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CHAPTER I

Introduction

Gromov-Witten theory is a mathematical theory originated from the string theory. It

has been in the center of geometry and physics for the last twenty years. This thesis will

focus on the Gromov-Witten theory of three types of elliptic orbifold projective lines,

P1
3,3,3, P1

4,4,2 and P1
6,3,2. They are all quotient spaces of elliptic curves in some weighted

projective spaces under actions of finite groups. The underlying spaces are captured as

follows, where the numbers show the order of the isotropy cyclic group at the orbifold

points.

3 2
3

624
433

The elliptic curves have deep connections to singularity theory. In 2007, a new Gromov-

Witten type theory was introduced for nondegenerate quasihomogeneous hypersurface sin-

gularities, by Fan, Jarvis and Ruan, based on a proposal by Witten. This is the so called

FJRW theory. It is believed to be the counterpart of the Gromov-Witten theory in the so

called Landau-Ginzburg model. The relationship between two theories is referred to as the

Landau-Ginzburg/Calabi-Yau correspondence, a famous duality from physics. Landau-

1
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Ginzburg/Calabi-Yau correspondence can be cast into the framework of the global mirror

symmetry. Comparing to the more traditional mirror symmetry, global mirror symme-

try emphasis the global aspect of mirror symmetry such as the analytic continuation of

Gromov-Witten theory. It leads naturally to the modularity of Gromov-Witten generating

function, a surprising and yet beautiful new perspective of the subject.

1.1 Landau-Ginzburg/Calabi-Yau correspondence

There is a great deal of interest recently in studying the so called Landau-Ginzburg

/Calabi-Yau correspondence or LG/CY correspondence. Mathematically, the LG/CY cor-

respondence is concerned with the equivalence of two mathematical theories originating

from a quasihomogeneous polynomial of Calabi-Yau type. A polynomial W : CN → C is

quasihomogeneous if there is an N-tuple of rational numbers (weights) (q1, · · · , qN) such

that for any λ ∈ C∗,

W(λq1 X1 · · · , λ
qN XN) = λW(X1, · · · , XN).

We assume that W is nondegenerate in the sense that it defines an isolated singularity at

the origin. W is called of Calabi-Yau type if

N∑
i=1

qi = 1.

Another piece of data is a subgroup G of the maximal diagonal symmetry group GW , where

GW :=
{
(λ1, · · · , λN) ∈ (C∗)N; W(λ1X1, · · · , λN XN) = W(X1, · · · , XN)

}
GW has a special element

J =
(
exp(2πiq1), · · · , exp(2πiqN)

)
.

We say G ⊂ GW is admissible if it contains J.
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The geometric realization of a Calabi-Yau type quasi-homogeneous polynomial is that

the equation W = 0 defines a Calabi-Yau hypersurface XW in the weighted projective space

WP(c1, · · · , cN), where qi = ci/d for a common denominator d. G acts naturally on XW by

multiplication on coordinates with the subgroup 〈J〉 acting trivially. We define a group

G̃ := G/〈J〉.

Hence G̃ acts faithfully on XW . One side of the LG/CY-correspondence is the (orbifold)

Gromov-Witten theory of the quotient of the Calabi-Yau hypersurface,

XW,G := (XW = {W = 0}) /G̃.

If G = GW , we simply omit the group and denote the orbifold by XW := XW,GW . In later

chapters, our paper will focus only on the cases with G = GW .

Gromov-Witten theory is now well-known in mathematics. It was first constructed

for semi-Fano symplectic manifolds in [RT] and later in many other papers for various

generalizations. Later on, a similar theory was constructed for orbifolds in symplectic

setting [CheR1, CheR2]. For algebraic constructions, refer to [AbGV]. We also refer

readers to [ALR] for more details about the Chen-Ruan cohomology and the references

there. The main elements of the (orbifold) Gromov-Witten theory for the Calabi-Yau space

XW,G are summarized as follows

(1) There exista a state space: Chen-Ruan orbifold cohomology H∗CR(XW,G);

(2) There are numerical invariants 〈τl1(α1), · · · , τln(αn)〉XW,G
g,n,β defined by a virtual counting

of stable maps. Here, g is the genus of the source curve and β is the fundamental

class of image of the stable maps. β is in the Mori cone of X, i.e. β ∈ NE(X). We

assembles those invariants into a generating function F GW
g,XW,G

(qβ) in infinitely many

variable indexed by a basis {αi} of the state space, a variable z to keep track of the
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sum of integers li and a Novikov variable qβ to keep track of β. One can further sum

over genera to define the total ancestor potential function

AGW
XW,G

(qβ) =
∑
g≥0

~2g−2F GW
g,XW,G

(qβ).

We should emphasize that F GW
g,XW,G

is only a formal power series;

(3) 〈τl1(α1), · · · , τln(αn)〉g,n,β satisfies a set of axioms referred as cohomological field the-

ory axioms (see Chapter II for details).

The other side of the LG/CY-correspondence is the FJRW theory of the singularity

(W,G) constructed by Fan, Jarvis and Ruan in a series of papers [FJR1, FJR2, FJR3],

based on a proposal of Witten. The FJRW theory is very different from Gromov-Witten

theory. However, it shares the same general structure with Gromov-Witten theory as an

example of cohomological field theory. It has the following properties:

(1) A state space H FJRW
W,G (or HW,G for short. See its definition in Chapter III);

(2) Numerical invariants by a virtual counting of solutions of the Witten equation, its

generating functions F FJRW
g,W,G (t),AFJRW

W,G (t) (t is a certain degree 2 variable playing the

role of Kähler parameter);

(3) It satisfies the cohomological field theory axioms.

Motivated by physics, Yongbin Ruan has formulated a striking mathematical conjecture to

relate the two theories. For more details, we refer to [Ru] and [ChiR3]. One of the goals

of this paper is to prove this conjecture for elliptic orbifold P1. Ruan’s conjecture is stated

as follows.

Conjecture I.1. Let W be a nondegenerate quasi-homogeneous polynomial of Calabi-Yau

type and let G be an admissible group.
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(1) There is a graded vector space isomorphism

H FJRW
W,G → H∗CR

(
XW,G

)
.

Hence, we can identify the two state spaces.

(2) There is a degree-preserving C[z, z−1]-valued linear symplectic isomorphism UW,G of

so-called Givental symplectic vector spaces and a choice of analytic continuation of

Givental cones LFJRW
W,G and LGW

XW,G
with respect to the Kähler parameter such that

UW,G

(
LFJRW

W,G

)
= LGW

XW,G
.

(3) The total potential functions are related by quantization of ULG/CY, up to a choice of

analytic continuation. We simply denote by

AGW
XW,G
≡ ÛW,G

(
AFJRW

W,G

)
.

Here ≡ means two sides are equal modulo an analytic continuition.

Part (1) is called the Cohomological LG/CY correspondence, which has been verified in

full generality by Chiodo-Ruan [ChiR2]. Part (2) is the genus-0 LG/CY correspondence,

which has been verified by Chiodo-Ruan [ChiR1] for the quintic 3-fold, and by Chiodo-

Iritani-Ruan [CIR] for all Fermat hypersurfaces and G = 〈J〉. The fisrt example of the

conjecture for all genera is proved in [KS] and [MR], for three classes of orbifold P1, i.e.

elliptic orbifold projective lines P1
3,3,3, P1

4,4,2 and P1
6,3,2. Namely, there exist pairs (W,G),

such that the Calabi-Yau sides of them are those elliptic orbifolds, and there exists an

operator ÛW,G, to connect the generating functions from the FJRW side to the Calabi-Yau

side.

Let us denote W by

W(X) =

s∑
i=1

N∏
j=1

Xai j

j , X = (X1, . . . , XN)
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We define its exponent matrix EW by taking the exponents that appear in the monomials

of W as entries, i.e. the (i, j)-th entry of EW is ai j. We say W is invertible, if s = N and EW

is an invertible matrix.

According to Saito [Sa2], simple elliptic singularities are classified in three cases E(1,1)
µ−2 ,

µ = 8, 9, 10. Here µ is actually the dimension of the Jacobi algebra of W, as a vector space.

However, as a polynomial, there are different choices of normal forms for each singularity.

For example, the Fermat cubic singularity W = X3
1 + X3

2 + X3
3 is of type E(1,1)

6 . We simply

denote by W ∈ E(1,1)
6 . All simple elliptic singularities of the same type have isomorphic

Jacobi algebras. However, their FJRW theory will be different. Here we list all invertible

simple elliptic singularities.

Table 1.1: Invertible simple elliptic singularities

E(1,1)
6 E(1,1)

7 E(1,1)
8

Fermat X3
1 + X3

2 + X3
3 X4

1 + X4
2 + X2

3 X6
1 + X3

2 + X2
3

Fermat+Chain X2
1 X2 + X3

2 + X3
3 X3

1 X2 + X4
2 + X2

3 X4
1 X2 + X3

2 + X2
3

X2
1 X2 + X2

2 + X4
3 X3

1 X2 + X2
2 + X3

3

Fermat+Loop X2
1 X2 + X1X2

2 + X3
3 X3

1 X2 + X1X3
2 + X2

3

Chain X2
1 X2 + X2

2 X3 + X3
3 X3

1 X2 + X2
2 X3 + X2

3

Loop X2
1 X2 + X2

2 X3 + X1X2
3

We recall that in [KreS], it is proved that an invertible polynomial is nondegenerate if

and only if it can be written as a sum of the following three types:

1. Fermat: W = Xr1
1 + · · · + XrN

N .

2. Loop: W = Xr1
1 X2 + Xr2

2 X3 + · · · + XrN−1
N−1XN + XrN

N X1.

3. Chain: W = Xr1
1 X2 + Xr2

2 X3 + · · · + XrN−1
N−1XN + XrN

N .

It is not hard to see that if W is an invertible simple elliptic singularity (or ISES for

short), then XW,GW is an elliptic orbifold P1. The explicit correspondence will be discussed

later in global mirror symmetry section.
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We say W is a good invertible simple elliptic singularity if W is a singularity in the

Table 1.1 and W is not of the form X2
1 X2 + X3

2 + X3
3 ∈ E(1,1)

6 , X2
1 X2 + X1X2

2 + X3
3 ∈ E(1,1)

6 , or

X2
1 + X2

2 + X4
3 ∈ E(1,1)

7 . Our main theorem of this thesis is

Theorem I.2. [KS, MR, MS] Let W be a good invertible simple elliptic singularity, and GW

be its maximal diagonal symmetry group. Then the LG/CY correspondence of all genera

holds true for the pair (W,GW). More precisely, there exists an operator ÛW , such that

(1.1) ÛW

(
AFJRW

W

)
≡ AGW

XW
.

This theorem is first proved in [KS, MR] for three special types of cubic polynomials,

where W = X3
1 +X3

2 +X3
3 , X2

1 X2 +X2
2 X3 +X3

3 and X2
1 X2 +X3

2 +X3
3 . Later, the statement is gen-

eralized to all other good cases in [MS]. Here, let us mention that three cubic singularities

we listed above are all belong to E(1,1)
6 . However, the corresponding orbifolds are actually

P1
3,3,3, P1

4,4,2 and P1
6,3,2. Another remark is that we can not obtain the LG/CY correspondence

for all invertible simple elliptic singularities simply in current stage only because we can

not compute all the FJRW invariants except the good cases, under the current technology.

Recently, the method has been generalized to solve the LG/CY correspondence for the

maximal quotient of a Fermat quintic 3-fold [IMRS].

1.2 Two reconstruction theorems

As a first step for understanding formula (1.1), let us say more about the two generating

functions in this formula. Using tautological relations on cohomology of moduli space of

stable curves and the axioms of Gromov-Witten theory, we prove a reconstruction theorem

for Gromov-Witten invariants of all elliptic P1-orbifolds in Chapter III. A similar theorem

is carried out for the corresponding FJRW theory in Chapter IV.

Theorem I.3. [KS] We have the following two reconstruction statements:



8

(1) The Gromov-Witten generating function of X = P1
3,3,3, P1

4,4,2,P
1
6,3,2 is uniquely re-

constructed from the following initial data: the Poincaré pairing, the Chen-Ruan

product, and an initial correlator

〈∆1,1,∆2,1,∆3,1〉
X
0,3,1 = 1.

Here ∆i,1 are twisted sectors in the Chen-Ruan cohomology of X that support on the

i-th orbifold point with a smallest degree shifting number.

(2) For an invertible simple elliptic singularity W the FJRW generating function of (W,GW)

is uniquely reconstructed from the pairing, the FJRW ring structure constants and

some 4-point basic correlators with one of the insertions being a top degree element.

The first reconstruction theorem is proved in [KS], the second one is proved in [KS]

for three cubic polynomial cases and then generalized to all other cases in [MS]. For most

of invertible simple elliptic singularities with maximal diagonal symmetry group, we can

compute the FJRW ring structure and those basic 4-point correlators. However, as we

already pointed out, there are three examples out of the reach of the current technology.

For Ruan’s conjecture to make sense, we need the generating function to be analytic

with respect to the Kähler parameter. This is often a difficult problem in Gromov-Witten

theory and interesting in its own right. Our next theorem (Theorem I.4) establishes it for

both Gromov-Witten theory and FJRW theory. It is convenient to consider the ancestor

correlator function 〈〈τl1(α1), · · · , τln(αn)〉〉GW
g,n (t). (See the precise definition in Chapter II.)

Among all the cases we consider, the state space is decomposed into H<2 ⊕ H2 where H2

is a one-dimensional space of degree 2 classes and H<2 is the subspace of degree < 2. Let

t = (s, t) with s ∈ H<2 and t ∈ H2. With out losing generality, we also view t as a complex

valued vector once a basis of the state space is fixed. We can convert t to the familiar q

variable by the substitution q = et. We define 〈〈τl1(α1), · · · , τln(αn)〉〉FJRW
g,n (t) in the same
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way. The main difference is the absence of the β variable. It is obvious that for invertible

simple elliptic singularity W with a group GW , H2 is always one-dimensional.

Theorem I.4. [KS] We have the following two convergence statements:

(1) For the above three classes of elliptic orbifold P1’s,

〈〈τl1(α1), · · · , τln(αn)〉〉GW
g,n (s, t)

converges to an analytic function near s = (0, · · · , 0),Re(t) � 0 or q = 0.

(2) For its FJRW counterparts,

〈〈τl1(α1), · · · , τln(αn)〉〉FJRW
g,n (s, t)

converges to an analytic function near s = (0, · · · , 0), t = 0.

(1) is often referred to as the convergence at the large volume limit t = (0, · · · , 0,−∞),

while (2) can be referred to as the convergence at small volume limit t = (0, · · · , 0).

1.3 Global mirror symmetry

Chiodo-Ruan [ChiR3] has reframed Ruan’s conjecture in the language of global mirror

symmetry. Let us explain their approach.

Global B-model

The global mirror symmetry of our examples involves global B-model objects. We

consider Saito-Givental theory for a one-parameter family

Wσ = W + σφ−1.

Here W is an invertible simple elliptic singularity and φ−1 is a top degree non-vanishing

monomial in the Jacobi algebra QW . Let us fix an invertible simple elliptic singularity W
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of type E(1,1)
µ−2 , µ = 8, 9, 10. Saito constructed a flat structure on the miniversal deformation

spaceM of W using primitive forms [Sa1]. The deformation along φ−1 is called marginal

deformation. Following Givental’s higher-genus reconstruction formalism [Gi2], we de-

fine for every semisimple point s in M a formal power series As(~; q) called the total

ancestor potential of W. More details of the Saito-Givental theory will be introduced

later. Let us point out that the primitive form depends on the choice of W and the choice

of marginal element φ−1. In [MR], Milanov and Ruan have worked out a global Saito-

Givental theory in the sense of allowing the parameter σ to vary. Let p1, . . . , pl be the

points on the complex line, s.t., for σ = pi the point X = (X1, X2, X3) = (0, 0, 0) is not an

isolated critical point of the polynomial Wσ = W + σφ−1. The points

0, p1, . . . , pl, ∞ ∈ C ∪ {∞}

will be called special limit points in our setting. Especially, σ = 0 is always called a Gep-

ner point. We can classify all the special limit points into two different types, according

to the local monodromy on a two dimensional subspace of the middle dimensional coho-

mology of the vanishing cycles of W. We say the special limit point is of large complex

structure limit type if the local monodromy is maximal unipotent. We say the special limit

point is of Landau-Ginzburg type is the local monodromy is diagonalizable. Our goal is to

study the total ancestor potentials at the special limit points.

Berglund-Hübsch-Krawitz mirror construction

It turns out the Saito-Givental theory for an invertible simple elliptic singularity is

related to the FJRW theory by a simple and elegant mirror construction, for Landau-

Ginzburg model. Now we refer this construction as the Berglund-Hübsch-Krawitz mirror

(or the BHK mirror for short). For an invertible polynomial W, its transpose polynomial
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WT is the unique invertible polynomial such that EWT = (EW)T . Thus for

W =

N∑
i=1

N∏
j=1

Xai j

i ,

we have

WT =

N∑
i=1

N∏
j=1

Xa ji

i .

The role of the transpose polynomial WT in mirror symmetry was first studied by Berglund

and Hübsch (see [BH]). Krawitz then introduced a mirror group construction GT [Kr].

(WT ,GT ) is considered to be the BHK mirror for (W,G). In state space level, this refers

to as the FJRW ring of (W,G) is isomorphic to the orbifold Jacobi algebra of (WT ,GT ).

This is widely proved for various singularities in state space level with a Frobeniu algebra

structure, see [FJR2, Kr, KP+, FS, Ac, KS, FJJS]. When G = GW , then GT
W = {1} is the

trivial group which contains only the identity element. And the data appears in B-model

for (WT , {1}) is the Saito-Givental theory.

LG-to-LG mirror theorem

We can study the special limits in Saito-Givental theory for one-parameter families

of simple elliptic singualarities, WT + σφ−1. It was conjectured that the Gepner point

should always has a geometric mirror, its mirror FJRW theory for (W,GW). We prove this

holds true at least for those FJRW theories which are computable so far. This is the so

called LG-to-LG mirror theorem. (This is a generalization of Witten’s mirror conjecture

for ADE-singularities to elliptic cases, see [Ru] and [ChiR3].)

Theorem I.5. [KS, MS] Let W be a good invertible simple elliptic singualrities, we can

choose the coordinates appropriately, such that

(1.2) AFJRW
W = AS G

WT
σ=0
.
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This thoerem was proved when W is one of three cubic cases in [KS] and later gener-

alized to all other cases in [MS].

LG-to-CY mirror theorem

Another mirror theorem focuses on those special points of large complex structure

limits. They contain all other points with finite values and some σ = ∞ in some cases. We

call it LG-to-CY mirror theorem.

Theorem I.6. [KS, MR, MS] Let X be an elliptic orbifold P1 and its Chen-Ruan cohomol-

ogy space has rank µ. There exists an invertible simple ellitpic singularity W ∈ E(1,1)
µ−2 and a

special point σ of large complex structure limit type, such that we can choose a coordinate

system and have

(1.3) AGW
X

= AS G
Wσ
.

Again, this was first proved for three cubic type singularities and their special limits at

σ = ∞ in [KS, MR]. It was also proved via Fermat type singularities at special limits of

finite values in [MS].

Classification of special limits

As we discribed above, we have more special limits than those appeared in the previous

theorems. For example, there are special limits at σ = ∞ with diagonalizable local mon-

odromy. Wσ = X6
1 + X3

2 + X2
3 + σX4

1 X2 is such an example. Since the local monodromy is

diagonalizable, it is indicated that it might be mirror to some FJRW theory. However, the

BHK mirror is no longer the correct mirror in this example. On the Saito-Givental side, we

can compute the total ancestor potential at all special limits. It is conjectured in [MS] that

it is enough to extract information of the mirrors only from the j-invariant of the elliptic

curve Eσ at the special value and µ, the Milnor number.
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Conjecture I.7. [MS] All special limits appear in Saito-Givental theories for invertible

simple elliptic singularities are classified by the Milnor number µ of the singularity and

j-invariant of the elliptic curve at the special limit.

In particular, we have three different choices of Milnor numbers, µ = 8, 9 or 10. This

only depends on the choice of W. The values of the j-invariant at a special limit point can

be only 0, 1728 or ∞. This however depends on the choice of marginal direction and the

value of σ. Overall, we have nine different types of special limits for all invertible simple

elliptic singularities. For each Milnor number µ = 8, 9, 10, there are one type of GW-limit

and two different types of FJRW-limit. The special limit is a GW-limit if and only if the

j-invariant is ∞. In this paper, we will give a proof of this conjecture for the Fermat type

singularity. A complete proof of this conjecture will apear in a future porject.

1.4 Modularity

A remarkable phenomenon in Gromov-Witten theory is the appearance of (quasi) mod-

ular forms. A Gromov-Witten generating function can be thought as a counting function

for the virtual number of holomorphic curves, i.e., one-dimensional objects. Therefore,

it is natural to speculate if modular forms appear here too. Indeed, this strategy has been

carried out for elliptic curves [Di, OP], some K-3 surfaces [BL] and the so called reduced

Gromov-Witten theory of K3-surfaces [MPT]. In the middle of the 90’s, by studying the

physical B-model of Gromov-Witten theory, Bershadsky, Cecotti, Ooguri and Vafa boldly

conjectured that the Gromov-Witten generating function of any Calabi-Yau manifolds are

in fact quasi-modular forms. A key idea in [BCOV] is that the B-model Gromov-Witten

function should be modular but non-holomorphic. Furthermore, its anti-holomorphic de-

pendence is governed by the famous holomorphic anomaly equations. During the last

decade, Klemm and his collaborators have put forth a series of papers to solve the holo-



14

morphic anomaly equations [ABK, HKQ]. Motivated by the physical intuition, there were

two independent works recently in mathematics to establish the modularity of Gromov-

Witten theory rigorously for local P2 [CI2] and elliptic orbifolds P1 [KS, MR]. In fact,

the later result was generalized to a cycle-valued version of modularity in [MRS]. Let’s

briefly describe it.

For a projective variety X, we can construct Gromov-Witten cycles (cohomological field

theories) ΛX
g,n,β (γ1, · · · , γn) by a partial integration, see formula (2.4) in Chapter II. Here

Mg,n is the Deligne-Mumford compactification of the moduli space of stable curves, see

[DeM]. The degree of the cycle is computed from the dimension axiom,

degCΛX
g,n,β(γ1, · · · , γn) = (g − 1) dimC(X) +

n∑
i=1

degC(γi) − c1(T X) · β.

The numerical Gromov-Witten invariants are obtained by

〈τι1(γ1), · · · , τιc(γn)〉Xg,n,β =

∫
Mg,n

ΛX
g,n,β(γ1, · · · , γn) ∪

n∏
i=1

ψιii .

Motivated by the corresponding work in number theory [Z], we want to consider the gen-

erating function of Gromov-Witten cycles

(1.4)
(
ΛX

g,n(q)
)

(γ1, · · · , γn) =
∑

β∈NE(X)

ΛX
g,n,β(γ1, · · · , γn) qβ.

We view the RHS of (1.4) as a function on q taking value in H∗(Mg,n,Q). To emphasise

this perspective, we sometimes refer to it as cycle-valued generating function. The main

theorem in [MRS] is

Theorem I.8. [MRS] Suppose that X is one of the three elliptic orbifolds P1 with three

non-trivial orbifold points; then
(
ΛXg,n(q)

)
(γ1, · · · , γn) converges to a cycle-valued quasi-

modular form of an appropriate weight for a finite index subgroup Γ(N) of S L2(Z) under

the change of variables q = e2πiτ/N , where N = 3, 4, 6 respectively.
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We should mention that the above cycle-valued modularity theorem is not yet known

for elliptic curve.

We obtain the modularity of numerical Gromov-Witten invariants by integrating the

ΛXg,n(γ1, · · · , γn) with psi-classes over the fundamental cycle [Mg,n]. On the other hand,

we can also use other interesting classes ofMg,n such as κi’s or Hodge class λi’s.

Suppose that P is a polynomial of ψi, κi, λi. We define a generalized numerical Gromov-

Witten invariants

〈γ1, · · · , γn; P〉Xg,n,β =

∫
Mg,n

P ∪ ΛX
g,n,β(γ1, · · · , γn)

and its generating function

〈γ1, · · · , γn; P〉Xg,n(q) =
∑

β∈NE(X)

〈γ1, · · · , γn; P〉Xg,n,β qβ.

Here, we set it to be zero if the dimension constraint are not satisfied.

Corollary I.9. Suppose that X is one of the above three elliptic orbifolds P1. Then,

the above generalized numerical Gromov-Witten generating functions are quasi-modular

forms for the same modular group and weights given by the main theorem.

The proof of the numerical version consists of two steps, see [MR]. The first step is

to construct a higher genus B-model theory (modulo an extension problem) and prove its

modularity. Then, the second step is to prove mirror theorems to match it with a Gromov-

Witten theory which will solve the extension property as well as inducing the modularity

for a Gromov-Witten theory. The same strategy can be carried out on the cycle level. The

main new ingredient is Teleman’s reconstruction theorem [Te].

1.5 Detailed outline

In chapter 2, we first introduce the orbifold Gromov-Witten theory as a cohomological

field theory. Then we decribe our main targets, three types of elliptic orbifold projec-
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tive lines P1
3,3,3, P1

4,4,2, P1
6,3,2 and compute their Chen-Ruan product. Then we obtain the

key theorem of this chapter, that the ancestor Gromov-Witten invariants of all genera for

those orbifolds are uniquely determined by their Chen-Ruan product and one extra sin-

gle nonzero correlator of genus zero, three point and degree one. We end up chapter 2

by giving a convergence result for the Gromov-Witten ancestor correlator functions. In

chapter 3, we give a parallel discussion on the Fan-Jarvis-Ruan-Witten theory for simple

elliptic singularities. We introduce the axioms of FJRW theory for general hypersurface

singularities, compute their FJRW rings. Moreover, we also give a classification for those

ring structures. We end up this chapter by proving a reconstruction theorem for all of the

FJRW invariants and introducing a convergence result for those FJRW correlator func-

tions. In chapter 4, we introduce Saito’s construction of Frobenius manifold on minversal

deformations of invertible simple elliptic singularities. We describe Milanov-Ruan’s result

on its global theory. We compute the B-model initial correlators by choosing flat coordi-

nates, based on analying the Picard-Fuchs equations for all sectors in the global B-model.

We also discuss how to obtain the mirror for geometric A-model theory by extension of

Saito-Givental theory to a non-semisimple point. In Chapter 5, we give the Berglund-

Hübsch-Krawitz mirror construction and prove the LG-to-LG mirror symmetry theorem

of all Gepner points in invertible simple elliptic singualrities. In Chapter 6, we discuss

the global picture for mirror symmetry by analyzing other special points in B-model. We

prove the LG-to-CY mirror theorem for Fermat types. In Chapter 7, we discuss Givental’s

quantization formula and give a proof for the LG/CY correspondence for elliptic orbifold

P1 by analyzing the quanzation formula and analytic continuation on the global B-model.

In Chapter 8, we introduce the modularity in global B-model, compute the modular group

for three examples and prove the modularity theorem for Gromov-Witten theory of those

elliptic orbifold P1 by using mirror symmetry. Most of the statements are in cycle-valued
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version. In Chapter 9, we give the proof of convergence theorem for both Gromov-Witten

theory and Fan-Jarvis-Ruan-Witten theory of our examples. This complete the statement

that our mirror theorems extend to the non-semisimple points we want. In the appendix,

we give the recursion formula for basic correlators in Gromov-Witten theory of elliptic

orbifold P1. This completes our reconstruction theorem in the Gromov-Witten theory.



CHAPTER II

Gromov-Witten theory for elliptic orbifolds P1

2.1 Cohomological Field Theories

We recallMg,n is the Deligne-Mumford compactification of the moduli space of genus

g stable curves with n marked points, see [DeM]. Let H be a vector space of dimension N

with a unit 1 and a non-degenerate paring η : H × H → C. Without loss of generality, we

always fix a basis of H, say

S := {∂0, · · · , ∂N−1} ,

and we set ∂0 = 1. Let
(
∂ j

)
be the dual basis in the dual space H∨. A cohomological field

theory (or CohFT for short) is a set of multi-linear maps Λ = {Λg,n}, with

Λg,n : H⊗n −→ H∗(Mg,n,C),

or equivalently,

Λg,n ∈ H∗(Mg,n,C) ⊗ (H∨)⊗n,

defined for any g, n such that 2g − 2 + n > 0. Furthermore, Λ satisfies a set of axioms

(CohFT axioms) described below:

1. (S n-invariance) For any σ ∈ S n, and γ1, . . . , γn ∈ H,

Λg,n(γσ(1), . . . , γσ(n)) = Λg,n(γ1, . . . , γn).

18
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2. (Gluing tree) Let

ρtree :Mg1,n1+1 ×Mg2,n2+1 →Mg,n

where g = g1 + g2, n = n1 + n2, be the morphism induced from gluing the last marked

point of the first curve and the first marked point of the second curve; then

ρ∗tree
(
Λg,n(γ1, . . . , γn)

)
=

∑
α,β∈S

Λg1,n1+1(γ1, . . . , γn1 , α)ηα,βΛg2,n2+1(β, γn1+1, . . . , γn).

Here
(
ηα,β

)
N×N is the inverse matrix of

(
η(α, β)

)
N×N .

3. (Gluing loop) Let

ρloop :Mg−1,n+2 →Mg,n,

be the morphism induced from gluing the last two marked points; then

ρ∗loop
(
Λg,n(γ1, . . . , γn)

)
=

∑
α,β∈S

Λg−1,n+2(γ1, . . . , γn, α, β)ηα,β.

4. (Pairing) ∫
M0,3

Λ0,3(1, γ1, γ2) = η(γ1, γ2).

If in addition the following axiom holds:

(5) (Flat identity) Let π :Mg,n+1 →Mg,n be the forgetful morphism; then

Λg,n+1(γ1, . . . , γn, 1) = π∗Λg,n(γ1, . . . , γn).

then we say that Λ is a CohFT with a flat identity.

If Λ is a CohFT; then there is a natural formal family of CohFTs. Namely,

Λg,n(t)(γ1, . . . , γn) =

∞∑
l=0

1
l!
π∗Λg,n+l(γ1, . . . , γn, t, . . . , t), t ∈ H
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where π : Mg,n+l → Mg,n is the morphism forgetting the last l marked points. Note that

Λ0,3(t) will induce a family of Frobenius multiplications •t on (H, η), defined by

(2.1) η(α •t β, γ) =

∫
M0,3

Λ0,3(t)(α, β, γ).

The CohFT axioms imply that (H, η, •t) is a Frobenius manifold in the sense of Dubrovin

[Du]. The vector space H is called the state space of the CohFT.

Examples of CohFTs

Let CN be the complex vector space equipped with the standard bi-linear pairing:

(ei, e j) = δi, j. Let ∆ = (∆1, · · · ,∆N) be a sequence of non-zero complex numbers. The

following definition

(2.2) IN,∆
g,n (ei1 , . . . , ein) :=


∆

g−1+ n
2

i PD[Mg,n] ∈ H0(Mg,n,C) if i = i1 = i2 = · · · = in,

0 otherwise,

induces a CohFT on CN which we call a rank N trivial CohFT. Here [Mg,n] is the funda-

mental cycle ofMg,n and PD represents the Poincaré dual. The Frobenius algebra under-

lying IN,∆ will be denoted by (CN ,∆). Using the Kronecker symbol δi j, we note that the

Frobenius multiplication is given by

ei • e j = δi j

√
∆i ei.

The total ancestor potential of a CohFT

For a given CohFT Λ, the ancestor correlator functions are, by definition, the following

formal power series in t ∈ H:

(2.3) 〈〈τk1(α1), . . . , τkn(αn)〉〉g,n(t) =

∫
Mg,n

Λg,n(t)(α1, . . . , αn)ψk1
1 . . . ψ

kn
n ,

where αi ∈ H, ki ∈ Z≥0 and ψi is the i-th ψ-class onMg,n. The value of a correlator function

at t = 0 is called simply a correlator and we denote by 〈τk1(α1), . . . , τkn(αn)〉g,n only. We
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call g the genus of the correlator function and each τki(αi) is called a descendant (resp.

non-descendant) insertion if ki > 0 (resp. ki = 0).

For each basis vector ∂i in H, we fix a sequence of formal variables {qi
k}
∞
k=0 and define

q(z) =

∞∑
k=0

N−1∑
i=0

qi
k ∂i zk ;

then the genus-g ancestor potential is the following generating function:

F Xg (q, t) :=
∑

n

1
n!
〈〈q(ψ1) + ψ1, . . . ,q(ψn) + ψn〉〉

X
g,n(t),

where each correlator should be expanded multi-linearly in q and the resulting correlators

are evaluated according to (2.3). Let us point out that we have assumed that the CohFT

has a flat identity 1 ∈ H and we have incorporated the dilaton shift in our function, so that

F GW
g is a formal series in qk, k , 0 and q1 + 1. Finally, the total ancestor potential is

AX (~; q, t) := exp

 ∞∑
g=0

~2g−2F Xg (q, t)

 .
.

2.2 Orbifold Gromov-Witten theory

For simplicity, we assume X is a compact Kahlër orbifold, which is a quotient space of

a Kahlër manifold Y by a faithful finite abelian group action, i.e. X = Y/G.

The inertia orbifold of X, IX, which is defined by

IX :=
∐

(g)∈G∗
Fix(g)/G.

Here g is an element in the finite group G, and G∗ is the set of conjugacy classes of G. Let

us use (g) to represent the conjugacy class of g. Fix(g) is the set of fixed points in Y under

the action of g. Since G is abelian, G is also the centralizer of g.

The Chen-Ruan cohomology is defined by

H∗CR(X) =
⊕
(g)∈G∗

H∗̃ (Fix(g)) .
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H∗̃(Fix(g)) is the ordinary De Rham cohomology of Fix(g), with a twisting on the degree,

defined by the group action on Y . Let us recall the action of g on the tangent space TY

of Y . Since G is a finite abelian group and the action of g is faithful, the action of g on

the target space can be viewed as a scalar multiplication on CN , where N is the complex

dimension of Y . We denote the action by a N-tuple of nonzero complex numbers(
exp(2π

√
−1Θ

g
1), exp(2π

√
−1Θ

g
2), · · · , exp(2π

√
−1Θ

g
N)

)
∈ CN , Θ

g
i ∈ Q/Z, 1 ≤ i ≤ N.

So for a class of the Chen-Ruan cohomology in the component Fix(g), its complex degree

is the complex degree of the class as a De Rham cohomology element plus the degree

shifting number

ιg :=
N∑

i=1

Θ
g
i .

If the element g acts trivially, we see that the degree shifting number is zero. Otherwise,

it is not zero and all the classes with nonzero degree shifting number are called twisted

sectors.

We defineM
X

g,n,β to be the moduli space of all stable maps f : C −→ X, from a genus-g

orbi-curve C, equipped with n marked points, to X, such that f∗([C]) = β ∈ NE(X). Here

[C] is the fundamental class of curve C. Let us denote by π the forgetful map, and by evi

the evaluation at the i-th marked point

Mg,n
π
←− M

X

g,n+k,β
evi
−→ IX .

The moduli space is equipped with a virtual fundamental cycle
[
M
X

g,n,β

]vir
∈ H∗

(
M
X

g,n,β

)
,

such that

ΛXg,n,β : H∗CR(X)⊗n −→ H∗(Mg,n;C)

defined by

(2.4) ΛXg,n,β (α1, . . . , αn) := π∗

[MX

g,n,β

]vir
∩

n∏
i=1

ev∗i (αi)

 .
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We put those classes together with Novikov variable qβ and define an element

(2.5) ΛXg,n(q) =
∑
β

ΛXg,n,β qβ : H∗CR(X)⊗n −→ H∗(Mg,n;C[qNE(X)])

The Novikov variables satisfies the following rule, for β1, β2 ∈ NE(X),

qβ1qβ2 = qβ1+β2 .

Λg,n(q) forms a CohFT with state space H∗CR(X). The total ancestor potential AX of X is

by definition the total ancestor potential of the CohFT.

From now on, we assume H1,1(X,C) = C, i.e. the Kähler moduli is one dimensional.

This simplifies our notation for Novikov variables. As any β ∈ H2(X) can be view as

β = d · PD(P)

for unique nonnegative integer d. Here PD(P) is the Poincaré dual of a generator P ∈

H1,1(X,Z). For simplicity, we use the index d to represent β. We set ΛXg,n,d = ΛXg,n,β and

qd = qβ. Now we get an example of a family of CohFTs coming from Gromov-Witten

theory, parametrized by a variable q ∈ C.

(2.6) ΛXg,n(q) =
∑
d≥0

ΛXg,n,d qd

Let H be the Chen-Ruan cohomology H∗CR(X), η be the Poincaré pairing. There exist a

well defined CohFT ΛX
g,n(q) at q = 0. The above axioms make sense for cohomology

classes ΛX
g,n(q) that have coefficients in some ring of formal power series. In such a case

we say that we have a formal cohomological field theory. A priori, the CohFT ΛX
g,n(q) is

only formal.

There is a quantum product structure ?q on Chen-Ruan cohomology on H∗CR(X). It was

called the quantum Chen-Ruan product, and defined by

〈α1 ?q α2, α3〉 =
∑
β

〈α1, α2, α3〉0,3,β qβ



24

By restricting to q = 0, we define the Chen-Ruan orbifold cup product (or Chen-Ruan

product for short), and we denote it by ?. By definition, the structure constants of ? are

defined by the following genus-0 degree-0 correlators:

〈α1 ? α2, α3〉 = 〈α1, α2, α3〉0,3,0.

For more details on orbifold Gromov–Witten theory we refer to [ALR, CheR1, CheR2,

AbGV]. We list some of the axioms for furture use.

• Dimension axiom. The virtual dimension ofM
X

g,n,β is

(2.7) vir dimCM
X

g,n,β = (3 − 1)(g − 1) + n + c1(TX) · β = 2g − 2 + n.

• Divisor equation:

(2.8) 〈τl1(γ1) · · · τln(γn),P〉g,n+1,d = d 〈τl1(γ1) · · · τln(γn)〉g,n,d.

• String equation:

(2.9) 〈τl1(γ1) · · · τln(γn), 1〉g,n+1,d =

n∑
i=1

〈τl1(γ1) · · · τli−1(γi) · · · τln(γn)〉g,n,d.

• WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation:

(2.10)
∂3FX

0

∂1∂2∂i
ηi, j ∂

3FX
0

∂ j∂3∂4
=
∂3FX

0

∂1∂3∂i
ηi, j ∂

3FX
0

∂ j∂2∂4
.

2.3 Elliptic orbifolds P1

Three orbifolds points

Let P1
o1,o2,o3

be the orbifold P1 with three orbifold points, such that, the i-th orbifold

point has its isotropy group Z/oiZ. In this paper, we are interested in the following 3

cases: (o1, o2, o3) = (3, 3, 3), (4, 4, 2), (6, 3, 2). Together with P1
2,2,2,2, they correspond to

orbifold-P1s that are quotients of an elliptic curve by a finite group.
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The Chen-Ruan cohomology H∗CR(P1
o1,o2,o3

) has the following form:

(2.11) H∗CR(P1
o1,o2,o3

) =

 3⊕
i=1

oi−1⊕
j=1

C[∆i j]

⊕C[∆01]
⊕
C[∆02].

where ∆01 = 1 is the unit and ∆02 = P. The classes ∆i j with 1 ≤ i ≤ 3, 1 ≤ j ≤ oi − 1 are

in one-to-one correspondence with the twisted sectors, which come from orbifold points,

and we define ∆i j to be the unit in the cohomology of the corresponding twisted sector. In

our context, the complex degrees are

deg ∆i j =
j

oi
, 1 ≤ i ≤ 3, 1 ≤ j ≤ oi − 1.

The orbifold Poincaré pairing takes the form

〈∆i1 j1 ,∆i2 j2〉 =


(
δi1,i2δ j1+ j2,ok

)
/ok, k = i1, i1 + i2 , 0;

δ j1+ j2,3, i1 = i2 = 0.

It is not hard to prove (using only the grading and the Poincaré pairing) that the above

3-point correlators are given by the following formulas:

〈∆i1 j1 ,∆i2 j2 ,∆i3 j3〉0,3,0 =



1/oi, i1 = i2 = i3 = k ∈ {1, 2, 3}, j1 + j2 + j3 = ok;

〈∆i2 j2 ,∆i3 j3〉, (i1, j1) = (0, 1);

0, otherwise.

A degree 1 correlator

Lemma II.1. For all X = P1
3,3,3,P

1
4,4,2,P

1
6,3,2, we have

(2.12) 〈∆1,1,∆2,1,∆3,1〉
X
0,3,1 = 1.

Proof. For 〈∆1,1,∆2,1,∆3,1〉
P1

3,3,3
0,3,1 , as in [ALR], we consider the R-equivalence class of prin-

cipal Z/3Z-bundles over orbifold P1
3,3,3 with a Z/3Z-equivariant map to a genus-1 curve.
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There is just one such equivalence class, thus 〈∆1,1,∆2,1,∆3,1〉
P1

3,3,3
0,3,1 = 1. The other two cases

are obtained similarly. �

2.4 Reconstruction

We use WDVV, string equation, divisor equation (which does not exist in the FJRW

theory) and other axioms in Gromov-Witten theory, to reconstruct higher genus (descen-

dent) correlators from genus-0 primary correlators, and to reconstruct genus-0 primary

correlators from genus-0 n-point basic correlators with degree at most 1, with n ≤ 3. We

will do the same thing in FJRW theory in next chapter. This technique is already used in

[KS] for three special examples of simple elliptic singularities. As the reconstruction pro-

cedures used there only require tautological relations on cohomology of moduli spaces of

curves, we can easily generalize to all other examples. We sketch the general procedures

here. There are three steps.

First, we express the correlators of genus at least 2 and the correlators with descendant

insertions in terms of correlators of genus-0 or genus-1 with non-descendant insertions

(called primary correlators). This step is based on a tautological relation which splits a

polynomial of ψ-classes and κ-classes with higher degree to a linear combination of prod-

ucts of boundary classes and polynomials of ψ-classes and κ-classes of lower degrees. This

is called g-reduction. The reason why g-reduction works in our case is that the dimension

axiom imposes a constraint on the degree of the polynomials involving ψ-classes and κ-

classes (see Lemma II.5). In general, for an arbitrary CohFT this argument fails and one

has to use other methods (e.g. Teleman’s reconstruction theorem).

Next, we reconstruct the non-vanishing genus-1 primary correlators from genus 0 pri-

mary correlators using Getzler’s relation. The latter is a relation in H4(M1,4), which gives

identities involving the Gromov-Witten corrletors with genus 0 and 1. In order to obtain
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the desired reconstruction identity, i.e., to express genus-1 in terms of genus-0 correlators,

one has to make an appropriate choice of the insertions corresponding to the 4 marked

points inM1,4.

Finally, we introduce the following definition

Definition II.2. • We call a class γ primitive if it cannot be written as γ = γ1 ? γ2 for

0 < deg γ1 < deg γ.

• We call a correlator basic if there are no insertions of 1,P and at most two non-

primitive insertions.

• We call a genus-0 primary correlator reconstructable if it can be expressed by linear

combinations of products of 〈∆1,1,∆2,1,∆3,1〉
X
0,3,1 and Chen-Ruan product structural

constants, only using WDVV, string and divisor equation.

To reconstruct the genus-0 correlators we use the WDVV equations. We use the WDVV

equation to rewrite a primary genus-0 correlator which contains several non-primitive in-

sertions to correlators with fewer non-primitive insertions and correlators with a fewer

number of marked points. Again the dimension axiom should be taken into account in

order to obtain a bound for the number of marked points. It turns out that all correlators

are determined by the basic correlators with at most four marked points.

Main result

According to [KS],we have the following reconstruction result.

Lemma II.3. The Gromov-Witten ancestor potential of X = P1
3,3,3, P1

4,4,2,P
1
6,3,2 is deter-

mined by the following initial data: the Poincaré pairing, the Chen-Ruan product, and the

correlator 〈∆1,1,∆2,1,∆3,1〉
X
0,3,1 = 1.
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g ≥ 2

The key point for the higer genus reconstruction is the g-reduction. As we need the

explicit form in the next subsection, we reproduce here. The g-reduction lemma is

Lemma II.4. Let P(ψ, κ) be a monomial in the ψ and κ-classes inMg,n of degree at least

g for g ≥ 1 or at least 1 for g = 0. Then the class P(ψ, κ) can be represented by a linear

combination of dual graphs, each of which has at least one edge.

It was first used in [FSZ] for proving Witten’s conjecture for r-spin curves. Then in

[FJR2], it was generalized to case of central charge ĉW ≤ 1 in the setting of FJRW theory,

which includes the r-spin case as type Ar−1 singularities W := Xr.

Now we apply this lemma to Gromov-Witten theory, we obtain

Lemma II.5. For elliptic orbifold P1, the ancestor potential function is uniquely deter-

mined by the genus-0 potential and the genus-1 primary potential.

Proof. We consider the Gromov-Witten invariants for the elliptic orbifold P1,

〈τl1(α1), · · · , τln(αn),Ti1 , · · · ,Tik〉g,n+k,d =

∫
Mg,n+k

Ψl1,··· ,ln · Λ
X
g,n+k,d(α1, · · · , αn,Ti1 , · · · ,Tik),

where Ψl1,··· ,ln =
∏

i ψ
li
i . The correlator will vanish except for

(2.13) deg Ψl1,··· ,ln +

n∑
i=1

degαi +

k∑
j=1

deg(Ti j) = 2g − 2 + n + k.

As long as degαi ≤ 1 and deg Ti j ≤ 1, we have deg Ψl1,··· ,ln ≥ 2g − 2. Now we apply

Lemma II.4. If deg Ψl1,··· ,ln is large, then the integral is changed to the integral over the

boundary classes while decreasing the degree of the total ψ-classes or κ-classes. After

applying the splitting and composition laws, the genus involved will also decrease. We

can continue this process until the original integral is represented by a linear combination

of primary correlators of genus-0 and genus-1.
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Moreover, for primary genus-1 correlators, we have deg Ψl1,··· ,ln = 0. Thus equation

(2.13) holds if and only if degαi = deg Ti j = 1, i.e, we only need to consider genus-1

correlators of type 〈P, · · · ,P〉1,n,d. �

g = 1

Getzler’s relation

Here we prove the reconstruction theorem for primary genus-1 Gromov-Witten invari-

ants for elliptic orbifold P1. Our main tool is the Getzler’s relation. In [Ge], Getzler

introduced a linear relation between codimension two cycles in H∗(M1,4,Q). Here we

briefly introduce this relation for our purpose. Consider the dual graph,

∆12,34 = eS
S

�
�

�
�

S
S2

1

4

3

This graph represents a codimension-two stratum inM1,4: A circle represents a genus-1

component, other vertices represent genus-0 components. An edge connecting two ver-

tices represents a node, a tail (or half-edge) represents a marked point on the component

of the corresponding vertex. ∆2,2 is defined to be the S 4-invariant of the codimension-two

stratum inM1,4,

∆2,2 = ∆12,34 + ∆13,24 + ∆14,23.

We denote δ2,2 = [∆2,2] the corresponding cycle in H4(M1,4,Q). Other strata are defined

similarly. For more details, see [Ge]. Here we list the corresponding unordered dual graph

for each stratum,

eδ2,3 :
��
�

HHH��
�

HHH

eδ2,4 :
��
�

HHH��
�

HHH

eδ3,4 :
��
�

HHH��
�

HHH
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δ0,3 : δ0,4 : δβ :

��
��

��
�

H
HH��

�

HHH
��
��

�
��

��
�

Z
ZZ

PPP ��
��

��
�

H
HH

HH
H

�
��

According to [Ge], Getzler’s relation is as follows:

(2.14) 12δ2,2 + 4δ2,3 − 2δ2,4 + 6δ3,4 + δ0,3 + δ0,4 − 2δβ = 0.

For genus-1 correlators, one has the following:

Lemma II.6. For X = P1
3,3,3,P

1
4,4,2,P

1
6,3,2, the Getzler relation and divisor axiom imply that

the genus-1 Gromov-Witten correlators of X can be reconstructed from genus-0 Gromov-

Witten correlators.

We consider the nonzero genus-1 correlator 〈γ1, · · · , γn〉
X
1,n,d. AsX is an elliptic orbifold

P1 here, we have deg γi ≤ 1. According to the dimension formula (2.7), the correlator is

nonzero only if every γi is P. For d > 0, the genus-1 primary correlators are nonzero only

if they are of type 〈P, · · · ,P〉X1,n,d. By the divisor axiom, we have:

〈P, · · · ,P〉X1,n,d = dn−1〈P〉X1,1,d.

Remark II.7. 〈P, · · · ,P〉X1,n,0 = 0 for n > 1.

Now, we give the proof of Lemma II.6 by reconstructing 〈P〉X1,1,d, for any d ≥ 0.

Proof. P1
3,3,3-case: We choose four insertions ∆1,2,∆1,2,∆2,1,∆3,1 ∈ H∗CR(P1

3,3,3), and we

simply denote by ∆2,2;1;1. We integrate the class Λ
P1

3,3,3
1,4,d (∆2,2;1;1) over codimension 2 strata

ofM1,4. For δ3,4, the contribution comes from four decorated dual graphs:

e ��
�

H
HH

��
�

H
HH

∆1,2

∆2,1

∆3,1

∆1,2

∆1,234 = ∆2,134 :

e ��
�

H
HH

��
�

H
HH

∆1,2

∆1,2

∆3,1

∆2,1

∆3,124 :

e ��
�

H
HH

��
�

H
HH

∆1,2

∆1,2

∆2,1

∆3,1

∆4,123 :
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Let us fix the total degree is d + 1. Then∫
[∆1,234]

Λ
P1

3,3,3
1,4,d+1(∆2,2;1;1)

=
∑

d1+d2+d3=d+1

〈P〉
P1

3,3,3
1,1,d1

ηP,1〈1,∆1,2,∆1,1〉
P1

3,3,3
0,3,d2

η∆1,1,∆1,2〈∆2,2;1;1〉
P1

3,3,3
0,4,d3

=

d+1∑
i=0

〈P〉
P1

3,3,3
1,1,i 〈∆2,2;1;1〉

P1
3,3,3

0,4,d+1−i.

Then we use the result from genus-0 recursion that

〈∆2,2;1;1〉
P1

3,3,3
0,4,0 = 0, 〈∆2,2;1;1〉

P1
3,3,3

0,4,1 =
1
3
.

Overall, we have

(2.15)
∫
δ3,4

Λ
P1

3,3,3
1,4,d+1(∆2,2;1;1) =

4
3
〈P〉

P1
3,3,3

1,1,d + 4
d−1∑
i=0

〈P〉
P1

3,3,3
1,1,i 〈∆2,2;1;1〉

P1
3,3,3

0,4,d+1−i.

Considering other strata in Getzler’s Relation, the integration over δ2,2, δ2,3 and δ2,4 will all

vanish for the following reasons:

• For δ2,2, 〈α, β, 1〉
P1

3,3,3
0,3, j = 0 for all {α, β} ⊂ ∆2,2;1;1.

• For δ2,3, by dimension reason (2.7), 〈α〉
P1

3,3,3
1,1, j = 0 for all α ∈ ∆2,2;1;1.

• For δ2,4, by string equation, 〈1, α, β,−〉
P1

3,3,3
0,4, j = 0 for all {α, β} ⊂ ∆2,2;1;1.

As the integration of Λ
P1

3,3,3
1,4,d+1(∆2,2;1;1) over δ0,3, δ0,4, δβ only give genus-0 invariants, the

Getzler’s relation implies 〈P〉
P1

3,3,3
1,1,d can be reconstructed from 〈P〉

P1
3,3,3

1,1,d′ with d′ < d and

genus-0 primary correlators.

P1
4,4,2-case: Now we choose four insertions ∆1,3,∆1,2,∆2,1,∆3,1 ∈ H∗CR(P1

4,4,2) and denote

by ∆3,2;1;1. In this case, we use genus-0 computation:

〈∆3,2;1;1〉
P1

4,4,2
0,4,0 = 0, 〈∆3,2;1;1〉

P1
4,4,2

0,4,1 =
1
4
.

Integrating Λ
P1

4,4,2
1,4,d+1(∆3,2;1;1) on the δ3,4, we have∫

δ3,4

Λ
P1

4,4,2
1,4,d+1(∆3,2;1;1) = 〈P〉

P1
4,4,2

1,1,d +

d−1∑
i=0

〈P〉
P1

4,4,2
1,1,i 〈∆3,2;1;1〉

P1
4,4,2

0,4,d+1−i.
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Again, integrations over δ2,2, δ2,3, δ2,4 are zero and over δ0,3, δ0,4, δβ only give genus-0 con-

tribution. Thus Getzler’s Relation implies 〈P〉
P1

4,4,2
1,1,d is reconstructable.

P1
6,3,2-case: Now we choose four insertions ∆1,5,∆1,2,∆2,1,∆3,1 ∈ H∗CR(P1

6,3,2) and denote

them as ∆5,2;1;1. In this case, we use genus-0 computation:

〈∆5,2;1;1〉
P1

6,3,2
0,4,0 = 0, 〈∆5,2;1;1〉

P1
6,3,2

0,4,1 =
1
6
.

Now we integrate Λ
P1

6,3,2
1,4,d+1(∆5,2;1;1) over δ3,4,∫

δ3,4

Λ
P1

6,3,2
1,4,d+1(∆5,2;1;1) =

2
3
〈P〉

P1
6,3,2

1,1,d + 4
d−1∑
i=0

〈P〉
P1

6,3,2
1,1,i 〈∆5,2;1;1〉

P1
6,3,2

0,4,d+1−i.

Other strata only give genus-0 correlators. Thus 〈P〉
P1

6,3,2
1,1,d is reconstructable. �

g = 0

To prove the genus 0 part, we first recall the WDVV equation for elliptic orbifold P1.

Set S = {1, · · · , n}, n ≥ 1, for d ≥ 1, we have:

〈γ1, γ2,δS , γ3 ? γ4〉0,n+3,d = I0(n) + I1(n) + I2(n) + I3(n)(2.16)

where |A| is the number of elements in the set A and

I0(n) =〈γ1, γ3, δS , γ2 ? γ4〉0,n+3,d + 〈γ1 ? γ3, δS , γ2, γ4〉0,n+3,d − 〈γ1 ? γ2, δS , γ3, γ4〉0,n+3,d

I1(n) =
∑
γ2�γ3

Sign(γ2, γ3)
∑

At B=S (n)
A,B,∅,i=0,d

(
〈γ1, γ3, δA, µ〉0,|A|+3,d−iη

µ,ν〈ν, δB, γ2, γ4〉0,n+3−|A|,i

)

I2(n) =
∑
γ2�γ3

Sign(γ2, γ3)
∑

At B=S (n)
0<i<d

〈γ1, γ3, δA, µ〉0,|A|+3,d−iη
µ,ν〈ν, δB, γ2, γ4〉0,n+3−|A|,i

I3(n) =
∑
γ2�γ3

Sign(γ2, γ3)
(
〈γ1, γ3, µ〉0,3,dη

µ,ν〈ν, δS , γ2, γ4〉0,n+3,0

+ 〈γ1, γ3, δS , µ〉0,n+3,0η
µ,ν · 〈ν, γ2, γ4〉0,3,d

)
Note that for d = 0, the WDVV equation is modified to be

〈γ1, γ2, δS , γ3 ? γ4〉0,n+3,0 = I1(n) + 〈γ1, γ3, δS , γ2 ? γ4〉0,n+3,0

+ 〈γ1 ? γ3, δS , γ2, γ4〉0,n+3,0 − 〈γ1 ? γ2, δS , γ3, γ4〉0,n+3,0

(2.17)
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Once we have more than two non-primitive insertions, we can choose γ1, γ2, γ3 ? γ4 to be

these, where γ4 = γi
3 for some 1 ≤ i ≤ |γ3| − 2, where |γ3| is the order of γ3. If there are

other nonprimitive insertions with different fixed points, we can choose γ1, γ2 to be these

insertions. Otherwise, we choose the smallest degree nonprimitive insertion to be γi+1
3 .

1. For P1
3,3,3, each primitive insertion has degree 1/3, each term in I0 either vanishes or

has an insertion P.

2. For P1
4,4,2, each primitive insertion has degree 1/4.

3. For P1
6,3,2, each primitive insertion has degree 1/3, or 1/6. For the 1/3 case, it is the

same as in P1
3,3,3.

Recursion for genus-0 3-point and 4-point basic correlators

In this subsection, we give an algorithm for the reconstruction of all genus-0 3-point and

4-point basic correlators. For the explicit recursion formulas of various WDVV equations

and how the recursion works, see the Appendix. First, we classify all these correlators into

six types. Here α, β, γ, ξ are all primitive elements:

1. 〈α, β j, γ, ξi+1〉0,4,d, i, j ≥ 1, supports are not the same point.

2. 〈∆1,1,∆2,1,∆3,1〉0,3,d.

3. 〈γ, γ, γ′, γ′〉0,4,d, |γ| is greatest among all primitive elements.

4. 〈α, βi, β j〉0,3,d, α , β.

5. 〈β, β, β′, β′〉0,4,d, |β| = 3 in case of P1
6,3,2 or |β| = 2.

6. 〈α, αi, α j〉0,3,d.

Now we start to reconstruct the genus-0 4-point correlators with degree 0,
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Lemma II.8. For Type 1 correlators, WDVV equation implies

(2.18) 〈α, β j, γ, ξi+1〉0,4,0 = 0.

Type 3 correlators 〈γ, γ, γ′, γ′〉0,4,0 can be reconstructed from Chen-Ruan product and

〈∆1,1,∆2,1,∆3,1〉0,3,1,

(2.19) 〈γ, γ, γ′, γ′〉0,4,0 = −|γ|−2.

Proof. For Type 1 correlator, if there are three primitive insertions, i.e. j = 1, then it is

either 〈∆3,1,∆2,1,∆2,1,∆1,4 ? ∆1,1〉
P1

2,3,6
0,4,0 , or 〈∆3,1,∆3,1,−, ξ

i ? ξ〉X0,4,0. Then applying WDVV

equation (2.17), they will vanish.

For other cases, i.e. j ≥ 2, we can assume j > i if β = ξ. According to dimension

axiom, we will always have

(2.20) degα ≥ deg γ, α , ξ.

We apply WDVV equation (2.17) for 〈α, β j, γ, ξi ? ξ〉0,4,0. On the right hand side of the

equation, the second term vanishes because α , ξ. The first term is 〈α ? β j, γ, ξi, ξ〉0,4,0, it

also vanishes. Or else we must have α = β and ( j + 1) degα < 1. However, degα ≥ deg γ,

which implies degα + deg(β j) + deg γ ≤ 1. This contradicts with dimension axiom for

nonvanishing correlators. The last term will either vanish or equal to 〈α, ξ j+1, γ, ξi〉0,4,0, we

can continue to apply (2.17) again and again, unless the second insertion is P or the last

insertion is primitive, both correlators are zero.

For Type 3 correlator 〈γ, γ, γ′, γ′〉0,4,0, let α, β be the other two primitive insertions and

we apply WDVV equation (2.16) to 〈γ, γ, γ′, γ′〉0,4,d for d = 1. The equation (2.19) follows

from divisor axiom, equation (2.12) and (2.18).

�

Now let us discuss the reconstruction for basic correlators.
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Lemma II.9. All basic correlators are reconstructable for d ≥ 1.

Proof. • For Type 1 correlators, go through the proof of Lemma II.8, take any degree

d > 0, the reconstruction follows.

• For Type 2, if d > 0, we consider 〈γ′, γ′, γ, γ, β′ ? β〉0,5,d, β , γ. As deg γ ≤ deg β,

we have γ′ ? γ′ = γ′ ? β′ = γ′ ? β = 0. Lemma II.8 implies I3(2) also vanish under

this choice. The reconstruction follows by

(2.21) 〈γ′, γ′, γ, γ〉0,4,d =
|β|

d
〈γ′, γ′, γ, γ, β′ ? β〉0,5,d =

|β|

d

(
I1(2) + I2(2)

)
.

• For Type 3 case, for d > 1, we consider 〈α, β, γ, γ ? γ′〉0,4,d, where γ has the greatest

order among all primitive elements. In this case, I0(1) and I1(1) both vanish. Thus

Lemma II.8 implies

I3(1) = −〈α, β, γ〉0,3,dη
γ,γ′〈γ′, γ, γ, γ′〉0,4,0 = |γ|−1〈α, β, γ〉0,3,d.

Thus we have

(2.22) 〈α, β, γ〉0,3,d =
|γ|

(d − 1)
I2(1).

• For Type 4 case, we can first reduce to the case of 〈α, β, βi〉0,3,d, d > 0. Now choose

γ the rest primitive element and apply (2.16) to 〈α, βi, β, γ′ ? γ〉0,4,d. Then I0(1), I1(1)

and I3(1) all vanish. Thus the reconstruction follows by

(2.23) 〈α, β, βi〉0,3,d =
|γ|

d
I2(1).

• For Type 5, for d > 0, by induction, we already know 〈α, γ, β〉0,3,d+1 and Type 1

correlators with degree d are recontructable. Now we apply (2.16) to 〈α, γ, β, β ?

β′〉0,4,d. Except for 〈α, γ, β〉0,3,1ηβ,β
′

〈β′, β, β, β′〉0,4,d, we already know all the terms in

the equality are reconstructable. This gives the recursion for 〈β′, β, β, β′〉0,4,d.
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• For Type 6, it is the same if we can reconstruct 〈α, αi, α j,P〉0,4,d. Like we did for the

basic correlators, we reduce to the case 〈P, α, α, α j,P〉0,5,d. We can choose β such

that degαi + deg β′ ≥ 1. Those terms I0(2), I1(2), I3(2) in formula (2.16) under this

choice all vanish ,

d2

|β|
〈α j, α, α〉0,3,d =〈P, α j, α, α, β ? β′〉0,5,d

=2
d−1∑
i=1

(d − i)
(
〈β, α, µ〉0,3,d−iη

µ,ν〈ν, α, β′, α j〉0,4,i

− 〈α j, α, µ〉0,3,d−iη
µ,ν〈ν, α, β, β′〉0,4,i

)
.

(2.24)

�

Genus-0 resconstruction

Now Theorem II.3 follows from the next lemma.

Lemma II.10. The WDVV equation and the divisor equation imply that all the genus-0

correlators for P1
3,3,3,P

1
4,4,2,P

1
6,3,2 are uniquely determined by the pairing, the genus-0 3-

point and 4-point correlators.

Proof. Let us denote by P the maximum complex degree of any primitive class, and by

Q the maximum complex degree of any homogeneous non-divisor class. Similarly, as we

did for FJRW theory, we can use WDVV, plus the string equation and divisor equation to

reconstruct genus-0 primary correlators from the Chen-Ruan product structural constants

and basic correlators.

Now let 〈γ1, · · · , γn〉
X
0,n,d be a basic correlator such that the first n − 2 insertions are

primitive. Thus, deg γi ≤ P for i ≤ n − 2 and deg γn−1, deg γn ≤ Q. By the dimension

counting,

n − 2 ≤ (n − 2)P + 2Q.
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It is easy to obtain the data P, Q for each orbifold:

P1
3,3,3 : P =

1
3
,Q =

2
3
. P1

4,4,2 : P =
1
2
,Q =

3
4
.P1

6,3,2 : P =
1
2
,Q =

5
6
.

Thus we have n = 4, for P1
3,3,3, n = 5 for P1

4,4,2 and P1
6,3,2. We list all the basic genus-0

five-point correlators. Since some of the orbifold points are symmetric, the nonvanishing

correlators are same as 〈∆3,1,∆3,1,∆2,1,∆1,5,∆1,5〉
P1

6,3,2
0,5,d , or 〈∆3,1,∆3,1,∆3,1, α, β〉

X

0,5,d, where

(α, β) =


(∆1,3,∆1,3), (∆1,3,∆2,3), X = P1

4,4,2;

(∆1,5,∆1,4), (∆1,5,∆2,2), X = P1
6,3,2.

It follows by applying WDVV (2.16), that all the correlators above can be reconstructed

from genus-0 correlators with less than five insertions by choosing some γi, i = 1, 2, 3, 4.

For example, for 〈∆3,1,∆3,1,∆3,1,∆1,3,∆2,3〉
P1

4,4,2
0,5,d , we can choose γ1 = ∆1,2, γ2 = ∆1,1, γ3 =

∆2,3, γ4 = ∆3,1. �

Fourier series of basic correlators

Let us conclude this subsection with a computational observation. The non-zero, genus-

0, 3-point correlators can be expanded as Fourier series. Let us list the first few terms of

their Fourier series. For P1
3,3,3, a set of Fourier series are

〈∆1,1,∆2,1,∆3,1〉0,3 = q + q4 + 2q7 + 2q13 + · · ·

〈∆1,1,∆1,1,∆1,1〉0,3 =
1
3

+ 2q3 + 2q9 + 2q12 + · · · ,

For P1
4,4,2, a set of Fourier series are

〈∆1,1,∆2,1,∆3,1〉0,3 = q + 2q5 + q9 + 2q13 + · · ·

〈∆1,1,∆1,1,∆1,2〉0,3 =
1
4

+ q4 + q8 + q16 + · · ·

〈∆1,1,∆1,1,∆2,2〉0,3 = q2 + 2q10 + q18 + · · · ,
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For P1
6,3,2, a set of Fourier series are

〈∆1,1,∆1,1,∆1,4〉0,3 =
1
6

+ q6 + q18 + q24 + · · ·

〈∆1,1,∆1,2,∆1,3〉0,3 =
1
6

+ q12 + · · ·

〈∆1,1,∆2,1,∆3,1〉0,3 = q + 2q7 + 2q13 + 2q19 + · · ·

〈∆1,1,∆1,1,∆2,2〉0,3 = q2 + q8 + 2q14 + · · ·

〈∆1,1,∆1,2,∆3,1〉0,3 = q3 + q9 + 2q21 + · · ·

〈∆1,1,∆2,1,∆1,3〉0,3 = q4 + q16 + 2q28 + · · ·

After the discussion of modularity properties in Chapterr VIII, we can easily see in

each case, the listed Fourier series forms a basis of the vector space of modular forms of

weight 1, with the modular group Γ(3),Γ(4) and Γ(6) in respective cases.

2.5 Convergence

Let S be the set of generators of H∗CR(X) introduced in (2.11). We define

(2.25) IGW
g,n,d := max

αi∈S

∣∣∣∣〈α1, · · · , αn〉g,n,d

∣∣∣∣.
Here is the main estimation in this section. The proof will be given in Chapter IX.

Theorem II.11. Let us assume αi ∈ S , and αi , P for li = 0. Let us denote χ := 2g−2+n,

L =
∑

i li. Then for χ ≥ 0, we have:

(2.26)
∣∣∣∣〈τl1(α1), · · · , τln(αn)〉g,n,d

∣∣∣∣ ≤


dχ−2C(χ)χ+(g+L+1)d−2, if d > 0.

C(χ)χ−1, if d = 0.

Here C(χ) is a sufficient large constant which depends increasingly only on χ.

Now we prove the convergence of the Gromov-Witten part in Theorem I.4.
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Proof. For t = sP, recall the Divisor equation for the ancestor correlators (2.8), we have

the estimation:∣∣∣∣〈〈τl1(α1), · · · , τln(αn)〉〉g,n(sP)
∣∣∣∣

=
∣∣∣∣∑

d≥0

∑
k≥0

1
k!
〈τl1(α1), · · · , τln(αn), sP, · · · , sP〉g,n+k,d

∣∣∣∣
≤

∣∣∣∣〈τl1(α1), · · · , τln(αn)〉g,n,0
∣∣∣∣ +

∣∣∣∣∑
d≥1

∑
k≥0

1
k!
〈τl1(α1), · · · , τln(αn)〉g,n,d skdk

∣∣∣∣
≤

∑
d≥0

∣∣∣∣es
∣∣∣∣ddχ−2C(χ)χ+(g+L+1)d−2.

This is convergent for
∣∣∣∣es C(χ)g+L+1

∣∣∣∣ ≤ 1/2.

Now we consider t = sP+
∑

i≥0 tiφi, where φi ranges over the homogeneous basis other

than P. The dimension formula (2.7) implies the function 〈〈τl1(α1), · · · , τln(αn)〉〉g,n(t) is

a polynomial of ti with coefficients are ancestor functions valued at sP. As the number

of terms of the monomials in this polynomial depends only on the genus g and number

of marked points n. It follows that for g, n fixed, 〈〈τl1(α1), · · · , τln(αn)〉〉g,n(t) is convergent

near Re(s) � 0, ti = 0 for i ≥ 0. �



CHAPTER III

Fan-Jarvis-Ruan-Witten theory

3.1 Introduction

For any non-degenerate, quasi-homogeneous polynomial W with N variables, Fan,

Jarvis and Ruan, following a suggestion of Witten, introduced a family of moduli spaces

and constructed a virtual fundamental cycle. The latter gives rise to a cohomological field

theory, which is now called the FJRW theory. Let us briefly review the FJRW theory only

for the group GW . We refer to [FJR2] for general cases and more details.

Recall the group of diagonal symmetries GW of the polynomial W is

GW :=
{
(λ1, . . . , λN) ∈ (C∗)N

∣∣∣∣ W(λ1 X1, . . . , λN XN) = W(X1, . . . , XN)
}
.

The FJRW state space HW,GW (or HW for short) is the direct sum of all GW-invariant

relative cohomology:

(3.1) HW :=
⊕
h∈GW

Hh, Hh := H∗(Ch; W∞
h ;C)GW .

Here Ch(h ∈ GW) is the h-invariant subspace of CN , Wh is the restriction of W to Ch, ReWh

is the real part of Wh, and W∞
h = (ReWh)−1(M,∞), for some M � 0.

The vector space Hh(h ∈ GW) has a natural grading given by the degree of the relative

cohomology classes. However, for the purposes of the FJRW theory we need a modifi-

cation of the standard grading. Namely, for a given homogeneous element α ∈ Hh we

40
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define

degW α := degα +

N∑
i=1

(Θh
i − qi),

where deg α is the cohomology degree of α and the numbers Θh
i ∈ [0, 1) ∩Q are such that

h =
(
e[Θh

1], . . . , e[Θh
N]

)
∈ (C∗)N ,

where for y ∈ R, we put e[y] := exp(2π
√
−1y). Clearly the numbers Θh

i are uniquely

determined from h. For any α ∈ Hh, we define

(3.2) Θ(α) :=
(
e[Θh

1], . . . , e[Θh
N]

)
.

The elements in Hh are called narrow (resp. broad) and Hh is called a narrow sector (resp.

broad sector) if Ch = {0} (resp. Ch , {0}). For invertible simple elliptic singularities, the

space H∗(Ch; W∞
h ;Q) is one-dimensional for all narrow sectors Hh. We always choose a

generator α ∈ Hh such that

(3.3) α := 1 ∈ H∗(Ch; W∞
h ;Q).

In general, in order to describe the broad sectors, we have to represent the relative coho-

mology classes by differential forms; then there is an identification

(3.4)
(
HW,G, 〈 , 〉

)
≡

⊕
h∈G

(
QWhωh

)G ,Res

 ,
where ωh is the restriction of the standard volume form to the fixed locus Ch, Res is the

residue pairing, and 〈 , 〉 is a non-degenerate pairing induced from the intersection of

relative homology cycles. There exists a basis of the narrow sectors such that the pairing

〈v1, v2〉, vi ∈ Hhi , is 1 if h1h2 = 1 and 0 otherwise. The vectors in the broad sectors are

orthogonal to the vectors in the narrow sectors. In order to compute the pairing on the

broad sectors one needs to use the identification (3.4) and compute an appropriate residue

pairing. In our case however, we can express all invariants using narrow sectors only. So a
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more detailed description of the broad sectors is not needed. We refer to [FJR2] for more

details.

W-spin structure

Let (W,G) be an admissible pair. A W-spin structure on a genus-g stable curve C with

n marked orbifold points (z1, . . . , zn) is a collection of N (N is the number of variables in

W) orbifold line bundles L1, . . . ,LN on C and isomorphisms

ψa : Ma(L1, . . . ,LN)→ ωC(−z1 − · · · − zn),

where ωC is the dualizing sheaf on C and Ma are the homogeneous monomials whose

sum is W. The orbifold line bundles have a monodromy near each marked point zi which

determines an element hi ∈ G. In particular, if Hhi is a narrow (resp. broad) sector we

say that the marked point is narrow (resp. broad). For fixed g, n, and h1, . . . , hn ∈ G, Fan-

Jarvis-Ruan (see [FJR2]) constructed the compact moduli space Wg,n(h1, · · · , hn) of nodal

stable curves equipped with a W-spin structure. In this compactification the line bundles

(L1, . . . ,LN) are allowed to be orbifold at the nodes in such a way that the monodromy

around each node is an element of G as well. The moduli space has a decomposition into a

disjoint union of moduli subspaces Wg,n(Γh1,...,hn) consisting of W-spin structures on curves

C whose dual graph is Γh1,...,hn . Recall that the dual graph of a nodal curve C is a graph

whose vertices are the irreducible components of C, edges are the nodes, and tails are

the marked points. The latter are decorated by elements hi ∈ G, so the tails of our graphs

are also colored respectively. We omit the subscript (h1, . . . , hn) whenever the decoration is

understood from the context. The connected component Wg,n(Γh1,...,hn) is naturally stratified

by fixing the monodromy transformations around the nodes, i.e., the strata are in one-to-

one correspondence with the colorings of the edges of the dual graph Γh1,··· ,hn .

Fan–Jarvis–Ruan constructed a virtual fundamental cycle
[
Wg,n(Γ)

]vir
of Wg,n(Γ) (see
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[FJR2]), which gives rise to a CohFT

ΛW,G
g,n :

(
HW,G

)⊗n
−→ H∗(Mg,n).

For brevity, we put ΛW
g,n for Λ

W,GW
g,n .

Axioms for simple elliptic singularities

Let us list some general properties of the FJRW correlators of a simple elliptic singu-

larity W. Here N = 3. See [FJR2, FJR3] for the proofs.

• (Selection rule) If the correlator 〈τk1(α1), . . . , τkn(αn)〉Wg,n is non-zero; then

(3.5)
n∑

i=1

degW(αi) +

n∑
i=1

ki = 2g − 2 + n.

• (Line bundle criterion). If the moduli space Wg,n(h1, . . . , hn) is non-empty, then the

degree of the desingularized line bundle |L j| is an integer, i.e.

(3.6) deg(|L j|) = q j(2g − 2 + n) −
n∑

k=1

Θ
hk
j ∈ Z.

• (Index zero). If dim Wg,n(Γh1,...,hn) = 0 and all the decorations on marked points are

narrow. If π∗
(⊕3

i=1Li

)
and R1π∗

(⊕3
i=1Li

)
are both vector bundles of the same rank.

We denote the Witten map Dwit: (X1, · · · , XN) 7→ ( ∂W
∂X1
, · · · , ∂W

∂XN
), then

(3.7)
[
W (Γh1,...,hn)

]vir
= deg(Dwit)

[
W (Γh1,...,hn)

]
.

• (Concavity) Suppose that all the decorations on marked points are narrow, π is the

morphism from the universal curve to Wg,n(h1, . . . , hn) and π∗
(⊕3

i=1Li

)
= 0 holds;

then

(3.8) [Wg,n(h1, . . . , hn)]vir = ctop

−R1π∗

3⊕
i=1

Li

 ∩ [Wg,n(h1, . . . , hn)].
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Orbifold Grothendieck-Riemann-Roch

Let αi = 1 ∈ Hhi , 1 ≤ i ≤ 4 be the generators (cf. (3.3)). The concavity formula (3.8)

implies that ΛW
0,4(α1, . . . , α4) ∈ H∗(M0,4,C). According to the orbifold Grothendieck-

Riemann-Roch formula (see [Chi], Theorem 1.1.1) ΛW
0,4(α1, . . . , α4) is

(3.9)
3∑

i=1

B2(qi)
2

κ1 −

4∑
j=1

B2(Θh j

i )
2

ψ j +
∑

Γ∈Γ0,4,W (h1,...,h4)

B2(ΘhΓ

i )
2

[Γ]

 ,
where B2 is the second Bernoulli polynomial

B2(y) = y2 − y +
1
6
,

[Γ] is the boundary class on Mg,n corresponding to the graph Γ, and Γ0,4,W(h1, . . . , h4) is

the set of graphs with one edge decorated by GWT . The graph Γ has 4 tails decorated by

h1, h2, h3, h4 and its edge is decorated by hΓ.Due to (3.6), the moduli space W0,4(h1, . . . , h4)

is non-empty only if hΓ satisfies an appropriate constraint involving h1, . . . , h4. It is easy

to see that the formula does not depend on the choice of hΓ.

3.2 Simple elliptic singularities and their FJRW rings

Let WT be the Berglund-Hübsch-Krawitz mirror of W, see Chapter V. From now on,

we will consider W as in Table (1.1). Then up to symmetry, we can still consider WT as

an element in Table (1.1). However, W and WT may belong to different column. We will

consider the FJRW theory for (WT ,GWT ) and the Saito-Givental theory for W.

Since HWT := HWT ,GWT is the state space of a CohFT, it has a Frobenius algebra struc-

ture, where the multiplication • is defined as follows:

〈α1 • α2, α3〉
WT

= 〈α1, α2, α3〉
WT

0,3 .

For ISES the product • (when G = GWT is maximal) was computed by M. Krawitz (see

[Kr]). More precisely, he constructed a basis of HWT , which gives rise to an isomorphism

between the Frobenius algebra HWT and the Jacobi algebra QW .
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Now we give an explicit description of the generators. For a general description of the

ring morphism HWT → QW , we refer the interested reader to [Kr]. Since some of our

ISESs are equivalent to 2-variable singularities of chain type or of loop type, we also refer

to [FS] and [Ac] for those particular examples.

For every ISES WT , there exists a vector n = (n1, n2, n3) ∈ Z3 such that

GWT � Z/n1Z × Z/n2Z × Z/n3Z.

In particular, we can identify the vector n with the group GWT . We assume n1 ≥ n2 ≥ n3

and omit those ni = 1 in n. For example, if WT = X3
1 + X1X4

2 + X2
3 , then

GWT =

{
(λ1, λ2, λ3)

∣∣∣∣λ3
1 = λ1λ

4
2 = λ2

2 = 1
}
� (12, 2).

Let h = (i, j, k) ∈ GWT . If

1 ≤ i < n1, 1 ≤ j < n2, 1 ≤ k < n3,

then Hh is a one-dimensional space of narrow sectors. Let

ei, j,k := 1 ∈ H0(Ch; W∞
h ;Q).

Example III.1. We compute the FJRW ring for loop singularity WT , with W ∈ E(1,1)
6 .

WT = X2
1 X3 + X1X2

2 + X2X2
3 , GWT =

{
ei =

(
e[

i
9

], e[
4i
9

], e[−
2i
9

]
)
, i = 1, . . . , 8

}
� Z/8Z.

All nonzero 3-point genus-0 correlators are
〈e1, e1, e1〉0,3 = 〈e4, e4, e4〉0,3 = 〈e7, e7, e7〉0,3 = −2;

〈e3, ei, e9−i〉0,3 = 〈e1, e4, e7〉0,3 = 1.

The first row uses Index Zero Axiom (3.7) and the second row uses Concavity Axiom

(3.8). It is easy to see e3 is the identity element and the ring relations are

2 e1 • e4 + e2
7 = 2 e4 • e7 + e2

1 = 2 e7 • e1 + e2
4 = 0.
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Thus we obtain a ring isomorphism between HWT and QW :

ρ1 = e4 7→ X1, ρ2 = e1 7→ X2, ρ3 = e7 7→ X3.

For all 13 types of ISESs with a maximal admissible group, there is a unique narrow

sector ρ−1, with degWT (ρ−1) = 1 and

Θ(ρ−1) :=
(
1 − qT

1 , 1 − qT
2 , 1 − qT

3

)
.

There are 13 types of ISESs, but only for 9 of them do not have broad generators. The

narrow sectors have the advantage that we can use the powerful concavity axiom (3.8).

Combined with the remaining properties of the correlators and the WDVV equations this

allows us to reconstruct all genus-0 FJRW invariants. According to the reconstruction

theorem in [KS], we can also reconstruct the higher genus FJRW invariants, i.e., the total

ancestor potential function A WT

FJRW .

In the remaining 4 cases, we can offset the complication of having broad generators

only for WT = X2
1 + X1X2

2 + X2X3
3 . The maximal abelian group is of order 12. Its FJRW

vector space has eight generators:

e1, e3, e5, e7, e9, e11,R4,R8.

Here R4 and R8 are the cohomology classes represented by the following forms:

Rh = dX1 ∧ dX2 ∈ H2(Ch; W∞
h ;Q), h = 4, 8 ∈ GWT .

Note that R4 and R8 are GWT -invariant elements in QWhωh where h ∈ GWT acts on each

factor Xi, such that dXi is a divisor of ωh, as multiplication by e[qT
i ]. Although one of the

generators (R4) is broad, we have enough WDVV equations to reconstruct the correlators

containing broad sectors from correlators with only narrow sectors and apply the concavity

axioms.
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For the other three types of ISESs, we can still compute some genus-0 4-point cor-

relators with broad sectors, but we could not reconstruct the complete theory only from

correlators with narrow insertions. In other words, for 10 out of the 13 ISESs we can com-

pute all FJRW invariants. We call them good cases. These cases and the corresponding

generators ρi of the FJRW ring HWT ,GWT are listed in Table 3.1, 3.2, 3.3 below. Here if

W ∈ E(1,1)
µ , then we say WT ∈

(
E(1,1)
µ

)T
,

Table 3.1: Generators of the FJRW ring in the case
(
E(1,1)

6

)T

WT GWT Θ(ei, j,k) ρ1 ρ2 ρ3 ρ−1

X3
1 + X3

2 + X3
3 (3, 3, 3) e[ i

3 ], e[ j
3 ], e[ k

3 ] e2,1,1 e1,2,1 e1,1,2 e2,2,2 = ρ1ρ2ρ3

X2
1 X3 + X1X2

2 + X2X2
3 8 e[ i

9 ], e[ 4i
9 ], e[− 2i

9 ] e4 e1 e7 e6 = ρ1ρ2ρ3

X2
1 + X1X2

2 + X2X3
3 12 e[ i

2 ], e[− i
4 ], e[ i

12 ] R4 e1 e7 e9 = ρ2ρ
2
3

Table 3.2: Generators of the FJRW ring in the case
(
E(1,1)

7

)T

WT GWT Θ(ei, j,k) ρ1 ρ2 ρ−1

X4
1 + X4

2 + X2
3 (4, 4, 2) e[ i

4 ], e[ j
4 ], e[ 1

2 ] e2,1 e1,2 e2,2 = ρ2
1ρ

2
2

X3
1 X2 + X1X3

2 + X2
3 (8, 2) e[− 3i

8 ], e[ i
8 ], e[ 1

2 ] e1 e5 e6 = ρ2
1ρ

2
2

X3
1 + X1X4

2 + X2
3 (12, 2) e[−i

3 ], e[ i
12 ], e[ 1

2 ] e1 e5 e10 = ρ1ρ
3
2

X3
1 + X1X2

2 + X2X2
3 12 e[ i

3 ], e[− i
6 ], e[ i

12 ] e5 e1 e8 = − 1
2ρ

3
1ρ2

Table 3.3: Generators of the FJRW ring in the case
(
E1,1

8

)T

WT GWT Θ(ei, j,k) ρ1 ρ2 ρ−1

X6
1 + X3

2 + X2
3 (6, 3, 2) e[ i

6 ], e[ j
3 ], e[ 1

2 ] e2,1 e1,2 e5,2 = ρ4
1ρ2

X3
1 + X1X2

2 + X3
3 (6, 3) e[−i

3 ], e[ i
6 ], e[ j

3 ] e1,1 e2,2 e4,2 = ρ1ρ2ρ3

X4
1 + X1X3

2 + X2
3 (12, 2) e[−i

4 ], e[ i
12 ], e[ 1

2 ] e2 e7 e9 = ρ2
1ρ

2
2

3.3 Reconstruction

For an ISES WT , its total ancestor potential AWT
can be reconstructed from genus-

0 primary correlators. The idea is same as what we did for Gromov-Witten theory in

the previous chapter. We replace the dimension argument in Gromov-Witten theory by
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Selection rule. Here we do not have divisor axiom. However, it is not necessary since

we only need the divisor equation to reduce the degree of Gromov-Witten correlators and

there is no degree variable here in FJRW theory.

We say that a homogeneous element α ∈ HWT is primitive if it cannot be decomposed

as a product a′ • a′′ of two elements a′ and a′′ of non-zero degrees. We also say that a

genus-0 correlator is a basic correlator if there are at most two non-primitive insertions,

neither of which is the identity.

Over all, we have the following statement.

Lemma III.2. For an invertible simple elliptic singularity WT the total ancestor FJRW po-

tential of (WT ,GWT ) is reconstructed from the pairing, the FJRW ring structure constants

and the 4-point basic correlators with one of the insertions being a top degree element.

Now let us prove the reconstruction theorem of all genera for the three types of singu-

larities paired with GW . We again use g-reduction Lemma II.4 for higher genus reconstruc-

tion. We use the following notation as in [KS] and consider their transpose singularity for

FJRW theory. 

P8 = X3
1 + X3

2 + X3
3 ∈ E(1,1)

6 ,

X9 = X3
1 X2 + X2

2 X3 + X2
3 ∈ E(1,1)

7 ,

J10 = X3
1 X2 + X2

2 + X3
3 ∈ E(1,1)

8 .

For simplicity, we first state the result for W = P8, XT
9 , J

T
10. It can be easily general-

ized to all other cases. We make the following changes on the notations. For P8, we let

exi−1y j−1zk−1 = ei, j,k. For JT
10, we let e6 j−6+i = ei, j.

Lemma III.3. For the three types of elliptic singularities W = P8, XT
9 , J

T
10, the correlator

〈τl1(α1), · · · , τln(αn)〉W,Gg,n in FJRW theory is uniquely reconstructed by tautological relations
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(WDVV-equation, Getzler’s relation and g-reduction) from genus-0 primary correlators.

Proof. As for these three elliptic singularities, the central charge ĉW = 1, thus the result

easily follows from Theorem III.4 here and Theorem 6.2.1 in [FJR2]. �

g = 1

In this subsection, we show that the genus-1 primary correlators can be reconstructed

from genus-0 primary correlators. By the selection rule (3.5), the nonvanishing genus-1

primary correlators must be of the form 〈ρ−1, · · · , ρ−1〉1,n, where ρ−1 = exyz, e8 and e10,

respectively in the P8, XT
9 and JT

10 cases.

Theorem III.4. For all simple elliptic singularites with maximal admissible group, the

genus-1 FJRW correlators can be reconstructed from genus-0 FJRW correlators by the

Getzler relation.

Proof. P8-case:

In this case, we need to reconstruct 〈exyz, · · · , exyz〉
P8
1,n, n ≥ 2. We have the forgetful map

π4,n−2 :M1,n+2 →M1,4. Let S = {1, · · · , n − 2}. Thus

π−1
4,n−2(∆12,34) =

∑
A∪ B∪C=S

∆12A,B,C34.

Now we choose n + 2 insertions: the first four are ex, eyz, ey, exz, the others are exyz. Inte-

grating the class Λ
P8
1,n+2(ex, eyz, ey, exz, exyz, · · · , exyz) on π−1

4,n−2([∆12,34]), we have:∫
π−1

4,n−2([∆12,34])
Λ

P8
1,n+2(ex, eyz, ey, exz, exyz, · · · , exyz)

=

∫
[∆12,S ,34]

Λ
P8
1,n+2(ex, eyz, ey, exz, exyz, · · · , exyz)

= 〈ex, eyz, 1〉
P8
0,3η

1,exyz〈exyz, · · · , exyz〉
P8
1,nη

exyz,1〈1, ey, exz〉
P8
0,3

= 〈exyz, · · · , exyz〉
P8
1,n.

The second equality uses the Splitting Axiom. The first equality is a consequence of

the Selection Rule (3.5) and the String equation. The Selection rule requires that each
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insertion for a non-zero genus-1 primary correlator is exyz and the String Equation implies

that the genus-0 primary correlator with more than four insertions will vanish if there is

one insertion the identity element. Thus the non-zero contribution partition should be

B = S , and A = C = ∅. The corresponding decorated dual graph for π−1
4,n−2(∆12,34) is

∆12,S ,34(ex, eyz, ey, exz, exyz, · · · , exyz) = eS
S

�
�

�
�

S
S

S
S
�
�

ex

eyz

ey

exz

exyz · · · exyz
· · ·

Other decorated dual graphs are obtained similarly. As δ2,2 = [∆2,2] is the S 4-invariant, we

integrate over each stratum and finally get

(3.10)
∫
π−1

4,n−2(δ2,2)
Λ

P8
1,n+2(ex, eyz, ey, exz, exyz, · · · , exyz) = 3〈exyz, · · · , exyz〉

P8
1,n.

We observe that only δ2,3 can contain at most n insertions for the genus-1 component.

However, one of the insertions is decorated with an element from the first four insertions.

Thus the integration vanishes according to the selection rule. On the other hand, when

we integrate the same class on other dimension two strata in Getzler’s relation (2.14),

all the genus-1 correlators will have at most n − 1 insertions. Thus Getzler’s relation

implies 〈exyz, · · · , exyz〉
P8
1,n (n ≥ 2) can be reconstructed from genus-1 correlators with fewer

insertions and other genus-0 correlators.

Now we consider the integration of the class Λ
P8
1,4(ex, ex, ex, exyz) on those codimension

two strata ofM1,4. We can discuss similarly as above. The integration on δ2,2, δ2,3, δ2,4 will

all vanish. However,∫
[∆1,234]

Λ
P8
1,4(ex, ex, ex, exyz) = 〈exyz〉

P8
1,1η

exyz,1〈e1, ex, eyz〉
P8
0,3η

eyz,ex〈ex, ex, ex, exyz〉
P8
0,4

=
1
3
〈exyz〉

P8
1,1.

Here we use the fact 〈ex, ex, ex, exyz〉
P8
0,4 = 1

3 , will be computed in Lemma III.10. Overall,∫
δ3,4

Λ
P8
1,4(ex, ex, ex, exyz) =

4
3
〈exyz〉

P8
1,1.
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Now applying the Getzler’s relation again, other contributions are of genus-0, and 〈exyz〉
P8
1,1

can be reconstructed from genus-0 primary correlators.

XT
9 -case:

For n ≥ 2, we choose n + 2 insertions: the first four are e1, e11, e5, e7, the others are e8.

The nonzero contribution of ∆12,34 comes from the following decorated dual graph:

eS
S

�
�

�
�

S
S

S
S
�
�

e1

e11

e5

e7

e8 · · · e8
· · ·

and

(3.11)
∫
π−1

4,n−2(δ2,2)
Λ

XT
9

1,n+2(e1, e11, e5, e7, e8, · · · , e8) = 3〈e8, · · · , e8〉
XT

9
1,n.

The integrations of Λ
XT

9
1,n+2(e1, e11, e5, e7, e8, · · · , e8) on other strata in Getzler’s relation only

produce genus-1 correlators with lower insertions and genus-0 correlators.

For n = 1, we integrate Λ
XT

9
1,4(e1, e5, e7, e7) on the Getzler’s relation. It vanishes on strata

with genus-1 component except for δ3,4. We have∫
δ3,4

Λ
XT

9
1,4(e1, e5, e7, e7) = −

2
3
〈e8〉

XT
9

1,1.

Thus reconstruction of the genus-1 primary correlators follows.

JT
10-case:

For n ≥ 2, we integrate the class Λ
JT

10
1,n+2(e1, e11, e8, e4, e10, · · · , e10) over the Getzler’s

relation. The non-zero contribution of integrating over δ2,2 comes from three decorated

dual graphs. One of them is

eS
S

�
�

�
�

S
S

S
S
�
�

e1

e11

e8

e4

e10 · · · e10
· · ·
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Overall, we have

(3.12)
∫
π−1

4,n−2(δ2,2)
Λ

JT
10

1,n+2(e1, e11, e8, e4, e10, · · · , e10) = 3〈e10, · · · , e10〉
JT

10
1,n .

Then integrations of Λ
JT

10
1,n+2(e1, e11, e8, e4, e10, · · · , e10) on other strata in Getzler’s relation

only produce genus-1 correlators with lower insertions and genus-0 correlators. Thus the

reconstruction follows for n ≥ 2.

For n = 1, we integrate the class Λ
JT

10
1,4(e8, e8, e8, e10). The unique genus-1 correlators

contribution comes from δ3,4. We have∫
δ3,4

Λ
JT

10
1,4(e8, e8, e8, e10) =

4
3
〈e10〉

JT
10

1,1 .

All the other contributions are of genus-0 correlators. Thus the reconstruction holds. �

g = 0

In genus-0, both FJRW theory and Saito theory are well-defined for t = 0. The ancestor

correlators can obviously be expressed by ordinary correlators with t = 0.

Proposition III.5. Using WDVV equations, all genus-0 primary correlators of FJRW the-

ory for the elliptic singularities P8, XT
9 , J

T
10 are uniquely determined by the pairing, the 3-

point correlators, and 〈ex, ex, ex, exyz〉
P8
0 , 〈ex, ey, ez, exyz〉

P8
0 , 〈e1, e5, e7, e7〉

XT
9

0 , 〈e1, e8, e5, e10〉
JT

10
0 ,

〈e8, e8, e8, e10〉
JT

10
0 , 〈e1, e1, e4, e10〉

JT
10

0 respectively.

We first introduce some useful concepts.

Definition III.6. We call a homogeneous element γ primitive if it cannot be written as

γ = γ1 ? γ2 for degW γ1 and degW γ2 nonzero.

Definition III.7. We call a genus-0 primary correlator a basic correlator if there are at

most two non-primitive insertions, neither of which are 1.

Our general scheme is following recursion formula from the WDVV equation.
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Lemma III.8. We can reconstruct genus-0 primary correlators of FJRW theory for the

three cases by basic correlators with at most four marked points.

Proof. We recall the WDVV equation for the FJRW invariant,

〈γ1, γ2, δS , γ3 ? γ4〉0,n+3 =I(n) − 〈γ1 ? γ2, δS , γ3, γ4〉0,n+3

+ 〈γ1 ? γ3, δS , γ2, γ4〉0,n+3 + 〈γ1, γ3, δS , γ2 ? γ4〉0,n+3.

(3.13)

where S = S (n) := {1, · · · , n}, δA := αA1 , · · · , αA|A| and A = {A1, · · · , A|A|},

I(n) =
∑
γ2�γ3

∑
At B=S
A,B,∅

Sign(γ2, γ3)〈γ1, γ3, δA, µ〉0,|A|+3η
µ,ν〈ν, δB, γ2, γ4〉0,n+3−|A|.

∑
γ2�γ3

means exchange γ2, γ3, and sum up. Sign(γ2, γ3) = 1,Sign(γ3, γ2) = −1. Here

we also use the Einstein summation convention for µ, ν. According to [FJR2] Lemma

6.2.6 and Lemma 6.2.8, using the above WDVV equation, all genus-0 primary correlators

can be reconstructed uniquely from basic correlators. For all the three singularities listed

above, the selection rule (3.5) implies the number of marked points for a basic correlator

〈α1, · · · , αk〉0,k should satisfy

k − 2 =

k∑
i=1

degW αi ≤ (k − 2)P + 2.

where for the singularity W, P is the maximum complex degree for the corresponding

FJRW-primitive class. We can easily compute P = 1/3 for P8, JT
10, and P = 1/4 for XT

9 .

Thus, for the XT
9 case, k = 4. For the other two cases, k = 5. We list all the basic 5-

point correlators. Up to symmetry, they are 〈ex, ex, ex, exyz, exyz〉
P8
0,5, 〈ex, ex, ey, exyz, exyz〉

P8
0,5,

〈ex, ey, ez, exyz, exyz〉
P8
0,5 and 〈e8, e8, e8, e10, e10〉

JT
10

0,5 .

Now we apply the WDVV equation (3.13) to 〈ex, ex, ex, exyz, exyz〉
P8
0,5. We choose γ1 =

ex, γ2 = exyz, γ3 = exz, γ4 = ey, δ1 = δ2 = ex, then ex ? exyz = ex ? exz = exyz ? ey = 0, and

the reconstruction follows. The other three cases are reconstructed similarly. �

Now we give the proof of Proposition III.5,
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Proof. We classify all genus-0 4-point basic primary correlators.

For P8 case: We list all the possible non-vanishing basic 4-point correlators up to

symmetry. They are:

1. 〈ex, ex, ex, exyz〉
P8
0 , 〈ex, ex, exy, exz〉

P8
0 ;

2. 〈ex, ey, ez, exyz〉
P8
0 , 〈ex, ex, eyz, eyz〉

P8
0 , 〈ex, ey, exz, eyz〉

P8
0 ;

3. 〈ex, ex, ey, exyz〉
P8
0 , 〈ex, ey, exz, exz〉

P8
0 , 〈ex, ey, exy, exz〉

P8
0 ;

4. 〈ex, ex, exy, exy〉
P8
0 , 〈ex, ey, exy, exy〉

P8
0 .

Applying the WDVV equation (3.13) over and over again, we can show that all the corre-

lators can be expressed as the scalar multiples of the first one in every row. For example,

〈ex, ex, exy, exz〉
P8
0 = 〈ex, ex, ex ? ey, exz〉

P8
0 = 〈ex, ex, ex, ey ? exz〉

P8
0 .

Other cases are similar and we leave them to readers as an exercise. Moreover, the scalar

is determined by 3-point correlators which are the initial conditions of our reconstruction.

Furthermore, we have vanishing results for the last two rows. For example, as ex ? exy =

ex ? ex = exy ? ey = 0, WDVV equation (3.13) implies

〈ex, ex, exy, ex ? ey〉
P8
0 = 0.

Thus we only need to compute 〈ex, ex, ex, exyz〉
P8
0 , and 〈ex, ey, ez, exyz〉

P8
0 .

Remark III.9. The above vanishing results can also be obtained by the line bundle criterion

(3.6). The same applies to JT
10 case for 〈e1, e8, e5, e10〉

JT
10

0 = 0. However, there is no such

criterion in the B-model. Here, we stick with the WDVV equation which applies for both

the A-model and the B-model.

XT
9 -case: There are 18 basic 4-point correlators. Using the WDVV equation,

(3.14) 〈e1, α, β, e5 ? γ〉
XT

9
0 + 〈e1 ? α, β, e5, γ〉

XT
9

0 = 〈e1, γ, β, e5 ? α〉
XT

9
0 + 〈e1 ? γ, β, e5, α〉

XT
9

0 ,
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(3.15) 〈e5, α, β, e1 ? ξ〉
XT

9
0 + 〈e5 ? α, β, e1, ξ〉

XT
9

0 = 〈e5, ξ, β, e1 ? α〉
XT

9
0 + 〈e5 ? ξ, β, e1, α〉

XT
9

0 .

We can choose as follows:

• α = e2, e10, xe0, β = e1, e5, γ = e7, ξ = e11.

• α = e8, β = e1 or e5, γ = e5, ξ = e1.

• α = e11, β = e1, γ = e10 in case of (3.14).

There are 17 equations among the 18 basic 4-point correlators. For example, the last

choice gives

〈e1, e11, e1, e11〉
XT

9
0 + 〈e8, e1, e5, e10〉

XT
9

0 = 〈e7, e1, e5, e11〉
XT

9
0 .

By tedious simplification, we find that all the 18 basic 4-point correlators are scalar multi-

ple of 〈e1, e5, e7, e7〉
XT

9
0 .

For JT
10-case: We use the same technique. Finally, the basic 4-point correlators are

all scalar multiple of the following three special ones: 〈e1, e8, e5, e10〉
JT

10
0 , 〈e8, e8, e8, e10〉

JT
10

0 ,

〈e1, e1, e4, e10〉
JT

10
0 .

�

The 4-point genus-0 FJRW invariants

Let Ξ(ρ1, ρ2, ρ3) be a degree 1 monomial with leading coefficient 1. For simplicity, we

denote by 〈Ξ, ρ−1〉
WT

0,4 a basic correlator such that the first three insertions give a factoriza-

tion of Ξ. For example, let Ξ(ρ1, ρ2, ρ3) = ρ2
1ρ

2
2; then the notation 〈Ξ, ρ−1〉

WT

0,4 represents

any of the following choices of correlators:

〈ρ1, ρ1, ρ
2
2, ρ−1〉

WT

0,4 , 〈ρ1, ρ2, ρ1ρ2, ρ−1〉
WT

0,4 , 〈ρ2, ρ2, ρ
2
1, ρ−1〉

WT

0,4 .

The WDVV equations guarantee that 〈Ξ, ρ−1〉
WT

0,4 does not depend on the choices of the

factorization.
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Lemma III.10. Let WT be an ISES; then all FJRW correlators for (WT ,GWT ) can be

reconstructed from the FJRW algebra, and the basic 4-point FJRW correlators 〈Ξ, ρ−1〉
WT

0,4 .

Furthermore, if WT is an ISES as in Tables 3.1, 3.2, or 3.3, then

(3.16) 〈Ξ(ρ1, ρ2, ρ3), ρ−1〉
WT

0,4 =


qT

i if Ξ = Mi,

0 otherwise.

where Mi are the homogeneous monomials such that W = M1 + M2 + M3.

Proof. We already see for three special simple elliptic singularities WT = X3
1 +X3

2 +X3
3 , X

3
1 +

X1X2
2 + X2X2

3 and X3
1 + X1X2

2 + X3
3 , their FJRW correlators with symmetry group GWT can

be reconstructed from their FJRW algebra and some basic 4-point correlators. We apply

the same method to all cases of simple elliptic singularities here. Finally, using WDVV

equations in each case, it is again not hard to verify all 4-point basic correlators without

insertion ρ−1 can be reconstructed too.

For the second part of the lemma, we use WDVV and the concavity to compute FJRW

correlators. We show that the argument works for singularities of Fermat type and of loop

type. Other cases are similar. For a Fermat type singularity, put Mi = X1/qT
i

i , since all

insertions are narrow, we apply the Concavity Axiom (3.9) to compute

(3.17) 〈ρi, ρi, ρ
1/qT

i −2
i , ρ−1〉

WT

0,4 .

Note that deg Li = −2 and the degree shifting numbers are (2qT
i , 2qT

i , 1 − qT
i , 1 − qT

i ), thus

the dual graphs will have ΘΓ = 0, 0, 1 − 3qT
i . The correlator (3.17) becomes

1
2

(
B2(qT

i ) + B2(1 − 3qT
i ) + 2B2(0) − 2B2(qT

i ) − 2B2(1 − qT
i )

)
= qT

i .

For loop type, WT = X2
1 X3 + X1X2

2 + X2X2
3 . Let us compute 〈ρ1, ρ1, ρ2, ρ−1〉

WT

0,4 , which is not

concave. However, the Concavity Axiom (3.9) implies

〈e2, e4, e7, e2〉
WT

0,4 = −
2
9
.
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On the other hand, WDVV equations show
〈e1 • e4, e4, e7, e2〉

WT

0,4 + 〈e1, e4, e4, e7 • e2〉
WT

0,4 = 〈e7 • e4, e4, e1, e2〉
WT

0,4 ;

〈e4 • e4, e1, e7, e2〉
WT

0,4 + 〈e4, e4, e1, e7 • e2〉
WT

0,4 = 〈e4 • e7, e1, e4, e2〉
WT

0,4 ;

We observe up to symmetry, 〈e5, e1, e7, e2〉
WT

0,4 = 〈e8, e1, e4, e2〉
WT

0,4 . Recall the ring relations

in Example III.1, we obtain

〈ρ1, ρ1, ρ2, ρ−1〉
WT

0,4 = 〈e4, e4, e1, e6〉
WT

0,4 =
1
3
. �

3.4 Classification of good FJRW theories

Conjecture III.11. For W,W ′ be invertible simple elliptic singularities and GW ,GW′ be

theis maximal diagonal symmetry groups, then the FJRW theory of (W,GW) is equivalent

to the FJRW theory of (W ′,GW′) if and only if

µWT = µW′T , jWT (0) = jW′T (0).

In this section, we will classify the FJRW theory of those good cases and prove the

conjecture is true among thoses cases. For other cases, due to the [Kr], the conjecture is

true in ring structure level.

Lemma III.12. If W1 and W2 belong to the same equivalence class, then there exists a

linear isomorphism Ψ : HWT
1
→ HWT

2
that induces an isomorphism of the FJRW rings

and the corresponding 4-point basic correlators with a degree 1 insertion. According

to the reconstruction lemma III.2, all higher genus FJRW correlators of (W1,GW1) and

(W2,GW2) are identified under this ring isomorphism.

Proof. In order to prove the lemma we will construct explicitly a linear isomorphisms Ψ

inducing the ring isomorphisms; then one has to check that they also preserve the corre-

sponding 4-point basic correlators with a degree 1 insertion.
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For simplicity, we add a superscript on the ring generators for each singularity. The

superscripts f , c or l mean that the singularity is respectively of Fermat, chain, or loop

type. A superscript with two entries means it is a sum of two different types. Let us take

the first and the last FJRW rings in the case of (µ, j) = (8, 0) as an example. We choose a

linear transformation,

Ψ



ρ
f
1/λ1

ρ
f
2/λ2

ρ
f
3/λ3


=



1 1 1

1 e[1
3 ] e[2

3 ]

1 e[2
3 ] e[1

3 ]





ρ
l f
1

ρ
l f
2

ρ
l f
3


.

The parameters λ1, λ2, λ3 could be chosen to be arbitrary non-zero complex numbers. The

relations in the FJRW rings do not depend on the choice. However, we have to choose λi

in such a way that the basic 4-point correlators agree, i.e.,

(3.18) λ4
1λ2λ3 = e[

1
3

] λ1λ
4
2λ3 = e[

2
3

] λ1λ2λ
4
3 = −

1
81
.

We notice that

ρ
f
−1 = ρ

f
1 • ρ

f
2 • ρ

f
3 , ρl

−1 = ρl
1 • ρ

l
2 • ρ

l
3.

Now one can check that

〈Ψ(ρ f
1),Ψ(ρ f

1),Ψ(ρ f
1),Ψ(ρ f

−1)〉0,4 = −81λ4
1λ2λ3〈ρ

l
1, ρ

l
1, ρ

l
1, ρ

l
−1〉0,4 =

1
3
.

We check all the nonzero 4-point genus-0 correlators listed in Lemma III.10 and obtain

the other two identities in (3.18).
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Another example between Fermat E(1,1)
6 and loop E(1,1)

6

Let us give an isomorphism between FJRW theory of (X3
1 + X3

2 + X3
3 ,GWT ) and FJRW

theory of (X2
1 X3 + X1X2

2 + X2X2
3 ,GWT ),

−3ρ−1 7→ ρ−1;



c1ρ1

c2ρ2

c3ρ3


7→



1 1 1

1 e[1
3 ] e[2

3 ]

1 e[2
3 ] e[1

3 ]





ρ1

ρ2

ρ3


where constants ci satisfy

c3
1 = e[

1
3

]c3
2 = e[

2
3

]c3
3 = −9.

Other examples

The other cases are similar. Let us list the corresponding linear transformations which

preserve FJRW correlators of all genera. We are only interested in those singularities listed

in Table 3.1, 3.2, 3.3.

• (µ, j) = (9, 0),

Ψ


ρc

1

ρc
2


=


λ1

λ2




ρ

c f
1

ρ
c f
2


. − 2λ4

1λ
4
2 = 8λ1λ

7
2 = 1.

• (µ, j) = (9, 1),

Ψ


ρ

f
1

ρ
f
2


=


λ1 λ1

−λ2 λ2




ρ

l f
1

ρ
l f
2


, −64λ6

1λ
2
2 = 64λ2

1λ
6
2 = 1.



60

• (µ, j) = (10, 0),

Ψ


ρ

f
1

ρ
f
2


=


λ1

λ2




ρ

c f
1

ρ
c f
2


, 8λ10

1 λ2 = −2λ4
1λ

4
2 = 1. �

3.5 Convergence

We will prove the following statement in Chapter IX.

Lemma III.13. The FJRW ancestor correlator 〈〈τl1(α1), · · · , τln(αn)〉〉W,Gg,n (sρ−1) is conver-

gent at s = 0.

Now we use it to prove the convergence of the FJRW part in Theorem I.4.

Proof. We can assume t = sρ−1 +
∑

i≥0 tiφi, where φi ranges over all elements in the basis

except ρ−1. By Selection rule (3.5), 〈〈τl1(α1), · · · , τln(αn)〉〉W,Gg,n (t) can be written as a poly-

nomial of ti, with each coefficient some FJRW ancestor function valued at sρ−1. The degree

of each monomial just depends on g and n. Now the convergence is an easy consequence

from the previous lemma. �



CHAPTER IV

Global B-model for simple elliptic singularities

4.1 Saito’s theory

Let W be an invertible polynomial from Table 1.1. We would like to recall Saito’s

theory of primitive forms which yields a Frobenius structure on the miniversal deformation

spaceM. Following Givental’s higher genus reconstruction formalism we will introduce

the total ancestor potential of W. Finally, we will derive a system of hypergeometric

equations that determines the restriction of the flat coordinates of the Frobenius manifold

M to Σ.

Miniversal deformation

Let

QW = C[X1, X2, X3]/(∂X1W, ∂X2W, ∂X3W).

be the Jacobian algebra or local algebra of W. Let us fix a setR of weighted homogeneous

monomials

(4.1) φr(X) = Xr1
1 Xr2

2 Xr3
3 , r = (r1, r2, r3),

such that their projections in QW form a basis. The dimension of the Jacobi algebra, i.e.,

the number of the above monomials, is called the multiplicity of the critical point or the

Milnor number and it will be denoted by µ. There is precisely one monomial of top degree,

61
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say φm, m = (m1,m2,m3). We fix a deformation of W of the following form:

(4.2) Wσ(X) = W(X) + σφm(X), σ ∈ Σ,

where Σ ⊂ C is the set of all σ ∈ C such that Wσ(X) has only isolated critical points. Such

deformations do not change the multiplicity of the critical point at X = 0. The polynomials

(4.2) correspond to families of simple elliptic singularities of type E(1,1)
µ−2 (see [Sa2]). More

generally, a miniversal deformation (see e.g. [ArGV]) of W can be constructed in the form

(4.3) F(s,X) = W(X) +
∑
r∈R

sr φr(X).

It is convenient to adopt two notations for the deformation parameters. Namely, put

s = {sr}r∈R = (s−1, s0, s1, . . . , sµ−2),

where the second equality is obtained by putting an order on the elements r ∈ R and

enumerating them with the integers from −1 to µ − 2 in such a way that

s−1 = sm = σ, s0 = s0, 0 = (0, 0, 0) ∈ R.

The space of miniversal deformations, i.e., the range of the parameters sr is then defined

to be the affine space M = Σ × Cµ−1. Furthermore, each sr is assigned a degree so that

F is weighted-homogeneous of degree 1. Note that the parameter sm = σ has degree 0.

Following the terminology in physics, we call sm and φm marginal. Note that Wσ(X) is the

restriction of F(s,X) to the subspace Σ of marginal deformations. Except for W of Fermat

type, there is more than one choice of a marginal monomial. For example, both X1X2X3

and X4
1 X3 are marginal for W = X3

1 X2 + X2
2 + X3

3 .

Multiplication

Let C be the critical variety of the miniversal deformation F (see (4.3)), i.e., the support

of the sheaf

OC := OX/〈∂X1 F, ∂X2 F, ∂X3 F〉,
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where X = M× C3. Let q : X → M be the projection on the first factor. The Kodaira–

Spencer map (TM is the sheaf of holomorphic vector fields onM)

TM −→ q∗OC, ∂/∂si 7→ ∂F/∂si mod (FX1 , FX2 , FX3)

is an isomorphism, which implies that for any s ∈ M, the tangent space TsM is equipped

with an associative commutative multiplication •s depending holomorphically on s ∈ M.

If in addition we have a volume form ω = g(s, x)d3x, where d3x = dX1 ∧ dX2 ∧ dX3 is the

standard volume form, then q∗OC (hence TM as well) is equipped with the residue pairing:

(4.4) 〈ψ1, ψ2〉 =
1

(2πi)3

∫
Γε

ψ1(s, y)ψ2(s, y)
Fy1 Fy2 Fy3

ω,

where y = (y1, y2, y3) is a unimodular coordinate system for the volume form, i.e., ω = d3y,

and Γε is a real 3-dimensional cycle supported on |FXi | = ε for 1 ≤ i ≤ 3.

Given a semi-infinite cycle

(4.5) A ∈ lim
←−

H3(C3, (C3)−m;C) � Cµ,

where

(4.6) (C3)m = {x ∈ C3 | Re(F(s, x)/z) ≤ m}.

Put

(4.7) JA(s, z) = (−2πz)−3/2 zdM

∫
A

eF(s,x)/zω,

where dM is the de Rham differential onM. The oscillatory integrals JA are, by definition,

sections of the cotangent sheaf T ∗
M

.

According to Saito’s theory of primitive forms [Sa1], there exists a volume form ω such

that the residue pairing is flat and the oscillatory integrals satisfy a system of differential

equations, which in flat-homogeneous coordinates t = (t−1, t0, . . . , tµ−2) have the form

(4.8) z∂iJA(t, z) = ∂i •t JA(t, z),
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where ∂i := ∂/∂ti (−1 ≤ i ≤ µ − 2) and the multiplication is defined by identifying vectors

and covectors via the residue pairing. Using the residue pairing, the flat structure, and the

Kodaira–Spencer isomorphism we have the following isomorphisms:

T ∗M � TM �M× T0M �M×QW .

Due to the homogeneity, the integrals satisfy a differential equation with respect to the

parameter z ∈ C∗:

(4.9) (z∂z + E)JA(t, z) = Θ JA(t, z),

where

E =

µ−2∑
i=−1

diti∂i, (di := deg ti = deg si),

is the Euler vector field and Θ is the so-called Hodge grading operator

Θ : T ∗
M
→ T ∗

M
, Θ(dti) =

(
1
2
− di

)
dti.

The compatibility of the system (4.8)–(4.9) implies that the residue pairing, the multipli-

cation, and the Euler vector field give rise to a conformal Frobenius structure of conformal

dimension 1. We refer to B. Dubrovin [Du] for the definition and more details on Frobenius

structures and to C. Hertling [He] or to Atsushi–Saito [ST] for more details on constructing

a Frobenius structure from a primitive form.

4.2 Primitive forms and global B-model

The classification of primitive forms in general is a very difficult problem. In the case of

simple elliptic singularities however, all primitive forms are known (see [Sa1]). They are

given by ω = d3x/πA(σ), where πA(σ) is the period (4.11). As we will prove below, these

periods are solutions to the hypergeometric equation (4.14), so a primitive form may be
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equivalently fixed by fixing a solution to the differential equation that does not vanish on

Σ. Note that since πA(σ) is multi-valued function, the corresponding Frobenius structure

onM is multi-valued as well. In other words, the primitive form gives rise to a Frobenius

structure on the universal cover M̃ � H × Cµ−1.

The key to the primitive form is the Picard-Fuchs differential equation for the periods

of the so-called elliptic curve at infinity

(4.10) Eσ :=
{
[X1 : X2 : X3] ∈ CP2(c1, c2, c3)

∣∣∣∣ Wσ = 0
}
,

where ci = d/oi, 1 ≤ i ≤ 3 and d is the least common multiple of o1, o2, and o3. Note that

Eσ are the fibers of an elliptic fibration over CP1 = C ∪ {∞} whose non-singular fibers are

parametrized by Σ ⊂ C ⊂ CP1. Note that ResEσΩ, where

Ω :=
dX1 ∧ dX2 ∧ dX3

dWσ

,

is a Calabi-Yau form of the elliptic curve Eσ. For every A ∈ H1(Eσ), we define the period

integral

(4.11) πA(σ) =

∫
A

ResEσΩ.

It is well known that the period integrals are solutions to a Fuchsian differential equation.

For our purposes, since we have to deal with many examples, it is convenient to follow the

approach of S. Gährs (see [Ga]. We define a charge vector ~L, where

~L = (l1, l2, l3,−l) ∈ Z4

by choosing the minimal l ∈ Z>0 such that

(4.12) (l1, l2, l3) = l m E−1
W , m = (m1,m2,m3).

We define a charge constant C, where

(4.13) C =

3∏
i=1

(
−

li

l

)li

.
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Lemma IV.1. The Picard-Fuchs equation for the elliptic periods is

(4.14) δ(δ − 1) πA = C σl(δ + lα)(δ + lβ) πA,

where δ = σ∂/∂σ and α and β are some rational numbers, such that α + β = 1 − 1
l .

If we put x = C σl, γ = α+β, then the above differential equation turns into the standard

hypergeometric equation

(4.15) x(1 − x)
d2πA

dx2 + (γ − (1 + α + β)x)
dπA

dx
− αβ πA = 0

We call (α, β, γ) the weights of the Picard-Fuchs equation. They are listed in Table 4.1

for E(1,1)
6 , Table 4.2 and 4.3 for the other two cases. In particular, the singularities of the

Picard–Fuchs equation are at the points

(4.16) pi = C−1/lηi, 1 ≤ i ≤ l, η = exp
2π
√
−1

l

 ,
and we have Σ = C\{p1, . . . , pl}.

Table 4.1: E(1,1)
6

W m1,m2,m3 l1, l2, l3 qT
1 , q

T
2 , q

T
3 α, β, γ

X3
1 + X3

2 + X3
3 (1, 1, 1) 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X2
1 X2 + X3

2 + X3
3 (2, 0, 1) 3,−1, 1, 3 1

2 ,
1
6 ,

1
3

1
6 ,

1
2 ,

2
3

X2
1 X2 + X3

2 + X3
3 (0, 2, 1) 0, 2, 1, 3 1

2 ,
1
6 ,

1
3

1
12 ,

7
12 ,

2
3

X2
1 X2 + X1X2

2 + X3
3 (1, 1, 1) 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X2
1 X2 + X1X2

2 + X3
3 (2, 0, 1) 4,−2, 1, , 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3

X2
1 X2 + X2

2 X3 + X3
3 (2, 0, 1) 2,−1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X2
1 X2 + X2

2 X3 + X3
3 (0, 3, 0) 0, 3,−1, 2 1

2 ,
1
4 ,

1
4

1
12 ,

5
12 ,

1
2

X2
1 X2 + X2

2 X3 + X3
3 (0, 1, 2) 0, 1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X2
1 X2 + X2

2 X3 + X1X2
3 (1, 1, 1) 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X2
1 X2 + X2

2 X3 + X1X2
3 (3, 0, 0) 4,−2, 1, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3
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Table 4.2: E(1,1)
7

W m1,m2,m3 l1, l2, l3, l qT
1 , q

T
2 , q

T
3 α, β, γ

X4
1 + X4

2 + X2
3 (2, 2, 0) 1, 1, 0, 2 1

4 ,
1
4 ,

1
2

1
4 ,

1
4 ,

1
2

X3
1 X2 + X4

2 + X2
3 (4, 0, 0) 4,−1, 0, 3 1

3 ,
1
2 ,

1
6

1
12 ,

7
12 ,

2
3

X3
1 X2 + X4

2 + X2
3 (1, 3, 0) 1, 2, 0, 3 1

3 ,
1
2 ,

1
6

1
12 ,

7
12 ,

2
3

X2
1 X2 + X2

2 + X4
3 (2, 0, 2) 2,−1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X2
1 X2 + X2

2 + X4
3 (0, 1, 2) 0, 1, 1, 2 1

2 ,
1
4 ,

1
4

1
4 ,

1
4 ,

1
2

X3
1 X2 + X1X3

2 + X2
3 (4, 0, 0) 3,−1, 0, 2 1

4 ,
1
4 ,

1
2

1
12 ,

5
12 ,

1
2

X3
1 X2 + X1X3

2 + X2
3 (2, 2, 0) 1, 1, 0, 2 1

4 ,
1
4 ,

1
2

1
4 ,

1
4 ,

1
2

X3
1 X2 + X2

2 X3 + X2
3 (1, 1, 1) 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

X3
1 X2 + X2

2 X3 + X2
3 (1, 3, 0) 1, 4,−2, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3

X3
1 X2 + X2

2 X3 + X2
3 (4, 0, 0) 4,−2, 1, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3

Table 4.3: E(1,1)
8

W m1,m2,m3 l1, l2, l3, l qT
1 , q

T
2 , q

T
3 α, β, γ j(σ)/1728

X6
1 + X3

2 + X2
3 (4, 0, 1) 1, 2, 0, 3 1

6 ,
1
3 ,

1
2

1
12 ,

7
12 ,

2
3

4σ3

4σ3+27

X3
1 X2 + X2

2 + X3
3 (1, 1, 1) 1, 1, 1, 3 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

2
3

σ3(σ3−24)3

1728(σ3−27)

X3
1 X2 + X2

2 + X3
3 (4, 0, 1) 4,−2, 1, 3 1

3 ,
1
3 ,

1
3

1
12 ,

7
12 ,

2
3

64σ3

64σ3+27

X4
1 X2 + X3

2 + X2
3 (2, 2, 0) 1, 1, 0, 2 1

4 ,
1
4 ,

1
2

1
4 ,

1
4 ,

1
2

4(3−σ2)3

27(4−σ2)

X4
1 X2 + X3

2 + X2
3 (6, 0, 0) 3,−1, 0, 2 1

4 ,
1
4 ,

1
2

1
12 ,

5
12 ,

1
2

4
27σ2+4

The j-invariant of Eσ is determined by the charge vector. A table of j-invariant is shown

here. For some of the computations, we refer to [Co].

Table 4.4: j-invariant

W m ~a j(σ)

X6
1 + X3

2 + X2
3 (4, 0, 1) (0, 0, 0, σ,−1) 4σ3

4σ3+27

X3
1 X2 + X2

2 + X3
3 (1, 1, 1) (σ, 0, 1, 0, 0) σ3(σ3−24)3

1728(σ3−27)

X3
1 X2 + X2

2 + X3
3 (4, 0, 1) (0, 0, 1, σ, 0) 64σ3

64σ3+27

X4
1 X2 + X3

2 + X2
3 (2, 2, 0) (0,−σ, 0, 1, 0) 4(3−σ2)3

27(4−σ2)

X4
1 X2 + X3

2 + X2
3 (6, 0, 0) (0, 0, 0, 1,−σ) 4

27σ2+4

X2
1 X2 + X2

2 X3 + X3
3 (2, 0, 1) (0, σ, 0, 1, σ) (3−σ2)3

27(σ2+1)2

X2
1 X2 + X3

2 + X3
3 (2, 0, 1)

(
0, 3σ2, 0,−3σ(1 − σ3), (1 − σ3)2

)
−4σ3

(1−σ3)2
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4.3 Picard-Fuchs systems

Let us denote by

Xs = {X ∈ C3 | F(s,X) = 1}, s ∈ M.

The points s for which Xs is singular form an analytic hypersurface inM called the dis-

criminant hypersurface. Its complement inM will be denoted byM′. We will be inter-

ested in the period integrals

Φr(s) =

∫
φr(x)

d3X
dF

, φr(X) = Xr1
1 Xr2

2 Xr3
3 , r = (r1, r2, r3).

They are sections of H mid, the cohomology Milnor fibration onM′ with fibers H2(Xs,C).

Slightly abusing the notation, we denote the restriction to s−1 = σ, si = 0(0 ≤ i ≤ µ−2) by

Φr(σ). Following the idea of [Ga], we first obtain a GKZ (Gelfand–Kapranov–Zelevinsky)

system of differential equations for the periods. Using that the period integrals are not

polynomial in σ (they have singularities at the punctures of Σ) we can reduce the GKZ

system to a Picard-Fuchs equation.

The GKZ system

In order to derive the GKZ system, we slightly modify the polynomial W. By definition

W(X) =
∑3

i=1 φai(X), where ai are the rows of the matrix EW . Put

Wv,σ(X) =

3∑
i=1

vi φai(X) + σφ−1(X),

where v = (v1, v2, v3) are some complex parameters. For simplicity, we omit v in the

notation if v = (1, 1, 1). Let us write Xv,λ
σ = {X ∈ C3 | Wv,σ(X) = λ}. Then we define the

period integrals

(4.17) Φv,λ
r (σ) =

∫
φr(X)

d3X
dWv,σ

;
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again one should think that the above integral is a section of the vanishing cohomology for

Wv,σ(X). The vanishing cohomology bundle is equipped with a Gauss–Manin connection

∇. The following formulas are well known (see e.g. [ArGV])

(4.18)
∇∂/∂λ

∫
θ =

∫
dθ

dWv,σ

∇∂/∂vi

∫
θ = −

∫
∂Wv,σ

∂vi

dθ
dWv,σ

+

∫
Lie∂/∂viθ,

where θ is a 2-form on C3 possibly depending on the parameters v. Finally, note that

rescaling Xi 7→ λqi Xi(1 ≤ i ≤ 3) yields

Φv,λ
r (σ) = λdeg φr Φv,1

r (σ).

Let δi = vi∂/∂vi(1 ≤ i ≤ 3) and δ = σ∂/∂σ.

Lemma IV.2. The period integral Φv,λ
r satisfies the following system of differential equa-

tions:

∂l
σ

∏
i:li<0

∂−li
vi

Φ =
∏
i:li>0

∂li
vi

Φ;

(δ1, δ2, δ3) EW Φ + (m1,m2,m3)δΦ = −(1 + r1, 1 + r2, 1 + r3)Φ.

where the range for i and j in the first equation on the LHS and the RHS is 0 ≤ i ≤ 3.

Proof. Using (4.18) we get the following differential equations:

∂vi Φv,λ
r = −∂λ Φv,λ

r+ai
, 1 ≤ i ≤ 3,

and

∂σ Φv,λ
r = −∂λ Φv,λ

r+m, m = (m1,m2,m3),

where φm(X) is the marginal monomial. The first differential equation is equivalent to the

identity

l mk −
∑
i,li<0

aik li =
∑
j,l j>0

a jk l j .
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which is true by definition (see (4.12)).

For the second equation, using the above formulas we get that the i-th entry on the LHS

is

−∂λ

∫
Xi φr(X)

d3X
dXi

= −(ri + 1)
∫

φr(X)
d3X
dXi

,

where we used formulas (4.18) again. �

Let us define the row-vector ζ = (ζ1, ζ2, ζ3) = r E−1
W . Note also that the weights

(qT
1 , q

T
2 , q

T
3 ) of the dual polynomial are precisely (1, 1, 1) E−1

W .

Lemma IV.3. The period integral Φr(σ) is in the kernel of the following differential oper-

ator:

(4.19) σ−l
l−1∏
k=0

(δ − k)
∏
i,li<0

−li−1∏
k=0

δ +
l
(
qT

i + ζi + k
)

li

 −C
∏
i,li>0

li−1∏
k=0

δ +
l
(
qT

i + ζi + k
)

li

 ,
where C =

∏3
i=1(−li/l)li .

Proof. Using the second equation in Lemma IV.2 we can express the derivatives ∂vi = v−1
i δi

in terms of δ. Substituting in the first equation we get a higher order differential equation

in σ only. It remains only to notice that the resulting equation is independent of v and

λ. �

Picard-Fuchs equation

Let qT
0 = 0, l0 = −l, and set

(4.20) βi,k =
1
li

(qT
i + ζi + k), 0 ≤ k ≤ |li| − 1.

The differential operator in Lemma IV.3 can be factored as the product of a Bessel differ-

ential operator

(4.21)
∏

i,k

(δ + l βi,k)
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and an operator of the form

(4.22)
∏
i′,k′

(δ + l βi′,k′) −Cσl
∏
i′′,k′′

(δ + l βi′′,k′′).

This is done simply by factoring out the common left divisors in the two summands,

i.e.,there is no pairs (i′, k′) and (i′′, k′′) in the operator (4.22), such that, βi′,k′ + 1 = βi′′,k′′ .

Lemma IV.4. The numbers (4.20) satisfy the following identity:∑
i:li>0

li−1∑
k=0

βi,k −
∑

0≤ j≤3:l j<0

−l j−1∑
k′=0

(
1 + β j,k′

)
= deg φr.

Proof. By definition

LHS =
∑
i:li>0

(
li − 1

2
+ qT

i + ζi

)
−

∑
j;l j<0

(
−l j −

−l j − 1
2

− qT
j − ζ j

)
−

l − 1
2

=

=

3∑
i=0

(
qT

i + ζi +
li − 1

2

)
−

l − 1
2

=

3∑
i=1

ζi = deg φr. �

The action of the operator (4.22) on a period integral is again a period integral. The

latter is holomorphic at σ = 0; therefore, if it is in the kernel of the Bessel operator, it

must be a polynomial in σ. But a non-zero period integral cannot be a polynomial. In

other words the period Φr(σ) is a solution to the Picard-Fuchs equation corresponding to

the differential operator (4.22).

Lemma IV.5. Let x = Cσl; then, depending on the order of the differential operator (4.22)

the corresponding differential equation has the form

(1 − x)
∂

∂x
Φr = deg φr Φr,

if the order is 1 and

x(1 − x)
∂2Φr

∂x2 + (γr − (1 + αr + βr)x)
∂Φr

∂x
− αrβr Φr = 0,

if the order is 2. In the second case we have the following identity:

(4.23) αr + βr − γr = deg φr.
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The first part of the Lemma and the identity (4.23) are corollaries of Lemma IV.4.

Unfortunately, we do not have a general combinatorial rule to determine which indexes

(i′, k′) and (i′′, k′′) should appear in (4.22). In other words, the second part of the Lemma

is proved on a case by case basis. It is a straightforward tedious computation. In particular,

when φr = 1, Lemma IV.5 implies Lemma IV.1.

Solutions of hypergeometric equations

For the reader’s convenience we list a solutions hypergeometric equations of the form

(4.15). Let us assume that α, β, and γ are positive rational numbers. There are two cases

which are used in our work.

The resonance case

We assume l is a positive integer, and

γ = α + β = 1 −
1
l
,

1. Near x = 0 the hypergeometric equation admits the following basis of solutions:

(4.24)
F(0)

1 (x) = 2F1(α, β; γ; x),

F(0)
2 (x) = 2F1(1 − α, 1 − β; 2 − γ; x) x1−α−β.

2. Near x = 1 a basis of solutions is given by

(4.25)
F(1)

1 (x) = 2F1(α, β; 1; 1 − x),

F(1)
2 (x) = 2F1(α, β; 1; 1 − x) ln(1 − x) +

∞∑
n=1

bn(1 − x)n,

where

(4.26) bn =
(α)n(β)n

(n!)2

(1
α

+ · · · +
1

α + n − 1
+

1
β

+ · · · +
1

β + n − 1
− 2

(1
1

+ · · · +
1
n

))
.
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3. Let us also list a basis of solutions near x = ∞. If α − β < Z, then

(4.27)
F(∞)

1 = x−α 2F1

(
α, α − γ + 1;α − β + 1; x−1

)
,

F(∞)
1 = x−β 2F1

(
β, β − γ + 1; β − α + 1; x−1

)
.

If α = β, then

(4.28)
F(∞)

1 = x−α 2F1

(
α, α − γ + 1; 1; x−1

)
,

F(∞)
2 = G2,2

2,2

(
x−1

∣∣∣∣ γ, 1
α, β

)
,

where G2,2
2,2 is Meijer’s G-function.

The non-resonance case

Now we assume that none of the exponents

(4.29) λ0 = 1 − γ, λ1 = γ − α − β, λ∞ = β − α

is an integer. Then we fix the following solutions.

1. Near x = 0:

(4.30)
F(0)

1 = 2F1 (α, β; γ; x) ,

F(0)
2 = 2F1 (α − γ + 1, β − γ + 1; 2 − γ; x) x1−γ .

2. Near x = 1:

(4.31)
F(1)

1 = 2F1 (α, β;α + β − γ + 1; 1 − x) ,

F(1)
2 = 2F1 (γ − α, γ − β; γ − α − β + 1; 1 − x) (1 − x)γ−α−β.

3. Near x = ∞:

(4.32)
F(∞)

1 = 2F1

(
α, α − γ + 1;α − β + 1; x−1

)
x−α ,

F(∞)
2 = 2F1

(
β, β − γ + 1; β − α + 1; x−1

)
x−β .
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4.4 Flat coordinates

Recall H mid is the cohomology Milnor fibration overM′. There is an alternative way

to obtain flat sections for this local system, by choosing an opposite filtration for the mixed

Hodge structures and extends it to singular points, see [Mo]. Let us introduce it here. We

will calculate the B-model correlators using those flat sections.

Mixed Hodge structure

There is a mixed Hodge structure on H mid, see [ArGV, V]. Briefly, the decreasing

Hodge filtration F• is constructed from the principal parts of all the forms of cohomolog-

ical Milnor fibration. The weight filtrationW• is constructed from local monodromy. Let

us denote the local monodromy matrix by M. We can decompose M into a product of its

semisimple part Ms and unipotent part Mu, M = Ms · Mu. Let matrix N be the logarithmic

part of Mu.

For any h ∈ V , let

l+(h) = min
{
l ∈ Z

∣∣∣∣h ∈ Ker(N l)
}
, l−(h) = max

{
l ∈ Z

∣∣∣∣h ∈ Im(N l)
}
.

We define a weight filtrationW• with central index k by

Wk+l =

{
h
∣∣∣∣l+(h) − l−(h) ≤ l + 1.

}
This is an increasing filtration

{0} =W0 ⊂ . . . · · · ⊂W2n = H mid

Let Hn−1
λ (Xs,C) be the root subspace of the eigenvalue λ of the monodromy operator. Then

the central index k is n − 1 for λ , 1 and n for λ = 1.

A similar weight filtration can be also introduced on the homological fibration.
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Opposite filtration

We define an increasing filtration S• on cohomology fibration by

Sk := Ann(W2n−2k) :=
{
γ ∈Hmid

∣∣∣∣ ∫
γ

α = 0,∀α ∈W2n−2k

}
We can choose an increasing filtration S•, defined by

Sq := Ann(Sq−1) =

{
α ∈H mid

∣∣∣∣ ∫
γ

α = 0,∀γ ∈ Sq−1

}
If the local monodromy is maximal unipotent, then S• is a splitting filtration for F• as

H mid
s � F p

s

⊕
Sn−p+1

s .

S• is also called an opposite filtration for F• of weight n. We define

H p,q
S = F p ∩ Sq.

Then we have 
H mid =

⊕
H p,q
S .

F p =
⊕

p′≥p H p′,n−p′

S .

Now we consider sections of H p,q
S over an open set U ⊂ M′,

Γ(U,H p,q
S ) :=

{
β ∈ Γ(U, F p)

∣∣∣∣ ∫
γ

β = 0,∀γ ∈ Sq−1

}
.

Then there is a space of distinguished sections of H p,q
S ,

Γ(U,H p,q
S )dist :=

{
β ∈ Γ(U, F p)

∣∣∣∣d(
∫
γ

β) = 0,∀γ ∈ Sq

}
.

Choices of flat basis for sections of middle cohomology bundle

Non-twisted sectors

For an ISES W, let A be an invariant cycle in H1(Eσ) and B be a cycle such that A, B

forms a symplectic basis for H1(Eσ) and

N(B) = A, A ∩ B = 1.
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We can check S1 is generated by A and S2 is generated by A and B. We choose cohomology

sections
∫

ω
dF ,

∫
φm

ω
dF . Then the period matrix has a Birkhoff factorization

∫
ω

dF

∫
φm

ω
dF


 A B

 =


πA πB

−π′A −π′B


=


πA 0

−π′A −Wr(πA, πB)/πA




1 πB/πA

0 1


Here Wr(πA, πB) = πAπ

′
B − π

′
AπB. We obtain a basis flat sections from non-twisted sectors

σ01

σ02


= L−1


∫

ω
dF

∫
φm

ω
dF


=


∫

ω
dF /πA

(−π′A
∫

ω
dF − πA

∫
φm

ω
dF )/Wr(πA, πB)


It is not hard to check σ01 ∈H 2,1

S and σ02 ∈H 1,2
S . We also obtain the pairing

〈σ01, σ02〉 = 〈

∫
ω

dF

πA
,
−π′A

∫
ω

dF − πA

∫
φm

ω
dF )

Wr(πA, πB)
〉 = 1.

Twisted sectors

Let φr1 be a monomial of non-integer degree. Then Gauss-Manin connection implies

Φr1 =
∫
φr1

ω
dF satisfies a k-th order differential equation for some integer k. We can find

other monomials φr2 , . . . , φrk and differential operators Di(σ) such that for 2 ≤ i ≤ k,

Φri = Di(σ)Φr1 .

We know Φr1 is a linear combination of flat sections,

Φr1 = f1,1(σ)A1 + · · · + f1,k(σ)Ak.

f1,1(σ), . . . , f1,k(σ) is a basis of solutions of the Picard-Fuchs equation. Apply differential

operators, we have

Φri = Di f1,1(σ)A1 + · · · + Di f1,k(σ)Ak.

Now we have a flat basis A1, . . . , Ak by inverting the k × k matrix
(
Di f1, j(σ)

)
k×k

.
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Remark IV.6. • There is no canonical choices for the basis f1,i. Especially, near differ-

ent limits, we also have different choices of the basis.

• Although sections Ai are flat basis, in order to match the flat basis in A-model side,

we may have to rescale the basis by some constants.

• Mirror symmetry is a computational result, rather than a conceptional one.

• All the data we need for numerical results are the indices α, β, . . . , γ from the cor-

responding hypergeometric equation. Some of them are of order three. But none of

them will have order greater than three. In this paper, all the examples we compute

have order at most two. Those cases of order three will appear somewhere else.

B-model 3,4-point genus-0 correlators

We let W = M1 + M2 + M3 be an ISES with a miniversal deformation given by a

monomial φm(X), m = (m1,m2,m3). We choose a primitive form ω = d3X/π(σ) in a

neighborhood of σ = 0, such that π(σ) is the solution to the Picard-Fuchs equation (4.14)

satisfying the initial conditions π(0) = c, π′(0) = 0, where the constant c is such that the

residue pairing (see (4.4)) satisfies

〈1, φm〉|s=0 = 1 .

Let {tr} be the flat coordinate system, such that tr(0) = 0 and the flat vector fields ∂r :=

∂/∂tr agree with ∂/∂sr at s = 0.

The primitive form induces an isomorphism between the tangent and the vanishing

cohomology bundle via the following period mapping:

(4.33) ∂/∂tr 7→ −∇
−1
∂
∂λ

∇ ∂
∂tr

∫
ω

dF
=

∫
δr(s,X)

ω

dF
,

where δr is some homogeneous polynomial (in X) of degree deg(φr). The images are flat

distinguished sections of opposite filtrations. Note that the Kodaira–Spencer isomorphism
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takes the form

(4.34) ∂/∂tr 7→ δr(s,X) mod (FX1 , FX2 , FX3).

By definition, the restriction of the 3-point correlators to the marginal deformations sub-

space is

(4.35) 〈δr1 , δr2 , δr3〉0,3 = Res
δr1(σ,X)δr2(σ,X)δr3(σ,X)
(∂X1Wσ) (∂X2 Wσ)(∂X3Wσ)

d3X
π(σ)2 .

Note that the 3-point correlator depends only on the product Ξ := δr1δr2δr3 . Therefore we

can simply use the notation 〈Ξ〉0,3 instead. Finally, definition (4.35) makes sense even if

we replace δr, r = r1, r2, r3 by arbitrary polynomials, not only the ones that correspond to

flat vector fields via (4.34).

Let F S G
0 be the genus-0 generating functions for the Frobenius manifold of miniversal

deformations near the origin. By definition,

〈δr1 , . . . , δrn〉
S G
0,n =

∂nF S G
0

∂ tr1 . . . ∂ trn

∣∣∣∣
t=0
.

Thus, using that ∂/∂σ = δm at σ = 0, we can compute the Saito’s genus-0 4-point correla-

tors with a top degree flat insertion by the following formula

(4.36) 〈δr1 , δr2 , δr3 , δm〉
S G
0,4 = ∂σ 〈δr1 , δr2 , δr3〉

∣∣∣∣
σ=0

.

4.5 Givental’s higher genus formula at semisimple points and its extension

In Chapter VII, we will define Givental’s higher genus formula for singularity theory at

a semisimple point t ∈ M, we call it the formal ancestor potentialA f ormal(t)(~,q(z)). Here

is a explicit formula, for more details, see Chapter VII.

Ψ̂(t) R̂(t) e(U(t)/z)̂
µ∏

i=1

Apt(~∆i(t), iq̃(z)
√

∆i(t)
)
,
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In this formula, Ψ(t),R(t),U(t),∆i(t) are all data from a singularity W, and the symbol

̂ is quantization operator. We will be interested in the limit when t is a special point,

which is not semisimple. So the formula is not well defined at those points. However,

our convergence theorems will guarantee that the limit of those formula exists. So we can

study the mirror symmetry where the B-model potentials are those limits. Details about

the mirror theorems will be discussed in later chapters.



CHAPTER V

Berglund-Hübsch-Krawitz mirror construction

5.1 BHK construction

Now let us start to describe the Berglund-Hübsch-Krawitz mirror construction. We

begin with a polynomial with N variables and N monomials.

W =

N∑
i=1

N∏
j=1

Xai j

i .

We denote its exponent matrix by EW , where the (i, j)-th entry of EW is ai j. We say this

polynomial W is invertible if its exponent matrix EW is an invertible matrix. We consider

the transpose of W as the polynomial whose exponent matrix is the transpose matrix of

EW , and denote it by WT . Then

WT =

N∑
i=1

N∏
j=1

Xa ji

i .

This is considered to be the mirror for W [BH].

Now we introduce the mirror group construction defined by Krawitz, [Kr]. Let us write

the inverse matrix E−1
W with row vectors ρi, such that ρi is the i-th row of E−1

W . We denote

each ρi by

ρi =
(
ρi,1, . . . , ρi,N

)
We consider a diagonal matrix Eρi , with its j-th diagonal entry exp(2π

√
−1ρi, j). It turns

out each Eρi is a symmetry of WT , i.e. the matrix Eρi acts on (X1, . . . , XN) by multiplication

80



81

will keep WT invariant. Let us also point out that Eρi generate GWT , the maximal diagonal

symmetry group of WT .

On the other hand, we can also consider the columns of E−1
W . We denote its i-th column

by %i. We get another diagonal matrix E%i , with its j-th diagonal entry defined by the

exponental of 2π
√
−1 multiplies the j-th element of %i. E%i acts on variables X1, . . . , XN

and keeps W invariant. Similarly, we know E%i generate GW . Krawitz [Kr] defined a mirror

group GT by

(5.1) GT :=

 N∏
i=1

Eki
ρi

∣∣∣∣ (k1, . . . , kN) E−1
W (m1 . . .mN)T

∈ Z,∀
N∏

i=1

Emi
%i
∈ G


Such a construction (WT ,GT ) is considered to be the Berglund-Hübsch-Krawitz mirror of

a pair (W,G). Here is a very useful observation from [Kr]. The mirror group for GW is the

trivial group with the identity matrix. We simply denote by

GT
W = {1}.

In this paper, we only consider the case that GWT is the admissible group in the FJRW

theory. So its BHK mirror would just be W with the trivial group.

5.2 Classification of ring structures

For any special limit in the Saito-Givental theory for invertible simple elliptic singular-

ities, the first step of the classification is the ring structure. Let us first focus on special

limits at σ = 0. According to Saito [Sa2] simple elliptic singularities are classified by

their Milnor number and the elliptic curve at infinity. It follows that the Jacobi algebras

of the ISES with 3 variables can be classified into 6 isomorphism classes parametrized by

the pairs consisting of the Milnor number µ = dim QW and the j-invariant of Eσ=0:
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Table 5.1: Classification of Jacobi algebra

µ j(σ = 0) W

8 0 X3
1 + X3

2 + X3
3 , X2

1 X2 + X3
2 + X3

3 , X2
1 X2 + X1X2

2 + X3
3 , X2

1 X2 + X2
2 X3 + X1X2

3

8 1728 X2
1 X2 + X2

2 X3 + X3
3

9 0 X3
1 X2 + X4

2 + X2
3 , X3

1 X2 + X2
2 X3 + X2

3

9 1728 X4
1 + X4

2 + X2
3

10 0 X6
1 + X3

2 + X2
3 , X3

1 X2 + X2
2 + X3

3

10 1728 X4
1 X2 + X3

2 + X2
3

For any two polynomials in the same list, it is easy to find a linear map between the

generators X1, X2, X3 of the corresponding Jacobi algebras, such that it induces a ring iso-

morphism. Let us point out that the choice of such linear maps is not unique in general.

Moreover, we can always adjust some constants such that the ring isomorphism will be

extended to an isomorphism of Frobeniu manifold, as well as an isomorphism of the cor-

responding ancestor total potential. See the discussions in Section 3.4.

5.3 Mirror to Genper point

In order to compute 4-point correlators of the form (4.36) it is enough to determine

δr(σ,X) up to linear terms in σ. To begin with, we notice that φr+m lies in the Jacobian

ideal of Wσ. More precisely, the following Lemma holds.

Lemma V.1. There are polynomials gr,i ∈ C[σ, X1, X2, X3] such that

(1 −Cσl) φr+m =

3∑
i=1

gr,i ∂iWσ.

This Lemma can be proved in all cases by using Saito’s higher residue pairing. How-

ever, in what follows, we need an explicit formula for

gr :=
(
gr,1, gr,2, gr,3

)
.

Therefore we verified the lemma on a case-by-case basis. Some of our computations will

be given below. The remaining cases are completely analogous.
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There are several corollaries of Lemma V.1. First of all, note that under the period

map (4.33) the Gauss–Manin connection takes the form (4.8) (with z ≡ −∂−1
λ . It follows

that if deg(φr) is not integral, then the restriction of the section (4.33) of the vanishing

cohomology bundle to the marginal deformation subspace must be flat, i.e., the sections

(5.2) [δr ω](σ) :=
∫

δr(σ,X)
ω

dWσ

, deg(φr) < Z

are independent of σ. Furthermore, using formulas (4.18) for the Gauss-Manin connection

we get

(1 −Cσl)
∂

∂σ
Φr = −

∫ 3∑
i=1

∂i gr,i
d3X
dWσ

Both sides must have the same degree, i.e.,

(5.3) (1 −Cσl)
∂

∂σ
Φr =

∑
r′

cr,r′(σ)Φr′ ,

where the sum is over all r′, such that deg φr = deg φr′ and cr,r′(σ) ∈ C[σ] are some

polynomials.

Lemma V.2. Suppose deg(φr) < Z; then we have

(5.4) δr = φr − σ
∑

r′,r′,r

cr,r′(0) φr′ + O(σ2),

where O(σ2) denotes terms that have order of vanishing at σ = 0 at least 2.

Proof. Follows easily from (5.3). We omit the details. �

Let M ∈ C[X] be a weight-1 monomial with leading coefficient 1. Our next goal is to

evaluate the following auxiliar expression:

〈M, φm〉0,4 := ∂σ〈M〉0,3
∣∣∣
σ=0

.

Lemma V.3. The number 〈M, φm〉0,4 is non-zero iff M = Mi for some i = 1, 2, 3. In the

latter cases the numbers are given as follows

(5.5)
(
〈M1, φm〉0,4, 〈M2, φm〉0,4, 〈M3, φm〉0,4

)
= −(m1,m2,m3)E−1

W .
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Proof. For the second part, we apply the operators Xi ∂Xi , i = 1, 2, 3, to the identity

M1 + M2 + M3 = Wσ − σφm(X)

and take the residue. We get

〈M1〉0,3 a1i + 〈M2〉0,3 a2i + 〈M3〉0,3 a3i = −σmi 〈φm〉0,3.

It remains only to differentiate with respect to σ and set σ = 0.

For the first part, because M is a weight-1 monomial with coefficient 1, we can use the

relations in the Jacobi algebra of Wσ to rewrite M as a product of φm and a function of σ.

Let us write M = h(σ) φm. For example, in the Fermat E(1,1)
6 case,

X3
1 = −3σφ111; (1 +

σ3

27
) X2

1 X2 = 0.

If M , Mi, i = 1, 2, 3, then h(σ) either does not vanish at σ = 0 or vanishes at σ = 0 with

order at least 2. In both cases, 〈M, φm〉0,4 vanish. �

Now we are ready to compute the 4-point correlators that are needed for the recon-

struction of the CohFT. Let δr(s,X), r = r1, r2, r3 be polynomials corresponding to the flat

vector fields ∂/∂tr via the Kodaira–Spencer isomorphism (4.34). Put

Ξ(s,X) = δr1(s,X)δr2(s,X)δr3(s,X).

Note that Ξ(0,X) is a homogeneous monomial (see (5.4)) with leading coefficient 1.

Lemma V.4. The 4-point genus-0 correlators with a top degree insertion δm are

〈δr1 , δr2 , δr3 , δm〉
S G
0,4 =


−qT

i , if Ξ(0,X) = Mi,

0 , otherwise.

Proof. The same argument in first part of Lemma V.3 also works for Ξ(σ,X). Thus if

Ξ , Mi, i=1,2,3, we have

〈Ξ, δm〉
S G
0,4 = 0.
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In order to finish the proof we need only to compute the correlators when Ξ(0,X) = Mi

for some i = 1, 2, 3. Note that the diagonal entries of the matrix EW are always at least 2

(see Table 1.1). Therefore, it is enough to compute the following correlators:

〈δ100, δ100, δr, δm〉
S G
0,4 , r = (a11 − 2, a12, a13),

〈δ010, δ010, δr, δm〉
S G
0,4 , r = (a21, a22 − 2, a23),

〈δ001, δ001, δr, δm〉
S G
0,4 , r = (a31, a32, a33 − 2).

We do not have a uniform computation since we need to use Lemma V.2, for which the

coefficients cr,r′(0) can be computed only on a case-by-case basis. Let us sketch the main

steps of the computation in several examples, leaving the details and the remaining cases

to the reader. We will make use of the notation

δ(σ,X) ≈ φ(σ,X), δ, φ ∈ C[X],

which means first order approximation at σ = 0, i.e., δ(σ,X) − φ(σ,X) = O(σ2).

Case 1: W = X3
1 +X3

2 +X3
3 ∈ E(1,1)

6 and φm = X1X2X3. Since W is symmetric in X1, X2, X3

it is enough to compute only one of the correlators, say Ξ = M1. After a straightforward

computation (the notation is the same as in Lemma V.1) we get

g100 =
(1
3
φ011,−

σ

9
φ002,

σ2

27
φ101

)
.

It follows that δ100 ≈ φ100 and then using formula (5.5) we get

〈δ100, δ100, δ100, δm〉
S G
0,4 = −

1
3
.

Case 2: W = X4
1 + X4

2 + X2
3 ∈ E(1,1)

7 and φm = X2
1 X2

2 . In this case M3 = 0 in the Jacobi

algebra of W and W is symmetric in X1 and X2. It is enough to compute only one of the

correlators, say the one with Ξ(0,X) = M1. We have

g100 =
(1
4
φ020,−

σ

8
φ110, 0

)
.
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It follows that

δ100 ≈ φ100, δ200 ≈ φ200 +
σ

4
φ020.

Using formula (5.5) we find

〈δ100, δ100, δ400, δm〉
S G
0,4 = −

1
4
.

Case 3: W = X3
1 X2 + X2

2 + X3
3 ∈ E(1,1)

8 and φm = X1X2X3. In this case, since M2 = 0 in the

Jacobi algebra, we need to compute two correlators. We have

g100

g010

g001


=



1
3φ001 −

σ2

54φ200
σ2

18φ110 −σ9φ010

−1
6φ201 + σ2

27φ110
1
2φ111 −σ

2

9 φ210

−σ9φ010 −
σ2

54φ101
σ2

9 φ011
1
3φ110


.

It follows that we have the following linear approximations:

δ100 ≈ Φ100, δ001 ≈ Φ001, δ110 ≈ Φ110.

The correlators then become

〈δ100, δ100, δ110, δm〉
S G
0,4 = −

1
3
, 〈δ001, δ001, δ001, δm〉

S G
0,4 = −

1
3

Case 4: The Fermat type E(1,1)
8 , i.e. W = X6

1 + X3
2 + X2

3 and φm = X4
1 X2. In this case M3 = 0,

so again we have to compute two correlators. We have

g100 =
(1
6
φ020 +

σ2

27
φ200,−

2σ
9
φ300, 0

)
, g010 =

(
−
σ

18
φ300 +

σ2

27
φ110,

1
3
φ400, 0

)
.

It follows that the first order approximations that we need are

δ100 ≈ Φ100, δ010 ≈ Φ010, δ400 ≈ Φ400 +
σ

2
Φ210.
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Formulas (5.5) and (4.36) imply

〈δ100, δ100, δ400, δm〉
S G
0,4 = −

1
6

; 〈δ010, δ010, δ010, δm〉
S G
0,4 = −

1
3
. �

Comparing the 4-point correlators in Lemmas III.10 and V.4 we see that they have

opposite signs. It is not hard to see that if we rescale the primitive form by (−1); then

the 3-point correlators in the Saito–Givental theory do not change, while the 4-point ones

change their sign. Therefore, we rescale the primitive form by −1 and define the map

HWT → TMW , ρr 7→ (−1)1−deg φrδr, r = (r1, r2, r3),

where ρr = ρr1
1 ρ

r2
2 ρ

r3
3 . Lemmas III.10 and V.4 imply that the above map is a mirror sym-

metry map, i.e., it identifies the correlators of the FJRW theory of (WT ,GWT ) and the

correlators of the Saito-Givental theory of W. Theorem I.5 is proved.



CHAPTER VI

Global mirror symmetry

In this chapter, we give some examples of the classification of special points.

Construction of the mirror map

The primitive form is chosen to be ω = d3X/πA(σ), where the cycle A ∈ H1(Eσ)

is invariant with respect to the local monodromy around σ = pk. Recall that πA(σ) is

a solution to the Picard–Fuchs equation (IV.1). The latter has near σ = pk a basis of

solutions {F(1)
1 (x), F(2)

2 (x)} given by formula (4.25). The invariance of A implies that

(6.1) πA(σ) = λW F(1)
1 (x)

for some scalar λW ∈ C
∗. We choose a second cycle B ∈ H1(Eσ), such that

τ :=
πB(σ)
πA(σ)

is the modulus of the elliptic curve Eσ; then we have

(6.2) πB(σ) =
KλW

2π
√
−1

(
F(1)

2 (x) + K′ · F(1)
1 (x)

)
,

where K,K′ are constants whose values are given as follows. The j-invariant of Eσ has the

form

(6.3) j(σ) =
P(σ)

(1 −Cσl)N , P(σ) ∈ C[σ]

88
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for some polynomial P(σ) and some integer N. Then

K = N, K′ = −
1
N

ln P(pk).

Note that

(6.4) 〈1, φ−1〉A =
1

K′′(1 −C σl) π2
A

,

where K′′ is some constant and the index A on the LHS indicates that we are computing

the residue pairing (4.4) with respect to the primitive form ω. Since the residue pairing

must be identified with the Poincaré pairing, the mirror map should satisfy

(6.5) ∆01 7→ 1, ∆02 7→ K′′(1 −C σl)φ−1(X)π2
A.

The next step is to identify the divisor coordinate t02 in the orbifold GW theory and the

modulus τ. We define

(6.6) t02 = t−1 :=
2π
√
−1

L
τ,

where L = 3, 4, 6 respectively for the elliptic orbifolds P1
3,3,3,P

1
4,4,2,P

1
6,3,2.

Since

1 = 〈∆01,∆02〉 = 〈1,
∂

∂ t−1
〉 =

∂σ

∂τ

∂τ

∂ t−1
〈1,

∂

∂σ
〉A =

∂σ

∂τ

∂τ

∂ t−1
〈1, φ−1〉A,

we get

1
K′′(1 −C σl) π2

A

=
2π
√
−1

L
∂τ

∂σ
=

2π
√
−1

L
π′B πA − πB πA

π2
A

.

Note that π′B πA − πB π
′
A is the Wronskian of the Picard–Fuchs equation (IV.1), so it must

be proportional to (1−C σl)−1. The proportionality coefficient can be found by comparing

the Laurent series expansions at σ = pk. Namely, it is − N
2πi λ

2
W l C1/lηk. This determines the

value of λ2
W ,

(6.7) λ2
w = −

L
NK′′lC1/lηk .
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The most delicate part of constructing the mirror map is finished. In order to complete

the construction, we need to identify the twisted cohomology classes ∆i j with monomials

δr(σ,X). The key observation is that the sections

(6.8)
∫

δr(σ,X)
ω

dWσ

of the vanishing cohomology bundle of Wσ are flat with respect to the Gauss–Manin con-

nection. This way our choice of δr depends on an invertible matrix of size (µ−2)× (µ−2).

The correlation functions in the Saito–Givental CohFT are invariant with respect to the

translation t−1 7→ t−1 + 2π
√
−1, i.e., we can expand the correlation functions into Fourier

series in q := et−1 . The coefficient in front of qd, d ∈ Z, is called the degree-d part of

the correlator function. By taking the degree-0 part of the 3-point functions, we obtain a

Frobenius algebra structure on the Jacobi algebra QW that under the mirror map should be

identified with the Frobenius algebra corresponding to the Chen–Ruan orbifold (classical)

cup product. Using also that the mirror map preserves homogeneity we obtain a system

of equations for the matrix. It remains only to see that these equations have a solution.

Let us list the explicit formulas for the mirror map for several examples. We omit the de-

tails of the computations, which by the way are best done with the help of some computer

software (e.g. Mathematica or Maple).

6.1 Mirror to LCSL point at roots of unity

Large complex structure limit point for Wσ = X3
1 + X3

2 + X3
3 + σX1X2X3

For this example x = −σ3/27, i.e., C = −1/27 and l = 3. The j-invariant is

j(σ) = −
σ3(−216 + σ3)3

(27 + σ3)3 =
−27x(8 + x)3

(1 − x)3 .

We have pl = −3 and

K = N = 3, ∆02 = 27(1 − x)X1X2X3π
2
A,
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which implies that λW = ±1. We pick λW = 1.

The Fourier series of 1 − x in q = e2πiτ/3 is

(6.9) 1 − x = −27q − 324q2 − 2430q3 − 13716q4 + · · ·

Let

r = (1, 0, 0), (0, 1, 0), (0, 0, 1); r′ = (1, 1, 1) − r.

A natural basis for the flat sections with non-integral degrees are

δr = (1 − x)1/3φr(X) πA, δr′ = (1 − x)2/3φr′(X) πA.

Applying (4.35), we know the non-vanishing correlators 〈· · ·〉0,3,0 are

〈1, δr, δr′〉0,3,0 = 〈δr, δr, δr〉0,3,0 = 〈δ1,0,0, δ0,1,0, δ0,0,1〉0,3,0 =
1
27
.

The mirror map is given by (6.5), (6.6), and it identifies the ring generators as follows:

∆11

∆21

∆31


=



1 1 1

1 e[ 2
3 ] e[ 1

3 ]

1 e[ 1
3 ] e[ 2

3 ]





δ1,0,0

δ0,1,0

δ0,0,1


.

It is easy to check that this identification agrees with the Chen-Ruan orbifold cohomology

ring of P1
3,3,3 (see Chapter II). For example, we have

〈∆11,∆11,∆11〉0,3,0 =
∑

r;deg φr=1/3

〈δr, δr, δr〉0,3,0 + 6〈δ1,0,0, δ0,1,0, δ0,0,1〉0,3,0 =
1
3
.

Now we need only to check that

〈∆11,∆21,∆31〉0,3,1 = 1.

After a straightforward computation we get

〈∆11,∆21,∆31〉0,3 =
(−σ − 3)πA

27
=

(1 − (1 − x))1/3 − 1
9

πA = q + q4 + 2q7 + · · ·



92

Large complex structure limit point for Wσ = X4
1 + X4

2 + X2
3 + σX2

1 X2
2

We substitute x = σ2/4, i.e., l = 2 and C = 1/4. The j-invariant is

j(σ) =
16(12 + σ2)3

(4 − σ2)2 =
64(3 + x)3

(1 − x)2 .

We have p2 = 2 and

K = N = 2, ∆02 = 16(1 − x) X2
1 X2

2 π
2
A.

It follows that λW =
√

2
4 . The Fourier series for 1 − x in terms of q = e2πiτ/4 is

1 − x = 64q2 − 1536q4 + 19200q6 + · · · .

Let us construct a basis of flat sections. First, note that the periods

Φr, r = (10, 01, 11, 21, 12)

still satisfy first order differential equations and that the corresponding flat sections will be

δr(σ,X) = (x − 1)deg φrφr(X) πA.

However, both Φ20 and Φ02 satisfy a second order hypergeometric equation with parame-

ters respectively α20 = α02 = 3/4, β20 = β02 = 1/4, γ20 = γ02 = 1/2. Namely, the periods

satisfy the following system:

(6.10)


(4 − σ2) ∂σΦ20(σ) =

σ

2
Φ20(σ) − Φ02(σ);

(4 − σ2) ∂σΦ02(σ) =
σ

2
Φ02(σ) − Φ20(σ).

It follows that Φ02 = L Φ20 (and Φ20 = L Φ02) where L is the differential operator

L = −(4 − σ2)∂σ +
σ

2
,

which lead to second order differential equations. Let us denote by
{
F(1)

1,r, F
(1)
2,r

}
the basis

of solutions (4.25) of the hypergeometric equations near x = 1 for the weights (αr, βr, γr).
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Thus we can obtain a pair of polynomials δ20 and δ02 that determine flat sections by solving

the following system:

(6.11)


φ20 πA

φ02 πA


=


c20,1 F(1)

1,20 c20,2 F(1)
2,20

L(c20,1 F(1)
1,20) L(c20,2 F(1)

2,20)




δ20

δ02


.

Since Φ02 satisfies a hypergeometric equation as well (with the same parameters), we can

choose constants c20,i, i = 1, 2, s.t.,

(
L(c20,1 F(1)

1,20), L(c20,1 F(1)
2,20)

)
=

(
c02,1 F(1)

1,02, c02,2 F(1)
2,02

)
.

For example, we choose

c20,1 =
√

2/8, c20,2 =
√
−1/2, c02,1 =

√
2/8, c02,2 = −

√
−1/2.

The mirror map can be chose in the following form: ∆3,1 = δ20 and
∆1,1

∆2,1


⊕


∆1,2

∆2,2


=


1
√
−1

1 −
√
−1




c10 δ10

c01 δ01


⊕


−4
√
−1 2

√
−1

−4
√
−1 −2

√
−1




c11 δ11

δ02


,

where the constants

c10 = c01 = 2−1/4, c11 = 1.

This identification induces an isomorphism of Frobenius algebras and for the 3-point,

degree-1 correlator which is needed in the reconstruction Lemma II.3 we get

〈∆11,∆21,∆31〉0,3 =
(1 − x)1/2 F(1)

1,20 πA

8λW

=
1
8

(1 − x)1/2
2F1 (1/4, 3/4; 3/2; 1 − x) 2F1 (1/4, 1/4; 1; 1 − x) .

The Fourier series of the correlator has the form q+2q5 +q9 +2q13 +· · · , which in particular

implies that the degree-1 part is 1.
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Large complex structure limit point for Wσ = X6
1 + X3

2 + X2
3 + σX4

1 X2

We set x = −4σ3

27 , i.e., l = 3 and C = −4/27. The j-invariant is

j(σ) =
4σ3

27 + 4σ3 =
−x

1 − x
.

In this case it is more convenient to construct the mirror map near σ = p2 = −2−2/33η2.

We have

K = N = 1, ∆02 = 36(1 − x)X4
1 X2π

2
A.

It follows that λW =
√
−3

25/63η2 . The mirror map can be constructed as follows:

∆11 = c10,2(1 − x)1/6φ10; ∆15 = c31,2(1 − x)5/6φ31;

and

(∆21,∆12,∆31,∆13,∆22,∆14) = (δ01, δ20, δ11, δ30, δ21, δ40) .

Here δr(r = 01, 20, 11, 30, 21, 40) have the same form as in (6.13). After a straightforward

computation we get a mirror map that identifies the ring structures by setting

∆11 = δ10 = −22/331/2(1 − x)1/6 φ10 πA,

∆21 = δ01 = −(−2)5/631/2(1 − x)1/3
(
F(1)

2,20 φ01 + (−2)−1/3 F(1)
2,01 φ20

)
πA,

∆12 = δ20 = (−1)1/22−7/631/2(1 − x)1/3
(
F(1)

1,20 φ01 − 3(−2)−1/3 F(1)
1,01 φ20

)
πA,

∆31 = δ11 = (−1)1/622/33(1 − x)1/2
(
F(1)

2,30 φ11 + (−2)−1/3 F(1)
2,11 φ30

)
πA,

∆13 = δ30 = (−2)2/33−1/2(1 − x)1/2
(
F(1)

1,20 φ11 − 2(−2)−1/3 F(1)
1,11 φ30

)
πA,

∆22 = δ21 = (−1)1/223/233/2(1 − x)2/3
(
F(1)

2,40 φ21 + (−2)−1/3 F(1)
2,21 φ40

)
πA,

∆14 = δ40 = (−1)5/62−5/233/2(1 − x)2/3
(
F(1)

1,40 φ21 −
5
3

(−2)−1/3 F(1)
1,21 φ40

)
πA,

∆15 = δ31 = −21/331/2(1 − x)5/6 φ31 πA.
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For the 3-point correlator we get

〈∆1,1,∆2,1,∆3,1〉0,3 = q + 2q7 + · · · ,

which means that the above identification is a mirror map.

6.2 Mirror to LCSL points at infinity

In this section, we describe the limit behavior of the Saito-Givental theory of ISESs at

σ = ∞. Similar results were already obtained in [MR] for three special choice of an ISES

W (with marginal deformation φm = X1X2X3):

X3
1 + X3

2 + X3
3 ∈ E(1,1)

6 , X3
1 X2 + X2

2 X3 + X2
3 ∈ E(1,1)

7 , X3
1 X2 + X2

2 + X3
3 ∈ E(1,1)

8 .

Namely, it was proved that the Saito-Givental theory at σ = ∞ is mirror to the orbifold

Gromov-Witten theory respectively of P1
3,3,3,P

1
4,4,2 and P1

6,3,2. It turns out that if W is a

Fermat polynomial of type E(1,1)
8 ; then the mirror of the Saito–Givental theory is no longer

an orbifold GW theory, but an FJRW theory. This agrees with the physicists’ prediction

that the monodromy of the Gauss–Manin connection around the large volume limit point

should be maximally unipotent, while as we will see below, the monodromy aroundσ = ∞

is diagonalizable

The complete answer to the question that what kind of theory is mirror to the Saito–

Givental theory at σ = ∞ for all ISESs is stated in Conjecture I.7. The proof is on a

case-by-case basis using the same technique, we compute the initial set of 3- and 4-points

genus-0 correlators in the Saito-Givental theory and match them with the corresponding

correlators in the orbifold GW or FJRW theories. We will sketch the main steps of the

argument on one example and leave the details to the reader. The other cases will appear

in a separate paper.
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Large complex structure limit point for Wσ = X3
1 X2 + X2

2 + X3
3 + σX1X2X3

In this example, we substitute x = −σ
3

27 , i.e., l = 3 and C = −1/27. The j-invariant is

j(σ) = −
σ3(24 + σ3)3

27 + σ3 =
27x(8 − 9x)3

1 − x
.

It is convenient to construct the mirror map when σ is near the point p1 = −3η. We have

K = N = 1, ∆02 = 18(1 − x)X1X2X3π
2
A.

It follows that λW =
√
−3

3η . The Fourier series of 1 − x in terms of q = e2πiτ/6 is

(6.12) 1 − x = −27q6 − 324q12 − 2430q18 − 13716q24 + · · ·

Note that the largest dimension of a subspace of homogeneous flat sections is 2. Let us

assume that {φr, φr′} form a basis of the homogeneous subspace of the Jacobi algebra of

weight deg φr = deg φr′ . The period integral Φr(σ) is a solution to a hypergeometric

equation with weights αr, βr, γr. We choose a new basis of sections with polynomials

defined by

(6.13) (δr, δr′) = (φr πA, φr′ πA)


cr,1F(1)

1,r(x) cr′,1F(1)
1,r′(x)

cr,2F(1)
2,r(x) cr′,2F(1)

2,r′(x)



−1

,

where cr,i, cr′,i(i = 1, 2) are some constants and

{
F(1)

1,r(x) := F(1)
1 (x), F(1)

2,r(x) := F(1)
2 (x)

}
is the basis of solutions (4.31) to the hypergeometric equation with weights (αr, βr, γr). If

Φr satisfies a first order differential equation, we set

F(1)
1 (x) = 0, F(1)

2 (x) = 1F0 (αr; 1 − x)

and use the same formula in order to define δr. We choose cr,i such that
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Table 6.1:
r = 100 200 001 101 010 201 110 011

cr,1 = 0
√
−3η
3 0 2

√
−1η
9 −

√
−1η2

9

√
−1η2

3 0 0

cr,2 =
√

3 −
√
−1
3 −

√
−1
3 −

√
3η
3 −

√
3η2

3

√
−3
3

√
−3
3

√
3

Now we can construct a map as follows:

∆11 = c100,2(1 − x)1/6Φ100; ∆15 = c011,2(1 − x)5/6Φ011;

and

(∆21,∆12,∆31,∆13,∆22,∆14) = (δ200, δ001, δ101, δ010, δ201, δ110) .

This is actually a mirror map. It preserves the Chen-Ruan product and

〈∆1,1,∆2,1,∆3,1〉0,3 =
1
√

3
(1 − x)1/6

2F1 (1/3,−1/6; 1/2; 1 − x) πA = q + 2q7 + · · · .

6.3 Mirror to other FJRW-points

The case of Fermat type E(1,1)
8

Let W(σ) := X6
1 + X3

2 + X2
3 +σX4

1 X2. As usual we substitute x = − 4
27σ

3. The j-invariant

is

j(σ) =
4σ3

27 + 4σ3 =
−x

1 − x
.

The Picard-Fuchs equation for the periods πA has weights (α, β, γ) = (1/12, 7/12, 2/3).

Since α − β is not an integer, the monodromy is diagonalizable and we have the following

basis of solutions (eigenvectors for the monodromy around σ = ∞) near x = ∞ :

πA∞ := x−1/12
2F1

( 1
12
,

5
12

;
1
2

; x−1
)
, πB∞ := λW x−7/12

2F1

( 7
12
,

11
12

;
3
2

; x−1
)
,

where the constant λW will be fixed later on. Put

t−1 =
πB∞

πA∞
≈ λW x−

1
2 ,
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where ≈ means that we truncated terms of order O(σ2). It is easy to check (by using the

differential equation for the periods) that when restricted to the subspace of marginal de-

formation, t−1 is a degree 0 flat coordinate, i.e., the residue pairing 〈1, ∂/∂t−1〉 is a constant.

To construct the mirror map for non-integral degrees, we have to find a basis of ho-

mogeneous flat sections (with non-integer degrees) of the Gauss–Manin connection near

σ = ∞. The periods corresponding to the polynomials φ01 and φ20 satisfy
(27 + 4σ3)∂σ Φ20 = −3σ2 Φ20 − (9/2)Φ01

(27 + 4σ3)∂σ Φ01 = −σ2 Φ01 + (9σ/2)Φ20

Moreover, as we already know Φ01 satisfies a hypergeometric equation. The corresponding

weights are (α01, β01, γ01) = (1/12, 7/12, 1/3). Let

L20 :=
2

9σ

(
(27 + 4σ4)∂σΦ01 + σ2Φ01

)
.

Then the solutions to the above system have the form
Φ01

Φ20


=


F(∞)

1,01(x) F(∞)
2,01(x)

L20F(∞)
1,01(x) L20F(∞)

2,01(x)




A01

A20


Solving for A01 and A20 we obtain two flat sections of degree 1

3 . The remaining flat sections

can be found in a similar way. We get

A10 = (x − 1)1/6Φ10, A31 = (x − 1)5/6Φ31

and 
Φk,1

Φk+2,0


=


F(∞)

1,(k,1)(x) F(∞)
2,(k,1)(x)

Lk+2,0F(∞)
1,(k,1)(x) Lk+2,0F(∞)

2,(k,1)(x)




Ak,1

Ak+2,0


, k = 0, 1, 2
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where

L30 =
1

6σ

(
(27 + 4σ4)∂σΦ11 + 2σ2Φ11

)
, L40 =

2
15σ

(
(27 + 4σ4)∂σΦ21 + 3σ2Φ21

)
.

Let δr(s,X) be polynomials, such that the geometric sections [δrω] = crAr, see (5.2).

Here cr are given in the table below

r = 10 01 20 11 30 21 40 31

cr λ1 λ2 −
λ2

1C0

3 λ1λ2 −λ3
1C0 λ1λ

2
2

4λ4
1C0

5
2λ5

1C0

9

The constants appearing in the table are given as follows:

(6.14) λ6
1 = 24C2

0, λ2
2 =

λ4
1

C0
, C3

0 = −
27
4
.

Now we compute the pairing and the necessary genus-0 correlators. The pairing is

〈δ10, δ31〉 = 〈δ01, δ21〉 = 〈δ20, δ40〉 = 〈δ11, δ11〉 = 〈δ30, δ30〉 = 1.

All 3-point correlator functions that do not have insertion 1 (otherwise the correlator re-

duces to a 2-point one) have a limit at σ = ∞. The non-zero limits are as follows:

〈δ10, δ10, δ40〉0,3 = 〈δ10, δ01, δ11〉0,3 = 〈δ01, δ01, δ20〉0,3 = 1.

〈δ10, δ20, δ30〉0,3 = 〈δ20, δ20, δ20〉0,3 = −3.

In other words, the Jacobi algebra extends over σ = ∞. If we denote the extension by

QW∞ , then it is not hard to see that δ10 and δ01 are generators and we have

QW∞ := C[δ10, δ01]/
(
4δ3

10δ01, δ
4
10 + 3δ2

01

)
.

Finally, the nonzero 4-point genus-0 basic correlators are

〈δ01, δ01, δ01, δ−1〉0,4 =
∂

∂ t−1
〈λ3

2(x1/12Φ01 +
3

4C0
x−1/4Φ20)3〉

∣∣∣∣
x=∞

=

λ3
2
∂

∂ t−1

(
x1/4〈Φ03〉 +

9
4C0

x7/12〈Φ22〉

)
= −

λ2
2C0

4λ4
1

∂

∂ t−1

(
λW x−1/2

)
= −

1
4
.
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and

〈δ10, δ10, δ
2
10δ01, δ−1〉0,4 = −

1
4
.

where in order to achieve the above identities we set

λW =
λ4

1λ2

54
.

Recall that ρ1, ρ2 are generators of the FJRW ring corresponding to the pair
(
W ′ = X4

1 X2 +

X3
2 + X2

3 ,GW′
)
. Using the reconstruction lemma in FJRW theory (see Lemma III.10, it is

easy to check that the map

(
ρ1, ρ2

)
7→

(
(−1)5/6δ01, (−1)2/3δ10

)
.

is a mirror symmetry map, i.e., it induces an isomorphism between the FJRW theory of

(W ′,GW′) and the Saito-Givental limit of W = X6
1 + X3

2 + X2
3 + σX4

1 X2 at σ = ∞.



CHAPTER VII

Landau-Ginzburg/Calabi-Yau correspondence

7.1 Givental’s quantization formula

Following Givental, we introduce the vector spaceH = H((z)) of formal Laurent series

in z−1. Furthermore,H is equipped with the following symplectic structure Ω:

Ω( f (z), g(z)) = resz=0( f (−z), g(z))dz, f (z), g(z) ∈ H ,

where for brevity we put (a, b) = η(a, b) for a, b ∈ H. Note that

H = H+ ⊕H−

withH+ = H[z] andH− = z−1H[[z−1]], which allows us to identifyH with T ∗H+. We fix

a Darboux coordinate system qi
k, pl, j forH via

f (z) =

∞∑
k=0

N−1∑
i=0

qi
k ∂izk +

∞∑
l=0

N−1∑
j=0

pl, j ∂
j(−z)−l−1 ∈ H ,

For convenience, we put

(7.1) qk := (q1
k , · · · , q

N
k ) and q := (q0,q1, · · · ).

In this paper, we focus on the subgroup L(2)GL(H) of the loop group LGL(H) consisting

of symplectomorphisms T : H → H . Note that such symplectomorphisms are defined by

the following equation:

∗T (−z)T (z) = Id,
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where ∗T is the adjoint operator with respect to the bi-linear pairing η, i.e.,

(∗T f , g) = ( f ,Tg).

We will allow symplectomorphism E of the following form:

E := Id + E1z + E2z2 + · · · ∈ End(H)[[z]].

They form a group which we denote by L(2)
+ GL(H) and we refer to its elements as upper-

triangular transformations.

Next, we want to define the quantization Ê. Note that A = log E is a well-defined

infinitesimal symplectomorphism, i.e., ∗A = −A. For any infinitesimal symplectomorphism

A, we can associate a quadratic Hamiltonian hA onH ,

(7.2) hA( f ) =
1
2

Ω(A f , f ).

The quadratic Hamiltonians are quantized by the rules:

(7.3) (pk,i pl, j)̂ = ~
∂2

∂qi
k∂q j

l

, (pk,iq
j
l )̂ = (q j

l pk,i)̂ = q j
l

∂

∂qi
k

, (qi
kq

j
l )̂ =

qi
kq

j
l

~
.

The quantization of E is defined by

Ê = eÂ := eĥA .

For an upper-triangular symplectomorphism E, there is an explicit formula for the

quantization Ê. Put

q(z) =

∞∑
k=0

N−1∑
i=0

qi
k ∂izk ∈ H[[z]].

Denote the dilaton shift by q̃(z) = q(z) + 1z, i.e., q̃i
k = qi

k + δ1
kδ

i
0. Recall that the ancestor

GW potential of X is

(7.4) AX(~,q(z)) := exp
(∑

g,n

∑
β∈NE(X)

∞∑
ιi,ki=0

~g−1〈τι1∂k1 , · · · , τιn∂kn〉
X
g,n,β qβ

n!

n∏
i=1

q̃ιiki

)
.
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AX(~,q(z)) belongs to a Fock space C[[q0, q̃1,q2, · · · ]]. The action of the quantization

operator Ê, whenever it makes sense, is given by the following formula:

(7.5) Ê
(
AX(~,q(z))

)
=

(
eWEAX(~,q(z))

)∣∣∣
q7→E−1q ,

where E−1q is the change of q-coordinate

(E−1q)i
k =

k∑
l=0

N−1∑
j=0

(E−1) ji
l q j

k−l.

And WE is the quadratic differential operator

(7.6) WE :=
~

2

∞∑
k,l=0

N−1∑
i, j=0

(
∂i,Vkl(∂ j)

) ∂2

∂qi
k∂q j

l

,

whose coefficients Vkl ∈ End(H) are given by

(7.7)
∑
k,l≥0

Vkl(−z)k(−w)l =
E∗(z)E(w) − Id

z + w
.

Remark VII.1. Givental also considered the quantization of a general symplectomorphism

of the form eA. For example, A could be lower triangular in the sense containing the

negative power of z. The lower triangular one can not be lift to cycle level. Hence, it will

not be considered here.

7.1.1 A quantization operator in singularity theory

Suppose that W is one of the three families of simple elliptic singularities under consid-

eration. Recall the global Frobenius manifold structures onM. First we recall the definiton

of Givental’s quantization operator and then we use it to define a CohFT ΛW(t) over the

semisimple lociMss.

Let K ⊂ M be the set of points t such that ui(s(t)) = u j(s(t)) for some i , j. We

call this set the caustic and putMss for its complement. Note that the points t ∈ Mss are

semisimple, i.e., the critical values ui(s(t)) (1 ≤ i ≤ µ) form a coordinate system locally
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near t. Let t ∈ Mss; then we have an isomorphism

Ψ(t) : Cµ → TtM, ei 7→
√

∆i(s(t))
∂

∂ui(s(t))
,

where ∆i(s(t)) is defined by

( ∂

∂ui(s(t))
,

∂

∂u j(s(t))
)

=
δi j

∆i(s(t))
,

and we identify TtM with H via the flat metric, i.e.,

∂

∂ui
=

µ−1∑
j=0

∂t j

∂ui
∂ j, 1 ≤ i ≤ µ.

Ψt diagonalizes the Frobenius multiplication and the residue pairing:

ei • e j = δi, j

√
∆i(s(t)) ei, (ei, e j) = δi j.

The system of differential equations (4.8) and (4.9) admits a unique formal solution of

the type

Ψ(t)R(t) eU(t)/z, R(t) = Id +

∞∑
k=1

Rk(t)zk ∈ End(Cµ)[[z]].

where U(t) is a diagonal matrix with entries u1(s(t)), . . . , uµ(s(t)) on the diagonal, cf.[Du,

Gi2]. As we work for isolated singularities, the homogeneity condition implies Rk(s) are

uniquely solved from R0(s) by inductively.

Following Givental, the formal ancestor potential

A f ormal(t)(~,q(z))

of (the germ of) the Frobenius structure (H, η,Ft) is defined by

(7.8) Ψ̂(t) R̂(t) e(U(t)/z)̂
µ∏

i=1

Apt(~∆i(t), iq̃(z)
√

∆i(t)
)
,

where Ψ̂ means change of the variables q(z) 7→ Ψ−1(t) q(z) and Apt is the total ancestor

potential of the CohFT IN=1,∆=1.



105

7.2 Symplectic transformation and analytic continuation

As we recall for the construction of B-model total ancestor potential, it depends on

the choices of a flat basis of the state space. And the choice of a flat basis is essentially

coming from a choice of symplectic basis in H1(Eσ,C). For two special limits σ1 and σ2,

let us denote the choice of symlectic basis by (Ai, Bi) ∈ H1(Eσi ,C) for i = 1, 2. We can

analyticlally continuate the basis (A1, B1) to σ2 by a path Cσ1,σ2 connecting from σ1 to σ2.

We denote the new basis at σ2 again by (A1, B1). The difference between two basis can be

captured by a transformation, Uσ1,σ2 , where

Uσ1,σ2


A1

B1


=


A2

B2


.

This transformation gives a symplectic transformation on spaceH . We denote it again by

Uσ1,σ2 . According to [MR], the difference of two total ancestor potentials at σ1 and σ2

are related by the quantization operator for this symplectic transformation, up to analytic

transformation. Combine all the mirror theorems we had in previous chapters, we obtain

a proof of Theorem I.2.



CHAPTER VIII

Modularity

8.1 Cycle-valued quantization

In this chapter, we will discuss modularity of Gromov-Witten theory in a cycle-valued

version. For reader’s convenience, we introduce a cycle-valued version of Givental’s quan-

tization formula here. The key observation is due to Teleman. Teleman [Te] was able to

lift the quantization of an upper triangular symplectic transformation to the level of coho-

mological field theory. Let us describe his construction. According to formula (7.5), the

action of Ê is a composition of two operations: exponential of the Laplace type operator

(7.6) followed by the coordinate change q 7→ E−1q.

Coordinate Change

Let Λg,n be any linear function on H⊗n with values in the cohomology ring ofMg,n. We

can extend Λg,n from H⊗n to H⊗n
+ uniquely so that multiplication by z is compatible with

the multiplication by psi-classes, i.e.,,

(8.1) Λg,n(
∑
i≥0

γ1zi, · · · ) =
∑
i≥0

Λg,n(γ1, · · · )ψi
1.

Given an isomorphis of C[z]-modules

Φ(z) : H1[[z]]→ H2[[z]],
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we define

(Φ(z) ◦ Λ)g,n(γ1, · · · , γn) = Λg,n(Φ(z)−1(γ1), · · · ,Φ(z)−1(γn)) ∈ H∗(Mg,n,C).

Note that even if Λ is a CohFT, Φ(z) ◦ Λ might fail to be a CohFT.

Feynman type sum

The action of the exponential of the Laplacian (7.6) can be described in terms of sum

over graphs. Let us explain this in some more details. For a given graph Γ let us denote

by V(Γ) the set of vertices, E(Γ) the set of edges, and by T (V) the set of tails. For a

fixed vertex v ∈ V(Γ) we denote by Ev(Γ) and Tv(Γ) respectively the set of edges and tails

incident with v. The graph is decorated in the following way: each vertex v is assigned a

non-negative number gv called genus of v; there is a bijection t 7→ m(t) between the set of

tails and the set of integers {1, 2, . . . ,Card(T (Γ))}, and finally every flag (v, e) (i.e., a pair

consists of a vertex and an incident edge) is decorated with a vector zk∂i (k ≥ 0).

Furthermore, for a given edge e we define a propagator Ve as follows. Let v′, v′′ be the

two vertexes incident with e and let zk′∂i′ and zk′′∂i′′ be the labels respectively of the flags

(v′, e) and (v′′, e); then we define

Ve =
(
∂i′ ,Vk′,k′′∂

i′′
)
.

Note that since ∗Vk′,k′′ = Vk′′,k′ the definition of Ve is independent of the orientation of the

edge e. For every vertex v we define the differential operator

Dv
q =

∏
e∈Ev(Γ)

∂/∂qi(e)
k(e),

where zk(e)∂(i(e) is the label of the flag (v, e).

Given any formal functionA(~; q) = exp
(∑
~g−1F (g)(q)

)
, we have

(8.2) eWE A(~; q) = exp
(∑

Γ

1
|Aut(Γ)|

∏
e∈E(Γ)

Ve

∏
v∈V(Γ)

Dv
qF

(gv)(q)
)
,
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where the sum is over all connected decorated graphs Γ and |Aut(Γ)| is the number of

automorphisms of Γ compatible with the decoration.

Motivated by formula (8.2) we define

(8.3) (eWE ◦ Λ)g,n(γ1 ⊗ · · · ⊗ γn)

by the following formula:

∑
Γ

1
|Aut(Γ)|

∏
e∈E(Γ)

Ve

∏
v∈V(Γ)

Λgv,rv+nv

(
⊗e∈Ev(Γ) ∂i(e)ψ

k(e) ⊗t∈Tv(Γ) γm(t)

)
,

where rv = Card(Ev(Γ)), nv = Card(Tv(Γ)), and the sum is over all connected, decorated,

genus-g graphs Γ with n tails. Note that this definition is compatible with (8.2) in a sense

that the potential of the multi-linear maps (8.3) coincides with (8.2).

For an upper-triangular symplectic transformation E, we define

(8.4) Ê ◦ Λ := E ◦ (eWE ◦ Λ).

Using induction on the number of nodes, it is not hard to check that Ê ◦Λ is a CohFT (see

[Te]).

Classification of semi-simple CohFT

Let (H, η, •) be a semi-simple Frobenius algebra. We pick an orthonormal basis {ei} of

H, which allows us to identify (H, η, •) with the Frobenius algebra of a trivial CohFT, i.e.,,

the state space of IN,∆ for a particular ∆ (see (2.2)). In this section we would like to recall

the classification of all CohFTs whose state space is (H, η, •). According to Teleman (see

[Te], Theorem 1) we have the following higher-genus reconstruction result.

Proposition VIII.1. ([Te]) If Λ is a homogeneous CohFT with its underlying Frobenius

algebra (H, η, •). Assume H has a flat identity andFt is (formal) semi-simple; then

tΛ = Ψ̂(t) ◦ (Tz ◦ R̂(t) ◦ T−1
z ) ◦ IN,∆(t),
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where Tz := T1 z is a translation defined by

(T1 z ◦ Λ)g,n (γ1, · · · , γn) :=
∞∑

k=0

1
k!
π∗Λg,n+k(γ1, · · · , γn, ψn+1, · · · , ψn+k)

8.2 Cycle-valued version of B-model potential

Givental used R(t) to define a higher genus generating function overMss. In this chap-

ter, we would like to enhance his definition to Cohomological Field Theory.

For any semisimple point t ∈ Mss, we define a CohFT with a flat identity and a state

space H,

(8.5) ΛW(t) := Ψ(t) ◦ Tz ◦ R̂(t) ◦ T−1
z ◦ Iµ,∆(t).

We are interested in the loci of points t = (t, 0) ∈ H×Cµ−1, which are never semisimple.

To continue our B-model discussion, we need to prove that ΛW(t) extends holomorphically

for all t ∈ M. To begin with, let us fix g, n, and γi ∈ H; for convenience, we denote by

ΛW
g,n(t) := (ΛW(t))g,n.

ΛW
g,n(t)(γ1, . . . , γn) is a linear combination of cohomology classes on Mg,n whose coeffi-

cients are functions onM.

Lemma VIII.2. The coefficients of ΛW
g,n(t)(γ1, . . . , γn) are meromorphic functions on M

with at most finite order poles along the caustic K .

Proof. By definition, the CohFT (8.5) depends only on the choice of a canonical coordinate

system u(t) := (u1(s(t), . . . , uµ(s(t)). The latter is uniquely determined up to permutation.

Note that (8.5) is permutation-invariant, i.e., it does not matter how we order the canonical

coordinates. On the other hand, up to a permutation u(t) is invariant under the analytical

continuation along a closed loop inMss. It follows that ΛW
g,n(t) is a single valued function

onMss.
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We need only to prove that the poles along K have finite order. Note that according to

the definition of the class (8.3) only finitely many graphs Γ contribute. The reason for this

is that in order to have a non-zero contribution, we must have∑
e∈Ev(Γ)

k(e) ≤ 3gv − 3 + rv + nv.

Summing up these inequalities, we get∑
v

∑
e∈Ev(Γ)

k(e) ≤ 3(g − 1) − 3Card(E(Γ)) +
∑

v

rv + n,

However ∑
v

rv = 2Card(E(Γ)),

which implies that the number of edges of Γ is bounded by 3g−3+n. This proves that there

are finitely many possibilities for Γ. Moreover, there are only finitely many possibilities

for k(e), i.e., our class is a rational function on the entries of only finitely many Rk. Since

each Rk has only a finite order pole along the caustic the Lemma follows. �

We will prove below that ΛW
g,n(t) is convergent near the point (

√
−1∞, 0) ∈ H×Cµ−1 and

that it extends holomorphically through the caustic (see Theorem VIII.10 and Proposition

VIII.12). Thus ΛW(t) is a CohFT for all t ∈ M. In particular,

(8.6) ΛW
g,n(t) = lim

t∈Mss→(t,0)
ΛW

g,n(t)

for all t ∈ H = H × {0} ⊂ M.

8.3 Modular transformation

Using the residue pairing we identify T ∗M and TM, i.e., dti = ∂i′ . We also identify

End(H) with the space of µ × µ matrices via A 7→ (Ai j), where the entries Ai j are defined

in the standard way, i.e.,

A(dt j) =

µ−2∑
i=−1

Ai jdti .
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Recall the notation from Chapter IV: a loop C in Σ, inducing via the Gauss-Manin con-

nection a monodromy transformation ν on vanishing homology and a transformation of

the flat coordinates via analytic continuation t 7→ ν(t). The latter induces a monodromy

transformation of the stationary phase asymptotics, which was computed in [MR], Lemma

4.1. When W = X3
1 + X3

2 + X3
3 , let

(8.7) Mν(t) =



jν(t)−1 ∗ ∗ ∗

0 jν(t) 0 0

0 ∗ e4πi k/3 I3 0

0 ∗ 0 e2πi k/3 I3



∈ End(H)[[z]].

where

M−1, j = −e2πid jk n12 j−1
ν (t) t j, 1 ≤ j ≤ 6

and

M−1,0 = −n12z −
n2

12

2 jν(t)

6∑
i=1

titi′ , Mi,0 = n12ti′ , 1 ≤ i ≤ 6.

Lemma VIII.3. [MR] The analytic continuation along C transforms

Ψ(t)R(t)eU(t)/z into TMν(t)ΨtR(t)eU(t)/z P,

where P is a permutation matrix and T means transposition. �

The CohFT constructed by the analytical continuation along C of ΛW(t) will be denoted

by

ΛW
g,n

(
ν(t)

)
∈ H∗(Mg,n,C) ⊗ (H∨)⊗n.

Restricting to t≥0 = 0, we have

TMν(t) := lim
t≥0→0

TMν(t) = j−1
ν (t) Jν(t).
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With

(8.8) Jν(t) :=


1 0

0 j2
ν(t)


⊕

jν(t) e4πi k/3 I3

⊕
jν(t) e2πi k/3 I3 ∈ End(H)[[z]].

Now let

(8.9) Xν,t(z) =


1 −n12z/ jν(t)

0 1


⊕

I6 ∈ End(H)[[z]].

Theorem VIII.4. The analytic continuation transforms the Coh FT as follows:

(8.10) ΛW(
ν(t)

)
= J−1

ν (t) ◦ X̂ν,t(z) ◦ ΛW(t).

Proof. The calculation in [MR] also works on cycle-valued level. �

Now we give a lemma which is very useful later on.

Lemma VIII.5. Let E(z) ∈ L(2)
+ GL(H); then it intertwines with J−1

ν (t) by

J−1
ν (t) ◦ Ê(z) = Ê( j2

ν(t)z) ◦ J−1
ν (t).

Proof. From (8.8) and the definition of J−1
ν (t)◦, we know that the pairing η is scaled by j2

ν(t)

when applying J−1
ν (t)◦. Thus the quadratic differential action Ê(z) becomes Ê( j2

ν(t)z). �

Anti-holomorphic completion and modular transformation.

Let R or R be a cohomology ring of any fixed Deligne-Mumford moduli space of stable

curves of genus g with n marked points, i.e., R = H∗(Mg,n,C) for some 2g − 2 + n > 0.

Definition VIII.6. We say that a R-valued function f : H → R is a R-valued quasi-

modular form of weight m with respect to some finite-index subgroup Γ ⊂ SL2(Z) if there

are R-valued functions fi, 1 ≤ i ≤ K, holomorphic on H, such that
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1. The functions f0 := f and fi are holomorphic near cusp τ = i∞.

2. The following R-valued function

f (τ, τ̄) = f0(τ) + f1(τ)(τ − τ)−1 + · · · + fK(τ)(τ − τ)−K .

is modular, i.e., there exists some m ∈ N such that for any g ∈ Γ,

f (gτ, gτ) = j(g, τ)m f (τ, τ).

f (τ, τ) is called the anti-holomorphic completion of f (τ).

Anti-holomorphic completion of ΛW
g,n(t)

Let W be the Fermat type cubic polynomial. Denote by

(8.11) Xt,t̄(z) =


1 −z(t − t̄)−1

0 1


⊕

I6 ∈ End(H)[[z]],

where t̄ is the anti-holomorphic coordinate on H defined by

t̄ :=
at̄ + b
ct̄ + d

.

We define the anti-holomorphic completion of Coh FT ΛW(t) by:

(8.12) ΛW(t, t̄) := X̂t,t̄(z) ◦ ΛW(t).

Theorem VIII.7. Under the assumption of extension property, the analytic continuation

of the anti-holomorphic completion ΛW
g,n(t, t̄) along ν is

J−1
ν (t) ◦ ΛW

g,n
(
t, t̄

)
.

Proof. We define an operator X̂ν,t,t̄(z), s.t., the following diagram is commutative:

ΛW(t)
X̂t,t̄(z)
−−−−−→ ΛW(t, t̄)yJν(t)◦X̂ν,t(z)

yX̂ν,t,t̄(z)

ΛW(
ν(t)

) X̂ν(t),ν(t̄)(z)
−−−−−−→ ΛW(

ν(t), ν(t̄)
)
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We need to prove that

X̂ν,t,t̄(z) = J−1
ν (t).

Let us consider the analytic continuation for Xt,t̄(z). Analytic continuation acts on (t − t̄)−1

by
1

ν(t) − ν(t̄)
= −

( n12

jν(t)
+

1
t − t̄

)
j2
ν(t).

By definition (8.11), this implies

(8.13) Xν(t),ν(t̄)(z) = Xt,t̄( j2
ν(t)z) X−1

ν,t ( j2
ν(t)z).

Recalling Lemma VIII.5, we get,

(8.14) J−1
ν (t) ◦ X̂ν,t(z) ◦ X̂−1

t,t̄ (z) = X̂ν,t( j2
ν(t)z) ◦ X̂−1

t,t̄ ( j2
ν(t)z) ◦ J−1

ν (t).

Thus the result follows from (8.13) and (8.14). �

Cycle-valued quasi-modular forms from ΛW
g,n(t)

We consider a pair

(~γI , ιI) =
(
(γ1, · · · , γn), (ι1, · · · , ιn)

)
∈ H⊗n × Zn

≥0

where each γi ∈ S = {∂−1 = ∂µ−1, ∂0, · · · , ∂µ−2}. I is a multi-index

I = (i−1, i0, · · · , iµ−2) ∈ Zµ
≥0, i−1 + · · · + iµ−2 = n.

i j is the number of i ∈ {1, · · · , n} such that γi = ∂ j. Under the assumption of extension

property, we define a cycle-valued function f W
I,ιI

on H,

(8.15) f W
I,ιI (t) = ΛW

g,n(t)(~γI) ∈ H∗(Mg,n,C).

and its anti-holomorphic completion

f W
I,ιI (t, t̄) := ΛW

g,n(t, t̄)(~γI).
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For ιI = (0, · · · , 0), we simply denote them by f W
I (t) and f W

I (t, t̄). Let

(8.16) m(I) := 2i−1 +

µ−2∑
j=1

i j.

Proposition VIII.8. Let W be a simple elliptic singularity. Then f W
I,ιI

(t) satisfies the trans-

formation law of cycle-valued quasi-modular forms of weight 2g − 2 + m(I).

Proof. First we consider ιI = (0, · · · , 0). It is easy to see f W
I (t, t̄) is an anti-holomorphic

completion for f W
I (t) and for monodromy ν described as before, we have

f W
I (ν(t), ν(t̄)) =

(
X̂ν,t,t̄(z) ◦ ΛW(t, t̄)

)
g,n(~γI)

= j2g−2+m(I)
ν (t) ΛW

g,n(t, t̄)(~γI)

= j2g−2+m(I)
ν (t) f W

I (t, t̄).

The factor 2g − 2 comes from the rescaling of ~. Now the statement follows from mon-

odromy acts trivially on ψ-classes. �

Remark VIII.9. For f W
I (t) to be a cycle-valued modular form, it needs to be holomophic

at τ =
√
−1∞. This will be achieved by the mirror theorem in the next section. Hence, by

combining A-model with B-model, we produce cycle-valued quasi-modular forms.

8.4 Mirror symmetry

We identify via the mirror map the flat coordinates tB onM and the linear coordinates

t on Dε . Recall the CohFT ΛW
g,n(tB) defined by formula (8.5) for all semisimple points tB.

Proposition VIII.10. The CohFT ΛW
g,n(tB) extends holomorphically for all tB ∈ DB

ε , the

ancestor Gromov–Witten CohFT tΛ
X is convergent for all t ∈ Dε , and we have

tΛ
X
g,n = ΛW

g,n(tB), ∀t ∈ Dε .



116

Proof. The Frobenius structure of the quantum cohomology is generically semi-simple. In

particular, if we think of the CohFT tΛ
X as a CohFT over the field

FracC[[et, t0, · · · , tµ−2]],

where overline means algebraic closure and Frac stands for the field of fractions; then

tΛ
X is a semi-simple CohFT with a flat identity. Teleman’s reconstruction Theorem VIII.1

applies and we get that

(8.17) tΛ
X
g,n = ΛW

g,n(tB),

where the equality should be interpreted as equality in the space

H∗(Mg,n,C) ⊗ FracC[[et, t0, · · · , tµ−2]].

On the other hand, according to Lemma (VIII.2), ΛW
g,n(tB) is meromorphic for t ∈ DB

ε , thus

(8.18) ΛW
g,n(tB) = tΛ

X
g,n ∈ H∗(Mg,n,C) ⊗ FracC{et, t0, · · · , tµ−2},

where C{x1, . . . , xn} is the ring of convergent power series at x1 = · · · = xn = 0 (the

overline means algebraic closure). On the other hand, by definition

(8.19) tΛ
X
g,n ∈ H∗(Mg,n,C) ⊗ C[[et, t0, · · · , tµ−2]].

Now we apply the following lemma of Coates–Iritani,

Lemma VIII.11 ([CI1], Lemma 6.6). The intersection

FracC{x1, · · · , xn} ∩ C[[x1, · · · , xn]] ⊂ FracC[[x1, · · · , xn]]

coincides with C{x1, · · · , xn}.

This completes the proof. �
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Extension property

In this subsection, we use Lemma 3.2 from [MR] to derive the extension property.

Proposition VIII.12. The coefficients of ΛW
g,n(tB)(γ1, . . . , γn) extend holomorphically through

K , i.e., they are holomorphic functions onM.

Proof. Let us define an action of C∗ on M = H × Cµ−1 according to the weights of the

coordinates tB. Since ΛW(tB) is a homogeneous CohFT, the domain K̃ of all tB where the

theory does not extend analytically is C∗-invariant. Since K̃ is the set of points tB ∈ M,

such that ΛW(tB) has a pole, K̃ must be an analytic subset. Let us assume that K̃ is non-

empty. The Hartogues extension theorem implies that the codimension of K̃ is at most 1

and hence precisely one. On the other hand, according to Theorem VIII.10, the polydisk

Dε is disjoint from K̃ . In particular, H × {0} is not contained in K̃ and hence the two

subvarieties interesect transversely. This combined with the C∗ invariance of K̃ implies

that the connected components of K̃ have the form {τ0} × C
µ−1. This is a contradiction,

because K̃ ⊂ K , while {τ0} × C
µ−1 1 K . �

Quasi-modularity

Finally, let us complete the proof of our main theorem. According to Theorem VIII.10

the Gromov–Witten CohFT ΛXg,n(q) is convergent and it coincides with ΛW
g,n(τ), under the

mirror map. The latter transforms as a quasi-modular form according to Theorem VIII.8, it

is analytic for all τ ∈ H due to Proposition VIII.12, and finally it extends holomorphically

over the cusp τ = i∞ because ΛXg,n(q) extends holomorphically over q = 0. This completes

the proof of Theorem I.8.



CHAPTER IX

Convergence

9.1 Convergence of Gromov-Witten theory

Now let us define the length of a genus-0 Gromov-Witten correlator.

Definition IX.1. We say the correlator is of length 0 if it contains an insertion P. We

say it is of length m (m ≥ 1) if after applying at most m times WDVV equation, it can

be reconstructed from linear products of length 0 correlators, and genus-0 correlators with

fewer marked points or lower degree.

Let IGW
0,n+3,d(m) be the maximum absolute value of all genus-0 (n + 3)-points primary

correlators with degree d and length m. Let IGW
0,n+3,d(−1) be the maximum absolute value of

I1(n) + I2(n) + I3(n) in the WDVV equation (2.16). Thus

(9.1) IGW
0,n+3,d(m) ≤ 3IGW

0,n+3,d(m − 1) + IGW
0,n+3,d(−1),m ≥ 1.

By carefully using the reconstruction, we have the following estimation,

Lemma IX.2. We have

IGW
0,3,0 ≤ 1, IGW

0,4,0 ≤ 1/4.

For d > 0, we have:

IGW
0,3,d ≤ d−2Cd−1, IGW

0,4,d ≤ C0 d−1Cd−1.

118
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Here C0 and C are sufficient large constants such that C2
0 � C.

Proof. The key idea of the estimation is using the algorithm. Essentially, we only need to

prove the estimation for these basic correlators. The technique from basic correlators to

non-basic correlators is actually the same as for Type 1 basic correlators in the following.

Now, for each type of basic correlators, we can check for each degree d. It is easy to see

the lemma holds true for d ≤ 1. The computations are tedious but elementary.

• For Type 1 correlators, we apply (2.16). Assume M is the maximum length for Type

1 genus-0 4-point correlators. Thus inequality (9.1) implies

I0,4,d ≤ 3MI0,4,d(0) +
3M − 1

2
I2(1)

≤ 3Md−1Cd−1 + (3M − 1)36
d−1∑
i=1

(d − i)−2i−1Cd−2

≤ C0d−1Cd−1.

• For Type 2 correlators, we apply the inequality (2.21),

∣∣∣∣〈γ′, γ′, γ, γ〉0,4,d∣∣∣∣ =
∣∣∣∣ |β|d (I1 + I2)

∣∣∣∣ ≤ |β|d (8µ I0,4,dI0,4,0 +

d−1∑
i=1

I0,4,d−iI0,4,i)

• For Type 3 correlators, the equation (2.22) implies for Type3 correlators.

∣∣∣∣〈α, β, γ〉0,3,d∣∣∣∣ ≤ ∣∣∣∣ |γ|(d − 1)
72

d−1∑
i=1

I0,4,d−iI0,3,i

∣∣∣∣ ≤ N2

C
d−2Cd−1

A similar technique also works for Type 4 and Type 5 correlators.

• For Type 6 correlators, the equation (2.24) implies

∣∣∣∣〈α j, α, α〉0,3,d

∣∣∣∣ ≤ 72|β|
d2

d−1∑
i=1

1
d − i

Cd−i−1 C0

i
Ci−1 ≤

864C0

C d2 Cd−1 ≤ d−2Cd−1.

�

Now we can continue on with more insertions,
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Lemma IX.3. For n + d ≥ 4, we have:

IGW
0,n,d ≤


dn−5Cn+d−4, d ≥ 1.

Cn−4, d = 0.

Proof. We take induction on n. Lemma IX.2 implies the estimation holds for n ≤ 4. We

assume it holds for n ≤ k + 2, where k ≥ 2, and then prove it for n = k + 3. For k ≥ 10,

according to degree formula (2.13), the correlator 〈α1, · · · , αn〉g,n,d must contain some P

insertion. Then induction holds by applying the divisor axiom. Thus we only need to

verify for k ≤ 9. We recall the terms in the WDVV equation (2.16). For k ≥ 2, d = 0,

(9.2) IGW
0,k+3,0 ≤

k−1∑
i=1

C0

(
k
i

)
IGW
0,3+i,0IGW

0,k+3−i,0 ≤ C0 2k−1 Ck−2 ≤ Ck−1.

For d ≥ 1, we calculate IGW
0,k+3,d(−1) and IGW

0,k+3,d(0) first. The divisor equation implies

(9.3) IGW
0,k+3,d(0) ≤ d IGW

0,k+2,d ≤ dk−2 Ck+d−2.

Next, we have∣∣∣∣I1(k)
∣∣∣∣ ≤ 72

k−1∑
j=1

(
k
j

)
IGW
0, j+3,d IGW

0,k+3− j,0 ≤ 72
k−1∑
j=1

(
k
j

)
d j−2Ck+d−2 ≤ 72 · 2kdk−2Ck+d−2,

∣∣∣∣I2(k)
∣∣∣∣ ≤ 36

d−1∑
i=1

k∑
j=0

(
k
j

)
IGW
0, j+3,d−i IGW

0,k+3− j,i ≤ 36
d−1∑
i=1

k∑
j=0

(
k
j

)(
d − i

) j−2
ik− j−2Ck+d−2

≤ 288 dk−2Ck+d−2,∣∣∣∣I3(k)
∣∣∣∣ ≤ 72 IGW

0,3,d IGW
0,k+3,0 ≤ 72d−2Ck+d−2.

For the estimation of I2(k), we use for any 1 ≤ i ≤ d,

(9.4)
k−1∑
j=1

(
k
j

)( i
d

) j(d − i
d

)k− j
≤ 1.

and

(9.5)
d−1∑
i=1

i−2(d − i)−2 ≤ 6 d−2.
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Now we have,

IGW
0,k+3,d(−1) ≤

∣∣∣∣I1(k) + I2(k) + I3(k)
∣∣∣∣ ≤ 18

2k+2 + 16 + 4
C

dk−2Ck+d−1.

Again, the length is bounded by some M ≤ 72. Using (9.1) repeatedly, we know

IGW
0,k+3,d ≤ 3MIGW

0,k+3,d(0) +
3M − 1

2
IGW
0,k+3,d(−1) ≤ dk−2Ck+d−1.

�

Lemma IX.4. For genus-1 primary correlators, for n ≥ 1, we have

IGW
1,n,d ≤


d2n−3 Cn+2d−2, if d > 0.

1, if d = 0.

Proof. The non-vanishing terms are just 〈P, · · · ,P〉X1,n,d. For d = 0, it is easy. For d > 0,

the divisor axiom implies we only need to verify for n = 1. We prove the estimation for

the X = P1
3,3,3 case. The other two cases is similar. When we integrate Λ

P1
3,3,3

1,4,d+1(∆2,2;1;1) over

Getzler’s relation, the genus-1 contribution only comes from δ3,4. Recall (2.15), for d ≥ 3,

∣∣∣∣ d−1∑
i=0

〈P〉1,1,i〈∆2,2;1;1〉0,4,d+1−i

∣∣∣∣ ≤ d−1∑
i=1

i−1C2i−1
(
d + 1 − i

)−1
Cd+1−i +

(
24d

)−1
Cd+1

≤
(
6d

)−1
C2d−1.

We also have∣∣∣∣ ∫
δβ

Λ
P1

3,3,3
1,4,d+1(∆2,2;1;1)

∣∣∣∣ ≤ d+1∑
i=0

IGW
0,4,iI

GW
0,4,d+1−i ≤

d+1∑
i=1

i−1
(
d + 1 − i

)−1
C2d + 2

(
d + 1

)−1
Cd+1

≤ d−1C2d+1.

Other genus-0 contributions are all bounded by d−1C2d+1. Thus the estimation follows

from the Getzler relation. �

Now we give a proof of Theorem II.11.
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Proof. Recall the expression of the ancestors,

〈τl1(α1), · · · , τln(αn)〉g,n,d =

∫
Mg,n

Ψl1,··· ,ln · Λ
X
g,n,d(α1, · · · , αn),

where Ψl1,··· ,ln =
∏

i ψ̄
li
i . We denote by deg Ψl1,··· ,ln =

∑
i li := L. Now we use g-reduction.

According to degree counting for elliptic orbifold P1, the integration can be expressed as

linear combinations of primary correlators with genus 0 or 1,∫
Mg,n

Ψl1,··· ,ln · Λ
X
g,n,d(α1, · · · , αn) =

N∑
j=1

∫
Γ j

ΛXg,n,d(α1, · · · , αn).

Here Γ j is a connected dual graph with L edges. N is the number of such dual graphs.

It depends only on genus g and number of marked points n. We denote the number of

components in Γ j by L( j). Thus 1 ≤ L( j) ≤ L. Each component of Γ j is either of genus-

0 or genus-1. Let ki the number of nodes on the i-th component of Γ j. Thus we know

ki ≥ 1,
∑

i ki = 2L. For each Γ j, χ( j) = χ. Again, we have

χ( j) =

L( j)∑
i=1

χi.

We simply denote C(χ) by C if there is no confusion.

If L = 0, (2.26) follows from the previous three lemmas. Moreover, in d = 0 case, the

absolute value is bounded by Cχ−2.

For L ≥ 1, d = 0,

∣∣∣∣ ∫
Γ j

ΛXg,n,0(α1, · · · , αn)
∣∣∣∣ ≤ 6L

L( j)∏
i=1

IGW
gi,ni+ki,0 ≤ 6L

L( j)∏
i=1

Cχi−2 ≤ 6LCχ−2L( j),

where 6L is the upper bound for the products of pairing factors ηµ,ν from L nodes. Thus

∣∣∣∣〈τl1(α1), · · · , τln(αn)〉g,n,0
∣∣∣∣ ≤ 6L N

C
Cχ−1 ≤ Cχ−1.

For d ≥ 1, we need to deal with those terms with di = 0, as the exponent of C(χ) in

the estimation will increase by 1 in these cases. We generalize (9.5) and will have the
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following inequality: ∑
d1+···+dL( j)=d

∏
di,0

dχi−2
i ≤ 8Ldχ−2.

Let K be the number of di which is 0, then K ≤ L( j). Now we have the estimation,

∣∣∣∣ ∫
Γ j

ΛXg,n,d(α1, · · · , αn)
∣∣∣∣ ≤ ∑

d1+···+dL( j)=d

6L
L( j)∏
i=1

IGW
gi,ni+ki,di

≤
∑

d1+···+dL( j)=d

6LCK
∏
di,0

dχi−2
i

L( j)∏
i=1

Cχi+(gi+1)di−2

≤6L8Ldχ−2Cχ+(g+1)d−2.

Now (2.26) follows from L · d , 0 in this case. �

9.2 Convergence of FJRW theory

For the elliptic singularity (W,GW), recall that the FJRW ancestor correlator function:

〈〈τl1(α1), · · · , τln(αn)〉〉Wg,n(t) =
∑
k=0

1
k!
〈τl1(α1), · · · , τln(αn), t, · · · , t〉Wg,n+k,

where t ∈ HFJRW
W (include the complex degree one case). In this subsection, we prove the

convergence of the functions near t = 0. We first define the length for a FJRW genus-0

primary correlator.

Definition IX.5. We say a genus-0 n-points FJRW correlator has length m if it can be

reconstructed by genus-0 FJRW correlators with fewer marked points by at most m + 1

WDVV equations.

Recall the insertions αi belong to the basis we fixed. We denote

Ig,n := max
{∣∣∣〈α1, · · · , αn〉

W
g,n

∣∣∣} ,
I0,n(m) := max

{∣∣∣〈α1, · · · , αn〉
W
0,n

∣∣∣∣∣∣∣〈α1, · · · , αn〉
W
0,n is of length m

}
,

Ig,n,k,L := max
{∣∣∣ ∫

Mg,n+k

π∗n,k(Ψg,n,L) · ΛW
g,n+k(α1, · · · , αn, ρ−1, · · · , ρ−1)

∣∣∣} .
(9.6)
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Here Ψg,n,L is a monomial of ψ and κ classes in H∗(Mg,n) with deg Ψg,n,L = L. The Selection

rule (3.5) implies nonzero integrals, L is bounded by g and n,

2g − 2 ≤ L ≤ 2g − 2 + n.

On the other hand, for m ≥ 0, the WDVV equation (3.13) implies

(9.7) I0,n(m) ≤ 12I0,n(m − 1) + 2|I(n − 3)|,

where we have the convention I0,n(−1) = 0.

Lemma IX.6. For K ≤ 4, I0,K ≤ C0 for some C0. For K ≥ 5, there exists sufficient large

constant C, such that

(9.8) I0,K ≤ CK−4(K − 5)!

Proof. For n fixed, Selection rule (3.5) implies 〈α1, · · · , αn〉
W
0,n has at most 12 insertions

other than ρ−1. On the other hand, it is easy to see a genus-0 correlator with at least three

ρ−1 insertions has length 0. Every step of WDVV equation (3.13) will decrease the degree

of one non-primitive insertion. Thus the length of 〈α1, · · · , αn〉
W
0,n is bounded by some

constant M. Thus the formula (9.7) implies

I0,n ≤ I0,n(M) < 12M+1|I(n − 3)|.

This shows we only need to estimate the values of those correlators with fewer insertions.

We use induction on the number of insertions. For K ≤ 5, the estimation holds as there are

just finite different correlators. Assume the estimation (9.8) holds for all K ≤ k + 2, k ≥ 4,

then the induction is true by the following estimation,

|I(k)| ≤ 12
k−2∑
i=2

(
k
i

)
I0,i+3I0,k−i+3 + 24k I0,4I0,k+2

≤
(
12

k−2∑
i=2

k(k − 1)
i(i − 1)(k − i)(k − i − 1)

+
24kC0

k − 2

)
Ck−2(k − 2)!

≤
54 + 48C0

C
Ck−1(k − 2)!
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Here we use the inequality

k−2∑
i=2

k(k − 1)
i(i − 1)(k − i)(k − i − 1)

=
k

k − 1

k−2∑
i=2

(
1

i − 1
+

1
k − i

)(
1
i

+
1

k − i − 1
) ≤

9
2
.

�

Lemma IX.7. For genus-1 primary correlators, we have

I1,K ≤ CKK!

Proof. We only give the proof of P8 case, i.e. for IP8
1,K . The other two cases are similar. It

is easy to see the estimation holds for K = 1. Thus we can use the method of induction,

assume it holds for K ≤ k + 1, k ≥ 0. In this section, we simplify the notation by Λ :=

Λ
P8
1,k+4(ex, eyz, ey, exz, exyz, · · · , exyz). Recall

〈exyz, · · · , exyz〉
P8
1,k+2 =

1
3

∫
π−1

4,k(δ2,2)
Λ

The integration of Λ on π−1
4,k(δ2,3) and π−1

4,k(δ2,4) are both zero. And we also have∣∣∣∣ ∫
π−1

4,k(δ3,4)
Λ
∣∣∣∣ ≤ 4

k∑
i=0

(
k
i

)
I1,i+1I0,3I0,k−i+4 ≤

4C0 + 4C2
0

C
Ck+2(k + 2)! ≤ Ck+2(k + 2)!

Next, we consider the genus-0 contribution. Similarly, we have∣∣∣∣ ∫
π−1

4,k(δ0,3+δ0,4−2δβ)
Λ
∣∣∣∣ ≤ Ck+2(k + 2)!

Now we integrate Λ on π−1
4,k(12δ2,2 + 4δ2,3 − 2δ2,4 + 6δ3,4 + δ0,3 + δ0,4 − 2δβ). Combine all

the inequalities above, Getzler’s relation implies

IP8
1,k+2 = max

∣∣∣∣〈exyz, · · · , exyz〉
P8
1,k+2

∣∣∣∣ ≤ Ck+2(k + 2)!

�

Lemma IX.8. Using g-reduction, for K = n + k, L =
∑n

i=1 li, we have∣∣∣∣〈τl1(α1), · · · , τln(αn), ρ−1, · · · , ρ−1〉
W
g,K

∣∣∣∣ ≤ Ig,n,k,L ≤ C(χ)2g−2+K+L(2g − 2 + K + L)!

Here C(χ) is a sufficiently large constant depends increasingly on χ = 2g − 2 + n.
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Proof. For fixed g and n, we can use induction on L. In case of L = 0, non-vanishing

correlators must be of genus-0 or genus-1, thus the estimation follows from two lemmas

above. For L ≥ 1, according to g-reduction, Ψl1,··· ,ln :=
∏n

i=1 ψ
li
i can be represented by a

linear combination of dual graphs, each of which has at least one edge. The number of

dual graphs is only depends on g and n, but not k. We denote by Ng,n. We can choose C(χ)

such that C(χ) > Ng,n.

We can induct on the number of edges in the dual graph. For one edge case, if there

are two components, Ci, i = 1, 2. component Ci has genus gi, ni number of insertions from

the n insertion, and the degree of ψ, κ classes is Li. Those are all fixed by the dual graph.

However k copies of insertion ρ−1 can be distributed to either C1 or C2. We denote the

number of copies in Ci by ki. Thus we have

(9.9) g = g1 + g2, n = n1 + n2, k = k1 + k2, L1 + L2 = L − 1, χ = χ1 + χ2.

Now, C(χ1),C(χ2) < C(χ). As Li < L, by induction, we have the total bound

Ng,n

k∑
k1=0

(
k
k1

)
Ig1,n1+1,k1,L1 Ig2,n2+1,k2,L2

≤ Ng,nC(χ)2g−3+n+k+L
k∑

k1=0

(
k
k1

)
(2g1 − 1 + n1 + k1 + L1)! (2g2 − 1 + n2 + k2 + L2)!

= Ng,nC(χ)2g−3+n+k+L (2g1 − 1 + n1 + L1)!(2g2 − 1 + n2 + L2)!
(2g − 2 + n + L)!

(2g − 2 + n + k + L)!

≤ C(χ)2g−2+n+k+L(2g − 2 + n + k + L)!

The second equality is using the Chu-Vandemonde equality:

(9.10) 2F1(−k, b; c; 1) =
(c − b)k

(c)k
=

(c − b)(c − b + 1) · · · (c − b + k − 1)
(c)(c + 1) · · · (c + k − 1)

,

where we set b = 2g1 + n1 + L1, c = −k − 2g2 − n2 − L2 + 1.

If there is just one component, χ is invariant, then the total bound is

Ng,nIg−1,n+2,k,L−1 ≤ Ng,nC(χ)χ+k+L−1(χ + k + L − 1)! ≤ C(χ)2g−2+K+L(2g − 2 + K + L)!
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�

Now we give the proof of Lemma (III.13).

Proof. By definition and the previous lemma, we have∣∣∣∣〈〈τl1(α1), · · · , τln(αn)〉〉W,Gg,n (sρ−1)
∣∣∣∣

=
∣∣∣∣∑

k=0

1
k!
〈τl1(α1), · · · , τln(αn), sρ−1, · · · , sρ−1〉

W,G
g,n+k

∣∣∣∣
≤

∞∑
k=0

C(χ)2g−2+n+k+L (2g − 2 + n + k + L)!
k!

sk.

Thus the ancestor function is convergent in |s| < 1
2C(χ) . �
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APPENDIX A

Recursion formulas for basic corrlators in Gromov-Witten theory

A.1 A list of basic correlators for P1
3,3,3

Let us define:

A1(k) = 〈∆1,1,∆1,1,∆1,1〉0,3,3k A2(k) = 〈∆1,2,∆1,1,∆2,2,∆2,1〉0,4,3k

A3(k) = 〈∆1,2,∆1,2,∆1,1,∆1,1〉0,4,3k A4(k) = 〈∆1,1,∆2,1,∆3,1〉0,3,3k+1

A5(k) = 〈∆1,2,∆1,2,∆2,1,∆3,1〉0,4,3k+1 A6(k) = 〈∆1,2,∆2,2,∆3,1,∆3,1〉0,4,3k+2

Then we obtain the following recursion formulas from WDVV equations:

A2(k) = 3
k−1∑
i=0

A4(k − i − 1)A6(i) − kA1(k) − 3
k−1∑
i=1

A1(k − i)A2(i)

kA3(k) = −6
k∑

i=1

A3(k − i)A2(i) + 6
k∑

i=0

A2(k − i)A2(i)

kA4(k) = −3
k∑

i=1

A4(k − i)A3(i) + 3
k∑

i=1

A4(k − i)A2(i)

A5(k) = −3
k∑

i=1

A1(i)A5(k − i) + (k + 1/3)A4(k) + 3
k∑

i=1

A4(k − i)A2(i)

A6(k) = −3
k−1∑
i=0

A1(k − i)A6(i) + 3
k∑

i=0

A4(k − i)A5(i)

k3A1(k) = −

k−1∑
i=1

(3k − 3i)2A1(k − i)A2(i) +

k−1∑
i=0

(3k − 3i − 2)(3i + 2)A4(k − i − 1)A6(i)
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A.2 A list of basic correlators for P1
4,4,2

In this case, we define

A1(k) = 〈∆1,2,∆1,1,∆1,1〉0,3,4k; A2(k) = 〈∆3,1,∆3,1,∆1,3,∆1,1〉0,4,4k;

A3(k) = 〈∆3,1,∆3,1,∆1,2,∆1,2〉0,4,4k; A4(k) = 〈∆1,3,∆1,1,∆2,3,∆2,1〉0,4,4k;

A5(k) = 〈∆3,1,∆3,1,∆3,1,∆3,1〉0,4,4k; A6(k) = 〈∆1,3,∆1,3,∆1,1,∆1,1〉0,4,4k;

A7(k) = 〈∆1,1,∆2,1,∆3,1〉0,3,4k+1; A8(k) = 〈∆3,1,∆1,3,∆1,2,∆2,1〉0,4,4k+1;

A9(k) = 〈∆1,2,∆2,1,∆2,1〉0,3,4k+2; A10(k) = 〈∆3,1,∆3,1,∆1,2,∆2,2〉0,4,4k+2;

A11(k) = 〈∆1,3,∆1,3,∆2,1,∆2,1〉0,4,4k+2; A12(k) = 〈∆3,1,∆1,3,∆2,2,∆2,1〉0,4,4k+3.

Then the recursion formulas are:

A2(k) = 4
k∑

i=1

(A7(i − 1)A12(k − i) − A1(i)A2(k − i)) − 2kA(k)

A3(k) = 4
k∑

i=1

(2A7(i − 1)A12(k − i) − A9(i − 1)A10(k − i) − A1(i)A3(k − i)) − 2kA1(k)

A4(k) = 4
k∑

i=1

(−A1(i)A4(k − i)) − kA1(k)

kA5(k) = 4
k∑

i=1

(−A3(i)A5(k − i) + 2A3(i)A3(k − i) + 2A10(i − 1)A10(k − i)) − 2kA3(k)

2kA6(k) = 4
k∑

i=1

(−2A2(i)A6(k − i) + A2(i)A2(k − i))

4k + 1
2

A7(k) = −2A7(k)A5(0) + 2
k∑

i=1

(4A2(i) − A5(i))A7(k − i)

A8(k) = 4
k∑

i=1

(−A1(i)A8(k − i) − A9(i − 1)A12(k − i) + 2A4(i)A7(k − i))

(2k + 1)A9(k) = −4
k∑

i=1

A2(i)A9(k − i) + 4
k∑

i=0

A7(i)A8(k − i)
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A10(k) = −4
k∑

i=1

A1(i)A10(k − i) + 4
k∑

i=0

(A7(i)A8(k − i) + A2(i)A9(k − i) − A3(i)A9(k − i))

A11(k) = −4
k∑

i=1

A − 1(i)A11(k − i) + 2
k∑

i=0

A7(i)A8(k − i)

A12(k) = −4
k∑

i=1

A1(i)A12(k − i) + 4
k∑

i=0

(A7(i)A11(k − i) − A8(i)A9(k − i))

k2A1(k) = −4
k−1∑
i=1

iA1(i)A2(k − i) +

k∑
i=1

(4i − 3)A7(i − 1)A12(k − i)

A.3 A list of basic correlators for P1
6,3,2

In this case, we define

A1(k) = 〈∆1,1,∆1,1,∆1,4〉0,3,6k; A2(k) = 〈∆1,1,∆1,2,∆1,3〉0,3,6k;

A3(k) = 〈∆2,1,∆2,1,∆2,1〉0,3,6k; A4(k) = 〈∆3,1,∆3,1,∆1,1,∆1,5〉0,4,6k;

A5(k) = 〈∆3,1,∆3,1,∆1,2,∆1,4〉0,4,6k; A6(k) = 〈∆3,1,∆3,1,∆1,3,∆1,3〉0,4,6k;

A7(k) = 〈∆2,1,∆1,1,∆2,2,∆1,2〉0,4,6k; A8(k) = 〈∆3,1,∆3,1,∆2,1,∆2,2〉0,4,6k;

A9(k) = 〈∆1,1,∆1,1,∆1,5,∆1,5〉0,4,6k; A11(k) = 〈∆2,1,∆2,1,∆2,2,∆2,2〉0,4,6k;

A12(k) = 〈∆3,1,∆3,1,∆3,1,∆3,1〉0,4,6k; A10(k) = 〈∆3,1,∆2,1,∆1,1〉0,3,6k+1;

A13(k) = 〈∆3,1,∆1,1,∆2,2,∆2,2〉0,4,6k+1; A14(k) = 〈∆3,1,∆2,1,∆1,2,∆1,5〉0,4,6k+1;

A15(k) = 〈∆3,1,∆2,1,∆1,3,∆1,4〉0,4,6k+1; A16(k) = 〈∆1,1,∆1,1,∆2,2〉0,3,6k+2;

A17(k) = 〈∆2,1,∆2,1,∆1,2〉0,3,6k+2; A18(k) = 〈∆3,1,∆3,1,∆2,2,∆1,2〉0,4,6k+2;

A19(k) = 〈∆2,1,∆2,1,∆1,3,∆1,5〉0,4,6k+2; A20(k) = 〈∆2,1,∆2,1,∆1,4,∆1,4〉0,4,6k+2;
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A21(k) = 〈∆3,1,∆1,1,∆1,2〉0,4,6k+3; A22(k) = 〈∆3,1,∆1,1,∆1,3,∆1,5〉0,4,6k+3;

A23(k) = 〈∆3,1,∆1,1,∆1,4,∆1,4〉0,4,6k+3; A24(k) = 〈∆3,1,∆3,1,∆3,1,∆1,3〉0,4,6k+3;

A25(k) = 〈∆3,1,∆2,1,∆2,2,∆1,3〉0,4,6k+3; A26(k) = 〈∆2,1,∆1,1,∆1,3〉0,4,6k+4;

A27(k) = 〈∆2,1,∆1,2,∆1,2〉0,4,6k+4; A28(k) = 〈∆3,1,∆3,1,∆2,1,∆1,4〉0,4,6k+4;

A29(k) = 〈∆2,1,∆2,1,∆2,2,∆1,4〉0,4,6k+4; A30(k) = 〈∆2,1,∆1,1,∆1,4,∆1,5〉0,4,6k+4;

A31(k) = 〈∆3,1,∆1,1,∆2,2,∆1,4〉0,4,6k+5; A32(k) = 〈∆3,1,∆2,1,∆2,1,∆1,5〉0,4,6k+5;

Then the recursion formulas are

k2A1(k) =

k−1∑
i=0

(6k − 6i − 5
3

A31(i)A10(k − 1 − i) + (4k − 4i − 2)A23(i)A21(k − 1 − i)
)

−

k−1∑
i=1

(4k − 4i)A4(i)A1(k − i)

kA2(k) =

k−1∑
i=0

(
(3k − 6i − 4)A26(i)A16(k − 1 − i) + (6k − 12i)A2(i)A1(k − i)

)
3k2A3(k) =

k−1∑
i=0

(
(12k − 6i − 5)A32(i)A10(k − 1 − i)

−(12k − 12i − 8)A28(i)A17(k − 1 − i)
)
− 6

k−1∑
i=1

(k − i)A8(i)A3(k − i)

A4(k) =

k−1∑
i=0

(
3A31(i)A10(k − 1 − i) − 6A4(i)A1(k − i) + 6A23(i)A21(k − 1 − i)

)
−3kA1(k)

A5(k) =

k−1∑
i=0

(
6A4(i)A1(k − i) − 6A5(i)A1(k − i) − 3A28(i)A16(k − 1 − i)

+3A31(i)A10(k − 1 − i) + 6A23(i)A21(k − 1 − i)
)

+ A4(k)

A6(k) =

k−1∑
i=0

(
6A5(i)A2(k − i) − 6A6(i)A2(k − i) − 2A24(i)A21(k − 1 − i)

+3A26(i)A18(k − 1 − i) + 6A22(i)A21(k − 1 − i)
)

+ A5(k)
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A7(k) =

k−1∑
i=0

(
6A30(i)A16(k − 1 − i) − 6A7(i)A1(k − i)

)
− 2kA1(k)

A8(k) =

k−1∑
i=0

(
12A32(i)A10(k − 1 − i) − 3A8(i)A3(k − i)

−6A28(i)A17(k − 1 − i)
)
− 3kA3(k)

kA9(k) =

k−1∑
i=0

(4
3

A4(i)A4(k − i) − 4A9(i)A4(k − i) + 4A22(i)A22(k − 1 − i)
)

kA10(k) =

k−1∑
i=0

(
3A10(i)A7(k − i) − 6A10(i)A9(k − i) + 6A30(i)A21(k − 1 − i)

)
A11(k) =

k−1∑
i=0

(2
3

A10(i)A8(k − i) − A11(i)A10(k − i) + 2A26(i)A25(k − 1 − i)

−2A29(i)A21(k − 1 − i)
)
−

6k + 1
9

A10(k)

A12(k) =

k−1∑
i=0

(3
2

A10(i)A8(k − i) − A12(i)A10(k − i) + 3A10(i)A4(k − i)

+3A28(i)A21(k − 1 − i) − 3A26(i)A24(k − 1 − i)
)
−

6k + 1
4

A10(k)

A13(k) =

k−1∑
i=0

(
6A10(i)A7(k − i) − 3A13(i)A3(k − i) − 6A31(i)A17(k − 1 − i)

)
+

6k + 1
3

A10(k)

A14(k) =

k−1∑
i=0

(
3A10(i)A7(k − i) − 6A14(i)A1(k − i) − 3A32(i)A16(k − 1 − i)

+6A30(i)A21(k − 1 − i)
)

+
6k + 1

6
A10(k)

A15(k) =

k−1∑
i=0

(
6A14(i)A1(k − i) − 6A15(i)A2(k − i) − 2A28(i)A21(k − 1 − i)

+6A30(i)A21(k − 1 − i)
)

+ A14(k)

(3k + 1)A16(k) =

k−1∑
i=0

(
3A13(i)A10(k − i) − 6A16(i)A4(k − i) + 6A31(i)A21(k − 1 − i)

)
+3A13(k)

(3k + 1)A17(k) =

k−1∑
i=0

(
6A14(i)A10(k − i) − 3A17(i)A8(k − i) − 6A28(i)A27(k − 1 − i)

+6A32(i)A21(k − 1 − i)
)

+ 6A14(k)
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A18(k) =

k−1∑
i=0

(
3A13(i)A10(k − i) − 6A18(i)A1(k − i) − 3A16(i)A8(k − i)

+6A16(i)A4(k − i) + 6A31(i)A21(k − 1 − i)
)

+ 3A13(k)

A19(k) =

k−1∑
i=0

(
3A17(i)A7(k − i) − 6A19(i)A2(k − i) + 6A30(i)A27(k − 1 − i)

−2A32(i)A21(k − 1 − i)
)

+
3k + 1

3
A17(k)

A20(k) =

k−1∑
i=0

(
6A19(i)A1(k − i) − 6A20(i)A2(k − i) + 6A30(i)A26(k − 1 − i)

−3A29(i)A26(k − 1 − i)
)

+ A19(k)

(2k + 1)A21(k) =

k−1∑
i=0

(
6A31(i)A27(k − 1 − i) − 6A21(i)A7(k − i)

)
+

k∑
i=0

3A17(i)A13(k − i)

A22(k) =

k−1∑
i=0

(
− 6A22(i)A2(k − i) − 2A21(i)A4(k − i)

)
+

k∑
i=0

6A21(i)A9(k − i) +
2k + 1

2
A21(k)

A23(k) =

k−1∑
i=0

(
6A22(i)A1(k − i) − 6A23(i)A2(k − i) − 3A31(i)A26(k − 1 − i)

)
+A22(k)

A24(k) =

k−1∑
i=0

(
6A21(i)A5(k − i) − 6A24(i)A2(k − i) + 6A21(i)A4(k − i)

)
+

k∑
i=0

(
3A18(i)A10(k − i) − 2A21(i)A12(k − i)

)
−

6k + 3
2

A21(k)

A25(k) =

k−1∑
i=0

(
− 3A25(i)A3(k − i) + 6A32(i)A26(k − 1 − i)

)
+

k∑
i=0

(
6A19(i)A10(k − i) − 6A17(i)A15(k − i)

)
(3k + 2)A26(k) =

k−1∑
i=0

(
6A22(i)A10(k − i) − 6A26(i)A4(k − i)

)
+ 6A22(k)
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A27(k) =

k∑
i=0

(
2A21(i)A10(k − i) − 3A17(i)A16(k − i) + 6A26(i)A2(k − i)

)
−

k−1∑
i=0

6A27(i)A1(k − i)

A28(k) =

k∑
i=0

(
3A25(i)A10(k − i) − 3A26(i)A8(k − i) + 6A21(i)A15(k − i)

)
−

k−1∑
i=0

6A28(i)A2(k − i) − (3k + 2)A26(k)

A29(k) =

k∑
i=0

(
6A26(i)A7(k − i) − 3A26(i)A11(k − i) + 6A19(i)A16(k − i)

)
−

k−1∑
i=0

6A29(i)A2(k − i) −
6k + 4

3
A26(k)

A30(k) =

k∑
i=0

(
6A26(i)A9(k − i) − 3A26(i)A7(k − i)

)
−

k−1∑
i=0

6A30(i)A2(k − i) +
3k + 2

3
A26(k)

A31(k) =

k∑
i=0

(
6A22(i)A16(k − i) − 3A26(i)A13(k − i)

)
−

k−1∑
i=0

6A31(i)A2(k − i)

A32(k) =

k∑
i=0

(
2A28(i)A10(k − i) + 6A26(i)A15(k − i) − 6A30(i)A10(k − i)

)
−

k−1∑
i=0

6A32(i)A1(k − i)
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[BH] Berglund, Per; Hübsch, Tristan: A generalized construction of mirror manifolds. Nuclear Phys. B
393 (1993), no. 1-2, 377-391.

[BCOV] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C.: Kodaira-Spencer theory of gravity and exact
results for quantum string amplitudes. Comm. Math. Phys. 165 (1994), no. 2, 311-427

[BL] Bryan, Jim; Leung, Naichung Conan: The enumerative geometry of K3 surfaces and modular forms.
J. Amer. Math. Soc. 13 (2000), no. 2, 371-410

[CDGP] Candelas, Philip; de la Ossa, Xenia C.; Green, Paul S.; Parkes, Linda: A pair of Calabi-Yau
manifolds as an exactly soluble superconformal theory. Nuclear Phys. B 359 (1991), no. 1, 21-74.

[CheR1] Chen, Weimin; Ruan, Yongbin: A new cohomology theory of orbifold. Comm. Math. Phys. 248
(2004), no. 1, 131.

[CheR2] Chen, Weimin; Ruan, Yongbin: Orbifold Gromov-Witten theory. Orbifolds in mathematics and
physics. Contemp. Math., 310, Amer. Math. Soc., Providence, RI(2002): 25–85.

[Chi] Chiodo, Alessandro: Towards an enumerative geometry of the moduli space of twisted curves and
r-th roots. Compos. Math. 144 (2008), no. 6, 1461-1496.

[CIR] Chiodo, Alessandro; Iritani, Hiroshi; Ruan, Yongbin: Landau-Ginzburg/Calabi-Yau correspon-
dence, global mirror symmetry and Orlov equivalence. Preprint arxiv.org/abs/1201.0813

[ChiR1] Chiodo, Alessandro; Ruan, Yongbin: Landau-Ginzburg/Calabi-Yau correspondence for quintic
three-folds via symplectic transformations. Invent. Math. 182 (2010), no. 1, 117-165.

[ChiR2] Chiodo, Alessandro; Ruan, Yongbin: LG/CY correspondence: the state space isomorphism. Adv.
Math. 227 (2011), no. 6, 21572188.

[ChiR3] Chiodo, Alessandro; Ruan, Yongbin: A global mirror symmetry framework for the Landau-
Ginzburg/Calabi-Yau correspondence. Preprint.



138

[CI1] Coates, Tom; Iritani, Hiroshi. On the Convergence of Gromov-Witten Potentials and Givental’s
Formula. Preprint arXiv:1203.4193v1 [math.AG]

[CI2] Coates, Tom; Iritani, Hiroshi. In preparation.

[Co] Connell, Ian G: Elliptic Curve Handbook. http://pendientedemigracion.ucm.es/BUCM/mat/doc8354.pdf

[DeM] Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus. Inst. Hautes tudes
Sci. Publ. Math. No. 36 1969 75-109.

[Di] Dijkgraaf, Robbert: Mirror symmetry and elliptic curves. The moduli space of curves (Texel Island,
1994), 149-163, Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995
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