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CHAPTER I

Introduction

Gromov-Witten theory is a mathematical theory originated from the string theory. It
has been in the center of geometry and physics for the last twenty years. This thesis will
focus on the Gromov-Witten theory of three types of elliptic orbifold projective lines,

P]

3330 Pj%z and P! They are all quotient spaces of elliptic curves in some weighted

6,3,2°

projective spaces under actions of finite groups. The underlying spaces are captured as

follows, where the numbers show the order of the isotropy cyclic group at the orbifold

SACAS

The elliptic curves have deep connections to singularity theory. In 2007, a new Gromov-

points.

Witten type theory was introduced for nondegenerate quasihomogeneous hypersurface sin-
gularities, by Fan, Jarvis and Ruan, based on a proposal by Witten. This is the so called
FIRW theory. It is believed to be the counterpart of the Gromov-Witten theory in the so
called Landau-Ginzburg model. The relationship between two theories is referred to as the

Landau-Ginzburg/Calabi-Yau correspondence, a famous duality from physics. Landau-



Ginzburg/Calabi-Yau correspondence can be cast into the framework of the global mirror
symmetry. Comparing to the more traditional mirror symmetry, global mirror symme-
try emphasis the global aspect of mirror symmetry such as the analytic continuation of
Gromov-Witten theory. It leads naturally to the modularity of Gromov-Witten generating

function, a surprising and yet beautiful new perspective of the subject.

1.1 Landau-Ginzburg/Calabi-Yau correspondence

There is a great deal of interest recently in studying the so called Landau-Ginzburg
/Calabi-Yau correspondence or LG/CY correspondence. Mathematically, the LG/CY cor-
respondence is concerned with the equivalence of two mathematical theories originating
from a quasihomogeneous polynomial of Calabi-Yau type. A polynomial W : C¥ — C is
quasihomogeneous if there is an N-tuple of rational numbers (weights) (g1, - , gy) such
that for any 4 € C*,

WX, -, A Xy) = AW(Xy, -+, Xy).

We assume that W is nondegenerate in the sense that it defines an isolated singularity at

the origin. W is called of Calabi-Yau type if

N
qi = 1.
=1

1

Another piece of data is a subgroup G of the maximal diagonal symmetry group Gy, where
Gw = {1+, W) € CY s WXy, -+, WXy) = WX, -, X))
Gw has a special element
J = (exp(2niq,), - - - ,exp(2migy)) .

We say G C Gy is admissible if it contains J.



The geometric realization of a Calabi-Yau type quasi-homogeneous polynomial is that
the equation W = 0 defines a Calabi- Yau hypersurface Xy in the weighted projective space
WP(cy, -+, cy), where g; = ¢;/d for a common denominator d. G acts naturally on Xy by

multiplication on coordinates with the subgroup (J) acting trivially. We define a group
G = G/{J).

Hence G acts faithfully on Xy. One side of the LG/CY-correspondence is the (orbifold)

Gromov-Witten theory of the quotient of the Calabi-Yau hypersurface,
Xwg = (Xw ={W = 0))/G.

If G = Gy, we simply omit the group and denote the orbifold by Xy := Xy, . In later
chapters, our paper will focus only on the cases with G = Gy.

Gromov-Witten theory is now well-known in mathematics. It was first constructed
for semi-Fano symplectic manifolds in [RT] and later in many other papers for various
generalizations. Later on, a similar theory was constructed for orbifolds in symplectic
setting [CheR1, ICheR2]|. For algebraic constructions, refer to [AbGV]. We also refer
readers to [ALR] for more details about the Chen-Ruan cohomology and the references
there. The main elements of the (orbifold) Gromov-Witten theory for the Calabi-Yau space

Xy, are summarized as follows

(1) There exista a state space: Chen-Ruan orbifold cohomology H7,(Xw);

WG defined by a virtual counting

(2) There are numerical invariants {7, (@), - , 7, (@,)) on.

of stable maps. Here, g is the genus of the source curve and § is the fundamental
class of image of the stable maps. S is in the Mori cone of X, i.e. § € NE(X). We
assembles those invariants into a generating function 7-; GXV‘:V . (¢#) in infinitely many

variable indexed by a basis {a;} of the state space, a variable z to keep track of the



sum of integers /; and a Novikov variable ¢° to keep track of 5. One can further sum
over genera to define the total ancestor potential function
GW _ 24-2-GW
A (&) = ) TR ().
>0

We should emphasize that Tg G/XV . 1s only a formal power series;

(3) (ty(ay), - , 71, (an))enp satisfies a set of axioms referred as cohomological field the-

ory axioms (see Chapter [[I] for details).

The other side of the LG/CY-correspondence is the FJRW theory of the singularity
(W, G) constructed by Fan, Jarvis and Ruan in a series of papers [FJR1, [FJR2, [FJR3],
based on a proposal of Witten. The FJRW theory is very different from Gromov-Witten
theory. However, it shares the same general structure with Gromov-Witten theory as an

example of cohomological field theory. It has the following properties:
(1) A state space ;2" (or Sy for short. See its definition in Chapter ;

(2) Numerical invariants by a virtual counting of solutions of the Witten equation, its

FJRW(I)’ ﬂFJRW

we (D) (¢ is a certain degree 2 variable playing the

generating functions ¥y

role of Kihler parameter);
(3) It satisfies the cohomological field theory axioms.

Motivated by physics, Yongbin Ruan has formulated a striking mathematical conjecture to
relate the two theories. For more details, we refer to [Rul] and [ChiR3]. One of the goals
of this paper is to prove this conjecture for elliptic orbifold P'. Ruan’s conjecture is stated

as follows.

Conjecture I.1. Let W be a nondegenerate quasi-homogeneous polynomial of Calabi-Yau

type and let G be an admissible group.



(1) There is a graded vector space isomorphism
A" — Heg (Xwg) -
Hence, we can identify the two state spaces.

(2) There is a degree-preserving Clz,z ']-valued linear symplectic isomorphism Uy, of
so-called Givental symplectic vector spaces and a choice of analytic continuation of

Givental cones L@jgw and Lg&} with respect to the Kdhler parameter such that

Uwe (L‘I;“V’ng) A

Xwg'

(3) The total potential functions are related by quantization of Uy g,cy, up to a choice of

analytic continuation. We simply denote by
GW _ 77 FJRW
ﬂf\’w,c =Uwe (ﬂW»G ) )
Here = means two sides are equal modulo an analytic continuition.

Part (1) is called the Cohomological LG/CY correspondence, which has been verified in
full generality by Chiodo-Ruan [ChiR2]]. Part (2) is the genus-0 LG/CY correspondence,
which has been verified by Chiodo-Ruan [[ChiR 1] for the quintic 3-fold, and by Chiodo-
Iritani-Ruan [CIR] for all Fermat hypersurfaces and G = (J). The fisrt example of the
conjecture for all genera is proved in [KS] and [MR]], for three classes of orbifold P!, i.e.
elliptic orbifold projective lines P}, 5, P}, , and Py, ,. Namely, there exist pairs (W, G),
such that the Calabi-Yau sides of them are those elliptic orbifolds, and there exists an
operator ﬁmG, to connect the generating functions from the FJRW side to the Calabi-Yau
side.

Let us denote W by

N

N
weo =) | [x7 X=Xy
j=1

i=1



We define its exponent matrix Ey by taking the exponents that appear in the monomials
of W as entries, i.e. the (i, j)-th entry of Ey is a;;. We say W is invertible, if s = N and Ey
is an invertible matrix.

According to Saito [Sa2], simple elliptic singularities are classified in three cases Efll_’;),
1 =8,9,10. Here u is actually the dimension of the Jacobi algebra of W, as a vector space.
However, as a polynomial, there are different choices of normal forms for each singularity.
For example, the Fermat cubic singularity W = X3 + X3 + X3 is of type E."". We simply
denote by W € Eél’l). All simple elliptic singularities of the same type have isomorphic

Jacobi algebras. However, their FJRW theory will be different. Here we list all invertible

simple elliptic singularities.

Table 1.1: Invertible simple elliptic singularities

(1,1) (1,1) (1,1)
E6 E7 ES
3 3 3 4 4 2 6 3 2
Fermat Xi+X+X; X+ X+ X5 X7+ X +X5
Fermat+Chain | X?X> + X5 + X3 XX+ X +X3 | XX+ X3+ X3

XX, +X5+X; | XX+ X3+ X3

Fermat+Loop | X3Xo + X1 X5 +X; | X;Xo + X1 X5 + X3

Chain XX + X3X3 + X3 XX, + X3X;5 + X3

Loop XX, + X3X3 + X, X3

We recall that in [KreS], it is proved that an invertible polynomial is nondegenerate if

and only if it can be written as a sum of the following three types:
1. Fermat: W = X|' +--- + X",

2. Loop; W = X{IXQ + X£2X3 + e+ XZI;IIV:;XN + X;;VXl

3. Chain: W = X|'X, + X7’ X3 + - + X" Xy + X))

It is not hard to see that if W is an invertible simple elliptic singularity (or ISES for
short), then Xy, is an elliptic orbifold P!. The explicit correspondence will be discussed

later in global mirror symmetry section.



We say W is a good invertible simple elliptic singularity if W is a singularity in the
Tableand W is not of the form X7X, + X; + Xj € Eél’l), XX+ XX +X; € Eé]’l), or

XI+X+Xj € Egl’l). Our main theorem of this thesis is

Theorem L.2. [[KS|IMR|IMS] Let W be a good invertible simple elliptic singularity, and Gy
be its maximal diagonal symmetry group. Then the LG/CY correspondence of all genera

holds true for the pair (W, Gy). More precisely, there exists an operator Uy, such that
(1.1) Oy (A7) = ALY,

This theorem is first proved in [KS, [MR] for three special types of cubic polynomials,
where W = X7 + X3+ X3, X7 X+ X5 X5+ X3 and X7 X, +X; +X3. Later, the statement is gen-
eralized to all other good cases in [MS]]. Here, let us mention that three cubic singularities
we listed above are all belong to Eél’l). However, the corresponding orbifolds are actually
Péss’ P}t, 4 and Péﬁ,z. Another remark is that we can not obtain the LG/CY correspondence
for all invertible simple elliptic singularities simply in current stage only because we can
not compute all the FJRW invariants except the good cases, under the current technology.

Recently, the method has been generalized to solve the LG/CY correspondence for the

maximal quotient of a Fermat quintic 3-fold [IMRS]].

1.2 Two reconstruction theorems

As a first step for understanding formula (I.1)), let us say more about the two generating
functions in this formula. Using tautological relations on cohomology of moduli space of
stable curves and the axioms of Gromov-Witten theory, we prove a reconstruction theorem
for Gromov-Witten invariants of all elliptic P!-orbifolds in Chapter A similar theorem

is carried out for the corresponding FJRW theory in Chapter

Theorem 1.3. [KS] We have the following two reconstruction statements:



(1) The Gromov-Witten generating function of X = P;s,s’ P}‘A’Z,Pl

630 IS uniquely re-

constructed from the following initial data: the Poincaré pairing, the Chen-Ruan

product, and an initial correlator
X
(A1 A21, Az 105, = 1

Here A;; are twisted sectors in the Chen-Ruan cohomology of X that support on the

i-th orbifold point with a smallest degree shifting number.

(2) For an invertible simple elliptic singularity W the FJRW generating function of (W, Gy)
is uniquely reconstructed from the pairing, the FIRW ring structure constants and

some 4-point basic correlators with one of the insertions being a top degree element.

The first reconstruction theorem is proved in [KS|], the second one is proved in [KS]
for three cubic polynomial cases and then generalized to all other cases in [MS]]. For most
of invertible simple elliptic singularities with maximal diagonal symmetry group, we can
compute the FJRW ring structure and those basic 4-point correlators. However, as we
already pointed out, there are three examples out of the reach of the current technology.

For Ruan’s conjecture to make sense, we need the generating function to be analytic
with respect to the Kihler parameter. This is often a difficult problem in Gromov-Witten
theory and interesting in its own right. Our next theorem (Theorem establishes it for
both Gromov-Witten theory and FIRW theory. It is convenient to consider the ancestor
correlator function {{t;,(a1), -, 7,(@,)))5 (t). (See the precise definition in Chapter )
Among all the cases we consider, the state space is decomposed into H<> @ H?> where H?
is a one-dimensional space of degree 2 classes and H<? is the subspace of degree < 2. Let
t = (s,1) with s € H<? and t € H?. With out losing generality, we also view t as a complex

valued vector once a basis of the state space is fixed. We can convert ¢ to the familiar ¢

FJRW

variable by the substitution ¢ = e¢’. We define ((7;,(a1),- - ,Tln(an)))gﬂ

(t) in the same



way. The main difference is the absence of the 8 variable. It is obvious that for invertible

simple elliptic singularity W with a group Gy, H? is always one-dimensional.
Theorem 1.4. [KS] We have the following two convergence statements:

(1) For the above three classes of elliptic orbifold P'’s,

(rlan), - T (@) sy (s,1)
converges to an analytic function near s = (0,---,0),Re(t) < 0or g = 0.

(2) For its FIRW counterparts,

(@), 1, ()N e (s, 1)
converges to an analytic function near s = (0,---,0),t = 0.
(1) is often referred to as the convergence at the large volume limit t = (0, --- , 0, —c0),
while (2) can be referred to as the convergence at small volume limit t = (0, -- - ,0).

1.3 Global mirror symmetry

Chiodo-Ruan [[ChiR3]] has reframed Ruan’s conjecture in the language of global mirror

symmetry. Let us explain their approach.

Global B-model

The global mirror symmetry of our examples involves global B-model objects. We

consider Saito-Givental theory for a one-parameter family

W, = W+O'¢_1.

Here W is an invertible simple elliptic singularity and ¢_; is a top degree non-vanishing

monomial in the Jacobi algebra 2. Let us fix an invertible simple elliptic singularity W
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of type E,(ll—]z) u=38,9,10. Saito constructed a flat structure on the miniversal deformation

space M of W using primitive forms [Sall]. The deformation along ¢_; is called marginal
deformation. Following Givental’s higher-genus reconstruction formalism [Gi2], we de-
fine for every semisimple point s in M a formal power series Ag(#; q) called the roral
ancestor potential of W. More details of the Saito-Givental theory will be introduced
later. Let us point out that the primitive form depends on the choice of W and the choice
of marginal element ¢_;. In [MR]], Milanov and Ruan have worked out a global Saito-
Givental theory in the sense of allowing the parameter o to vary. Let py,..., p; be the
points on the complex line, s.t., for o = p; the point X = (Xi, X5, X3) = (0,0, 0) is not an

isolated critical point of the polynomial W, = W + o¢_;. The points
Oa p]a"-apl’ OOGCU{OO}

will be called special limit points in our setting. Especially, o = 0 is always called a Gep-
ner point. We can classify all the special limit points into two different types, according
to the local monodromy on a two dimensional subspace of the middle dimensional coho-
mology of the vanishing cycles of W. We say the special limit point is of large complex
structure limit type if the local monodromy is maximal unipotent. We say the special limit
point is of Landau-Ginzburg type is the local monodromy is diagonalizable. Our goal is to

study the total ancestor potentials at the special limit points.

Berglund-Hiibsch-Krawitz mirror construction

It turns out the Saito-Givental theory for an invertible simple elliptic singularity is
related to the FJRW theory by a simple and elegant mirror construction, for Landau-
Ginzburg model. Now we refer this construction as the Berglund-Hiibsch-Krawitz mirror

(or the BHK mirror for short). For an invertible polynomial W, its transpose polynomial
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WT is the unique invertible polynomial such that Eyr = (Ew)”. Thus for

N N
w= [T
i=1 j=1
we have
N N
wh= 3" X"
i=1 j=1

The role of the transpose polynomial W’ in mirror symmetry was first studied by Berglund
and Hiibsch (see [BH]]). Krawitz then introduced a mirror group construction G [Ki].
(WT,G7) is considered to be the BHK mirror for (W, G). In state space level, this refers
to as the FIRW ring of (W, G) is isomorphic to the orbifold Jacobi algebra of (W', GT).
This is widely proved for various singularities in state space level with a Frobeniu algebra
structure, see [FJR2, Kr, KP+, [ES| |Ac, [KS| [FJJS]]. When G = Gy, then G7V;, = {1} is the
trivial group which contains only the identity element. And the data appears in B-model

for (WZ,{1}) is the Saito-Givental theory.

LG-to-LG mirror theorem

We can study the special limits in Saito-Givental theory for one-parameter families
of simple elliptic singualarities, W7 + o¢_,. It was conjectured that the Gepner point
should always has a geometric mirror, its mirror FJRW theory for (W, Gy). We prove this
holds true at least for those FIRW theories which are computable so far. This is the so
called LG-to-LG mirror theorem. (This is a generalization of Witten’s mirror conjecture

for ADE-singularities to elliptic cases, see [Rul] and [ChiR3].)

Theorem LS. [KS| IMS|] Let W be a good invertible simple elliptic singualrities, we can

choose the coordinates appropriately, such that

(1.2) Ay = A
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This thoerem was proved when W is one of three cubic cases in [KS] and later gener-

alized to all other cases in [MS]].

LG-to-CY mirror theorem

Another mirror theorem focuses on those special points of large complex structure
limits. They contain all other points with finite values and some o~ = oo in some cases. We

call it LG-to-CY mirror theorem.

Theorem L1.6. [KS| [MR)| MS|] Let X be an elliptic orbifold P' and its Chen-Ruan cohomol-
ogy space has rank u. There exists an invertible simple ellitpic singularity W € ELI_;) and a
special point o of large complex structure limit type, such that we can choose a coordinate

system and have
(1.3) A = Ay

Again, this was first proved for three cubic type singularities and their special limits at
o = oo in [KS| MR]. It was also proved via Fermat type singularities at special limits of

finite values in [MS]].

Classification of special limits

As we discribed above, we have more special limits than those appeared in the previous
theorems. For example, there are special limits at oo = oo with diagonalizable local mon-
odromy. W, = X% + X; + X3 + 0 XX, is such an example. Since the local monodromy is
diagonalizable, it is indicated that it might be mirror to some FJRW theory. However, the
BHK mirror is no longer the correct mirror in this example. On the Saito-Givental side, we
can compute the total ancestor potential at all special limits. It is conjectured in [MS]] that
it is enough to extract information of the mirrors only from the j-invariant of the elliptic

curve E, at the special value and u, the Milnor number.
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Conjecture L.7. [[MS)] All special limits appear in Saito-Givental theories for invertible
simple elliptic singularities are classified by the Milnor number u of the singularity and

J-invariant of the elliptic curve at the special limit.

In particular, we have three different choices of Milnor numbers, ¢ = 8,9 or 10. This
only depends on the choice of W. The values of the j-invariant at a special limit point can
be only 0, 1728 or co. This however depends on the choice of marginal direction and the
value of o. Overall, we have nine different types of special limits for all invertible simple
elliptic singularities. For each Milnor number u = 8,9, 10, there are one type of GW-limit
and two different types of FJRW-limit. The special limit is a GW-limit if and only if the
J-invariant is co. In this paper, we will give a proof of this conjecture for the Fermat type

singularity. A complete proof of this conjecture will apear in a future porject.

1.4 Modularity

A remarkable phenomenon in Gromov-Witten theory is the appearance of (quasi) mod-
ular forms. A Gromov-Witten generating function can be thought as a counting function
for the virtual number of holomorphic curves, i.e., one-dimensional objects. Therefore,
it is natural to speculate if modular forms appear here too. Indeed, this strategy has been
carried out for elliptic curves [D1, (OP], some K-3 surfaces [BL]] and the so called reduced
Gromov-Witten theory of K3-surfaces [MPT]. In the middle of the 90’s, by studying the
physical B-model of Gromov-Witten theory, Bershadsky, Cecotti, Ooguri and Vafa boldly
conjectured that the Gromov-Witten generating function of any Calabi-Yau manifolds are
in fact quasi-modular forms. A key idea in [BCOV] is that the B-model Gromov-Witten
function should be modular but non-holomorphic. Furthermore, its anti-holomorphic de-
pendence is governed by the famous holomorphic anomaly equations. During the last

decade, Klemm and his collaborators have put forth a series of papers to solve the holo-
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morphic anomaly equations [ABK. [HKQ]. Motivated by the physical intuition, there were
two independent works recently in mathematics to establish the modularity of Gromov-
Witten theory rigorously for local P? [CI2] and elliptic orbifolds P! [KS, MR]. In fact,
the later result was generalized to a cycle-valued version of modularity in [MRSI]]. Let’s
briefly describe it.

For a projective variety X, we can construct Gromov-Witten cycles (cohomological field
theories) A?’nﬁ (y1,--- ,yn) by a partial integration, see formula (2.4) in Chapter [[I. Here
Mg,,, is the Deligne-Mumford compactification of the moduli space of stable curves, see
[DeM]. The degree of the cycle is computed from the dimension axiom,

dege A, 41+ v = (¢ = Ddime(X) + ) dege(y) = e1(TX) - B.
i=1
The numerical Gromov-Witten invariants are obtained by
<TL1 (71)? ) Tlp(’y}’l)>§,n,ﬁ = f A;(,n,ﬂ(’yla T, 7n) U 1—[ l/’il

Mg i=1
Motivated by the corresponding work in number theory [Zl], we want to consider the gen-
erating function of Gromov-Witten cycles
(1.4) (AL @)1y = >0 AL v e

BENE(X)
We view the RHS of (1.4) as a function on ¢ taking value in H*(ﬂgﬂ, Q). To emphasise
this perspective, we sometimes refer to it as cycle-valued generating function. The main

theorem in [MRS]] is

Theorem 1.8. [MRS|] Suppose that X is one of the three elliptic orbifolds P' with three
non-trivial orbifold points; then (Agn(q)) (y1,- -+ ,¥n) converges to a cycle-valued quasi-

modular form of an appropriate weight for a finite index subgroup I'(N) of S L,(Z) under

2nit/N

the change of variables g = e , where N = 3,4, 6 respectively.
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We should mention that the above cycle-valued modularity theorem is not yet known
for elliptic curve.

We obtain the modularity of numerical Gromov-Witten invariants by integrating the
Aén(yl, -+ ,v,) with psi-classes over the fundamental cycle [Mg,n]. On the other hand,
we can also use other interesting classes of Mg,,, such as «;’s or Hodge class 4;’s.

Suppose that P is a polynomial of ¢;, ;, A;. We define a generalized numerical Gromov-

Witten invariants

(OZPERE ,yn;P>ff,nﬁ=f PUAN, 51+ )

gn

and its generating function

o Yas Phga(@) = Z oo Vs Plgnpd
BeNE(X)

Here, we set it to be zero if the dimension constraint are not satisfied.
Corollary 1.9. Suppose that X is one of the above three elliptic orbifolds P'. Then,
the above generalized numerical Gromov-Witten generating functions are quasi-modular

forms for the same modular group and weights given by the main theorem.

The proof of the numerical version consists of two steps, see [MR]. The first step is
to construct a higher genus B-model theory (modulo an extension problem) and prove its
modularity. Then, the second step is to prove mirror theorems to match it with a Gromov-
Witten theory which will solve the extension property as well as inducing the modularity
for a Gromov-Witten theory. The same strategy can be carried out on the cycle level. The

main new ingredient is Teleman’s reconstruction theorem [Tel.

1.5 Detailed outline

In chapter 2, we first introduce the orbifold Gromov-Witten theory as a cohomological

field theory. Then we decribe our main targets, three types of elliptic orbifold projec-
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tive lines P} 5 5, P}, ,, P} 5, and compute their Chen-Ruan product. Then we obtain the

333
key theorem of this chapter, that the ancestor Gromov-Witten invariants of all genera for
those orbifolds are uniquely determined by their Chen-Ruan product and one extra sin-
gle nonzero correlator of genus zero, three point and degree one. We end up chapter 2
by giving a convergence result for the Gromov-Witten ancestor correlator functions. In
chapter 3, we give a parallel discussion on the Fan-Jarvis-Ruan-Witten theory for simple
elliptic singularities. We introduce the axioms of FJRW theory for general hypersurface
singularities, compute their FJRW rings. Moreover, we also give a classification for those
ring structures. We end up this chapter by proving a reconstruction theorem for all of the
FJRW invariants and introducing a convergence result for those FIRW correlator func-
tions. In chapter 4, we introduce Saito’s construction of Frobenius manifold on minversal
deformations of invertible simple elliptic singularities. We describe Milanov-Ruan’s result
on its global theory. We compute the B-model initial correlators by choosing flat coordi-
nates, based on analying the Picard-Fuchs equations for all sectors in the global B-model.
We also discuss how to obtain the mirror for geometric A-model theory by extension of
Saito-Givental theory to a non-semisimple point. In Chapter 5, we give the Berglund-
Hiibsch-Krawitz mirror construction and prove the LG-to-LG mirror symmetry theorem
of all Gepner points in invertible simple elliptic singualrities. In Chapter 6, we discuss
the global picture for mirror symmetry by analyzing other special points in B-model. We
prove the LG-to-CY mirror theorem for Fermat types. In Chapter 7, we discuss Givental’s
quantization formula and give a proof for the LG/CY correspondence for elliptic orbifold
P! by analyzing the quanzation formula and analytic continuation on the global B-model.
In Chapter 8, we introduce the modularity in global B-model, compute the modular group
for three examples and prove the modularity theorem for Gromov-Witten theory of those

elliptic orbifold P! by using mirror symmetry. Most of the statements are in cycle-valued
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version. In Chapter 9, we give the proof of convergence theorem for both Gromov-Witten
theory and Fan-Jarvis-Ruan-Witten theory of our examples. This complete the statement
that our mirror theorems extend to the non-semisimple points we want. In the appendix,
we give the recursion formula for basic correlators in Gromov-Witten theory of elliptic

orbifold P'. This completes our reconstruction theorem in the Gromov-Witten theory.



CHAPTER 11

Gromov-Witten theory for elliptic orbifolds P!

2.1 Cohomological Field Theories

We recall Mg,n is the Deligne-Mumford compactification of the moduli space of genus
g stable curves with n marked points, see [DeM]]. Let H be a vector space of dimension N
with a unit 1 and a non-degenerate paring  : H X H — C. Without loss of generality, we
always fix a basis of H, say

S ={0p, -+ ,On-1},

and we set dp = 1. Let (c')j ) be the dual basis in the dual space H'. A cohomological field

theory (or CohFT for short) is a set of multi-linear maps A = {A,,}, with
Agn : H®" — H*(M,,, ),

or equivalently,

Agn € H'(M,,,,C) @ (H")®",

defined for any g,n such that 2g — 2 + n > 0. Furthermore, A satisfies a set of axioms

(CohFT axioms) described below:

1. (§,-invariance) For any o € S, and y4,...,y, € H,

Ag,n(’)’o-(l)a cee '}/o'(n)) = Ag,n()’l’ ceey yn)'

18
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2. (Gluing tree) Let

Piree - Mg|,n1+l X Mgz,n2+l - Mg,n

where g = g; + g2, n = ny + ny, be the morphism induced from gluing the last marked

point of the first curve and the first marked point of the second curve; then

p:ree(Ag,n(yl PR YH))

= Z Agl,n1+1(')’1, o 9yn1’ a)na’ﬂAgz,nz-f-l(ﬁ, 7n1+1» o ,)’n)-
apes

Here (7°") .y is the inverse matrix of (n(a, 8)) yyy-

3. (Gluing loop) Let

Ploop : Mg—l,n+2 - Mg,na

be the morphism induced from gluing the last two marked points; then

pzygp(Ag,n(’yl’ ey ')/n)) = Z Ag—l,n+2(yl» ey yn, a,,ﬁ)na/,ﬁ'
apes

4. (Pairing)

f Ao,3(1,71,)’2) =n(y1,2).
Mo

If in addition the following axiom holds:

(5) (Flat identity) Let r : Mg,,m - Mg,,, be the forgetful morphism; then
Ag,n+l(yl, v Vo 1) = 7T*Ag,n(71, ey Vn)

then we say that A is a CohFT with a flat identity.

If A is a CohFT; then there is a natural formal family of CohFTs. Namely,

— 1
Ag,n(t)(yla ... ,?’n) = Z Fﬂ* Ag,n+l(7/la ... a’)/n, t9 ey t)7 t € H
=0 '
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where 7 : Mgm, — Mg’,, is the morphism forgetting the last / marked points. Note that

Ao3(t) will induce a family of Frobenius multiplications e, on (H, 17), defined by

2.1 n(a .tIB,')’):j:M Ags(t)(a, B, 7).

The CohFT axioms imply that (H, 1, e;) is a Frobenius manifold in the sense of Dubrovin

[Du]. The vector space H is called the state space of the CohFT.

Examples of CohFTs

Let CV be the complex vector space equipped with the standard bi-linear pairing:
(ei,ej) = 0;j. Let A = (Ay,---,Ay) be a sequence of non-zero complex numbers. The

following definition

ASEPDIM,,] € HOOM,,,,C) ifi=ij=iy=--- =i,
22 DNey,....e) =1

N

0 otherwise,

induces a CohFT on C" which we call a rank N trivial CohFT. Here [Mg,n] is the funda-
mental cycle of Mg,n and PD represents the Poincaré dual. The Frobenius algebra under-

lying IM* will be denoted by (C¥, A). Using the Kronecker symbol 6;;, we note that the

ijs

Frobenius multiplication is given by

e, 0¢; = 5ij \/Al‘ é;.

The total ancestor potential of a CohFT

For a given CohFT A, the ancestor correlator functions are, by definition, the following

formal power seriesint € H:

(2.3) <<Tk1(a'1)’---’Tk,l(a'n)»g,n(t):f Aga®) @i, . a) ¥y,

Me,
where «; € H, k; € Z-( and ¥; 1s the i-th /-class on Mg,n. The value of a correlator function

at t = 0 is called simply a correlator and we denote by (i, (1), ..., Ti,(@n)),,, Only. We
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call g the genus of the correlator function and each 7y («a;) is called a descendant (resp.
non-descendant) insertion if k; > 0 (resp. k; = 0).

For each basis vector d; in H, we fix a sequence of formal variables {42};0:0 and define

oo N-1

a@=> > 4ad;

k=0 i=0

then the genus-g ancestor potential is the following generating function:

1
F@O = 3 @) + Y aW) + 1)) ().

n

where each correlator should be expanded multi-linearly in q and the resulting correlators
are evaluated according to (2.3). Let us point out that we have assumed that the CohFT
has a flat identity 1 € H and we have incorporated the dilaton shift in our function, so that

7‘"gGW is a formal series in g, k # 0 and ¢, + 1. Finally, the fotal ancestor potential is

AX (h; q, t) := exp [Z w25 X(q, t)] .

§=0

2.2 Orbifold Gromov-Witten theory

For simplicity, we assume X is a compact Kahlér orbifold, which is a quotient space of
a Kahlér manifold Y by a faithful finite abelian group action, i.e. X = Y/G.

The inertia orbifold of X, 1X, which is defined by

1X := ]_[ Fix(g)/G.-

(8)eG™

Here g is an element in the finite group G, and G~ is the set of conjugacy classes of G. Let
us use (g) to represent the conjugacy class of g. Fix(g) is the set of fixed points in ¥ under
the action of g. Since G is abelian, G is also the centralizer of g.

The Chen-Ruan cohomology is defined by

Hip(X) = €5 H' (Fix(g)).

(8)eG*
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H*(Fix(g)) is the ordinary De Rham cohomology of Fix(g), with a twisting on the degree,
defined by the group action on Y. Let us recall the action of g on the tangent space 7Y
of Y. Since G is a finite abelian group and the action of g is faithful, the action of g on
the target space can be viewed as a scalar multiplication on CV, where N is the complex

dimension of Y. We denote the action by a N-tuple of nonzero complex numbers
(exp(2 V=16%), exp(2r V-105), - -+ ,exp2r V-10%)) e C", ©f € Q/Z, 1 <i<N.

So for a class of the Chen-Ruan cohomology in the component Fix(g), its complex degree
is the complex degree of the class as a De Rham cohomology element plus the degree
shifting number
Ly 1= ZN: 03
i=1

If the element g acts trivially, we see that the degree shifting number is zero. Otherwise,
it is not zero and all the classes with nonzero degree shifting number are called twisted
sectors.

We define Mznﬁ to be the moduli space of all stable maps f : C — X, from a genus-g
orbi-curve C, equipped with n marked points, to X, such that £.([C]) = 8 € NE(X). Here
[C] is the fundamental class of curve C. Let us denote by x the forgetful map, and by ev;

the evaluation at the i-th marked point

—_— b —X ev;

Mg’n — Mg,n+k,,B — IX .

—X vir —X
The moduli space is equipped with a virtual fundamental cycle [Mg,nﬁ] €H, (Mg,nﬁ),

such that
Agn,ﬁ : HéR(X)@m - H*(mg,n; C)
defined by

__x i n
(2.4) A (@, @) =, ([Mg,nﬁ] n| [eviten ]
i=1
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We put those classes together with Novikov variable ¢® and define an element
(2.5) A () = Z AY L Hag (X — H* (M, Clg"E 1)
B

The Novikov variables satisfies the following rule, for 8,5, € NE(X),
qBI qﬁz — l[81+'32-

Ag(q) forms a CohFT with state space Hi(X). The total ancestor potential AX of X is
by definition the total ancestor potential of the CohFT.
From now on, we assume H"!(X,C) = C, i.e. the Kihler moduli is one dimensional.

This simplifies our notation for Novikov variables. As any S € H,(X) can be view as
B =d-PD(P)

for unique nonnegative integer d. Here PD(%) is the Poincaré dual of a generator €

H"“'(X,Z). For simplicity, we use the index d to represent 5. We set A?:n, 4= AY and

gnfB
q* = ¢°. Now we get an example of a family of CohFTs coming from Gromov-Witten

theory, parametrized by a variable g € C.

2.6) AS (@) = DAY . q

d=0

Let H be the Chen-Ruan cohomology H{(X), n be the Poincaré pairing. There exist a
well defined CohFT Az,fn(q) at ¢ = 0. The above axioms make sense for cohomology
classes Ai{ .(q) that have coefficients in some ring of formal power series. In such a case
we say that we have a formal cohomological field theory. A priori, the CohFT A;{n(q) is
only formal.

There is a quantum product structure x, on Chen-Ruan cohomology on H{,(X). It was

called the quantum Chen-Ruan product, and defined by

(a) *, ap, a3) = Z(al,az,%)o,&ﬂqﬂ
B
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By restricting to g = 0, we define the Chen-Ruan orbifold cup product (or Chen-Ruan
product for short), and we denote it by . By definition, the structure constants of x are

defined by the following genus-0 degree-0 correlators:

(a) * @z, @3) = (a1, @2, @3)030-

For more details on orbifold Gromov—Witten theory we refer to [ALR,(CheR 1, /CheR2,

ADbGYV]]. We list some of the axioms for furture use.

e Dimension axiom. The virtual dimension of Minﬂ is
(2.7) vir dime Mﬁnﬁ =@-Dg-D+n+c(TX)-f=2g-2+n.
e Divisor equation:
(2.8) T, () - 1, (V) Ponsra = d{t,(v1) -+ 75, (Ya)dgnd-
e String equation:
(2.9) T ) - 1,V Dgnsra = Zn:(ﬂl ) T (VD) - T, (V) gina-
i=1

e WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation:

FIY  PTE FIX BT
0100, 9,050; 0,050, 0,005

(2.10)

2.3 Elliptic orbifolds P!

Three orbifolds points

Let P})wz’o} be the orbifold P! with three orbifold points, such that, the i-th orbifold
point has its isotropy group Z/o;Z. In this paper, we are interested in the following 3
cases: (01,07,03) = (3,3,3),(4,4,2),(6,3,2). Together with Pé,z,z,z’ they correspond to

orbifold-P's that are quotients of an elliptic curve by a finite group.
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1
01,02,03

3 o0;—-1
@11) HER(Ph 0,.00) = [@ & C[Aij]) P cran P ciae!.

=1 j=1

The Chen-Ruan cohomology H( (P ) has the following form:

where Ag; = 11is the unit and Ay, = P. The classes A;; with1 <i<3,1 < j<o0;—1are
in one-to-one correspondence with the twisted sectors, which come from orbifold points,
and we define A;; to be the unit in the cohomology of the corresponding twisted sector. In

our context, the complex degrees are
degAy=2L, 1<i<3, l1<j<o-L1
0

i

The orbifold Poincaré pairing takes the form

(6i1,i26j1+j2,()k) /0k9 k = il’ il + i2 ;t 09
<Ail./l’ Ai2j2> =

5j1+j2,3’ i] = i2 = 0
It is not hard to prove (using only the grading and the Poincaré pairing) that the above

3-point correlators are given by the following formulas:
1/0;, iy =ih=i3=ke{l,2,3}, i+ jo+ j3 =04
<Ailjl ’ Aizh’ Ai3j3 >0’3’O - <Ai2j29 Ai3j3>’ (ils ]1) = (O, 1)’

0, otherwise.

A degree 1 correlator

Lemma IL.1. Forall X = P;,3,3’ let,4,2’ PL. ., we have

6,3.2
(2.12) (A1, Aoy, Asy Yoy = 1
1
Proof. For (A1, A1, A3,1>]§’3£f, as in [ALR], we consider the R-equivalence class of prin-

cipal Z/3Z-bundles over orbifold P§,3,3 with a Z/3Z-equivariant map to a genus-1 curve.
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1
333

31 = 1. The other two cases

.. . P
There is just one such equivalence class, thus (A; 1, As 1, Az ),

are obtained similarly. O

2.4 Reconstruction

We use WDV, string equation, divisor equation (which does not exist in the FJRW
theory) and other axioms in Gromov-Witten theory, to reconstruct higher genus (descen-
dent) correlators from genus-0 primary correlators, and to reconstruct genus-0 primary
correlators from genus-0 n-point basic correlators with degree at most 1, with n < 3. We
will do the same thing in FJRW theory in next chapter. This technique is already used in
[KS]] for three special examples of simple elliptic singularities. As the reconstruction pro-
cedures used there only require tautological relations on cohomology of moduli spaces of
curves, we can easily generalize to all other examples. We sketch the general procedures
here. There are three steps.

First, we express the correlators of genus at least 2 and the correlators with descendant
insertions in terms of correlators of genus-0 or genus-1 with non-descendant insertions
(called primary correlators). This step is based on a tautological relation which splits a
polynomial of y-classes and «-classes with higher degree to a linear combination of prod-
ucts of boundary classes and polynomials of /-classes and k-classes of lower degrees. This
is called g-reduction. The reason why g-reduction works in our case is that the dimension
axiom imposes a constraint on the degree of the polynomials involving y-classes and k-
classes (see Lemma([[L.5)). In general, for an arbitrary CohFT this argument fails and one
has to use other methods (e.g. Teleman’s reconstruction theorem).

Next, we reconstruct the non-vanishing genus-1 primary correlators from genus 0 pri-
mary correlators using Getzler’s relation. The latter is a relation in H4(M1,4), which gives

identities involving the Gromov-Witten corrletors with genus 0 and 1. In order to obtain
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the desired reconstruction identity, i.e., to express genus-1 in terms of genus-0 correlators,
one has to make an appropriate choice of the insertions corresponding to the 4 marked
points in MM.

Finally, we introduce the following definition

Definition I1.2. e We call a class y primitive if it cannot be written as y = y; * vy, for

0 < degy; <degy.

e We call a correlator basic if there are no insertions of 1,% and at most two non-

primitive insertions.

e We call a genus-0 primary correlator reconstructable if it can be expressed by linear
combinations of products of (A, Az,l,A3,1)6"31 and Chen-Ruan product structural

constants, only using WDV'V, string and divisor equation.

To reconstruct the genus-0 correlators we use the WDV'V equations. We use the WDVV
equation to rewrite a primary genus-0 correlator which contains several non-primitive in-
sertions to correlators with fewer non-primitive insertions and correlators with a fewer
number of marked points. Again the dimension axiom should be taken into account in
order to obtain a bound for the number of marked points. It turns out that all correlators

are determined by the basic correlators with at most four marked points.

Main result
According to [KS],we have the following reconstruction result.

Pl

Lemma I1.3. The Gromov-Witten ancestor potential of X = P} 4425

1 .
333 P6’3’2 is deter-

mined by the following initial data: the Poincaré pairing, the Chen-Ruan product, and the

correlator {A; 1, Az, Az >8(3 , = L
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The key point for the higer genus reconstruction is the g-reduction. As we need the

explicit form in the next subsection, we reproduce here. The g-reduction lemma is

Lemma I1.4. Let P, k) be a monomial in the W and k-classes in Mg,n of degree at least
g for g > 1 oratleast 1 for g = 0. Then the class P({, k) can be represented by a linear

combination of dual graphs, each of which has at least one edge.

It was first used in [FSZ] for proving Witten’s conjecture for r-spin curves. Then in
[EJR2]], it was generalized to case of central charge ¢y < 1 in the setting of FIRW theory,
which includes the r-spin case as type A,_; singularities W := X".

Now we apply this lemma to Gromov-Witten theory, we obtain

Lemma IL5. For elliptic orbifold P!, the ancestor potential function is uniquely deter-

mined by the genus-0 potential and the genus-1 primary potential.

Proof. We consider the Gromov-Witten invariants for the elliptic orbifold P?,

<T11 (all)’ R Tln(aln)a Tip ) Tik>g,n+k,d = | lPll,m gy ° A;\tn_;_k’d(all’ cet L, U, Tila R Tik)5
Mg,n+k
where ¥, .., = [T gbf" . The correlator will vanish except for
n k
(2.13) degWy,..;, + ) degai+ ) deg(T;) =2g—-2+n+k.

i=1 =1

As long as dega; < I and degT;, < 1, we have deg'Vy,..;, > 2¢ — 2. Now we apply
Lemma If deg'¥, ... ;, is large, then the integral is changed to the integral over the
boundary classes while decreasing the degree of the total -classes or x-classes. After
applying the splitting and composition laws, the genus involved will also decrease. We

can continue this process until the original integral is represented by a linear combination

of primary correlators of genus-0 and genus-1.
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Moreover, for primary genus-1 correlators, we have deg'¥,, .., = 0. Thus equation
holds if and only if dega; = degT;, = 1, i.e, we only need to consider genus-1
correlators of type (P, -+ , P)1.na- O
g=1
Getzler’s relation

Here we prove the reconstruction theorem for primary genus-1 Gromov-Witten invari-
ants for elliptic orbifold P'. Our main tool is the Getzler’s relation. In [Gel], Getzler
introduced a linear relation between codimension two cycles in H*(mm, Q). Here we

briefly introduce this relation for our purpose. Consider the dual graph,

1 3
Appza =

This graph represents a codimension-two stratum in MM: A circle represents a genus-1
component, other vertices represent genus-0 components. An edge connecting two ver-
tices represents a node, a tail (or half-edge) represents a marked point on the component
of the corresponding vertex. A, is defined to be the S 4-invariant of the codimension-two
stratum in Mu,

Aoy = Appss + Apzps + Aas.

We denote d,, = [A,>] the corresponding cycle in H4(M1,4, Q). Other strata are defined
similarly. For more details, see [Gel]. Here we list the corresponding unordered dual graph

for each stratum,

023 : 024 - 034 :
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00,3 o4 8

According to [Ge], Getzler’s relation is as follows:
(214) 1252’2 + 4(52,3 — 2(52’4 + 653,4 + 50’3 + 50,4 — 25ﬁ =0.

For genus-1 correlators, one has the following:

Pl

1
P 6,3,2

Lemma IL.6. For X = P! 4429

333> the Getzler relation and divisor axiom imply that

the genus-1 Gromov-Witten correlators of X can be reconstructed from genus-0 Gromov-

Witten correlators.

We consider the nonzero genus-1 correlator (yy, - - - ,7,1}’121’ 4+ As Xis an elliptic orbifold
P! here, we have degy; < 1. According to the dimension formula (2.7)), the correlator is
nonzero only if every ; is P. For d > 0, the genus-1 primary correlators are nonzero only

if they are of type (P, --- ,P)7, ;- By the divisor axiom, we have:

P Pa = d" PN o

Remark 11.7. (P,--- , P}f’n’o =0forn>1.

Now, we give the proof of Lemmamby reconstructing (P)f 1 g forany d > 0.

Proof. P§,3’3-case: We choose four insertions Ay, Aj2,A21,A3; € HéR(IPéw), and we

1
P&

simply denote by Ayz.1.1. We integrate the class A’}

(Az2.1.1) over codimension 2 strata

of /VM. For 65 4, the contribution comes from four decorated dual graphs:

Aip3a = Ay j34: AY) A3 124 : Aip JAVEPEIS Ao
Ay A A
As, Az As

AI,Z AZ,I A3,1
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Let us fix the total degree is d + 1. Then

f A (Raa)
[A1234]

332 P.1 332 A11A12 323
Z <7’)>11d77 (L, A12,A11>03d2 <A2211>04dx
d1+dz+d3:d+1
d+1

Zm;“mm Do

Then we use the result from genus-0 recursion that

]P"liﬁ "433 1
(Baordgun = 0s(Banndsy = 3
Overall, we have
(2.15) fé A ”;H(Azz 1) = <5D>1m +4Z<?>1”3<A22 I; 1>Oifj+1_i.
34

Considering other strata in Getzler’s Relation, the integration over 6, ,, 9, 3 and 6, 4 will all

vanish for the following reasons:
e For 655, (a,8, l>0m 0 for all {@, B} C Ass.1.1.
e For 6,3, by dimension reason (2.7), {(a) 1333 0 forall @ € Ayp.g.
e For 6,4, by string equation, (1, @, 3, )Om 0 for all {a, B} C Asn.1.1-

As the integration of A 1(A2 2.1:1) OVer 6g3,004,05 only give genus-0 invariants, the

14d+

333

Getzler’s relation implies (P) "

can be reconstructed from (7’)13135, with & < d and

genus-0 primary correlators.

Pl

. . . 1
140-CaSE: Now we choose four insertions A; 3, Aj2, A1, Az € HéR(]P)4, 4’2) and denote

by As».1.1. In this case, we use genus-0 computation:

P! 1
(As21:0045 = 05 (A3, 1>0442 =7
. P,
Integrating A", (As2,1;1) on the 34, we have

Is A 44;+1(A32 1) = <P>1442 + Z<7)>1442(A32 1; 1>0444,§+1 i
34
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Again, integrations over 6,, 03, 024 are zero and over 6 3, 6o 4, 0z only give genus-0 con-

1
P4,4,2

R 18 reconstructable.

tribution. Thus Getzler’s Relation implies (#)
Py 5 ,-case: Now we choose four insertions Ay 5, A1, Ay 1, Az € Hip(Py 5,) and denote

them as As».;.1. In this case, we use genus-0 computation:

1

P} P}
(Aso10gu0 = 05 Qs )iy = %

1
P6’§

Now we integrate A’ Zi,j 1 (Asp.1:1) over 834,

1 1

d-1
P(lx,S,Z _ 2 PG,B,Z P6,3,2 P(lx,S,Z
j(; A1,4,d+1(A5,2:1:1) - §<P>l,l,d + 4Z<¢)>l,l,i <A5,2:1:1>o,4, +1-i°
34 i=0

1

Other strata only give genus-0 correlators. Thus (P)Tm

., 1s reconstructable. O

§=0

To prove the genus O part, we first recall the WDVV equation for elliptic orbifold P

SetS ={1,--- ,n},n>1, ford > 1, we have:

(2.16) (Y1, 72,08, Y3 * Va)onsza = lo(n) + I1(n) + Ly(n) + I3(n)
where |A| is the number of elements in the set A and
To(n) =(y1,¥3,05, Y2 *X Va)ousza + Y1 * V3,05, Y2, Ya)ont3.d — Y1 % V2,05, Y35 Ya)on+3.d

Ii(n) = Z Sign(yz, y3) Z (()’1,)’3,5A,#>0,|A|+3,d—i77“’v<V, 53,)/2,)/4>0,n+3—|A|,i)

Y223 AU B=S (n)
A,B#0,i=0,d
L(n) = Z Sign(yz,y3) Z V15735 0as 0)41+3.4-11" Vs OB, V25 Va0 nr3-1ALi
Y722Y3 AU B=S(n)
O<i<d

L(n) = Z Sign()’z,)’3)(()’1,)’3,#>0,3,d77“’y<% 055 Y25 Y4)0.143,0

Y223
+ V1,73, 05, o ns30n"” VY2, )’4>o,3,d)
Note that for d = 0, the WDVV equation is modified to be

o 1(’}’1,)’2, 05,3 * Ya)ons30 = L1(n) + {¥1,¥3,05,Y2 * V4)on+3,0
17)

+ (Y1 * ¥3,08, Y2, Y4)0.n+3,0 — (Y1 X V2, 05,35 Ya)0.n43.0
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Once we have more than two non-primitive insertions, we can choose yy, v, v3 * ¥4 to be

these, where vy, = yg for some 1 < i < |y;] — 2, where [ys3] is the order of y3. If there are

other nonprimitive insertions with different fixed points, we can choose vy, v, to be these

insertions. Otherwise, we choose the smallest degree nonprimitive insertion to be y5

i+1

. For P!

333> €ach primitive insertion has degree 1/3, each term in I, either vanishes or

has an insertion P.

For P!

44> €ach primitive insertion has degree 1/4.

For P!

6325 each primitive insertion has degree 1/3, or 1/6. For the 1/3 case, it is the

- ol
same as in IP’3’3’3.

Recursion for genus-0 3-point and 4-point basic correlators

In this subsection, we give an algorithm for the reconstruction of all genus-0 3-point and

4-point basic correlators. For the explicit recursion formulas of various WDVV equations

and how the recursion works, see the Appendix. First, we classify all these correlators into

six types. Here @, 8, v, € are all primitive elements:

[

[\

o)

)

(@)

Aa, By, EMYo a4, 1, j = 1, supports are not the same point.
AL A1, Az o3

AV Y' Y Y044, Y| 1s greatest among all primitive elements.
A, BB oza @ # B

. BB, B, B Y044 |8 = 3 in case of Péﬁ’z or |8 = 2.

A, Y54

Now we start to reconstruct the genus-0 4-point correlators with degree 0,
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Lemma IL.8. For Type I correlators, WDVV equation implies

(2.18) (@,B, 7, 40 = 0.

Type 3 correlators {y,y,Y',¥ Y40 can be reconstructed from Chen-Ruan product and

(A1, D21, A31)03.1,
(2.19) Ga¥ Y'Y Yoao = =yl

Proof. For Type 1 correlator, if there are three primitive insertions, i.e. j = 1, then it is
. P! ; .
either (As 1, Ag 1, Aoty Ara * Ay i)y or Az, Azy, =, & % §>6\j4,0- Then applying WDVV
equation (2.17)), they will vanish.
For other cases, i.e. j > 2, we can assume j > i if § = £. According to dimension

axiom, we will always have
(2.20) dega > degy,a # &.

We apply WDVV equation for (@, B/, v,& * E)oap. On the right hand side of the
equation, the second term vanishes because @ # &. The first term is (@ * 87,7y, &, E).40, it
also vanishes. Or else we must have @ = S and (j+ 1)dega < 1. However, dega > degv,
which implies deg a + deg(B’) + degy < 1. This contradicts with dimension axiom for
nonvanishing correlators. The last term will either vanish or equal to (@, &/*!,y, £ 00.4.0, WE
can continue to apply again and again, unless the second insertion is ¥ or the last
insertion is primitive, both correlators are zero.

For Type 3 correlator (y,y,vy’,¥ Y040, let @, 8 be the other two primitive insertions and
we apply WDVV equation (2.16)) to (y,y,¥’,¥ Y044 for d = 1. The equation (2.19) follows

from divisor axiom, equation (2.12)) and (2.18).

Now let us discuss the reconstruction for basic correlators.
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Lemma I1.9. All basic correlators are reconstructable for d > 1.

Proof. e For Type 1 correlators, go through the proof of Lemma[[.8] take any degree

d > 0, the reconstruction follows.

e For Type 2, if d > 0, we consider (y',y",v,v,8" * Bosa, B # v. As degy < degp,
we have ¥’ xy' =y * 8/ =y’ % = 0. Lemma [[I.§ implies /5(2) also vanish under

this choice. The reconstruction follows by

&

Q2D Yy aa = D B * Busa = (D) + 1)

e For Type 3 case, for d > 1, we consider (@, 3, y,Y * ¥ )04.4, Where vy has the greatest

order among all primitive elements. In this case, /y(1) and I;(1) both vanish. Thus
Lemma [[T.8]implies
L(1) = ~@, B, Y034 Vs 7.7, ¥ Yoao = M@ B V)oza-

Thus we have

lyl
(d-1)

(2.22) (@,B,7)34 = L(1).

e For Type 4 case, we can first reduce to the case of {(a, 8, 8034, d > 0. Now choose

y the rest primitive element and apply (2.16) to (@, 8, 8,7 * ¥)oaq- Then Ip(1), I;(1)

and /5(1) all vanish. Thus the reconstruction follows by

(2.23) (@,B.8 34 = %/'12(1)

e For Type 5, for d > 0, by induction, we already know (a,y,)034+1 and Type 1
correlators with degree d are recontructable. Now we apply (2.16) to (@, y,,8 *
B Yoaa. Bxcept for a,y, Bz 1P’ (B, 5.5, B Yoaa» We already know all the terms in

the equality are reconstructable. This gives the recursion for (&', 5,8, 8 )0.4.4-
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e For Type 6, it is the same if we can reconstruct {a, @, a’, P)o44. Like we did for the
basic correlators, we reduce to the case (P, a,a, a’, P)osq. We can choose B such
that dega’ + deg 8’ > 1. Those terms Io(2), 1;(2), I3(2) in formula (2.16)) under this

choice all vanish ,

2
—(a, @, )34 =P, a,a,B % )54

1
d-1

(2.24) =2 ) (d = D)((B. . oz (.. B @ Yoa
i=1

— L, a, wyoz.a- " (v, CY,,B,,B’>0,4,1')-

Genus-0 resconstruction
Now Theorem follows from the next lemma.

Lemma I1.10. The WDVV equation and the divisor equation imply that all the genus-0

Pl

1 1
correlators for P3’3’3, P 632

4420 are uniquely determined by the pairing, the genus-0 3-

point and 4-point correlators.

Proof. Let us denote by P the maximum complex degree of any primitive class, and by
Q the maximum complex degree of any homogeneous non-divisor class. Similarly, as we
did for FJRW theory, we can use WDVYV, plus the string equation and divisor equation to
reconstruct genus-0 primary correlators from the Chen-Ruan product structural constants
and basic correlators.

Now let (yy,--- ’7n>6Y,n,d be a basic correlator such that the first n — 2 insertions are
primitive. Thus, degy; < P fori < n — 2 and degy,_;,degy, < Q. By the dimension

counting,

n—-2<m-2)P+20.
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It is easy to obtain the data P, Q for each orbifold:

3

5
IP%,3,3 tP=2,0=7. Pyap: P = Z-Pm,z P==,0= 2

1
T3FT3 =30

=3

_ 1 _ 1 1 . .
Thus we have n = 4, for P3’3’3, n = 5 for P4,472 and P“’z. We list all the basic genus-0
five-point correlators. Since some of the orbifold points are symmetric, the nonvanishing

]Pl
6,3,2 X
correlators are same as (As j, Az 1, Ay, Ay s, A1,5>0’5’d, or (As1,As1,As, “’:8>0,5,d’ where

(A13,A13), (A13,A03), X = P}L,4,2;
(@,B) =

(ArssAra), (A1s, Agp), X = Pé’g’z-

It follows by applying WDVV (2.16)), that all the correlators above can be reconstructed

from genus-0 correlators with less than five insertions by choosing some y;,i = 1,2,3,4.
1

For example, for (A3 1, Az 1, Az 1, A1,3,A2,3)§j‘5’fj, we can choose y; = Ao,y = Arg, y3 =

Aoz, ya = Az, O

Fourier series of basic correlators

Let us conclude this subsection with a computational observation. The non-zero, genus-
0, 3-point correlators can be expanded as Fourier series. Let us list the first few terms of

their Fourier series. For Pé 53> a set of Fourier series are
4 7 13
A1, M1, A31003 =g +q +29" +2q 7 +---
1 3 9 12
(A1, A, Aoz = 3 +2¢°+2q +2q°+--,
For Pj‘ 4> a set of Fourier series are

(A11, 021, A31003 =q + 2q5 + q9 + 2q13 4

1
(Ar, Arg, Arpdos = 1 + q4 + q8 + q16 4o

(A1, AL AoYos =g +290 +¢ + -
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For P!

632> & set of Fourier series are

1
<A1,1,A]7], A]’4>0,3 = 8 + q6 + q18 + q24 +een

(A1, Ao, Ars)os = é +q2 4

(A11, Aot Asidos = q+2q +2¢° +2¢"° + -+
(A1, A, Agpdos = q2 + q8 + 2q14 4o

AL A Asdos=q +q +2¢° + -+

(A1, M, Aisyos =g + ¢ + 247 + -+

After the discussion of modularity properties in Chapterr [VIII, we can easily see in
each case, the listed Fourier series forms a basis of the vector space of modular forms of

weight 1, with the modular group I'(3),I'(4) and I'(6) in respective cases.

2.5 Convergence

Let .7 be the set of generators of H(X) introduced in (2.11]). We define

GW .
(225) Ignd .= max <a'1’ R a’n)g,n,d
” ;€S

Here is the main estimation in this section. The proof will be given in Chapter
Theorem I1.11. Let us assume «; € .7, and a; # P for l; = 0. Let us denote y := 2g—2+n,

L = 3;l;. Then for y > 0, we have:

dX—ZC(X))(+(g+L+1)d—2, lfd > 0.
(226) <Tll (all)’ Tt 7-ln(a/n»g,n,d <

Ciyy¥ !, ifd = 0.
Here C(y) is a sufficient large constant which depends increasingly only on y.

Now we prove the convergence of the Gromov-Witten part in Theorem
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Proof. For t = sP, recall the Divisor equation for the ancestor correlators @), we have

the estimation:

(i@, @)l

- ' Z Z %«71 (@), 7, (@), sPs -+ sP)gneka

d>0 k>0

* ‘ Z Z %«rll (@), T, (@n))gnas‘d"

d>1 k>0

<[z @+ @b

5

d>0

d ate (X)X+(g+L+1)d—2

eS

This is convergent for ‘e“' C(y)s < 1/2.

Now we consider t = sP + 3,5 t:¢;, Where ¢; ranges over the homogeneous basis other
than . The dimension formula implies the function ({7, (a1), - , 7, (@)))gn(t) 18
a polynomial of #; with coefficients are ancestor functions valued at s#. As the number
of terms of the monomials in this polynomial depends only on the genus g and number
of marked points n. It follows that for g, n fixed, ({7}, (@), - -, 7;,(@,))),.n(t) 1S convergent

near Re(s) < 0,1, = 0 fori > 0. |



CHAPTER 111

Fan-Jarvis-Ruan-Witten theory

3.1 Introduction

For any non-degenerate, quasi-homogeneous polynomial W with N variables, Fan,
Jarvis and Ruan, following a suggestion of Witten, introduced a family of moduli spaces
and constructed a virtual fundamental cycle. The latter gives rise to a cohomological field
theory, which is now called the FIRW theory. Let us briefly review the FJRW theory only
for the group Gy. We refer to [FJR2]| for general cases and more details.

Recall the group of diagonal symmetries Gy of the polynomial W is
Gy 1= {(/11,...,/11\,) e @)W X1,y Xy) = W(Xl,...,XN)}.

The FJRW state space 7y, (or ¢y for short) is the direct sum of all Gy-invariant
relative cohomology:

3.1) Hy = Hi  Hy = H'(Cp Wy 0.

/‘lEGW

Here C,(h € Gy) is the h-invariant subspace of CV, W, is the restriction of W to C,, ReW,
is the real part of W, and W;> = (ReW},) 1 (M, o0), for some M > 0.

The vector space H,(h € Gy) has a natural grading given by the degree of the relative
cohomology classes. However, for the purposes of the FIRW theory we need a modifi-

cation of the standard grading. Namely, for a given homogeneous element @ € H), we

40
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define

N
degy, @ := dega + Z(@ff - qi),

i=1

where deg a is the cohomology degree of @ and the numbers G)f’ € [0,1) N Q are such that
h=(e[®]],...,e[0]) € (C),

where for y € R, we put e[y] := exp(2r V—1y). Clearly the numbers ®” are uniquely

determined from 4. For any « € H), we define
(3.2) O(a) := (e[O]].....e[O}]).

The elements in H), are called narrow (resp. broad) and H), is called a narrow sector (resp.
broad sector) if C, = {0} (resp. C; # {0}). For invertible simple elliptic singularities, the
space H*(C;,; W,°; Q) is one-dimensional for all narrow sectors H;,. We always choose a

generator @ € Hj, such that
(3.3) a:=1e H(@C,W>;Q).

In general, in order to describe the broad sectors, we have to represent the relative coho-
mology classes by differential forms; then there is an identification

(34) (%W,G,< ) >) = (@ (Qthh)G ,RCS) )

heG

where w), is the restriction of the standard volume form to the fixed locus C;, Res is the
residue pairing, and ( , ) is a non-degenerate pairing induced from the intersection of
relative homology cycles. There exists a basis of the narrow sectors such that the pairing
(vi,v2), vi € Hy,, 1s 1 if hjh, = 1 and O otherwise. The vectors in the broad sectors are
orthogonal to the vectors in the narrow sectors. In order to compute the pairing on the
broad sectors one needs to use the identification (3.4)) and compute an appropriate residue

pairing. In our case however, we can express all invariants using narrow sectors only. So a
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more detailed description of the broad sectors is not needed. We refer to [FJR2]] for more

details.

W-spin structure

Let (W, G) be an admissible pair. A W-spin structure on a genus-g stable curve C with
n marked orbifold points (z;,...,z,) is a collection of N (N is the number of variables in

W) orbifold line bundles L, ..., Ly on C and isomorphisms
Wa: My(Ly, ..., Lx) = wc(=21 =+ = Zn),

where wc is the dualizing sheaf on C and M, are the homogeneous monomials whose
sum is W. The orbifold line bundles have a monodromy near each marked point z; which
determines an element 4; € G. In particular, if H), is a narrow (resp. broad) sector we
say that the marked point is narrow (resp. broad). For fixed g,n, and hy,...,h, € G, Fan-
Jarvis-Ruan (see [FIR2]]) constructed the compact moduli space #;,(hy,- - , h,) of nodal
stable curves equipped with a W-spin structure. In this compactification the line bundles
(Ly,...,Ly) are allowed to be orbifold at the nodes in such a way that the monodromy

around each node is an element of G as well. The moduli space has a decomposition into a

.....

.....

whose vertices are the irreducible components of C, edges are the nodes, and tails are
the marked points. The latter are decorated by elements /; € G, so the tails of our graphs
are also colored respectively. We omit the subscript (A, . .., h,) whenever the decoration is
by fixing the monodromy transformations around the nodes, i.e., the strata are in one-to-
one correspondence with the colorings of the edges of the dual graph Iy, ... .

Fan—Jarvis—Ruan constructed a virtual fundamental cycle [7/&,,(1")]VIr of #,,() (see
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[EJR2]), which gives rise to a CohFT
AYE : (Hy)™ — H' (Mgp).

For brevity, we put A}/, for AgV.

Axioms for simple elliptic singularities

Let us list some general properties of the FIRW correlators of a simple elliptic singu-

larity W. Here N = 3. See [FJR2, [FJR3] for the proofs.

e (Selection rule) If the correlator (7, (@), . . . ,Tkn(an));‘fn is non-zero; then
(3.5) > degylan+ ) ki=2g-2+n.
=l i=1

e (Line bundle criterion). If the moduli space #;,(hi,...,h,) is non-empty, then the
degree of the desingularized line bundle |£;| is an integer, i.e.

(3.6) deg(L}) = qj2g 2 +n) - » O €Z.

k=1

.....

narrow. If 7, (@L L,-) and R'rw, (@13: | .E,-) are both vector bundles of the same rank.

We denote the Witten map Zyi: (X1, , Xy) (%, e ,%), then

(3.7 [# (T,
e (Concavity) Suppose that all the decorations on marked points are narrow, 7 is the

morphism from the universal curve to %, ,(hi,...,h,) and . (@; £,~) = 0 holds;

then

3
38)  [Heulhi, . h)™ = cop (—R‘m ¢ L,-] N Hgnlhrs - ).
i=1
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Orbifold Grothendieck-Riemann-Roch

Let; = 1 € Hy,, 1 <i <4 be the generators (cf. (3.3)). The concavity formula (3.8)

implies that A(v)‘j Jag, . ) € H*(MOA,C). According to the orbifold Grothendieck-

Riemann-Roch formula (see [[Chil], Theorem 1.1.1) A(‘f Jan, .. ay)is
3 4 hj h
Bx(q:) B,(0;") B»(®;")
(3.9) 2| ), 1T,
i=1 j=1 Ielos,w(hi,....,hs)

where B, is the second Bernoulli polynomial

5 1
By(y) =y “yte

[I'] is the boundary class on ﬂg,n corresponding to the graph I', and I'g 4 w(hy, ..., hy) 1S
the set of graphs with one edge decorated by Gyr. The graph I' has 4 tails decorated by
hy, hy, hs, hy and its edge is decorated by Ar. Due to (3.6), the moduli space #4 4(hy, . . . , ha)
is non-empty only if Ar satisfies an appropriate constraint involving Ay, ..., hs. It is easy

to see that the formula does not depend on the choice of Ar.

3.2 Simple elliptic singularities and their FJRW rings

Let WT be the Berglund-Hiibsch-Krawitz mirror of W, see Chapter [V| From now on,
we will consider W as in Table (T.I). Then up to symmetry, we can still consider W7 as
an element in Table (T.T). However, W and W’ may belong to different column. We will
consider the FJRW theory for (W', Gyr) and the Saito-Givental theory for W.

Since Jyr = %WT,GWT is the state space of a CohFT, it has a Frobenius algebra struc-

ture, where the multiplication e is defined as follows:
T T
(a1 a2, a3)" = (ar, ar, 3)5-

For ISES the product ¢ (when G = Gyr is maximal) was computed by M. Krawitz (see
[Kxl]). More precisely, he constructed a basis of 74,7, which gives rise to an isomorphism

between the Frobenius algebra % and the Jacobi algebra 2y, .
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Now we give an explicit description of the generators. For a general description of the
ring morphism J¢yr — 2y, we refer the interested reader to [Kr]. Since some of our
ISESs are equivalent to 2-variable singularities of chain type or of loop type, we also refer
to [ES]] and [Ac] for those particular examples.

For every ISES W7, there exists a vector n = (n,n,,n3) € 7?3 such that
Gyr 2 Z/nZ X Z|nyZ X Z[ns3Z.

In particular, we can identify the vector n with the group Gyr. We assume n; > n, > nj;

and omit those n; = 1 in n. For example, if W7 = X7 + X, X; + X3, then
Gyr = {(41, Do )| = 02 = 45 = 1} = (12,2).
Leth = (i, j,k) € Gyr. If
1<i<n, 1=<j<n;,, 1<k<ns,

then H), is a one-dimensional space of narrow sectors. Let

e r:=1E¢€ H(Cy; W5 Q).
Example III.1. We compute the FIRW ring for loop singularity W7, with W € Ef,)l’l).

4i

W' = XX+ X1X5 + XoX5, Gyr = {ei = (e[é],e[—

AN N
9],6[—6]),1— 1,,8}:2/82

All nonzero 3-point genus-0 correlators are
(e, €1,€1)03 = (€y4,€4,€4)03 = (€7,€7,€7)03 = —2;

(€3,€;,€9_1)03 = (€1, €4,€7)03 = 1.
The first row uses Index Zero Axiom (3.7) and the second row uses Concavity Axiom

(3-9). It is easy to see e; is the identity element and the ring relations are

Ze]oe4+e%:2e4oe7+ef:2e7oe1+ei:O.
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Thus we obtain a ring isomorphism between .7 and Dy, :
pr=e > X, pp=e > X5, p3=e - X

For all 13 types of ISESs with a maximal admissible group, there is a unique narrow

sector p_;, with degyr(o-;) = 1 and

Op-1):=(1-¢l.1-q3.1-¢4}).

There are 13 types of ISESs, but only for 9 of them do not have broad generators. The
narrow sectors have the advantage that we can use the powerful concavity axiom (3.§).
Combined with the remaining properties of the correlators and the WDVV equations this
allows us to reconstruct all genus-0 FJRW invariants. According to the reconstruction
theorem in [KS]], we can also reconstruct the higher genus FIRW invariants, i.e., the total
ancestor potential function VQ%F%W.

In the remaining 4 cases, we can offset the complication of having broad generators

only for W' = X7 + X, X7 + X,X;. The maximal abelian group is of order 12. Its FJRW

vector space has eight generators:
e}, e;3,es,e7, ey, e, Ry, Rg.
Here R, and Rg are the cohomology classes represented by the following forms:
R, =dX, NdX, € H(Ci; W°;Q), h=4,8¢€Gyr.

Note that R4 and Rg are Gyr-invariant elements in 2y, w, where h € Gyr acts on each
factor X;, such that dX; is a divisor of wy, as multiplication by e[ql.T]. Although one of the
generators (R,) is broad, we have enough WDV'V equations to reconstruct the correlators
containing broad sectors from correlators with only narrow sectors and apply the concavity

axioms.
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For the other three types of ISESs, we can still compute some genus-0 4-point cor-
relators with broad sectors, but we could not reconstruct the complete theory only from
correlators with narrow insertions. In other words, for 10 out of the 13 ISESs we can com-
pute all FJRW invariants. We call them good cases. These cases and the corresponding
generators p; of the FIRW ring J#yr g , are listed in Table below. Here if

T
W e E,(ll’l), then we say W' ¢ (E,(}’l)) ,

T
Table 3.1: Generators of the FIRW ring in the case (E(ﬁl"))

w’ Gyr O(e; jx) p1 02 03 p-1
X+ X3+ X; (3,3,3) e[é],e[él],e[%{] €11 €21 €2 €22 =P10203
XiX3+ X1 X3+ X:X; 8 elglelglel-3] e e e e =pipps
X7+ X1X3 + X X3 12 e[l.e[-ile[5] R4 e & €y = pop3

T
Table 3.2: Generators of the FIRW ring in the case (E;l’l))

wr Gyr O(e; jx) o1 P2 p-1
XP+X3+X2 (4,4,2)  elile[ilel}]  en en e =plod
XX+ X X3 +X7 (8,2)  el-glelglels] e e e =pp;

X +X1 X +X: (12,2)  e[Flellel3] e es  eo=pip]

X+ X X3+ XX7 120 elflel-{lels] e e es=—3pm

T
Table 3.3: Generators of the FIRW ring in the case (Eél)

wr Gyr O(e; k) P P2 p-1

X+X3+X2 (63,2 e[ilellle[}] e e esy=plp

X +XX+X] (6,3)  e[Flel{lelil e en en=pipmps

X+ X X3 +X7  (12,2)  elFlelflel3]l e e e =pip)

3.3 Reconstruction

For an ISES W7, its total ancestor potential AY" can be reconstructed from genus-
0 primary correlators. The idea is same as what we did for Gromov-Witten theory in

the previous chapter. We replace the dimension argument in Gromov-Witten theory by
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Selection rule. Here we do not have divisor axiom. However, it is not necessary since
we only need the divisor equation to reduce the degree of Gromov-Witten correlators and
there is no degree variable here in FIRW theory.

We say that a homogeneous element a € &y is primitive if it cannot be decomposed
as a product a’ e a” of two elements a’ and @’ of non-zero degrees. We also say that a
genus-0 correlator is a basic correlator if there are at most two non-primitive insertions,
neither of which is the identity.

Over all, we have the following statement.

Lemma IIL.2. For an invertible simple elliptic singularity W' the total ancestor FIRW po-
tential of (W', Gyr) is reconstructed from the pairing, the FIRW ring structure constants

and the 4-point basic correlators with one of the insertions being a top degree element.

Now let us prove the reconstruction theorem of all genera for the three types of singu-
larities paired with Gy,. We again use g-reduction Lemma for higher genus reconstruc-
tion. We use the following notation as in [KS|| and consider their transpose singularity for

FIRW theory.

Py=X+X3+ X e E{",
Xo = X)X, + X2X; + X2 € EVV,

Jo=XX +X2+ X} e EJ"".

For simplicity, we first state the result for W = Pg,XgT ,JITO. It can be easily general-

ized to all other cases. We make the following changes on the notations. For Pg, we let

T

€ri-tyj-lk-1 = € jk. For JIO’

we let €6j-6+i = €; ).

Lemma IIL.3. For the three types of elliptic singularities W = Pg, XJ, J{,, the correlator

(y,(@y), -+, 7y, (an)>g;1G in FJRW theory is uniquely reconstructed by tautological relations
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(WDVV-equation, Getzler’s relation and g-reduction) from genus-0 primary correlators.

Proof. As for these three elliptic singularities, the central charge ¢y = 1, thus the result

easily follows from Theorem [lII.4{here and Theorem 6.2.1 in [EJR2]. |
g=1

In this subsection, we show that the genus-1 primary correlators can be reconstructed
from genus-0 primary correlators. By the selection rule (3.5)), the nonvanishing genus-1
primary correlators must be of the form (o_;, -+ ,p_1)1,, where p_; = e,,,es and e,

respectively in the Pg, X] and J]; cases.

Theorem II1.4. For all simple elliptic singularites with maximal admissible group, the
genus-1 FJRW correlators can be reconstructed from genus-0 FJRW correlators by the

Getzler relation.

Proof. Pg-case:
In this case, we need to reconstruct (e,y,, - - - ,em)fjl, n > 2. We have the forgetful map

Tyn  Mipa = Mg LetS ={1,--- ,n—2}. Thus

—1 _
T 4,,1_2(A12,34) = E A12A,B,C34-

AUBUC=S

Now we choose n + 2 insertions: the first four are e,, e,., e,, .., the others are e,,,. Inte-

: P -1 :
grating the class A 1,8n oene e e e, - ,€e,)on 7r4,n_2([A 1234]), we have:
P
f Al’gn_,.z(exa eyz, ey» €z, exyza T exyz)
”2’11_2([A12,34])

— Pg
- f Al,n_,.g(ex» eyz’ ey9 €,z exyz’ ) exyz)
[A12,5.34]

Pg _1.ex; Pg eyl P,
= (e,, €yz; 1)0%’7 ex"”<exyz’ T exyz>1;77e (1, €y, exz>0,%

P
= <exy2a M) exyz>1i,~

The second equality uses the Splitting Axiom. The first equality is a consequence of

the Selection Rule (3.5) and the String equation. The Selection rule requires that each
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insertion for a non-zero genus-1 primary correlator is e,,, and the String Equation implies
that the genus-0 primary correlator with more than four insertions will vanish if there is
one insertion the identity element. Thus the non-zero contribution partition should be
B =S,and A = C = (. The corresponding decorated dual graph for n;’}l H(A1234) 18
€yt y: €
A5 34(€x, €z, €y, €1, €y, o+, €ry) =

€y; €x;

Other decorated dual graphs are obtained similarly. As 6,, = [A,5] is the S 4-invariant, we

integrate over each stratum and finally get

Pg — Pg
(310) fl " Al,n_,.z(ex’ €€y, €47, €y, 000 exyz) - 3<exyz’ T exyz>1’n-
T4 n—2022

We observe that only ,3 can contain at most n insertions for the genus-1 component.
However, one of the insertions is decorated with an element from the first four insertions.
Thus the integration vanishes according to the selection rule. On the other hand, when
we integrate the same class on other dimension two strata in Getzler’s relation (2.14),
all the genus-1 correlators will have at most n — 1 insertions. Thus Getzler’s relation
implies (€, - - -, exyz>i8n (n > 2) can be reconstructed from genus-1 correlators with fewer
insertions and other genus-0 correlators.

Now we consider the integration of the class Ai (€, ey, e, e, ) on those codimension
two strata of /7(1,4. We can discuss similarly as above. The integration on 6,5, 623, 024 Will

all vanish. However,

P Pg eyl Ps _ey.e P
f A[Z(exa €x, €y, exyz) = <exyz>1,8177 e <e1 » €xs eyz>()’8377 '\' X<exa €x, €y, exyz)oi
[A1234]

1

Here we use the fact {e,, e, e,, exyz)g N = %, will be computed in Lemma [[II.10} Overall,

4

P P

f A]i(em €x, €y, exyz) = §<exyz>1’81 .
034
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Now applying the Getzler’s relation again, other contributions are of genus-0, and (exyz)i i
can be reconstructed from genus-0 primary correlators.

X{-case:

For n > 2, we choose n + 2 insertions: the first four are e, e;;, €5, €7, the others are eg.
The nonzero contribution of Ay, 34 comes from the following decorated dual graph:

€ €3 ---€g €5

€11 €7
and
X7 X3
(3.1D) Al o€ €1, es,e7,€5,- -+, €g) = 3(es, - ,€5), .
ﬂ;ﬁl,,_z((sz,z)
. . xr . .
The integrations of A’ .,(e;, €1, es, €7, €z, - - , ) on other strata in Getzler’s relation only

produce genus-1 correlators with lower insertions and genus-0 correlators.
. x! R . .
For n = 1, we integrate A’ (e}, es, €7, €;) on the Getzler’s relation. It vanishes on strata

with genus-1 component except for 05 4. We have

x7 2 xr
f A (e, es,e7,e7) = —§<es>1i-
034

Thus reconstruction of the genus-1 primary correlators follows.
T .
Jj,-case:

T
‘]10

For n > 2, we integrate the class A e

(€1, €11, €5, €4, €0, ,€j) over the Getzler’s
relation. The non-zero contribution of integrating over 6,, comes from three decorated

dual graphs. One of them is

€ €p---€p €3

€11 €4
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Overall, we have

JT JT
(3.12) f Al o6 €11, eg,e4,€10, 0+, €10) = 3(€10, , €10) -
ﬂ;},_z(éz,z)
. . JT . .
Then integrations of A} (e, e, €3, €4, €9, - ,€j9) on other strata in Getzler’s relation

only produce genus-1 correlators with lower insertions and genus-0 correlators. Thus the
reconstruction follows for n > 2.
. JT .
For n = 1, we integrate the class A}'j(es, e, €3, €10). The unique genus-1 correlators

contribution comes from 3 4. We have

g 4
f Al (es, €5, €5, €10) = §<elo>ljf~
034
All the other contributions are of genus-0 correlators. Thus the reconstruction holds. O
§=0

In genus-0, both FJRW theory and Saito theory are well-defined for t = 0. The ancestor

correlators can obviously be expressed by ordinary correlators with t = 0.

Proposition IIL.5. Using WDVV equations, all genus-0 primary correlators of FIRW the-
ory for the elliptic singularities Pg, X9T , JITO are uniquely determined by the pairing, the 3-

; Py Py Xg Tio
point correlators, and (€y, €y, €y, €,,.)°, (€, €y, €., €, )", (€1, €s,€7,€7),°, (€, eg, €5, €10),",

JITO ‘]lTO t' l
(eg, €3, €3, €10), ", (€1,€1, €4, €10), " respectively.
We first introduce some useful concepts.

Definition II1.6. We call a homogeneous element y primitive if it cannot be written as

Y = ¥1 * ¥, for degy, ¥ and degy, v, nonzero.

Definition IIL.7. We call a genus-0 primary correlator a basic correlator if there are at

most two non-primitive insertions, neither of which are 1.

Our general scheme is following recursion formula from the WDVV equation.
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Lemma IIL8. We can reconstruct genus-0 primary correlators of FIRW theory for the

three cases by basic correlators with at most four marked points.

Proof. We recall the WDVYV equation for the FJRW invariant,

3 18’1,7’2, 05, Y3 * Va)onsz =1(n) = (y1 * ¥2,05, Y3, Y4)on+3

+ (Y1 % ¥3, 05, Y2, Yadonss + (Y1, 73,05, Y2 * Yadonss-
where § =S§(n) :={l,---,n},04 := an,, - ,aa, and A = {Ay,--- , A},
I(n) = Z Z Sign(y2, ¥3)X¥1, ¥35 045 o,a1+3"" (Vs OB, Y25 Ya)on+3-1Al-
Y25y3 AUB=S
A,B#0
25y, Means exchange y»,73, and sum up. Sign(ys,y3) = 1,Sign(ys,y2) = —1. Here
we also use the Einstein summation convention for u,v. According to [FJR2] Lemma
6.2.6 and Lemma 6.2.8, using the above WDV'V equation, all genus-0 primary correlators
can be reconstructed uniquely from basic correlators. For all the three singularities listed
above, the selection rule (3.5)) implies the number of marked points for a basic correlator
{ay, -+, ar)ox should satisty
k
k=2=) degya; < (k—=2)P+2,
i=1
where for the singularity W, P is the maximum complex degree for the corresponding
FJRW-primitive class. We can easily compute P = 1/3 for Pg, J],, and P = 1/4 for X{.
Thus, for the X9T case, k = 4. For the other two cases, kK = 5. We list all the basic 5-
point correlators. Up to symmetry, they are (e,, €y, €y, €., €, g@, (ey, ey, ey, e, e, gf;,
JT

(€x, €y, €, €5, exyz>§f‘5 and (es, g, €s, €19, elo>0f§-

Now we apply the WDVV equation 1| to (€, €y, €y, €4z, exyz>(1;§. We choose y; =
€72 = €y, Y3 = €, Vs = €,,0] = 0, = e, thene, xe,, = e, xe, =e, *xe =0, and

the reconstruction follows. The other three cases are reconstructed similarly. O

Now we give the proof of Proposition [[11.5]
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Proof. We classify all genus-0 4-point basic primary correlators.
For Pg case: We list all the possible non-vanishing basic 4-point correlators up to

symmetry. They are:
P Ps,
1. (e, €, €, €5:)°, (€, €, €5, €10
P P Pg.
2. (e, ey,€,€..),", (€, €, €,,e.)",(ee,e.,e.)";

P P P
3. (er, ey, e,e,.)°, (€, €),8,,€,.),°, (€, e, e, e.)";

P P
4. <ex’ €x, €xy, exy>08, <ex, €y, €yy, €y 08,

Applying the WDV'V equation (3.13)) over and over again, we can show that all the corre-

lators can be expressed as the scalar multiples of the first one in every row. For example,
P P P
(e, €y, €y, exz>()8 = (e, e, €, * €y, exz>()8 =(ey, e, e, €y, * exz)og-

Other cases are similar and we leave them to readers as an exercise. Moreover, the scalar
is determined by 3-point correlators which are the initial conditions of our reconstruction.
Furthermore, we have vanishing results for the last two rows. For example, as e, x e,, =

e, x e, = e, xe, =0, WDVV equation (3.13) implies
(e,,€,, €., e, * e =0
xs Cxs Cxys ©x y/0 .

Thus we only need to compute {e,, €,, €., exyz)op *,and (e,, ey, e, exyZ>OPS.

Remark I11.9. The above vanishing results can also be obtained by the line bundle criterion
(3.6). The same applies to JITO case for (e;, eg, €5, elo)(J)‘TO = 0. However, there is no such
criterion in the B-model. Here, we stick with the WDV'V equation which applies for both

the A-model and the B-model.

X{-case: There are 18 basic 4-point correlators. Using the WDV'V equation,

bed bed bed bed
(3.14) (er,a,B,es xy),” +(e; x a,B,e5,7),” =(e1,y.B,es xa),” + (e *xy,b,es,a),”,
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(3.15) (es.afBer % &)y + (s @.B,en, )y = (es,E.B,e1 % @)y +(es x & B e, )y .
We can choose as follows:

o a=eep,xe,B=¢€,€,y=¢;,&=ep.

e v =¢g,f=e0res,y =es5,E&=ey.

e @ =e,B=ey=ein case of (3.14).

There are 17 equations among the 18 basic 4-point correlators. For example, the last

choice gives
xT xI xI
(el,eu,el,eu>09 + <e8»elae5,e10>09 = <e7»el,e5,ell>09-

By tedious simplification, we find that all the 18 basic 4-point correlators are scalar multi-
XT
ple of {e;, es,e7,€7),”.
For J{ -case: We use the same technique. Finally, the basic 4-point correlators are

. . . Jr JT
all scalar multiple of the following three special ones: (ej, €3, €5, €10),"", (€3, €3, €3, €10),",

o
(er,€1,€4,€10)," .

The 4-point genus-0 FJRW invariants

Let Z(p1, 02, p3) be a degree 1 monomial with leading coefficient 1. For simplicity, we
denote by (=, p_l)g’ j a basic correlator such that the first three insertions give a factoriza-
tion of Z. For example, let Z(p1,p2,03) = pjp3; then the notation (Z, 0 ;). 4T represents

any of the following choices of correlators:

T T T
<p1,p1,p§,/0—1>g,/4 , <P1,pz,p1P2,P—1>(‘f4 s (Pz,Pz,p%,P—Og; .

The WDVV equations guarantee that (E, p_ 1)3’/ 1 does not depend on the choices of the

factorization.
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Lemma IIL.10. Let W' be an ISES; then all FIRW correlators for (WT,Gyr) can be
reconstructed from the FJRW algebra, and the basic 4-point FIRW correlators (2, p_, )g‘j : .
Furthermore, if W' is an ISES as in Tables or|3.3| then

r qiT ifE=M,;
(316) <E(Pl,p2,p3),p—l>(‘)/‘,/4 =

0 otherwise.

where M; are the homogeneous monomials such that W = M| + M, + M.

Proof. We already see for three special simple elliptic singularities W’ = X7 +X3+X3, X7+
X1 X5 + XoX; and X; + X, X; + X5, their FJRW correlators with symmetry group Gyr can
be reconstructed from their FIRW algebra and some basic 4-point correlators. We apply
the same method to all cases of simple elliptic singularities here. Finally, using WDVV
equations in each case, it is again not hard to verify all 4-point basic correlators without
insertion p_; can be reconstructed too.

For the second part of the lemma, we use WDV'V and the concavity to compute FIRW
correlators. We show that the argument works for singularities of Fermat type and of loop
type. Other cases are similar. For a Fermat type singularity, put M; = Xl.l/q"T , since all

insertions are narrow, we apply the Concavity Axiom (3.9) to compute

1/q7-2 T
(3.17) (NN R

Note that deg .%; = —2 and the degree shifting numbers are (2¢;,2g/,1 - ¢!, 1 —g!), thus

the dual graphs will have O = 0,0, 1 — 3¢ . The correlator (3.17) becomes

(Ba(g]) + Ba(1 = 3q]) +2B5(0) — 2By(q]) - 2By(1 - ¢1)) = ¢

| =

For loop type, WT = X7 X5 + X, X; + X,X3. Let us compute (o, ,pl,pz,p_l)g‘j, which is not
concave. However, the Concavity Axiom (3.9) implies

2

WT
(e, e4,€7, ez>o,4 = —§-
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On the other hand, WDV'V equations show
wT wT wr,
(€1 0€4,€4,€7,€)0, +(€1,€4,€4,€70€2)7, =(€70€4,€4,€,€2)),;

wT wTl _ wr.
(e; 0 €4,€,€7, e2>0,4 +(ey,€4,€1,€7 @ ez>0,4 = (e; ®€7,€,¢€y, ez>0’4 5

T T . .
We observe up to symmetry, (es, e, €7, e2>g’ . = (eg, e, ey, e2>8" 4 - Recall the ring relations

in Example |[II.1] we obtain

WT WT 1
<p1’p1’p2ap—l>o,4 = <e47e4,e],e6>0,4 = g O

3.4 C(lassification of good FJRW theories

Conjecture IIL.11. For W, W’ be invertible simple elliptic singularities and Gy, Gy be
theis maximal diagonal symmetry groups, then the FJRW theory of (W, Gy) is equivalent

to the FIRW theory of (W', Gy) if and only if
pwr = s Jwr(0) = jyr(0).

In this section, we will classify the FJRW theory of those good cases and prove the
conjecture is true among thoses cases. For other cases, due to the [Kr], the conjecture is

true in ring structure level.

Lemma IIL.12. [f W, and W, belong to the same equivalence class, then there exists a
linear isomorphism ¥ : J“i”wlr — %”Wzr that induces an isomorphism of the FJRW rings
and the corresponding 4-point basic correlators with a degree 1 insertion. According
to the reconstruction lemma all higher genus FJRW correlators of (W,,Gy,) and

(W2, Gw,) are identified under this ring isomorphism.

Proof. In order to prove the lemma we will construct explicitly a linear isomorphisms ¥
inducing the ring isomorphisms; then one has to check that they also preserve the corre-

sponding 4-point basic correlators with a degree 1 insertion.
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For simplicity, we add a superscript on the ring generators for each singularity. The
superscripts f,c or [ mean that the singularity is respectively of Fermat, chain, or loop
type. A superscript with two entries means it is a sum of two different types. Let us take
the first and the last FIRW rings in the case of (u, j) = (8, 0) as an example. We choose a

linear transformation,

Pl N N
Flosin |71 etdl etdl || oY
P13 1 el3] elil || o

The parameters A1, A,, A3 could be chosen to be arbitrary non-zero complex numbers. The
relations in the FJRW rings do not depend on the choice. However, we have to choose A;

in such a way that the basic 4-point correlators agree, i.e.,

1 2 1
(318) 1?12/13 = e[g] Al/lé/b = e[g] /11/12/1%1 = —8—1.

We notice that
ol =plepyep;, pli=plepheph.

Now one can check that

1
(¥op), o), P (o)), ¥l Dos = =81 L5l o1 o1 Lo = 3

We check all the nonzero 4-point genus-0 correlators listed in Lemma and obtain

the other two identities in (3.18]).



59
Another example between Fermat Egl’l) and loop Eél’l)

Let us give an isomorphism between FJRW theory of (X; + X; + X; ,Gwyr) and FJRW

theory of (X?X; + X1 X3 + X2 X3, Gyr),

C1P1 11 1 P1

P ep, [P 1 et el2 || o

303 1 e[3] e[1] || p3
where constants c¢; satisfy
1 2
cl = e[g]cg = e[g]cg = -9.
Other examples

The other cases are similar. Let us list the corresponding linear transformations which

preserve FJRW correlators of all genera. We are only interested in those singularities listed

in Table

® (1, ))=109,0),
pi & pif 444 7
o5 L ey
® (1, ) =01,
ol Ao || Y
¥ = , —642805 = 644725 = 1.

p§ - A Plzf



60

® (1, ) =(10,0),

ol | o
¥ = , 83 =-22145=1. O

3.5 Convergence

We will prove the following statement in Chapter

Lemma III.13. The FJRW ancestor correlator (T, (1), - , Ty, (a,,)))g;f;(sp_l) is conver-

gentat s = 0.

Now we use it to prove the convergence of the FIRW part in Theorem [[.4]

Proof. We can assume t = sp_; + ;5 t;¢;, Where ¢; ranges over all elements in the basis
except p_;. By Selection rule , (ry(ar), -+, 1y, (a,,)})Z;,G(t) can be written as a poly-
nomial of ¢;, with each coefficient some FJRW ancestor function valued at sp_,. The degree
of each monomial just depends on g and n. Now the convergence is an easy consequence

from the previous lemma. O



CHAPTER IV

Global B-model for simple elliptic singularities

4.1 Saito’s theory

Let W be an invertible polynomial from Table We would like to recall Saito’s
theory of primitive forms which yields a Frobenius structure on the miniversal deformation
space M. Following Givental’s higher genus reconstruction formalism we will introduce
the total ancestor potential of W. Finally, we will derive a system of hypergeometric

equations that determines the restriction of the flat coordinates of the Frobenius manifold

Mto Z.

Miniversal deformation

Let

2w = C[X1, X2, X31/(0x, W, 0x, W, Ox, W).

be the Jacobian algebra or local algebra of W. Let us fix a set R of weighted homogeneous

monomials
4.1) o:(X) = X{' X7 XY, r=(r,mn,n3),

such that their projections in 2y, form a basis. The dimension of the Jacobi algebra, i.c.,
the number of the above monomials, is called the multiplicity of the critical point or the

Milnor number and it will be denoted by u. There is precisely one monomial of top degree,

61
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say ¢m, m = (my, my, mz). We fix a deformation of W of the following form:
4.2) W,(X) = WX) + 0 ¢pn(X), o €Z,

where £ C C is the set of all o € C such that W,(X) has only isolated critical points. Such

deformations do not change the multiplicity of the critical point at X = 0. The polynomials
. . .. . .. (1,1)

#.2) correspond to families of simple elliptic singularities of type E,, (see [Sa2l]). More

generally, a miniversal deformation (see e.g. [ArGV])) of W can be constructed in the form

4.3) F(s,X) = WX) + > s 4e(X).

reiR

It is convenient to adopt two notations for the deformation parameters. Namely, put

S = {sr}reﬂ? = (S—l’ S(), S], s Sy—2)7

where the second equality is obtained by putting an order on the elements r € R and

enumerating them with the integers from —1 to u — 2 in such a way that
S_.1=Sm=0, Sy=3s5, 0=(0,0,0)¢€R.

The space of miniversal deformations, i.e., the range of the parameters s, is then defined
to be the affine space M = X x C¢~!. Furthermore, each s, is assigned a degree so that
F is weighted-homogeneous of degree 1. Note that the parameter s, = o has degree 0.
Following the terminology in physics, we call sy, and ¢y, marginal. Note that W,(X) is the
restriction of F'(s, X) to the subspace X of marginal deformations. Except for W of Fermat
type, there is more than one choice of a marginal monomial. For example, both X;X,X;

and X/X; are marginal for W = XX, + X5 + X;.

Multiplication

Let C be the critical variety of the miniversal deformation F (see (4.3)), i.e., the support

of the sheaf

OC = OX/<(9X1F7 aX2F7 aX3F>’
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where X = M x C*. Let ¢ : X — M be the projection on the first factor. The Kodaira—

Spencer map (7 4 is the sheaf of holomorphic vector fields on M)
Tm — q.Oc, 0/ds; — 0F/0s; mod (Fy,, Fx,, Fx,)

is an isomorphism, which implies that for any s € M, the tangent space T3 M is equipped
with an associative commutative multiplication e; depending holomorphically on s € M.
If in addition we have a volume form w = g(s, X)d°x, where d°x = dX; A dX, A dX; is the

standard volume form, then ¢.O¢ (hence 7 5 as well) is equipped with the residue pairing:

Y1 (s, Y)Ya(s,y)
4.4 , = ,
) W t2) (i)} r. FyFyFy, “
where y = (y1,»,y3) is a unimodular coordinate system for the volume form, i.e., w = d’y,

and I'¢ is a real 3-dimensional cycle supported on |Fy,| = e for 1 <i < 3.

Given a semi-infinite cycle

4.5) A€ lim H3(C*,(C%)_,;C) = C~,
where

(4.6) (C?),, = {x € C* | Re(F(s,X)/z) < m}.
Put

(4.7) Ja(s,2) = (=212) 7" zd p L "oV,

where d, is the de Rham differential on M. The oscillatory integrals J 4 are, by definition,
sections of the cotangent sheaf 7.

According to Saito’s theory of primitive forms [Sall, there exists a volume form w such
that the residue pairing is flat and the oscillatory integrals satisfy a system of differential

equations, which in flat-homogeneous coordinates t = (¢_y, fy, . . ., #,-») have the form

(4.8) 20iJa(t,z) = 0; 8¢ J4(t, 2),
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where 0; := 0/0t; (=1 < i < u —2) and the multiplication is defined by identifying vectors
and covectors via the residue pairing. Using the residue pairing, the flat structure, and the

Kodaira—Spencer isomorphism we have the following isomorphisms:
T"M=TM=z= MXToM= MX QPy.

Due to the homogeneity, the integrals satisfy a differential equation with respect to the

parameter z € C*:
(4.9) (20, + E)Ja(t,2) = © Ja(t, 2),
where

u=2
E = Z diti(?i, (dl = deg t; = deg Sl'),

i=—1

is the Euler vector field and O is the so-called Hodge grading operator
®: TM - TM’ Q) = (5 — dl) dt;.

The compatibility of the system ({.8)—(@.9) implies that the residue pairing, the multipli-
cation, and the Euler vector field give rise to a conformal Frobenius structure of conformal
dimension 1. We refer to B. Dubrovin [Du] for the definition and more details on Frobenius
structures and to C. Hertling [Hel or to Atsushi—Saito [ST]] for more details on constructing

a Frobenius structure from a primitive form.

4.2 Primitive forms and global B-model

The classification of primitive forms in general is a very difficult problem. In the case of
simple elliptic singularities however, all primitive forms are known (see [Sall]). They are
given by w = d*x/m4(0), where m4(0) is the period (4.11). As we will prove below, these

periods are solutions to the hypergeometric equation (4.14)), so a primitive form may be
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equivalently fixed by fixing a solution to the differential equation that does not vanish on
>. Note that since m4(0") is multi-valued function, the corresponding Frobenius structure
on M is multi-valued as well. In other words, the primitive form gives rise to a Frobenius
structure on the universal cover M = H x C+!.

The key to the primitive form is the Picard-Fuchs differential equation for the periods

of the so-called elliptic curve at infinity
(4.10) Ey =X : Xa: Xs] € CPX(cy, 2,¢5) | W, = 0),

where ¢; = d/o;, 1 <i <3 and d is the least common multiple of 0y, 0,, and 03. Note that
E, are the fibers of an elliptic fibration over CP' = C U {o0} whose non-singular fibers are
parametrized by X ¢ C c CP'. Note that Resy, Q, where

_ dX, NdX, ANdX;

Q:
dw,,

is a Calabi-Yau form of the elliptic curve E,. For every A € H|(E,), we define the period

integral

(4.11) ma(o) = fResE(TQ.

A

It is well known that the period integrals are solutions to a Fuchsian differential equation.
For our purposes, since we have to deal with many examples, it is convenient to follow the

approach of S. Géhrs (see [Ga]. We define a charge vector L, where
L=,b,1,~)eZ

by choosing the minimal / € Z. such that

(4.12) (i, b, 1) =ImEy, m = (my,my,ms).

We define a charge constant C, where

3
=1

l;
(4.13) C = ﬂ (—17) .

1
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Lemma IV.1. The Picard-Fuchs equation for the elliptic periods is

(4.14) 85— 1)y = Col(6 + la)( + IB) ma,

1

where 6 = 0d/do and a and B are some rational numbers, such that @ + =1 — 5

If we put x = C 0/, ¥ = a+p, then the above differential equation turns into the standard

hypergeometric equation

d27TA
(4.15) x(1 —=x) e

+(7—(1+a/+ﬁ)x)%—a/,87u:()

We call (a,B,y) the weights of the Picard-Fuchs equation. They are listed in Table 4.1
for Eél’l), Table and for the other two cases. In particular, the singularities of the

Picard—Fuchs equation are at the points

; 2r V-1
(416) pi = C‘l/lnl’ 1<i<|, n = exp [ﬂ-—)’

l

and we have £ = C\{py,..., pi}.

Table 4.1: E{""

w mi,my,my bz ql.qy.q5 @By

X +X+X3 (1,1, 1) 1,1,1,3 144 1,43
X2X + X5 + X3 201 3-11,3 111 112
XX+ X3+ X3 0,2, 1) 0,2,1,3 I4: 553
XX+ X, X3+ X3 (1,1, 1) 1,1,1,3 144 1,42
X2+ X1 X3+ X3 2.,0,1) 4,-2,1,,3 1141 L T2
XX+ X3X3 + X3 2,0,1)  2,-1,1,2 114 i
XX+ XX +X; (03,0 03,-12 4Ll L s
X2X + X2X;5 + X3 0,1,2) 0,1,1,2 Lt L
X3+ X3+ X X2 (LLD 1,1,1,3 144 1,43
X2X +X3X;+X1X;  (3,0,00 4,-2,1,3 411 L T2
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Table 4.2: ES")

w mi,my,ms b5, ql.q).q5 @By

XM+ X3+ X3 (2,2,0) 1,1,0,2 i i

X3 + X5 + X3 (4,000 4,-1,03 111 L L3

XX + X5 + X3 (1,3,0) 1,2,0,3 4L Lz

XX + X7 + X3 2,0,2)  2,-1,1,2 141 s

XX, + X3 + X3 0,1,2) 0,1,1,2 114 .41

XX+ XX +X2 (4,00 3,-102 L1l LSl

XX+ XX +X2 (2,2,0) 1,1,0,2 Ll 5

XX +X3X+X:  (1,1,n  1,1,1,3 L4400 112

XX+ X3X;+X2  (1,3,00 1,4-23 1141 L 5.2

XX+ XX +X2 (4,00 4,-21,3 1141 L£.5.3

Table 4.3: E{")

w mi,my,my  b,b,B,lL qf,q3.q5 @By j(0)/1728
X+X+X 40D 1203 gii hh3 o
XX+X+X,  (L,L) 11,13 LLLb L2 e
XX +X+X,  (4,0,1)  4,-2,1.3 333 53 64??:27
XX +X3+X, @20 11,02  LL1 o LLl o ey
XX +X;+X; (6,00 3,-1,02 111 .34 T

The j-invariant of E,, is determined by the charge vector. A table of j-invariant is shown

here. For some of the computations, we refer to [[Col.

Table 4.4: j-invariant

w m a j(o)
X+ x3+x2 (4,01 (0,0,0,0, 1) o
0_3 0.37 3
XX+ X2+ X (L) (¢,0,1,0,0) TS
XX +X3+X2 (4,01 (0,0,1,0,0) P
XX+ X +X2 (22,0 0,-0,0,1,0 20—}
12+ 2+ 3 (77) (7 O—aaa) 27(4—c2)
XX, +X3+X3  (6,0,0) (0,0,0,1,-0) o
X2X, + X2 X5+ X3 (2,0,1 0,0,0,1 a0
X+ XX+ X5 (2,0,1) (0,0,0,1,0) T2+ 12
XX+ X3+X  (2,0,1) (0,30%0,-30(1-0?),(1-0)?) %
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4.3 Picard-Fuchs systems
Let us denote by
X;={XeC|Fs,X) =1}, seM

The points s for which X is singular form an analytic hypersurface in M called the dis-
criminant hypersurface. Its complement in M will be denoted by M’. We will be inter-

ested in the period integrals

d3X T T T
CDI'(S) = f¢r(x) ﬁ, ¢I‘(X) = X11X22X33’ r= (rl’ r, r3)-

They are sections of .7#™9, the cohomology Milnor fibration on M’ with fibers H*(Xj, C).
Slightly abusing the notation, we denote the restrictionto s_; = o, s; = 0(0 < i < u—2) by
®,(0). Following the idea of [[Gal], we first obtain a GKZ (Gelfand—Kapranov—Zelevinsky)
system of differential equations for the periods. Using that the period integrals are not
polynomial in o (they have singularities at the punctures of £) we can reduce the GKZ

system to a Picard-Fuchs equation.

The GKZ system

In order to derive the GKZ system, we slightly modify the polynomial W. By definition

W(X) = Z?: | @a,(X), where a; are the rows of the matrix Ey. Put

3

Wy (X) = > vi 60, (X) + 7 61(X),
i=1
where v = (v, Vv, v3) are some complex parameters. For simplicity, we omit v in the
notation if v = (1,1, 1). Let us write X! = {X € C? | Wy ~(X) = A}. Then we define the
period integrals

PX
AWy,

(4.17) ;o) = f $r(X)
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again one should think that the above integral is a section of the vanishing cohomology for
Wy »(X). The vanishing cohomology bundle is equipped with a Gauss—Manin connection

V. The following formulas are well known (see e.g. [ArGV])

Va0 f 0= f aw,
GWVG do )
Voo, f 0=- f v AW, f Lieg/ov,0,

where 6 is a 2-form on C? possibly depending on the parameters v. Finally, note that

(4.18)

rescaling X; — A9 X;(1 <i < 3) yields
O (o) = 2% DY (o).
Let6; = v;0/0vi(1 <i<3)and 6 = 0gd/0o.
Lemma IV.2. The period integral ®)" satisfies the following system of differential equa-
tions:

a|]ate = []o o

i:1;<0 i:1;>0
((51,52,63)EW(D + (ml,mz,m_g)é(l) = —(1 + r, 1+ r, 1+ 1"3)(1).

where the range for i and j in the first equation on the LHS and the RHS is 0 <i < 3.
Proof. Using (4.18) we get the following differential equations:

d,, OV = -0, OV

r+a;’

1<i<3,
and

vl _ v,A —
60‘ (I)r - _6/1(1) m = (ml’mZa m3)’

r+m?

where ¢p,(X) is the marginal monomial. The first differential equation is equivalent to the

identity

lmk—Za,-kli: Zajklj.

[,li<0 j,lj>0
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which is true by definition (see (4.12))).
For the second equation, using the above formulas we get that the i-th entry on the LHS
is

d*X d*X
-0, in ér(X) A =—(ri+ 1)f ér(X) X

where we used formulas (4.18)) again. o
Let us define the row-vector { = ({1,{,¢3) = rE;/. Note also that the weights

(q", 4%, q%) of the dual polynomial are precisely (1, 1, 1) E;,.

Lemma IV.3. The period integral ®.(o) is in the kernel of the following differential oper-

ator:

il =1 T, s
(4.19) -1]_[(5 k>1‘[1—[( M]_C. (‘”w]

i,l;<0 k=0

where C = [12,(=L;/D)".

Proof. Using the second equation in Lemma we can express the derivatives d,, = v;'6;
in terms of ¢. Substituting in the first equation we get a higher order differential equation
in o only. It remains only to notice that the resulting equation is independent of v and

A. O

Picard-Fuchs equation

Let g5 = 0,1y = -1, and set
1 7
(4.20) Bix = Z_(Qi +4&i+k), 0<k<|l-1

The differential operator in Lemma [IV.3|can be factored as the product of a Bessel differ-

ential operator

4.21) [ ] +18:0)
ik
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and an operator of the form

(4.22) [ |@+1Bia)=Co | |6+ 1B,
k

i',k’ ik’

This is done simply by factoring out the common left divisors in the two summands,

i.e.,there is no pairs (', k") and (i, k") in the operator (4.22)), such that, 8y ;» + 1 = By .

Lemma IV.4. The numbers (4.20) satisfy the following identity:

—I;-1

li-1
Z Z,Bi,k - Z Z (1 +,8j,k’) = deg ¢,.

;>0 k=0 0<j<3:1;<0 k'=0
Proof. By definition

;-1 -1 -1 [-1
Z( 5 +Qf+§i)— Z(—lj—jT—qu—é“j)—T:

i:l;>0 j;1j<0
3 3

=1\ [-1
T ! — =
Z(qi +§i+ 2 )_ 2 _;gt—deg(ﬁr' O

i=0

LHS

The action of the operator (4.22)) on a period integral is again a period integral. The
latter is holomorphic at o = 0; therefore, if it is in the kernel of the Bessel operator, it
must be a polynomial in o. But a non-zero period integral cannot be a polynomial. In
other words the period ®@,(o") is a solution to the Picard-Fuchs equation corresponding to

the differential operator (4.22).

Lemma IV.5. Let x = Co'; then, depending on the order of the differential operator (#22))

the corresponding differential equation has the form
0
(1 = x)=—®, = deg ¢, Dy,
0x

if the order is 1 and

0’0,

x(1 —x) pp

0D,
+(e - +ar +ﬁr)x) E —afy O = 0,

if the order is 2. In the second case we have the following identity:

(423) Ay +,8r ~—Yr = deg Or.
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The first part of the Lemma and the identity (4.23)) are corollaries of Lemma
Unfortunately, we do not have a general combinatorial rule to determine which indexes
(', k") and (i”, k") should appear in (4.22)). In other words, the second part of the Lemma
is proved on a case by case basis. It is a straightforward tedious computation. In particular,

when ¢, = 1, Lemma[[V.5]implies Lemma[[V.1]

Solutions of hypergeometric equations

For the reader’s convenience we list a solutions hypergeometric equations of the form
(4.15)). Let us assume that a, 8, and 7y are positive rational numbers. There are two cases

which are used in our work.

The resonance case

We assume / is a positive integer, and

1
7:0z+,3:1—7,

1. Near x = 0 the hypergeometric equation admits the following basis of solutions:

F(x) = 2F (e, By ¥: %),
(4.24)

FP(x) = 2Fi(1 —a, 1 =2 = y; 0) x' 7.
2. Near x = 1 a basis of solutions is given by

FO(x) = 2F (e, 85 151 = x),

(4.25) S
FP(0) = 2F1(@,8; 11 = x) In(1 =) + )~ by(1 =)',
n=1
where
G U S SN S| E PP
4.26) by = <1 (2 T e A )
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3. Let us also list a basis of solutions near x = co. If @ — 8 ¢ Z, then

F%m):x_azFl(a,a—y+1;&—,8+1;x_1),

(4.27)
F& =xPF (BA-y+ Lif—a+lix).
If @ = B, then
Fi‘x’) =x Y ,F, (a,a -y +1; l;x_l),
(4.28)
1
F© — G223 ! Y, ’
2 2,2( X B )
where Gg; is Meijer’s G-function.
The non-resonance case
Now we assume that none of the exponents
(429) /10:1_’)/5 /llzy_a_ﬁa /loo:ﬁ_a/

is an integer. Then we fix the following solutions.

1. Near x = O:
F = ,F (a,B;7; %),
(4.30)
Fy' = aFi(@-y+ 1A=y +1:2=y2) x'7.
2. Near x = 1:

F" = 2F (@.B;a+B-y+1;1-1),
4.31)

F' = 2P (y—ay =By —a-B+ 51— (1-x) 7.
3. Near x = co:
F(loo) = ,F, (a/,a/—y+ La-B+ l;x_l) x“,

(4.32)
F = oF (BA-y+ Lif—a+ lix ') xP.
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4.4 Flat coordinates

Recall .7#™9 is the cohomology Milnor fibration over M’. There is an alternative way
to obtain flat sections for this local system, by choosing an opposite filtration for the mixed
Hodge structures and extends it to singular points, see [Mo]. Let us introduce it here. We

will calculate the B-model correlators using those flat sections.

Mixed Hodge structure

There is a mixed Hodge structure on 7™, see [ArGV, [V]]. Briefly, the decreasing
Hodge filtration F* is constructed from the principal parts of all the forms of cohomolog-
ical Milnor fibration. The weight filtration W, is constructed from local monodromy. Let
us denote the local monodromy matrix by M. We can decompose M into a product of its
semisimple part M, and unipotent part M,, M = M, - M,.. Let matrix N be the logarithmic
part of M,,.

Forany h € V, let
1.(h) = min {1 czlhe Ker(N’)}, I_(h) = max {1 czlne Im(Nl)}.
We define a weight filtration W, with central index k by

WM:@

Mm—HMSHL}
This is an increasing filtration
0=WycC...---CW,, =™

Let H?™!(X,, C) be the root subspace of the eigenvalue A of the monodromy operator. Then
the central index kisn — 1 for 4 # 1 and n for 4 = 1.

A similar weight filtration can be also introduced on the homological fibration.
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Opposite filtration
We define an increasing filtration S, on cohomology fibration by
Sk 1= Ann(Wy,_y) := {7 € t%?nid‘ f a=0,Ya e Wzn—zk}
Y
We can choose an increasing filtration S°, defined by
S?:= Ann(S,-y) = {a € %ﬂmid‘ fa =0,Vy e Sq—l}
Y
If the local monodromy is maximal unipotent, then S° is a splitting filtration for F* as
A = FP @ SR
S. 1s also called an opposite filtration for F* of weight n. We define
AT =F'nS,.
Then we have

M9 = (P A

PP =@, A
Now we consider sections of 7% over an open set U c M,
LU, #7) = {,8 e I'(U, F”)' fﬁ =0,Vye Sq_l}.
Y

Then there is a space of distinguished sections of S,
(U, 77 g = {,3 e I'(U, F”)‘d(fﬂ) =0,YVy e Sq}-
Y

Choices of flat basis for sections of middle cohomology bundle

Non-twisted sectors

For an ISES W, let A be an invariant cycle in H,(E,) and B be a cycle such that A, B

forms a symplectic basis for H;(E,) and

N(B)=A,ANB=1.
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We can check S is generated by A and S, is generated by A and B. We choose cohomology

sections f i f ®m7%- Then the period matrix has a Birkhoff factorization

f% TtA Y] A 0 1 nmp/my
A B |~

[ pm —, -7, -, —Wr(na,mp)/ma || O 1
Here Wr(my, np) = many, — m/,mp. We obtain a basis flat sections from non-twisted sectors
ol i [ izima
=L! =
T [ ¢miz 7 [ a5 =7 [ Smge) I Wima, mp)
It is not hard to check o € %2,1 and o, € J“fsl’z. We also obtain the pairing

w / w w
de ”Ade ﬂAf¢mdF)
TA ’

Wr(ﬂ-A, 7TB)

(001, 002) = ¢ ) =1L

Twisted sectors

Let ¢,, be a monomial of non-integer degree. Then Gauss-Manin connection implies
O, = f ¢r, 7 satisfies a k-th order differential equation for some integer k. We can find

other monomials ¢, ..., ¢y, and differential operators D;(o") such that for 2 <i < k,
Oy, = Di(0)Dy,.
We know @, is a linear combination of flat sections,
O, = fri(O)A1 + -+ + fia0)Ag.

S1.1(0), ..., fix(o) is a basis of solutions of the Picard-Fuchs equation. Apply differential
operators, we have

@y, = D;fi1(0)A] + -+ + D;fi 1 (0)As.

Now we have a flat basis Ay, ..., A; by inverting the k X k matrix (Di 1. j(o-))kxk.
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Remark IV.6. e There is no canonical choices for the basis f; ;. Especially, near differ-

ent limits, we also have different choices of the basis.

o Although sections A; are flat basis, in order to match the flat basis in A-model side,

we may have to rescale the basis by some constants.
e Mirror symmetry is a computational result, rather than a conceptional one.

e All the data we need for numerical results are the indices a,p, ...,y from the cor-
responding hypergeometric equation. Some of them are of order three. But none of
them will have order greater than three. In this paper, all the examples we compute

have order at most two. Those cases of order three will appear somewhere else.

B-model 3,4-point genus-0 correlators

We let W = M; + M, + M; be an ISES with a miniversal deformation given by a
monomial ¢,(X), m = (m;, my,m3). We choose a primitive form w = d*X/n(c) in a
neighborhood of o = 0, such that 7(c") is the solution to the Picard-Fuchs equation (.14))
satisfying the initial conditions m(0) = ¢,n’(0) = 0, where the constant c¢ is such that the

residue pairing (see (4.4))) satisfies

(1, pm)ls—o = 1.

Let {#,} be the flat coordinate system, such that 7.(0) = 0 and the flat vector fields 0, :=
0/0t, agree with 0/0s, ats = 0.
The primitive form induces an isomorphism between the tangent and the vanishing

cohomology bundle via the following period mapping:

(4.33) 8/0t > -V, V

w w
o % fd_F - fél'(s7X) d_F’

where 6, is some homogeneous polynomial (in X) of degree deg(¢,). The images are flat

distinguished sections of opposite filtrations. Note that the Kodaira—Spencer isomorphism
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takes the form

(4.34) d/0t; > 6.(s,X) mod (Fy,, Fx,, Fx,).

By definition, the restriction of the 3-point correlators to the marginal deformations sub-

space is

6,,(0, X)d,, (0, X)d,, (0, X) &’X

435 8t,> 06,5 03003 = R '
(4.35) ri0rs0r 0 = ReS G W)@ Wo) 7o)

Note that the 3-point correlator depends only on the product = := 6y, 6y,6y,. Therefore we
can simply use the notation (Z)( 3 instead. Finally, definition (4.35]) makes sense even if
we replace o,, r = ry, Iy, r3 by arbitrary polynomials, not only the ones that correspond to
flat vector fields via (4.34).

Let .7 ¢ be the genus-0 generating functions for the Frobenius manifold of miniversal

deformations near the origin. By definition,

" ng

OpprevsOp )08 = — 2|
<1‘1 rn>0,n 6tr1---atrn t=0

Thus, using that d/do = 6, at o = 0, we can compute the Saito’s genus-0 4-point correla-

tors with a top degree flat insertion by the following formula

(436) <6r1 s §r2a 5r3’ 5m gff = 60’ <5r1 s 5r2a 6r3> 0’

4.5 Givental’s higher genus formula at semisimple points and its extension

In Chapter [VII, we will define Givental’s higher genus formula for singularity theory at
a semisimple point t € M, we call it the formal ancestor potential A/ (t)(, q(z)). Here

is a explicit formula, for more details, see Chapter

A M
PO R VO [ | A 1A, A VAWD),
i=1
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In this formula, W(t), R(t), U(t), A;(t) are all data from a singularity W, and the symbol

" is quantization operator. We will be interested in the limit when t is a special point,
which is not semisimple. So the formula is not well defined at those points. However,

our convergence theorems will guarantee that the limit of those formula exists. So we can

study the mirror symmetry where the B-model potentials are those limits. Details about

the mirror theorems will be discussed in later chapters.



CHAPTER V

Berglund-Hiibsch-Krawitz mirror construction

5.1 BHK construction

Now let us start to describe the Berglund-Hiibsch-Krawitz mirror construction. We
begin with a polynomial with N variables and N monomials.
N N
w=>"[]x"
—i L

i j=1

We denote its exponent matrix by Ey, where the (i, j)-th entry of Ey is a;;. We say this
polynomial W is invertible if its exponent matrix Ey is an invertible matrix. We consider
the transpose of W as the polynomial whose exponent matrix is the transpose matrix of
Ey, and denote it by WT. Then

wh= ﬁx;‘ﬂ.

N
i=1 j=1
This is considered to be the mirror for W [BH].

Now we introduce the mirror group construction defined by Krawitz, [Kr]. Let us write
the inverse matrix Ey;' with row vectors p;, such that p; is the i-th row of E};'. We denote
each p; by

pi = (Pits---PiN)

We consider a diagonal matrix E,, with its j-th diagonal entry exp(2x V—1p; ;). It turns

out each E,, is a symmetry of WT i.e. the matrix E,, acts on (Xi, ..., Xy) by multiplication

80
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will keep W' invariant. Let us also point out that E,, generate Gyr, the maximal diagonal
symmetry group of W7,

On the other hand, we can also consider the columns of E;Vl We denote its i-th column
by o0;. We get another diagonal matrix E,, with its j-th diagonal entry defined by the
exponental of 27 V=1 multiplies the j-th element of g;. E,, acts on variables Xi,..., Xy
and keeps W invariant. Similarly, we know E,, generate Gy. Krawitz [Kr] defined a mirror

group G' by

N N
(5.1) G' = {n E’[jj_‘ (ks k) By Gmy o) € Z,Y | | Epie G}

i=1 i=1
Such a construction (W?, GT) is considered to be the Berglund-Hiibsch-Krawitz mirror of
a pair (W, G). Here is a very useful observation from [Krl]. The mirror group for Gy is the

trivial group with the identity matrix. We simply denote by

In this paper, we only consider the case that Gyr is the admissible group in the FJRW

theory. So its BHK mirror would just be W with the trivial group.

5.2 Classification of ring structures

For any special limit in the Saito-Givental theory for invertible simple elliptic singular-
ities, the first step of the classification is the ring structure. Let us first focus on special
limits at o = 0. According to Saito [Sa2] simple elliptic singularities are classified by
their Milnor number and the elliptic curve at infinity. It follows that the Jacobi algebras
of the ISES with 3 variables can be classified into 6 isomorphism classes parametrized by

the pairs consisting of the Milnor number ¢ = dim 2y and the j-invariant of E,_:
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Table 5.1: Classification of Jacobi algebra

B | jo=0) w

8 0 X +X+X, XIXo+X3+X;, XX+ X X5+X3, XiXo+X)X3+XX;
8 1728 XiX, + X3X3 + X3

9 0 XX+ X3+ X3, XiXp+ X3X3 + X3

9 1728 X +X)+X3

10 0 X0+ X3+ X3, X{X+X3+X]

10 | 1728 XX+ X3+ X3

For any two polynomials in the same list, it is easy to find a linear map between the
generators X, X,, X3 of the corresponding Jacobi algebras, such that it induces a ring iso-
morphism. Let us point out that the choice of such linear maps is not unique in general.
Moreover, we can always adjust some constants such that the ring isomorphism will be
extended to an isomorphism of Frobeniu manifold, as well as an isomorphism of the cor-

responding ancestor total potential. See the discussions in Section [3.4]

5.3 Mirror to Genper point

In order to compute 4-point correlators of the form (4.36)) it is enough to determine
6r(0, X) up to linear terms in o. To begin with, we notice that ¢, lies in the Jacobian

ideal of W,.. More precisely, the following Lemma holds.
Lemma V.1. There are polynomials g,; € Clo, X1, X2, X3] such that
3
(1= Co") prom = D 8ri OWer.
i=1

This Lemma can be proved in all cases by using Saito’s higher residue pairing. How-

ever, in what follows, we need an explicit formula for

8r = (gr,l’ 8r2, gr,3) .

Therefore we verified the lemma on a case-by-case basis. Some of our computations will

be given below. The remaining cases are completely analogous.
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There are several corollaries of Lemma First of all, note that under the period
map ([#.33)) the Gauss—Manin connection takes the form (@38) (with z = —3;". It follows
that if deg(¢,) is not integral, then the restriction of the section (4.33) of the vanishing
cohomology bundle to the marginal deformation subspace must be flat, i.e., the sections

w
dw,’

(5.2) [6r w](0) := f 0r(0, X) deg(¢r) ¢ Z

are independent of o-. Furthermore, using formulas (4.18)) for the Gauss-Manin connection

we get

d 3 X
1=Co)®p == | > Oigrir
( 0-)60' f; g’dW

(o

Both sides must have the same degree, i.e.,
(5.3) (1- CoJ)iCD = Z o () Dy
. (90' r s r,r s

where the sum is over all r’, such that deg¢, = deg¢, and ¢, (o) € C[o] are some

polynomials.

Lemma V.2. Suppose deg(¢,) ¢ Z; then we have

(5.4) Se=e =0 Y cew(0)ge +0(0),

r’,r’#r

where O(c?) denotes terms that have order of vanishing at o = 0 at least 2.

Proof. Follows easily from (5.3). We omit the details. o
Let M € C[X] be a weight-1 monomial with leading coefficient 1. Our next goal is to

evaluate the following auxiliar expression:

(M, $mos := 0\ Mo3| _, -

Lemma V.3. The number (M, ¢pm)o4 is non-zero iff M = M; for some i = 1,2,3. In the

latter cases the numbers are given as follows

(5.5) (<M1 s Om)0.4, (M2, m)o 4, (M3, ¢m>o,4) = —(my,my, m3)Ey,;.
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Proof. For the second part, we apply the operators X; dx,, i = 1,2, 3, to the identity
M, + My + M5 = W, — 0c¢np(X)
and take the residue. We get

(Mi)o3aii +{Mp)o3 asi + (M3)o3 a3 = —0 m; {dm)o3.

It remains only to differentiate with respect to o and set o = 0.
For the first part, because M is a weight-1 monomial with coefficient 1, we can use the
relations in the Jacobi algebra of W,, to rewrite M as a product of ¢y, and a function of o-.

(1D
6

Let us write M = h(o) ¢y,. For example, in the Fermat £, " case,

0.3
X; = -3c¢; (1+ ﬁ)xfxz =0.

If M+ M,i=1,2,3, then h(o) either does not vanish at o = 0 or vanishes at oo = 0 with
order at least 2. In both cases, (M, ¢m)o4 vanish. O

Now we are ready to compute the 4-point correlators that are needed for the recon-
struction of the CohFT. Let d,(s, X), r = ry, 1, 3 be polynomials corresponding to the flat

vector fields d/0t, via the Kodaira—Spencer isomorphism (4.34)). Put
E(s, X) = 6y, (s, X)0r, (8, X)0r, (s, X).
Note that Z(0, X) is a homogeneous monomial (see (3.4)) with leading coefficient 1.
Lemma V4. The 4-point genus-0 correlators with a top degree insertion 6y, are
~q7 . ifE0.X) = M,,

SG _
<5r175r2a5r3,5m 04 —

0 , otherwise.
Proof. The same argument in first part of Lemma also works for Z(c, X). Thus if

= # M,;,1=1,2,3, we have

- SG
(B, 0m 04 = 0.
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In order to finish the proof we need only to compute the correlators when E(0, X) = M;
for some i = 1,2, 3. Note that the diagonal entries of the matrix Ey are always at least 2

(see Table[I.1I). Therefore, it is enough to compute the following correlators:
(61005 01005 Or» 6m>3ﬁ, r = (an — 2,a,a13),

SG _
(6010, 6010 Ors Om)o 4> T = (a21, a2 — 2, a23),

(6001, 6001, Ors Om ) > T = (aa1,an,az —2).

We do not have a uniform computation since we need to use Lemma for which the
coefficients ¢, (0) can be computed only on a case-by-case basis. Let us sketch the main
steps of the computation in several examples, leaving the details and the remaining cases

to the reader. We will make use of the notation
0(0, X) = ¢(0,X), 0,¢ € C[X],

which means first order approximation at o = 0, i.e., 8(c, X) — ¢(c, X) = O(c?).

Case I: W = X]+X3+X; € Eél’l) and ¢, = X, X,X3. Since W is symmetric in X/, X5, X3
it is enough to compute only one of the correlators, say Z = M;. After a straightforward
computation (the notation is the same as in Lemma [V.1)) we get

1 o o?
8100 = (5 ¢o11, -9 $0025 57 ¢101)-
It follows that 6109 & @100 and then using formula (5.5) we get
(01005 61005 91005 5m>8§f = —%.

Case 2: W = X} + X} + X2 € E"V and ¢ = X?X2. In this case M3 = 0 in the Jacobi
algebra of W and W is symmetric in X; and X,. It is enough to compute only one of the

correlators, say the one with Z(0, X) = M;. We have

8100 = (i 0205 —% ®110, O).
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It follows that

o
0100 ® @100, 0200 ~ P200 + Zﬁbozo-

Using formula (5.3) we find

1
<6100’ 6100, 640(), 6111)354; = _Z

Case3: W =X X, + X5+ X; € Eél’l) and ¢m = X, X2 X5. In this case, since M, = 0 in the

Jacobi algebra, we need to compute two correlators. We have

1 2 2
8100 39001 — S3P200  Fh10 —Fdoo
= _l¢ + ﬁ¢ l¢ —ﬁ(ﬁ
8o10 59201 T 7 P110  FP111 9 9210
o fod a? 1
8001 —3%010 — 79100 TPon1  3P110

It follows that we have the following linear approximations:
6100 ® D100, 001 = Poo1, 0110 & Pr10-
The correlators then become

1
{6001, 00015 0001 5m>§§f =—z

<5100,5100,5110,5m>g,f =—z 3

3 b
Case 4: The Fermat type Eg’l), ie. W=X0+X3+ X2 and ¢ = X/ X,. In this case M; = 0,
so again we have to compute two correlators. We have

o’ 20

= (S + Zo $300,0) = (= Zss0+ Z om0 2100,0)
8100 = 6 020 27 200> 9 300,V),  8o10 = 18 300 27 1105 3 4005 V)
It follows that the first order approximations that we need are

o
0100 ® D100, G010 ® Po10, G400 ® Do + E®210~
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Formulas (5.5]) and (4.36)) imply

1
<6010’ 6010, 6()10, 6m>g,g = ——. O

1
(5100,5100,5400,5m>§g = - 3

6;

Comparing the 4-point correlators in Lemmas [III.10] and we see that they have
opposite signs. It is not hard to see that if we rescale the primitive form by (—1); then
the 3-point correlators in the Saito—Givental theory do not change, while the 4-point ones

change their sign. Therefore, we rescale the primitive form by —1 and define the map
t%WT - TMW’ Pr — (_1)1_deg¢r5ra r= (rl’ r, r3)a

where p, = p}'p5p5 . Lemmas [II1.10| and imply that the above map is a mirror sym-
metry map, i.e., it identifies the correlators of the FIRW theory of (W’ ,Gyr) and the

correlators of the Saito-Givental theory of W. Theorem [[.3]is proved.



CHAPTER VI

Global mirror symmetry

In this chapter, we give some examples of the classification of special points.
Construction of the mirror map

The primitive form is chosen to be w = d°X/ms(c), where the cycle A € H(E,)
is invariant with respect to the local monodromy around o = p;. Recall that ms(0) is

a solution to the Picard—Fuchs equation (IV.I)). The latter has near o = p; a basis of

solutions {F gl)(x), F gz)(x)} given by formula (4.25)). The invariance of A implies that
(6.1) a(0) = Aw F{V(x)

for some scalar Ay € C*. We choose a second cycle B € H|(E,), such that

— np(0)
. ma(0)

is the modulus of the elliptic curve E,; then we have

KAy

6.2 =
(6.2) (o) VoI

(FP@) + K- F(x),

where K, K’ are constants whose values are given as follows. The j-invariant of E, has the

form

P(o)

m, P(O')EC[O']

(6.3) Jo) =

88
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for some polynomial P(o") and some integer N. Then
K=N, K 1 In P(py)
=V, = ——1n .
N Pk

Note that

1
K'(1-Cohyn}’

(6.4) (L¢-1)a =

where K" is some constant and the index A on the LHS indicates that we are computing
the residue pairing (4.4]) with respect to the primitive form w. Since the residue pairing

must be identified with the Poincaré pairing, the mirror map should satisfy
(6.5) Mg 1, Ao K7(1 = Cohp_ (Xm3.

The next step is to identify the divisor coordinate 7y, in the orbifold GW theory and the

modulus 7. We define

2nr V-1
T,

(6.6) fp =11 := 7
where L = 3,4, 6 respectively for the elliptic orbifolds P} ; 5, P} , 5, Pg 5 ,.
Since
1 = (Ao, Aga) = {1, %) = %;%( O_>A = (2—0-;%“ G-1)4s
we get
1 :2ﬂ\/—_1ﬁ:2ﬂ\/—_lﬂ};ﬂA—ﬂB7TA
K'(1-Cohnr? L 0o L % ‘

Note that 7%, 14 — mg 7/, is the Wronskian of the Picard—Fuchs equation (IV.I)), so it must
be proportional to (1 — C ¢)~!. The proportionality coefficient can be found by comparing
the Laurent series expansions at o = py. Namely, it is —5 A3,/ C'/'n*. This determines the

value of A3,

L
6.7 P
( ) w NK”ZCWT]]‘
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The most delicate part of constructing the mirror map is finished. In order to complete
the construction, we need to identify the twisted cohomology classes A;; with monomials

or(0, X). The key observation is that the sections

(6.8) f 5.(c. X) d;

of the vanishing cohomology bundle of W, are flat with respect to the Gauss—Manin con-
nection. This way our choice of d, depends on an invertible matrix of size (u—2) X (u—2).
The correlation functions in the Saito—Givental CohFT are invariant with respect to the
translation t_; — t_; + 27 V-1, i.e., we can expand the correlation functions into Fourier
series in g := e-'. The coefficient in front of ¢?, d € Z, is called the degree-d part of
the correlator function. By taking the degree-0 part of the 3-point functions, we obtain a
Frobenius algebra structure on the Jacobi algebra 2y, that under the mirror map should be
identified with the Frobenius algebra corresponding to the Chen—Ruan orbifold (classical)
cup product. Using also that the mirror map preserves homogeneity we obtain a system
of equations for the matrix. It remains only to see that these equations have a solution.
Let us list the explicit formulas for the mirror map for several examples. We omit the de-
tails of the computations, which by the way are best done with the help of some computer

software (e.g. Mathematica or Maple).

6.1 Mirror to LCSL point at roots of unity

Large complex structure limit point for W, = X; + X; + X + 0 X, X,X;

For this example x = —0/27, i.e., C = —1/27 and [ = 3. The j-invariant is

(=216 + o) -27x(8 + x)°
Q7+0% (1-x)?

jlo) = -
We have p; = -3 and

K=N=3, Ayp=27(1-0XX,Xs73,
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which implies that Ay = £1. We pick Ay = 1.

The Fourier series of 1 — x in ¢ = ¢*/3 is
(6.9) 1 —x = —27q — 324¢* - 2430¢> — 137164" + - - -

Let

r=(1,0,0),(0,1,0),(0,0,1); ' =(1,1,1)-r.

A natural basis for the flat sections with non-integral degrees are
e = (1=0"PpX) s, 6 = (1= 0 e (X) 7.
Applying (@.35)), we know the non-vanishing correlators (- - -)o 3 are

1
(1, 6r,0r 03,0 = {Or, Or, 6r)0,3.0 = 01,005 00,10, 90,0,103.0 = 77

The mirror map is given by (6.3)), (6.6)), and it identifies the ring generators as follows:
Apy 1 1 I ||d1.00
A | 7|1 el3] el3]||b0.10]

As 1 e[3] e[3]|{boo1

It is easy to check that this identification agrees with the Chen-Ruan orbifold cohomology

ring of P;M (see Chapter . For example, we have

1
(A1, A1, A11)o30 = Z (Or, Or, 0r)0,3,0 + 601,00, 00,1,0,00,0,1003,0 = 3
r;deg ¢,=1/3

Now we need only to check that

(A11, D21, Az1 )31 = 1.

After a straightforward computation we get

(—o-3)my  (1-(1-xn'P-1
27 - 9

(A1, A1, Az1 )03 = 7TA:C]+CI4+2617+"‘
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Large complex structure limit point for W, = X + X3 + X3 + 0 X{X;

We substitute x = 02/4, i.e., [ = 2 and C = 1/4. The j-invariant is

o 16(12+ 0% 643+ x)°
Jjo) = G o T A

We have p, =2 and

K=N=2, Ayp=16(1-x)X;X; ;.

It follows that Ay = g. The Fourier series for 1 — x in terms of g = e*™/* is
1 — x = 64¢* — 15364" + 19200¢° + - - - .
Let us construct a basis of flat sections. First, note that the periods
®,, r=(10,01,11,21,12)
still satisfy first order differential equations and that the corresponding flat sections will be
Sr(0 X) = (x = D™ e(X) 7.

However, both @, and @, satisfy a second order hypergeometric equation with parame-
ters respectively axy = @pp = 3/4,B20 = B2 = 1/4,y20 = Y02 = 1/2. Namely, the periods

satisfy the following system:

(4= 02) 9, Dy(0) = % Dao() — Do (0);
(6.10)

(4 = 02) 0, Dp(07) = % Do) — Do (0).

It follows that @y, = L ®,j (and @,y = L Dy,) where L is the differential operator
L=-@-0%d, + %

which lead to second order differential equations. Let us denote by {F 513 F gr)} the basis

of solutions of the hypergeometric equations near x = 1 for the weights (ay, Br, Yr)-



93

Thus we can obtain a pair of polynomials d,y and dy, that determine flat sections by solving

the following system:

(1) (1)
$20 A 20,1 F 5 202 F 5 |[020

(6.11) =

i I
P02 A L(cyo,1 F i,z)o) L(cyo F 5}0) 002

Since @y, satisfies a hypergeometric equation as well (with the same parameters), we can

choose constants ¢y, i = 1,2, s.t.,
1 1 1 1
(L(CZO,I Fﬁ,ﬁo), L(cyo,1 Féjo)) = (COZ,I Fi,()m’ Co2.2 Fé,éz) .
For example, we choose
con = V2/8, ca= V=172, coy = V2/8, cyp=—-V-1/2.

The mirror map can be chose in the following form: As; = 6, and

Al,l AI,Z 1 V—l 010(510 —4 V—l 2 V—l C11511

Az,l Az,z 1 —-v-1 Co1 501 —4vV-1 -2v-1 502

where the constants
~1/4
cio=cor =2 /, cip = 1.

This identification induces an isomorphism of Frobenius algebras and for the 3-point,

degree-1 correlator which is needed in the reconstruction Lemma we get

1
(1 =02 F{h ma

A1, Arq, A =
(A1, A1, A31)03 .

1
= g(l — )2 oF (1/4,3/4:3/2;1 = x) oF (1/4,1/4; 151 = x).
The Fourier series of the correlator has the form g+2¢°+¢°+2¢'3+- - -, which in particular

implies that the degree-1 part is 1.
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Large complex structure limit point for W, = X% + X; + X; + 0 XX,

We set x = -4 i.e., [ =3 and C = —4/27. The j-invariant is

27
) 407 -X
o) = = .
A= ¥4 " 1—x
In this case it is more convenient to construct the mirror map near o = p, = —272/335°.

We have
K=N=1, Ay =36(1-x)XXm3.
It follows that Ay = 25/6—‘/??72 The mirror map can be constructed as follows:
Air = croo(1 =) %105 Ais = c312(1 = x)%3;
and
(Az1, A1z, Az1, Arz, Agz, Avg) = (G015 6205 0115 9305 0215 Oa0) -

Here 6,(r = 01,20, 11, 30, 21, 40) have the same form as in (6.13). After a straightforward

computation we get a mirror map that identifies the ring structures by setting

Ay =610 = 273121 = 00 1o 74,

Aor = Sor = =(=2)"13"2(1 = 0)'P(F{3) dor + (=27 F3}, do) 7a,

Apz = 8 = (=1)'227779312(1 = )"(F1Y por = 327" FLY), $20) 7as
Mg =81y = (=D"°2P3(1 = 0 (FS, ¢y + (=2)77 FY o) ma,

Aps = 83 = (273721 = 0 2(F{)y 611 = 2-2)7"7 FLY, d0) 7a,

Ay = 651 = (=1)'?2723%2(1 - x)2/3(F§20 ¢+ (=2)7' FS;I ¢4o) TTAs
Aiy = 849 = (=1)/0277332(1 — 07 P(F{, 621 - §<—2)-”3 F{) ) 7a,

Ajs =63 = =2'7312(1 = )/ g3 7.
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For the 3-point correlator we get
<A1,1’ AZ,I, A3,1>073 = q + 2q7 + .. s

which means that the above identification is a mirror map.

6.2 Mirror to LCSL points at infinity

In this section, we describe the limit behavior of the Saito-Givental theory of ISESs at
o = co. Similar results were already obtained in [MR] for three special choice of an ISES

W (with marginal deformation ¢y, = X;X,X3):
X+X+XecEM, XX, + XX+ X2 € EMY) XX, + X2 + X3 € EMY
1 2 3 6 1422 243 3 7 > 142 2 3 8

Namely, it was proved that the Saito-Givental theory at o = oo is mirror to the orbifold
Gromov-Witten theory respectively of P3,,,P},, and Py, ,. It turns out that if W is a
Fermat polynomial of type E;l’l); then the mirror of the Saito—Givental theory is no longer
an orbifold GW theory, but an FIRW theory. This agrees with the physicists’ prediction
that the monodromy of the Gauss—Manin connection around the large volume limit point
should be maximally unipotent, while as we will see below, the monodromy around o = oo
is diagonalizable

The complete answer to the question that what kind of theory is mirror to the Saito—
Givental theory at o = oo for all ISESs is stated in Conjecture The proof is on a
case-by-case basis using the same technique, we compute the initial set of 3- and 4-points
genus-0 correlators in the Saito-Givental theory and match them with the corresponding
correlators in the orbifold GW or FIRW theories. We will sketch the main steps of the
argument on one example and leave the details to the reader. The other cases will appear

in a separate paper.
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Large complex structure limit point for W, = X;X; + X5 + X; + 0 X, X, X3

In this example, we substitute x = —%, i.e.,, /=3 and C = —1/27. The j-invariant is

24 +0°y  27x(8 - 9x)’
27+03  1-x

jlo) = -
It is convenient to construct the mirror map when o is near the point p; = —37. We have
K=N=1, Ay =181 - )X X, X373,
It follows that Ay = ‘4—7‘73 The Fourier series of 1 — x in terms of g = ¢*™/° is
(6.12) 1 —x = —27¢° — 324¢"* — 2430¢"® — 137164** + - - -

Note that the largest dimension of a subspace of homogeneous flat sections is 2. Let us
assume that {¢,, ¢~} form a basis of the homogeneous subspace of the Jacobi algebra of
weight deg ¢, = deg¢,.. The period integral @ (o) is a solution to a hypergeometric
equation with weights ay, B, vr. We choose a new basis of sections with polynomials

defined by

1 1
cea P et FiL(x)

1,x
(613) (6r, 6r’) = (¢r A, ¢r’ 7TA) ,
1 1
CcraF5 ) (%) cpaFy)(x)
where ¢, ¢y ;(i = 1,2) are some constants and

[FO@) = F{P ), F) = FP ()

is the basis of solutions (4.37)) to the hypergeometric equation with weights (@, B, ¥r). If

®, satisfies a first order differential equation, we set
F'(x) =0, F’(x) = 1Fo(ar;1-x)

and use the same formula in order to define 6,. We choose ¢,; such that
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Table 6.1:
r= 100 200 001 101 010 201 110 011
Cr,1 = 0 @ 0 2\/9—TI7 _ ‘@777 qnz 0 0
2

Now we can construct a map as follows:

16y . 5/6 .
Ay = cio02(1 = 1)@ 100;  Ars = copia(1 = x)7°Dy,;

and

(Az1, Ara, Az, Az, Ao, Ars) = (6200, 00015 01015 00105 92015 0110) -

This is actually a mirror map. It preserves the Chen-Ruan product and

1
(AL, As 1, Asdos = — (1 =0V, F 1 (1/3,-1/6;1/21 = x)ma = q+2q" + -+ .

6.3 Mirror to other FJRW-points

The case of Fermat type Eélvl)

4 3 . . .
550~. The j-invariant

Let W(0) := X%+ X5 + X7 + 0 X{X,. As usual we substitute x =

is
4073 —-X

)= g T T

The Picard-Fuchs equation for the periods w4 has weights (a,8,y) = (1/12,7/12,2/3).

Since a — f is not an integer, the monodromy is diagonalizable and we have the following

basis of solutions (eigenvectors for the monodromy around o = c0) near x = o

where the constant Ay will be fixed later on. Put

Uy 1
1= — = Ay x 2,
A,
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where ~ means that we truncated terms of order O(c?). It is easy to check (by using the
differential equation for the periods) that when restricted to the subspace of marginal de-
formation, 7_; is a degree O flat coordinate, i.e., the residue pairing (1, d/0z_,) is a constant.

To construct the mirror map for non-integral degrees, we have to find a basis of ho-
mogeneous flat sections (with non-integer degrees) of the Gauss—Manin connection near

o = oo. The periods corresponding to the polynomials ¢y, and ¢, satisfy

(27 + 407)0y Doy = —307 Do — (9/2)Dy
(27 + 40°)d, Dy, = =07 Dy, + (90/2) Dy

Moreover, as we already know @, satisfies a hypergeometric equation. The corresponding

weights are (a1, Bo1,vor1) = (1/12,7/12,1/3). Let
2 4 2
Lyy := — ((27 + 40 )8(,-(1)01 + 0 (D()]) .
90

Then the solutions to the above system have the form

Doy Fia®  Fo@ ||Aa

Dy LyF 508)1 (x) Lok 508)1 () | A20

Solving for Ay; and A,y we obtain two flat sections of degree % The remaining flat sections

can be found in a similar way. We get
A = (x - 1)]/6q)10, Az = ()C — 1)5/6(133]
and

Dy Fio () Fyon® || Ac Cots

D120 Liy2oF iflz,l)(x) Lk+2,oF§T,2,l)(x) Aki20
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where

L30 = (27 + 40'4)80—(1)11 + 20’2(1)11) s L40 = (27 + 40’4)60—(1)21 + 30'2(1)21) .

L 2

Let 6,(s, X) be polynomials, such that the geometric sections [,w] = c;A;, see (5.2).

Here ¢, are given in the table below

r= 10 01 20 11 30 21 40 31

22C 48c 28C
Cy /11 /12 — l3 0 /11/12 —/l?C() /11/15 ITU ITU

The constants appearing in the table are given as follows:

/14
(6.14) =242 2= C=-

27
= & )

4

Now we compute the pairing and the necessary genus-0 correlators. The pairing is

(010, 031) = {001, 021) = {020, 040) = (O11,011) = (O30, 030) = L.

All 3-point correlator functions that do not have insertion 1 (otherwise the correlator re-

duces to a 2-point one) have a limit at o = co. The non-zero limits are as follows:

(010,010, 040)0,3 = 010, %01, 01103 = {So1, 001, 020003 = 1.

(610, 620, 030003 = {620, 620, 620003 = —3.
In other words, the Jacobi algebra extends over oo = co. If we denote the extension by

Dy, then it is not hard to see that o and dy; are generators and we have
Dy = Cl810, 8011/ (4630801, 51y + 363,)

Finally, the nonzero 4-point genus-0 basic correlators are

X=00

9 3
Sor Sors Sora - 1Yos = —— (LB 2Dy, + ——x~V4Dy)?
(601, 601, 601, 6-1)0.4 6t_1< >(x 01 4C0x 20)%)

0 9 /12C0 0 1
Pt U4y 4+ —— 2N = — 22299 (1 x12) = _ 2
26t_1 (X < 03> 4C0x < 22> 4/13& at_l ( wX ) 4
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and

1
<6103 610, 5%0601 , 6_1 >0,4 = _Z'

where in order to achieve the above identities we set

A
VT s

Recall that py, p, are generators of the FJRW ring corresponding to the pair (W’ =X/ X> +

X; + X%, GW/). Using the reconstruction lemma in FJRW theory (see Lemma

easy to check that the map

(Pl ,Pz) — ((—1)5/6501 , (—1)2/3510)~

111.10,

L it 1S

is a mirror symmetry map, i.e., it induces an isomorphism between the FJIRW theory of

(W', Gy») and the Saito-Givental limit of W = X% + X; + X3 + 0 X} X, at o = 0.



CHAPTER VII

Landau-Ginzburg/Calabi-Yau correspondence

7.1 Givental’s quantization formula

Following Givental, we introduce the vector space H = H((z)) of formal Laurent series

in z!. Furthermore, H is equipped with the following symplectic structure Q:
Q(f(2), 8(2)) = res=o(f(=2), g(2))dz,  [f(2),8(z) € H,
where for brevity we put (a, b) = n(a, b) for a,b € H. Note that
H=H,oH

with H, = H[z] and H_ = z7'H[[z"']], which allows us to identify H with T*H,. We fix

a Darboux coordinate system ‘12’ pi,j for H via

oo N-1 oo N-1
Q=) > 4o+, Z P (=2 e H,
k=0 i=0 =0 j=
For convenience, we put
(7.1) aQ =, »q)) and q:=(q,q1, ")

In this paper, we focus on the subgroup L®GL(H) of the loop group LGL(H) consisting
of symplectomorphisms 7' : H — . Note that such symplectomorphisms are defined by
the following equation:

T(-2)T(z) =1d,
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where *T is the adjoint operator with respect to the bi-linear pairing 7, i.e.,
(Tf.e)=(Tg.
We will allow symplectomorphism E of the following form:
E:=1d+ Ez+ Eyz* + -+ € End(H)[[2]].

They form a group which we denote by Lf)GL(H ) and we refer to its elements as upper-
triangular transformations.

Next, we want to define the quantization E. Note that A = log E 1s a well-defined
infinitesimal symplectomorphism, i.e., A = —A. For any infinitesimal symplectomorphism

A, we can associate a quadratic Hamiltonian hy on H,

1
(1.2) ha(f) = SEUAL 1.

The quadratic Hamiltonians are quantized by the rules:

lig e . .0 . qiqj
—. (pua) = @lpe) =42 () = =
9,94, g, 7

(7.3) (PripLj) = ha

The quantization of E is defined by

For an upper-triangular symplectomorphism E, there is an explicit formula for the

quantization E. Put
co N-
q2) = ZZ 0i2" € HI[z]].
k=0 i=0

Denote the dilaton shift by q(z) = q(z) + 1z, i.e., ¢, = g} + 6,6} Recall that the ancestor
GW potential of X is

hg_l <TL1 akl ”

L ... X n
(7.4) ﬂx(h’ q(Z)) = exp ( Z Z Z n', TL,,akn>g,nﬁ qﬁ l—l_é_z)
: i=1

g.,n BeNE(X) ¢;,ki=0
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AX(h, q(z)) belongs to a Fock space C[[qo, 1,2, --1]. The action of the quantization

operator E, whenever it makes sense, is given by the following formula:

(7.5) E(A (1, q(z))) = ("* A (1, q(2)))|

q—E-1q

where E~!q is the change of q-coordinate
k. N-1 o
(E™' @) = Z D UEDqL,
=0 j=0
And Wr is the quadratic differential operator

N-1

h (o)
(7.6) = 3' Vi(0’ )
2 1;:0 =0 qkaql

whose coefficients Vy; € End(H) are given by

(7.7) Z V(=2 (—w)' = E*()E(w) — Id.

k>0

zZ+w

Remark VII.1. Givental also considered the quantization of a general symplectomorphism
of the form e*. For example, A could be lower triangular in the sense containing the
negative power of z. The lower triangular one can not be lift to cycle level. Hence, it will

not be considered here.

7.1.1 A quantization operator in singularity theory

Suppose that W is one of the three families of simple elliptic singularities under consid-
eration. Recall the global Frobenius manifold structures on M. First we recall the definiton
of Givental’s quantization operator and then we use it to define a CohFT AY(t) over the
semisimple loci M.

Let K C M be the set of points t such that u;(s(t)) = u;(s(t)) for some i # j. We
call this set the caustic and put M, for its complement. Note that the points t € M, are

semisimple, i.e., the critical values u;(s(t)) (1 < i < u) form a coordinate system locally
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near t. Let t € M,,; then we have an isomorphism

0

\P(t) CH > TtM, e; — A,(S(t)) m,

where A;(s(t)) is defined by

sy ) = T
Aui(s()” du;(s(t))’  Ai(s(t))’

and we identify T¢M with H via the flat metric, i.e.,

Y; diagonalizes the Frobenius multiplication and the residue pairing:
ej®¢j= 55,_]' A,(S(t)) é;, (ei, ej) = 5[-/-_

The system of differential equations (4.8)) and {#.9) admits a unique formal solution of

the type

PYRt) VY7 Rt) =1d + Z R (t)Z" € End(CH)[[z]].

k=1

where U(t) is a diagonal matrix with entries u;(s(t)), ..., u,(s(t)) on the diagonal, cf.[Du,
G12]]. As we work for isolated singularities, the homogeneity condition implies Ry(s) are
uniquely solved from Ry(s) by inductively.

Following Givental, the formal ancestor potential
ﬂformal(t)(h’ q(Z))
of (the germ of) the Frobenius structure (H, n, %) is defined by
(7.8) PO R VO | | A BAD), G VAWD),
i=1

where ¥ means change of the variables q(z) — ¥~'(t) q(z) and A is the total ancestor

potential of the CohFT [N=1-4=1,
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7.2 Symplectic transformation and analytic continuation

As we recall for the construction of B-model total ancestor potential, it depends on
the choices of a flat basis of the state space. And the choice of a flat basis is essentially
coming from a choice of symplectic basis in H,(E,, C). For two special limits -y and 0,
let us denote the choice of symlectic basis by (4;, B;)) € H,(E,,,C) for i = 1,2. We can
analyticlally continuate the basis (A, B;) to o, by a path C,, , connecting from o to 0.
We denote the new basis at o, again by (A, B;). The difference between two basis can be

captured by a transformation, U, ,, where

This transformation gives a symplectic transformation on space H. We denote it again by
U, »,- According to [MR]], the difference of two total ancestor potentials at o} and o
are related by the quantization operator for this symplectic transformation, up to analytic
transformation. Combine all the mirror theorems we had in previous chapters, we obtain

a proof of Theorem [[.2]



CHAPTER VIII

Modularity

8.1 Cycle-valued quantization

In this chapter, we will discuss modularity of Gromov-Witten theory in a cycle-valued
version. For reader’s convenience, we introduce a cycle-valued version of Givental’s quan-
tization formula here. The key observation is due to Teleman. Teleman [Tel] was able to
lift the quantization of an upper triangular symplectic transformation to the level of coho-
mological field theory. Let us describe his construction. According to formula (7.5)), the
action of E is a composition of two operations: exponential of the Laplace type operator

followed by the coordinate change q — E™'q.

Coordinate Change

Let A, , be any linear function on H®" with values in the cohomology ring of Mg,n. We
can extend A,, from H®" to H?" uniquely so that multiplication by z is compatible with

the multiplication by psi-classes, i.e.,,

(8.1) AenD iz )= ) Agulyr, W,

i>0 i>0

Given an isomorphis of C[z]-modules

O(z) : Hi[[z]] = Ho[[z]],
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we define

(@) © Agn(¥1s -+ ¥n) = Bga( @R 1), -+, PR (7)) € H (Mg, ©).

Note that even if A is a CohFT, ®(z) o A might fail to be a CohFT.

Feynman type sum

The action of the exponential of the Laplacian (7.6) can be described in terms of sum
over graphs. Let us explain this in some more details. For a given graph I let us denote
by V(I') the set of vertices, E(I') the set of edges, and by T(V) the set of tails. For a
fixed vertex v € V(I') we denote by E,(I') and T,(I') respectively the set of edges and tails
incident with v. The graph is decorated in the following way: each vertex v is assigned a
non-negative number g, called genus of v; there is a bijection ¢ — m(t) between the set of
tails and the set of integers {1,2,...,Card(7T(I))}, and finally every flag (v, e) (i.e., a pair
consists of a vertex and an incident edge) is decorated with a vector Z*d' (k > 0).

Furthermore, for a given edge e we define a propagator V, as follows. Let v, v’ be the
two vertexes incident with e and let z3” and zX'9"" be the labels respectively of the flags

(v, e) and (v", e); then we define

Vo= (6", Viewd").
Note that since *V » = Vo the definition of V, is independent of the orientation of the
edge e. For every vertex v we define the differential operator

v o_ i(e)
D, = H 3194\,

ecE, (I

where 799U is the label of the flag (v, e).
Given any formal function A(%; q) = exp ( > hg‘l?d(g)(q)), we have

1
|Aut(I)|

(8.2) eV Al q) = exp( ) [TV ][] piFr=@)
T

ecE() veV(I)
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where the sum is over all connected decorated graphs I' and |Aut(I')| is the number of
automorphisms of I' compatible with the decoration.

Motivated by formula (8.2]) we define
(8.3) (" 0 N)gu(y1 @+~ ®,)

by the following formula:

1 k
E | | Ve | | Ag‘,,rv+nv( ®ecck, 1) Oie)lf © Qrer,(I) )’m(t)),
|Aut(D)|
T ecE)  veV(D)

where r, = Card(E,(I')), n, = Card(T,(I')), and the sum is over all connected, decorated,
genus-g graphs I" with n tails. Note that this definition is compatible with (8.2) in a sense
that the potential of the multi-linear maps (8.3)) coincides with (8.2)).

For an upper-triangular symplectic transformation E, we define
(8.4) EoA:=Eo "t o A).
Using induction on the number of nodes, it is not hard to check that E o A is a CohFT (see
[Te]).
Classification of semi-simple CohFT

Let (H, 7, ) be a semi-simple Frobenius algebra. We pick an orthonormal basis {e;} of
H, which allows us to identify (H, n, @) with the Frobenius algebra of a trivial CohFT, i.e.,,
the state space of I for a particular A (see (2.2)). In this section we would like to recall

the classification of all CohFTs whose state space is (H, 7, ®). According to Teleman (see

[Te], Theorem 1) we have the following higher-genus reconstruction result.

Proposition VIIL.1. ([Tel]) If A is a homogeneous CohFT with its underlying Frobenius

algebra (H,n, e). Assume H has a flat identity and % is (formal) semi-simple; then

A =P(t) o (T. 0 R(t) o T;") 0 INA®,
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where T, := Ty, is a translation defined by

- 1
(TIZ o A)g,n (71’ et 9yn) = Z Eﬂ*Ag,n+k(717 T, )/n’ wn+19 Y wn+k)
k=0 °

8.2 Cycle-valued version of B-model potential

Givental used R(t) to define a higher genus generating function over M. In this chap-
ter, we would like to enhance his definition to Cohomological Field Theory.
For any semisimple point t € M, we define a CohFT with a flat identity and a state

space H,
(8.5) AY(t) ;= ¥(t) o T. o R(t) o T ' o A0,

We are interested in the loci of points t = (¢,0) € HxC+*~!, which are never semisimple.
To continue our B-model discussion, we need to prove that A" (t) extends holomorphically

for all t € M. To begin with, let us fix g, n, and y; € H; for convenience, we denote by
AL ) = (A" ()gn.

Ag’n(t)(%, ...,7%Yn) 18 a linear combination of cohomology classes on ﬂg,n whose coeffi-

cients are functions on M.

Lemma VIIL2. The coefficients of Agn(t)(yl, ..., Yn) are meromorphic functions on M

with at most finite order poles along the caustic ‘K.

Proof. By definition, the CohFT ({8.5) depends only on the choice of a canonical coordinate
system u(t) := (ui(s(t), ..., u,(s(t)). The latter is uniquely determined up to permutation.
Note that is permutation-invariant, i.e., it does not matter how we order the canonical
coordinates. On the other hand, up to a permutation u(t) is invariant under the analytical
continuation along a closed loop in M. It follows that AEV (t) 1s a single valued function

N

on Mg,.
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We need only to prove that the poles along K have finite order. Note that according to
the definition of the class (8.3)) only finitely many graphs I" contribute. The reason for this

1s that in order to have a non-zero contribution, we must have

k(e) < 3g,—3+r,+n,.
¢€E, ()

Summing up these inequalities, we get

Z Z k(e) < 3(g — 1) — 3Card(E()) + Z 7+,

v eeE,I)

However

> r = 2Card(E(D)),

v

which implies that the number of edges of I" is bounded by 3g—3+n. This proves that there
are finitely many possibilities for I'. Moreover, there are only finitely many possibilities
for k(e), i.e., our class is a rational function on the entries of only finitely many R;. Since
each R, has only a finite order pole along the caustic the Lemma follows. O

We will prove below that Ag‘fn(t) is convergent near the point ( V=1 oo, 0) € HxC* ! and
that it extends holomorphically through the caustic (see Theorem and Proposition

VIIL.12). Thus AY(t) is a CohFT for all t € M. In particular,

W . W
(8.6) NG, (1) = teMlg:l(ﬁ()) Ag, ()

forallr e H=Hx {0} c M.
8.3 Modular transformation
Using the residue pairing we identify 7*M and T M, i.e., dt; = 0. We also identify

End(H) with the space of u x ¢ matrices via A — (A;;), where the entries A;; are defined

in the standard way, i.e.,

u=2
Adt) = Y Aydt;.

i=—1
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Recall the notation from Chapter a loop C in Z, inducing via the Gauss-Manin con-
nection a monodromy transformation v on vanishing homology and a transformation of
the flat coordinates via analytic continuation t — v(t). The latter induces a monodromy
transformation of the stationary phase asymptotics, which was computed in [MR], Lemma

4.1. When W = X; + X5 + X3, let

O™« * *
0 i@ 0 0
(8.7) M,(t) = € End(H)[[z]].
0 % e4m'k/3 13 0
0 % 0 elm'k/3 13
where
M_]’j = _62ﬂid‘,~k I’l]zj;](f) tj, 1< ] <6
and

2 6
n
M_ip=—-npz— —12 E titv, Mig=npty, 1<i<6.
2)(0) &

Lemma VIIL3. [MR] The analytic continuation along C transforms
PRtV into  TM,(t)PR(t)e" VP,

where P is a permutation matrix and * means transposition. |

The CohFT constructed by the analytical continuation along C of A" (t) will be denoted
by

AL (V) € H'(M,,,,C) ® (H")*".

Restricting to t5( = 0, we have

TM,(1) = tlimOTMv(t) = J, (0 J,(1).
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With
1 0
88) S0 = P i e 1 6P jur) e Iy € End(H)II211.
0 ju)
Now let
I =g/ ju(®)
(8.9) X,i(2) = P 1 € End(EI1:11.

Theorem VIIL.4. The analytic continuation transforms the Coh FT as follows:
(8.10) AY((®) = ;1) 0 X,i(2) 0 AV (0).

Proof. The calculation in [MR] also works on cycle-valued level. m|

Now we give a lemma which is very useful later on.

Lemma VIIL5. Ler E(z) € LPGL(H); then it intertwines with J; (1) by
J;\0) 0 E2) = EG(D2) 0 1, (1),

Proof. From (8.8) and the definition of J;!(¢)o, we know that the pairing 7 is scaled by j2(¢)
when applying J;!(f)o. Thus the quadratic differential action E (z) becomes E (jX()z). O
Anti-holomorphic completion and modular transformation.

Let R or R be a cohomology ring of any fixed Deligne-Mumford moduli space of stable
curves of genus g with n marked points, i.e., R = H *(ﬂg,n, C) for some 2g —2 +n > 0.

Definition VIIL.6. We say that a R-valued function f : H — R is a R-valued quasi-
modular form of weight m with respect to some finite-index subgroup I' C SL,(Z) if there

are R-valued functions f;, 1 <i < K, holomorphic on H, such that
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1. The functions f; := f and f; are holomorphic near cusp 7 = ico.
2. The following R-valued function
f@D) = o)+ @@ =D+ + fr@@ -7

is modular, i.e., there exists some m € N such that for any g € T,
fgr,g7) = j(g, )" f(7,7).

f(t,7) is called the anti-holomorphic completion of f(1).

Anti-holomorphic completion of A;‘fn(t)

Let W be the Fermat type cubic polynomial. Denote by

1 —z(t-57"
@.11) X,4(z) = P 16 € EndI121),

0 1

where 7 is the anti-holomorphic coordinate on H defined by

. at+b
Ccf+d’
We define the anti-holomorphic completion of Coh FT AY () by:

(8.12) A" (t,1) := X,1(2) o AV(0).

Theorem VIIL.7. Under the assumption of extension property, the analytic continuation

of the anti-holomorphic completion Ag‘fn(t, 1) along v is

T, 0 o AY(1,1).

n

Proof. We define an operator Yy,,,;(z), s.t., the following diagram is commutative:

X,#(2)

A —— AY(t, 1)

lh(r)oﬁ?v,,(z) l)?“’"“)

Z/(r),v(a (@)

AY(v(1)) —— AV (v(0),v(D)
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We need to prove that

X,.i(z) = J;\(0).

Let us consider the analytic continuation for X, 7(z). Analytic continuation acts on (t — 7)~!

by
s~ i * RO
By definition (8.1T]), this implies
(8.13) X902 = Xii(2(02) X,/ (/3(0)2).
Recalling Lemma [VIIL3] we get,
(8.14) J1@0) 0 X,u(2) © X1 (2) = X (75(02) 0 X1 (2(1)2) © T, (1),
Thus the result follows from (8.13]) and (8.14]). O

Cycle-valued quasi-modular forms from Ag’n(t)

We consider a pair
Frou) = ((ris- -+ ¥ (s -+ o 1y)) € H X ZL,
where each y; € ./ = {0_) = 01,00, - ,0,-2}. I is a multi-index
I=(ityigy+ siyn) €2, ig 4 +ipn=n.

i; is the number of i € {1,---,n} such that y; = d;. Under the assumption of extension

property, we define a cycle-valued function flvfl on H,
(8.15) fin(t) = AL (FD) € H (Mg, ©).
and its anti-holomorphic completion

f}‘jll(t, f) = A;"/n(l‘a f)(’}_;l)
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For ¢; = (0, - - - ,0), we simply denote them by f,"(z) and f,"(z,7). Let
u=2

(8.16) m(l) =2y + ) ij.
J=

Proposition VIIL8. Let W be a simple elliptic singularity. Then fIVZ (1) satisfies the trans-

formation law of cycle-valued quasi-modular forms of weight 2g — 2 + m(I).

Proof. First we consider ¢; = (0,---,0). It is easy to see fIW(t, f) is an anti-holomorphic

completion for f}(¢) and for monodromy v described as before, we have

F 0D = X2 o AV(.D),, 7))

_ j%g_2+m(1)([) AZXH(I’ f)(’)_}l)

= 00 0.

The factor 2g — 2 comes from the rescaling of 7. Now the statement follows from mon-

odromy acts trivially on y-classes. O

Remark VIIL9. For f¥(¢) to be a cycle-valued modular form, it needs to be holomophic
at T = V—1 oco. This will be achieved by the mirror theorem in the next section. Hence, by

combining A-model with B-model, we produce cycle-valued quasi-modular forms.

8.4 Mirror symmetry

We identify via the mirror map the flat coordinates t? on M and the linear coordinates
t on D.. Recall the CohFT A}, (t*) defined by formula (8.5) for all semisimple points t”.
Proposition VIIL.10. The CohFT Ag’n(tB) extends holomorphically for all t® € DB, the

ancestor Gromov—Witten CohFT (A~ is convergent for all t € D, and we have

AY, = AP, VieD..
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Proof. The Frobenius structure of the quantum cohomology is generically semi-simple. In

particular, if we think of the CohFT (A% as a CohFT over the field

Frac C[[e', 1o, - - , t,-2]],

where overline means algebraic closure and Frac stands for the field of fractions; then
(A~ is a semi-simple CohFT with a flat identity. Teleman’s reconstruction Theorem|VIII.1

applies and we get that
(8.17) AL, = A5,

where the equality should be interpreted as equality in the space

H*(M,,,C) ® FracC[[e', o, - - , L, 2]].

On the other hand, according to Lemma (VIIL2)), A}, (t”) is meromorphic for t € D7, thus

(8.18) A}, (%) = (A%, € H'(M,,,,C) ® Frac Cle', 1y, - , 1,0},

where C{xy,...,x,} is the ring of convergent power series at x; = --- = x, = 0 (the

overline means algebraic closure). On the other hand, by definition
(8.19) AL, € H' (Mg, ©) ®C[[e 1o, -+ , t,2]l.

Now we apply the following lemma of Coates—Iritani,

Lemma VIIL.11 ([CI1]], Lemma 6.6). The intersection

Frac C{X], R xn} N C[[)C], ) xn]] - FraCC[[.X], ) xn]]

coincides with C{x,--- , x,}.

This completes the proof. O
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Extension property

In this subsection, we use Lemma 3.2 from [MR] to derive the extension property.

Proposition VIIL.12. The coefficients of Az‘jn(tB )YV1, - - - Yn) extend holomorphically through

K, i.e., they are holomorphic functions on M.

Proof. Let us define an action of C* on M = H x C*~! according to the weights of the
coordinates t5. Since A" (t?) is a homogeneous CohFT, the domain % of all t? where the
theory does not extend analytically is C*-invariant. Since % is the set of points t? € M,
such that A" (t?) has a pole, % must be an analytic subset. Let us assume that % is non-
empty. The Hartogues extension theorem implies that the codimension of % is at most 1
and hence precisely one. On the other hand, according to Theorem the polydisk
D, is disjoint from K. In particular, H X {0} is not contained in % and hence the two
subvarieties interesect transversely. This combined with the C* invariance of K implies
that the connected components of % have the form {10} X C*!. This is a contradiction,

because K C K, while {7y} x C+! ¢ K. o

Quasi-modularity

Finally, let us complete the proof of our main theorem. According to Theorem [VIIL.T0]
the Gromov—Witten CohFT Agn(q) is convergent and it coincides with Agn(r), under the
mirror map. The latter transforms as a quasi-modular form according to Theorem [VIIL8] it
is analytic for all 7 € H due to Proposition and finally it extends holomorphically
over the cusp 7 = i oo because A;\tn(q) extends holomorphically over ¢ = 0. This completes

the proof of Theorem



CHAPTER IX

Convergence

9.1 Convergence of Gromov-Witten theory

Now let us define the length of a genus-0 Gromov-Witten correlator.

Definition IX.1. We say the correlator is of length O if it contains an insertion . We
say it is of length m (m > 1) if after applying at most m times WDV'V equation, it can

be reconstructed from linear products of length O correlators, and genus-0 correlators with

fewer marked points or lower degree.

Let 18’;513, ,(m) be the maximum absolute value of all genus-0 (n + 3)-points primary

IGW

omi3.4(— 1) be the maximum absolute value of

correlators with degree d and length m. Let

I,(n) + I(n) + I3(n) in the WDVYV equation (2.16). Thus

©.1) Igw s (m) < 35V (m = D)+ 5 (=1),m > 1.

7

By carefully using the reconstruction, we have the following estimation,

Lemma IX.2. We have

Iy, < LIGY, < 1/4.

Ford > 0, we have:

GW -2 ~d-1 yGW -1 ~d-1
I8Y, < a2ct ISV, < Cod™ 4,
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Here Cy and C are sufficient large constants such that Cé < C.

Proof. The key idea of the estimation is using the algorithm. Essentially, we only need to
prove the estimation for these basic correlators. The technique from basic correlators to
non-basic correlators is actually the same as for Type 1 basic correlators in the following.
Now, for each type of basic correlators, we can check for each degree d. It is easy to see

the lemma holds true for d < 1. The computations are tedious but elementary.

e For Type 1 correlators, we apply (2.16). Assume M is the maximum length for Type
1 genus-0 4-point correlators. Thus inequality (9.1) implies

M1
I (1)

d—-1
<3Mg1cdl 4+ (3 ~ 1)36 Z(d — i)l

i=1

IO,4,d < 3MIO,4,d(O) +

< Cod™'Cé .

e For Type 2 correlators, we apply the inequality (2.21)),

d-1

‘(7',7",7,7’)0,4,[1' = ' 7 (L + Iz)‘ (8/1104d1040 + ZIO4d iloa)
i=1

e For Type 3 correlators, the equation (2.22)) implies for Type3 correlators.

! < N
'(a,ﬁ, 7>0,3,d' - 72 E 10,4,d—i10,3,i‘ < Fd C
i1

A similar technique also works for Type 4 and Type 5 correlators.

e For Type 6 correlators, the equation (2.24) implies

864C

<z CTl=dret

Cll

(@, e, a)o,w‘ < 72Iﬁ| dz:
i=1

Now we can continue on with more insertions,
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Lemma IX.3. Forn +d > 4, we have:

am—Scn+d—4’ d>1.
GW
IO,n,d <

cm, d=0.

Proof. We take induction on n. Lemma [[X.2|implies the estimation holds for n < 4. We
assume it holds for n < k + 2, where k > 2, and then prove it for n = k + 3. For k > 10,
according to degree formula , the correlator (@, - - , @y)gnq Must contain some P
insertion. Then induction holds by applying the divisor axiom. Thus we only need to

verify for k < 9. We recall the terms in the WDV'V equation (2.16). For k > 2,d = 0,
S
(9.2) DY CO( ,)ngi AV < G2 <
K43, ;] 703+i0lok+3-i,
i=1
For d > 1, we calculate I§}" ; ,(~1) and I}}" ; ,(0) first. The divisor equation implies
9.3) I ,0) < dISY, < d72 2

Next, we have

k—1 k—1
k K\ .
‘Il(k)‘ <72 ( ) I s 16t 0 <72 ( ) dTACH I < 72 2k g2,
j=1 I ’ J=1 J
d-1 k k d-1 k k -2
L(k)| < 36 () 5, IS, <36 () d—i) ek
‘ ‘ - jZ:O: j) 0= 0kt LiLd ( )

< 288 dk—ch+d—2
15| < 724G 151 < 72472 CH 2,

For the estimation of I;(k), we use forany 1 < i < d,

k-1 .o .
9.4) Z; (’;)(é)’(%)k <1
=
and

d-1

9.5) Z i2d-it<6d™

i=1
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Now we have,

242 4 16+ 4
1Y) < [0 + ) + 10| < IS%d"‘ZC’”d‘].

Again, the length is bounded by some M < 72. Using (9.1)) repeatedly, we know

M

3" -1
I3a < 3G 4(0) + =5 I /(1) < dT2CH L

Lemma IX.4. For genus-1 primary correlators, for n > 1, we have

d2n—3 Cn+2d—2’ lfd > 0.
GW
Il n, d =

1, ifd =0.
Proof. The non-vanishing terms are just (P, - -- , P)¥ ' ng- FOrd =0, itis easy. Ford > 0,
the divisor axiom implies we only need to verify for n = 1. We prove the estimation for
the X = P3 33 Case. The other two cases is similar. When we integrate A1 dd +1(A2,2; 1:1) Over

Getzler’s relation, the genus-1 contribution only comes from 63 4. Recall (2.15)), for d > 3,

d-1

d-1
‘Z<P>1,l,i<A2,2;l;l>O,4,d+1—i' < Z i_1C2i_l(a’ +1- l')_ICdJrH + (24617)_16’%rl
i=0 ;

< (6d) >
We also have
d+1 d+1 1
‘IA”;H(A22U)| SRS, ,_Z (d+1-i) ' a(d+1) co
i=0
< d_1C2d+1.

lcld+1

Other genus-0 contributions are all bounded by d~ . Thus the estimation follows

from the Getzler relation. O

Now we give a proof of Theorem [[I.11
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Proof. Recall the expression of the ancestors,

X
(@), 1@ gna = | iy, - Ay gl @),
g,
M

where ¥, .., = Hilﬁi'} We denote by deg¥), .., = >.;; := L. Now we use g-reduction.
According to degree counting for elliptic orbifold P!, the integration can be expressed as
linear combinations of primary correlators with genus O or 1,

J;

N
Wity s Al ) = ) f NS ).
gun j=1 YT
Here I'; is a connected dual graph with L edges. N is the number of such dual graphs.
It depends only on genus g and number of marked points n. We denote the number of
components in I'; by L(j). Thus 1 < L(j) < L. Each component of I'; is either of genus-
0 or genus-1. Let k; the number of nodes on the i-th component of I';. Thus we know
ki > 1,k = 2L. For each I';, x(j) = x. Again, we have
L))
x(j) = Z Xi-
i=1
We simply denote C(y) by C if there is no confusion.
If L =0, follows from the previous three lemmas. Moreover, in d = 0 case, the
absolute value is bounded by C¥~2.
ForL>1,d =0,
L()) L)) _
‘ fr | AX e, ,a,1)| < 6" ]:1 %, o< 6" ]:[ Nt < 6LCX ),
where 6 is the upper bound for the products of pairing factors 7" from L nodes. Thus

6" N
<
C

ol < ol

'(Tll (@), 5 1,(@))eno

For d > 1, we need to deal with those terms with d; = 0, as the exponent of C(y) in

the estimation will increase by 1 in these cases. We generalize and will have the
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following inequality:
Z n Cfi\’i—z < 8L2.
dy+-+dpj=d di#0

Let K be the number of d; which is 0, then K < L(j). Now we have the estimation,

X
| f AY @, )
T;

L())

L GW
< Z 6 1_[ Igi,”i+ki»di

d1+---+dL(j):d i=1
L())
< Z 6LCK l_[ d?(l-—z l_[ Cxi+@i+1di=2
d1+~"+dL(./):d di#0 i=1
<6L8LdX_2CX+(g+l)d_2.
Now (2.26)) follows from L - d # 0 in this case. o

9.2 Convergence of FJRW theory

For the elliptic singularity (W, Gy ), recall that the FJRW ancestor correlator function:

1
(@), 1, (@) (® = Z T, (@), b gk
k=0 "

where t € H/®V (include the complex degree one case). In this subsection, we prove the
convergence of the functions near t = 0. We first define the length for a FIRW genus-0

primary correlator.

Definition IX.5. We say a genus-0 n-points FJRW correlator has length m if it can be
reconstructed by genus-0 FIRW correlators with fewer marked points by at most m + 1

WDVYV equations.

Recall the insertions a; belong to the basis we fixed. We denote

)

(9.6) 1lo,(m) := max {|<al,--- @)

I

&>

. w
w = max {[(r, -+, )y,

{aq, -, a,,)&’n is of length m} ,

— * w
Ig,n,k,L ‘= max {| f ﬂ'n,k(\Pg,n,L) ' Ag’n+k(a,l’ ) a’n,p—l» e 9p—l)|} .
Mg,n+1<
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Here ¥, ,,; 1s a monomial of ¢ and « classes in H *(Mg,n) withdeg ¥, , ; = L. The Selection
rule (3.5) implies nonzero integrals, L is bounded by g and n,
26-2< L<2g-2+n.
On the other hand, for m > 0, the WDV'V equation (3.13) implies
9.7) Iy, (m) < 121y ,,(m — 1) + 2|I(n - 3)|,
where we have the convention /j,(—1) = 0.

Lemma IX.6. For K < 4, Ijx < Cy for some Cy. For K > 5, there exists sufficient large

constant C, such that

(9.8) lox < CKXH(K - 5)!
Proof. For n fixed, Selection rule || implies {(ay, - - - ,an>(v)‘,/n has at most 12 insertions

other than p_;. On the other hand, it is easy to see a genus-0 correlator with at least three
p-1 insertions has length 0. Every step of WDVV equation (3.13) will decrease the degree
of one non-primitive insertion. Thus the length of {(ay,--- ,a/,,)g"’n is bounded by some

constant M. Thus the formula (9.7)) implies
Io, < Ton(M) < 12" I(n - 3)).

This shows we only need to estimate the values of those correlators with fewer insertions.
‘We use induction on the number of insertions. For K < 5, the estimation holds as there are
just finite different correlators. Assume the estimation holds forall K < k+2, k > 4,

then the induction is true by the following estimation,

k=2

k
[1(k)| <12 Z ( )IO,i+3IO,k—i+3 + 24k Iy 41y k12
i

i

k=2

k(k = 1) 2HCor v
S(12;i(i—l)(k—i)(k—i—l)+k—z)c (k=2)!
< wck—l(k_ 2)!

B C
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Here we use the inequality

k=2

k(k - 1) RSP 1 1 1 9
Zi(i—l)(k—i)(k—i—l)_k—ll;:(i—l+k—i)(7+k—i—1)S§'

i=2

Lemma IX.7. For genus-1 primary correlators, we have
I x < C*K!

Proof. We only give the proof of Pg case, i.e. for If’ %~ The other two cases are similar. It
is easy to see the estimation holds for K = 1. Thus we can use the method of induction,
assume it holds for K < k + 1, k > 0. In this section, we simplify the notation by A :=

AP

1’k+4(eX’ eyZ9 ey’ eXZ9 exyz, ) exyz)- Recall

1
P
(€xyzs " s €uye) | 4yn = gf A
T 1(622)
The integration of A on 71'2}(((52’3) and 71';}((52’4) are both zero. And we also have

[

1x03.4)

k 2

k ACy + 4C
A‘ <4 " B fosloscins £ ———2CF2(k +2)1 < C*2(k + 2)!
iz \! ¢

Next, we consider the genus-0 contribution. Similarly, we have

]f Al < 23k + 2)1

HZ}( (60,3+60,4—20p)

Now we integrate A on 7@}{(1262,2 + 4023 — 2024 + 6034 + 003 + 094 — 205). Combine all

the inequalities above, Getzler’s relation implies

I, = max (e, ey)t,,| < CHP(k +2)!
Lemma IX.8. Using g-reduction, for K =n+k, L = Y.\, I, we have

(r, (@), -+, 1 (@), o1, - - - ,P—1>ZK < lppir < C)* 5L Q2g -2+ K + L))

Here C(y) is a sufficiently large constant depends increasingly on y = 2g —2 + n.
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Proof. For fixed g and n, we can use induction on L. In case of L = 0, non-vanishing
correlators must be of genus-0 or genus-1, thus the estimation follows from two lemmas
above. For L > 1, according to g-reduction, ¥}, .., = []., wf" can be represented by a
linear combination of dual graphs, each of which has at least one edge. The number of
dual graphs is only depends on g and 7, but not k. We denote by N, ,. We can choose C(y)
such that C(y) > N, .

We can induct on the number of edges in the dual graph. For one edge case, if there
are two components, C;, i = 1,2. component C; has genus g;, n; number of insertions from
the n insertion, and the degree of i, k classes is L;. Those are all fixed by the dual graph.
However k copies of insertion p_; can be distributed to either C; or C,. We denote the

number of copies in C; by k;. Thus we have
9.9 g=g1+g.,n=nm+mk=k +k,Li+L=L-1x=x1+x2

Now, C(x1), C(x2) < C(x). As L; < L, by induction, we have the total bound

(K
Ngs" E ‘(k )Igl,n1+1,k1,L1 Igz,n2+1J<2,L2
k=0 \"1

k
k
< NguClypys 3wt 3 (k )(2g1 —1+n +k +L)! Qg — 1 +m+ky + L)
k=0 \ "1
2g1—1+n +L)2g —1+n, + Ly)!

= N,,C(y)* 3kl 2¢-2+n+k+L)!
anC(0) 2g-2+n+L)! (2g=2+n )

< Cp)* 2 lg —2 4+ n+k+ L)
The second equality is using the Chu-Vandemonde equality:

 (c=bx _(c—blc=b+1)-(c=b+k—-1)
©-10) (kb ) = =5 = = O+ (c+k-1) ’

where we setb =2g, +ny + Lj,c =—-k—-2g,—n, — L, + 1.

If there is just one component, y is invariant, then the total bound is

Nealo 1mszii1 < NenCOOY™ oy +k+ L - 1! < C()* 5L 2g -2+ K + L)!
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Now we give the proof of Lemma (III.13)).
Proof. By definition and the previous lemma, we have

(@, @M spo)

1
= ‘ kZ: k_!<Tl1 (al)’ T Tln(a/n)’ SP-1577 7 Sp_l)Z;l(ik
=0

- 20 -2+n+k+L)!
S Z C(X)Zg—2+n+k+L( g ]Z ) Sk.

k=0

Thus the ancestor function is convergent in |s| < %m
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APPENDIX A

Recursion formulas for basic corrlators in Gromov-Witten theory

A.1 A list of basic correlators for P§’3,3

Let us define:
Ai(k) = (A1, At Aoz sk Ar(k) = (A12, A1 1, Doy Ao 1 )04k
AS(k) = <A1,2,A1,2,A1,1aAl,l)(),4,3k A4(k) = <A1,1»A2,1,A3,1>0,3,3k+1

As(k) = (A12, A12, D01, Az 1)oasier As(k) = (A12, Moo, As 1, Az 1)0.43k42

Then we obtain the following recursion formulas from WDV'V equations:

k-1 k-1
Ay(k)y =3 Z Ag(k — i — DAe(i) — kA (k) = 3 Z A (k — D)A(i)
i=0

i=1
k k
KAs(K) = =6 ) As(k = D)As(i) + 6 ) Aa(k — YA (i)
i=1 i=0
k k
kA (k) = -3 Z Ak — DA3() + 3 Z Ak — A7)
lzl i=1 .
As(k) =3 Z A (DAs(k = i) + (k + 1/3)Aq(k) + 3 Z Ak = A7)
o .
As(k) =-3 Z Ak — DAg() + 3 Z Ak — i)As(i)
i=0 i=0
k—1 k—1

KBA (k) =- Z(3k — 3i)* A, (k — DA (i) + Z(3k = 3i=2)3i+ 2)As(k —i - 1)As(0)

i=1 i=0
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A.2 A list of basic correlators for P}L 42

In this case, we define

Ar(k) = (A12, Ar1, Ar)osars A (k) = (A3.1, M50, A3, Ar)oaaks
As(k) = (As1, Az 1, Ar 2, Ar2)oaaks Ay(k) = (A3, A11, Aoz, Ao )oaars
As(k) = (D31, M50, As1, Az 1)oaars As(k) = (A3, A1z Avts Ar)oaars
A7(k) = (A11, D1, Az 10346415 Ag(k) = (Az1, A13,Ar2, Ao 1)oaake1s
Ag(k) = (A12, M1, Ao 1)03.4k425 Ao(k) = (Az 1, A315 A1 2, A2 2o aak+25

All(k) = <A1,3a A1,3’ AZ,l > AZ,] >0,4,4k+2; AIZ(k) = <A3,1 s A],37 AZ,Za AZ,] >O,4,4k+3-

Then the recursion formulas are:

Ay (k)

k
4 Z(A7(i — DAk — i) = Aj(DA2(k — i) — 2kA(k)

i=1

k
Az(k) = 4 Z(2A7(i — DAk —1) = Ag(i = DAg(k — 1) — A1(DA3(k — 1)) — 2kA; (k)

i=1

k
Ayk)y = 4 Z(_Al(i)A4(k — 1)) — kA, (k)
i=1

k
kAs(k) = 4 Z(—A3(i)A5(k — 1) + 2A3(D)As(k — i) + 2A,0(0 — DA ok — 0)) — 2kA3(k)

i=1

k
2kAg(k) = 4 Z(_ZAQ(i)A6(k — i)+ Ax(DAx(k — 1))
i=1
4k + 1
2

k
As(k) = —24A7(k)As(0) +2 Z(4Az(i) — As(i)A7(k — i)

i=1

k
Ag(k) = 4 Z(—A1(i)As(k — 1) = Ag(i = DApp(k — i) + 2A4(DA;7(k — 1))

i=1

k k
2k + DAs(K) = —4 " Ax(iAglk = i) +4 > As(i)As(k - i)
i=1 i=0
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k k

Apk) = -4 Z Ai(DA(k—i)+4 Z(A7(i)A8(k — 1) + Ay(D)Ag(k — i) — A3()Ag(k — 1))
17(1 i=0 .

Ank) = -4 ZA 1Ak — i) +2 ZA7(i)A8(k — i)
tzl . i=0

An() = =4 ADAnk—i)+4 ) (AsDAN K= i) = As(DAg(k — i)
i= i=0
k—ll k

AWK = =4 iADAk = i) + ) (4 = 3)As(i = DApk — i)
i=1 i=1
A.3 A list of basic correlators for Péj’z

In this case, we define

A1(k) = (Ar1, A Arados ek Aa(k) = (Ar1, A12, A1 3003685

Az(k) = (A1, Aot Do 1)os.6ks Ag(k) = (A3.1, M50, Ar1, Ars)oasks
As(k) = (As1, Az 1, Ar2, Aradoasks  As(k) = (As1, Az 1, Ar s, Ars)oasks
A7(k) = (A1, Ar1s Moo, Ardoasks  As(k) = Az, Az, Aoy, Ao ok
Ag(k) = (A11, AL, Ars, Arshoasrs  An(k) = (A1, Azt Ao, Aoodoasks
An(k) = (A31, 831, A3.1, Az 1doasks  Aro(k) = (As1, Ao, Aoz ekt
A3(k) = (A3.1,A11, D22, Aoodoasiets Ara(k) = (Asz 1, Azt Ar2, Ars)oasiets
Ars(k) = (Az1,A215 A1z Aradoasists Ars(k) = (A1, At Ao2)oseke2s
Ayz(k) = (A1, A2t A12)03,6k425 Arg(k) = (As3.1,A3.1, D22, A1 2)0a6ke25

Ao(k) = (D21, Ao1s A3y A s)oaek2s Ax(k) = (Ao Aoy Avas A adossie2s
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Azi(k) = (Asz.1, A1t A12)0.4.6k435 An(k) = (As3.1,A11, A1z, A1 5)oasress
Aoz(k) = (D31, Ar1, Ara, Aradoasiess Aaa(k) = (Asz1,As1, Az 1, Ar3)oaskess
Aos(k) = (A3.1,A21, 822, A13)0.a6k+35  Ade(k) = (Aa1, A1 1, A13)o.a6k+4

Ay (k) = (A1, A1 2, A1 2)046k+45 Ang(k) = (Az1,A3.15 A2 15 At adoasheds
Aog(k) = (A1, A21, D22, Aradoasieas Aszo(k) = (A1, Art, Arg, Ars)oasiess

Asi(k) = (As 1, A1, Dony A adosskrss Asn(k) = (As1, Aot Aoty Avs)oaskess

Then the recursion formulas are

 6k—6i—5

KA, (k) 3

Il
—_—

As(DArotk = 1 = i) + (4k = 4i = DAg3(DAz (k= 1 = D))
_ Z(4k — 4)A, (DA, (k — i)

kA(k) = Z ((3k — 60 — 4)Ax(DA16(k — 1 = 1) + (6k — 12i)A2(D)A; (k — i))

T 1
_— O

3kPA3(k) = ((12k — 61— 5)A3n (DA ok —1-1)

i=

(=]

k-1

—(12k = 12i = 8)As(D)A17(k — 1 — i)) -6 Z(k —DAg(DA3(k 1)
i=1

Ak = ki] (3431(DA10(k = 1 = i) = 6A4()A (k — i) + 6Ax3(1) Az (k — 1 = i)
l—:;)kAl(k)

As(k) = kz; (6A44()A (k= i) — 6As(DA (k — i) = 3Axs(DA6(k — 1 = i)
+_3A31(i)A10(k = 1 =) + 6Ax (DA (k = 1 = ) + Ay(k)

Ag(k) = ij (6A5(DAL(k — i) — 6A6(DALk — i) — 2A04(DAx (k= 1 = i)
+_3A26(i)A18(k — 1= i)+ 6An(DAy (k- 1 = i) + As(k)



As(k)

Ag(k)

kA (k)

kA o(k)

All(k)

Ap(k)

A3(k)

Ay(k)

Ays(k)

(3k + 1)A16(k)

Bk + 1)A7(k)
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k-1
Z (6A30(i)A16(k -1 -1 - 6A7(DA(k - i)) — 2kA (k)
o

Z (12A32(i)A10(k — 1 =1) = 3A3(DA3(k — i)

i=0

~6A25(DA (k1 = D)) = 3kA3(k)

k—

0

1
4
(§A4<z‘>A4(k — i) = 4Ag(DA4(k — i) + 440 (A (k — 1 = i)
1

>~
|

(3A410(0)A7(k — i) = 6A10(i)Ao(k — i) + 6A30(i)Ai (k — 1 = 1))

ing

T 1
—_— O

2
(gAlo(i)As(k —1) = A (DAo(k — i) + 2A26(DA2s(k — 1 — 1)

(=]

~2A50()An(k = 1 = 1)) -

-1

6k +1

Ajo(k)

=~

3
(EAIO(i)AS(k =) = ApDAio(k — i) + 3A10(DA4(k — ©)

LM

6k + 1

+3A05(D)Ani(k = 1 = i) = 3Ax(DAu(k — 1 = i) - Ar(k)

k-1
Z 6A10()A7(k — 1) — 3A13(DA3(k — i) — 6A31(DA17(k — 1 - i))
i=0

6k +1
+

Ajo(k)

=~

-1

(3A410()A7(k — i) = 6A14(DA; (k — i) = 3A3(D)A 5k — 1 = i)

1l
(=)

+6A30(DA2 (k= 1 = 1)) +

k-1

Z (6A14(i)A1(k — 1) = 6A15(DAx(k — i) — 2A23(DAz (k — 1 = 1)

i=0

6k +1

Ajo(k)

+6A30(i)A1(k — 1 = ) + Aa(k)

k-1

Z (3A13(i)A10(k —1) — 6A6(D)A4(k — 1) + 6A3 (DA (k-1 - i))
i=0

+3A13(k)

k-1

Z (6A14(i)A10(k — 1) = 3A17(D)Ag(k — i) — 6Axg()Axr(k — 1 — 1)
i=0

+6A32(DA21 (k= 1 = D)) + 6A14(k)



Ag(k)

Ajg(k)

Ay (k)

2k + 1)Ay; (k)

An(k)

Ax(k)

Az (k)

Ass(k)

(3k + 2)A26(k)
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k-1
Z (3A13(i)A10(k —1) = 6A13(DA(k — 1) — 3A16(D)Ag(k — 0)
i=0

+6A16(Z)A4(k - l) + 6A31(Z)A21(k -1- l)) + 3A13(k)

k-1

D (BAn Ak = i) = 6419(DAs(k = ) + 6A30(D Az (k — 1 = i)
i=0
—2A3(DAx (k-1 - D)+

k-1

Z (6A19(i)A1(k — 1) = 6A(D)Asr(k — i) + 6A30()Azs(k — 1 — 1)

i=0
—3A59(i)Asg(k = 1 = ) + Aro(K)

3k+1

A7 (k)

k-1
D (6A451(DAz(k = 1 = i) = 6421 (DA7(k — 1))
i=0

k
+ ) 3AnMAsKk - i)
i=0

i=
-1

(= 6ARMAk — i) = 240 DAk ~ 1))

=~

(=]

2k +1
2

k
+ Z 645, ())Ao(k — i) + Ay (k)
0

i=
k-1

(6A422(0)A1 (k = i) = 6Ax3(D)Aa(k — i) — 3A31(DAx(k — 1 = 1))

D (6A21DAs(k = i) = 6A2(DA(k = i) + 6A2 (DAs(k - D))

i=0

k
+ ) (BA1s(DA10k = i) = 240 (DA (K - )
i=0
6k +3
2

Az (k)

=~

-1

(= 3A25()As(k — i) + 6A3(DAss(k — 1 — )

(=]

i=

k
+ ) (64D AK - ) = 641 ()A1s(k - D))
0

k-1
(6422()A10(k = i) = 6As(DA4(k — D)) + 6An (k)

i=0
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M»

Ay(k) 2A21(i)A10(k — 1) = 3A17(D)A16(k — 1) + 6A6(i)Ar(k — i))

(=]

-1
6A27(i)A1(k —0)

Mm'»

Ax(k) = ( Ans(DA1o(k — 1) = 3Az6(i)As(k — i) + 6A21 (DA15(k — 1))

i=

,vo

Yl

1

6A28(i)A2(k — 1) — (Bk + 2)Ax(k)

Az(k) =

M-~

(6A26<1>A7(k — i) = 3As (DA (k = D) + 6A19(DA 5k — D))

=

»o

-1
— ) 0Ax0(DAx(k — 1) -

i=

6k + 4

A (k)
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