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CHAPTER 1 

INTRODUCTION 

 

The Cytochrome P450s 

The cytochrome P450 enzymes (P450s) are a highly conserved family of enzymes 

present in the cells of all prokaryotes and eukaryotes (1).  P450s are essential to the synthesis 

of steroids, fatty acids, and some vitamins.  P450s are also instrumental in the metabolism of 

both endogenous and xenobiotic substrates.    It is estimated that over 50% of all therapeutics 

currently in use are biotransformed by the P450 enzyme family (2).  Generally this reaction 

produces a more-polar, less-toxic, and more readily excretable product.  In some cases, such 

as with the chemotherapeutic cyclophosphamide, this reaction produces a more 

therapeutically active compound and is thus necessary for drug function (3).  Drugs requiring 

metabolic activation are referred to as prodrugs. 

To date, more than 13,000 P450 genes have been identified, and 57 have shown to be 

present in humans as a result of the Human Genome Project (4).  Furthermore, one quarter of 

the 57 human P450s play crucial roles in drug metabolism and these are depicted in Figure 

1.1 (4).  The P450s are classified by amino acid sequence similarity, such that families have 

40% or greater similarity and are denoted by Arabic numbers.  The families are then assigned 
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P450 

UDP- 
glucuronosyltransferases 

esterases 

flavin-containing 
monooxygenases 

N-acetyltransferases 
monoamine oxidases 

CYP1A1 CYP1A2 

CYP2B6 

CYP2C9 

CYP2C19 

CYP2D6 CYP2E1 

CYP3A4 

Figure 1.1 – Drug Metabolizing Enzymes.  The top pie chart depicts the 
common enzymes involved in all drug metabolism.  The bottom diagram 
shows the percent of P450-metabolized prescription drugs metabolized by the 
major human P450s.   The figure is adapted from Rendic and Guengerich (4). 
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into subfamilies, where members have 55% or greater similarity and these subfamilies are 

denoted by capital letters.  Finally, based on the order of discovery of the P450s in the given 

subfamily, they are assigned a second Arabic number; for example, cytochrome P450 2B6 

(CYP2B6).  More recently, common genetic polymorphisms have been noted for most of the 

P450s.  These common polymorphisms are denoted by a period and third Arabic number, for 

instance CYP2B6.4.  The wild type allele is denoted by CYP2B6.1 or assumed unless 

otherwise noted.  In the case of the transcribed enzymes for these genes, they are written as 

CYP2B6 or CYP2B6*4 for the polymorphic variants. 

The P450s are membrane-bound enzymes located in the endoplasmic reticulum or 

mitochondria of most tissues in mammals (1).  The P450s have been described as “Nature’s 

most versatile biological catalyst,” because these enzymes catalyze a wide variety of 

reactions on a structurally diverse assortment of substrates (5).  The most common reactions 

are mono-oxygenations, such as hydroxylation, epoxidation, N- and O-dealkylations and 

nitrogen and sulfur oxidations.  Less common reactions include deformylations, 

dehydrogenations, and reactions that don’t require oxidations, such as reductions and ring 

expansions (3).  These reactions are considered to be members of the Phase I drug 

metabolism class of reactions in humans (6).  The following scheme describes the overall 

stoichiometry for substrate hydroxylation by P450:  

RH + O2 + NADPH + H+ !  ROH + H2O + NADP+ 

The P450s require accessory proteins for successful catalysis.  These accessory 

proteins, known as NADPH-cytochrome P450 reductase (reductase) and, in some cases, 

cytochrome b5 (b5), are located adjacent to the P450s in the endoplasmic reticulum or 
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mitochondrial membranes (Figure 1.2).  Generally, the P450:reductase:b5 ratio in liver is 

20:1:0.5 (7).  The reductase is essential for electron transfer from the cofactor NADPH to 

P450 either once or twice during the P450 catalytic cycle, with the first electron always 

coming from the reductase.  The second electron transfer can be completed either by the 

reductase or b5; however, b5 involvement in the cycle is known to be dependent on both the 

P450 and the substrate (8).   

The detailed catalytic cycle for P450 catalyzed reactions is shown in Figure 1.3.  The 

first step in the catalytic cycle is the binding of the substrate in the active site in close 

proximity to the heme group [1].  Next, the reductase transfers an electron from NADPH to 

the heme thereby reducing the heme [2].  One molecule of dioxygen then binds the now-

ferrous heme iron [3], and a second reduction of the ferrous heme iron-dioxygen complex 

occurs via either reductase or b5 [4].  Two protons are taken up and heterolytic splitting of 

the oxygen-oxygen bond generates the putative iron-oxene species, with the concomitant 

release of one molecule of water [5].  Next, there is formation of the proposed substrate 

radical, a transient intermediate [6].  Then oxygen inserts into the substrate [7].  Finally 

product dissociation returns the P450 to the resting state [8].  Additionally a well-known 

reaction, the peroxide shunt, is shown [9].  In the shunt mechanism, hydrogen peroxide 

donates the oxygen atom for the substrate hydroxylation and there is no requirement for 

molecular oxygen or NADPH for electron donation.  Alternatively, there can be a release of 

uncoupled products, such as superoxide (O2
-) or hydrogen peroxide (H2O2), at the oxygen 

reduction step, which is not coupled to substrate oxygenation [10].  This results in the 

generation of reactive oxygen species that may damage the heme moiety of the enzyme.  
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P450 CPR Cyt 
b5 

Endoplasmic  
Reticulum 

NADPH + H+ 

NADP+ 

RH + O2 

R-OH + H2O 

Figure 1.2 – The location of P450s and the accessory proteins and a 
general scheme for electron transfer.  Each of the proteins, 
cytochrome P450 reductase (CPR), P450, or cytochrome b5 (Cyt b5) is 
embedded in the membrane of the endoplasmic reticulum via a 
transmembrane domain or hydrophobic helix.  The proteins face the 
cytoplasmic side of the membrane.  P450 will receive the first electron 
from NADPH via the CPR.  Subsequently both CPR and Cyt b5 may 
donate the second electron.   
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description of this reaction.  The figure is adapted from Guengerich (3).   
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Structure 

In the early 2000’s great advances were made with regards to increasing the 

expression levels and solubility of microsomal P450s (9).  This enabled crystallization and 

eventual determination of the three dimensional structures of the P450s.  To date, there are 

over 500 P450 X-ray structures in the Research Collaboratory for Structural Biology’s 

Protein Data Bank (RCSB-PDB); approximately 100 of those are human P450s.  P450 

structures have been obtained in many conformations and for several P450s (10).   

Generally, the soluble prokaryotic and the membrane-bound eukaryote P450s have a 

conserved secondary structure (as seen in Figure 1.4) (10).  There are 12 α-helices denoted as 

A-L, and 4 β-sheets 1-4.  Most eukaryotic P450s contain a membrane targeting sequence that 

anchors the P450s to the cytoplasmic surface of the endoplasmic reticulum or mitochondria.    

Spatially speaking, the most conserved portions of P450s are helices E, I, J, K, L, and 

portions of β sheet 1, these form the core of the protein and maintain the binding site for the 

heme prosthetic group.  Substrates bind above the heme surface and are positioned close to 

the iron-oxo intermediate for oxidations.  The outer surface of the substrate binding cavity 

varies depending on the P450; creating different sizes, shapes, and chemical features which 

allow for substrate selectivity of the enzymes (11).   

P450 Polymorphic Variants 

Genetic mutations have been described for all genes that encode the human P450s 

(12).  Population frequencies for the mutations differ and are associated with ethnic groups 

(12).  The functional significance of the mutation also differs and will, most likely, be 
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Figure 1.4 – X-Ray Crystal Structure of Human P450 CYP2B6 (10).  
The heme moiety of the P450 is indicated by the magenta stick- 
structure located in the center of the structure.  The helices of the P450 
have been color-coordinated in reverse rainbow order, such that Helix A 
is in blue and Helix L is in red.  The N- and C-termini have also been 
labeled for orientation purposes. 
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dependent on the substrate of interest.  In general, the polymorphisms alter either the 

expression level and/or the catalytic efficiency of the enzyme.  These characteristics of the 

polymorphisms can lead to significant inter-individual variability in P450 activity, which is 

most clearly exemplified by the dramatic variations in patient responses to drug therapy (13).  

Polymorphic forms of P450s contribute to a significant amount of adverse drug reactions 

(14).  It is estimated that over-half of the drugs cited in adverse drug reaction studies are 

metabolized by the polymorphic phase I enzymes (86% of those enzymes being P450s, as 

seen in Figure 1.1) (15).    Additionally, costs associated with treating patients who express 

variant alleles of the P450s are generally significantly greater than costs associated with 

treating patients expressing the wild type P450 (16).  Currently, many studies are focused on 

correlating the genotype of the human P450s with the phenotypic outcome of drug response.  

It has been suggested that enhancing the knowledge of the role of polymorphic P450s in drug 

metabolism could result in a 10-20% improvement in clinical efficacy and reduce adverse 

drug reactions by 10-15% (12).  Overall, a better understanding of the mechanism 

responsible for observed phenotypic variations is necessary for safer and more efficacious 

drug therapy regimens. 

CYP2B6  

Traditionally, CYP2B6 was considered an inconsequential P450 with marginal 

expression in the liver and a negligible role in drug metabolism.  However, with the 

development of more sensitive and specific antibodies to the protein, as well as specific 

pharmacological inhibitors of the enzyme, the role of CYP2B6 became clear (17).  It is now 

considered a key enzyme in drug metabolism, accounting for the metabolism of 

approximately 8% of the drugs administered to humans (17).  Table 1.1 lists some of the 
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Substrates Inducers Inhibitors 

cyclophosphamide phenobarbital thiotepa 

ifosfamide clopidogrel efavirenz 

bupropion dexamethasone bergamottin 

methadone cyclophosphamide orphenadrine 

efavirenz curcumin 

testosterone 

propofol 

nicotine 

Table 1.1 - Common substrates, inducers, and inhibitors of P450 CYP2B6. 
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common substrates for CYP2B6.  Although most of the CYP2B6 substrates are converted to 

less-biologically active forms, the chemotherapeutic agents cyclophosphamide and 

ifosfamide are prodrugs and require activation by CYP2B6 to have a therapeutic effect (18). 

As with many P450s, CYP2B6 is highly expressed in the liver, accounting for 5-10% 

of the total liver microsomal protein (19).  CYP2B6 is also known to be expressed in brain 

(20), kidney (21), intestine (20), peripheral blood lymphocytes (19), and skin (22).  The 

enzyme is subject to induction by numerous substrates, and some common inducers are listed 

in Table 1.1.  Notably, the chemotherapeutic agent cyclophosphamide is known to induce 

CYP2B6 expression (23).  CYP2B6 activities in human liver microsomes have exhibited 

from 20- up to 250-fold variations using S-mephenytoin as a substrate, and up to an 80-fold 

variation using bupropion as a substrate (19, 24).  Variability in P450 activity can be caused 

by many factors including age, gender, concurrent medications, obesity and genetic 

polymorphisms (12).  The genetic polymorphisms appear to have the greatest effect on the 

observed variability.   

CYP2B6 is a highly polymorphic P450 (25).  The Human Genome Project identified 

53 distinct haplotypes, 28 characterized alleles, and numerous SNPs (19).  A summary of the 

SNPs used in this thesis is in Table 1.2.  Nine exonic SNPs were identified, including five 

amino acid variants, some of which are present in up to 30% of the Caucasian population 

(25-29).  One important haplotype, CYP2B6.4 results in a lysine to arginine point mutation at 

residue 262 (K262R) (27, 28, 30).  The 262 residue is located between the G and H helices, a 

region that is known to be important for P450 function.  Studies on bupropion metabolism 

have demonstrated that CYP2B6*4 produced increased amounts of the metabolite 

hydroxybupropion in a purified and reconstituted system (31).  Additionally, it was 
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Polymorphism 

Amino 
Acid 

Mutation 
Mutation 
Location  

Population 
Frequencies 

CYP2B6*1 N.A. N.A. 40%  

CYP2B6*4 K262R Helix H 33% in CAU 
14.1% in AS 

CYP2B6*5 R487C Near N- 
terminus 

14% in CAU 
0.5% in AS 

CYP2B6*6 Q172H/
K262R 

Helices E & H 28% in CAU 
39% in AS 
32.8% in AA 
62% in PNG 

CYP2B6*7 Q172H/
K262R/
R487C 

Helices E & H,  
N-terminus 

3-6% in CAU 

CYP2B6*8 K139E Helix D 

CYP2B6*9 Q172H Helix E 1% in AS 

Table 1.2 - Common polymorphic variants of P450 CYP2B6 (25- 29).  
Abbreviations are: AA – African American, CAU – Caucasian, AS – Asian 
(Chinese and Japanese), PNG – Papua New Guinean. 

N.A. CYP2B6*1 refers to the wild type P450, therefore no 
mutations are present. 
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demonstrated that 17-α-ethynylestradiol, a mechanism-based inactivator of CYP2B6 had no 

effect on the catalytic activity of CYP2B6*4 (32, 33).  These studies, as well as others on the 

polymorphic variants of P450s demonstrate the importance of testing the polymorphic 

variants for functional effects.  It should also be noted that the functional effects of the 

variants will depend on the substrate of interest (34).   

Cyclophosphamide 

Cyclophosphamide (CPA) is one of the most successful chemotherapeutic agents ever 

synthesized (18).  The chemical structure of CPA is shown in Figure 1.5.  The drug also 

produces appreciable immune suppression and is used in low doses to treat immune disorders 

as well as in conditioning regimens for blood and marrow transplantation (35).  CPA was one 

of the first agents rationally designed to selectively target cancer cells.  The intention was to 

generate an inactive chemical that required activation via a phosphamidase, which is 

expressed at high levels in some cancer cells.  Thus, the idea was to target the cancer cells 

with a nitrogen mustard that would be released by phosphamidase-mediated cleavage of the 

phosphorus-nitrogen bond (36, 37).  Although this designed targeting mechanism failed, the 

drug was still highly efficacious and it was ultimately proven to rely on the P450 system for 

activation of the prodrug (18). 

Studies revealed that CPA requires hydroxylation via a P450 at the 4! carbon to 

become activated, as shown in Figure 1.6 (38-40).  Once hydroxylated, 4!OH-CPA exists in 

equilibrium with the open ring form aldophosphamide.  These unstable precursors are freely 

transported in the blood and diffuse readily into cells.  Once in the cells, the 

aldophosphamide spontaneously decomposes via β-elimination to form phosphoramide 
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Figure 1.5 - Chemical Structures of the Oxazaphosphorines.  The 
top structure is cyclophosphamide and the bottom is ifosfamide.  
Ifosfamide  and cyclophosphamide differ only in the placement of one 
of the chloroethyl groups. 
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Figure 1.6 – Cyclophosphamide Metabolism.  The activation pathway for 
CPA is indicated vertically, with the ultimate cytotoxic compound being 
phosphoramide mustard.  The deactivation pathways are indicated horizontally.  
Abbreviation: ALDH – aldehyde dehydrogenase.  For a more detailed 
description of the metabolism see the text.  The figure is adapted from de Jonge 
et al., (40). 

CYP2B6 
CYP2C9 
CYP2C19 

CYP3A4 
CYP3A5 
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ALDH 

β - elimination 

Cyclophosphamide 

4!–Hydroxycyclophosphamide 
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Chloroacetaldehyde 

3-Dechloroethylcyclophosphamide 

CYP3A4 
CYP3A5 
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mustard and acrolein.   The phosphoramide mustard then alkylates DNA base pairs, 

specifically on the N-7 position of guanosine bases.  This modification arrests DNA 

replication which, when sensed by molecular mechanisms, signals for the initiation of 

apoptosis (18).  Without conversion to the 4! hydroxylated form, CPA is inactive.  Many 

P450s have been implicated in this crucial conversion, including CYP2B6, CYP2C9, 

CYP2C19, and CYP3A4/5 (41-44).  Work by Roy, et al. proved that CYP2B6 is the primary 

P450 responsible for cyclophosphamide activation (45).  The primary pathways for CPA 

metabolism are shown in Figure 1.6.   

CPA can also be dechloroethylated to form 2-dechloroethycyclophosphamide or 3-

dechloroethycyclophosphamide, and this pathway generally accounts for 10-20% of the CPA 

metabolism that occurs in humans (46).  In addition to implicating CYP2B6 as the P450 

most-responsible for activating CPA, Roy et al. also demonstrated that CYP3A4/5 is more 

likely to dechloroethylate CPA (45).  Both dechloroethylated products are known neurotoxic 

agents and should be monitored and CPA dosing adjusted to avoid certain toxicities 

associated with CPA treatment. Upon dechloroethylation, chloroacetaldehyde is also formed.  

This byproduct is known to cause nephrotoxicity.  To avoid these toxicities, it is 

advantageous to promote hydroxylation of CPA at the initial metabolic step thereby 

converting all of the drug to the active form (47).  Ludeman et al. have created several 

analogs of CPA in efforts to avoid dechloroethylation (47).   

CPA is most commonly deactivated by aldehyde dehydrogenase (ALDH) after its 

conversion to aldophosphamide (48).  The product, carboxyphosphamide, is the major 

metabolite found in urine (49).  Cells expressing low levels of ALDH are more sensitive to 

the cytotoxic effects of CPA, as the conversion to and subsequent clearing of 
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carboxyphosphamide cannot occur.  These cells include mature hematopoietic progenitors 

and lymphocyte subsets (50-52).  CPA is also eliminated via glutathione S-transferases, 

although high levels of these enzymes in vivo do not confer CPA resistance (53). 

Importantly, patient response to cyclophosphamide treatment is highly variable with 

regards to efficacy as well as toxicity.  For example, DNA adduct accumulation in pediatric 

patients undergoing CPA treatment revealed great differences in the number of adducts 

formed in apparently similar patient cohorts (54).  Additionally, numerous studies have 

demonstrated that tumor response cannot be predicted based on plasma levels of CPA (55-

59).  With regards to toxicity, the dose limiting toxic effect of CPA is cardiotoxicity.  CPA-

induced cardiotoxicity can be innocuous in some patients while it is fatal in others (60).  

Following high-dose CPA treatment 1-9% of patients will experience hemorrhagic necrotic 

perimycarditis, and 0.1% will experience fatal hemorrhagic myocarditis (60, 61).  

Additionally, 45% of patients receiving a low-dose CPA regimen will have transient cardiac 

toxicity (62).  In most instances, the patient variabilities coincide with circulating levels of 

activated CPA (4!OH-CPA and aldophosphamide) (63, 64).  Thus, furthering our knowledge 

of those factors that affect the activation and inactivation of CPA will aid in the 

understanding of CPA response variability.  This may ultimately lead to enhanced dosing 

regimens for CPA such that patients will experience more of the beneficial effects of CPA 

and none- or less of the toxic effects. 

Ifosfamide 

The oxazaphosphorine ifosfamide (IFO) is also commonly used in cancer 

chemotherapy.  Following the success of CPA, IFO was synthesized and introduced to 
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clinical practice in the early 1970s (65).  Structurally, the compounds differ only in the site of 

one of the chloroethyl groups (Figure 1.5).   

The metabolism of CPA and IFO is very similar.  IFO is a prodrug that also requires 

hydroxylation at the 4! carbon to become activated (Figure 1.7).  Once again, CYP2B6 and 

CYP3A4 are the primary P450s responsible for this conversion (44, 66).  Once converted to 

4!-hydroxyifosfamide, the metabolite will exist in equilibrium with the open ring form 

aldoifosfamide.  4!-Hydroxyifosfamide and aldoifosfamide are considered the activated 

forms of the drug and they are the main circulating metabolites that will enter cells.  Once 

inside the cell, aldoifosfamide will spontaneously decompose via β-elimination to form 

ifosforamide mustard and acrolein.  Ifosforamide mustard is the cytotoxic agent that alkylates 

DNA at the N-7 positions of guanosine.  Once the DNA is alkylated, DNA synthesis will be 

arrested and apoptosis will occur.  See Figure 1.7 for the proposed pathways for the 

metabolism of IFO. 

IFO can be dechloroethylated more readily than CPA.  Approximately 25-60%, 

depending on the patient, of IFO is converted to either 3-dechloroethylifosfamide or 2-

dechloroethylifosfamide and the byproduct chloroacetaldehyde (as compared with 10-20% of 

CPA) (39, 67-69).  As with CPA, CYP3A4 is the predominant P450 responsible for this 

conversion (44, 45, 70). The dechloroethylation products, and the byproduct, 

chloroacetaldehyde, are known to cause neuro- and nephro-toxicities, respectively (41).   
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Figure 1.7 – Ifosfamide Metabolism.  The activation pathway for IFO is 
indicated vertically, with the ultimate cytotoxic compound being ifosforamide 
mustard.  The deactivation pathways are indicated horizontally.  Abbreviation: 
ALDH – aldehyde dehydrogenase.  For a more detailed description of the 
metabolism see the text. The figure is adapted from de Jonge et al., (40). 
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As compared to CPA, IFO exhibits increased hematological toxicities, bladder 

toxicities, nephrotoxicities, and neurotoxicities (71).  In particular, IFO-induced toxicities are 

thought to be caused by the increased production of the chloroacetaldehyde byproduct (72-

74).  Moderate- to- severe nephrotoxicity is experienced in ~30% of IFO-treated patients (75, 

76).  Additionally, IFO is associated with life threatening arrhythmias, heart failure and 

severe encephalopathy (35).  These adverse events limit the use of IFO, especially in 

pediatric patients (35).     

IFO has proven to be more effective than CPA in a wide range of malignant diseases 

(77-99).  The increased efficacy is attributed to the higher affinity of ifosforamide mustard 

than phosphoramide mustard for DNA.  The two chloroethyl groups of ifosforamide mustard 

place these alkylating moieties in a different orientation and range for cross-linking DNA, 

resulting in increased cross-linking (100, 101).  However, as indicated above, IFO use is 

limited due to the significant increases in its associated toxicities.   

Scope of Thesis  

Although CPA and IFO have been used clinically for over 50 years and have 

contributed greatly to the effective treatment of many thousands of patients with a variety of 

tumors, the significant patient-to-patient variation in efficacy and toxicity persists (35).  As 

mentioned previously, the polymorphic variants of the P450s are known to affect the 

catalytic activities of the enzymes as well as the expression levels of the enzymes.  Given 

that CPA and IFO rely on P450s for the metabolic activation as well as inactivation, it is 

critical to understand the effects of P450 polymorphisms on the metabolism of these two 
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drugs.  Further improvement of our knowledge about the activation of CPA and IFO may 

result in improved therapeutic dosing and fewer toxicities for patients. 
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CHAPTER 2 
 
 
 

METABOLIC ACTIVATION AND INACTIVATION OF CYCLOPHOSPHAMIDE 
BY THE HUMAN CYTOCHROME P450S AND SOME COMMONLY OCCURRING 

CYTOCHROME P450 POLYMORPHIC VARIANTS 
 

 

Introduction 

CPA is commonly used in the treatment of breast and other cancers.  In spite of its 

widespread use, there is still much to elucidate with regards to its metabolism.  CPA is 

converted metabolically to both activated and inactivated forms by the P450s (1).  The 

balance of these two pathways is critical for the efficacy and the associated-toxicities of 

CPA.  Significant variations in exposure to the metabolites of either or both pathways may 

account for the large interpatient discrepancies often observed with CPA treatment.   

CPA is a prodrug that is bioactivated by hydroxylation at the 4! carbon.  The 

activation is catalyzed by a number of human P450s including CYP2B6, CYP2C9, 

CYP2C19, CYP3A4, and CYP3A5 (2-6).  CYP2B6 is the primary P450 responsible for 

metabolic activation in HLM (7).  Following hydroxylation on the 4! carbon, the product 

undergoes a series of spontaneous events to produce phosphoramide mustard, which is the 

active form of the drug.  The mechanism for CPA activation is shown in Figure 1.6.  
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CPA can also be inactivated via P450-mediated dechloroethylation of either or both 

of the chloroethyl groups.  Of the human P450s, CYP3A4/5 are the most likely to catalyze 

this reaction (8).  This pathway accounts for ~20% of CPA metabolism that occurs in humans 

(1, 4, 9).  Dechloroethylation produces chloroacetaldehyde (CAA) and either 2-

dechloroethycyclophosphamide or 3-dechloroethycyclophosphamide (Figure 1.6). The 

dechloroethylated products are potent neurotoxic agents and CAA causes nephrotoxicity, 

which can be dose limiting in some patients (3, 10-12).  To enhance CPA efficacy and 

minimize these toxicities, it is advantageous to avoid dechloroethylation and promote 

hydroxylation of CPA.   

A hallmark of CPA treatment is variable interpatient response.  For example, 

pediatric patients undergoing CPA treatment exhibit differing amounts of DNA adduct 

accumulation, and numerous studies have demonstrated that tumor response cannot be 

predicted based only on CPA plasma levels (13-18).  Additionally, cardiotoxicity is not 

observed in some patients, yet is fatal in others (19).  Following high-dose CPA treatment, 1 

to 9% of patients will experience hemorrhagic necrotic perimycarditis and 0.1% will 

experience fatal hemorrhagic myocarditis (19, 20).  Additionally, 45% of patients receiving 

low-dose CPA will experience transient cardiac toxicity (21).  In most cases the incidence of 

toxicities in patients correlates with the circulating levels of activated CPA metabolites (22, 

23).  The elucidation of those factors affecting CPA metabolism may aid our understanding 

of the variability in CPA response and have the potential to enhance CPA dosing regimens 

such that patients will experience increases in the beneficial effects of CPA and the toxic 

effects will be reduced. 
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The P450 polymorphic variants have been shown to exhibit different metabolic 

properties than the wild type enzymes (24-29).  Thus, interpatient variabilities in CPA 

response may be due in part to altered CPA metabolism by the P450 polymorphic variants.  

Carriers of the CYP2B6.4 or CYP2B6.6 alleles have been found to be more sensitive to CPA-

induced toxicities (30-32).  Also, carriers of the CYP2B6.5 allele exhibit poorer responses to 

CPA treatment (33, 34).  Using the purified reconstituted system, Raccor et al. observed 

differences in CPA activation by CYP2B6 polymorphic variants, but concluded that overall 

the variants did not exhibit significantly altered activation kinetics (35).  However, they did 

not investigate the inactivation pathway for CPA.  This is important since the P450 

polymorphic variants may exhibit altered rates for CPA inactivation that could result in 

increased circulating levels of the toxic metabolites.   

For these studies, we utilized the reconstituted system to determine the relative 

efficiencies for the activation and inactivation of CPA by those P450s thought to be 

important in its metabolism.  We also investigated the differences in CPA activation and 

inactivation by the polymorphic variants; CYP2B6 (CYP2B6*4-*9) and CYP2C9 

(CYP2C9*2, *3).  Finally, we investigated the effect of P450 inhibition on the balance of the 

pathways in HLM.  Our ultimate goal was to examine the possibility of modulating CPA 

metabolism using clinically relevant FDA-approved drugs known to be specific inhibitors of 

the primary P450s involved in CPA metabolism 

 

Experimental Procedures 

Materials.  NADPH, catalase, CPA, L-α-dilauroyl-phosphocholine, L-α-dioleyl-sn-glycero-

3- phosphocholine, L-α-phosphatidylserine, acrolein, CAA, 3-aminophenol, and adenosine 
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were all purchased from Sigma Aldrich (St. Louis, MO).  Pooled HLM were purchased from 

BD Biosciences (San Jose, CA).  All other reagents were reagent grade chemicals purchased 

from standard sources. 

 

cDNA Expression and Purification of Human P450s, P450 Polymorphic Variants, and 

Rat Cytochrome P450 Reductase.  The polymorphic variants of CYP2B6 (CYP2B6*4 – 

CYP2B6*9) were constructed as previously described (24).  All wild type and polymorphic 

variants were overexpressed individually in E. coli C41 (DE3) cells and purified as reported 

previously (24).  All P450s were expressed as N-terminally truncated forms to increase the 

expression yields (36, 37).  Rat CPR was expressed and purified as previously described 

(38).  CYP3A5 was a gift from Dr. James Halpert (UCSD), and CYP2C9*2 and CYP2C9*3 

were gifts from Dr. Tim Tracy (University of Kentucky) (39-41).    

 

CPA Metabolism Assay.  Metabolism of CPA by the P450s was carried out in a 

reconstituted system.  The system consisted of P450 and CPR incubated at a 1:2 molar ratio 

for 30 min at 20°C.  Dilauroylphosphatidylcholine was absent from the reconstituted systems 

containing CYP2B6, CYP2C9, and CYP2C19 because it was not required for 

catalysis.  CYP3A4 and CYP3A5 require a mixture of L-α-dilauroyl-phosphocholine, L-α-

dioleyl-sn-glycero-3-phosphocholine, and L-α-phosphatidylserine (1:1:1) for function.  To 

accommodate this, 60 µg of this lipid mixture was added to the reconstitution mixture 

following mixing of the proteins and the system was incubated for 45 min at 4°C prior to use.  

The final reaction mixtures contained 0.5 µg of P450, 1 µg of CPR, 30 mM potassium 

phosphate (pH 7.4), 15 units of catalase, and 0-10 mM CPA in a total volume of 95 µL.  The 
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reaction mixtures were incubated at 37°C for 4 min then a 5 µL aliquot of NADPH (final 1 

mM) was added to initiate the reaction.  After a 15 min incubation at 37°C, the reactions 

were stopped by the addition of 40 µL of ice-cold 5.5% zinc sulfate, 40 µL of ice-cold 

saturated barium hydroxide, and 20 µL of ice-cold 0.01M HCl (42).  The samples were 

centrifuged for 10 min at 13,200 rpm and kept on ice prior to analysis for acrolein and CAA 

accumulation as described below.  The reaction conditions were optimized such that product 

formation was within the linear range for time and protein concentration of the reaction. 

  

CPA Metabolism by Human Liver Microsomes.  CPA metabolism by HLM was measured 

as described above, with the substitution of 0.2 mg/mL of HLM for the reconstituted protein 

mixture.  Additionally, the reaction mixture was incubated for 30 min at 37°C in order to 

increase product formation.  To inhibit specific P450s, 5 µM ketoconazole (CYP3A4/5 

inhibition) or 5 µM clopidogrel (CYP2B6 inhibition) was added to the reaction mixtures 

prior to initiating the reaction with NADPH.  

 

Quantification of Acrolein Formation.  In order to measure the formation of acrolein, 60 

µL of the reaction mixture was incubated with 40 µL of fluorescence reagent (30 mg 3-

aminophenol and 30 mg hydroxylamine HCl dissolved in 5 mL 1N HCl) for 25 min at 90°C 

to create the fluorescent product 7-hydroxyquinoline (42).  Using a Shimadzu HPLC system, 

the samples were separated on an Agilent C18 column.  The column was eluted isocratically 

with 20% methanol in 0.1% phosphoric acid at 0.5 mL/min.  Elution of 7-hydroxyquinoline 

occurred at 3.2 min as monitored fluorometrically at 350 nm (excitation) and 515 nm 

(emission).  The calibration curves for acrolein quantification were generated by incubation 
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of authentic acrolein in reaction mixtures containing no substrate or NADPH.  No differences 

were observed between the two standard preparations.  The standard curve was linear for the 

range of values analyzed (0-100 µM acrolein).  

 

Quantification of Chloroacetaldehyde Formation.  To determine the amount of CAA 

formed, 60 µL of the reaction mixture was incubated with 10 µL of 100 mM adenosine in 

0.25 N HCl and 10 µL of 2 M sodium acetate (pH 4.5) for 2.5 hours at 80°C.  This produced 

the fluorescent product, 1-N-ethenoadenosine (42).  The derivatized sample was analyzed 

using an Agilent C18 column with a mobile phase of 20% methanol in water.  The product 

eluted at 13.2 min and was monitored for fluorescence by excitation at 270 nm and emission 

at 411 nm.  The calibration curves for quantification of CAA were generated by incubating 

authentic standards of CAA in reaction mixtures containing no substrate or NADPH.  The 

standard curve was linear over the range of 0-150 µM. 

 

Data Analysis.  Data were analyzed using GraphPad Prism software (GraphPad Software, 

Inc.).  The parameters for enzyme kinetics were determined using non-linear regression 

analysis, specifically Michaelis-Menten analysis in GraphPad Prism.  Statistical significance 

was determined using an unpaired t-test in GraphPad Prism (P value ≤ 0.05).  Data were 

obtained in triplicate for each point, except where otherwise noted. 

 

Results 

Metabolic Activation of Cyclophosphamide by the Human Wild Type P450s.  The ability 

of individual P450s to metabolize CPA via the activation pathway was assessed using the 
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reconstituted P450 system.  Acrolein was used as the marker to assess activation of CPA 

since it is produced in a 1:1 ratio with respect to the initial 4! hydroxylated product (1).  

P450s CYP2B6 and CYP2C19 were the only P450s tested to show substantial activity in this 

pathway (Figure 2.1, A).  Wild type CYP2B6 exhibited a Km of 0.6 mM and a Vmax of 22.8 

pmol/min/pmol P450.  The efficiency of the enzyme for this reaction was calculated as 

Vmax/Km, and was 38 min-1mM-1 for CYP2B6.  CYP2C19 exhibited a lower Vmax value and a 

higher Km, equating to a lesser efficiency (3.2 min-1mM-1) for the conversion of CPA to 

acrolein when compared with CYP2B6.  Although CYP2C9, CYP3A4, and CYP3A5 have 

all been reported to catalyze this pathway, they showed very little activity in this study (8).  

All of the experimentally determined Km and Vmax values are shown in Table 2.1.  As can be 

seen, the efficiencies of the P450s were: CYP2B6>CYP2C19>CYP3A4≥CYP3A5>CYP2C9. 

 

Inactivation of Cyclophosphamide by the Human Wild Type P450s.  The wild type 

P450s were assessed for their ability to metabolize CPA to CAA as a measure of CPA 

inactivation.  CAA was used to quantitate metabolism via this pathway since it is formed in 

equimolar amounts with the pharmacologically inactive dechloroethylcyclophosphamide 

(43).  Only CYP3A4 was capable of significantly catalyzing CAA formation (Figure 2.1, B).  

The Km and Vmax values for this reaction were 0.04 mM and 0.3 pmol/min/pmol P450, 

respectively.  Surprisingly, the closely related CYP3A5 did not catalyze CAA formation.  

Additionally, none of the other P450s (CYP2B6, CYP2C9, and CYP2C19) that we 

investigated produced measureable amounts of CAA.  The data are summarized in Table 2.1. 
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Figure 2.1 - The steady-state activities of the human wild type 
P450s for the metabolism of CPA.  CPA (0.1 – 10 mM)  was 
incubated in the reconstituted system containing 1 µM of each of the 
P450s for 15 min at 37°C.   Half of each sample was analyzed for the 
metabolite acrolein to determine the activation kinetics of CPA (A).  
The other half of each sample was used to measure CAA to determine 
the inactivation kinetics of CPA by each of the P450s (B).  Shown are 
the nonlinear fits determined using the Michaelis-Menten equation with 
Prism 6 (GraphPad Software, Inc.) for each of the P450s.  

(A) 

(B) 



Table 2.1 - Determination of the Km and Vmax values for the activation and inactivation of CPA by the human wild type P450s.  
The Km and Vmax values were obtained by fitting the data shown in Figure 2 to the Michaelis-Menten equation as described under 
Materials and Methods.  The reported values are averages that were determined from experiments performed in triplicate. 
 

 

P450 

Activation of CPA 
(Metabolite, Acrolein) 

 Inactivation of CPA  
(Metabolite, CAA) 

Vmax
a Km

a Vmax/Km  Vmax
a Km

a Vmax/Km 

 pmol/min/pmol P450 mM min-1mM-1  pmol/min/pmol P450 mM min-1mM-1 

CYP2B6 22.8 ± 1.5 0.6 ± 0.1 38  no CAA observed 0 

CYP2C9 0.2 ± 0.2 0.5 ± 0.1 0.4  no CAA observed 0 

CYP2C19 8.2 ± 0.7 2.6 ± 0.6 3.2  no CAA observed 0 

CYP3A4 0.3 ± 0.1 0.3 ± 0.1 1  0.3 ± 0.04 0.04 ± 0.03 7.5 

CYP3A5 0.4 ± 0.04 0.04 ± 0.04 1  no CAA observed 0 
 a Mean ± S.E.M 
              
    

39
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The Metabolic Activation of Cyclophosphamide by the Polymorphic Variants of 

CYP2B6 and CYP2C9.  In order to ascertain potential differences in the activation of CPA 

by some commonly expressed polymorphic variants of the human P450s, CYP2B6*4-

CYP2B6*9, CYP2C9*2, and CYP2C9*3 were analyzed for the ability to catalyze acrolein 

formation.  Each of the polymorphisms were assayed in the presence of 0.1 and 1 mM CPA, 

both of which are within the range of circulating plasma levels of CPA observed in patients 

(0.1-0.7 mM) (19, 23).  Only the 1 mM CPA data are shown, although the trends were the 

same in both data sets.  The averages (calculated from triplicate samples) of the total amount 

of acrolein formed for each polymorphism and the percentage of acrolein produced for each 

polymorphism as compared to the total acrolein produced by the wild type are presented 

(Table 2.2).  CYP2B6*1 produced the most acrolein.  CYP2B6*7 and CYP2B6*9 produced 

slightly less than half the acrolein produced by the wild type CYP2B6 at 1 mM CPA.  All of 

the other variants tested produced significantly less acrolein than the wild type CYP2B6.  

The polymorphic variants of CYP2C9 did not exhibit any significant activity for the 

activation of CPA.   

 

Inactivation of Cyclophosphamide by the Polymorphic Variants of CYP2B6 and 

CYP2C9.  The amount of the inactive metabolite produced by the variants was also 

measured following incubation with 0.1 and 1 mM CPA.  Only the data for 1 mM CPA are 

shown (Table 2.2).  None of the polymorphic forms of CYP2B6 or CYP2C9 produced 

significant amounts of CAA.   
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Table 2.2 - Metabolism of CPA by commonly expressed polymorphic variants of 
CYP2B6 and CYP2C9.  That data are expressed as metabolite formation in pmol/min/pmol 
P450, and percent of metabolite produced compared with the amount of metabolite produced 
by the wild type P450.  The data were determined in triplicate, with the exception of 
CYP2B6*5 which was performed in duplicate. Statistical significance was determined using 
the unpaired t-test in Prism 6 (GraphPad Inc.). 
 
 

P450 

 Activation of CPA 
(Metabolite, Acrolein)  Inactivation of CPA 

(Metabolite, CAA) 

Acrolein 
Formeda 

Percentage of 
Wild Type 

Acrolein Formed 
 CAA Formeda 

Percentage of 
Wild Type 

CAA Formed 

 pmol/min/pmol 
P450 %  pmol/min/pmol 

P450 % 

CYP2B6*1 15.3 ± 3.0 100  0.01 ± 0.01 100 

CYP2B6*4 0.51 ± 0.1* 3.3  0.04 ± 0.02 400 

CYP2B6*5 1.8 ± 0.2* 11.7  0.0 ± 0.0 0 

CYP2B6*6 0.3 ± 0.1* 2.0  0.0 ± 0.0 0 

CYP2B6*7 7.1 ± 0.8 46.4  0.03 ± 0.03 300 

CYP2B6*8 0.0 ± 0.0* 0.0  0.0 ± 0.0 0 

CYP2B6*9 6.0 ± 0.3 39.2  0.02 ± 0.02 200 

CYP2C9*1 0.1 ± 0.1 100  0.0 ± 0.0 N.A. 

CYP2C9*2 0.06 ± 0.03 60.0  0.0 ± 0.0 N.A. 

CYP2C9*3 0.0 ± 0.01 0.0  0.0 ± 0.0 N.A. 

* P <0.05 
a Mean ± S.E.M. 
N.A. no CAA was detected with wild type CYP2C9, therefore the percentage of wild type 
metabolite formed could not be calculated. 
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Cyclophosphamide Metabolism by Human Liver Microsomes with Inhibition of 

Specific P450s.  Using pooled HLM, the activation and inactivation of CPA were measured 

at concentrations of 0.1, 1.0, and 10.0 mM CPA (Figure 2.2).  These concentrations were 

chosen to reflect the range of CPA concentrations observed in the plasma of human patients 

(0.1-0.7 mM), as well as the potentially more concentrated levels of the drug that may occur 

in tissues and cells (19, 23).  In the presence of the vehicle control, dose dependent increases 

in the formation of both acrolein and CAA were observed, as expected (Figure 2.2).  

Acrolein production was between 5 to 30-fold higher than CAA production for each of the 

CPA concentrations tested (Table 2.3).   

Ketoconazole (5 µM) was added to HLM to inhibit CYP3A4 and the two primary 

routes for the metabolism of CPA were measured.  Inhibition of CYP3A4 resulted in a 

significant decrease in the production of acrolein for all of the CPA concentrations tested 

(55.6-62.2% inhibition) (Figure 2.2, A and Table 2.3).  In the presence of ketoconazole, the 

inactivation of CPA was inhibited significantly and the production of the toxic metabolite 

CAA was eliminated or nearly-eliminated (67.7-100.0% inhibition) at all concentrations 

(Figure 2.2, B and Table 2.3).  

Clopidogrel (5 µM) was used to inhibit the CYP2B6 activity in HLM.  Clopidogrel 

treatment resulted in a significant reduction of the activation of CPA.  At 10 mM CPA, 

acrolein production was inhibited 80% (Table 2.3).  CYP2B6 inhibition did not affect CAA 

production at 0.1 or 1 mM CPA (Figure 2.2, B).  Surprisingly at 10 mM CPA, the production 

of CAA was not inhibited, but actually increased more than 2-fold (Table 2.3).  
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Figure 2.2 - Metabolism of CPA in HLM with P450 inhibition.  
The production of acrolein (A) or the inactive metabolite CAA (B) 
was determined at 0.1, 1.0, and 10.0 mM CPA in the presence of 
vehicle, 5 µM ketoconazole, or 5 µM clopidogrel.  The experiments 
were performed in duplicate, and statistical significance was 
determined using an unpaired t-test in Prism 6 (GraphPad Software, 
Inc.), * P <0.05; ** P <0.01. 
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Table 2.3 - Summary of CPA metabolism by HLM in the presence of P450 inhibitors.  The total amounts of acrolein or CAA 
produced by each of the experimental conditions are shown.  Additionally, the percent inhibition for each of the metabolites in the 
ketoconazole-treated and clopidogrel-treated samples has been calculated.  Note that the formation of CAA in the clopidogrel-treated 
samples increased.  Statistical significance was determined using the unpaired t-test (P value = 0.05) in Prism 6 (GraphPad Inc.). 
 
 

 Vehicle Treated  5 µM Ketoconazole Treated  5 µM Clopidogrel Treated 

 
Acrolein 

Formeda 

CAA 

Formeda 

 Acrolein 

Formeda 
Inhib CAA Formeda Inhib 

 Acrolein 

Formeda 
Inhib 

CAA 

Formeda 
Inhibb 

CPA 
(mM) 

pmol/min/pmol 
P450 

pmol/min/pmol 
P450 

 pmol/min/pmol 
P450 % pmol/min/pmol 

P450 % 
 pmol/min/pmol 

P450 % pmol/min/pmol 
P450 % 

0.1 0.16 ± 0.02 0.03 ± 0.02  0.07 ± 0.01** 56.3 0.01 ± 0.004 66.7  0.08 ± 0.02 50.0 0.05 ± 0.01 -66.7 

1.0 0.45 ± 0.04 0.03 ± 0.02  0.17 ± 0.01** 62.2 0.002 ± 0.002** 93.3  0.1 ± 0.03** 77.8 0.07 ± 0.01 -133.3 

10 1.8 ± 0.2 0.06 ± 0.01  0.80 ± 0.1** 55.6 0.0 ± 0.0* 100.0  0.36 ± 0.07** 80.0 0.15 ± 0.03 -150.0 

* P <0.05; ** P <0.01 
a Mean ± S.E.M.; b - indicates stimulation of product formation 
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Discussion 

In these studies, we have investigated in detail the metabolism of CPA using the 

purified reconstituted P450 system.  We have examined the five human P450s which have 

been previously reported to activate CPA via 4-hydroxylation as well as inactivate CPA via 

N-dechloroethylation (16).  We also assessed these pathways with eight polymorphic variants 

(six variants of CYP2B6 and two of CYP2C9) to more fully characterize and elucidate 

potential differences in metabolism.  To our knowledge, this is the most comprehensive 

evaluation of both the activation and inactivation pathways for CPA metabolism by human 

P450s.  We have also measured the formation of the two predominant CPA metabolites by 

HLM and following inhibition of the specific P450s.  These studies are the first to evaluate 

both the activation and inactivation pathways using drugs that are known P450 inhibitors. 

These results demonstrate that CYP2B6 and CYP2C19 are the most efficient P450s 

tested for the activation of CPA.  The Km value observed for CYP2B6 (0.6 ± 0.1 mM) is 

slightly less than literature reports from supersomes (1.4 – 1.9 mM) and purified protein (3.6 

mM) which may be due to our reaction conditions which were not identical to those used in 

previous studies (3, 8, 32, 35, 44).   Our studies demonstrate that CYP2C19 is ~10-fold less 

efficient than CYP2B6, yet it is more efficient at activation than the other P450s tested.  

CYP2C19 expression in human liver is generally low, which suggests that its role in the 

activation of CPA may be minor (45).  This is supported by a recent study using pooled HLM 

which revealed that inhibition of CYP2C19 (by (+)-N-3-benzylnirvanol) did not lead to a 

significant decrease in the activation of CPA (35).  Yet, carriers of the non-functional 

CYP2C19.2 allele had significantly reduced elimination of CPA, implicating CYP2C19 as 

being involved in CPA metabolism in some way (46, 47).  Given the relatively high catalytic 
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efficiency of CYP2C19, it may be crucial under circumstances of inhibition of the other 

P450s involved in CPA metabolism or expression changes in the P450 profile, both of which 

commonly may occur in humans.  The other P450s (CYP2C9, CYP3A4, and CYP3A5) were 

significantly less efficient at hydroxylating CPA in our reconstituted system (each of their 

efficiencies were ≤1).  Our studies as well as others have demonstrated that CYP3A4 is 

responsible for at least 50% of CPA activation (3, 8, 35).  This is most likely a result of the 

much higher expression level of CYP3A4 than CYP2B6 (45).  The greatly increased amount 

of CYP3A4 compensates for the relatively low catalytic ability associated with the enzyme 

for this reaction.  In addition, it is possible that other components in the previously used 

systems (HLM and rats), which are not present in our reconstituted system, may aid CYP3A4 

in this reaction.  The relatively low efficiency of CYP2C9 for CPA activation that we 

obtained supports the developing view that CYP2C9 contributions to CPA activation are 

minor and may be dependent on the relative concentrations of b5 and CPR (2, 8, 35, 48).  

In coordinated studies, the P450s were evaluated for the inactivation of CPA.  The 

inactive and toxic metabolites of CPA are substantially and variably produced in cancer 

patients (49).  Only CYP2B6 and CYP3A4 have been previously tested for this reaction, thus 

we examined additional P450s that may also contribute to the elevation of CAA in humans.  

Our results confirm that only CYP3A4 catalyzes the CPA inactivation (43, 50).  Furthermore, 

we observed that CYP3A4 is more efficient for this pathway (Vmax/Km = 7.5 min-1mM-1) than 

the activation pathway (Vmax/Km = 1 min-1mM-1).  The reason for this is unknown and 

modeling the binding of CPA into CYP3A4 and other P450s did not provide significant 

structural insights that would have explained the preferred metabolic pathway of CYP3A4 

(models not shown).  None of the other P450s tested catalyzed the inactivation of CPA.   
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The polymorphic variants of CYP2B6 and CYP2C9 are known to exhibit altered 

catalytic activities for various substrates (24, 27-29). All of the tested CYP2B6 

polymorphisms exhibited attenuated activation for CPA compared with wild type.  The most 

common variants in the population, CYP2B6*4 and CYP2B6*6 (both have ~30% occurrence 

in some populations) exhibited very low levels of metabolism, only 2-3% of the total 

activation that is observed with wild type (51-55).  The less common variants, CYP2B6*7 

and CYP2B6*9 produced half of the acrolein that CYP2B6*1 produced (55-57).  This 

suggests that carriers of these allelic variants may exhibit decreased CPA activation.  

Furthermore, it has been demonstrated that many of the polymorphic variants have lower 

expression levels than wild-type CYP2B6, which may significantly decrease CPA activation 

in vivo even more (51, 58, 59).  Clinical studies with regards to CYP2B6 genotype and the 

therapeutic outcome of CPA are confounding (60).  Nakajima, et al. found no association 

between CPA activation and CYP2B6.6 and CYP2B6.9 expression in patients.  (61).  Yet, in 

another study, heterozygous carriers of both of these alleles had elevated circulating levels of 

activated CPA (30).  The discrepancy between these studies may be due to several factors 

including: participant number, CPA dose, or concurrent treatments of the patients with other 

drugs.  In other work, CYP2B6.2 and CYP2B6.5 carriers had higher incidences of CPA 

associated toxicities and the CYP2B6.2, CYP2B6.4, CYP2B6.8, and CYP2B6.9 alleles were 

associated with lowered overall survival of patients post-CPA treatment (34).  Yet, multiple 

studies have failed to find a correlation between CYP2B6 genotype and therapeutic outcome 

following treatment with CPA (46, 62).  The lack of CYP2B6 genotype effect on CPA 

pharmacokinetics is most likely due to the contributions of other P450s, such as CYP3A4, 

with regards to activation of CPA.   
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This study provides the first information on the inactivation of CPA by the 

polymorphic variants of CYP2B6 and CYP2C9.  CYP2B6*4, CYP2B6*7, and CYP2B6*9 

produced CAA (2 to 3-fold more than CYP2B6*1), albeit only 10% of the total CAA 

produced by CYP3A4 at the same CPA concentration.  This indicates that the wild type, as 

well as the polymorphic variants of CYP2B6 and CYP2C9, do not greatly contribute to the 

production of the toxic metabolite CAA from CPA.   

Given that CYP3A4-catalyzed metabolism of CPA results in significant CPA 

inactivation and production of toxic metabolites, we investigated CYP3A4 inhibition in 

pooled HLM to determine whether we could reduce the inactivation and enhance the 

activation of CPA.  Ketoconazole-mediated inhibition of CYP3A4 in HLMs resulted in a 

near-complete loss of CPA inactivation and an ~50% reduction in CPA activation.  Thus, 

CYP3A4 inhibition, although not totally beneficial in these studies, should not be ruled out as 

a potential method to maximize CPA’s effectiveness and reduce its associated toxicities.  

Additional studies testing other CYP3A4 inhibitors or various concentrations of ketoconazole 

are planned, and may reveal a critical point in the balance of the two pathways that can be 

exploited for therapeutic purposes. With inhibition of CYP2B6, we observed a 50-80% 

reduction of CPA activation, similar to previous results in the literature (4, 9, 35).  

Interestingly, the inhibition of CYP2B6 by clopidogrel at a higher dose of CPA (10 mM) 

resulted in a >2-fold increase in CPA inactivation.  This is most likely due to increased 

metabolism of CPA by CYP3A4 in the absence of CYP2B6 catalytic activity, thus 

underscoring the importance of CYP2B6-mediated metabolism of CPA for not only the 

metabolic activation but also for protecting against toxicity. 
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In summary, we have demonstrated that CYP2B6 and CYP2C19 are the most 

efficient enzymes for activation of CPA in vitro.  We also determined that CYP3A4, while 

not kinetically efficient at this reaction, contributes to ~50% of the metabolism in HLM 

presumably due to the fact that CYP3A4 is expressed in significantly greater quantities than 

the other P450s in the liver.  Importantly, we showed that all of the CYP2B6 polymorphisms 

exhibited reduced ability to activate CPA as compared to wild type and that none of the 

polymorphisms exhibited significantly altered amounts of CPA inactivation.  This suggests 

that determining P450 genotypes in patients may prove to be very helpful to gain a full 

comprehension of the patients’ response to CPA.  Finally, we showed that manipulation of 

the two primary routes for CPA metabolism is possible through inhibition of the P450s in 

HLM.  This warrants further exploration as it may be advantageous to favor CYP2B6-

mediated CPA metabolism in patients by inhibiting CYP3A4 or inducing CYP2B6 activity.     
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CHAPTER 3 

HYDROXYLATION AND N-DECHLOROETHYLATION OF IFOSFAMIDE AND 
DEUTERATED IFOSFAMIDE BY THE CYTOCHROME P450S AND THEIR 

COMMON POLYMORPHIC VARIANTS 
 

 

Introduction 

Ifosfamide (IFO) is a DNA alkylating agent used in cancer chemotherapeutic 

regimens.  It is the structural isomer of the more commonly used anti-neoplastic and 

immunosuppressive agent, cyclophosphamide (CPA) (1).  Toxicities associated with IFO 

treatment limit its use, even though the drug has proven more effective than CPA in a wide 

range of malignant diseases (2-7).  IFO-induced toxicities include moderate-to-severe 

nephrotoxicity, which occurs in ~30% of the patient population, and neurotoxicities, which 

occur in ~20% of the patient population (8-10).  IFO treatment is also associated with life-

threatening arrhythmias, heart failure and severe encephalopathy (1).  IFO-associated 

toxicities are related to the metabolism of the drug; therefore, improving our knowledge of 

IFO metabolism may aid patient treatment and expand the use of IFO to a broader range of 

disease states and patient populations. 
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IFO is a prodrug which is activated via hydroxylation by cytochrome P450s (P450s) 

on the 4! carbon (11).  CYP2B6, CYP3A4, and CYP3A5 are the primary P450s responsible 

for the activation of IFO.  However, CYP2C9 and CYP2C19 may also play a role (12, 13).  

After hydroxylation, IFO undergoes a series of spontaneous events to produce the active 

metabolite, ifosfamide mustard and equimolar amounts of acrolein (Figure 1.7).  In addition, 

IFO may be N-dechloroethylated by CYP2B6, CYP3A4, and CYP3A5 (12, 13), leading to 

the inactivation of IFO and formation of the nephro- and neurotoxic metabolites, 2-

dechloroethylifosfamide or 3-dechloroethylifosfamide and equimolar amounts of 

chloroacetaldehyde (CAA) (See Figure 1.7 to clarify 2-dechloroethylifosfamide versus 3-

dechloroethylifosfamide).  Figure 1.7 depicts the proposed mechanism for IFO metabolism.  

It is estimated that 25-60% of IFO is N-dechloroethylated in humans whereas only 10% of 

CPA undergoes this reaction (14-16).  It has been suggested that elevated circulating levels 

of CAA in IFO-treated patients are responsible for the development of IFO-specific 

nephrotoxicity (17-19).  Yet, in vitro studies have demonstrated that the minimum toxic 

concentration of CAA is 500 µM, which is well above the circulating levels of CAA in IFO-

treated patients (0.5 – 109 µM) (18, 20-22).  Thus, organ-specific toxicities are likely due to 

N-dechloroethylation of IFO at the organ of interest, which would increase local tissue 

concentrations of CAA to potentially toxic levels (10, 17).  Tissue expression of the P450s is 

highly variable; for instance, in the kidney CYP3A5 is highly expressed, while CYP3A4 is 

not (23-25).  Therefore, CYP3A5 has been suggested to play a more prominent role than 

other P450s in IFO-induced nephrotoxicity.  Our studies have focused on characterizing the 

catalytic abilities of the P450s to ascertain the likelihood of specific P450 involvement in 

IFO metabolism. 
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Several studies suggest that CAA is primarily responsible for IFO-induced toxicities 

(18, 19).  Therefore, suppression of CAA formation by favoring hydroxylation over N-

dechloroethylation of IFO may improve efficacy and reduce adverse events.  Previously this 

approach has been referred to as “metabolic switching” (26).  In this report, we have 

examined the ability to initiate metabolic switching of IFO.  The metabolism of deuterated 

IFO (d4IFO) was compared with the metabolism of IFO in vitro (Figure 3.1).  We 

demonstrated that deuteration of IFO resulted in enhanced hydroxylation and reduced N-

dechloroethylation for all of the P450s tested (CYP2B6, CYP2C9, CYP2C19, and CYP3A4).  

Although the differences between d4IFO metabolism and IFO metabolism were moderate, a 

trend towards metabolic switching is apparent.  In order to thoroughly characterize IFO and 

d4IFO metabolism, the polymorphic variants of CYP2B6 (CYP2B6*4, CYP2B6*6-*9) and 

CYP2C9 (CYP2C9*2 and CYP2C9*3) were assessed for hydroxylation and N-

dechloroethylation of IFO and d4IFO.  These studies revealed differences in the catalytic 

rates of the polymorphic variants for both pathways and for both IFO and d4IFO.  In brief, 

CYP2B6*4 and CYP2B6*6 exhibit decreased activation and inactivation for the drugs while 

CYP2B6*7 and CYP2B6*9 exhibit increased activation and inactivation as compared to the 

wild type enzyme.  d4IFO was more readily activated by the variants than IFO without being 

inactivated (d4IFO inactivation was only observed with wild type CYP2B6).  The differences 

observed for the CYP2C9 variants were very small.  These findings may relate to patient 

outcomes with IFO treatment, since CYP2B6 is largely responsible for the inactivation of 

IFO in vivo (27). 
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D

D

Figure 3.1 - Chemical structure of deuterated-IFO.  
IFO was synthesized with deuterium in the indicated 
positions.  N-dechloroethylation of d4IFO by the P450s 
should be inhibited as compared to N-dechloroethylation 
of IFO and therefore, the hydroxylation of d4IFO at the 
4!" position by the P450s is enhanced.  
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Experimental Procedures 

Materials.  NADPH, catalase, IFO, L-α-dilauroyl-phosphocholine, L-α-dioleyl-sn-glycero-3- 

phosphocholine, L-α-phosphatidylserine, acrolein, CAA, 3-aminophenol, and adenosine were 

all purchased from Sigma Aldrich (St. Louis, MO).  Pooled HLM were purchased from BD 

Biosciences (San Jose, CA).  d4IFO was a gift from Dr. Susan Ludeman (Albany College of 

Pharmacy and Health Sciences) and Dr. M Eileen Dolan (University of Chicago).  All other 

reagents were reagent grade and purchased from commercial sources. 

cDNA expression and purification of Human P450s, P450 Polymorphic Variants, and 

Rat Cytochrome P450 Reductase.  Polymorphic variants of CYP2B6 (CYP2B6*4, 

CYP2B6*6– CYP2B6*9) were over-expressed in E. coli C41 (DE3) cells as described 

previously (28).  All P450s were expressed as their N-terminally truncated forms to increase 

the expression yield (29, 30).  Rat CPR was expressed and purified as previously described 

(31).  CYP3A5 was a gift from Dr. James Halpert (UCSD), and CYP2C9*2 and CYP2C9*3 

were gifts from Dr. Tim Tracy (University of Kentucky) (32-34).    

IFO and d4IFO Metabolism Assay.  The metabolism of IFO and d4IFO by the human 

P450s was carried out in a reconstituted system.  The reconstituted system consisting of P450 

and CPR at a 1:2 molar ratio was incubated for 30 min at 20°C.  

Dilauroylphosphatidylcholine was not used in the reconstituted systems containing CYP2B6, 

CYP2C9, and CYP2C19 because it was not required for catalysis (data not shown).  For the 

reactions catalyzed by CYP3A4 and CYP3A5, a mixture of L-α-dilauroyl-phosphocholine, 

L-α-dioleyl-sn-glycero-3-phosphocholine, and L-α-phosphatidylserine (1:1:1) were included 

in the reconstituted system for optimal activity.  For these studies, 60 µg of the lipid mixture 
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was added to the proteins and the combination was incubated for 45 min at 4°C prior to use.  

The final reaction mixtures contained 1 µM P450, 2 µM CPR, 30 mM potassium phosphate 

(pH 7.4), 15 units of catalase, and 0-5.0 mM IFO or d4IFO in a total volume of 95 µL.  The 

reaction mixtures were incubated at 37°C for 4 min followed by the addition of 5 µL of 

NADPH (final concentration of 1 mM) to initiate the reaction.  After incubation at 37°C for 

30 min, the reactions were terminated by the addition of 40 µL of ice-cold 5.5% zinc sulfate, 

40 µL of ice-cold saturated barium hydroxide, and 20 µL of ice-cold 0.01M HCl as reported 

previously (35).  The samples were centrifuged for 10 min at 13,200 rpm and kept on ice 

prior to derivatization and quantification by HPLC. 

 

IFO Metabolism by Pooled Human Liver Microsomes.  Metabolism of IFO by HLM was 

determined as described above with the substitution of 0.2 mg/mL of HLM for the 

reconstituted protein mixture.  To specifically inhibit CYP3A4, 5 µM ketoconazole was 

introduced to the reaction mixtures prior to initiating the reaction with NADPH.  Similarly, to 

inhibit CYP2B6, 5 µM clopidogrel was added to the reaction mixtures prior to initiating the 

reaction. 

 

HPLC Analysis of IFO Metabolites.  Acrolein was analyzed by HPLC; specifically 60 µL 

of the reaction mixture containing the acrolein product was incubated with 40 µL of 

fluorescence reagent (30 mg 3-aminophenol and 30 mg hydroxylamine HCl dissolved in 5 

mL 1N HCl) for 25 min at 90°C to form the fluorescent product 7-hydroxyquinoline.  The 

derivatized samples were then separated on an Agilent C18 column (Zorbax SB, 3.0 x 150 

mm, 5 µm, Agilent Technologies), using a Shimadzu HPLC system.  7-Hydroxyquinoline 
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was eluted isocratically with 20% methanol in 0.1% phosphoric acid at a flow rate of 0.5 

mL/min.  Elution of 7-hydroxyquinoline occurred at 3.2 min as monitored fluorometrically at 

515 nm with excitation of 350 nm (35).  Calibration curves for acrolein quantification were 

generated by incubation of acrolein standards in the reaction mixtures containing no substrate 

or NADPH.  The standard curve was linear in the range of 0-100 µM acrolein.  

To detect CAA, 60 µL of the reaction mixture was incubated with 10 µL of 100 mM 

adenosine in 0.25 N HCl and 10 µL of 2 M sodium acetate (pH 4.5) for 2.5 hours at 80°C.  

Under these conditions, CAA was derivatized to the fluorescent product, 1-N-

ethenoadenosine (35).  The derivatized sample was then resolved on an Agilent C18 column 

(Zorbax SB, 3.0 x 150 mm, 5 µM, Agilent Technologies) with a mobile phase of 20% 

methanol in water, eluted isocratically with a flow rate of 0.5 mL/min.  1-N-ethenoadenosine 

was monitored fluorometrically at 411 nm with excitation at 270 nm.  The derivatized 

product eluted at 12.7 min.  Calibration curves for CAA quantification were generated by 

incubation of CAA standards in reaction mixtures containing no substrate or NADPH.  The 

standard curve was linear from 0-150 µM CAA. 

 

Data Analysis.  Data were analyzed using GraphPad Prism software (GraphPad Software, 

Inc.).  The parameters for the enzyme kinetics were determined using non-linear regression 

analysis, specifically Michaelis-Menten analysis in GraphPad Prism.  Statistical significance 

was determined using an unpaired t-test in GraphPad Prism.  
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Results 

Metabolism of Ifosfamide and Deuterated Ifosfamide by Wild Type Human 

Cytochrome P450s. The capacity of the wild type P450s (CYP2B6, CYP2C9, CYP2C19, 

CYP4A4, and CYP3A5) to catalyze the activation of IFO and d4IFO was investigated in the 

purified reconstituted system.  Figure 3.2 demonstrates the kinetic data generated using 

CYP3A4.  Similar data were obtained for most of the other human P450s; these data are not 

shown, but they are summarized in Table 3.1.  Of the P450s tested, only CYP2C9 exhibited 

no activity for IFO metabolism.  Previous reports have indicated that CYP3A4 is the most 

efficient P450 for the activation of IFO (12, 13).  However our, results suggest that CYP3A4 

has moderate activity for this reaction (Vmax /Km  = 0.4 min-1mM-1) (Figure 3.2 and Table 

3.1).  CYP3A5 exhibited the highest catalytic efficiency for the activation of IFO (Vmax /Km  

= 2.5 min-1mM-1) although it had the lowest Vmax value (0.1 pmol/min/pmol P450).  

CYP2C19 was the next-most efficient P450 for the activation of IFO (Vmax /Km = 0.9 min-

1mM-1).  CYP2B6 exhibited the largest Vmax  (3.8 pmol/min/pmol P450), which is ~38-fold 

higher than that of CYP3A5. Similar kinetics were observed for d4IFO (Table 3.1 and Figure 

3.2).  Most notably, the Km for activation by CYP2B6 was lower for d4IFO than IFO, 

resulting in a more efficient reaction.  Similarly the Km of CYP3A4 for d4IFO activation was 

reduced by a factor of 3, resulting in a more efficient reaction as well. 
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Figure 3.2 - Steady state kinetics for the activation of IFO and 
d4IFO by CYP3A4.  IFO (blue) or d4IFO (red) (0.1 – 5.0 mM) was 
incubated in the reconstituted system containing 1 µM CYP3A4 for 30 
min at 37°C.  The details of the analytical methods are provided in the 
Materials and Methods. Shown are the nonlinear fits for the activation 
of the drugs determined using the Michaelis-Menten equation with 
Prism 6 (GraphPad Software, Inc.).  The Km and Vmax values for all of 
the P450s tested are summarized in Table 3.1. 
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Table 3.1 - Kinetic Parameters for the Metabolism of IFO and d4IFO by Several Human P450s.  The Km  and Vmax  values for 
CYP3A4 were obtained by fitting the data shown in Figure 3.2 to the Michaelis-Menten equation as described under Materials and 
Methods.  Similar data and fits were produced and the same analysis was performed for each of the P450s indicated in this table.  The 
reported values are averages that were determined from experiments performed in triplicate. 
 
 

P450 
Activation 

IFO  d4IFO 
Vmax a Km a Vmax/ Km  Vmax a Km a Vmax/ Km 

 pmol/min/pmol P450 mM min-1mM-1  pmol/min/pmol P450 mM min-1mM-1 
CYP2B6 3.8 ± 1 4.6 ± 2 0.8  4.1 ± 0.4 2.0 ± 0.4 2 
CYP2C9 no acrolein formed 0  no acrolein formed 0 
CYP2C19 1.0 ± 0.2 1.1 ± 0.6 0.9  1.0 ± 0.1 1.2 ± 0.4 0.8 
CYP3A4 0.7 ± 0.1 1.6 ± 0.6 0.4  0.4 ± 0.03 0.6 ± 0.12 0.7 
CYP3A5 0.1 ± 0.01 0.04 ± 0.03 2.5  not tested N/A 

P450 
Inactivation 

 IFO   d4IFO 
Vmax a Km a Vmax/ Km  Vmax a Km a Vmax/ Km 

 pmol/min/pmol P450 mM min-1mM-1  pmol/min/pmol P450 mM min-1mM-1 
CYP2B6 0.4 ± 0.04 2.0 ± 0.4 0.2  0.2 ± 0.05 2.0 ± 0.8 0.1 
CYP2C9 no CAA formed 0  no CAA formed 0 
CYP2C19 no CAA formed 0  no CAA formed 0 
CYP3A4 0.14 ± 0.03 3.5 ± 1.7 0.04  0.05 ± 0.02 1.7 ± 1.2 0.03 
CYP3A5 0.02 ± 0.005 0.4 ± 0.3 0.05  not tested N/A 

a Mean ± S.E.M. 
N/A, CYP3A5 was not assessed for d4IFO metabolism 
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The amount of inactivation of IFO and d4IFO by P450s was investigated in the same 

samples described above and evaluated for the production of the inactive metabolite CAA 

(Table 3.1).  CYP2C9 and CYP2C19 did not catalyze the inactivation of either IFO or 

d4IFO.  CYP2B6 was approximately 4-fold more efficient at the inactivation of IFO than any 

of the other P450s tested, and this held true for d4IFO as well (Table 3.1).  Interestingly, the 

Vmax values for the inactivation of d4IFO by CYP2B6 and CYP3A4 were reduced compared 

with IFO, resulting in reduced efficiency for inactivation of d4IFO compared to IFO for these 

P450s.  

Metabolism of Ifosfamide and Deuterated Ifosfamide by the Polymorphic Variants of 

CYP2B6 and CYP2C9.  The polymorphic variants of CYP2B6 and CYP2C9 were 

examined for the activation of IFO and d4IFO.  The polymorphic variants exhibited variable 

activation of IFO (Figure 3.3A).  CYP2B6*7 and CYP2B6*9 produced nearly 3-fold more 

acrolein than CYP2B6*1 at 1 mM IFO.  However, the common polymorphic variants 

CYP2B6*4 and CYP2B6*6 produced approximately half of the acrolein that wild type 

CYP2B6 produced.  With regards to the activation of d4IFO, the polymorphic variants 

followed a trend similar to that observed for the activation of IFO but consistently produced 

more of the activated metabolite from d4IFO than from IFO (Table 3.2).  For CYP2B6*1 and 

CYP2B6*7 this enhancement was statistically significant.  The variants of CYP2C9 

exhibited small variations in catalyzing IFO activation.  As with the CYP2B6 variants, the 

activation of d4IFO by CYP2C9*2 and CYP2C9*3 followed the same pattern of variation as 

for IFO but with significantly higher levels of activated metabolite produced (Table 3.2). 
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Figure 3.3 - Metabolism of IFO and d4IFO by the polymorphic 
variants of CYP2B6 and CYP2C9.  IFO (blue) or d4IFO (red) (1 mM) 
was incubated in the reconstituted system with 1 µM P450 for 30 min at 
37°C.  Half of each sample was analyzed for acrolein to determine the rate 
of activation of IFO for each of the polymorphic variants (A).  The other 
half of each sample was analyzed for CAA to determine the rate of 
inactivation of IFO for each of the polymorphic variants (B).  The details 
of the analytical methods are provided in the Materials and Methods.  The 
average for each experimental condition that was performed in triplicate is 
shown.  Statistical significance was determined using an unpaired t-test in 
Prism 6 (GraphPad Software, Inc.). † P <0.05; ††P <0.01; ††† P ,0.005 for 
comparisons within polymorphic variants; * P <0.05; ** P <0.01; *** P 
<0.005 for comparisons between IFO and d4IFO.  The data are 
summarized in Table 3.2. 
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Table 3.2 - The Metabolism of IFO and d4IFO by the Polymorphic Variants of CYP2B6 
and CYP2C9.  The data shown in Figure 3.4 are summarized here.  Data are expressed as 
metabolite formation in pmol/min/pmol P450, and the metabolite production compared to 
wild type metabolite production in terms of fold change.  Also, the percent increase or 
decrease of metabolite produced for d4IFO compared to IFO is given.  The data were 
determined in triplicate. Statistical significance was determined using the unpaired t-test in 
Prism 6 (GraphPad Inc.). 
 
 

P450 

Activation 
IFO  d4IFO  

increase in 
active 

metabolite 
over IFO 

Acrolein 
Produceda 

fold 
change 

over wild 
type 

 Acrolein 
Produceda 

fold 
change 

over wild 
type 

 

 pmol/min/pmol 
P450   pmol/min/pmol 

P450   % 

CYP2B6*1 0.5 ± 0.06 1.0  1.1 ± 0.08** 1.0  120.0 
CYP2B6*4 0.1 ± 0.02† 0.2  0.2 ± 0.02†† 0.2  100.0 
CYP2B6*6 0.3 ± 0.1 0.6  0.3 ± 0.08†† 0.3  0.0 
CYP2B6*7 1.7 ± 0.05††† 3.4  3.6 ± 0.04†††*** 3.3  111.8 
CYP2B6*9 1.6 ± 0.3††† 3.2  2.5 ± 0.3†† 2.3  56.3 
CYP2C9*1 0.05 ± 0.01 1.0  0.05 ± 0.02 1.0  0.0 
CYP2C9*2 0.2 ± 0.1 4.0  0.5 ± 0.05†† 10.0  150.0 
CYP2C9*3 0 ± 0 0.0  0.2 ± 0.04 4.0  N/A 

P450 

Inactivation 
IFO  d4IFO  

decrease 
in inactive 
metabolite 
over IFO 

CAA Produceda 

fold 
change 

over wild 
type 

 CAA Produceda 

fold 
change 

over wild 
type 

 

 pmol/min/pmol 
P450   pmol/min/pmol 

P450   % 

CYP2B6*1 0.1 ± 0.02 1.0  0.06 ± 0.02 1.0  40.0 
CYP2B6*4 0.04 ± 0.001 0.4  0 ± 0*** 0.0  100.0 
CYP2B6*6 0.02 ± 0.01 0.2  0 ± 0 0.0  100.0 
CYP2B6*7 0 ± 0† 0.0  0 ± 0 0.0  N/A 
CYP2B6*9 0.02 ± 0.01 0.2  0 ± 0 0.0  100.0 
CYP2C9*1 0.01 ± 0.003 1.0  0 ± 0 1.0  100.0 
CYP2C9*2 0 ± 0 0.0  0 ± 0 0.0  N/A 
CYP2C9*3 0 ± 0 0.0  0 ± 0 0.0  N/A 
† P <0.05; ††P <0.01; ††† P ,0.005 for comparisons within polymorphic variants 
* P <0.05; ** P <0.01; *** P <0.005 for comparisons between IFO and d4IFO 
a Mean ± S.E.M. 
N/A no metabolite was detected with IFO, therefore percent change could not be calculated. 
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he inactivation of IFO and d4IFO by these polymorphic variants was also assessed using the 

same samples discussed above.  All of the polymorphic variants of CYP2B6 tested produced 

less of the inactivated metabolite than wild type CYP2B6 (Figure 3.3B).  In fact, the 

inactivation pathway of d4IFO by the CYP2B6 variants was essentially abolished.  CYP2C9 

catalyzed the inactivation IFO to a small extent, but its variants also failed to produce 

inactive metabolites for both IFO and d4IFO (Table 3.2).  

Metabolism of Ifosfamide by Human Liver Microsomes.  IFO activation by HLM was 

determined at concentrations of 1.0 and 10.0 mM IFO (Figure 3.4A).  These concentrations 

of IFO were chosen to ensure metabolism by the respective P450s, based on the Km values 

determined in Table 3.1.  Acrolein production increased with increasing concentrations of 

IFO, as expected. The inhibition of CYP3A4 by ketoconazole reduced IFO activation by 

approximately 85% at both IFO concentrations.  Inhibition of CYP2B6 by clopidogrel 

inhibited the activation of IFO by 67% and 47% at 1 mM and 10 mM IFO, respectively 

(Table 3.3).  

IFO inactivation by HLM was also monitored.  Incubation with ketoconazole resulted 

in a decrease of almost 90% in CAA production at both IFO concentrations (Figure 3.4B).  

Inhibition of CYP2B6 by clopidogrel decreased the inactivation of IFO by approximately 

40% at both concentrations (Table 3.3).   
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Figure 3.4 - Inhibition of IFO metabolism by HLMs in the presence of 
P450 inhibitors.  IFO (1.0 or 10 mM) was incubated with HLM (0.2 mg/
mL).  A short preincubation with 5 µM ketoconazole or 5 µM  clopidogrel 
was used to inhibit CYP3A4 or CYP2B6, respectively.  The total amount 
of acrolein production was measured to determine the effect of P450 
inhibition on IFO activation (A).  Similarly, the total amount of CAA 
production was measured to determine the effect of inhibition of CYP3A4 
or CYP2B6 on the inactivation of IFO (B).  The analytical methods are 
described in Materials and Methods.  The experiments were performed 
twice in triplicate and the statistical significance was determined using an 
unpaired t-test in Prism 6 (GraphPad Software, Inc.)." * P <0.05; ** P 
<0.01. 
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Table 3.3 - Summary of IFO metabolism by HLM in the presence of P450 inhibitors.  
The total amounts of acrolein or CAA produced by each of the experimental conditions are 
shown.  Additionally, the percent inhibition for each of the metabolites in the ketoconazole-
treated and clopidogrel-treated samples has been calculated.  Note that the formation of CAA 
in the clopidogrel-treated samples increased.  Statistical significance was determined using 
the unpaired t-test (P value < 0.05) in Prism 6 (GraphPad Inc.). 
 
 
 

 Activation 

IFO 
(mM) 

Vehicle Treated ! 5 uM Ketoconazole 
Treated ! 5 uM Clopidogrel 

Treated 
Acrolein 
Formeda ! Acrolein 

Formeda Inhib ! Acrolein 
Formeda Inhib 

 pmol/min-1/pmol 
P450 ! pmol/min-1/pmol 

P450 % ! pmol/min-1/pmol 
P450 % 

1.0 0.1 ± 0.003 ! 0.02 ± 0.001** 85.8 ! 0.04 ± 0.01 67.4 
10 0.4 ± 0.05 ! 0.06 ± 0.005** 86.8 ! 0.2 ± 0.01 47.1 
! ! ! ! ! ! ! !
 Inactivation 

IFO 
(mM) 

Vehicle Treated ! 5 uM Ketoconazole 
Treated ! 5 uM Clopidogrel 

Treated 
CAA Formeda ! CAA Formeda Inhib ! CAA Formeda Inhib 

 pmol/min-1/pmol 
P450 ! pmol/min-1/pmol 

P450 % ! pmol/min-1/pmol 
P450 % 

1.0 0.03 ± 0.003 ! 0.003 ± 0.003* 88.7 ! 0.02 ± 0.005 41.5 
10 0.1 ± 0.01 ! 0.014 ± 0.002 86.3 ! 0.05 ± 0.01 49.6 

* P <0.05; ** P <0.01 
a Mean ± S.E.M. 
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Discussion 

In order to enhance our understanding of the metabolism of IFO, we have used a 

purified recombinant system to assess the contributions of CYP2B6, CYP2C9, CYP2C19, 

CYP3A4, and CYP3A5 to the hydroxylation and the N-dechloroethylation of the drug.  The 

polymorphic variants of CYP2B6 and CYP2C9 were also investigated in the reconstituted 

system to examine potential differences in the metabolism of IFO by the variants.  We also 

investigated deuterium isotope effects on the hydroxylation and N-dechloroethylation of IFO.  

Michaelis-Menten kinetic values have been determined for all of the wild type P450s in the 

reconstituted system and therefore, accurate comparisons between the efficiencies of the 

enzymes for the activation and inactivation of both IFO and d4IFO is possible.  This is the 

first time that CYP2C9, CYP2C19, and CYP3A5 have been evaluated for both reactions in 

this manner.  Additionally, this is the first investigation of the metabolism of IFO by the 

polymorphic variants of CYP2B6 and CYP2C9. 

The Km values for the CYP2B6- and CYP3A4-mediated activation of IFO are similar 

to previous reports (Table1) (12, 13).  In our hands, CYP2B6 yielded a larger Vmax  than that 

of CYP3A4, resulting in a higher efficiency for this reaction (Vmax/Km for CYP2B6 = 0.8 

min-1mM-1 versus 0.4 min-1mM-1 for CYP3A4).  This observation is in contrast with previous 

studies that analyzed the activation of IFO in Supersomes, where it was found that CYP3A4 

was the most efficient enzyme for this reaction (12, 13).  This discrepancy is most likely a 

result of the different expression systems used in the two studies and may possibly be due to 

the effect of b5 which was present in the previous studies, but not in our experiments.  In our 

preliminary optimization experiments we examined the effect of b5 by adding it to the 
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reconstitution mixture at a range of ratios (0.5:1.0:0.25 to 0.5:1.0:2.0; P450:CPR:b5).  We 

observed very little enhancement in the activation of IFO for all of the P450s, with the 

exception of CYP3A4, where no change was detected (data not shown).  Therefore, b5 was 

not included in our optimized studies.  Of the P450s tested, CYP3A5 had the lowest Km  

(0.04 mM) and the highest efficiency for the activation of IFO (2.5 min-1mM-1).  However, in 

patients, the plasma concentrations of IFO are well above 0.04 mM (up to ~1 mM) (36, 37).  

Given the low Km of CYP3A5, the contributions of CYP3A5 to IFO metabolism may be 

important inside tissues or tumors where the concentration of IFO is thought to be 

considerably less than that in the plasma due to the relatively low cell membrane 

permeability of IFO.  Additionally, CYP3A5 may be therapeutically important for IFO 

activation since it is ubiquitously expressed and therefore has the potential to activate IFO at 

the site of drug action versus in off-target tissues (17, 23, 25).  

Intriguingly, the importance of CYP2C19 in the metabolism of IFO may have been 

overlooked previously.  In our hands, CYP2C19 is the second-most efficient enzyme for IFO 

activation.  Also CYP2C19 does not catalyze the inactivation of IFO, rendering it an ideal 

P450 for the metabolism of IFO.  In Supersomes expressing CYP2C19, the activation of IFO 

(at 0.25 mM) was observed but, it was less than that by CYP2B6 or CYP3A4 in the same 

system (12).  However, in the study using Supersomes did not determine the steady state 

kinetics for the enzymes that confirms the enzyme’s capacity to efficiently catalyze the 

activation of IFO.  Therefore, we believe CYP2C19 may be important for the metabolism of 

IFO given its high catalytic activity for activation of IFO.   

With respect to the inactivation of IFO, only CYP2B6, CYP3A4, and CYP3A5 

contribute to this pathway.  The inactivation of IFO by CYP3A4 and CYP3A5 has been 
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extensively studied by McCune, et al. and our results support their observation that CYP3A4 

and CYP3A5 have similar catalytic activities for IFO inactivation (10).  However, their 

studies failed to address the inactivation of IFO by CYP2B6, which we found to be 

approximately 4-fold more efficient than CYP3A4 and CYP3A5.  Introducing b5 into the 

recombinant mixture (at ratios in the range of 0.5:1:0.25 – 0.5:1:2; P450:CPR:b5) somewhat 

enhanced production of the inactive metabolite for all of the P450s, with the exception of 

CYP3A4, which showed no enhancement (data not shown).  These findings agree with 

previous observations that CYP3A5-mediated IFO inactivation was enhanced by the addition 

of purified b5 to the reconstitution mixture, but that the CYP3A4-mediated inactivation of 

IFO was not (10).   

Our studies on d4IFO metabolism demonstrated that deuteration of IFO enhanced the 

activation of IFO by CYP2B6 and CYP3A4.   This is most likely due to the inhibition of N-

dechloroethylation caused by the presence of deuterium on the chloroethyl groups of IFO 

(Figure 3.1).  This hypothesis was supported by our findings in that the Vmax values for the 

inactivation of d4IFO were lower than for the inactivation of IFO for all of the P450s tested. 

The efficiencies for the activation and inactivation of IFO and d4IFO by each of the tested 

P450s was compared.  The overall improvement in the metabolism of IFO is best observed 

with CYP2B6, where the activation of d4IFO (Vmax/Km  = 2 min-1mM-1) was ~2-fold more 

efficient than IFO (Vmax/Km  = 0.8 min-1mM-1) and the inactivation of d4IFO (Vmax/Km  = 0.1 

min-1mM-1) was approximately 50% less efficient than for IFO (Vmax/Km  = 0.2 min-1mM-1).  

Thus for the CYP2B6-mediated metabolism of d4IFO we observe an overall change of 

approximately 4-fold in the ratio of activation to inactivation which results in a significant 

enhancement of IFO metabolism.  The deuterium isotope effects discussed here could prove 
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to be extremely beneficial for drug design and development studies.  These studies 

demonstrate that utilizing deuterated drugs for “metabolic switching” may be a viable tool to 

enhance the therapeutic efficacy and reduce deleterious effects of IFO.  Typically, 25-60% of 

IFO is metabolized to the inactivated and toxic metabolites dechloroethylifosfamide and 

chloroacetaldehyde.  However, utilizing d4IFO may significantly reduce the formation of 

these toxic metabolites (14-16).  Additional studies with d4IFO to address the effect of the 

deuterium isotopes on the DNA alkylating properties of the phosphoramide mustard of IFO 

merit further investigation.  

The polymorphic variants of CYP2B6 and CYP2C9 exhibit altered catalytic activities 

for both the activation and inactivation of IFO and d4IFO as compared with the wild type. 

The common polymorphic variants CYP2B6*4 (K262R) and CYP2B6*6 (Q172H/K262R) 

showed reduced metabolism of IFO, with both the activation and inactivation pathways for 

IFO being less than those observed for CYP2B6*1.  CYP2B6*4 and CYP2B6*6 are the two 

most commonly expressed polymorphisms of CYP2B6 in patient populations (>30% 

frequency for both variants in most populations) (38-42).  The less common polymorphic 

variants CYP2B6*7 (Q172H/K262R/R487C) and CYP2B6*9 (Q172H) produced more of the 

activated metabolite of IFO and less of the inactivated metabolite of IFO than the wild type 

enzyme.  This is interesting in light of studies performed with the structural analog CPA, 

where Ariyoshi et al. demonstrated that CYP2B6*4 had reduced activation and conversely 

CYP2B6*6 had enhanced activation of CPA (43).  The authors concluded that the Q172R 

variant is capable of reinstating the activity that was lost by the introduction of the K262R 

mutation.  With IFO this was not the case, but the addition of a third point mutant (R487C in 

CYP2B6*7) did fully reverse the effects of the first two mutations.  This is the first evidence 
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that the insertion of a third point mutation in CYP2B6 can reverse the direction of the effect 

caused by the Q172H and K262R mutations.  The polymorphic variant CYP2B6*8 was 

determined to be catalytically inactive with IFO, as expected (data not shown) (28).  The 

polymorphic variants of CYP2C9 exhibited relatively small variations in catalytic efficiency 

compared with CYP2C9*1.  In HLM, McCune et al. reported that expression of CYP3A5*3, 

a nonfunctional variant of CYP3A5, decreased the amount of inactive metabolite of IFO 

produced compared to HLMs expressing the wild type CYP3A5.  The authors did not test 

activation IFO, but presumably activation would also be reduced with expression of this 

variant (10).   

The activation of d4IFO was improved and its inactivation was reduced or completely 

abolished when compared to IFO for each of the polymorphic variants of CYP2B6 and 

CYP2C9.  In general, d4IFO followed the same “patterns” for activation and inactivation by 

the variants as IFO.  This is encouraging and supports the development of d4IFO as a 

potential therapeutic or as a tool for studying metabolic switching by P450s since the 

deuterium isotope does not appear to introduce any unexpected perturbations in metabolism 

by the P450s and the polymorphic variants tested. 

To determine the contributions of specific P450s to IFO metabolism, and to ascertain 

the ability to favor activation over inactivation, we measured IFO metabolism by pooled 

HLMs and used chemical inhibitors to block the catalytic activities of selected P450s.  The 

inhibition of CYP2B6 by clopidogrel inhibited both the activation and inactivation of IFO by 

~40-70%.  This indicates a greater contribution of CYP2B6 to the metabolism of IFO than 

was previously reported from studies on CYP2B6 inhibition using the monoclonal antibody 

inhibitor Mab2B6.  Under those conditions, only an ~20% loss of activation and a 40% loss 
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of inactivation were observed (12).  In a similar study with CYP2B6-genotyped HLMs, the 

inactivation observed with CYP2B6 inhibition was highly variable (30-90%) (10).  The large 

variations in percent inhibition between these experiments is likely due to differences in the 

expression of P450s in the HLM (particularly CYP2B6, CYP3A4, and possibly others) 

samples and the polymorphic nature of the P450s.  Similar results were obtained with 

CYP3A4 inhibition where we observed significant inhibition of both activation and 

inactivation of IFO (~90% for both reactions).  Studies focusing only on the inactivation of 

IFO observed similar results with ketoconazole treatment, whereas Huang & Waxman only 

observed ~50% loss of both activation and inactivation in pooled HLM inhibited with the 

CYP3A4 inhibitor TAO (10, 12).  Although CYP3A4 is not particularly efficient at 

catalyzing the inactivation of IFO (as determined in our earlier experiments), the expression 

of the enzyme in the liver is high.  Typically CYP3A4 comprises 30-50% of all hepatic P450 

enzymes (44).  This may explain the ability of CYP3A4 to significantly contribute to the 

inactivation of IFO in HLM in spite of the lower catalytic efficiency for this reaction.  Thus, 

we were unable to separate the activation and inactivation pathways with our experimental 

approaches, but future work will investigate other inhibitors and inhibitor concentrations to 

potentially optimize these studies for improved activation of IFO. 

In summary, we have determined that the previously overlooked P450s CYP3A5 and 

CYP2C19 may play significant roles in IFO metabolism.  Therefore, the potential 

contribution of these enzymes with regards to IFO metabolism warrants further investigation.  

Furthermore, the polymorphic variants of CYP2B6 and CYP2C9 exhibited significant 

changes in IFO metabolism, which indicates that interpatient metabolite levels may be 

greatly altered by the polymorphic nature of these enzymes.  Additionally, our studies with 
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d4IFO indicate that deuteration of IFO results in an enhanced activation of IFO over 

inactivation for all of the P450s tested and their respective polymorphic variants suggesting 

that deuterium labeling of IFO can induce metabolic switching and may be of significant 

value in improving the therapeutic index of this widely used chemotherapeutic drug.   
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CHAPTER 4 

 

THE HYDROXYLATION AND N-DECHLOROETHYLATION OF DEUTERATED 

CYCLOPHOSPHAMIDE 

 

 

Introduction 

Cyclophosphamide (CPA) is a wildly used antineoplastic agent.  CPA is a prodrug 

requiring activation via hydroxylation at the 4! carbon.  Alternatively, it can be inactivated 

via N-dechloroethylation, and this results in the production of toxic metabolites (Figure 1.6) 

(1).  The N-dechloroethylation pathway accounts for ~10% of CPA metabolism in humans 

(2-4).  CPA treatment is often associated with variable responses in patients and inconsistent 

exposure to the metabolites of either pathway may account for these observed interpatient 

discrepancies.  In these studies, we focus on attempts to favor the hydroxylation, or 

activation, of CPA over the inactivation of CPA by introducing deuterium isotopes into the 

structure of CPA. 
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CPA was synthesized with deuterium atoms on the chloroethyl chains (Figure 4.1).  It 

is postulated that the presence of deuterium will hinder the P450-catalyzed N-

dechloroethylation reaction and thereby enhance the hydroxylation of the deuterium-labeled 

CPA (d4CPA) at the 4! position leading to enhanced activation (5).  Previous work using 

only one concentration of the drugs demonstrated increased 4! hydroxylation of d4CPA (5).  

With CYP3A4, the fraction of the total metabolites produced from hydroxylation at the 4! 

position was increased from 74% to 89% with d4CPA.  With CYP3A5, this changed from 

90% to 94%, and for CYP2B6, the fraction of metabolites formed due to this hydroxylation 

was 100% for both CPA and d4CPA (5).  Based on these reports, we set out to more 

thoroughly explore the deuterium isotope effects on CPA metabolism.  First, we evaluated 

the steady state kinetics for the metabolism of d4CPA by the wild type P450s (CYP2B6, 

CYP2C9, CYP2C19, and CYP3A4).  The kinetic values obtained were compared with those 

for the metabolism of CPA by the wild type P450s.  We also examined d4CPA metabolism 

by several of the CYP2B6 and CYP2C9 associated polymorphic variants (CYP2B6*4, 

CYP2B6*6-*9, and CYP2C9*2, *3).  We determined that the efficiency of activation of 

d4CPA was relatively unchanged by most of the P450s tested, and that the efficiency of 

inactivation remained the same as compared to the metabolism of CPA.   
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Figure 4.1 - Chemical Structures of Cyclophosphamide (CPA) and 
deuterium-labeled cyclophosphamide (d4CPA).   
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Experimental Procedures 

Materials.  NADPH, catalase, CPA, L-α-dilauroyl-phosphocholine, L-α-dioleyl-sn-glycero-

3- phosphocholine, L-α-phosphatidylserine, acrolein, CAA, 3-aminophenol, and adenosine 

were all purchased from Sigma Aldrich (St. Louis, MO).  Pooled HLM were purchased from 

BD Biosciences (San Jose, CA).  d4CPA was a gift from Drs. Susan Ludeman (Albany 

College of Pharmacy and Health Sciences) and M. Eileen Dolan (University of Chicago). 

cDNA Expression and Purification of Human P450s, P450 Polymorphic Variants, and 

Rat Cytochrome P450 Reductase.  The polymorphic variants of CYP2B6 (CYP2B6*4, 

CYP2B6*6– CYP2B6*9) were constructed as described by Zhang, et al. (6).  All of the wild 

type and polymorphic variants were overexpressed individually in E. coli C41 (DE3) cells 

and purified as reported previously (6).  All of the P450s were expressed as the N-terminally 

truncated form to increase the expression yields (7).  Rat CPR was expressed and purified as 

previously (7, 8).  CYP3A5 was a gift from Dr. James Halpert (UCSD), and CYP2C9*2 and 

CYP2C9*3 were gifts from Dr. Tim Tracy (University of Kentucky).    

Assays for the Metabolism of CPA and d4CPA.  Metabolism of CPA and d4CPA by the 

P450s was performed in the reconstituted system as previously described (Calinski et al., in 

submission).  The system consisted of P450 and CPR incubated at a 1:2 molar ratio for 30 

min at 20°C.  CYP3A4 and CYP3A5 both require a mixture of L-α-dilauroyl-

phosphocholine, L-α-dioleyl-sn-glycero-3-phosphocholine, and L-α-phosphatidylserine 

(1:1:1) for function.  To accommodate this, 60 µg of this lipid mixture was added to the 

reconstitution mixture following addition of the proteins the proteins and the system was 

incubated for 45 min at 4°C prior to use.  The final reaction mixtures contained 0.5 µg of 

P450, 1 µg of CPR, 30 mM potassium phosphate (pH 7.4), 15 units of catalase, and 0-5.0 
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mM CPA or d4CPA in 95 µL.  The reaction mixtures were incubated at 37°C for 4 min then 

5 µL of NADPH (final 1 mM) was added to initiate the reaction.  After 30 min at 37°C with 

shaking, the reactions were stopped by the addition of 40 µL of ice-cold 5.5% zinc sulfate, 40 

µL of ice-cold saturated barium hydroxide, and 20 µL of ice-cold 0.01M HCl (9, 10).  The 

samples were centrifuged for 10 min at 13,200 rpm and kept on ice prior to derivatization for 

analysis by HPLC. 

Quantification of Acrolein Formation.  The measurement of acrolein formation was used 

to quantitate the activation of CPA.  In order to quantitate formation of the metabolite 

acrolein, 60 µL of the reaction mixture was incubated with 40 µL of the fluorescence reagent 

(30 mg 3-aminophenol and 30 mg hydroxylamine HCl dissolved in 5 mL 1N HCl) for 25 min 

at 90°C to create the fluorescent product 7-hydroxyquinoline.  Using a Shimadzu HPLC 

system, samples were separated on an Agilent C18 column.  The column was eluted with 20% 

methanol in 0.1% phosphoric acid isocratically at 0.5 mL/min.  Elution of 7-

hydroxyquinoline occurred at 3.2 min as monitored fluorometrically at 515 nm with an 

excitation of 350 nm (9).  Calibration curves for acrolein quantification were generated by 

incubation of commercial acrolein in reaction mixtures containing no substrate.  The standard 

curve was linear for all concentrations used (0-100 µM acrolein).  

Quantification of Chloroacetaldehyde Formation.  CAA was used to quantitate the 

inactivation of CPA.  To detect CAA, a 60 µL aliquot of each reaction mixture was incubated 

with 10 µL of 100 mM adenosine in 0.25 N HCl and 10 µL of 2 M sodium acetate (pH 4.5) 

for 2.5 hours at 80°C.  This produced the fluorescent product, 1-N-ethenoadenosine (9).  The 

derivatized sample was resolved on an Agilent C18 column with a mobile phase of 20% 

methanol in water.  The product eluted at 13.2 min and was monitored fluorometrically at 
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411 nm with excitation 270 nm.  Calibration curves for CAA quantification were generated 

by incubation of commercial CAA in complete reaction mixtures containing no substrate.  

The standard curve was linear for CAA concentrations from 0-150 µM. 

 

Data Analysis.  Data were analyzed using GraphPad Prism software (GraphPad Software, 

Inc.).  The parameters for enzyme kinetics were determined using non-linear regression 

analysis, specifically Michaelis-Menten analysis in GraphPad Prism.  Statistical significance 

was determined using an unpaired t-test in GraphPad Prism 6.  The experiments were 

performed twice and the data obtained in triplicate for each point. 

Results 

The Metabolism of CPA and d4CPA by the Wild Type Human Cytochrome P450s.  

Using the reconstituted system, the steady state kinetics for the activation and inactivation of 

CPA and d4CPA were determined.  A representative data set is shown in Figure 4.2, and the 

summary of all kinetic data is provided in Table 4.1.  As previously noted, all of the tested 

P450s catalyzed the activation of CPA and CYP2B6 was the most efficient enzyme for this 

reaction (Calinski et al. 2013, in submission).  The inactivation of CPA was catalyzed only 

by CYP3A4.  As a result of the incorporation of the deuterium isotopes, the activation of 

d4CPA was inhibited for CYP2B6 and CYP2C9.  The efficiency for activation of d4CPA 

was approximately 2-fold less than activation of CPA by these enzymes (Table 4.1).  The 

efficiency of activation by CYP2C19 was unchanged between the drugs.  Most notably, 

CYP3A4-mediated activation of d4CPA was 1.6-fold more efficient than activation of CPA 

(Figure 4.2, Table 4.1).  As with CPA, only CYP3A4 catalyzed the inactivation of d4CPA.  

Although the inactivation of CPA and d4CPA observed with CYP3A4 did not reach a 
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maximum concentration of metabolite formed (i.e.- the reaction was not saturated), we have 

determined the kinetic values for the purpose of comparing the efficiency of CYP3A4 for 

inactivation of CPA and d4CPA.  The Km and Vmax values for the inactivation of d4CPA 

(Vmax = 0.3 min-1mM-1, Km = 2.0 mM) were lower than that for CPA (Vmax = 0.7 min-1mM-1, 

Km = 3.7 mM), which ultimately resulted in a very similar efficiency for inactivation of 

d4CPA and CPA (Figure 4.2, Table 4.1). 

The Metabolism of CPA and d4CPA by the Polymorphic Variants of CYP2B6 and 

CYP2C9.  The polymorphic variants of CYP2B6 and CYP2C9 were examined for 

differences in catalytic ability with regards to CPA and d4CPA.  The experiments were 

performed in the reconstituted system using a 1 mM concentration of drug.  The 

concentration of drug was chosen to reflect the circulating concentration of CPA in patients 

(0.1 – 0.7 mM) (11, 12).  These studies demonstrated that the polymorphic variants of all of 

the P450s tested exhibited slightly altered rates of metabolism for d4CPA as compared with 

CPA (Figure 4.3, Table 4.2).  The largest variation was observed with CYP2B6*1, where 

activated metabolite production was 2-fold higher with CPA as opposed to d4CPA.  As 

shown previously, CYP2B6*4 and CYP2B6*6 produced significantly less activated 

metabolite than the wild type P450, and CYP2B6*7 and CYP2B6*9 produced significantly 

more activated metabolite than the while type.  Neither CYP2C9 nor its associated 

polymorphisms exhibited any considerable activity towards the activation of CPA or d4CPA.  

The inactivation data with regards to the polymorphic variants is not shown because no 

inactivation was observed with any of these P450s. 
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Figure 4.2 - Metabolism of CPA and d4CPA by CYP3A4.  CPA 
(blue) or d4CPA (red) (0.1 – 5.0 mM) was incubated in the reconstituted 
system containing 1 µM CYP3A4 for 30 min at 37°C.  Half of each 
sample was analyzed for the metabolite acrolein to determine the 
activation kinetics of CPA (A), the other half of each sample was used 
to measure CAA to determine the inactivation kinetics of CPA by each 
of the P450s (B).  The details of the analytical methods are provided in 
the Materials and Methods.  Shown are the nonlinear fits for the 
activation of the drugs determined using the Michaelis-Menten equation 
with Prism 6 (GraphPad Software, Inc.).  

(B) 



 

   

Table 4.1 - Steady State Kinetic Parameters for the Metabolism of CPA and d4CPA by the Primary P450s involved in CPA 
metabolism.  Using Michaelis-Menten nonlinear regression (GraphPad Prism, Inc.) of the data shown in Figure 4.2, the Vmax and Km 
values for all of the P450s were determined for both activation and inactivation of CPA and d4CPA.  The efficiencies of the P450s for 
these reactions are expressed as Vmax/Km. 
 
 

 Activation 

P450 
CPA  d4CPA 

Vmax
a Km

a Vmax/Km  Vmax
a Km

a Vmax/Km 

 pmol/min/pmol P450 mM min-1mM-1  pmol/min/pmol P450 mM min-1mM-1 
CYP2B6 25.2 ± 2.9 2.4 ± 0.6 10.5  9.1 ± 1.2 1.3 ± 0.4 7 
CYP2C9 0.8 ± 0.1 0.4 ± 0.2 2  0.5 ± 0.1 0.5 ± 0.4 1 
CYP2C19 6.4 ± 1.0 2.6 ± 1.0 2.5  6.0 ± 0.6 2.2 ± 0.5 2.8 
CYP3A4 0.6 ± 0.1 0.8 ± 0.3 0.75  0.7 ± 0.1 0.6 ± 0.2 1.2 

 Inactivation 

P450 
CPA  d4CPA 

Vmax
a Km

a Vmax/Km  Vmax
a Km

a Vmax/Km 

 pmol/min/pmol P450 mM min-1mM-1  pmol/min/pmol P450 mM min-1mM-1 
CYP2B6 no CAA formed 0  no CAA formed 0 
CYP2C9 no CAA formed 0  no CAA formed 0 
CYP2C19 no CAA formed 0  no CAA formed 0 
CYP3A4 0.7 ± 0.1 3.7 ± 0.9 0.19  0.3 ± 0.04 2.0 ± 0.6 0.15 

a Mean ± S.E.M. 
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Figure 4.3 - Activation of CPA and d4CPA by the Polymorphic 
Variants of CYP2B6 and CYP2C9. CPA (blue) or d4CPA (red) (1 
mM) was incubated in the reconstituted system with 1 µM  of P450 for 
30 min at 37°C.  Half of each sample was analyzed for the metabolite 
acrolein to determine the rate of activation of CPA for each of the 
polymorphic variants.  The other half of each sample was used to detect 
CAA to determine the rate of inactivation of IFO for each of the 
polymorphic variants, the data are not shown because no CAA could be 
detected.  The details of the analytical methods are provided in the 
Materials and Methods.  The average for each experimental condition 
that was performed in triplicate is shown.  Statistical significance was 
assessed using an unpaired t-test in Prism 6 (GraphPad Software, Inc.).  
It was determined that the acrolein produced from d4CPA not not differ 
significantly from acrolein produced from CPA for any of the 
polymorphic variants. 
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Table 4.2 - The Activation of CPA and d4CPA by the Polymorphic Variants of CYP2B6 
and CYP2C9.  The variants were assessed for changes in activation and inactivation of CPA 
and d4CPA at 1 mM drug.  The data from Figure 4.3 are expressed as pmol/min/pmol P450 
of acrolein produced, and fold change from wild type.  The ratio of activated CPA to 
activated d4CPA was also calculated for each of the polymorphic variants.  The inactivation 
data are not shown because neither CPA nor d4CPA was inactivated by any of the 
polymorphic variants. 

 Activation 

P450 

CPA  d4CPA Ratio of 
Activation 
of CPA to 

d4CPA 
Acrolein 
Formeda 

Percent 
Change over 
Wild Type 

 
Acrolein 
Formeda 

Percent 
Change over 
Wild Type 

 
pmol/min/pmol 

P450 
% 

 pmol/min/pmol 
P450 

%  

CYP2B6*1 8.4 ± 0.5 0.0  4.0 ± 0.9 0.0 2.1 

CYP2B6*4 1.2 ± 0.1 -85.7  0.9 ± 0.2 -77.5 1.3 

CYP2B6*6 1.4 ± 0.1 -83.3  0.8 ± 0.1 -80.0 1.8 

CYP2B6*7 18.3 ± 3.3 117.9  17.4 ± 2.8 335.0 1.1 

CYP2B6*9 10.4 ± 1.2 23.8  12.6 ± 1.4 215.0 0.83 

CYP2C9*1 0.4 ± 0.1 0.0  0.2 ± 0.05 0.0 2.0 

CYP2C9*2 0.3 ± 0.2 -25.0  0.3 ± 0.1 50.0 1.0 

CYP2C9*3 0.2 ± 0.1 -50.0  0.01 ± 0.1 -95.0 20.0 

a Mean ± S.E.M. 
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Discussion 

We have investigated the metabolic effects of introducing deuterium isotopes to the 

cancer chemotherapeutic CPA.  To do this, we used purified P450s in the reconstituted 

system and compared both the activation and inactivation pathways for d4CPA to those for 

CPA.  We determined that both drugs have relatively similar rates of metabolism and that the 

presence of deuterium in d4CPA appears to result in reduced activation by many of the 

P450s. 

Previously, d4CPA was analyzed for changes in its activation and inactivation 

pathways by CYP2B6, CYP3A4, and CYP3A5 at a concentration of 1 mM (5).  It was 

determined that the fraction of the hydroxylated products was slightly enhanced by 

introduction of the deuterium isotope.  For instance, with CYP3A4, 89% of the metabolites 

formed from d4CPA were the result of hydroxylation versus 74% for CPA.  The other P450s 

tested all exhibited much smaller changes in the formation of the activated product (5).  

Based on those studies, we examined the steady state kinetics to more thoroughly investigate 

d4CPA as a potential improvement to CPA.  Only CYP3A4 exhibited enhanced metabolism 

of d4CPA as compared with metabolism of CPA.  The activation of d4CPA by CYP3A4 was 

enhanced almost 2-fold (Vmax/Km = 0.75 min-1mM-1 for CPA and Vmax/Km = 1.2 min-1mM-1 

for d4CPA), while the inactivation of d4CPA by CYP3A4 was similar to the inactivation of 

CPA (Vmax/Km = 0.19 min-1mM-1 for CPA and Vmax/Km = 0.15 min-1mM-1 for d4CPA).  

Therefore, the overall result is a mild metabolic switch to favor hydroxylation of d4CPA by 

CYP3A4.  Interestingly, as we tested activation and inactivation at 1 mM, we can directly 

compare our results with results obtained by Ludeman, et al. (5).   For CYP3A4, the amount 

of activated metabolite produced from 1 mM CPA was 97% of the total metabolites 
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produced, which was reduced to 85% for d4CPA.  These variations can be the result of 

differences in the experimental set up and the assays used to measure metabolite production.  

Therefore, it is best to compare the metabolism of d4CPA and CPA within the same system 

as we have done.  The inactivation of d4CPA did not differ from that of CPA.  Thus, the 

inclusion of deuterium did enhance hydroxylation but did not reduce N-dechloroethylation.  

The polymorphic variants of CYP2B6 and CYP2C9 were evaluated for catalytic 

differences with regards to activation and inactivation of d4CPA.  The amount of active 

metabolite produced by each of the variants was slightly reduced compared to amount of 

activated metabolite produced from CPA, with the exception of CYP2B6*9 which had a 

slight increase in active metabolite from d4CPA.  None of these changes were statistically 

significant.  None of the polymorphic variants of CYP2B6 or CYP2C9 catalyzed the 

inactivation of d4CPA or CPA.  It is encouraging that no large discrepancies in the activation 

or inactivation of the drugs were observed, because this indicates that the drugs and the 

enzymes are largely not perturbed by the inclusion of the deuterium isotopes.   

In summary, the inclusion of deuterium isotopes on the chloroethyl chains of CPA did 

not reduce the inactivation of CPA, only slightly enhanced the activation of CPA for 

CYP3A4, and actually hindered the activation of CPA for CYP2B6 and CYP2C9 (Figure 4.2 

and Table 4.1).  Our work demonstrates that deuterium labeling is the not a viable option for 

the enhancement of CPA metabolism.  As mentioned previously, N-dechloroethylation only 

accounts for ~10% of CPA metabolism and therefore inhibiting this pathway may not affect 

patient outcome as greatly as hoped.  The inhibition of N-dechloroethylation may be more 

important for the related drug, ifosfamide, as 25-60% of this drug is N-dechloroethylated by 

the P450s (2-4).  Deuterium labeling of IFO has proven more effective at both inhibiting 
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inactivation and enhancing activation.  Therefore efforts towards the development of d4IFO 

may be more rewarding (Calinski et al. 2013, in preparation). 
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CHAPTER 5 

 

SUMMARY AND FUTURE DIRECTIONS 

 

The oxazaphosphorines, cyclophosphamide (CPA) and ifosfamide (IFO), are two 

DNA-alkylating agents that are widely used in cancer chemotherapy.  Although the drugs 

have contributed to the effective treatment of thousands of patients over the course of 

decades, variable patient responses and severe adverse drug reactions persist and limit the use 

of these drugs’ (1).  The toxicities and variations in patient response are related to the 

interindividual variations in the metabolism of the oxazaphosphorines.  Both compounds are 

administered as prodrugs and require bioactivation by the cytochrome P450s (P450s) via 4-

hydroxylation.  After hydroxylation, the drugs undergo a series of spontaneous reactions to 

produce the therapeutically active nitrogen mustard, which can then alkylate DNA and 

ultimately initiate apoptosis.  An alternative route of metabolism involves the P450-catalyzed 

N-dechloroethylation of the drugs.  This reaction results in inactivation of the drugs, as well 

as the production of the therapeutically inactive yet toxic metabolites: dechloroethylated-

CPA or dechloroethylated-IFO and chloroacetaldehyde (CAA) (2). The primary P450s 
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responsible for these reactions differ between CPA and IFO, and these P450s are highly 

polymorphic, which can influence the catalytic ability of the enzymes (3-5).  In particular, 

CYP2B6 has over 28 known allelic variants, some of which are expressed at upwards of 30% 

in some populations (6-8).  A full understanding of the factors affecting 

the pharmacokinetics and pharmacogenomics of CPA and IFO is important to optimize the 

treatment regimens utilizing CPA and IFO in cancer chemotherapies.  The work in this thesis 

has focused on advancing our basic understanding of hydroxylation and N-dechloroethylation 

of CPA and IFO by the human P450s and their primary polymorphisms.  We have also 

sought to investigate the potential for beneficially manipulating these two pathways using 

P450 inhibitors and chemical modifications of the drugs.   

To investigate the metabolism of CPA, experiments were performed using purified 

enzymes in a recombinant system.  Utilizing the recombinant system allowed us to 

individually assess the P450s for their involvement in both pathways, regardless of the 

expression levels of the protein and other complicating factors present in more complex 

systems.  Our investigations confirmed that CYP2B6 is the most efficient enzyme for the 

hydroxylation, or activation, of CPA (4, 5).  In the same system, several polymorphic 

variants of CYP2B6 (CYP2B6*4-*9) were analyzed for their ability to catalyze 

hydroxylation of CPA.  This was the most extensive undertaking of its kind to date.  Our 

studies indicate that all of the polymorphic variants tested have decreased abilities to activate 

CPA, when compared to wild type.  Given that most polymorphisms have lowered 

expression levels in vivo, the combination of these factors may be detrimental for patients (9-

11).  Yet, multiple studies have failed to find any correlation between CYP2B6 genotype and 

therapeutic outcome of CPA (12, 13).  The lack of genotype effect on the pharmacokinetics 
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in patients is likely due to the contribution of other P450s with regards to the therapeutic 

activation of CPA.  In accordance with this hypothesis, our studies show that CYP2C19, 

CYP3A4, CYP3A5, and CYP2C9 also catalyze the activation of CPA, but with less 

efficiency than CYP2B6 (listed above in rank order of efficiency).  The relevance of these 

enzymes for the in vivo metabolism of CPA will depend on the route of administration (since 

P450 expression varies in organs), expression of various P450 polymorphic variants, and co-

administration of potential P450 inhibitors that may be included in treatment regimens or for 

other existing conditions in patients.  Encouragingly, only CYP3A4 inactivated CPA, which 

led us to question whether we could inhibit CPA inactivation and production of toxic 

metabolites by inhibiting CYP3A4 activity.  To test this, we used ketoconazole to inhibit 

CYP3A4 in human liver microsomes (HLM).  The inhibition of CYP3A4 resulted in a 

complete loss of inactivation of CPA, but also reduced the activation by ~50%.  Thus, in 

spite of the low catalytic efficiency for CPA activation associated with CYP3A4, it is clear 

that this enzyme is important for this reaction in HLM, likely due to the high levels of 

expression of the enzyme in the liver.  Future work will focus on attempting to separate the 

two pathways in HLM with different CYP3A4 inhibitors or using various concentrations of 

ketoconazole.  Additionally, studies with other tissues, such as tumors, would illuminate the 

importance of P450s in the target tissues which may be of interest for CPA activation and 

may alter the P450s we deem to be important for CPA metabolism in the clinical setting. 

IFO has proven to be more effective than CPA in a wide range of malignant diseases 

(14-19).  Yet, IFO use is limited owing to the severe toxicities associated with its use.  IFO-

induced toxicities include nephrotoxicity, which occurs in ~30% of the patient population, 

and neurotoxicities, which occur in ~20% of the patient population (20-22).  IFO-associated 



 103 

toxicities are directly related to the metabolism of the drug.  In humans it is estimated that 

25-60% of IFO is N-dechloroethylated to give CAA whereas only 10% of CPA undergoes 

this reaction (23-25).  It is suggested that elevated levels of CAA in IFO-treated patients is 

responsible for the development of the IFO-specific nephro- and neurotoxicities.  Therefore, 

as with CPA, we investigated the P450-catalyzed metabolism of IFO, as well as the potential 

to control the metabolism to favor hydroxylation.  These studies demonstrated that CYP3A5 

and CYP2C19 were the most efficient enzymes for catalyzing IFO activation, and 

importantly that CYP2C19 did not catalyze the N-dechloroethylation of IFO.  The role of 

CYP2C19 in IFO metabolism has not been previously studied, although it’s significance may 

not be surprising, given that CYP2C19 is important for the metabolism of CPA.  CYP2C19 

may prove to be the ideal P450 to target for IFO metabolism, as the efficiency for activation 

is high, and inactivation was not observed.  Inactivation of IFO by CYP3A5 has been 

implicated in the development of nephrotoxicity in patients because CYP3A5 expression is 

high in the kidney and therefore, CAA formation may be concentrated at that site.  Indeed, 

human kidney microsomes that express the nonfunctional polymorphic variant CYP3A5*3, 

had less CAA production than human kidney microsomes with wild type protein (20).  It 

would be interesting to investigate genotyped IFO-treated patients to determine if there is a 

genotype-phenotype correlation between CYP3A5 and the development of nephrotoxicities.  

Our data supports that CYP3A5 may play a role in this organ-specific toxicity; however, the 

most efficient P450 for IFO inactivation is CYP2B6 and therefore, future studies should also 

focus on CYP2B6 expression in the kidney.  The polymorphic variants of CYP2B6 were also 

tested for differences in the catalytic abilities for activation and inactivation of IFO.  Only 

slight differences were observed for either reaction for all of the polymorphisms tested.  The 
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ability to favor hydroxylation of IFO over N-dechloroethylation was assessed in two ways for 

IFO.  First we tested P450 inhibition in HLM.  With P450 inhibition, we were unable to 

separate activation and inactivation of IFO.  This agrees with our earlier studies where it was 

determined that both reactions could be catalyzed by multiple P450s and therefore separation 

of the pathways using P450 inhibition in a complex system would be difficult.  In the second 

set of studies aimed at favoring hydroxylation of the drug, IFO was synthesized with 

deuterium on the chloroethyl chains and both metabolic pathways were examined for all of 

the P450s tested previously.  The placement of deuterium was intended to hinder the 

dechloroethylation and thereby enhance hydroxylation of IFO (26).  Indeed, we observed a 

slight favoring of hydroxylation over N-dechloroethylation but it was not statistically 

significant.  Future work will continue to explore labeled IFO (d4IFO) as a potential 

therapeutic.  Studies will include analyzing the DNA alkylating properties of d4IFO and in 

vivo investigations. 

We also assessed the metabolism of deuterium labeled CPA (d4CPA) by the P450s.  

As with d4IFO, our goal was to see if it might be possible to eliminate or reduce N-

dechloroethylation of CPA and thereby enhance hydroxylation (26).  As mentioned 

previously, only 10% CPA undergoes N-dechloroethylation and therefore toxicities 

associated with inactivation of the drug are less problematic than with IFO (23-25).  

However, the large interpatient variabilities associated with CPA may be better controlled 

with tighter regulation of the two metabolic pathways.  We determined that the incorporation 

of deuterium in the chloroethyl chains of CPA did not significantly alter the N-

dechloroethylation of the drug.  As with CPA, only CYP3A4 catalyzed this reaction and it 

was equally efficient for d4CPA and CPA.  Additionally, the hydroxylation of d4CPA by 
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CYP2B6 was greatly inhibited, as compared to CPA hydroxylation.  Therefore, we 

concluded that d4CPA would not be a better alternative to CPA.   

Taken together, the work compiled in this thesis has enhanced our mechanistic 

understanding of the metabolism of the two oxazaphosphorines.  It is our hope that this 

information will encourage future investigations focused on the improvement of current 

cancer chemotherapies, drug design, and the use of pharmacogenomics to design enhanced 

chemotherapeutic regimens.  
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