

increased for the 1 lb charge model, and, therefore, the individual element size is in-

creased to maintain computational feasibility. Although the shock created by larger

sources can be resolved with coarser elements than the shock from a 1 g source, the

1 lb source computation will sacrifice accuracy in the calculation of peak amplitude

simply because the resolution is not fine enough. As such, it is concluded that the

magnitude of the second peak in Figure 4.24 predicted by the analytical model may

be a better estimate of the actual peak pressure than it appears.

A final far-field result for the five 1 lb charge array is depicted in Figure 4.26.

Coalescence of all waves is predicted correctly, as are the rarefaction wave arrival

times and magnitudes. The peak pressure from the analytical model may be more

accurate than it appears, as discussed above.
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Figure 4.26: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 800 cm Standoff

4.4.1.2 Edge Results

The previous section presented numerical and analytical results for various stand-

offs below the center charge of the five charge line array. When the system is deployed,
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however, the target may not lie directly underneath the center of the array. In such

cases, it is important that the analytical model perform well when the target is lo-

cated obliquely. To test this scenario, numerical simulations were conducted for the

array and target points depicted in Figure 4.27. As before, near-field and far-field

results will be presented.
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Figure 4.27: Five 1 lb Charge Line Array Setup, Edge Standoffs

Numerical results are compared to analytical model predictions for the 100 cm

edge standoff in Figure 4.28. The added complexity of the composite waveform along

the edge of the array is clearly visible. The fifth shock peak has been entirely deci-

mated due to rarefaction interactions by the time the pressure waves reach the 100 cm

edge distance. The peaks and troughs of the first two waves at 100 cm are predicted

well by the analytical model, including the arrival of the first rarefaction wave. Al-

though the peak magnitude of the third wave is modeled accurately, unknown non-

linear phenomena govern its decay as well as the characteristics of the final peak. It

is noteworthy that, despite the presence of nonlinear phenomena that have not been

included in the reduced-order model, the model still predicts peak arrival time cor-

rectly, a trend seen in all results presented in this chapter. The cause of the behavior

following the third peak in Figure 4.28 is not yet understood. Near-field accuracy

is not an emphasis in the reduced-order model except as it pertains to composite
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waveform behavior in the far field.
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Figure 4.28: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
100 cm Edge Standoff

Moving further from the array, results at the 200 cm edge standoff are shown in

Figure 4.29. All five peaks are now present, and the arrival time determined by the

analytical model closely matches the arrival time in the numerical simulations. The

shock-rarefaction penalty that has clearly affected the third peak proves to be a close

representation of the actual attenuation and broadening of the wave that occurs in

the numerical result. Nonlinear phenomena continue to hamper the prediction of the

final wave. These effects are minimized in the far-field, however, as is seen at the

700 cm standoff in Figure 4.30.

The composite waveform is notably different in appearance at 700 cm. Each trail-

ing shock is directly in the wake of a leading shock and the peaks have begun to

coalesce. The analytical model predicts the rate of coalescence, peak shock magni-

tude, and the decay at the tail of the waveform (which is due to rarefaction wave

superposition) in a result that closely resembles the numerically-generated pressure

history at this standoff. The rarefaction wave between the third and fourth peak that

has been calculated using the analytical model is too strong. The rarefaction strength

error is most likely a symptom of inaccuracy in the heuristic shock-rarefaction inter-
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Figure 4.29: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
200 cm Edge Standoff
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Figure 4.30: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
700 cm Edge Standoff

action model. In this case, the interaction penalty assigned to the rarefaction wave

is too small. The strengths and weakness of the analytical model that are exposed at

the 700 cm standoff can also be seen at the 800 cm standoff in Figure 4.31.

The centerline and edge standoff examples above validate the physics based reduced-

order model for 1 lb charge line arrays, especially in the far-field. Any nonlinear

effects in the near-field omitted in the analytical model do not, apparently, influence

the waveform at large standoffs to an appreciable extent. Five charge line arrays were

used as test cases because numerical computational restrictions prohibit simulation
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Figure 4.31: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
800 cm Edge Standoff

of larger arrays, as will be described in the next section. The analytical model has

been validated for five charge line arrays incorporating both 1 g and 1 lb sources.

The model has also been validated for small grid arrays with 1 g charges. The wave

trains for five charge line arrays of 1 g and 1 lb sources resemble one another when

standoff is scaled for charge size. Given that, it is assumed that the analytical model

will perform well for small grid arrays of 1 lb charges, just as it does well for small

grid arrays with 1 g sources.

4.4.2 Grid Array

The number of computational elements that can be used in the CFD model is

restricted by available computational power. For large arrays, grid coarseness required

for computational feasibility severely compromises the integrity of the solution. In

plain terms, there are no existing means to simulate a two-dimensional multiple-

source explosive array layout numerically at a charge spacing that is appropriate for

1 lb charges. From one perspective, the limitation of numerical solvers emphasizes the

contribution of the reduced-order model: new areas of the design space such as large

charges and deep standoffs, can now be probed and explored where they could not be

examined previously. On the other hand, the analytical model cannot be validated for
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such large arrays. Therefore, the realm of the multiple-source explosive array design

space that includes larger array configurations is somewhat of an unknown frontier.

4.5 Chapter Summary

The efforts described in this chapter have sought to define and validate the physics-

based, reduced-order model for the multiple-source explosive array. Initially, 1 g

charges were studied due to the similarity between the pressure wave emitted from

nastic sources (which were being proposed as an alternative to explosives at the

time) and the pressure waves generated by detonating a 1 g spherical TNT charge

underwater. Larger 1 lb spherical TNT charges were studied later due to the interest

in focusing energy at large standoffs. The analytical model has replicated CFD results

for line arrays and a grid array. Most importantly, the analytical model performs the

computation for each case on the order of seconds, while the numerical simulation

time ranges from hours to days on several processors. The reduced-order model has

been used as a constraint function for the optimization framework discussed in the

following chapter. The optimal designs for grid arrays with 1 g and 1 lb charges are

presented in Chapter VI.
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CHAPTER V

Optimization Overview and Setup for the

Multiple-Source Explosive Array

Design can be described as a sequence of decisions where alternatives are identified

in the construction or creation of an artifact (Papalambros and Wilde, 2000). Design

optimization is the process by which decisions are made and favorable alternatives are

selected to improve the designed artifact for its intended purpose. For some systems,

evaluation of each alternative and its overall effect on the system can be accomplished

by unsophisticated means. Designs of complex systems, such as the multiple-source

explosive array, are harder to assess. Mathematical optimization techniques bridge

this gap by analyzing esoteric tradeoffs and selecting design alternatives that improve

overall functionality of a system. In the case of the multiple-source array, these alter-

natives include the number of sources in the array and the detonation timing of each

source. The degree to which the waves produced by the array interact is complicated

and highly nonlinear. In other words, it is impossible for the designer to determine

an optimal timing scheme through intuition or trivial calculations. In essence, math-

ematical optimization extends understanding of complex systems. In the following

section, optimization terminology and the elements that comprise an optimization

problem will be enumerated, followed by a survey of optimization techniques.
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5.1 Mathematical Optimization

5.1.1 Terminology

An optimization problem is characterized by the following parts:

• Objective Function - The criterion used to assess the quality of the design.

In the case of the multiple-source explosive array, the best design will use as

few sources as possible. The optimization algorithm will try to minimize the

number of sources in the array. The number of sources, therefore, is the objective

function.

• Design Variables - Aspects of the design that can be altered by the optimiza-

tion algorithm. Variables represent design alternatives, such as the number of

sources along the x-axis and the number of sources along the y-axis for the

multiple-source array.

• Parameters - Not all facets of a design are negotiable, and some properties

that could be variables are predetermined. In the design of a car, for instance,

although four wheels are not necessarily required for a good design, the auto-

motive engineer most likely is uninterested in a three or five-wheeled car. Four

wheels, therefore, are a design parameter. The charge spacing and rectangular

geometry selected for the multiple-source array are both parameters.

• Constraints - Limits placed on variables or functions of variables. For instance,

if optimizing the diameter of a rod, we know that the diameter of the rod

must be greater than zero. Likewise, the diameter may not exceed a certain

limit. In this way, constraints set the upper and lower bounds of a variable.

Constraints can be functions that are dependent on design variables as well. As

an example, the rod in question must be able to sustain a certain amount of

torque. This is a function of the design variables, and will ultimately contribute
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to the determination of the rod diameter lower bound. The critical constraint

for the multiple-source array is a particular pressure duration at the target.

The broad field of optimization research attempts to identify the best way to

improve a given objective function. Methods such as Monte-Carlo analysis, gradient-

based methods, and genetic algorithms have been devised to achieve this task. Monte-

Carlo analyses entail calculating objective function values for a massive set of randomly-

selected design variable combinations. Feasibility (adherence to constraints) and op-

timality are evaluated and the best feasible design is simply picked out of the group.

Essentially, this is a ‘brute force’ method. Monte-Carlo analysis is poorly suited to

solve optimization problems with computationally expensive objective functions or

large ranges of possible design variable values.

Gradient-based methods are named for the mathematical approach they employ.

Also called ‘hill-climbing’ methods, these algorithms approximate the derivative of a

composite function formed by some combination of the objective function and con-

straint functions, and follow the gradient to higher or lower values, depending on

whether the objective function is to be maximized or minimized. Gradient-based

approaches rely on continuously differentiable functions, which also requires variable

values to be continuous. Although some enabling modifications have been developed,

gradient-based optimization techniques generally cannot be applied to problems with

discrete variables, such as the number of sources in the multiple source array. Fur-

thermore, gradient-based methods tend to struggle with highly multimodal problems;

local gradients can become misleading in the search for a global optimum. For these

reasons, a hill-climbing approach has not been appropriated for this research effort.

A genetic algorithm has been selected instead, due to the resistance to local minima

and the ability to incorporate discrete variables it offers.
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5.1.2 Genetic Algorithms

Genetic, or evolutionary, algorithms are global search methods inspired by the

process of biological evolution (Chipperfield and Fleming , 1995). They are effective

for problems with high levels of variable interaction, known as epistasis in the field

of biology (Haupt and Haupt , 2004). A genetic algorithm begins by establishing a

randomly generated population of design variable combinations. The ‘fitness’ of each

population member is assessed and the most fit members of the population, those

whose objective function value is best, are most likely to ‘mate’ and create a new

population member for the next generation. The offspring are evaluated again, with

the best members of the population becoming the most likely candidates to produce

new designs for the next generation, and so on. The reproduction process is under-

pinned by chromosomal encoding. Variable values are encoded into ‘genes’ which,

when combined with other genes, form a chromosome that defines a particular de-

sign. A chromosome is essentially a complete sequence of design variables. The most

common encoding scheme is binary encoding, where variable values are translated

into binary strings that are later used for crossover and mutation (to be explained

later) in the algorithm. A sample binary coding scheme is given for clarity (Haupt ,

1995).

Given a design with Nvar variables vi, a chromosome will be defined by Nvar

variables given by:

chromosome = [v1, v2, ...vNvar ] (5.1)

The fitness function, therefore, is dependent on the genes comprising the chromosome.

The variable values can be converted into binary form using the following function:

qn =
Ln∑
m=1

bw[m]21−mQ (5.2)

where qn is the quantized version of vn, Ln is the number of quantization levels for qn,

91



bw is the array containing the binary string that represents qn, and Q is the largest

quantization level. Quantization is the process by which a set of continuous values is

sampled and categorized into nonoverlapping subgroups. Adding quantization values

is akin to adding significant digits to the resolution of each variable.

Once each design has been sequenced into a chromosome, the fitness is assessed

and the strongest population members are most likely to ‘mate’, or swap certain genes.

The number of genes that are swapped, or the point on the chromosome that operates

as the boundary for a swapped region, is defined by the crossover operator used by

the genetic algorithm. The ‘offspring’ of this genetic exchange, therefore contain

traits from both of the ‘parent’ chromosomes. The amount of crossover that occurs

during each mating is often a probabilistic process. Parent chromosomes ultimately

produce enough offspring to take their place in the future generation as well as replace

members of the current population that have been thrown out due to poor fitness. In

this way, the population size remains constant from generation to generation.

Mutation is an important characteristic of a genetic algorithm. Mutation ran-

domly alters specific genes in offspring chromosomes to maintain diversity of the

overall population. Hill-climbing optimization techniques are often stymied by mul-

timodal problems where several local optima crowd a global optimum. By mutating

a portion of the population, a genetic algorithm ensures that the population does

not get stuck in a local optimum; there are always a few outlying designs that are

exploring other regions of the design space. When a mutated population member

finds a more optimal region, the population, through crossover, will gradually shift

to the new region and collectively attain increased fitness. The composite waveforms

produced by the multiple-source explosive array are not always exclusive functions

of a single unique detonation timing scheme. It is possible that identical pressure

histories at the target may be produced by different detonation timings. As a result,

many local optima abound. Genetic algorithms, through mutation, counteract this
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difficulty by constantly searching multiple regions of the design space.

5.2 Relevant Optimization Design Problems

The multiple-source array problem is complicated due to the interaction of various

shock and rarefaction waves as they propagate to the target. In the absence of inter-

action, the design problem is quite simple and sophisticated optimization techniques

become unnecessary. The wind farm layout problem is subject to similar source

interaction effects that influence the system objective (Chowdhury et al., 2012).

Much like the composite waveform generated by the multiple-source explosive

array, the total power generated by a wind farm is less than the total power potential

of each wind turbine. Wake effects, such as shading, can decrease the efficiency of

downstream turbines (Beyer et al., 1996). This effect is similar to the rarefaction

waves produced by neighboring explosive gas bubbles; shock-rarefaction interaction

and superposition of rarefaction waves at the target reduce the potential contribution

of each source. Turbine locations and number are the design variables in the wind

farm optimization problem.

The number of sources is also a variable in the explosive array design problem.

Because spacing is fixed, the detonation timing of each source forms the set of vari-

ables for the second-tier array optimization problem. In one sense, explosive source

spacing can be used in lieu of detonation timing; shock arrival time can be increased

by detonating the source later or moving it farther from the observation point. Ex-

tending the breadth of the array by moving sources away from one another reduces

the contribution of the outer sources, simply because the standoff for these sources

at the target increases as charge spacing in the array is increased. For this reason,

explosive charges have been placed as closely as possible and detonation timing is

used to govern the way shock and rarefaction waves propagate and interact in the

multiple-source array.
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In view of the similarity between the multiple-source explosive array design prob-

lem and the wind farm layout optimization problem, it comes as no surprise that

common difficulties arise when attempting to optimize these systems. When a total

aggregate efficiency objective is used, the wind farm layout problem becomes highly

multimodal. Chowdhury et al. selected a particle swarm optimization (PSO) algo-

rithm to overcome the difficulty posed by numerous local optima. PSO’s are cousins

to evolutionary algorithms because both use stochastic search methods to adeptly

handle multimodal design spaces. A PSO was selected for the wind farm optimiza-

tion problem because it was simple to implement compared with genetic algorithms

(Chowdhury et al., 2012). The present study employed the ga function in MATLAB, a

tool that greatly simplified implementation and adjustment of the genetic algorithm.

5.3 Framework

A unique optimization structure is required to study the multiple-source explosive

array design. The overarching design objective is to use as few shock sources as

possible. The most important performance metric is that pressure at the target must

exceed a certain threshold for a specified duration. The feasibility of each design,

therefore, is established by achieving this duration through strategic detonation of

each source in the array. The optimization process is two-tiered in this sense. On the

top level, an optimization algorithm attempts to reduce the number of sources in the

design. Meanwhile, the feasibility of each design specified by the top level is assessed

by optimizing the detonation timing of each design on the second tier. Figure 5.1

depicts the conversation between the individual optimizations.

Spherical TNT explosive charges have been selected as sources. To simplify the

analysis, a rectangular grid of sources has been specified for the array geometry.

The problem is constrained further by maintaining a uniform spacing between each

charge in the rectangular grid. The top level optimization is characterized by only
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Figure 5.1: Two-tiered Optimization Structure

two design variables: the number of columns and number of rows in the array. As

noted in Chapter IV, spacings of 10 m and 77 cm have been selected for the 1 g

and the 1 lb sources, respectively. Multiple numerical analyses have demonstrated

significant deleterious interaction effects when the charges are spaced closer together.

At small charge spacings, complex near-field phenomena destroy most of the useful

overpressure and feasible designs require many more sources. The specified charge

spacings ensure suboptimal near-field interactions are minimized.

The two-tiered optimization is implemented with the top tier operating as the

objective function and the second-tier optimization operating in the place of a con-

straint function. A satisfied constraint in the ga function in MATLAB has a negative

value. Therefore, the pressure duration at the minimum threshold resulting from

the optimal detonation time of each array geometry is subtracted from the minimum

duration requirement. When the number of sources is insufficient (no timing can be

found for that configuration that will achieve the required pressure duration at the

target), the constraint is not satisfied and the top-level algorithm searches elsewhere

in the configuration design space. The constraint optimization is terminated as soon

as the constraint is satisfied, rather than continuing to search for a more optimal tim-
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ing scheme, to maximize computational efficiency. In summary, the multiple-source

explosive array design optimization can be described as follows:

Minimize: Total number of charges

with respect to: numC, numR

subject to: Duration minimum dmin at threshold Pmin

The second tier optimization, which acts as a constraint for the top-level optimiza-

tion, is described below:

While duration < requiredDuration:

Maximize: Duration of p > pmin

with respect to: detonation times td1, td2, ...tdn

subject to: 0 < tdi < 2 ∗ ri/co

Where pmin is the specified threshold pressure and ri/co is the arrival time at the

target of a shock emitted from source i if it traveled at the sound speed of the fluid.

The effectiveness of the second-tier optimization, followed by an application of the full

two-tiered analysis for both 1 g and 1 lb source arrays are established in Chapter VI.

5.4 Chapter Summary

The mathematical optimization approach applied to the multiple-source array

problem has been described in this chapter. Evolutionary-type algorithms have been

selected as opposed to gradient-based methods because the design problem is highly

multimodal and the number of explosive sources is discrete (gradient-based optimiza-

tion algorithms typically require continuous variables). Monte-Carlo analysis has also

been ruled out given the computational expense stemming from the sheer number of
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model evaluations necessary to explore the design space. The design objective for the

multiple-source array, to use as few sources as possible, is bounded by the pressure

threshold duration constraint. In order to assess an array configuration proposed by

the top-level optimization, a second-tier optimization must ensure to probe the max-

imal destructive capability of the proposed configuration. The threshold constraint

inspired the development of the two-tiered optimization approach. The following

chapter describes multiple case studies where the optimization framework described

here has been applied to array design problems.
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CHAPTER VI

Two Case Studies: 1 g and 1 lb Charge Arrays

The reduced-order model and optimization framework described heretofore have

been combined for the analysis of multiple-source array designs. In keeping with the

originally proposed concept, sources are arranged in a grid configuration and each

charge is detonated independently. Performing optimization analysis with preexisting

analytical or numerical methods would have been fruitless. Existing analytical models

poorly characterize the composite waveform produced by the multiple source array

and, thus, the optimal results identified by the algorithm would not be replicated upon

deployment of the array. Existing CFD options require excessive computational time

and storage. Evolutionary algorithm-based optimization could take months under

these circumstances because each model evaluation would be costly. Furthermore,

computational power necessary to simulate large grid arrays is not available at present.

With the limitations of pre-existing methods in mind, the analytical model developed

and presented in this thesis is used to optimize grid arrays of explosive sources in this

chapter.

It is important to mention that the optimization analyses described below were

conducted for a notional objective function: minimize the number of sources. The

constraint function, a sustained pressure for a specified duration, is also somewhat

arbitrary. Depending on the application, an array might be called upon to perform
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any number of tasks. As such, the numeric values used in the constraint function and

even the objective function itself merely form a proof of concept study. The two-tiered

optimization structure is relatively easy to implement, and was specially developed

for a particular design objective. The analytical model, itself, is the centerpiece and

comprises the lion’s share of the technical developments accomplished in this research

effort.

6.1 Constraint-Level Detonation Timing Optimization

The second-tier detonation timing optimization setup is validated using a five

source line array of spherical 1 g TNT charges. The charge and target arrangement

are depicted in Figure 6.1. For the validation case, the pressure threshold is set to

30% of the peak pressure from simultaneous detonation: 3.6×106 Pa. This threshold
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Figure 6.1: Detonation Timing Validation, Five 1 g Charge Array

has been selected because the waveform from simultaneous detonation is broad at

this pressure level. As such, the duration of the pulse from simultaneous detonation

should be relatively long at the threshold, yielding a near-optimal pressure wave at

the target. Timing schemes identified by the optimization algorithm, therefore, are

competing with an intuitively optimal detonation timing sequence. If improvement is
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made on the intuitive solution (the duration increases), the strength of the detonation

timing optimization approach will be demonstrated.

As mentioned previously, the timing optimization problem is highly multimodal.

The default mutation rate in the ga function in MATLAB is 1%. Bhatia and Basu

suggest setting the mutation rate to the inverse of the total number of variables

(Bhatia and Basu, 2003). The convergence rate of a genetic algorithm slows as the

mutation rate increases, hence the algorithm may never converge if the mutation rate

is too high. Because a mutation rate of 20% could hamper convergence, 10% has been

used both in the detonation timing validation case and in the second-tier optimization

as implemented in the overall framework.

When using genetic algorithms, it is best to use the largest feasible population

and number of generations. Adding generations will only improve the solution, and

the optimization termination criteria can be set so that the algorithm stops when

a single optimal value has been identified for a pre-set number of generations (the

solution stagnates). To explore the detonation timing optimization validation case

fully, 1000 generations with populations of 100 unique timing schemes were allocated.

Table 6.1 lists the optimal detonation timing scheme for a five charge array that

was determined using the optimization algorithm. Geometric symmetry was used to

simplify the analysis. The resulting waveform is compared to the pulse generated

when the charges are detonated simultaneously in Figure 6.2. The CFD results for

the optimal timing scheme are also shown to illustrate the accuracy of the analytical

model as a surrogate for the numerical tool in its role as the constraint function in

the optimization framework.

When the charges in the array are detonated with the optimal timing scheme,

a trailing shock wave arrives at the target just as the pressure from the leading

shock decays to the approximate threshold level. The optimal waveform exhibits two

distinct peaks. In the intuitively optimal case, each wave would arrive separately to
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Charge Number Detonation Time [s]
1 1.59×10−5

2 0
3 5.3×10−6

4 0
5 1.59×10−5

Table 6.1: Five Charge Line Array Optimal Timing
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Figure 6.2: Optimized Detonation Timing Pressure History, Five 1 g Charge Line
Array

sustain the threshold for the longest duration possible. The five charge line array is

capable of creating three distinct waves when symmetric detonation timing is used.

Coalescence appears to be unavoidable, however, for the first two waves produced

by the five 1 g charge line array if the composite waveform must meet the specified

pressure threshold. Coalescence may be avoidable only if the detonations were spaced

further apart; this would, almost certainly, cause the aggregate pressure to fall below

the threshold.

The optimal pulse is also wider than the simultaneous detonation pulse at all

pressures below the threshold. As mentioned previously, the threshold of 30% si-

multaneous peak pressure was an ambitious challenge for the optimization algorithm

because the simultaneous detonation waveform is broad at that pressure. Had the

threshold been decreased, the duration would have increased for the optimum as the
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trough between the first and second peaks would be lower and, hence, the optimal

timing case would yield results that far surpassed the simultaneous timing case. The

results depicted in Figure 6.2 demonstrate the power of the second-tier optimization

algorithm. The analytical model itself is further validated by the comparison with

CFD results for the optimal timing case and the analytical and numerical predictions

closely resemble one another. It is important to note that the CFD results shown in

Figure 6.2 were generated over 5 hours and 49 minutes using six processors. Opti-

mization with the analytical model was executed in 2 hours and 13 minutes on six

processors. The optimization algorithm terminated after fifty-one generations due

to stagnation of objective function value. Performing the same number of function

evaluations using the CFD solver would have taken over three years.

6.2 Grid Array with 1 g Sources

Once the second-tier algorithm had been validated, the entire optimization frame-

work was exercised with a grid array incorporating 1 g charges. The minimum and

maximum array size constraints are plotted in Figure 6.3, with the minimum array

size constraint represented by the solid spheres and the maximum array size con-

straint represented by all spheres, both solid and empty. The target is located 1 m

below the center front edge of the array and the explosive charges are spaced 10 cm

apart. Symmetry was used to reduce computational time. Therefore, if numC = 2

in the symmetry case, there are three columns total, if numC = 3 in the symmetry

case, the actual array has five columns total, and so on.
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The optimization statement for this test case is stated as follows:

Minimize: Total number of charges

with respect to: numC, numR

subject to: P > 1.4×107 Pa for 3.5×10−5 s @ 1 m depth,

2 < numC < 5, 2 < numR < 5,

0 < tdi < 2 ∗ ri/co
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Figure 6.3: Grid Array Test Case, 1 g Sources

The pressure threshold was set to quadruple the threshold used in the five charge

line array problem in hopes that the optimal design would not be the minimum or

maximum array size. Limiting the detonation time range ensures that the variable

space is not so broad that the algorithm searches fruitlessly without convergence.

Still, the constraints provide enough flexibility for unique waveforms to be created

with several different composite wave profiles.

Given the geometric bounds, 16 different array geometries are possible. The top

level optimization is not necessary in this case, therefore, as each design could easily

be optimized for detonation timing alone followed by a simple comparison of the

results to identify the optimal case. In this sense, the top-level optimization would

be a Monte-Carlo approach, while the second-tier approach would remain the same.
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This particular design problem is elementary, however. The array size is small relative

to certain applications and the target is relatively close at 10 charge spacings. The

computational time for larger arrays and further targets will necessitate a truncated

search of the array design space. Optimization, rather than a brute force approach,

has been conducted at the top level for this reason.

The optimal geometry identified through the analysis is represented by the solid

spheres in Figure 6.4. The resulting configuration is somewhat uninteresting, as
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Figure 6.4: Grid Array Test Case, 1 g Sources - Optimal Configuration

the optimum geometry is quadruple the size of the original line array, just as the

threshold has been quadrupled. Second-tier optimizations were performed with 20

generations of 50 member populations and a 10% mutation rate. This population size

and number of generations is smaller than the quantities that were used to validate the

constraint-level optimization, potentially sacrificing solution quality in exchange for

computational efficiency. To ensure that the analysis did not omit a good solution due

to fewer design space evaluations, 100 generations of 100 member populations at a 10%

mutation rate were used to optimize detonation timing for the next-smallest-from-

optimal array, with numC = 3 and numR = 3. The resulting maximum duration at

the specified threshold is 3.07e-05 seconds, which does not satisfy the constraint.

The algorithm has identified the optimal array geometry even though fewer gen-
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erations and a smaller population size were used in the constraint analysis. The com-

posite waveform generated by optimum detonation timing schemes for the optimal

configuration and the next-smallest configuration are shown in Figure 6.5. Although

it seems that the smaller array may be capable of meeting the constraint (the op-

timal waveform falls short of the required duration by only a small amount), it is

difficult to speculate on the feasibility of the smaller array due to strong coalescence

physics that are in effect. It is noteworthy that the lengthy optimization used for the

smaller configuration was not able to find a feasible optimum. If anything, the larger

configuration solution is certainly more robust.
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Figure 6.5: Optimum vs. Suboptimal Grid Array Pressure History Comparison

The use of 1 g charges throughout the development of the physics-based, reduced-

order model and the creation of the two-tiered optimization framework has provided a

testbed where analytical results can easily be compared to numerical models. The real

target range of interest lies beyond the reach of these relatively small charges. The

following section introduces the optimization of a 1 lb charge array, which projects

energy to depths in the water where actual threats may reside.
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6.3 Grid Array with 1 lb Sources

Optimization analysis has been conducted for a grid array of 1 lb sources. The

optimization statement for this case is stated as follows:

Minimize: Total number of charges

with respect to: numC, numR

subject to: P > 3.45×106 Pa for 3.5×10−4 s @ 15 m depth,

2 < numC < 5, 2 < numR < 5,

0 < tdi < 2 ∗ ri/co

The analysis was completed in approximately 4 hours on eight processors. With

resulting values of numC = 4 and numR = 3, shown in Figure 6.6. Three generations

of four configurations each were used for the top-level optimization, and five gener-

ations of fifteen timing schemes were employed for the constraint-level optimization.

Admittedly, the search of the timing design space is not as rigorous as best prac-

tices within genetic algorithm-based optimization would dictate. To ensure that the

optimum identified by the two-tiered optimization framework was indeed the best

design, rigorous timing scheme optimizations were conducted for both an array with

numC = 3 and numR = 3 and an array with numC = 4 and numR = 2. Ten

generations of 100 timing schemes each were used to probe the timing design space

thoroughly for the two smaller arrays. The optimal waveform produced by the first

configuration achieved a duration of 3.18×10−4 s at the threshold pressure, which

does not satisfy the constraint. The second configuration yields a maximum duration

of 3.12×10−4 s for its optimal detonation timing case.

Due to the thorough analyses that were conducted to attain the maximum dura-

tion of each of the two smaller designs, it is concluded that the configuration deter-

mined by the two-tiered optimization framework is the true optimum design for the
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Figure 6.6: Grid Array Test Case, 1 lb Sources - Optimal Configuration

required pressure threshold at the specified standoff of 15 m. The optimal design is

shown within the maximum size constraint in Figure 6.6, with the solid circles rep-

resenting the optimum design and the hollow spheres indicating the maximum size

constraint.

6.4 Application of the Optimization Framework to Design

The optimization framework and analytical model developed in this thesis can

be applied to two stages of array design. The first stage concerns array geometry.

Optimizations similar to those above should ensue, with the most challenging objec-

tive functions (deepest standoffs, longest durations, etc.) used to evaluate candidate

designs. Once the array configuration has been specified, timing scheme optimization

can commence. It is assumed that the deployed array will not be centered perfectly

over the target during every usage; therefore, it is logical that several different target

locations will be encountered, each corresponding to a unique optimal timing scheme.

Given that the timing optimization analyses require hours to execute, it would be

impractical to perform them in real-time while the array hovers over the target. It is

suggested that the potential target range be identified and discretized, with optimiza-

tion analyses conducted for each discrete element, so that when the array is deployed
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and a target is identified, an optimum timing scheme for that location in the fluid has

been previously identified. In this manner, the array could be used to defeat several

threats without the bottleneck of real-time detonation timing scheme optimization.

6.5 Chapter Summary

The results presented in this chapter are the culmination of the efforts to construct

a physics-based, reduced-order model and an optimization framework for explosive

array design. The optimization framework is divided into two levels: a configuration

level that seeks to optimize array geometry, and a sub-level optimization which seeks

to identify optimal source detonation timing schemes for given geometries. The tim-

ing scheme optimization, which operates as a constraint function in the framework,

has been validated using a five charge line array with 1 g sources. The optimum det-

onation timing outperforms the simultaneous detonation case at a pressure threshold

where simultaneous timing yields a relatively broad waveform. The analytical model

results for the optimal timing case are compared with CFD results for the same array

using the optimum timing scheme. Good agreement is observed between the two pre-

dictions, validating the reduced-order model as a viable surrogate for the CFD code

in an optimization loop.

After the quality of the timing scheme sub-level optimization had been estab-

lished, arrays with sources arranged in a rectangular grid were optimized for both

1 g and 1 lb charges. The optima identified by the optimization framework were

validated by examining array configurations that were slightly smaller than the con-

figurations identified by the optimization algorithm. The optima determined by the

optimization framework were validated for both source sizes, despite the fact that the

timing scheme optimization in the optimization framework was much less rigorous

than those used to validate the results by optimizing smaller arrays. Therefore, the

algorithm successfully achieved the task of identifying the array capable of imparting
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the prescribed pressure threshold for the specified duration with the fewest sources.
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CHAPTER VII

Conclusion

The multiple-source explosive array design problem requires understanding of

spherical shock waves, shock-bubble collisions, and the interactions between shock

and rarefaction waves. The physics governing these phenomena have been distilled

into a reduced-order model. Several conclusions can be made from this exercise. Ar-

ray configurations that have been identified through optimization analysis provide

further insight.

7.1 Conclusions

At the outset of the present research effort, transcending project objectives su-

perseded the identification of any specific array design. Questions on the source size

and source spacing necessary to impart a desired pressure for the desired duration

at some target existed in the absence of means to answer such questions. The det-

onation timing precision required to strategically coordinate the arrival of multiple

waves at the target was also unknown. The multiple-source explosive array concept

was conceived in an effort to pragmatically explore these questions in an integrated

environment with a real-world application.

The design space for multiple-source arrays was largely unprobed. Most analytical

models deal exclusively with the characterization of a single shock wave. Existing
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empirical methods capture single shocks to engineering accuracy and have been widely

used. Propagation speed of a single shock wave is largely neglected because the arrival

time of a single shock wave is immaterial. Until now, attempts to excite certain

frequencies in marine structures were confined to manipulating the oscillation period

of explosive gas bubbles. The shock waves produced by bubble collapse are relatively

weak, however, and may not contain enough energy to sufficiently disturb a structure

depending on its standoff from the bubble.

The multiple-source explosive array introduces the ability to create sustained pres-

sures at specified thresholds and has been optimized to perform this task. The opti-

mization algorithm is modular in that many other objective functions could be substi-

tuted. For instance, the multiple-source array adeptly projects individual shock waves

into the fluid. The target arrival time of each wave could be tuned just as bubble

oscillation has been tuned in the past. The marked advantage of the multiple-source

array being that each shock that reaches the structure could be of similar magnitude.

With this strategy, much more energy would be imparted to the structure compared

to the impulse caused by a leading explosive shock and following bubble collapse

shock waves.

Quantifying the behavior of shock waves emitted by a multiple source array using

existing numerical tools is difficult. Although they are sufficiently sophisticated to

capture multiple shock interaction phenomena, numerical tools face significant com-

putational obstacles when simulating a three-dimensional domain. Although the CFD

solver has been widely validated and the accuracy of the results it generates is not in

question, the computational time and effort, as well as the data storage, necessary to

conduct multiple-source array analyses is significant and limits both the array sizes

and the target depths that can be simulated. Although such restrictions will be re-

laxed as hardware technology advances in the future, it is difficult to imagine a CFD

code that approaches the speed of the analytical model.
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Given the limitations of existing analytical and numerical models, reduced-order

modeling offers the best opportunity to explore multiple-source array designs and to

optimize variables such as array geometry and detonation timing. The analytical

model described herein addresses the most important physical phenomena present in

the flow field produced by the multiple-source explosive array: shock wave magnitude

and propagation, rarefaction wave inception, and shock-rarefaction interactions. Prior

to this effort, very few studies had explored the latter two topics in a liquid domain

and closed-form solutions for these phenomena were nonexistent. The physics based

reduced-order model, therefore, represents a substantial step forward in the realm of

analytical shock modeling, both for single sources and multiple-source arrays of grid

and line type.

Reduced-order modeling requires strategic implementation of simplifying assump-

tions. For example, the magnitude of the energy terms in the Tillotson equation of

state are small when compared with the magnitude of the pressure and density terms

(approximately 0.01%). As a result, the internal energy jump across a shock is ig-

nored in the analytical model. Other simplifications, however, relied on more heuristic

assumptions. The centerline model, for instance, incorporates the assumption that

tracking shock propagation and interaction along a single computational line is suffi-

cient to model the entire fluid domain. As with any heuristic method, validation is

the only recourse to confirm that modeling simplifications accurately represent the

system. To this end, the analytical model for the multiple-source explosive array

has been tested against numerical simulations for five and twenty source line arrays

with 1 g sources, a five source line array with 1 lb sources, and a two-by-three grid

array with 1 g sources. This selection of test problems represents the span of array

configurations that can be modeled with CFD given existing computational resources.

Conclusions can be drawn from comparisons with numerical results and optimiza-

tion analysis. First, there is a minimum source spacing that should be used for spher-
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ical explosive sources. When charges are placed closer than this minimum spacing,

deleterious near-field interaction effects negate a significant portion of the cumula-

tive impulse that is available according to superposition of the charges. Secondly,

the detonation timing precision required to produce optimal composite waveforms

is very high, often on the order of microseconds. It may not be feasible to control

the detonation of each charge with this precision. In that case, simultaneous or near

simultaneous detonation, especially for smaller arrays, may be the best option for

deployment of the system.

The applicability of the piecewise-analytical model should be noted. Although

the analytical model has been validated using a single CFD code, the model is not

calibrated to the CFD code exclusively. The new value for the parameter β used in

the propagation speed calculation is pertinent to results generated using any inviscid

Euler solver that employs the Tillotson equation of state. Given initial near-field

pressure and particle velocity histories from any other CFD code, the piecewise-

analytical model should replicate the results generated by the other CFD code with

the same accuracy as that which has been demonstrated in this thesis. The weak

shock assumptions will still hold and the physics present will continue to be sufficiently

captured by the models presented herein.

7.2 Future Research

A reduced-order model can always be improved. The physics based-reduced-order

model contains two specific components that deserve further inspection. The struc-

ture of the centerline model itself implies certain assumptions. First, arrival time of

each wave to the top of the computational line occurs in either a vacuum for shocks,

or in the wake of a single shock for rarefaction waves. Chapter IV demonstrates that

these assumptions are adequate for relatively small arrays. If a particular application

favored using a larger array with small sources (versus a smaller array with larger
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sources), the second assumption may begin to unravel. Without the ability to nu-

merically simulate broad arrays, the sufficiency of the arrival time assumption will be

difficult to test.

The centerline model also includes the notion that the entire fluid domain can be

represented by wave propagation and interaction along a single computational line.

It seems to be a fantastic assumption given the complexity of the flow field generated

by the multiple-source explosive array. Without the ability to test the model against

numerical results, this theory may have been dismissed. However, validated CFD

tools existed to benchmark the reduced-order model. The question remains whether

more complicated array geometries, such as circular or pentagon-shaped grids, can

be modeled as simply.

The final component of the analytical model that deserves further review is the

shock-rarefaction interaction model. The concept of shock waves overtaking rarefac-

tion waves is not new; in fact, interactions in gas-filled shock tubes have been studied

extensively (Courant and Friedrichs , 1948; Moses , 1948; Bremner et al., 1960; Sod ,

1978). In each of these studies, the result of the interaction of any kind of one-

dimensional wave, whether one overtakes the other or they collide head-on, is that

two waves are created and they propagate away from one another. Unfortunately

this behavior is simply not seen in the numerical simulations of the multiple-source

explosive array. The closed-form solutions for the interaction of shock and rarefac-

tion waves, therefore, are only rough approximations of the actual effect for spherical

waves. The physics governing two and three-dimensional interactions should be ex-

plored in order to incorporate a better interaction module in the analytical model.
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APPENDIX A

Intermediate 1 g Charge Array Results

Intermediate standoff pressure histories produced by CFD and the analytical

model for the five charge line array and six charge grid array with 1 g sources are

depicted below.
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Figure A.1: Five 1 g Charge Line Array Setup

116



1.5 2 2.5 3

x 10
−4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Time, sec

P
re

s
s
u
re

, 
P

a

 

 

CFD

AM

Figure A.2: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 30 cm Standoff
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Figure A.3: Five 1 g Charge Line Array Centerline Pressure History 10 cm Charge
Spacing, 40 cm Standoff
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Figure A.4: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 50 cm Standoff
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Figure A.5: Five 1 g Charge Line Array Centerline Pressure History, 10 cm Charge
Spacing, 60 cm Standoff
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Figure A.6: Six 1 g Charge Grid Array Setup
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Figure A.7: Six 1 g Charge Grid Array Pressure History, 30 cm Standoff
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Figure A.8: Six 1 g Charge Grid Array Pressure History, 40 cm Standoff
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Figure A.9: Six 1 g Charge Grid Array Pressure History, 50 cm Standoff
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Figure A.10: Six 1 g Charge Grid Array Pressure History, 60 cm Standoff
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Figure A.11: Six 1 g Charge Grid Array Pressure History, 70 cm Standoff
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Figure A.12: Six 1 g Charge Grid Array Pressure History 80 cm Standoff
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Figure A.13: Six 1 g Charge Grid Array Pressure History, 90 cm Standoff
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APPENDIX B

Intermediate 1 lb Charge Array Results

Intermediate standoff pressure histories produced by CFD and the analytical

model for the five charge line array with 1 lb sources are depicted below. Centerline

results are shown first, followed by edge results.
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Figure B.1: Five 1 lb Charge Line Array Setup
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Figure B.2: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 300 cm Standoff
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Figure B.3: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 400 cm Standoff

123



2.5 3 3.5 4 4.5

x 10
−3

2

4

6

8

10

12

14

x 10
6

Time, sec

P
re

s
s
u
re

, 
P

a

 

 

CFD

AM

Figure B.4: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 500 cm Standoff
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Figure B.5: Five 1 lb Charge Line Array Centerline Pressure History, 77 cm Charge
Spacing, 600 cm Standoff
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Figure B.6: Five 1 lb Charge Line Array Setup, Edge Standoffs
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Figure B.7: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
300 cm Edge Standoff
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Figure B.8: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
400 cm Edge Standoff
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Figure B.9: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
500 cm Edge Standoff
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Figure B.10: Five 1 lb Charge Line Array Pressure History, 77 cm Charge Spacing,
600 cm Edge Standoff
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