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Abstract

Dual frame surveys are becoming more common in survey practice due to rapid changes
in the cost of survey data collection, as well as changes in population coverage patterns and
sample unit accessibility. Many dual frame estimators have been proposed in the literature. Some
of these estimators are theoretically optimal but hard to be applied in practice, whereas the rest
are applicable but not as optimal as the first group. All the standard dual frame estimators require

accurate information about the design domain membership.

In this dissertation, a set of desirable properties for the dual frame estimators is specified.
These properties are used as criteria to evaluate the standard dual frame estimators. At the same
time, the Joint Calibration Estimator (JCE) is proposed as a new dual frame estimator that is

simple to apply and meets most of the desirable properties for dual frame estimators.

In Chapter 2, the JCE is introduced as an approximately unbiased dual frame estimator,
with a degree of unbiasedness depending on the relationship between study variables and
auxiliary variables. The JCE achieves better performance when the auxiliary variables can fully
explain the variability in the study variables of interest or at least when the auxiliary variables are
strong correlates of the study variables. The JCE for point estimates can be applied by standard
survey software and can easily be extended to multiple frame survey estimation. In Chapter 3,
the JCE properties are explored in the presence of the nonresponse error. Theoretically and

empirically, the JCE proves to be robust to nonresponse error as long as a strong set of auxiliary



variables is used. This strong set should predict both the response mechanism and the main study

variables.

Finally, the effect of domain misclassification on the dual frame estimators is discussed
in Chapter 4. Since the JCE does not require domain membership information, it tends to be
robust against domain misclassification even if domain totals are included in the calibration

auxiliary variables.

Xi



Chapter 1

Dual Frame Samples Estimation

1.1 Introduction

Historically, dual frame designs have been used to achieve better population coverage at
lower survey cost than single frame alternatives. The early applications of the dual frame
designs, or multiple frame designs in general, were in business surveys such as the Sample
Survey of Retail Stores (Hansen, Hurwitz, & Madow, 1953) and in agriculture surveys
(Gonzalez-Villalobos & Wallace, 1996). Dual frame area-landline surveys, composed of an area
frame and Random-Digit-Dialing (RDD) landline telephone frame, were shown to achieve better
population coverage at lower cost (Lepkowski & Groves, 1986). With rapid changes in the cost
of survey data collection, changes in population coverage patterns and sample unit accessibility,
dual frame sample surveys are becoming more common in survey practice. For example, dual
frame telephone surveys that combine RDD landline telephone samples and cell phone samples
emerged to reduce the noncoverage of “cell-only” households in RDD landline telephone
surveys (Brick et al., 2007; Blumberg & Luke, 2011; Keeter, 2006; Keeter, Kennedy, Clark,
Tompson, & Mokrzycki, 2007; Link, Battaglia, Frankel, Osborn, & Mokdad, 2007). At the same

time, Address-Based-Sampling (ABS) sampling has been explored as a complement or an



alternative to the RDD telephone surveys in a number of recent studies (Link, Battaglia, Frankel,

Osborn, & Mokdad, 2006, 2008; Link & Lai, 2011).

In dual frame surveys, the intersection between the two frames can be non-overlapping
(Figure 1.1), partially overlapping (Figure 1.2) or completely overlapping (Figure 1.3) (Lohr,
2009, 2011). In non-overlapping dual frame designs, the estimation is straightforward since the
sampling plan can be considered as a stratified sample with two strata. However, in the
overlapping designs, the estimation is not as straightforward. Due to the overlap, simply adding
the two samples’ estimated totals results in a biased estimate of the overall total. Standard dual

frame estimators adjust for the overlap or multiplicity in the intersecting domain (Lohr, 2011).

The standard dual frame estimators present many methodological and practical problems
in their implementation (Lohr, 2011). These problems can delay the processing of “quick turn-
around” surveys. At the same time, the correct identification of the design domain for each
sample element is essential. Therefore, non-sampling errors in the determination of design

domain membership can affect the efficiency of estimates (Lohr, 2011; Mecatti, 2007).

Figure 1.1: Non-overlapping frames A and B

A B




Figure 1.2: Partially overlapping frames A and B with three domains a, b and ab

A B

Figure 1.3: Completely overlapping frames A and B with two domains a and ab

Since dual frame designs have become more common in practice, it has been important to
find simple, yet efficient dual frame estimators that can be applied easily in survey practice, with
fewer requirements and comparable or better efficiency, compared to standard dual frame
estimators. This chapter provides background information on the standard dual frame estimators
and their properties. Desirable properties of estimators from dual frame surveys are discussed in
Section 1.2. An overview of the standard dual frame estimators in the context of the desirable
properties is discussed in Sections 1.3 and 1.4. Conclusions and motivations for the dissertation

are presented and discussed in Section 1.5.

1.2 Desirable Properties for Dual Frame Estimators

Lohr (2011) identified the following five desirable properties for dual frame estimators.

(1) An estimator should be unbiased for the corresponding finite population quantity. (2) An
3



estimator should be internally consistent; that is, the multivariate relationships in the data should
be preserved. For example, the sum of the estimated totals for male and female smokers should
be equal to the estimated total for all smokers. Internal inconsistency may happen if estimators
are dependent on study variable y, requiring a different set of weights for each study variable.
(3) An estimator should be efficient, with low Mean Square Error (MSE). (4) An estimator
should be of a form that can be calculated with standard survey software. This means that only
one set of weights is available for all study variables and design variable or replicate weights are
available for formula-based or replication-based variance estimation, respectively. (5) An

estimator should be robust to non-sampling errors.

In addition to the previous properties, the following three properties should be added. (6)
Data requirements for estimator should be reasonable. For example, information about design
domain membership or variance and covariance components might be required for some
estimators, but only poorly measured or unreliable components could be available in practice,
which adds to the burden of computing the estimator. (7) An estimator should be robust to non-
sampling errors in the estimator’s requirements. For example, although some estimators might
theoretically be efficient, reporting errors in the required information about design domain
membership or biased estimates of the required variance and covariance components could result
in biased or non-optimal estimators. And finally, (8) an estimator should be applicable for dual
frame and multiple frame surveys. Since most of the multiple frame estimators are proposed for
dual frame surveys, the previous properties should be explored in the context of multiple frame
surveys, as well. As will be discussed in the next chapters, the last three properties are the

primary motivation for the current study.



1.3 Dual Frame Estimators for Surveys

Let U ={1,...k,..,N} denote a target population of N elements, and let
U,={L..k,..,N,} and U, ={1,..,k,..,N;} denote two overlapping sub-populations. The two
sub-populations are not assumed to be exclusive, thatis: U, NU, =U,, #0 and U, UU, =U .
The dual frame design sample s is composed of two samples s, (S LU A) and S, (SB c UB)
selected from the two overlapping populations U , and U, using a sample design with inclusion
probabilities 7' = p(k € s,) and 7/ = p(k e s, ), where the frame populations agree with the
target populations. Base weights to compensate for unequal selection probabilities are denoted
by d, = (dk“,dkB ) ,d}=1/z} for s, andby d? =1/z? for ;. Let N, and N, denote the
population sizes and n, and n; denote the sample sizes for frames A and B, respectively. Let
a=ANB", b=A"nB and ab=ANB_ where ¢ denotes complement of a set, and s, =ans,,

S, =bNsg, s =abns, and s} =ab ;. Most of the standard dual frame estimators of a

population total take the form

>
>
>
>

<
I
+

&
+

(1.1)
to estimate the true population total Y =Y, +Y, +Y, .

A standard estimation method can be used to find domain a and b estimates of totals

\fa = Zsa d .y, and \fb = Zsh d. y, for a population characteristic, Y. However, to find YAab ,

consider the estimators Y;ﬁ = ZSA d.y, and Y;ﬁ = ZSB d, Y, - For each sample, the estimators of
ab ab

5



population totals are unbiased for the corresponding domain total Y, , Y, andY,,

E [YAa + \faﬁ} ~Y, +Y, and E [\fb +\faﬁ] ~Y, +Y,, . Therefore adding the two sample estimated

totals results in a biased population estimate

B[V, + Y +Y, Y0 [ =Y, +2Y,, +Y, =Y (1.2)

Finding an unbiased dual frame estimator for Y can be accomplished by using a weighted

average of the estimators YAaﬁ and Y:j. The unbiased dual frame estimator can take the form

V=Y, +p+(1-0)Yy +Y, (1.3)

where 06[0, 1] is a composite factor combining \faﬁ and \faﬁ. Estimators of domain sizes N:, I\Alaﬁ\),
l{li and Nf are defined by setting Y, =1 for all k=1,...,n in YAaA, YAaﬁ , YAaﬁ and YAbB, and the dual

frame estimator in (1.3) can be used to find the population total estimate N. Consequently, an

unbiased dual frame estimator for population mean Y can be written as Y :YA/ N. The weighted

version of the estimated total in (1.3) can be written as

Y =30 mdy + 2 mdy =D WY, Y WY, (1.4)
where W, is a final weight. The adjustment factor M, can be written as
1 kes,
A
—— e (1.5)
1-6 kes,,
1 kes,



Until recently, the weighted version in (1.4) has not been explicitly defined in the
literature. However, in a comprehensive chapter on multiple frame surveys, Lohr (2009) has set
out the weighted version for the different estimators. The explicit weighted version is essential

for (1) application of standard survey software, and (2) finding estimators other than totals and

means, such as the ratio estimator R = Zku Yi / stk X, or the simple linear regression

coefficient estimator J3 = > WX Y /D W

It is worth noting that all dual frame estimators in the following sub-sections are
approximately unbiased, the first desirable property for multiple frame survey estimators. At the
same time, with regard to the fifth property, the effect of non-sampling errors may be
qualitatively different from those in single frame surveys (Brick, Flores-Cervantes, Lee, &
Norman, 2011) because non-sampling errors may causally associate with the sampling frame.
Also, sampling from more than one frame results in non-sampling errors with differential effects,
adding to the complexity of the assessment and adjustment for these errors. Finally, most of the

following estimators require accurate information about domain membership, which might be

affected by reporting errors and, in turn, leading to a biased Y .

1.3.1 Hartley Estimator (HE)

The standard Hartley (1962) dual frame estimator (HE) for the estimated total of y can be

written as

Ve =Y, +0. Y +(1-0¢ ) Vo +Y, (1.6)



Hartley (1962, 1974) proposed choosing the composite factor 6. to minimize the variance of

Y, - The optimizing value of 6 can be written as

v (¥5)+ Cov(jfbs,\faﬁ)i Cov (Y2, Y.4) (1.7)
V(Ya)+V (V)

eHE =

Generally, the components of (1.7) are unknown and need to be estimated from the data.

An estimated version of 6, can be written as

V(¥2)+Cov(¥2,Y;2)~Cov (Y. V2) (1.8)

The weighted version of Y, can be written as in (1.4) with the modification factor

1 kes,
m - Ope k esi (1.9)
k= . .
-6, kest
1 kes,

The domain post-stratified version of Y,. can be written as

\?ffzza\?ﬁzab(ém A£+(1—ém)?aﬁ)+% 1 (1.10)
a ab b

where N, , N, and N, denote the population sizes for domains a, ab and b, respectively.

Nla = Zs d, and Nb = Zs d, are the estimated non-overlapping domain totals and



N b = éHE I\Ala’?) +(1—éHE) NI:b is the overlapping domain estimated total, where N} = ZSA d, and

Although Y, can be classified as an efficient estimator, it is internally inconsistent since

it generates weights that are dependent on the study variables, y. This restricts the practical

application of HE using standard survey software. HE also requires accurate estimates of
variance and covariance components for finding composite factor, éHE. Biased estimates of the
required variance and covariance components could result in non-optimal Y, . Finally, deriving

HE for multiple frame surveys is also more complicated due to the need to estimate the

covariance terms required for composite factors, 6.
1.3.2 Fixed Weight Estimator (FWE)

Choosing an arbitrary fixed value 06[0, 1] for the composite factor in (1.3) (e.g. £€=0.5)

yields the unbiased Fixed Weight Estimator (FWE), which depending on the arbitrary choice

may or may not be as efficient as the HE (Hartley, 1962). The post-stratified version of Y. can

FWE

be written as in (1.10) with the fixed value composite factor €[0,1] instead of 6. The FWE is

internally consistent and results in only one set of weights for all study variables. Also, deriving

FWE for multiple frame surveys is straightforward. The weighted version of FWE can be written

as in (1.4) and (1.5), with the fixed value composite factor 96[0, 1].

1.3.3 Fuller-Burmeister Estimator (FB)



Fuller and Burmeister (1972) extended Hartley’s dual-frame estimator of population

totals by considering information about the maximum likelihood estimator N, of the overlap
domain population size N . The Fuller-Burmeister estimator (FB) of total of y can be written in

the form of estimated domain totals as

A~

YAFB :YAaA +91FBYAaﬁ +(1_91FB)YAaBb +YAbB +92FB(N£) - N:b) (1-11)

The optimal values of &z and &, are chosen to minimize the variance of Ygg . Skinner

(1991) desctibed YAFB as a maximum likelihood estimator (MLE) since it can be derived from

maximum likelithood (ML) principles. Although it is an efficient estimator with a small
asymptotic variance, the FB estimator is, like the HE, study-variable dependent and internally

inconsistent. Therefore, the FB cannot be applied using the standard survey software. Finding the
optimal values of €z and ,p; requires estimation of the variance and covariance components.
Biased estimates of these components could result in a non-optimal estimator Y., . Deriving FB
for multiple frame surveys is also more complicated due to the need to estimate the covariance

terms required for composite factors, @z and &, . Finally, the HE can be considered a special

case of the FB where the composite factor &,z =0.

1.3.4 Single Frame Estimator (SFE)

Bankier (1986) and Kalton and Anderson (1986) proposed the Single Frame Estimator
(SFE) which treats the dual frame design as a single frame design. The SFE treats the dual frame

design as a stratified design composed of three strata, one for each design domain, estimating

10



joint inclusion probabilities. Provided domain membership is known, SFE weights are much
easier to calculate than the HE and the FB estimators (Bankier, 1986). Under an assumption that
the probability of duplicate sample selection from the separate frames is negligible, the single

frame estimator Y. can be written as the weighted version in (1.4), with adjustment factor

1 kes,
o df (df +d?) kesh 1)
= ) .
d/ (df +df) kest
1 kes,

Under simple random sampling, or other self-weighting sample design, the SFE is a

-1
special case of the HE where the composite factor 6, =d, (dkA + dkB) . Raking ratio or

regression estimation can be used to adjust the SFE (Bankier, 1986; Lohr & Rao, 2000; Rao &
Skinner, 1996; Skinner, 1991). Under simple self-weighting sample designs, adjusting the
inclusion probabilities in the overlapping domains by SFE adjustment factors is straightforward.
However, this adjustment is complicated under complex sampling designs, such as stratified
samples, because adjusting the inclusion probabilities for an overlapping domain case selected in

frame A requires knowing the inclusion probability of the same case in frame B.

A

Y, 1s not an efficient estimator, but it is internally consistent since it generates only one

A

set of weights for all study variables, y. The standard survey software can be used to find Y .

Deriving SFE for multiple frame surveys, under simple random sampling plans, is

straightforward. It is, however, more complicated with complex sampling plans.

11



1.3.5 Pseudo-Maximum Likelihood Estimator (PML)

Skinner and Rao (1996) extended the maximum likelihood FB estimator to achieve

internal and design-based consistency under complex designs and developed the Pseudo-

Maximum Likelihood Estimator (PML). Under unknown N, the pseudo-maximum likelihood

estimator, N ;,ML , can be derived as the smaller of the roots of the quadratic equation

A B
[ﬁ 1= e}x { Nay +(1-6,)—2 |x+6,N} +(1-6,)NE =0 (1.13)
NB NA NB A
The PML estimator can be written as
R N NPML N _NPML R NPML
Yoy =2 YAy B _"ab YE OYL+(1-0 1.14
PML Na Nb b 9 Nab+(1 H ) ( ab ( ) ) ( )

. e . 1 PML
where 6, is chosen to minimize the variance of N~ as

N.NgV (N3

6, = (1.15)
NNV (NG )+ NNV (N2 )
The weighted version of PML Y, can be written as in (1.4) with the adjustment factor
_ N\jPML
I\IAI\I# kesa
] PML
— N — Y, kesh
- 0N +(1-6, N5 (1.16)
k™ N PML ( . )
— o (1-6 kesd
O,N4+(1-6, )N
_ NjPML
% kesb
b
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A

Yo, 18 both an internally consistent and an efficient estimator. Standard survey software

A

can be used to compute Y,,, . However, PML requires accurate estimates of variance

components for calculating the composite factor, 49p . Biased estimates of the required variance

A

components could result in non-optimal Y,,, . Deriving PML for multiple frame surveys is also
more complicated due to the need to estimate the covariance terms required for composite

factors, Hp .

1.3.6 Multiplicity Estimator (ME)

Since some population elements have multiple opportunities to be selected as sample
elements, estimation of population statistics from multiple frame surveys can in general be
formalized as a multiplicity problem. Meccati (2007) introduced a simple dual frame estimator,

the Multiplicity Estimator (ME), which depends on the multiplicity information, M, , the number

of frames that case k belongs to. The multiplicity estimator for multiple frames design with Q

overlapping frames can be written as

Y =D 2 Mwly, (1.17)

The weighted version of ME can be written as in (1.4) and (1.5) with composite factor
=M, ' This estimator comes under the Generalized Multiplicity-adjusted Horvitz-Thompson

(GMHT) approach proposed by Singh & Mecatti (2011). Beside the flexibility of extending the
ME to general multiple frame designs, only partial multiplicity information is required for this

estimator. It can be obtained by asking the sampled unit how many frames they belong to. Under

13



dual frame designs, both the ME and the FWE are equivalent where the composite factor

6 = 0.5 . Both can be considered as special cases of the HE.

Y, is an internally consistent, which can be computed by standard survey software, but
inefficient estimator. ME does not require full information about specific design domain
membership; only partial information about total memberships M, is enough. Thus, deriving

ME for multiple frame surveys is a straightforward.

1.3.7 Pseudo-empirical Likelihood Estimator (PEL)

Rao and Wu (2010) proposed the Pseudo-empirical likelihood (PEL) estimator, which

depends on finding the adjustment factor m,_ based on maximizing an empirical log likelihood

function which can be written as

N &, N,
g(pwp:b’pgb’pb) SAL ; L [zsaﬁ_awklog(pak)"'zs;b pl\AlA : Wklog( paAbk)
a ab
(1.18)
N 1-6, )N,
+Zsb Nb WkIOg( Pok )+ZSEB(N¢W1<10%( paBbk)
b ab

4 ’

where P, =(Pyys-vs Par ) + D = (Plisvos Pl )+ Py = (Pots-os Py, ) and

po = ( S p:an ) are probability measures corresponding to poststratified samples s, , S:b,
ab

B
ab »

s, and S, , respectively, and 6, can be obtained as

TNV (NG)+ NNV (R)

(1.19)
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subject to the constraints

Zsa Pa =1, ZSQ, paAbk =1
Zsb Por =1, ngb Pa =1

and
Zs;b paAbk Yo = zSaBb paBbk Yy

The weighted version of PEL can be written as in (1.4) with the modification factor

Pai. _ NjPML

" (N,-N2") kes,
A Ph
0, L NIV kesh
p W, ab ab

m, = ,\ B

(1-6,) s;bi N7 kest

Pui J

W‘:(NB—N;ML) kes,

(1.20)

(1.21)

PEL can be classified as an efficient estimator, but, as in the case of the HE and the FB, it

is study-variable dependent and internally inconsistent. This restricts the practical application of

PEL using standard survey software. As in the case of PML, PEL requires accurate estimates of

variance components for finding the composite factor, 9p . Biased estimates of the required

A

variance components could result in non-optimal Y,

. Deriving PEL for multiple frame surveys

is also more complicated due to the need to estimate the covariance terms required for composite

factors, Hp .
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1.4 Variance Estimation

Except for PML, variance estimation is straightforward for the internally consistent dual
frame estimators (FWE, SFE and ME) that produce only one set of weights. In this case the
weight adjustment factor does not depend on the individual study variable, y. Therefore, the dual
frame variance can be estimated by adding the estimated variances of the estimators for two

samples as

V[Y]:V[ZSA mkdkyk}uv [ZSB mkdkyk} (1.22)

However, for PML and the internally inconsistent dual frame estimators HE, FB and PEL, the
variability in the estimated composite factor & must be captured in the variance estimation. The
variability added by calibrating the design weights to population totals should also be considered
in the variance estimation. For these estimators, PML, internally inconsistent estimators and
calibrated dual frame estimators in general, jackknife and bootstrap methods are recommended

for variance estimation (Lohr, 2011; Lohr & Rao, 2000; Skinner & Rao, 1996).
1.5 Conclusions and Motivations

1.5.1 Conclusions

The standard dual frame estimators can be classified into three groups. The first group
includes the optimal estimators HE, FB and PEL, which have optimal theoretical properties but
present methodological and practical problems due to their complexity, especially in the case of

the multiple frame surveys (Lohr & Rao, 2000, 2006; Mecatti, 2007; Skinner, 1991). The second
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group includes the estimators FWE, SFE and ME which are readily calculated in practice but
achieve lower efficiency relative to the optimal estimators. The third group has a single
estimator, the pseudo-optimum estimator PML. It is a balance between the previous groups.
PML has more practical applicability than the optimal estimators in the first group, and better
efficiency than the practical estimators in the second group (Lohr, 2011; Lohr & Rao, 2000;
Skinner & Rao, 1996). PML has a smaller mean square error (MSE) than FB and HE, since the
variability in estimating the components of the composite factor in FB and HE adds to the

estimated variance in MSE (Skinner & Rao, 1996).

Most of the standard dual frame estimators require accurate information about domain
membership (multiplicity information). If this information is not available before the data
collection (e.g. from properties or actual matching of frames), multiplicity information for each
sample unit should be collected during the interview. Ideally, such information on frame
membership should be free from reporting bias or measurement errors, but this is not typically
the case in practice (Lohr & Rao, 2006). Moreover, the rate of nonresponse or misreporting for
the domain membership questions could be even higher when surveying sensitive characteristics
or elusive populations (Mecatti, 2007). Such problems in measuring the domain membership can

have a direct effect on the error properties of the dual frame estimator.

1.5.2 Motivation

The previous discussion indicates that there is still a need for a dual frame estimator that
satisfies more the desirable properties discussed earlier. In this dissertation, a new dual frame
estimator will be introduced and evaluated in the context of these desirable properties. This

estimator depends on the general calibration approach introduced by Deville and Sarndal (1992).
17



In the literature, dual frame samples can be calibrated separately, before combining the two
samples, or jointly, after combining the two samples. However, the implicit potential of jointly

calibrating dual frame samples has not been explored.

Since calibration generates unbiased auxiliary variable estimates under dual frame
designs, there is an interest in developing and testing the calibration effect on the study variables
estimates. In the following chapters, the Joint Calibration Estimator (JCE) will be introduced as
opposed to the standard dual frame estimators discussed in this chapter. The JCE will be
empirically compared to the standard FWE estimator. Comparisons will be made under a full
response assumption and in the presence of non-sampling errors arising from survey nonresponse

or domain misclassification.
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Chapter 2

Joint Calibration Estimator for Dual Frame Surveys

2.1 Introduction

Chapter 1 presented a review of past and current literature on dual frame estimation. In
this chapter, we provide an overview of calibration weighted estimation and introduce the model-
assisted design-based Joint Calibration Estimator (JCE) for dual frame estimation. The properties
of the JCE are explored under the ‘ideal situation’ in which non-sampling errors are absent. The
calibration approach is discussed in Section 2.2. The JCE is introduced in Sections 2.3 and 2.4.
In Sections 2.5 and 2.6 a bias and a variance estimator for JCE are derived. The performance of
JCE in comparison with one of the dual frame estimators presented in Chapter 1 is explored in a
simulation study described in Section 2.7. The simulation results and findings are presented and

discussed in Sections 2.8 and 2.9.
2.2  The Calibration Approach

A standard weighting procedure in both single and dual frame designs is to rake or post-
stratify weights to external population control totals. In dual frame surveys, raking or post-
stratification can be performed before combining the two samples to adjust for, say, differential
nonresponse in the samples from the separate frames (Brick et al., 2011). Also, these techniques
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can be performed after combining the two samples to retrieve properties of the original sampling

weights lost in the combining step (Lohr, 2011; Lohr & Rao, 2000).

Raking and post-stratification are special cases of calibration adjustment. Calibration can
be conceptualized as a method of constraining the weights by conditioning on auxiliary variable
distributions (Deville & Sarndal, 1992; Deville, Sirndal & Sautory, 1993). A comprehensive

description of calibration weighting methods can be found in (Sirndal, 2007).

In the single frame survey design, where the sample S(S cu ) is selected from the

population U using a sample design with inclusion probability of 7z, = p(k € S), the base

weights are denoted by d, =1/7, fors. Let y, be the k" value of the variable of interest, and

X, = (xkl,.., Xig» s Xig ) an auxiliary variable vector of dimension j=(1,...,J), where both y,
and X, are observed for the sample elements K € S . The Horvitz-Thompson estimator for the

total of yis Y,,, = Z .0y ¥ - Inacomplete response situation, with known auxiliary totals for

the j=(1,..,J) auxiliary variables, X = (Xl,.., X0 X, )' :( L X 2 Koo 2o Xio )', Deville
and Sérndal (1992) defined calibration as a method to find the calibrated weights w, which
minimize a distance measure G (w,,d, ) between the calibrated weights w, and the base weights
d, . This minimization of the distance function is subject to the constraint that the calibration-
weighted total of the auxiliary variable values Zs W, X, equals the known population total for
the auxiliary x LYi=1,, J as

> wx, =X (2.1)
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This calibration problem results in final calibrated weights
w, =d, F(qx4) (2.2)

where F (q,x;4) is the inverse of 6G (w,,d, )/ow, . 4 denotes a vector of Lagrange multipliers
used in the minimization and q, is a positive value which scales the calibrated weights in (2.2).
It is common practice to use ¢, =1. As an alternative to the distance minimization approach,

Estevao and Sirndal (2000) introduced the functional form approach to build the calibration

estimators. Since both approaches lead to the same estimators, we will focus on the first one.

Many distance measures have been proposed for calibration. Deville and Sérndal (1992)

defined the desirable properties of these functions as (1) for every fixed d, >0, G (w,,d, ) is
nonnegative, differentiable with respect to w, , strictly convex and G (d,,d, )= 0, and (2)
dG (w,,d, )/ow, is continuous. Empirically, there are small differences in the calibrated

estimates derived from different distance measures (Singh & Mohl, 1996; Stukel, Hidiroglou, &

Sérndal, 1996). We will focus here on the linear case in which the chi-square distance function

(w, —d, )2/2dk is used, and g, =1 is assumed.

Under the chi-square distance function, calibration solution finds w,,k € S by
minimizing the distance function )’ . (Wk -d, )2 / 2d, subject to the calibration equation
> w,x,=X,where d; are arbitrary initial weights (a base weight or an adjusted version). This

minimization generates the Lagrange multiplier vector
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V= (3% - dix,) (2L dix ) (2.3)

When the calibration factor is g, = (1+ 1'%, ), the final calibrated weights is

* ’ * * * ' -1
w, =d, (1+A%, ) =d; [1+(ZU X, =, diX, )(stkxkxk) xk} (2.4)
and the calibrated estimated total of y is
Y= WY, (2.5)

The auxiliary variables’ vector characterizes the final calibration estimator. Let g, and
v. denote the expectation and variance with respect to the calibration model¢. Under the

univariate auxiliary variable X, =1 for all k e U , corresponding to the following common mean

model

{@wo= (2.6)

when the overall population total is X = N , the calibration factoris g, =N (ZS d, )71 , and the

calibrated estimated total of y is the well-known expansion estimator
Y, =NY dy, (3,d;) 2.7)

When x, =X, forall k eU , which corresponds to the ratio model (y, /x, is constant on average

for any fixed X, ), the expectation and variance of Yy, are
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{Eg(yk):ﬂxk (28)

V‘g(yk):azxk

When X=X, the calibration factor is g, = X (3 d;x, )71 , and the calibrated estimated total of

y is the well-known ratio estimator

V= XY dy (X.dix ) (2.9)

For the multivariate auxiliary variable x, = (1,x,) for all k e U , corresponding to the simple

regression model with an intercept, assume the same model for all elements,

. (2.10)

Here X, is the value for element k of a continuous variable X, and the population total vector is

X =(N, X ). The calibrated estimated total of y is the well-known regression estimator
Y’\w:ZSkak:YAHT'F(zU Xk_st:Xk)és (2.11)

where Y, is weighted by the modified base weights d;,and B, = stgxkyk (st:xka )_1 .All

the previous estimators, in (2.7), (2.9) and (2.11), are special cases of the well-known
Generalized Regression Estimator (GREG), which is a general estimator derived from the chi-
square distance function. At the same time, Deville and Sadrndal (1992) found that calibration

estimators derived with distance functions other than the chi-square are asymptotically
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equivalent to the GREG. Therefore, the GREG variance estimator can be used interchangeably

for any of the other calibration estimators.

The variance of Y, is

V(Y%)=2 Xy —ﬁkﬂ.)(e—kj[e—'J 2.12)

T )\

where 7, = p(k&les), 7, =p(l€s), ¢, =y, -xB,, and B, can be written as

By =D, %Y (2, XX )71 . The corresponding estimated variance is
(Y,)= zs@(wkék)(w,é,) (2.13)
kl

A ) A A L\
where & =y, -x;B,, and B, => wxy, (X wxx;) -

Generally, the idea behind calibration appeals to practitioners since the GREG estimator

in (2.11) can be written as a linear combinations of observations y, with calibrated weights w,

that are sample-dependent (Deville & Sarndal, 1992). At the same time, the approach assures the
external consistency, where the estimated totals of auxiliary variables are the same as the

population totals.

In the following sections, the implicit potential of calibration method for combining data
will be explored. Since the main idea behind calibration is to find a set of weights which
guarantee that the estimated auxiliary totals conform to known population totals, the same idea

can be used to combine two samples. As opposed to the standard dual frame estimators discussed
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in Chapter 1, the Joint Calibration approach will be introduced as a method for combining dual
frame samples. In addition to the practical simplicity of Joint Calibration, it is flexible enough to

accommodate varying forms of available auxiliary variables in dual frame estimation.

In single sample designs, a strong correlation between auxiliary variables and the study
variable implies that the weights that perform well for the auxiliary variables should also perform
well for the study variable and results in asymptotically unbiased calibrated estimates (Deville &
Sarndal, 1992). The same idea can be applied to the dual frame estimation, where strong
associations between the auxiliary variables and the study variable results in asymptotically

unbiased dual frame estimates, as proved in Proposition 2.1 in Section 2.5.
2.3 Joint Calibration Estimator (JCE)

Under the dual frame design, where E( ) denotes design-based expectation,
E(ZSA d, X, ) =X,> E(ZSB d, X, ) =X, and E (ZSA d, X, +ZSB d, X, ) # X , calibration conditioning on
> WX+ wx, =X should achieve E (z WX Y WX, ) = X . Consequently, a powerful

set of auxiliary variables, that are strong predictors for the study variable y, should result in

E (Z A > o Wi Vi ) =Y , as proven in Proposition 2.1 in Section 2.5.

Under the complete response assumption, calibrated estimates can be parameterized
under the dual frame design through re-deriving the calibration factors as explicit components
for each sample of the dual frame sample. By jointly calibrating the two datasets, the calibration

problem will be to find final weights W, , k € s to satisfy the calibration equation

25



D WX, = ZSA W, X, +ZSB W, X, =X (2.14)

through minimizing the following distance function

> (w —dk)z/de (2.15)

The distance function can be split into two components for the two samples A and B as follows

ZSA(Wk —d, )2/2dk ﬁtzsﬁ(wk —d, )2/2dk (2.16)

Consequently, the joint calibration weights are

2.17)

_[a0ea%) Kes,
“ld (14 4%,) kes,

where A'= (ZU X, —stkxk )’ (stkxkxf( )71 and the joint calibration factor is g, = (1+4'x, ).

Recall, the dual frame estimator for the total of y, can be written as in equation (1.3), and
the weighted version expressed as in equations (1.4) and (1.5). A modified version of equation

(1.4) can be written as
Y= Zsa dy Yi + ZS;b md Y, + ZSaBb md, Y, + Zsb d, Vi (2.18)

Consequently, where auxiliary variable X, =1 for k e U , the main constraint in (2.14) can be

written as

2w, =N (2.19)
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and the following constraints can be added to the calibration minimization problem

w,=d, Vkes,us, (2.20)
This constraint is identical to

Zsawkzzsad:zNa (2.21)
and

>owo=> di =N, (2.22)

In (2.21), d, :(Na/zsadk)dk,whereas, in (2.22), d, :(Nb/zsbdk)dk.ln fact, the

calibration problem with the three constraints, (2.19), (2.21) and (2.22), is identical to post-

stratifying the sample by the design domain totals N_,N_, and N, . Therefore, calibrating by

these totals yields the unbiased dual frame estimator (1.3), where the modification factors

m. and m? for the overlap domain have the same value m, and can be written as

m, = rxlab/(zsg\bolk +3 O ) Vkeshuss, (2.23)
At the same time, the joint calibration factor can be written as

Na/zsa d kes
g, = Nab/(Zs;\b d, +Zs§bdk) kesl ush (2.24)

Nb/ZSh dk k Esb
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It is worth noting that by using the joint calibration factor in (2.24), this version of JCE is

identical to the post-stratified version of the Fixed Weight Estimator (FWE)

(9?;3 +(1—0)\?aﬁ)+% A (2.25)

where 6=.5 and Nab =((9[<|a/2 +(1—¢9) N:b) . Interestingly, the same conclusion can be reached

based on Remark 2.1 proved by Liindstrom and Sarndal (1999):

“Suppose the population is divided into P groups u ,....u _,...., U, and that the group total

ZU x, isknown for p =1,...,P, and used in the calibration. Let ¢ , p =1,...,P , be arbitrary

.....

positive constants. Then the initial weightsd, = d, and the initial weights d; =c d, ,for ker,,

give exactly the same final weights when Zs(wk — d;‘)z/d;‘qk is minimized and q, =1/u'x,
holds.”

Under multiple frame design, when the population is divided into P domains and when d; is
replaced by ¢ d, in the distance function, where ¢ is the dual frame composite factor,

minimizing the chi-square distance

2

(w, —c,dy)
A 2.26
2ol 55 g (2:26)

p

under the constraints ZS w, = N, achieves an asymptotically unbiased calibration estimator,
P

and implicitly combines the samples. Under dual frame design, ¢ can be written as
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1 pes,

A

c =19 P & Sap 2.27)
l1-0 pes
1 pes,

However, we should have a fixed ¢ within each domain. So using & = 0.5, which follows the

fixed weights dual frame estimator (FWE), results in the asymptotically unbiased calibrated

estimator. In this case, considering that N,N,,N; and N, are known, the calibrated total of y

can be written in form of domain-level means as

“Noya N-N,go N,
N, ° N, °  ONA+(1-6)N

(0¥ +(1-0)Y) (2.28)

When N, is unknown, the calibrated total of y can be written as

“Nogn , N-Nygo N +N-N
N ) N, ONS +(1-6)N,

(0¥ +(1-0)Y,0) (2.29)

Consequently, calibrating the dual frame to the totals of domains (a, ab & b ) is identical to the
FWE and gives unbiased estimates. This means that the calibration constraints or the auxiliary
variables used determine forms of the JCE, some of which might be identical to the standard dual

frame estimators. In the next section, more general forms of JCE are discussed.

The JCE can be applied to the general case of multiple frames. Under the dual frame

design, the JCE for population total of y can be written as
YAJCE = Z WY = Z o VicYie T Z 55 Vi Yk (2.30)
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-1

where W, =d, (1+4’X,) and ﬂ’:(zu X =y dXx =D dkxk) (ZS X, X, + D dkxkx;)
Under multiple frame designs, when the population is divided into P domains, the JCE for

population total of y can be written as
Yice = szsp Wy Yy (2.31)

where W, =d, (1+4'X,) and A’ can be written as

-1

A :(ZU X, —szsp d x, )’ (szsp dkxkx{() (2.32)

2.4  Examples of Joint Calibration Estimators

The auxiliary variable vector characterizes the final JCE for dual frame estimation. For

example, under the univariate auxiliary variable X, =1 for k e U , which corresponds to the

common mean model in (2.6), where the overall population total is X = N , the joint calibration

factor is

0, =N(2, d, +Z$Bdk)71 (2.33)

By calibrating the concatenated or “stacked” datasets for each frame’s sample,

ZSA W, X, + ZSB w, X, = N . This JCE estimate is appropriate when it is thought that the true

common mean g is the same for all k e U . However, another JCE estimate is appropriate when
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it is thought that s vary between design domains d =(a,ab,b). This estimate uses the calibration

factor in (2.24).

When X, =X, for k eU , corresponding to the ratio model in (2.8), and when X=X, the

joint calibration factor is

g =X (X, dex + Y, dox ) (2.34)

By calibrating the stacked dataset, zs W, X, + Zs w, X, = X . This JCE estimate is appropriate

when it is thought that gx, is the same, forall k eU .

Another JCE estimate is appropriate when it is thought that gx, vary between design

domains d =(a,ab,b). This estimate uses the calibration factor

Xa/zsadkxk (s,
g, = Xab/(zs;b dox + Y g X, ) keshush (2.35)

Xb/zsb dkxk kESb

Obviously, this estimate requires knowledge of the separate totals ( X,, X, X, ).

Under the multivariate auxiliary variable x, = (1,x, ) for k e U , which corresponds to the
simple regression model with intercept in (2.10), where the population total vector is X = (N, X))

A

the calibrated estimate of the total, Y,.., can be written as
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Viee =Vi +5 (%~ (X, dox + 2, dox ) B2 (2.36)

oy _1 . . .
where B/® = (ZSA d, X, Y, +sz d, X, Y, )(ZSA d, X, X; + sz dkxkxk) . This JCE estimate is
appropriate when it is thought that « + gx, is the same, for all k e U . With more than one

auxiliary variable, the multivariate formula can be written as

Viee =Vt + ¥ (X ~( T, dox+ X, dhx, ) B2 (2.37)
where x, = (ka--a Xyjs s Xig )' is the auxiliary variable vector with j =(1,...,J) dimensions.

Interestingly, since (zs d X, +ZS dkxk) is always greater than ZU X, , the term
(ZU X, —(ZSA d x, + ZSB d, X, )) BA® in (2.37) can be viewed as a negative sign correction

factor applied to the biased summation of the YA,fT and YAHBT from both samples. Note that all the

JCE forms can be derived from the general JCE form in (2.37).

Another interesting multivariate calibration estimator is the complete post-stratified
estimator, which corresponds to the group mean model, calibrating on known post-stratified cell

counts. When the sizes of the population groups N and the classification vector used to code

membership in one of P mutually exclusive and exhaustive groups are known, and
Xe =V = ( Viksewes Y pseoes ;/Pk) is the auxiliary variables vector, the calibrated estimator is the well-

known post-stratified estimator. The joint calibration factor takes the form
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N p/(ZSS‘ d, + ng d, ) where s;‘ denotes the sample cell y JN's, and SE denotes the sample

cell u , N's, . The calibrated estimator of the total of the study variable y can be written as

NP

ng dk + ZSS‘ dk

YAJCE = ZP( )(ZS;\ dk Y« +Zs§ dk yk) (2.38)

In the group mean model, it is implicitly assumed that mean and variance are shared by

all elements within the same group p as

{E(yk)= (2.39)

Similarly, when the group totals X & are known and x, = x, 7, = (xlk;/]k,..., Xok¥ preos kaypk) is

used as the auxiliary variables vector, this corresponds to the group ratio model, where mean and

variance are shared by all elements within the same group p as

E(y)= ﬂgxk (2.40)
V(y)= o X
Both the group mean model and the group ratio model may be classified under the group
models (Sarndal, Swensson & Wretman, 1992). Since the groups in the group models can serve
as strata, JCE would have better performance if this informative design has been incorporated

into the auxiliary variable vector.
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2.5 Joint Calibration Estimator Bias

In this section, an approximate JCE bias is derived. This helps in understanding the
mechanism of the joint calibration approach in combining the dual frame design samples in
contrast to the other dual frame estimators. At the same time, it highlights the JCE as a model-
assisted design-based estimator for which the design-based bias properties are affected by the

association between the study variable y and the auxiliary variable vector X.

Proposition 2.1

The bias of the JCE estimator, YAJCE , in (2.30) is given approximately by

Bias(Vee )= Y, el° (2.41)

where

eh® = (yk _XLBS\,B)’ BA® Z(ZUAXKXL +ZUB X, X, )_1 (Zqukyk +ZUBXkyk) (2.42)

Appendix 2.1 presents the derivation of (2.41).

Note that the dual frame estimation bias can be derived from (1.2) in Chapter 1 as
Bias (Y, +Ys )=,V (2.43)

This means that the joint calibration approach uses x;B/® to attenuate the bias for each k e U,

to reduce the bias in (2.43). Therefore, the reduction in dual frame estimation bias due to the

joint calibration is ZU x;B{® , which is the difference between (2.43) and (2.41). Proposition
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2.1 emphasizes the need to identify powerful auxiliary variables that can predict study variable y.

The more x;B/® is able to predict y, for each k €U, , the more reduction in bias. The bias of

ab

~n

Y, in (2.41) is independent of the sampling design used to draw S, and S; as long as the set of

auxiliary variables X, is the same.

Corollary 2.1

When a perfect linear relationship exists in the population between the study variable Yy, and the

auxiliary vector X, , as Y, =X, By, for every k e U , the bias of the JCE estimator in (2.41) can be

written as
Bias( AJCE):ZU“ X; (BU —BS’B):O (2.44)

This is due the fact that when this perfect linear relationship between y, and x, exists,
B, ® =B, . That is, the bias of YAJCE is a function of the difference between two regression vectors
B/® and B, . This perfect relationship will not hold in practice. However, the bias in (2.41) will
be reduced if the perfect linear relationship between Yy, and X, comes close to being attained.
We should use auxiliary variables X, such that the residuals e® = (yk — x’kBS’B) are small. This
happens when the residuals e, = (yk - X, B, ) are small. Using such a set of auxiliary variables
X, guarantees reduced bias and variance of the JCE as a dual frame estimator.

Corollary 2.1 helps us in understanding the relationship between the study variable y and

the auxiliary variable vector X. The performance of the JCE is controlled by the association
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between Yy and X, where the best performance happens when (1) X more closely matches the
population model or (2) X includes some strong correlates of y. Although the first case results in
greater reduction in bias, the second case is more appealing due to an unknown population model

required for the first case.

Assuming that the same model holds for all units in the whole population, NLZU elf"B
a.b ab
asymptotically follows N(0,V) where V is O( N;t} ), the bias of the mean estimator
Bias|V: —LZ ™8, where Yycg =V /N, converges in probability to 0 in large
JCE | =y &y, K JCE = TJce/ N » g p y g

populations, Bias (\?JCE ) —LP 50. This is due to the fact that the variance of the zero mean

N~ N . . _ P, N
Blas(YJCE ) = I\Tb NLbZUab ekA’B is proportional to PazbO(Nat}) zﬁb, where Tab—> P, > and
a

P, . . 2 . . .
ﬁb —0 as N — «. This means that the JCE estimator of mean, Y;cg , is a consistent estimator

of population mean, Y .

2.6 Joint Calibration Estimator Variance estimation

Where variance of Y, under single frame design can be written as in (2.12), under dual

A

frame design variance of Y. can be written as

ZUADED 2 IR E-43 35 3 P 5 C 3p 3R o) - BCED

T I
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where s,, =5, NS;, for D=(AB.ab), Af =(7 77" ), m) = P(k &l es;), 7’ =p(kesp),

7 =p(lesy), el =y, -X,By, ,and B, = ZUD X, Yi (ZU X, X, )71. Assuming negligible values of

72, 7 and 7", the corresponding estimated variance is

WVe) =2 X, 25 (e e+ 3, 22 () () .40

Ty

-1
AD B O _ '
where ¢ =y, -x,B,, ,and B, _ZSD W X, Y, (ZSD wkxkxk) :

2.7  Simulation study

Simulation studies were used to evaluate the performance of the JCE relative to the
standard FWE dual frame estimator under the complete response assumption. In these studies,
the estimation bias and mean squared error are used to compare different estimators. The
simulation studies focus on the estimate of the population total of a variable y.

Two population models were used to generate simulated populations. For both models,

the finite population size was N =100,000 with domains population sizes N, = 40,000,

N,, =50,000 and N, =10,000. The population was grouped into J=6 strata with sizes

N, =10,000, N, =20,000, N, =30,000, N, =25,000, N, =5,000 and N, =10,000. Frame sizes are
N, =90,000 (all cases in domains a and ab) and N, = 60,000 (all cases in domains ab and b).

The distribution of the population elements over the strata and the domains is presented in Table

2.1.
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Table 2.1: Distribution of the population elements over the six strata and the three domains.

Frames and domains
A |
B
Strata a ab b Total
1 10,000 10,000
2 20,000 20,000
3 10,000 20,000 30,000
4 25,000 25,000
5 5,000 5,000
6 10,000 10,000
Total 40,000 50,000 10,000 100,000

The first population model is a common linear regression model (CLR), y, = x; +¢,,,

for k=1,.,N and j=1,...,6 strata, where X; ~N (,ux,ax) and &, ~ N (,ug,ag). Here the mean

of'y is the same for all population strata and design domains. The second population model is a

group linear regression model (GLR), which can be written as the first model but with

Xj ~ N ( ,uxj,ax) and & ~ N ( 1,,0,). Inboth models, an auxiliary variable, z,, was

generated as z, = B, + B, + &, for d=(a,ab,b) where 3, =200 and &, ~ N(0,350). For both

the first and the second models, the simulation factors were as follows:
1. Sampling Designs
a) Simple Sampling Design: simple random samples were selected from both frames.
b) Complex Sampling Design: stratified sample with equal allocation to five strata from
frame A, and a simple random sample from frame B.
2. Sample size

a) Equal allocation where n, =500 and n, = 500.
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b) Proportional allocation where n, =600 and n, =400.
c) Extreme allocation where n, =900 and n, =100.

3. Domain means

a) Small-differences in domain means where g, =5, 8, =6 and £ =7.

b) Frame-different means where g, =5, £, =5 and g, =10.

c) Large-differences in domain means where g, =5, , =10 and g, =15.
4. Correlation between y; and x,,

a) The population correlation coefficient is p,, =0.40.

b) The population correlation coefficient is p,, =0.60.

¢) The population correlation coefficient is p,, =0.80.

The correlation levels in the last factor determine the population model parameters as presented

in Table 2.2. Regarding to the CLR model, different values of o, and o, are deliberately
assumed to generate different correlation levels. Since x,, does not contribute to the correlation,
it is almost fixed across the correlation levels. This applies for the GLR model, except that 4, is

different across the 6 strata.
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Table 2.2: Model parameters based on correlation levels between y;, and x|, .

Py
Model parameters Py, =0.40 Py, =0.60 Pyy =0.80
CLR Model
Xi ~ N(,0,) N(750,192) | N(780,288) | N(760,384)
gy ~ N(u,,0,) N (0,440) N (0,384) N (0,288)
GLR Model
Xp ~ N(0.04) | N(487,192) | N(500,288) | N(480,384)
X =~ N(0,04) | N(618,192) | N(640,288) | N(620,384)
Xy ~ N(t5.04) | N(750,192) | N(780,288) | N(760,384)
Xu ~ N(£44,0,) | N(881,192) | N(919,288) | N(900,384)
X ~ N(t45,0,) | N(1013,192) | N(1059,288) | N(1039,384)
Xer ~ N(46.0,) | N(487,192) | N(500,288) | N(479,384)
gy ~ N(u,,0,) N (0,440) N (0,384) N (0,288)

These sets of simulation factors combine to form 108 simulation studies, 54 simulation
studies for each population model. One thousand replicates of initial samples of 1,000 cases were
run for each study, resulting in standard error less than 60 for difference in the biases between
FWE and JCE estimators. To simulate a dual frame design, within each simulation replicate, two
samples were independently drawn from both frames A and B. These samples were ‘stacked’ to

form dual frame sample s.

Dual frame estimation methods were then applied to each simulated dual frame sample.
FWE with €=0.5 represents the standard fixed weight dual frame estimator, YAFWE . FWE with
6 =0.5 means that after applying the base weights, d/* and d., for each sample, the

combination step adjusts the base weights using a composite factor =0.5. The auxiliary
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variables were then used to calibrate the adjusted base weights to the auxiliary totals for three
combinations of X and z resulting in the calibrated versions Y2 | Y& and Y2 .

Additionally, in conjunction with X, the design domain, D = (a, ab, b), and frame identifiers, F =

A

(A,B), were used to calibrate the adjusted base weights resulting in YAFC&;E.XD and YFC\‘;‘,'E'XF .

For the JCE, the base weights, d* and d’ were applied for each sample, and then the
auxiliary variables X and z were used to calibrate the base weights directly, resulting in the JCE

Py

estimators, Y, , YAJCE'x and YAJCE_XZ . Additionally, under the GLR model, YAJCE'ZJ , YAJCE_XJ and

\?JCE.XZJ were produced using the same auxiliary variables used in YAJCE_Z, \fJCE_X and YAJCE.XZ,
respectively, except that stratum totals were also included in the calibration auxiliary variable

2 2 . J . . 2 cal
set. Also, Y, ,o and Y, were produced using the same auxiliary variables used in Yque o

and YAFC&,'E.XF , respectively.
The biases in the JCE estimates and the FWE estimates were assessed through a

comparison of the survey estimate Y, to the population parameter Y for the synthetic finite

population. Relative Bias of parameter estimates (RB) was computed as

Y,
_ Z|e1000 "_Y Ix100 /¥ (2.47)
1000

The Relative Root Mean Squared Error (RMSE) for each estimator was computed as

()
RMSE = Zidmwxloo Y (2.48)

for 1000 replications or simulated dual frame samples for each simulation specification.

41



2.8 Simulation Results

In this section, only results for the simple sampling design are discussed, since simulation
results for complex sampling designs, in Appendix 2.2, show the same patterns of results
consistent with proposition 2.1. As indicated in Figure 2.1, under simple sampling design from

the CLR model population, where n, =500 and n, =500, B, =5, B, =6 and S, =7, and under

0.4 correlation between y; and x, , JCE_Dx (\?JCE.XD) and JCE_Fx (VJCE.XF) gave exactly the

k>
same results as FWE_Dx (YAFC\Z‘,'E_m) and FWE_Fx (YAFCJ‘\,'E_XF ), respectively. This is consistent with
the proof in (2.28) and (2.29) where calibrating the base weights by the population totals of

design domain in YAJCED or frame totals in YAJCE.F is identical to FWE with 68=0.5, YAFWE. These

four estimators (JCE_Dx, JCE _Fx, FWE Dx and FWE_ Fx) give almost unbiased estimates,
where the estimate expectations almost equal 84,252,408, the population total Y. The same
applies under all the simulation studies, as long as the design domain or the frames are
considered in the calibration auxiliary variables vector. Therefore, the results for FWE Dx and

FWE_Fx are not included in the simulation tables or in our discussion.

As indicated in Figures 2.2 and 2.3, under simple sampling design from the CLR or GLR
model populations, where n, =500 and n, =500 and g, =5, g, =6 and 4 =7, when complete
response is assumed, the standard estimator YAFWE achieves nearly unbiased estimates. Under the
CLR model, as indicated in Figure 2.2, the proposed AJCE estimators achieve relative biases
comparable to the standard estimator YAFWE or its calibrated versions, YAFC\‘?\,'E ’s. This means that

calibrating the ‘stacked’ samples directly by z or X in YAJCE'z , YAJCE_X and YAJCE_XZ was enough to
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combine the two samples without the composite factor &, under the complete response

assumption. The same applies under the other sample allocations and domain means as in Table

2.3.

Figure 2.1: The standard estimator FWE and the proposed estimator JCE of Y , estimated from
CLR model population under simple sampling design
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Under the CLR model, in Table 2.3, there are no apparent differences between the

relative biases for the different simulation studies. For example, neither the association level

between Yy and X nor the domain means have any effect on the relative biases in YAJCE.X and YAJCE‘XZ

or YAJCE_Z and YAJCE_XZ , respectively. The RMSE’s, in Figure 2.3 and Table 2.4, show the same

patterns as the relative biases, although RMSE’s for YAJCE were slightly lower than RMSE’s for

7 cal
Yewe -

43



Figure 2.2: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated under the
CLR model population under simple sampling design, equal allocation and small domain mean

differences
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With regard to the sample allocation, in Table 2.3, there is no apparent difference
between the relative biases in YAJCE.Z , YAJCE'X and YAJCE'XZ across allocations. However, the effect of
the sample allocation is more obvious on the RMSE, in Table 2.4, due to the effect of the sample

allocation on the estimated variance. The proportional allocation, n, =600 and n, =400, tends

44



to have smaller RMSE due to the smaller estimated variance, relative to the extreme allocation,

n, =900 and n, =100 . Slight differences can be noted between the RMSE for the proportional
allocation, n, =600 and n, =400 and the equal allocation, n, =500 and n, =500, due to the

small difference in sample size allocations. A similar sample allocation effect applies under the
GLR model in Table 2.6 as well.
As indicated in Figure 2.3, under simple sampling design from the GLR model

population, where n, =500 and n, =500 and 8, =5, B, =6 and g =7, the JCE estimators

Y.e,» Yice, and Yy, are subject to higher relative biases than Y& | Y& and Y&
respectively. This means that calibrating the ‘stacked’ samples directly by z or X in YAJCE.Z , YAJCE'x

and \fJCEAXZ is not a satisfactory method for providing estimates from the dual frame sample.

Adding the strata totals to the calibration in YAJCE_ZJ , YAJCE.XJ and YAJCE_XZJ , as in Figure 2.3 and
Table 2.5, resulted in reduced relative biases. Thus calibrating the ‘stacked’ samples directly by
strata J and Z or X in YAJCE'ZJ , YAJCE.XJ and YAJCE.XZJ is a more satisfactory way to combine the two

samples under the complete response assumption.

Under the GLR model, in Table 2.5, the domain means do not have any effect on the relative

biases in YAJCE'Z and YAJCE.XZ . As in Figure 2.3, the higher the correlation between y and X the lower the

relative biases achieved in YAJCEAX and YAJCE‘XZ . Generally, the RMSE, in Figure 2.3 and Table 2.6, show

the same patterns as the relative biases.
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Figure 2.3: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated from the
GLR model population under simple sampling design, equal allocation, and small domain mean

differences
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2.9 Discussion and Conclusion

In dual frame designs, three groups of variables may contribute to the estimation
problem. The first group includes the study variables, y. The second group includes the auxiliary
variables, which might be associated with the study variable, such as X, or might not, such as z.
The design domains, D, are the third group. Thinking about the relationship between these
groups or variables can guide understanding about more satisfactory dual frame estimation
approaches. Figure 2.4 shows the relationship between these different variables as studied in the
simulation, where the bidirectional arrows indicate the association between two variables and the

dashed arrows indicate different estimation scenarios.

Regardless of the relation between y and D, when accurate information about the design
domains, D , is available, adding this information to the JCE auxiliary variable vector results in
an unbiased estimate of the population total of Yy, (see arrow 1 in Figure 2.4). This is due to the
fact that adding D to the auxiliary variable vector results in an estimator which is identical to the
standard FWE dual frame estimator with € =0.5. When a strong relationship exists between z
and D (arrow 2, Figure 2.4), adding z to the JCE auxiliary variable vector results in reduced-
biased estimates of Y (arrow 3, Figure 2.4). When a strong association exists between X and y
(arrow 5, Figure 2.4), adding X to the JCE auxiliary variable vector results in an almost unbiased
estimate of Y (arrow 4, Figure 2.4). Moreover, if adding X to the auxiliary variable vector results
in a calibration model that closely matches the population model, this results in unbiased

estimates of Y.
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Figure 2.4: The relations between the study variable (y), auxiliary variables (X, z) and design
domains (D) as guidance for dual frame estimation
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In summary, the JCE was proposed here as a new model-assisted design-based dual
frame estimator that can achieve parallel efficiency to that of the standard dual frame estimators.
JCE has achieved a level of bias and MSE that is comparable to the standard estimator, FWE,
under the assumption of complete response. JCE for point estimates is also easier to use in
practice. Moreover, applying JCE does not necessarily require any information about the design

domain membership, information required for standard dual frame estimators.

Generally, the performance of JCE depends on the agreement between the population
model and the working model in the calibration, and to a lesser degree, on the association
between the auxiliary variable and the study variable. Under the complete response assumption,
when the auxiliary vector or the implicit calibration model more closely matches the population
model, JCE yields almost unbiased dual frame estimates. When the models do not agree, JCE has
a higher level of bias than the standard FWE estimator. Thus, the extent of the association
between the study variable y and the auxiliary variable X is an important determinant factor of the

JCE performance.
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JCE ought to be preferred to the standard dual frame estimators, since it only depends on
calibrating the pooled datasets to available auxiliary variables, a step already performed in
standard dual frame estimation. In JCE, practitioners only need to apply the raking or
poststratification step using available auxiliary variables, which are most likely related to the
study variables. In addition, unlike the optimal dual frame estimators, JCE yields only one
weighting variable to be used with the study variables. JCE can be easily extended to the
multiple frame case; extending standard dual frame estimators to the multiple frame design is not

readily done.

Finally, the JCE dual frame estimator has five of the desirable properties discussed in
Chapter 1. It is unbiased or approximately so, internally consistent, efficient, applicable for point
estimates with standard survey software and applicable to multiple (more than two) frame

surveys. The other desirable properties will be explored in the subsequent chapters.
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Table 2.3:

Simulation RB (%) for FWE and JCE estimators of Y , estimated from the CLR model population under simple sampling

design.

Sample size Domain means Pxy YAFWE YAFC&/IE.z YAJCE.Z Y/\IZ(:\E;\{/IE.X YAJCE.X YAFC\?\l/IE.xz YA.]CE.XZ
n1=500, n2=500 Ba =(5,6,7) pxy = 0.40 0 -0.01 0.01 -0.01 -0.03 -0.01 -0.03
n1=600, n2=400 Ba =(5,6,7) pxy=0.40 | 0.05 0.02 0.03 -0.01 -0.03 -0.01 -0.03
n1=900, n2=100 Ba =(5,6,7) py=0.40 | 0.05 0.04 0.07 0.03 0.01 0.02 0
n1=500, n2=500 Ba =(5,5,10) py=0.40 1 0.03 0.02 0.06 0.06 0.08 0.06 0.08
n1=600, n2=400 Ba =(5,5,10) pxy =040 0.07 0.04 0.05 0.07 0.06 0.07 0.06
n1=900, n2=100 Ba =(5,5,10) py=0.40 | 0.01 0 0.08 0 0.05 0 0.05
n1=500, n2=500 Ba =(5,10,15) pxy = 0.40 | -0.03 -0.04 -0.07 -0.05 -0.06 -0.05 -0.06
n1=600, n2=400 Ba =(5,10,15) pxy=0.40 | -0.02 -0.05 -0.06 -0.07 -0.05 -0.07 -0.05
n1=900, n2=100 Bg =(5,10,15) Py = 0.40 | -0.01 -0.02 -0.05 -0.03 -0.03 -0.04 -0.04
n1=500, n2=500 Ba =(5,6,7) pxy =0.60 | -0.04 -0.05 -0.08 -0.02 -0.04 -0.02 -0.04
n1=600, n2=400 Ba =(5,6,7) pxy =10.60 | -0.07 -0.1 -0.09 -0.04 -0.02 -0.04 -0.02
n1=900, n2=100 Bq =(5,6,7) Py = 0.60 | -0.13 -0.13 -0.11 -0.07 -0.03 -0.07 -0.03
n1=500, n2=500 Bq =(5,5,10) pxy = 0.60 0 -0.01 0 0.06 0.08 0.06 0.08
n1=600, n2=400 Ba =(5,5,10) Py =0.60 | 0.05 0.02 0.06 0.04 0.07 0.04 0.07
n1=900, n2=100 Ba =(5,5,10) Py =0.60 | -0.02 -0.02 0 0.02 0.06 0.02 0.07
n1=500, n2=500 Ba =(5,10,15) pxy = 0.60 0.1 0.09 0.09 0.07 0.09 0.07 0.09
n1=600, n2=400 Bq =(5,10,15) Py =0.60 | 0.15 0.12 0.11 0.07 0.07 0.07 0.07
n1=900, n2=100 Bg =(5,10,15) Py =0.60 | 0.12 0.12 0.07 0.05 0.03 0.05 0.03
nl1=500, n2=500 Ba =(5,6,7) pxy = 0.80 0.01 0 0.07 -0.05 -0.01 -0.05 -0.02
n1=600, n2=400 Ba =(5,6,7) py=0.80 | 0.05 0.02 0.1 -0.04 0 -0.04 0
n1=900, n2=100 Bq =(5,6,7) pyy =0.80 | -0.05 -0.06 0.02 -0.02 0.02 -0.03 0.02
n1=500, n2=500 Ba =(5,5,10) pxy=0.80 | 0.04 0.03 0.07 -0.02 0.02 -0.02 0.02
nl1=600, n2=400 Ba =(5,5,10) pxy =0.80 | -0.08 -0.11 -0.08 -0.05 -0.02 -0.05 -0.02
n1=900, n2=100 Ba =(5,5,10) Py =0.80 | 0.06 0.06 0.09 0.06 0.1 0.06 0.1
n1=500, n2=500 Ba =(5,10,15) pxy =0.80 | -0.09 -0.1 -0.12 -0.04 -0.09 -0.04 -0.09
n1=600, n2=400 Bg =(5,10,15) pxy=0.80] 0.03 0 0 0.01 -0.02 0.01 -0.02
n1=900, n2=100 Bg =(5,10,15) pxy =0.80 | 0.05 0.05 0.05 0 -0.05 0 -0.05
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sampling design.

Table 2.4: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the CLR model population under simple

Sample size Domain means Pxy YFWE Ylf\;jl\llE.z YJCE.Z lec\i/IE.x YJCE.X YFC\j\l/IE.xz YJCE.xz
nl1=500, n2=500  Bq =(5,6,7) pxy = 0.40 2.27 1.93 1.8 1.74 1.63 1.74 1.64
n1=600, n2=400 B4 =(5,6,7) pxy = 0.40 2.21 1.93 1.82 1.74 1.63 1.74 1.64
n1=900, n2=100 Ba =(5,6,7) pyy = 0.40 2.88 2.51 2.56 2.29 2.33 2.29 2.33
n1=500, n2=500 Ba =(5,5,10) pxy = 0.40 2.3 1.96 1.79 1.81 1.65 1.81 1.65
n1=600, n2=400 Bq =(5,5,10) pxy = 0.40 2.25 1.96 1.85 1.78 1.67 1.78 1.67
n1=900, n2=100 B4 =(5,5,10) Pxy = 0.40 2.86 2.49 2.55 2.28 2.33 2.28 2.33
nl1=500, n2=500 B4 =(5,10,15) pxy = 0.40 2.24 1.95 1.82 1.76 1.65 1.76 1.65
n1=600, n2=400 Ba =(5,10,15) pxy = 0.40 2.14 1.88 1.77 1.72 1.64 1.72 1.64
n1=900, n2=100 Bq =(5,10,15) Pyy = 0.40 2.78 2.42 2.49 2.18 2.22 2.18 2.23
n1=500, n2=500 By =(5,6,7) Py =0.60 | 2.29 2 1.84 1.62 1.49 1.62 1.49
nl1=600, n2=400  Bq =(5,6,7) pxy = 0.60 2.16 1.9 1.79 1.54 1.44 1.54 1.44
n1=900, n2=100 Ba =(5,6,7) pyy = 0.60 2.7 2.35 24 1.88 1.91 1.88 1.92
n1=500, n2=500 Bq =(5,5,10) pxy = 0.60 2.27 1.94 1.79 1.58 1.44 1.58 1.44
n1=600, n2=400 B4 =(5,5,10) pxy = 0.60 2.19 1.88 1.79 1.55 1.46 1.55 1.46
n1=900, n2=100 B4 =(5,5,10) pxy = 0.60 2.71 2.34 2.4 1.89 1.93 1.88 1.93
n1=500, n2=500 Ba =(5,10,15) pxy =0.60 2.18 1.87 1.74 1.51 1.41 1.52 1.41
n1=600, n2=400 Bq =(5,10,15) pxy = 0.60 2.13 1.79 1.7 1.45 1.38 1.44 1.38
n1=900, n2=100  B4=(5,10,15) Pyy = 0.60 2.81 2.44 2.51 1.92 1.98 1.92 1.99
nl1=500, n2=500 Ba =(5,6,7) pxy = 0.80 2.3 2.01 1.87 1.21 1.14 1.22 1.14
n1=600, n2=400 Ba =(5,6,7) pxy = 0.80 2.21 1.91 1.78 1.12 1.07 1.12 1.07
n1=900, n2=100 Bq =(5,6,7) pyy = 0.80 2.93 2.58 2.63 1.54 1.58 1.54 1.58
n1=500, n2=500 Bq =(5,5,10) pxy = 0.80 2.33 2.04 1.88 1.21 1.1 1.21 1.1
nl1=600, n2=400 By =(5,5,10) pxy = 0.80 2.26 1.98 1.86 1.18 1.1 1.18 1.1
n1=900, n2=100 Ba =(5,5,10) pyxy = 0.80 2.85 2.51 2.59 1.54 1.62 1.54 1.62
n1=500, n2=500 Ba =(5,10,15) pxy = 0.80 2.32 2.06 1.86 1.21 1.11 1.21 1.11
n1=600, n2=400 Bq =(5,10,15) pxy = 0.80 2.23 1.99 1.87 1.17 1.11 1.17 1.11
n1=900, n2=100 B4 =(5,10,15) pxy = 0.80 2.85 2.51 2.59 1.49 1.57 1.49 1.57
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Table 2.5: Simulation RB (%) for FWE and JCE estimators of Y, estimated from the GLR model population under simple sampling

design.

A

~

A

Sample size Domain means Pxy Yene YFC\i/IEAZ Yice. YFC\:/IE.X Yicex YFC\{;/IEsz Yicexe Yicew  Yicexw  Vicexw
nl1=500, n2=500 Bq=(5,6,7) Py =0.40 | 0.02 0.02 5.76  -0.03 3.8 -0.02 3.8 -0.05 -0.08 -0.08
n1=600, n2=400 B4 =(5,6,7) pxy=0.40 [ 0.01 0 5.77 -0.08 3.77 -0.07 3.77 -0.05 -0.11 -0.11
n1=900, n2=100 By =(5,6,7) Py = 0.40 | -0.01 0 5.74  -0.04 3.81 -0.04 3.8 -0.1 -0.11 -0.12
nl1=500, n2=500 B4 =(5,5,10) Py =0.40 | 0.13 0.13 5.82 0.14 3.82 0.14 3.82 0.06 0.07 0.07
nl1=600, n2=400 B4 =(5,5,10) Py =0.40 [ 0.12 0.11 5.79 0.11 3.78 0.12 3.78 0.04 0.05 0.04
nl1=900, n2=100 B4 =(5,5,10) Py =0.40 [ 0.08 0.1 5.8 0.05 3.76 0.06 3.75 0.01 -0.02 -0.02
nl1=500, n2=500 B4 =(5,10,15) Py =040 [ 0.07 0.07 5.73 0.08 3.82 0.09 3.81 0.02 0.04 0.03
nl1=600, n2=400 B4 =(5,10,15) py=0.40 | 0.14 0.13 5.79 0.12 3.88 0.13 3.88 0.1 0.09 0.1
n1=900, n2=100 By =(5,10,15) py=0.40 [ 0.16 0.19 5.86 0.2 3.95 0.21 3.94 0.11 0.15 0.14
n1=500, n2=500 B4 =(5,6,7) pxy = 0.60 0.07 0.07 6.06 0.07 3.37 0.07 3.36 0.03 0.07 0.06
nl1=600, n2=400 By =(5,6,7) pxy =0.60 [ 0.08 0.07 6.05 0.04 3.34 0.05 3.35 0.04 0.05 0.05
n1=900, n2=100 By =(5,6,7) Py =0.60 [ -0.03 -0.01 597 0.03 3.36 0.04 3.35 -0.06 0.02 0.03
nl1=500, n2=500 B4 =(5,5,10) Py = 0.60 [ 0.05 0.05 6.11 0.11 34 0.11 34 0.07 0.09 0.09
n1=600, n2=400 B4 =(5,5,10) pxy = 0.60 -0.1 -0.11 5.93 0 3.31 0.01 3.31 -0.1 -0.01 -0.01
nl1=900, n2=100 B4 =(5,5,10) Py =0.60 [ -0.11 -0.09 5.92 -0.08 3.23 -0.06 3.24 -0.15 -0.13 -0.13
nl1=500, n2=500 B4 =(5,10,15) py=0.60 [ -0.12 -0.11 583 -0.04 3.24 -0.04 3.25 -0.19  -0.09 -0.08
n1=600, n2=400 B4 =(5,10,15) Py =0.60 [ 0.01 -0.02 594 0.02 3.32 0.02 3.32 -0.07 -0.01 -0.01
n1=900, n2=100 B4 =(5,10,15) pxy =0.60 [ 0.04 0.06 5.98 0.07 3.35 0.07 3.35 -0.04 0.02 0.02
nl1=500, n2=500 B4 =(5,6,7) pxy=0.80 | -0.13 -0.12 5.95 0.01 2.47 0.02 2.47 -0.19 -0.04 -0.04
nl1=600, n2=400 Bq=(5,6,7) py =080 -0.07 -0.09 597 0.01 2.47 0.01 2.47 -0.14  -0.04 -0.04
n1=900, n2=100 By =(5,6,7) Py =0.80 [ -0.09 -0.08 596 0.02 2.5 0.02 2.5 -0.19 -0.04 -0.04
n1=500, n2=500 B4 =(5,5,10) pxy=0.80 | 0.02 0.03 6.15 -0.02 2.47 -0.01 2.47 -0.07 -0.03 -0.03
nl1=600, n2=400 B4 =(5,5,10) Py =0.80 [ 0.08 0.07 6.22 0.02 2.5 0.02 2.5 -0.01 0.01 0.01
n1=900, n2=100 B4 =(5,5,10) Py =0.80 | 0.13 0.16 6.34 0.08 2.57 0.08 2.57 0.06 0.06 0.07
nl1=500, n2=500 B4 =(5,10,15) Py =0.80 [ 0.07 0.08 6.13 0 2.47 0.01 2.47 -0.03 -0.04 -0.04
n1=600, n2=400 B4 =(5,10,15) Py =0.80 | 0.02 0 6.06 -0.03 2.44 -0.02 2.44 -0.07 -0.06 -0.06
n1=900, n2=100 B4 =(5,10,15) pxy =0.80 [ 0.09 0.11 6.13 0.1 2.58 0.1 2.58 0.02 0.06 0.06
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Table 2.6: Simulation RMSE (%) for FWE and JCE estimators of Y, estimated from the GLR model population under simple

sampling design.

A

A

A

~

A

Sample size Domain means Py YFWE YFC\';\‘IIEJ Y.]CEAZ YIZ(:\E/jIIIE.>< YJCE.x YFC\?/IEAXZ YJCEsz Y.]CEAZJ YJCE.xJ YJCEszJ
n1=500, n2=500 B4 =(5,6,7) Py =040 | 2.44 2.45 6.19 2.22 43 2.22 431 2.33 2.15 2.15
n1=600, n2=400 By =(5,6,7) py=0.40 [ 2.26 2.27 6.16 2.1 4.26 2.1 4.26 2.15 2.01 2.02
n1=900, n2=100 B4 =(5,6,7) Py =0.40 [ 2.86 2.96 6.5 2.67 4.69 2.67 4.68 2.89 2.65 2.65
n1=500, n2=500 B4 =(5,5,10) pxy =040 [ 2.47 2.47 6.23 2.17 4.28 2.17 4.28 2.33 2.09 2.09
nl1=600, n2=400 B4 =(5,5,10) Py =0.40 [ 2.32 2.3 6.17 2.11 4.25 2.12 4.25 2.19 2.03 2.04
n1=900, n2=100 B4 =(5,5,10) pxy = 0.40 3 3.09 6.58 2.73 4.67 2.73 4.66 3 2.71 2.71
n1=500, n2=500 B4 =(5,10,15) pxy =040 [ 2.38 2.45 6.17 2.2 4.33 2.2 4.33 2.3 2.11 2.11
nl1=600, n2=400 B4 =(5,10,15) py=0.40 [ 2.26 2.31 6.19 2.09 4.37 2.09 4.37 2.19 2.03 2.03
n1=900, n2=100 B4 =(5,10,15) pxy=0.40 [ 2.95 3.14 6.67 2.73 4.81 2.72 4.81 2.99 2.68 2.68
n1=500, n2=500 B4 =(5,6,7) pxy=0.60 | 2.29 2.32 6.42 1.81 3.77 1.8 3.76 2.13 1.73 1.72
n1=600, n2=400 B4 =(5,6,7) Py =0.60 [ 2.28 2.25 6.4 1.76 3.73 1.76 3.73 2.12 1.7 1.69
n1=900, n2=100 B4 =(5,6,7) Py =0.60 [ 2.83 2.93 6.68 2.29 4.12 2.29 4.12 2.9 2.32 2.33
n1=500, n2=500 B4 =(5,5,10) Py =0.60 [ 2.35 2.42 6.49 1.92 3.82 1.92 3.82 2.24 1.83 1.83
n1=600, n2=400 B4 =(5,5,10) Py =0.60 [ 2.28 2.33 6.32 1.81 3.73 1.81 3.73 2.17 1.73 1.73
n1=900, n2=100 B4 =(5,5,10) Py =0.60 [ 2.83 2.96 6.63 2.25 3.97 2.25 3.97 2.88 2.26 2.27
nl1=500, n2=500 B4 =(5,10,15) Py =0.60 | 2.34 2.35 6.21 1.83 3.66 1.83 3.67 2.21 1.76 1.76
n1=600, n2=400  B4=(5,10,15) Py =0.60 [ 2.25 2.3 6.32 1.79 3.72 1.79 3.72 2.16 1.7 1.7
n1=900, n2=100  B4=(5,10,15) pxy =0.60 [ 2.87 3 6.72 2.28 4.08 2.28 4.07 2.93 2.29 2.29
n1=500, n2=500 B4 =(5,6,7) pxw=0.80 | 2.33 2.38 6.34 1.44 2.8 1.44 2.8 2.23 1.37 1.37
nl1=600, n2=400 B4 =(5,6,7) Py =0.80 | 2.22 2.24 6.33 1.39 2.8 1.4 2.8 2.1 1.33 1.33
n1=900, n2=100 B4 =(5,6,7) Py =0.80 [ 2.94 3.08 6.73 1.81 3.12 1.81 3.12 3 1.8 1.8
n1=500, n2=500 B4 =(5,5,10) Py =0.80 [ 2.43 2.53 6.57 1.47 2.81 1.47 2.82 2.35 1.39 1.39
n1=600, n2=400 B4 =(5,5,10) Py =0.80 | 2.26 2.36 6.6 1.4 2.84 1.4 2.84 2.19 1.34 1.34
nl1=900, n2=100 B4 =(5,5,10) py =0.80 [ 2.88 3.04 7.05 1.75 3.14 1.75 3.14 2.95 1.75 1.76
n1=500, n2=500  B4=(5,10,15) Py =0.80 [ 2.42 2.46 6.53 1.39 2.79 1.39 2.79 2.27 1.33 1.33
n1=600, n2=400  B4=(5,10,15) pxy = 0.80 2.3 2.35 6.44 1.37 2.76 1.37 2.76 2.18 1.3 1.31
n1=900, n2=100 B4 =(5,10,15) pxy =0.80 [ 2.97 3.14 6.9 1.73 3.15 1.73 3.14 2.98 1.73 1.73
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Appendix 2.1: Proof of Proposition 2.1

Where the calibration estimator in (2.38) is equivalent to the GREG estimator in (2.34), the JCE

can be written as

Y"JCE :Zu Vi +ZsAdk(yk _yk)+ZSBdk (Yk _9k)
:Zu Xi IésA’B +ZSA dy Vi _ZSA d, X BSA)B +ZSB dy Yi _ZSB d, X ésA’B
YAJCE -Y = Zu Xy EA,’SA’B +ZSA d, Yy _ZsAdeLésA’B +ZSB dy Vi _ZSB deLésA’B _Zu Yi

YAJCE -Y= Zu Xi Ls’sA’B +ZSA dy Yy _ZSAdeL IésA’B +ZSB dy Yy _ZSB de'késA"B _Zu Yi
—> ., %By —ZSAdkx'kBU —ZSB d X By + >, XBy +ZsAdkx'kBU +ZSB d, X, By,

where €, =Y, —X;B, and B, = (ZU X, Y, )(ZU X, Xi )_1
Y. -Y =A+C
Where

A:ZSAdkek +ZSB de& — > &
C= (ZU X =3, dx - dkx;)(é;"B -B,)
E(Yiee -Y)=E(A)+E(C)

E(A):ZuAek +ZUB & _ZU & ZZUab &

E(C)=E(T, %~ X, dX -2, dkx’k).E(ésA’B -B,)
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(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)



= —Zuab XL.E(QSA’B -B, )

By Taylor Linearization, the estimator |.5>SA’B can be defined as

B0 =B+ (T x00) (X 0o — Xy XV
_Zurxk Yk (ZU'XkXL )_2 (stdekXL - ZUkaXL )

where

LAY, = ZSA d.x, Y, +ZSB d X, Y,

D dx X, = ZSA dkxkx;+zss d x, x|

IR AE ZUA XY+ ZUB XY = D X yk+zuab Xy Yi
DL XX = ZUA X, X, + ZUB D XkXHZuab X, X,
BA® = (Zs,xkxl’( )71 (Zs,dkxk yk)

B =(X, 0 ) (o)

620, 550, (5, ) (5, 0 K n)

_Zurxk Yi (ZUerX'k )_2 (Zs'dekX'k —ZU,XkXL)
E(B/")=B, +B}° - B,
E(B2) =By + (204 ) (X))~ (Zuxe) (Xyxv)
E(ésA’B —By ) = (ZUerXL )71 (Zurxk Yk)_(zu X, X )71 (Zu Xy Yk)
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(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)



EO)= X (S ) (S ) (S0 (S5

Consequently, under dual frame design

E (YAJCE -Y ) = ZUab €« _ZUab XL ((ZUerX'k )71 (Zuvxk Yk ) _(ZU XkXL )71 (Zu Xy Y ))

- ZUab(yk =X (ZU'XkX;‘ )_1 (ZU'Xk Ye ))
=2, (%-xB3?)
2 B(Vie )= 2y

where e* = (y, - x,B/"*)
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(2.63)

(2.64)

(2.65)

(2.66)

(2.67)



Appendix 2.2: Results for Complex Sampling Designs

Table 2.7: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the CLR model population under complex sampling

design.

Sample size Domain means Pxy Yeue YFC\Z'E.Z Yice, YFC\‘Z,'E‘X Yice o YFC\Z'E.XZ Yice v
nl1=500, n2=500 B4 =(5,6,7) Py =040 | 0.13 0.1 0.13 0.13 0.13 0.13 0.13
nl1=600, n2=400 B4 =(5,6,7) pxy =040 ] 0.11 0.06 0.05 0.05 -0.01 0.05 -0.01
n1=900, n2=100 B4 =(5,6,7) pxw=0.40 | 0.06 0.07 0.08 0.02 -0.02 0.01 -0.02
n1=500, n2=500  Bq =(5,5,10) pxw=0.40 ] 0.01 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02
n1=600, n2=400  Bq =(5,5,10) pxw=0.40 | 0.06 0 0.02 0.01 0 0.01 0
nl1=900, n2=100 B4 =(5,5,10) Py =0.40 | 0.01 0.02 0.08 -0.04 0.01 -0.04 0.01
nl1=500, n2=500 B4 =(5,10,15) pxy = 0.40 | -0.02 -0.06 -0.12 -0.05 -0.1 -0.06 -0.1
n1=600, n2=400 By =(5,10,15)  py =040 | -0.01 007 -0.1 -0.06 -0.06 -0.07 -0.07
n1=900, n2=100 B4 =(5,10,15) Py =0.40 | 0.02 0.02 -0.03 -0.01 -0.03 -0.02 -0.04
n1=500, n2=500 B4 =(5,6,7) pxy =0.60 [ 0.08 0.05 0.01 0.04 0.04 0.04 0.04
nl1=600, n2=400 B4 =(5,6,7) pxy =0.60 | 0.11 0.06 0.06 0.05 0.09 0.05 0.09
n1=900, n2=100 B4 =(5,6,7) py=0.601] -0.14 -0.13 -0.09 -0.13 -0.06 -0.13 -0.06
n1=500, n2=500  Bq =(5,5,10) pxy =0.60 | -0.16 -0.2 -0.18 -0.16 -0.11 -0.16 -0.11
n1=600, n2=400  Bq =(5,5,10) pxy =0.60 | 0.05 0.01 0.03 -0.04 0 -0.04 0
nl1=900, n2=100 B4 =(5,5,10) Py =0.60 | -0.02  -0.01 0.02 -0.01 0.05 0 0.05
n1=500, n2=500 B4 =(5,10,15) pxy = 0.60 0.1 0.05 0.04 0.01 0.03 0.01 0.03
n1=600, n2=400 B4 =(5,10,15) pxy =0.60 | 0.09 0.04 0.04 0.03 0.04 0.03 0.04
n1=900, n2=100 B4 =(5,10,15) Py =0.60 | 0.03 0.04 0.01 -0.03 -0.03 -0.03 -0.03
n1=500, n2=500 By =(5,6,7) Py =080 | 0.04 0 0.1 0 0.03 0 0.03
n1=600, n2=400 B4 =(5,6,7) pxy =0.80 ] 0.03 -0.02 0.07 0.02 0.05 0.02 0.05
n1=900, n2=100 B4 =(5,6,7) pxy=0.80 | -0.09 -0.08 0.01 -0.03 0.02 -0.03 0.02
n1=500, n2=500  Bq =(5,5,10) pxy = 0.80 0.1 0.05 0.08 -0.05 -0.03 -0.05 -0.03
nl1=600, n2=400 B4 =(5,5,10) pxy=0.80 | 0.05 0 -0.01 -0.02 0.01 -0.02 0.01
n1=900, n2=100 B4 =(5,5,10) pxy =0.80 | 0.04 0.05 0.09 0.07 0.11 0.07 0.11
n1=500, n2=500  Ba=(5,10,15)  pgy =080 0.0l -0.03 -0.03 -007 -0.L _ -0.08  -0.1
n1=600, n2=400 B4 =(5,10,15) pxyw=0.80 ] 0.01 -0.04 0.03 0.02 0.01 0.02 0.01
nl1=900, n2=100 B4 =(5,10,15) pxy=0.80 | 0.01 0.02 0.05 -0.05 -0.1 -0.05 -0.1
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sampling design.

Table 2.8: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the CLR model population under complex

Domain

A

Sample size means Pxy Yene YFC\7VIE.Z Yice. YFC\7VIE.x Yice x YFC\?\;E.xz Yicex
n1=500,n2=500 By =(5,6,7) Py =040 ] 23 206 196 191 1.81 1.91 1.81
n1=600, n2=400 B4 =(5,6,7) Py =040 224 209 199 191 1.81 1.92 1.81
n1=900, n2=100 B4 =(5,6,7) py=040 | 278 244 251 224 229 2.23 2.29
n1=500, n2=500 By =(5,5,10) Py =040 [ 229  2.11 1.94 192 1.77 1.92 1.77
nl1=600,n2=400 By =(5,5,10) py=040| 231 213 202 193 1.83 1.93 1.83
n1=900,n2=100 B4 =(5,5,10) Py =0.40 [ 2.83 2.5 256 227 233 2.26 2.33
nl=500,n2=500 B4=(5,10,15) py=040| 222 204 193 1091 1.81 1.91 1.82
n1=600, n2=400  By=(5,10,15)  py =040 | 2.2 203 196  1.86 1.79 1.86 1.79
n1=900,n2=100  B4=(5,10,15) py=040] 2.79 253 2.61 228 234 2.28 2.34
n1=500,n2=500 By =(5,6,7) py=0.60 | 228 209 196 1.68 1.6 1.68 1.6
n1=600, n2=400 B4 =(5,6,7) Py =0.60 [ 2.19  1.99 1.9 1.58 1.5 1.58 1.5
n1=900, n2=100 B4 =(5,6,7) Ppy=060 | 273 245 255 198  2.07 1.98 2.07
n1=500, n2=500 By =(5,5,10) py=0.60 [ 227  2.11 1.97  1.69 1.57 1.69 1.57
nl1=600,n2=400 By =(5,5,10) Py =060 [ 218 202 193  1.66 1.57 1.66 1.57
n1=900,n2=100 B4 =(5,5,10) Py =0.60 [ 275  2.51 2.6 204 211 2.04 2.11
n1=500, n2=500  By4=(5,10,15)  py=0.60 [ 2.2 204 188  1.65 1.52 1.65 1.53
n1=600, n2=400 B4 =(5,10,15)  py=0.60 | 2.13 1.89 1.84 149 1.44 1.49 1.44
n1=900,n2=100  B4=(5,10,15) py=0.60] 2.71 244 254 193 1.99 1.93 1.99
n1=500, n2=500 By =(5,6,7) Py=0.80 | 226 211  2.02 1.3 1.25 1.3 1.25
n1=600, n2=400 By =(5,6,7) Py =080 228 2.09 195 1.2 1.16 1.2 1.16
n1=900, n2=100 B4 =(5,6,7) Py =080 2.9 261 266  1.56 1.62 1.55 1.61
n1=500,n2=500 By =(5,5,10) Py =080 236 217 207 1.34 1.3 1.34 1.3
n1=600, n2=400 B4 =(5,5,10) py=0.80 [ 227  2.08 2 1.25 1.19 1.25 1.19
n1=900, n2=100 B4 =(5,5,10) py=080[ 286 2.62 271 1.56 1.62 1.56 1.62
n1=500, n2=500 B4 =(5,10,15)  py=0.80 | 2.46 23 215 135 1.28 1.35 1.28
nl=600,n2=400  B4=(5,10,15) py=0.80| 231  2.14 2.03 128 1.22 1.28 1.23
n1=900,n2=100  B4=(5,10,15) py=0.80] 2.87 255 2.62 153 1.58 1.53 1.59
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Table 2.9: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the GLR model population under complex sampling

design.

A

A

A

~n

~

Sample size Domain means Pxy YFWE Ylf\?\/IE.z YJCE.z Y;\?\/IE.X YJCE.x YF\Céllle.xz YJCE.xz YJCE.ZJ YJCE.XJ YJCE.sz
n1=500, n2=500 Ba =(5,6,7) pxy = 0.40 0.17 0.14 59 0.11 393 0.11 3.92 0.07 0.06 0.06
n1=600, n2=400  B4=(5,6,7) pxy=0.40 [ 0.05 0.01 5.79  -0.02 3.82 -0.01 3.82 -0.04 -0.05 -0.05
n1=900, n2=100 B4 =(5,6,7) py=0.40 [ -0.02 0 5.75 0.01 3.86 0.01 3.85 -0.11 -0.07 -0.07
n1=500, n2=500 Ba =(5,5,10) pxy = 0.40 0.03 -0.01 5.73 0.07 3.8 0.07 3.8 -0.06 0.01 0.01
n1=600, n2=400  B4=(5,5,10) py =040 [ 0.11 0.07 5.78 0.07 3.77 0.07 3.77 0.02 0.02 0.02
nl1=900, n2=100  Bq =(5,5,10) py=0.40 | -0.08 -0.05 5.66 -0.09 3.64 -0.08 3.64 -0.13 -0.15 -0.15
n1=500, n2=500 Bq =(5,10,15) py=0.40 | -0.02 -0.05 5.6 -0.05 3.67 -0.05 3.67 -0.11 -0.11 -0.11
n1=600, n2=400  B4=(5,10,15) pxy=0.40 [ 0.01 -0.02 5.69 -0.06 3.73 -0.05 3.74 -0.05 -0.09 -0.08
nl1=900, n2=100 B4 =(5,10,15) py =040 [ -0.06 -0.03 5.68 0.04 3.81 0.05 3.81 -0.08 0.01 0.01
n1=500, n2=500 Ba =(5,6,7) pxy = 0.60 0.15 0.12 6.1 0.04 3.33 0.04 3.33 0.11 0.05 0.05
n1=600, n2=400 Ba =(5,6,7) pxy = 0.60 0.1 0.06 6.06 0.05 3.36 0.05 3.36 0.06 0.06 0.06
n1=900, n2=100 B4 =(5,6,7) pw=0.60 | -0.04 -0.01 5.97 0.05 3.37 0.06 3.37 -0.04 0.04 0.05
nl1=500, n2=500  Bq=(5,5,10) pw=0.60 | 0.14 0.11 6.13 0.01 3.32 0.02 3.32 0.12 0.03 0.03
n1=600, n2=400 Ba =(5,5,10) pxy=0.60 | -0.11 -0.15 5.89 -0.02 3.29 -0.01 3.29 -0.11 -0.01 -0.01
n1=900, n2=100 Bq =(5,5,10) Py = 0.60 | -0.14 -0.11 5.94 -0.08 3.26 -0.07 3.26 -0.13 -0.11 -0.1
n1=500, n2=500  B4=(5,10,15) Py =0.60 | 0.21 0.18 6.07 0.07 3.35 0.07 3.35 0.1 0.05 0.04
nl1=600, n2=400 B4 =(5,10,15) P =0.60 | 0.15 0.11 6.01 0.02 33 0.01 33 0.04 0.01 0.01
n1=900, n2=100 Bq =(5,10,15) pxy = 0.60 0 0.03 5.99 0 3.33 0 3.32 -0.04 -0.02 -0.02
n1=500, n2=500 Ba =(5,6,7) pxy = 0.80 0.13 0.09 6.13 0.02 2.49 0.02 2.49 0.03 -0.01 -0.01
n1=600, n2=400  B4=(5,6,7) pxy =0.80 | 0.09 0.05 6.09 -0.01 2.46 0 2.46 0.02 -0.03 -0.03
n1=900, n2=100 B4 =(5,6,7) Py =0.80 | 0.01 0.03 6.03 0.03 2.51 0.02 2.5 -0.06 -0.01 -0.01
n1=500, n2=500 Ba =(5,5,10) pxy = 0.80 -0.1 -0.13 6.02 -0.1 24 -0.1 24 -0.18 -0.09 -0.09
n1=600, n2=400 Bq =(5,5,10) pxy =0.80 | -0.03 -0.06 6.11 -0.07 2.42 -0.07 2.42 -0.1 -0.07 -0.07
n1=900, n2=100 B4 =(5,5,10) Pxy =0.80 | 0.13 0.16 6.36 0.02 2.54 0.03 2.55 0.09 0.03 0.04
nl1=500, n2=500 B4 =(5,10,15) pxw=0.80 | 0.05 0.01 6.04 0.03 2.51 0.03 2.5 -0.09 0 -0.01
n1=600, n2=400 Bq =(5,10,15) pxy = 0.80 0.05 0.01 6.06 0.04 2.51 0.04 2.51 -0.08 -0.01 -0.01
n1=900, n2=100 Bq =(5,10,15) pxy = 0.80 0.15 0.18 6.19 0.12 2.6 0.12 2.6 0.08 0.09 0.08
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Table 2.10: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the GLR model population under complex

sampling design.

~n

A

~n

~

Sample size Domain means Pxy YFWE Yl§\7\;E.z YJCE.z Y;\?\/IE.X YJCE.X YF\Céllle.xz YJCE.xz YJCE.ZJ YJCE.XJ YJCE.sz
n1=500, n2=500 Ba =(5,6,7) pxy = 0.40 2.62 2.51 6.36 2.31 4.5 2.32 4.51 24 2.22 2.22
n1=600, n2=400  B4=(5,6,7) Py =0.40 [ 2.49 2.42 6.23 2.23 4.37 2.23 4.38 2.3 2.15 2.15
n1=900, n2=100 B4 =(5,6,7) py =040 3.02 3.08 6.57 2.76 4.8 2.76 4.79 2.99 2.74 2.75
n1=500, n2=500 Ba =(5,5,10) pxy = 0.40 2.59 2.53 6.21 2.27 4.36 2.27 4.36 2.38 2.15 2.15
n1=600, n2=400  B4=(5,5,10) pxy=0.40 [ 2.51 2.47 6.26 2.23 4.36 2.22 4.36 2.37 2.17 2.17
nl1=900, n2=100  Bq =(5,5,10) py=0.40 [ 3.08 3.1 6.48 2.79 4.63 2.79 4.63 3.07 2.78 2.79
n1=500, n2=500 Bq =(5,10,15) pxy = 0.40 2.68 2.64 6.09 2.3 4.24 2.31 4.24 2.46 2.18 2.19
n1=600, n2=400  B4=(5,10,15) Py =0.40 [ 2.56 2.52 6.17 2.29 4.33 2.29 4.33 2.38 2.18 2.19
nl1=900, n2=100 B4 =(5,10,15) py =040 2.97 3.08 6.51 2.75 4.73 2.74 4.73 2.98 2.7 2.7
n1=500, n2=500 Ba =(5,6,7) pxy = 0.60 2.41 2.35 6.5 1.92 3.8 1.92 3.8 2.22 1.83 1.83
n1=600, n2=400 Ba =(5,6,7) pxy = 0.60 2.36 2.31 6.44 1.84 3.8 1.84 3.79 2.18 1.76 1.76
n1=900, n2=100  B4=(5,6,7) pxw=0.60 | 2.87 2.9 6.66 2.29 4.12 2.29 4.12 2.87 2.32 2.32
nl1=500, n2=500 Bq=(5,5,10) P =0.60 | 2.42 2.4 6.52 1.94 3.78 1.94 3.79 2.23 1.82 1.82
n1=600, n2=400 Ba =(5,5,10) pxy = 0.60 24 24 6.33 1.92 3.77 1.92 3.77 2.29 1.84 1.84
n1=900, n2=100 Bq =(5,5,10) Pxy = 0.60 3.01 3.03 6.69 2.39 4.07 2.39 4.07 3 2.41 2.41
n1=500, n2=500  B4=(5,10,15) pxy =0.60 | 2.55 2.48 6.52 1.96 3.84 1.96 3.84 2.34 1.88 1.88
nl1=600, n2=400 B4 =(5,10,15) pxw=0.60 | 2.39 2.38 6.42 1.87 3.76 1.87 3.75 2.24 1.79 1.79
n1=900, n2=100 By =(5,10,15) pxy = 0.60 2.93 3.01 6.73 2.24 4.05 2.24 4.04 2.91 2.25 2.24
n1=500, n2=500 Ba =(5,6,7) pxy = 0.80 2.55 2.45 6.55 1.48 2.86 1.48 2.86 2.33 1.41 1.41
n1=600, n2=400  B4=(5,6,7) pxw=0.80 | 2.39 2.36 6.49 1.47 2.83 1.47 2.83 2.22 1.38 1.38
n1=900, n2=100 B4 =(5,6,7) py=0.80 | 3.01 3.12 6.82 1.83 3.14 1.83 3.13 3.01 1.82 1.82
n1=500, n2=500 Ba =(5,5,10) pxy = 0.80 2.6 2.53 6.49 1.47 2.77 1.47 2.77 2.38 1.41 1.41
n1=600, n2=400 Bq =(5,5,10) pxy = 0.80 2.4 2.34 6.51 1.45 2.8 1.45 2.8 2.19 1.39 1.39
n1=900, n2=100 B4 =(5,5,10) Py =0.80 | 3.11 32 7.15 1.86 3.17 1.86 3.18 3.07 1.84 1.84
n1=500, n2=500  B4=(5,10,15) pxw=0.80 | 2.52 2.42 6.47 1.42 2.85 1.42 2.85 2.3 1.35 1.35
n1=600, n2=400 Bq =(5,10,15) pxy = 0.80 2.43 24 6.46 1.42 2.84 1.42 2.84 2.25 1.35 1.35
n1=900, n2=100 Bg =(5,10,15) pxy = 0.80 3.04 3.22 6.98 1.81 3.2 1.81 3.2 3.07 1.79 1.79
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Chapter 3

Joint Calibration Estimator in the Presence of Nonresponse Errors

3.1 Introduction

Chapter 2 provided an overview of the calibration approach and introduced the Joint
Calibration Estimator (JCE) for dual frame estimation. The properties of the JCE were explored
under the full response assumption; the simulation studies in Chapter 2 assumed the absence of
the non-sampling errors. In this chapter, our concern is with dual frame surveys affected by unit
nonresponse. That is, the values of the study variable y are not observed for all elements in the

full samples s, and S;; Yy values are observed only for the elements in response sets I, and ry of
the full samples s, and S, respectively. In this chapter, we assume that y is affected by unit

nonresponse only, and from now on, we will use ‘nonresponse’ instead of ‘unit nonresponse’.

In this chapter, the JCE performance is explored in the presence of nonresponse. The JCE
is introduced in this chapter as both a dual frame estimator and an approach for nonresponse
adjustment. The nonresponse problem is discussed in Section 3.2. The JCE in the presence of
nonresponse is presented in Sections 3.3 and 3.4. The bias for JCE in the presence of
nonresponse is derived in Section 3.5. The performance of JCE in comparison with standard

FWE dual frame estimator in the presence of nonresponse is explored by a simulation study
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described in Section 3.6. The simulation results and findings are presented and discussed in

Sections 3.7 and 3.8.
3.2 Nonresponse in Dual Frame Design

As discussed in Chapter 1, the standard dual frame estimators assume that for each

sample, the estimators of population totals are approximately unbiased for the corresponding

domain total. This means that YAa and YAb are unbiased estimates for Y, and Y, , respectively, and

both YAa’Q and YAaﬁ are unbiased for Y, . Based on this assumption, either (1.3) or (1.4) achieves

unbiased dual frame estimates, which is the first desirable property for dual frame estimators, as
discussed in Chapter 1. Any violations of the unbiased domain estimates assumption results in
biased dual frame estimates, which contradicts three of the eight desirable properties for dual
frame estimators. These three properties are: 1) unbiasedness, 2) efficiency and 3) robustness.
Biased domain estimates can result from several sources of non-sampling error, including
nonresponse, non-coverage and misclassification (measurement) errors. In this chapter, we focus
on the nonresponse error while in Chapter 4 we will explore misclassification error as a form of

measurement error.

In dual frame designs, the nonresponse problem tends to be more complicated than for
single frame designs since the samples from the different frames can have different nonresponse
properties. For example, Brick, Dipko, Presser, Tucker, and Yuan (2006) showed that in dual
frame telephone surveys, samples from the Random-Digit-Dialing (RDD) landline frames and
cell phone frames can suffer from differential nonresponse due to noncontact resulting from

differential accessibility. Differential accessibility occurs as a result of individuals’ telephone
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usage preferences or patterns. Some studies have indicated that this kind of nonresponse bias
could be more severe than the non-coverage error resulting from non-coverage of the non-

landline households in the RDD landline telephone surveys (Brick et al., 2006; Kennedy, 2007).

In order to adjust for nonresponse in dual frame designs, the estimation problem will not
be as straightforward as simply applying the design weights and combining the samples. An
adjustment step is necessary either before or after the combining step. Consequently, the dual
frame estimator might have a different form other than (1.3) or (1.4). For example, Brick et al.
(2011) proposed a post-stratified estimator as a method to treat the differential accessibility

nonresponse problem in dual frame telephone surveys. A composite factor
8y = RR; (RR; —RR; 1m)/(RR:RR, |m —~RR RR. ) Was proposed to reduce the differential accessibility

nonresponse bias. RR,, RR,,,, RR, and RR,,, are the response rates among the landline sample

I.Im > m

dual users, the landline sample landline-mainly users, the cell sample dual users, and the cell
phone sample landline-mainly users, respectively. Identifying the landline-mainly users (persons
who predominantly use landline telephones although they have cell phones) requires collecting

more data during the interview about the households’ telephone usage patterns. Moreover, no

A

exact information about RR,,, and RR_,, is available, and only estimated response rates, RRi.m

I.Im m

A

and RRcim, can be used.

If frame A denotes the RDD landline frame and frame B denotes the cell phone frame,
Brick and his colleagues (2011) identified the telephone service post-stratified dual frame

estimator as
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~ N N, - N, N~
Y =—2Y +0—-2Y2+(1-0 )=2Y> +2 3.1
s Na a 0 NaAb ab ( 0) Nfb ab Nb b )

Even more complicated estimators that explicitly incorporated the landline mainly and cell
mainly dual user domain estimates have been proposed by Brick et al. (2011). This means that
the nonresponse problem not only affects the desirable properties of the dual frame estimators

but also the weight adjustment prescribed in the standard dual frame estimators.

Under single frame designs, the stochastic model of survey response views the response

set r(r c S) as the result of two probabilistic selections. In the first, sample S is selected from

population U, and in the second, a response set I is realized as a subsample from the sample S.
Two approaches for adjusting the nonresponse that fall under the stochastic model label are the
two-phase approach and the calibration approach (Deville & Sérndal, 1992; Lundstrom &

Sdrndal, 1999; Sarndal & Lundstrom, 2005; Sarndal, Swensson, & Wretman, 1992). In the two-

phase approach, assuming that the conditional response distribution, q ( r| S) , 1s known, the first-

order response probabilities Pr(k € r| S) =¢, are known and can be used to adjust for nonresponse.

Using the adjusted design weights d, /¢ , the unbiased two-phase estimator of'y total can be

written as

Y= (d/d ¥ (32)

In practice, the response probabilities ¢ are unknown and the estimated response

probabilities ﬁ( can be used instead to adjust the base weights d, . To estimate the response

probabilities, assumptions about the response mechanism are needed. Based on the presumed
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response mechanism, a response model is formulated to estimate the response probabilities ¢, .

For example, Little (1986) and Ekhlom and Laaksonen (1991) estimated the response
probabilities from logistic regression models. Since this requires modeling the response
mechanism, the two-phase approach is a population based method to adjust for nonresponse,
which means that it requires case-level information for the nonrespondents. On the other hand,
Lundstréom and Sarndal (1999) suggested the calibration approach as a simple and unified
sample based method to reduce both the nonresponse bias and variance. It adjusts the
respondents directly using the available auxiliary variable totals. In addition to the lack of any
needed pre-modeling steps in the calibration approach, the auxiliary information is needed only
for the responding elements K € r. As a property of the calibration approach, the auxiliary
variables should contribute to reducing the nonresponse bias and the variance of estimates, as
well (Chang & Kott, 2008; Kott, 2006; Kott & Chang, 2010; Sérndal & Lundstrém, 2005). In
practice, post-stratification and weighting-class adjustment, which are special cases of
calibration, are used extensively to adjust for nonresponse (Lohr, 1999). Although the choice of
calibration variables does not require an explicit modeling step, implicit modeling would help in

justifying the selection of the auxiliary variables to be used.

Under dual frame designs and the stochastic model of survey response, the same two
approaches for adjusting for nonresponse can be identified, the two-phase approach and the
calibration approach. In the two-phase approach, the response mechanism or model is required
for each separate frame. This requires developing the mathematical formulation of the response
model in each sample and selecting the explanatory variables for these models from the available

auxiliary variables for that frame. Under the calibration approach, the dual frame samples can be
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calibrated separately, before combining the two samples, or jointly, after combining the two
samples (Lohr, 2011). In the following section, the JCE is introduced as a dual frame estimator
that waives the combination step and uses a single set of available auxiliary variable totals to

adjust for nonresponse in the combined dual frame sample.

Under the calibration approach, the nonresponse mechanism is assumed to be a function of
a set of covariates, the model variables. These covariates may or may not coincide with the
calibration benchmark variables in the calibration equation (Chang & Kott, 2008; Kott, 2006;
Kott & Chang, 2010). In this chapter, we will assume that both model and benchmark variables

coincide and that these variables are available only for respondents, k e r where r is response set

r(r < s), and not available for k eU —r.

3.3 The Joint Calibration in the Presence of Nonresponse

When nonresponse is present in a single frame design, let x, = (xkl oo Xigooes Xig ) denote
the auxiliary variables vector observed for the response set elements K € r, and assuming the

corresponding auxiliary population totals X =( o Xiroes 2, Xigoeo ZU X, ) are known, the joint

calibration problem is to find final weights w,, k e r, that satisfy the calibration equation

D wx, =X (3.3)

through minimizing the distance function

> (w-d,) /2d, (3.4)
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The dual frame design yields response sets I, (rA cs A) and I, (rB c SB) , which when
combined yield r = (I’A, Iy ) . Similarly, r, (I’a c Sa) , I (I’b c Sb) , T (ra’; c SaAb) and rj (ra?) c SaBb)

denote dual frame domain response sets. Where the calibration equation in (3.3) can be written

as ZrA W, X, + ZrB W, X, = X, the distance function in (3.4) can be split into two components

w,—d ) /2d +3 (w —d ) /2d (3.5)
ZrA( k k)/ k ZrB( k k)/ k

Using a Lagrange multiplier to obtain a minimum distance measure G (d,,w, ) between d, and

w, under the calibration constraints, the joint calibration weights are

W, :{dkvk ker, (3.6)
dyv, ker,

Where v, = (1+ A/x, ) is the joint calibration factor in the presence of nonresponse and

A= (ZU X, —zr d X, ), (zr dy X, X, )71 , the resulting JCE estimator is

YA\]CE = erk Yk (3.7)

Note that under the single frame design, the final calibration weights W, are calibrated to the
auxiliary information and may implicitly account for nonresponse. Sarndal and Liindstrom

(2005, 2010) classified the auxiliary information X, into two kinds, X, and X . The population
auxiliary information, X; , which is known for every k €U and the sample auxiliary information,

X, , which is known only for k €. Therefore, if both kinds are included in the calibration
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auxiliary information X, , the calibration weights w, imply that >° w,X, =" X, and
erkx{j = stkx‘; , where stkxﬁ is unbiased estimate for ZU X}

In the presence of nonresponse, the Joint Calibration approach is motivated by Remark

6.3 in Sérndal and Lundstrom (2005). Based on the remark and under a single frame design,

when a perfect linear relationship exists in the population between the study variable Y, and the

auxiliary vector X, ,
Y, =X\, forevery keU (3.8)

where £ is a column vector of unknown constants, then the calibration estimator YA\,V gives an

exact estimate of the target total Y as

YAW =Z,-kak:<zrwkxk)l ﬂ:(zu Xk)' IB:ZU Y=Y (3.9)

Although the perfect linear relationship in (3.9) does not hold in practice, this result suggests that

using a powerful auxiliary vector X, which has a strong linear relationship with the study

variable Yy, results in a calibration estimator YAW that will closely approximate the target

population total Y. The same argument holds under dual frame designs where (3.9) can be

written as

V=3 > W= (%) A=Y v (3.10)
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However, note that this property is conditional on the agreement between the calibration model

and the population model as proven for the full response condition in Appendix 2.1 in Chapter 2.
3.4 Examples of Joint Calibration Estimators in the Presence of Nonresponse

The auxiliary variable vector characterizes the final JCE for dual frame estimation. For

example, under a univariate auxiliary variable X, =1 for all k e U , which corresponds to the

common mean model, where the overall population total is X = N , the joint calibration factor is

v =N(X, d+Y, d) (3.11)

By calibrating the combined datasets, Zr W, X, + Zr W, X, =N . Then Y, can be written as

Ve =N(X, dye + X doy)(Z, 0+ X, d ) (3.12)

A

Under the Simple Random Sampling (SRS) design, Y,.. in (3.12) can be written as

—A B
7 m, for + Mg fAyr

Y... =N 3.13
ICE m, fy +mg f, (3-13)

where the sampling fractions are f, =n,/N, and f; =n, /N, for samples A and B,

respectively, and where ¥ and ¥ are the estimated means )’ 'y, / m, and > 'y, / m, from

the respondents m, and m, for samples A and B, respectively. If the nonresponse is not

completely at random across the two samples, calibration under the common mean model will

A

not adjust for nonresponse bias. However, Y,.. in (3.12) still finds use if there are no better
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auxiliary variables; it gives better estimates, with reduced bias, than the non-calibrated standard

dual frame estimators.

Where X, =X, , for all k e U , which corresponds to the ratio model, X =X = ZU X, »

the joint calibration factor can be written as

v, = X (ZrAd[‘xk + ng d2x, )71 (3.14)

A

By calibrating the combined datasets, Zr W, X, + Zr w, X, = X . Then Y, can be written as
A B

Y = X (Z‘”Adkyk +ngdkyk)(erdkxk +Zr5dkxk )71 (3.15)

A

Under the Simple Random Sampling design, Y,.. in (3.15) can be written as

A —B
YA —N)z mAfor + Mg fAyr
T M XA+ m, f,X°

A'B + B "A%r

r

(3.16)

where X =" x /N and x* and X? are the estimated means > X, / m, and > x, / Mg

from the respondents m, and m; for samples A and B, respectively. If the nonresponse does not

occur completely at random, joint calibration under the ratio model will not adjust for

nonresponse bias.

Under the multivariate auxiliary variable x, =(1,x,) forall k e U , which corresponds to
the simple regression model with intercept, where X, is the value for element k of a continuous

can be written as

variable X, and the population total vector is X = (N, X ), Y.
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Viee =V +5 (%~ (X, dx + 2, s ) B, (3.17)

A -1 : . . . .
where B, = zr d, X, Yy (Zr dkka{() . This estimator gives better protection against nonresponse
bias than the ratio model estimator, since the regression estimator is nearly unbiased under equal

response probability within groups (Sérndal & Lundstrom, 2005).

Another interesting multivariate calibration estimator is the complete post-stratified
estimator, which corresponds to the group mean model, where the calibration is on known post-

stratified cell counts. When the sizes of the population groups N are known and the

classification vector used to code membership in one of P mutually exclusive and exhaustive
groups X, =y, = ( Yikowos Y ks ¥k ) is used as the auxiliary variables vector, the calibrated

estimator will be the well-known post-stratified estimator.

Under the dual frame design, the joint calibration factor takes the following form

v =N, (Z,.d, +zr5dk)l (3.18)

where rpA denotes the sample cell U AN and rpB denotes the sample cell U oM. In this case,

Y,.e can be written as

A

-1
Vie = 2N, (S0 + 20 dy (St + X 00 ) (3.19)

A

Under the Simple Random Sampling design, Y,.. in (3.19) can be written as
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\ mAfeyh +mefAye
Yiee = ), N, b P -F (3.20)

AgB B A
mpfp +mpfp

where f* and f? are sampling fractions within group p for samples A and B, respectively, and

where ¥/ and y? are the estimated means Zr;\ Vi / m? and erB Vi / m: from the

respondents m” and m? for group p in samples A and B, respectively.

In the group mean model, it is implicitly assumed that mean and variance are the same

for all elements within the same group p. Similarly, where the group totals X & are known and

!

X, =X 7y = (X1k7’1k seres XV gk oo Xp ¥k ) is used as the auxiliary variable vector, this corresponds

to the group ratio model, where ratio mean and variance are shared by all elements within the
same group p. Both the group mean model and group ratio model may be classified as group
models. Since the groups in the group models can serve as strata, JCE would have better
performance if this informative design has been included in the auxiliary variables totals. At the
same time, if nonresponse does not occur at random within every group, calibration under the
group model will not fully adjust for the nonresponse bias, however, it should adjust for bias

resulting from differential nonresponse across groups.
3.5 Analyzing the Bias due to Nonresponse in Joint Calibration Estimators

As in Sirndal and Lundstrom (2005), the unconditional bias of the calibrated estimates

can be evaluated jointly with respect to the sampling design p(s) and the response distribution
q ( ri S) as
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Bias,, (V) = E, (Eq (Ya 5))-Y =Ep (Y)Y (3.21)

Proposition 3.1

Under a univariate auxiliary variable X, =1 for all k e U , where the JCE can be written
as in (3.12), and where response probabilities are Pr(k € rA|SA) =¢ and Pr(k € rB|SB) =¢ for

samples A and B, respectively, the unconditional bias of JCE in (3.12), as derived in Appendix

3.1, can be approximately written as

N B )
(ZUA¢kA + ZUB ¢kB)

(3.22)

Blaqu( JCE)z

This means that bias is proportional to the difference between the response probabilities-

(X0, 809+ 2, 4°%)
(ZUA 4 +ZUB ¢kB)

response probabilities are constant throughout the population U, the bias in (3.22) does not

weighted mean and the population mean Y = ZU Yi / N . Even if the

vanish since

Bias,, (YAJCE ) ~N (ZUAI\TK i%UB Yk ) v (3.23)
A B

The relative bias of JCE in (3.12), as derived in Appendix 3.1, can be written as

o Cov,, +Cov,
relbias (Y, ) ~ k;;T:A-By Rl (3.24)
U
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where COV%A' =ZU(¢‘< — )(yk _yU)’ Cov, =2u(¢k —% )(yk _yu)’ 7 Zu¢k ’
Yk N_l A5V N—l N

3 i -

B _ Zu ¢kB and (ZU ¢kA+ZU¢kB)
N N

. Even with constant response probabilities ¢, and

¢ throughout the two populations U, and U, respectively, the covariance terms Cov - and

Cov oy do not equal zero.
»Jk

Proposition 3.2

Under a continuous auxiliary variable X, = X, for all k e U , where JCE can be written as

in (3.15), the unconditional bias of JCE in (3.15), as derived in Appendix 3.2, can be

approximately written as

A B
Biaqu (Y"JCE)z X (ZUA¢k Yk +Zu5¢k yk)_i (3.25)

(ZUA B X, + ZUB ¢kBXk) X

This means that bias is proportional to the difference between the response probabilities-

(X0, 809+ 2, 4°%)
(ZUA B, + ZUB B X, )

weighted mean and the population ratio % . The relative bias of JCE in

(3.12), as derived in Appendix 3.2, can be written as

TABT TABT
Cov,., +COV. +47" Yy — 20 Vo

AB
¢)<U yU

relbias (Y, ) (3.26)
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(ZU ¢kAXk + ZU ¢kB Xy )
Zu Xy .

where ¢/5° =

Proposition 3.3

A general expression for the unconditional bias of JCE, as derived in Appendix 3.3, can

be approximately written as
Bias,, (YJCE ) DIV I (1-40)- I (1-¢2) (3.27)

Where elﬁf = (yk - X[(Btf;’;’ ) and B)® = (ZU BX, Y, + ZUB BEX,Y, )(ZU BIX X! + ZUE #X X, )7l )

Under full response when ¢ and ¢° are close to one,

Bias, (Yice ) = X, & (3.28)

This is consistent with bias under full response in proposition 2.1 in Chapter 2. Also, in the
presence of the nonresponse, the bias of YAJCE in (3.27) is independent of the sampling design
used to draw S, and S;. However, the bias in (3.27) depends on the response distributions,
Pr(k € rA|SA) and Pr(k € I’B|SB) , and their unknown response probabilities, ¢* and ¢°, for samples

A and B, respectively. Proposition 3.3 emphasizes the need to identify powerful auxiliary
variables that can predict study variable y and can identify response probabilities-homogeneous

groups, in which ¢" and ¢ are homogeneous.
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Corollary 3.3

Where a perfect linear relationship exists in the population between the study variable Y, and the

auxiliary vector X, , as Y, =X, /3, for every k e U , the bias of the JCE estimator, YAJCE ,in (3.27)

can be written as

Bias,,, (YJCE ) = (ZUab X, —ZUA X, (1 —¢kA)—ZUB X, (1- ¢ ))(Bu ~B{5)=0 (3.29)

This is due the fact that when this perfect linear relationship between Yy, and X, exists,
B3 =B, . This shows that the bias of YAJCE is a function of the difference between two regression
vectors, BS’;?, and B, . This perfect relationship will not hold in practice. However, the bias in
(3.27) will be reduced if the perfect linear relationship between Yy, and X, comes close to being
attained. We should use auxiliary variables X, such that the residuals e, = (yk -xBJ ) are
small. This happens when e, = (yk -X. B, ) are small. Using this set of auxiliary variables X,

guarantees reduced bias and variance of the JCE as a dual frame estimator in the presence of

nonresponse.
3.6 Simulation study

Simulation studies were used to evaluate the performance of the JCE relative to the
standard dual frame estimators under different nonresponse mechanisms. The simulated
populations generated in Chapter 2 were used again in this chapter. The simulation factors are as

the following
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1. Sampling Designs
a) Simple Sampling Design: simple random samples were selected from both frames.

b) Complex Sampling Design: equally allocated stratified sample from frame A, and

simple random sample from frame B.
2. Sample size: Equal allocation where n, =1500 and n, =1500.
3. Domain means: Large-differences domains’ means where g, =5, £, =10 and g =15.
4. Correlation between y; and x,,

a) The population correlation coefficient is p, =0.40.
b) The population correlation coefficient is p,, = 0.60.

¢) The population correlation coefficient is p, =0.80.

5. Response mechanisms

a) Simple Response Propensity Model (MCAR), where overall response rate is 30% (i.e.,

the response R has propensity pr(R =1) =.30).
b) Response Propensity by Auxiliary Variable X (MAR2), where
pr(R=1|x<c)=.19 and pr(R=1|x>c)=.34.cis the 1" quartile of .

c) Response Propensity by Frame (MAR3), where
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pr(R=1|F=A)=.33 and pr(R=1|F =B)=.25.
d) Response Propensity by Frame and Auxiliary Variable x (MAR4), where

pr(R=1|F=Ax<c)=21, pr(R=1|F =B,x<c)=.16,
pr(R=1/F=Ax>c)=.38 and pr(R=1|F =B,x>c)=.28.

e) Response Propensity by Design Domain (MARS), where
pr(R=1|D=a)=.24 , pr(R=1|D=ab(A))=4l,
pr(R=1|D=b)=.14 and pr(R=1|D=ab(B))=.27.

f) Response Propensity by Design Domain and Auxiliary Variable X (MARG6), where
pr(R=1|D=a,x<c)=.14, pr(R=1|D =ab(A),x<c)=.29,
pr(R=1|D=b,x<c)=.09, pr(R=1|D=ab(B),x<c)=.19,
pr(R=1|D=a,x>¢)=.29, pr(R=1|D=ab(A),x>c)=.44,
pr(R=1|D=b,x>c)=.18 and pr(R=1|D =ab(B),x>c)=.29.

These sets of simulation factors combine to form 72 simulation studies, 36 simulation
studies for each population model. One thousand replicates of initial samples of 3,000 cases were
run for each study. To simulate a dual frame design, within each simulation replicate, two

samples were drawn separately from both frames A and B. These samples were ‘stacked’ to form
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dual frame sample S. Conditional on the response mechanism, response sets , and I, were

realized using estimated response propensities applied within each frame sample.
3.7 Simulation Results

As in Chapter 2, only results for simple sampling design are discussed, since simulation

results for complex sampling designs, in Appendix 3.4, show the same patterns of results.
Generally, in the presence of nonresponse, biases in YAFWE were present. Adding the calibration in
the standard estimators, YAFCG,'E ’s reduced the nonresponse bias of the estimator. Under the CLR
model, in Table 3.1, the proposed YAJCE estimator achieves relative biases comparable to the
standard estimator calibrated versions, YAFC\f\,'E ’s. Under the GLR model, in Figure 3.1 and Table
3.3, the JCE estimators YAJCE.Z , YAJCE.X and YAJCE'XZ have higher relative biases than YAFCS,'E.Z , YAFC\‘Z,'E'X
and YA:,?:EXZ , respectively. Adding the strata totals to the calibration in YAJCE.ZJ , YAJCE.XJ and YAJCE.XZJ

results in reduced relative biases. Note that, for Ygg , the relative biases in Table 3.1 and the

RMSE’s in Table 3.2 are almost the same. This implies that RMSE for Ygyg is completely

dominated by squared-bias. The same applies under the GLR model in Tables 3.3 and 3.4.

Under the CLR model in Table 3.1, adding the calibration by z in YAFC\f‘V'E_Z resulted in lower

relative nonresponse biases than the un-calibrated estimator YAFWE . Even lower relative

. . . . . 7 cal . .
nonresponse biases were achieved in the calibrated estimator Yqyz , which uses X in the

calibration step. Except for the Xx-dependent nonresponse mechanisms MAR2, MAR4 and

MARG6, where the nonresponse mechanisms and the auxiliary variable X are dependent,
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calibrating with z in YAFC\Z'E.Z was enough to adjust for the nonresponse errors. Also under the same
X-dependent nonresponse mechanisms, the higher the correlation between y and X, the less

successful is calibrating with z, in YAFCS,'E.Z , in reducing the nonresponse bias. Calibrating with X in

2 cal . .
Yeue « Was enough to adjust for the nonresponse errors under all nonresponse mechanisms and

under all y and X correlation levels.

With regard to the JCE estimators in the presence of nonresponse errors, relative biases in
7 ; : : :ycal 7 cal .
Yie, and Y., were comparable to relative biases in Y, and Y, , respectively.

Calibrating the ‘stacked’ samples directly by X in YAJCE.X was enough to adjust for the

nonresponse bias under all the nonresponse mechanisms and all y and X correlation levels.

Except for the x-dependent nonresponse mechanisms, calibrating the ‘stacked’ samples directly
by z in YAJCE_Z was enough to adjust for the nonresponse bias. Calibrating the ‘stacked’ samples
directly by both X and z in YAJCE'XZ gave comparable results to YAJCE.X . Generally, the RMSE show
similar patterns as the relative biases. However, RMSE’s for YAJCE.Z and YAJCE_X were slightly lower

than RMSE’s for YAFC\‘,E\‘,'E_Z and \fé\fv'E‘X , respectively.

Under the GLR model with 0.4 correlation level, in Figure 3.1, calibrating by z in YA,f\fv'E_z

reduced the relative bias. However, biases for the case of Xx-dependent nonresponse mechanisms

MAR2, MAR4 and MARG6, and D-dependent nonresponse mechanisms MARS and MARG6,
remained. Calibrating by X in YAF"\TV'E_X reduced the relative bias for most of the nonresponse

mechanisms. However, small relative biases for the D-dependent nonresponse mechanisms
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MARS and MARG6 remained. The same applies under the other correlation levels, as in Table

3.3, however, the reduction in the relative biases is controlled by the correlation between y and X.

Figure 3.1: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated from the

GLR model population under simple sampling design and py, = 0.40
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estimator YAFWE . However, the JCE estimators YAJCE_Z , YAJCE‘X and YAJCE_XZ have higher relative biases

than YAFC\‘;,'E.Z , YAFC&,'E'X and YAF\C‘Z,'EXZ , respectively. Adding the strata totals to the calibration in YAJCE.ZJ ,

A

\?JCE_XJ and YAJCE_XZJ reduced relative biases, and in contrast with Y5 ., adding the strata totals to

the calibration in YAJCE_ZJ resulted in reduced relative biases in one of the D-dependent
nonresponse mechanisms, MARS. In contrast with YAFC\‘;’\‘,'E‘X , adding the strata totals to the

calibration in YAJCE.XJ resulted in reduced relative biases under all the proposed nonresponse
mechanisms. Again, under the GLR model, calibrating the ‘stacked’ samples directly by both x

and Z in YAJCE.XZJ gave comparable results to YAJCE.XJ . The RMSE show same patterns as relative
biases. However, RMSE’s for YAJCE‘ZJ , YAJCE_XJ and YAJCE.XZJ were slightly lower than RMSE’s for

Y Y& and Y respectively.
3.8 Discussion and Conclusion

In this chapter we addressed one of the desirable properties discussed in Chapter 1; the
JCE was introduced as a dual frame estimator that is robust to the nonresponse errors conditional
on using a powerful set of auxiliary variables. We investigated both the properties of the JCE as
a dual frame estimator in the presence of nonresponse error and the implicit potentials of the JCE
in attenuating the nonresponse bias under various nonresponse mechanisms. A general
expression for the bias of the JCE estimator was derived. Expressions for Relative biases for
different JCE estimators were derived, as well. The bias expression is composed of both
nonresponse and dual frame estimation bias. These bias and relative bias expressions emphasize

the need to identify powerful auxiliary variables that can predict study variable y and explain the
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nonresponse mechanism. Identifying these variables guarantees reduced bias and variance for the

JCE as a dual frame estimator in the presence of nonresponse.

The performance of the JCE was explored empirically in the presence of nonresponse.
When the auxiliary vector and the implicit calibration model more closely approximate the
population model and the nonresponse mechanism, JCE yields almost unbiased dual frame
estimates. This is consistent with Sérndal and Lundstrom (2005) definition of powerful auxiliary
vectors for reducing nonresponse, where the auxiliary vector should explain both the response
propensity and the main study variables. The simulation results indicated that nonresponse can
lead to biased dual frame estimates. Calibrating the FWE estimates may reduce the nonresponse
bias. This reduction depends on using a set of strong auxiliary variables that explains the
nonresponse mechanism. At the same time, the JCE results were comparable to the calibrated

FWE estimates.

As derived theoretically, the correlation between the study variable and the response
probabilities within each sample contribute to the increase of the estimates’ relative biases. This
is clear in the X-dependent nonresponse mechanisms where the relative biases were the highest
among all the other mechanisms. In this case the correlation between the study variable and the
response probabilities is due to the correlations between the auxiliary variable X and both the
study variable and the response probabilities. Adding X to the calibration step either in FWE or in
JCE is enough to adjust for the nonresponse bias under the x-dependent nonresponse

mechanisms.

Finally, this chapter only addressed the nonresponse as one form of the non-sampling

errors. More research is needed to explore the performance of the JCE in the presence of the
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other kinds of non-sampling errors. In the next chapter, we will address the effect of the

measurement domain misclassification error on the JCE.
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Table 3.1: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the CLR model population under simple sampling

design and 30 % response rate.

Non-response Pxy YAFWE YA;\?\I/IE.z Yice., Ylf\illE.x Y sce x YFC\7\:E.XZ Yicexe
MCAR pxy = 0.40 -69.99 -0.01 -0.05 0.00 -0.02 0.00 -0.02
MAR2 pxy=0.40 -68.93 341 340 0.03 0.03 0.03 0.03
MAR3 pxy = 0.40 -69.49 0.03 -0.01 0.03 0.01 0.03 0.02
MAR4 Pxy = 0.40 -6844 362 363 0.02 0.04 0.02 0.04
MARS Pxy=0.40 -71.96 0.00 -0.02 0.00 0.00 0.00 0.00
MARG6 Pxy = 0.40 -70.76 329 3.06 0.03 0.03 0.04 0.03
MCAR pxy = 0.60 -69.99 -0.03 -0.03 -0.01 0.00 -0.01 0.00
MAR2 pxy=0.60 -68.25 5.16 5.17 0.01 0.01 0.00 0.01
MAR3 pxy = 0.60 -69.24 -0.02 -0.02 0.00 000 -0.01 0.00
MAR4 Pxy = 0.60 -67.65 5.17 514 0.02 0.02 0.02 0.02
MARS Pxy=0.60 -71.93 -0.04 -0.04 -0.01 -0.01 -0.01 -0.01
MARG6 Pxy = 0.60 -70.05 4.68 430 -001 -0.02 -0.01 -0.02
MCAR pxy=0.80 -69.98 0.00 -0.01 0.04 0.00 0.03 0.00
MAR2 pxy=0.80 -67.61 7.48 748 0.07 0.05 0.06 0.05
MAR3 pxy=0.80 -69.43 -0.03 -0.02 0.02 0.00 0.02 0.00
MAR4 Pxy = 0.80 -6732 745 743 0.06 0.05 0.06 0.05
MARS Pxy=0.80 -71.89 0.02 0.01 0.00 -0.02 0.00 -0.02
MARG6 pxy=0.80 -69.64 687 640 0.02 0.01 0.02 0.01
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Table 3.2: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the CLR model population under simple

sampling design and 30 % response rate.

Py

Non-response Pxy YAFWE YAIE\?\IIE.Z Yice, Y’\If\;a\IIE.x YAJCE.X Y’\F(ia}\/IE.XZ YAJCE.XZ
MCAR pxy = 0.40 69.99 2.03 1.91 1.87 1.75 1.88 1.76
MAR2 pxy = 0.40 68.94 398 391 1.90 1.76 1.90 1.76
MAR3 Pxy = 0.40 69.50 2.05 1.94 1.88 1.75 1.88 1.76
MAR4 Pxy = 0.40 68.45 4.17 412 192 1.79 1.92 1.80
MARS5 Pxy = 0.40 7197 210 196 193 1.80 1.93 1.80
MAR6 Pxy = 0.40 7076  3.89 3.62 1.92 1.78 1.92 1.79
MCAR pxy=0.60 70.00 2.11 1.93 1.71 1.56 1.72 1.56
MAR?2 pxy = 0.60 68.26 553 548 1.69 1.55 1.70 1.55
MAR3 Pxy = 0.60 69.25 2.07 190 1.69 1.55 1.70 1.55
MAR4 Pxy = 0.60 67.66 555 547 1.74 1.58 1.75 1.59
MARS5 Pxy = 0.60 7194 2.11 194 1.74 1.60 1.75 1.60
MAR6 Pxy = 0.60 7006 5.09 4.69 1.69 1.55 1.69 1.56
MCAR pxy=0.80 6999 221 2.04 1.33 1.24 1.33 1.24
MAR?2 pxy=0.80 67.62 7.77 7.73 1.34 1.24 1.33 1.24
MAR3 Pxy = 0.80 69.44 222 2.05 1.33 1.24 1.32 1.24
MAR4 Pxy = 0.80 6733 7.75 7.69 1.33 1.23 1.33 1.23
MARS5 Pxy = 0.80 71.89 218 2.04 134 1.25 1.34 1.25
MAR6 Pxy = 0.80 69.65 7.19 6.70 1.32 1.23 1.32 1.23
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Table 3.3: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the GLR model population under simple sampling

design and 30 % response rate.

A ~ A A A ~

Non-response Pxy Yeue Y’\If\;a\IIE.z Yice. YAFCVaVIE.X Y sce x YAFCVa\;Exz Yicese Yicew Yicexs  Yicexw
MCAR pxy = 0.40 -6998 0.00 565 -0.07 365 -0.06 366 -0.03 -0.11 -0.10
MAR2 pxy = 0.40 -68.47 5.18 10.52 0.03 3.76 0.03 3.77 436 -0.01 0.00
MAR3 pxy=0.40 -69.57 -0.26 530 -0.21 3.44 -0.20 3.44 0.01 -0.06  -0.06
MAR4 Pxy = 0.40 -68.38 4.86 10.12 -0.18 3.50 -0.17 3.51 433 -0.02  -0.02
MARS Pxy = 0.40 -70.77 4.00 886 2.57 5.82 2.58 582 -0.09 -0.16 -0.16
MARG6 Pxy = 0.40 -69.60 8.33 12.68 248 5.81 2.49 5.81 4.15 -0.10  -0.10
MCAR pxy = 0.60 -6997 0.03 6.00 0.00 3.30 0.01 3.30 0.00 0.00 0.00
MAR2 pxy = 0.60 -68.34 6.89 1247 0.05 3.38 0.05 3.38 6.05 0.06 0.05
MAR3 pxy=0.60 -69.57 -027 563 -0.14 3.13 -0.14 3.13 0.05 0.06 0.06
MAR4 Pxy = 0.60 -67.77 6.82 1231 -0.15 3.16 -0.15 3.16 6.28 0.07 0.07
MARS5 Pxy = 0.60 -70.94 430 944 239 5.29 2.40 528  -0.01 0.05 0.05
MARG6 Pxy = 0.60 -69.19 10.28 14.68 2.18 5.16 2.18 5.16 6.10 0.04 0.03
MCAR pxy=0.80 -70.01 -0.10 595 -004 242 -0.04 242 -0.16 -0.07 -0.07
MAR2 pxy=0.80 -67.48 939 1492 -0.07 242 -0.06 242 846 -0.10 -0.11
MAR3 pxy=0.80 -69.57 -046 552 -0.21 223 -0.21 2.23 -0.18 -0.09 -0.09
MAR4 Pxy = 0.80 -67.20 920 1463 -0.21 227 -020 2.26 8.57 -0.09 -0.09
MARS Pxy = 0.80 -70.63 432 949 1.73 3.88 1.73 38 -0.18 -0.10 -0.10
MARG6 Pxy = 0.80 -68.61 1249 16.72 1.56 3.79 1.57 3.78 8.11 -0.14 -0.14
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Table 3.4: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the GLR model population under simple

sampling design and 30 % response rate.

Py Py Py

Non-response Pxy Yewe Y;\ZIE.Z Yice, YFC\{;/IEX Yce x YF\CZ/T/IEsz Yicere Yicew Yicex  Yices
MCAR pxy=0.40 6999 255 6.12 227 422 2.27 423 2.41 2.20 2.20
MAR?2 pxy=0.40 |[6848 5.77 10.77 2.35 4.35 2.35 4.35 498 2.25 2.25
MAR3 Pxy=040 |69.58 264 583 235 4.07 2.35 4.07 2.42 2.22 2.22
MAR4 Pxy=040 6839 549 1039 239 415 2.39 4.16 4.94 2.26 2.26
MARS5 pxy=040 7078 4.77 9.17 3.47 6.20 3.47 6.21 2.65 2.44 2.44
MAR6 py=040 |[69.61 871 1290 3.43 6.22 3.44 6.22 491 243 243
MCAR pxy=0.60 6998 241 641 1.97 3.78 1.97 3.78 2.30 1.93 1.93
MAR?2 pxy=0.60 |[6835 7.30 12.67 1.96 3.85 1.96 3.85 6.47 1.90 1.90
MAR3 Pxy=0.60 |[69.58 244  6.08 1.95 3.62 1.95 3.62 2.29 1.87 1.87
MAR4 pxy=0.60 |67.78 7.23 1251 1.98 3.66 1.98 3.66 6.69 1.91 1.91
MARS5 pxy=0.60 7095 495 9.71 3.07 5.59 3.08 5.58 2.52 2.02 2.02
MAR6 Pxy=0.60 |69.20 10.56 14.86 2.97 5.50 2.97 5.49 6.60 2.09 2.09
MCAR pxy=0.80 [70.02 2.61 6.43 1.57 2.83 1.57 2.83 2.49 1.52 1.52
MAR?2 pxy=0.80 [67.49 9.71 15.09 1.58 2.84 1.58 2.84 8.79 1.53 1.53
MAR3 Pxy=0.80 [69.59 2.64 6.03 1.56  2.66 1.57 2.66 2.46 1.48 1.48
MAR4 Ppxy=0.80 |[67.21 9.54 1481 1.62 272 1.62 2.72 8.89 1.54 1.54
MARS5 pxy=0.80 |[70.64 5.04 9.79 232 414 2.32 4.14 2.72 1.61 1.61
MAR6 Py=0.80 |68.62 1274 16.89 224  4.07 2.24 4.07 8.53 1.67 1.67
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Appendix 3.1: Proof of Proposition 3.1

. 4
Yice =N (erdk Yk "‘Z,Bdk yk)(ZrAdk +zr5dk)

Bias,q (Yice ) = Epq (Yoce =Y )

Biaqu (YAJCE): N.E ZrAdk Y +Zr8 dk yk)

RS

qu (ZrA de Yy ) = Ep (ZSA ¢kAdk Yk ) = ZUA ¢kAyk

and

E o (ZrA d, ) =E, (ZSA ¢kAdk ) = ZUA ¢kA

Similarly, E (ZrB d,y, ) = ZUB ¢’y and E (Zra d, ) = ZUB #° . So by replacing the

(X, deve + 2, dovi]
(erdk +Y, d,)

unconditional bias can be approximately written as

numerator and the denominator in by their expected values, the

Bias (A E)zN (ZUA¢kAyk+ZUB¢kByk) Y
pa \ 'ac (ZUA¢kA+ZUB¢kB)

With regard to the relative bias, it can be written as
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(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



(Zwﬁw+2%ﬁw)@

relbias (YJCE ) ~[N
(X 80+, 8 )20 v

(3.36)

Since, ¢/ =0 forall k eU, and ¢® =0 forall k eU,, the relative bias can be written as

relbias (Ve ) ~ | N QL%W+2L%W)—1 (3.37)
(Zu ¢kA + Zu ¢kB )ZU Yi
;NELﬁﬂ+N§Lﬁn+§Lﬁ§Lﬂ—2L#§Lw+§Lﬁ§Lﬂ‘§Lﬁ§LW_; (3.38)
_ (o + 2 ) 2% |
z_N[Z(@A—%A)(yk—Vu)+ZJ(¢f—¢_%B)(yk—7uﬂ+2u¢?zuyk+zu¢KBZUyk_1_ (3.39)
_ DN _
N N [ZU (¢kA —@A)(yk “Vu)*+ 2, (¢kB _%B)(yk RL )] (3.40)
(Zu ¢kA + Zu ¢kB )Zu Y
N-1 .,
Assume N
retbias (Y, ) COVyry, +COVay, (3.41)

¢ Vo

(- (- %)

Where COV%A;yk - N _l ) C:OV%B;yk
& = M and ¢° = (ZU A+ Z‘4u ¢kB)
N N .
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Appendix 3.2: Proof of Proposition 3.2

Y = X (Z‘”Adkyk +Zr8dk yk)(erdek +Zr5dkxk )71 (3.42)

(3.43)

. . ZrAdkyk+erdkyk
Blaqu(YJCE)=X.Ep{Z S a, -y

Where E (ZrA d, X, ) = ZUA g%, and E (ZrB d, X, ) = ZUB #° %, , the unconditional bias can

be approximately written as

(3.44)

iy ()= x |\ 20t T #0) v
pa { Tc (ZUA¢kAXk+ZuB¢kBXk) X

With regard to the relative bias, it can be written as

(3.45)

(X, #v+ 2 80 ) 1]

rerias(\(AJCE ) ~| X _
(ZUA¢kAXk +ZUB¢kBXk )Zu Y

(3.46)

(e )
~| NX -1
(Zu ¢kAXk + Zu ¢kB Xy )Zu Y

z['\RZQAYk”\RZ@BYﬁXZQAZWXZ@AZWJF)_(Z,@BZWXZ,@BZW 1] (3.47)
(D0 A%+ D %) 20 %

~
~

{NX[ZM—@A)(W—vu>+zu(¢f—«%5><yk RIS ILIW

1| (3.48)
(Zu ¢1<Axk +ZU @Bxk)zu Y ]
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K[ (0 =) (3 =50+ 2 (4 =)0

%) X e X

Q

(2o, A% + 2, %) 2, Ve

[ (=) (Y=o )+ D (4~ ) (vi—

4

%]

(Z wx+ 2, 8% ) o

AW AL

(2o %+ 2, 4%, )
RS 2

Assume N

Covwy +Cov ¢AB
relblas( JCE)~ = S

-1
¢fo ° yU ¢XG °

TAB— AB—
COV@A;yk +C0v ” +d,°Y — 40 W

~ 7T AB
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Appendix 3.3: Proof of Proposition 3.3

YAJCE = ZrA dk Yk +Zra dk Yk

+(Zu X _(ZrA d, X, +Zr8 d, X ))(ZrA dy X, i +Zr8 d X, Yi )(ZrA d, X, X +er d, X, X )71

Viee = 2, ditict 2, v+ %~ dxc+ X, 4ok )| BeS
+(ZU X, —(ZrA X+, X )) BAe —(Zu X, —(ZrA X+, X ))BC’E

where

B/ = (ZrAdekyk +ZrB dkxkyk)(er 0 Xy X +er 0 X, X )71

and

-1
BS’;: = (ZUA¢kAXk Y +ZUB ¢kBXk Y )(ZUA¢|<AXL<X;< +ZUB ¢kBXkX:<)

qu (YAJCE): ZUA%Ayk +ZUB ¢kByk +(Zu X _(ZUA ¢kAX:< +ZUB ¢ka;< ))BC’;Z
+(ZU % _(ZUA¢kAXL +ZUB ¢ka[< )) qu (érAWB _BG’;E)

Eon (e = X, 00+ X, 00+ (Z 5 (Z, 00X+ 2, 00 B0

Since

plim B*® = plim {(Z dXeYie + 2, deX, Yy )(Z XX+ 2 XX )1} -

-1
(ZUA ¢kAXk Y ZUB ¢ka|< Yy )(ZUA ¢kAXkXL + ZUB ¢kBXkX:<) _ BC’;Z
Bias,, (Yiee ) = X, A%+ Xy, 003+ X %~ 2y, 0+ 2, 4% | B - 22, v,
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Biaqu (YAJcE ) = ZUA¢kA(yk B XLBS’;Z)JFZUB ¢kB (yk _XLBS’;S)_ZU (yk _XLBS’;Z)

(3.62)
Bias,, (\fJCE ) DI D I S (3.63)
where

en? =(y, —xBS?) (3.64)
Biasy, (Vice )= Do, 4000 + Xy, A8~ 2, 000 — D, 80 + Xy O (3.65)

Bias,, (YJCE) =Y by =2 ek (1-g0) -, el (1-47) (3.66)
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Appendix 3.4: Results for Complex Sampling Designs

Table 3.5: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the CLR model population under complex sampling

design and 30 % response rate.

A A ~ A A A

Non-response Pxy Yeue YFC\:/IE.z Yice. YFC\7\/IE.x Yce x YFC\jlle.xz Yice s
MCAR pxy = 0.40 -69.98 0.04 0.00 0.05 0.03 0.05 0.03
MAR2 Pxy = 0.40 -6898 3.67 3.65 0.06 0.06 0.05 0.05
MAR3 pxy = 0.40 -69.54 0.05 0.01 0.04 0.03 0.04 0.03
MAR4 Pxy = 0.40 -68.32 358 355 0.09 0.09 0.08 0.09
MARS Pxy = 0.40 -71.66 -0.01 -0.04 0.01 0.01 0.00 0.00
MAR6 Pxy= 0.40 -70.80 3.35 3.10 0.02 0.03 0.02 0.02
MCAR pxy = 0.60 -70.02  -0.10 -0.09 -0.08 -0.07 -0.09 -0.07
MAR2 Pxy = 0.60 -68.53 493 495 -0.09 -0.07 -0.09 -0.07
MAR3 pxy = 0.60 -69.56 -0.05 -0.05 -0.06 -0.05 -0.06 -0.06
MAR4 Pxy = 0.60 -67.72 499 498 -0.07 -0.06 -0.08 -0.06
MARS Pxy = 0.60 -7193 -0.02 -0.01 -0.03 -0.02 -0.03 -0.02
MAR6 Pxy=0.60 -70.19 485 451 -0.06 -0.04 -0.06 -0.04
MCAR pxy=0.80 -6998 0.05 0.07 0.02 -0.01 0.02 -0.01
MAR2 Pxy = 0.80 -67.50 727 732 0.02 0.01 0.02 0.01
MAR3 Pxy=0.80 -69.53 0.01 0.04 -0.02 -0.03 -0.02 -0.03
MAR4 Pxy=0.80 -67.22 731 732 0.02 0.02 0.02 0.02
MARS Pxy=0.80 -71.69  0.04 0.08 0.00 -0.01 0.00 -0.01
MAR6 Pxy=0.80 -69.59 695 6.57 0.03 0.03 0.03 0.03
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Table 3.6: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the CLR model population under complex

sampling design and 30 % response rate.

A Py A

Non-response Pxy Yene YAFC\{Z/IEJ Yice, YAFC\?VIE.X YAJCEAX Y’\vaa\;Exz Yice v
MCAR pxy=0.40 [69.99 234 2118 2.12 1.98 2.13 1.98
MAR2 pxy=0.40 ]68.99 430 421 214 1.99 2.14 1.99
MAR3 Pxy=040 [69.55 233 220 2.15 2.01 2.15 2.02
MAR4 pxy=040 |[6833 426 415 217 2.02 2.17 2.02
MARS5S pxy=040 |[71.67 236 223 214 2.02 2.15 2.02
MAR6 py=040 |[7081 410 383 221 2.08 2.21 2.08
MCAR pxy=0.60 |[70.03 221 208 1.72 1.64 1.72 1.64
MAR2 pxy=0.60 | 68.54 537 534 1.74 1.64 1.74 1.65
MAR3 Pxy=0.60 [69.57 223 212 1.75 1.66 1.75 1.66
MAR4 pxy=0.60 [67.73 543 538 1.78 1.68 1.78 1.69
MARS5S pxy=0.60 |[71.94 221 211 1.76 1.68 1.76 1.69
MAR6 pxy=0.60 [7020 531 496 1.77 1.71 1.78 1.71
MCAR pxy=0.80 [69.99 230 2.14 141 1.32 1.41 1.32
MAR2 pxy=0.80 |67.51 7.59 7.59 140 1.31 1.39 1.31
MAR3 Pxy=0.80 [69.54 232 217 1.42 1.34 1.42 1.34
MAR4 Pxy=0.80 [67.23 763 760 142 1.35 1.43 1.35
MARS Py=0.80 [71.70 235 220 142 1.35 1.42 1.35
MAR6 Pxy=0.80 [69.60 731 690 142 1.35 1.42 1.34
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Table 3.7: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the GLR model population under complex sampling

design and 30 % response rate.

A A A A ~

Non-response Pxy Yeue Y’\If\;a\IIE.z Yice. YAFCVaVIE.X YAJCE.X YAFCVa\;Exz Yicee Yicew Yicexs  Yicexw
MCAR pxy=0.40 |-70.00 -0.02 570 -0.02 3776 -0.02 3.77 0.01 -0.02 -0.01
MAR2 pxy=0.40 |-68.87 509 10.52 -0.02 3.80 -0.01 3.80 431 -0.01 -0.01
MAR3 Pry=040 |-69.73 -034 531 -023 350 -0.23 3.51 -0.02 -0.04 -0.04
MAR4 Ppxy=040 |-6852 478 10.12 -022 355 -0.21 3.56 4.30 0.00 0.00
MARS Ppxy=040 |-70.59 411 9.02 271 6.00 2.72 6.00 0.02 -0.03 -0.02
MAR6 Py=040 |-69.56 829 12.74 2.49 5.90 2.50 591 419 -0.02 -0.01
MCAR pxy=0.60 |-70.02 -0.08 5.87 -0.10 3.21 -0.09 3.21 -0.12  -0.10 -0.10
MAR?2 pxy=0.60 |-6837 7.17 12.71 -0.08 3.26 -0.08 3.25 6.28 -0.06 -0.07
MAR3 Pxy=0.60 |-69.68 -042 546 -028 299 -0.28 299 -0.09 -0.06 -0.06
MAR4 pxy=0.60 |-67.77 672 1220 -023 3.08 -0.23 3.07 6.20 -0.01 -0.01
MARS pxy=0.60 |-70.61 411 925 224 5.15 2.24 515 -0.15 -0.07 -0.08
MAR6 Py=0.60 |-69.24 1036 14.71 2.14 5.13 2.14 5.13 6.13 -0.03  -0.03
MCAR pxy=0.80 |-70.00 -0.02 6.04 0.05 2.52 0.05 252  -0.10 0.02 0.02
MAR2 pxy=0.80 |-6745 9.19 1474 0.00 2.49 0.00 2.49 825 -0.04 -0.04
MAR3 Pxy=0.80 |-69.56 -036 5.63 -0.13 233 -0.13 2.33 -0.12  -0.02 -0.02
MAR4 Pxy=0.80 |-66.85 9.05 1450 -0.16 232 -0.16 2.32 8.43 -0.04 -0.04
MARS Py=0.80 |-70.60 421 946 1.77 3.94 1.77 394 -020 -0.03 -0.03
MAR6 Py =0.80 | -68.48 1247 16.76 1.70 3.92 1.70 3.92 8.17 -0.02 -0.02
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Table 3.8: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the GLR model population under complex

sampling design and 30 % response rate.

Py A A A ~

Non-response Pxy Yeue Y’\If\;a\IIE.z Yice. YAFCVaVIE.X YAJCE.X YAFCVa\;Exz YAJCEAXZ Yicew Yicew  Yicexw
MCAR pxy=0.40 |[70.01 2.63 623 240 439 2.39 4.39 2.49 2.29 2.28
MAR2 pxy=0.40 |68.88 572 10.81 245 4.46 2.44 4.46 4.97 2.32 2.32
MAR3 Pry=040 |[69.74 273 592 246 422 2.45 4.22 2.56 2.33 2.32
MAR4 Pxy=0.40 |[6853 548 1044 248 428 2.47 4.29 4.99 2.36 2.35
MARS Pxy=0.40 [70.59 489 938 3.63 6.44 3.63 6.44 2.69 2.46 2.45
MAR6 Py=0.40 |[69.57 873 13.01 3.55 6.39 3.55 6.39 5.00 2.54 2.53
MCAR pxy=0.60 |[70.03 256 634 2.06 3.76 2.06 3.75 2.36 1.93 1.93
MAR2 pxy=0.60 |68.38 7.59 1292 2.09 3.81 2.09 3.81 6.70 1.96 1.96
MAR3 Pry=0.60 [69.70 2.61 599 2.08 3.58 2.08 3.57 2.37 1.92 1.92
MAR4 Pxy=0.60 |[67.78 7.17 1243 2.11 3.67 2.11 3.67 6.62 1.95 1.95
MARS Py=0.60 [70.62 486 958 3.04 5.50 3.04 5.50 2.53 2.03 2.03
MAR6 Py =0.60 |[69.25 10.67 1492 3.02 5.52 3.02 5.51 6.64 2.08 2.08
MCAR pxy=0.80 |[70.01 271 6.57 1.63 2.96 1.63 2.96 2.53 1.55 1.55
MAR2 pxy=0.80 |[67.47 9.55 1494 1.67 2.96 1.67 2.96 8.61 1.58 1.58
MAR3 Pxy=0.80 |69.57 276 6.21 1.65 2.80 1.65 2.80 2.55 1.55 1.55
MAR4 Py=0.80 [66.86 942 1471 1.69 2.82 1.69 2.82 8.77 1.58 1.58
MARS Py=0.80 |[70.61 5.03 981 242 424 242 4.24 2.69 1.65 1.65
MAR6 Py=0.80 [68.49 1276 1696 242 425 242 4.25 8.59 1.70 1.70
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Chapter 4

Joint Calibration Estimator in the Presence of Domain

Misclassification

4.1 Introduction

After exploring the performance of JCE in the presence of nonresponse in Chapter 3, in
this chapter, we are interested in exploring the performance of JCE in comparison with the
standard dual frame estimators in the presence of domain misclassification for sample units. In
this chapter, the domain misclassification problem is discussed in Section 4.2. The
misclassification bias for the standard dual frame estimators is derived in Section 4.3. The
performance of JCE in comparison with the standard FWE dual frame estimator in the presence
of the misclassification and nonresponse errors is explored by a simulation study described in

Section 4.4. The simulation results and findings are presented and discussed in Sections 4.5 and

4.6.

4.2 Domain Misclassification in Dual Frame Design

In Chapters 2 and 3, the Joint Calibration Estimator (JCE) was introduced as a new dual
frame estimator that requires a simpler set of requirements than standard dual frame estimators

while achieving comparable efficiency. Standard dual frame estimators depend on identifying the
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design domains during the data collection. Consequently, the performance of these estimators is
sensitive to the errors in measuring the domain membership, or the simple multiplicity
information (Mecatti, 2007). The multiplicity information problems include (i) Domain
misclassification; this problem will be discussed in detail in this chapter, (ii) [tem missing
nonresponse in the multiplicity information, where the standard imputation can be used to impute
the missing multiplicity information (Rubin, 1987) and (iii) Unknown multiplicity information,
where for some groups the multiplicity information cannot be identified. For example, Zero-
banks are 100-series banks with no listed residential numbers (Casady & Lepkowski, 1993). The
list-assisted RDD designs do not implicitly cover phone numbers in the Zero-banks, but the ABS
frame does cover this domain. Where many dual frame designs can be generated from combining
RDD landline telephone sample and an ABS sample, in some designs, the Zero-banks domain
should be explicitly identified in the ABS sample for sake of the unbiased dual frame estimation.
However, practically speaking, identifying whether the sample case belongs to a zero-bank or
not is not an easy task. Thus zero-banks cases will be forcibly embedded within the landline
households.

Back to the domain misclassification problem, it is uncommon to have access to the
domain membership information before conducting the survey (e.g., from properties or actual
matching of frames). Therefore, this information should be obtained during the data collection.
For example information about landline telephone service should be obtained in the area-landline
dual frame surveys (Lepkowski & Groves, 1986); even more detailed information about the
landline and cell phone services should be obtained in the landline-cell dual frame telephone
surveys (Brick et al., 2006; Kennedy, 2007 ). Collecting this information could be burdensome

for some respondents and could lead to more unit non-response. It is even worse when dealing
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with rare populations such as persons with a rare disease or for elusive or hidden populations
such as the homeless, illegal immigrants or drug consumers (Lepkowski, 1991; Mecatti, 2007;
Sudman & Kalton, 1986). For example, in The National Incidence Study of Child Abuse and
Neglect, a dual frame design combines a list frame of all maltreated children investigated by
Child Protective Services agencies and another sample frame compiled from reports of
maltreated children provided by sources such as the police and school staff. Due to the lack of a
list frame for the second frame, identifying the domain membership or the multiplicity
information was problematic (Clark, Winglee, & Liu, 2007).

Beside the knowledge of the domain membership for every sampled unit, ideally, such
information should be free from reporting or measurement errors, but this is not typically the
case (Lohr & Rao, 2006). The correct classification of the sampled units into the domains in each
frame is required to apply either the optimal or practical dual frame estimators as discussed in
Chapter 1. The performance of the optimal dual frame estimator is dependent on the correct
classification assumption. In practice, achieving the correct classification for all cases is almost
impossible because, as any other study variable, the domain membership variable could be
affected by the measurement or the reporting error. Therefore, the sampled units could be
misclassified into the wrong domain. Misclassification happens when a sample unit is classified
into the wrong design domain, such as when in RDD-cell phone dual frame surveys, households
owning both landline and cell phone are misclassified as landline only households. In agriculture
dual frame surveys, domain misclassification occurs if a farm sampled in the area frame is
incorrectly classified with respect to its list frame membership (Lesser & Kalsbeek, 1999). It is
even more challenging in longitudinal dual frame surveys (Lu & Lohr, 2010). Generally, it is

difficult to identify misclassified units, and to estimate the misclassification rate. This means that
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the optimal dual frame estimators could have less than optimal performance (Lohr, 2011; Lohr &

Rao, 2006).

As discussed in Chapter 1, Meccati (2007) introduced the Multiplicity Estimator (ME)

(1.17), which depends on partial multiplicity information M, , the number of the frames that case

k belongs to, in order to adjust for the multiplicity and combine the different samples. Although
the ME estimator somewhat relaxes the burden of collecting full multiplicity information, it is
sensitive to the domain membership misclassification. Unlike the standard dual frame estimators,
identifying the design domains is not necessarily required for the JCE. Thus, the JCE should be
robust to multiplicity information problems such as missing multiplicity information or
misclassification. In the presence of the multiplicity problems, the joint calibration approach
tends to have higher efficiency than the standard dual frame estimators. In the next section, a
misclassification bias expression is derived to help identify misclassification bias components.
This formulation will enhance our understanding of the effect of the misclassification error on

the standard dual frame estimates.

4.3 Analyzing the Bias due to Domain Misclassification in the Standard Dual

Frame Estimators

In this section, the analytic bias due to domain misclassification is derived. This bias
affects the standard dual frame estimators. However, it does not affect the JCE, which does not
necessarily require any domain membership information for its general application. In the

presence of domain misclassification and where s 1s the domain-misclassified sample s, the

S

unconditional bias of the standard dual frame estimators in (1.4), YAmis , can be evaluated jointly
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with respect to the sampling design p(s) and the conditional misclassification distribution
q(smis | S) as

Py

Bias,, (V. ) = E, (Eq (Yo | s))—Y = Epy (Vo )Y (4.1)

Since the domain misclassification is more likely to occur in certain directions (Lohr,
2011), the domain misclassification can be classified as a one-way or two-way misclassification.
Under the one-way misclassification, the misclassification problem can occur only from the

overlapping to the non-overlapping domains, One-Way Overlapping Misclassification (OWOM),

where the sample cases in the overlapping domains, S:b and SaBb , could be misclassified into the

non-overlapping domains, S, and S,. Another one-way misclassification mechanism happens

when the misclassification problem occurs only from the non-overlapping to the overlapping

domains, One-Way Non-overlapping Misclassification (OWNM), where the sample cases in the

non-overlapping domains, S, and S, , could be misclassified into the overlapping domains, SaAb

and Sfb . In the two-way misclassification (TWM), the sample cases either in the overlapping

domain or in the non-overlapping domains could be misclassified into the wrong domains.

In the following propositions, the domain misclassification bias in the standard dual
frame estimators is derived. In propositions 4.1 and 4.2, the analytic bias for the one-way
misclassifications, OWOM and OWNM, are derived. In proposition 4.3, the analytic bias for the

two-way misclassification, TWM, is derived.
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Proposition 4.1

Under the one-way OWOM misclassification, where the sample cases in the overlapping
domains, SHAb and SHBb , could be misclassified into the non-overlapping domains, S, and S, the

estimated total Y in (1.4) can be written as
2 b, b,
Yo = 2 Aoyt 2, (1-10°)mdey + 20, 10¢d,y, 4.2)

A 4B A B A B ab,c .
where d, =(d/,df), m, =(mfmé), s =(s,.5,), S5 = (5.5 ) and 1 isa
misclassification indicator for observation k from the overlapping domains SaAb and Sfb

misclassified into non-overlapping domains S, and S, respectively.

Under this misclassification pattern, the unconditional bias resulting from domain

misclassification, as derived in Appendix 4.1, can be written as

Bias,, (Ymis) =" Yo (4.3)
where y ¢ is the probability of misclassification from the overlapping to the non-overlapping

domains. This means that the value of the misclassification probability »* and the population
total Y for overlapping domains Y, determine the magnitude of the bias resulting from

misclassification.
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Proposition 4.2

Under the one-way OWNM misclassification, where the sample cases in the non-overlapping
domains, S, and S, , could be misclassified into the overlapping domains, SaAb and SaBb , the

estimated total Y in (1.4) can be written as
n b w
Yinis = Zsab m,d, Yy +ZS°(1_ Io? )dk Yk +Zsc lo¥md, y, (4.4)

c,ab . . . . . . . . .
where " is a misclassification indicator for observation k from the non-overlapping domains

S, and S, misclassified into overlapping domains S:b and SaBb , respectively.

Under this misclassification pattern, the unconditional bias resulting from domain

misclassification, as derived in Appendix 4.2, can be written as

Bias,, (\f ) =y ((6-1)Y, -6Y,) (4.5)

mis

Where 6 € [O, 1] is the dual frame estimation composite factor and “ is the probability of

misclassification from the non-overlapping to the overlapping domains. This means that the

® and a weighted average of population totals for non-

misclassification probability »*
overlapping domains ((49 - l)Ya — 9Yb) determine the magnitude of bias resulting from domain

misclassification.
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Proposition 4.3

Under the two-way TWM misclassification, where the sample cases either in the overlapping
domains or in the non-overlapping domains could be misclassified into the wrong domains, the

net unconditional bias resulting from misclassification, can be written as
Bias, (Ym,s) oY, =7 ((1-0)Y, +6Y,) (4.6)

These misclassification biases in (4.3), (4.5) and (4.6) assume that the misclassification

indicators are identically distributed and that |, 2 and y "¢ are Bernoulli random variables with

parameters yc’ab and ]/ab’c , respectively. In the following proposition, a general expression for

the misclassification bias is derived.
Proposition 4.4

A general expression for the unconditional bias resulting from the two-way TWM

misclassification that assumes that each element k in the overlapping domain has a

misclassification probability, E ( | 2 °) 72> and each element K in the non-overlapping domains

has a misclassification probability E ( (e ) 7™, as derived in Appendix 4.3, can be written as

Bias,q (Y, ) = Ny (6 (785, ) + 7V, ) -

4.7
(1=O)N, (5, (7. v )+ 75"V )= ONy (g, (707 v, )+ 77, ) (4.7)

whereY_ab=z:uabyk/Nab,77a = U abc/N Y;:ZUayk/Na,]/acab .. cab/Na’

Y,= Z Y / N, and 7>%= yo® / N gab b’C, yk) is the population covariance between



the misclassification probabilities y; ®® and the values of the target variable y, within the

c,ab

overlapping domains ab. Also, ¢, (yk° Y, ) and ¢, (yk » Yy ) are the population covariance

between the misclassification probabilities , * and the values of the target variable y, within

the non-overlapping domains a and b, respectively. These covariances can be written as follows

Sab (7;“’ yk) = Zuab <7I?b’c - 77ab’c)(yk _Y_ab )/Nab (4.8)
s (7o) =20, (7 =7 ) (v Vo) /N, (4.9)
G (7 v) = 20, (7™ =) (v~ Vo) /N, (4.10)

In the previous propositions, the bias in the dual frame estimators resulting from the
misclassification problem was explored. Obviously, the misclassification bias depends on two

components:

a) The expected total of y, for the misclassified cases within each domain,

Nab77ab°CY_ab, Na77zf’abY_a and Nb77bC°abY_b-

b) The correlation between the misclassifications probabilities and the study variable

y within the different design domains, supported by the within domains

covariances, ¢, (yfb’°,yk), S, (ka’ab, yk) and ¢, (ka’ab, Y, )

This means that the misclassification bias can be controlled during the data collection process by
following the best practices that decrease the measurement error in reporting the domain

membership variable. At the same time, the misclassification bias can be adjusted based on the
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second component by implicitly predicting the misclassification probabilities. This can be
performed by calibrating the data by an auxiliary variable that is correlated with the study
variable y and the misclassification probabilities. This step can be performed either in the
standard dual frame estimators or in the JCE. In the standard dual frame estimators, the
calibration step comes after combining the data based on the misclassified domains. When
misclassification probabilities are known, Lohr (2011) proposed an adjustment factor for the
misclassification bias for the FWE estimator, which is consistent with our derivations of the

misclassification bias.

In JCE, the domain misclassification does not affect the estimates as long as no domain
membership information was added to the auxiliary variable vector, X. However, even if
misclassified domain membership information was added to the auxiliary variable vector, adding
more auxiliary variables which are correlated with the study variable y and the misclassification
probabilities is enough to reduce the bias resulted from the misclassified domain. Moreover, the
effect of using the misclassified domains as the sole auxiliary variable in JCE is less significant
than the effect of the domain misclassification in the standard dual frame estimators. This is due
the fact that in the standard dual frame estimators, classifying the sampling units into the domain
correctly is required before applying the composite factor . However, in JCE, this

misclassification error is accounted for as a measurement in the auxiliary variables.

4.4 Simulation study

Simulation studies were used to evaluate the performance of the JCE relative to the

standard dual frame estimators in the presence of different misclassification and nonresponse
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mechanisms. The same populations generated in Chapter 2 were used in this chapter. The

simulation factors are as the following:

1. Sampling Designs: Simple Sampling Design where simple random samples were selected

from both frames.

2. Sample size: Equal allocation where n, =500 and n, =500 under full response

assumption and n, =1500 and n, =1500 in the presence of nonresponse.

3. Domain means: Large-differences domains’ means where g, =5, g, =10 and g =15.

4. Correlation between y,, and x, : The population correlation coefficient is p,, =0.40.

5. Response mechanisms

a) Full Response Mechanism (FRM), where overall response rate is 100%.

b) The same 6 response mechanisms in Chapter 3

L.

II.

I1I.

IV.

VL

Simple Response Propensity Model (MCAR).

Response Propensity by Auxiliary Variable X (MAR2).

Response Propensity by Frame (MAR3).

Response Propensity by Frame and Auxiliary Variable x (MAR4).

Response Propensity by Design Domain (MARS).

Response Propensity by Design Domain and Auxiliary Variable x (MARO).
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6. Misclassification mechanisms

a) The one-way OWOM misclassification mechanism, where the misclassification

(ab,a) B(ab,b)

probabilities were y/A =.land y =.1. This means that 10 % of the sample A

overlapping domain ab cases are misclassified in non-overlapping domain a and 10 %
of the sample B overlapping domain ab cases are misclassified in non-overlapping

domain b.

b) The one-way OWNM misclassification mechanism, where the misclassification

(a,ab) B(b,ab)

probabilities were ;/A =.1 and y =.1. This means that 10 % of the sample A

non-overlapping domain a cases are misclassified in overlapping domain ab and 10 %
of the sample B non-overlapping domain b cases are misclassified in overlapping

domain ab.

¢) The two-way TWM misclassification mechanism, where the misclassification

(a,ab) B(b.ab) _ '1’ yA(a,ab) =1 and yB(b,ab) = 1.

probabilities were i =1y

These sets of simulation factors combine to form 42 simulation studies, 21 simulation
studies for each population model. One thousand replicates of initial samples of 3,000 cases were
run for each study where nonresponse was present. For the FRM response mechanism, the initial
sample sizes were 1,000 cases. To simulate a dual frame design, within each simulation replicate,

two equal-size samples were drawn separately from both frames A and B, where n, =n, =1,500
,and n, =n; =500 for the FRM response mechanism. These samples were ‘stacked’ to form

dual frame sample s. Conditional on the misclassification and response mechanisms, the
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misclassified response sets I, and Iy were realized and the misclassified domains were

generated.
4.5 Simulation Results

Generally, as indicated in Tables 4.1 and 4.3, in the presence of non-sampling errors,

domain misclassification or nonresponse, biases in Yg, are present. Even under the complete

response, in Figure 4.1, domain misclassification results in biased YAFWE . The bias magnitude

varies based on the misclassification mechanism; the one-way OWNM and the two-way TWM
mechanisms result in smaller relative biases than the one-way OWOM does, as in Figure 4.1.
Under the complete response assumption, the biases that result under the OWOM mechanism are
positive sign biases, however it is negative sign biases under the OWNM. The summation of the
biases resulting from the OWOM and OWNM mechanisms equals the net bias resulting from the
TWM mechanism. Since the effect of adding the nonresponse besides the misclassification is the
same as its effect as a sole non-sampling error, discussed in Chapter 3, we will only highlight the

effect of the misclassification error.

Under the CLR model, in Table 4.1, the standard estimator \?FWE is affected by the
misclassification error, whereas the proposed estimators YAJCE_Z, YAJCE.X and YAJCE_XZ are not. Adding
the calibration in the standard estimators YAFC\;",'E.Z , YAFC\‘;’\‘,'E'X and Y‘cha:EXZ reduces the misclassification

n n

bias and achieved relative biases comparable to the JCE estimators, Y ,, Y,ce, and YAJCE‘XZ :

Interestingly, adding the misclassified domain variable to the auxiliary variable vector in the JCE
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estimators, Y, ,p and Y, ,,p, does not result in misclassification-biased estimates as in Y, .

Even calibrating only by the misclassified domains in YAJCE.D results in almost unbiased estimates.
Generally, the relative mean square errors show same patterns as the relative biases, as indicated

in Table 4.2. However, MSE’s for YAJCE_Z and YAJCE.X were slightly lower than MSE’s for YAFC\EA‘,'E_Z

s cal .
and Y5, » respectively.

Under the GLR model, in Figure 4.1 and Table 4.3, the JCE estimators YAJCEAZ , YAJCE‘X and
YAJCE_XZ are subject to higher relative biases than YAFC\‘;"V'E_Z , YAFC\f‘V'E_X and YAFCC‘V'EXZ , respectively. However,

the relative biases in YAJCE.Z , YAJCE.X and YAJCE'XZ were smaller than the standard estimator YAFWE.

Adding the strata totals to the calibration in YAJCE_ZJ , YAJCE.XJ and YAJCE_XZJ resulted in reduced relative

biases. Clearly in Figure 4.1, adding the misclassified domain variable to the auxiliary variable

A

vector in the JCE estimators, Y., YAJCE'XD and YAJCE.XzD , does not result in misclassification-
biased estimates as in YAFWE . The relative mean square errors show similar patterns to relative
biases, as indicated in Figure 4.1 and Table 4.4. However, MSE’s for YAJCE.ZL , YAJCE_XL and YAJCE.XZL

were slightly lower than MSE’s for Y% | Y& and Y& | respectively.
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Figure 4.1: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated from the
GLR model population under full response and p,, = 0.40
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4.6 Discussion and Conclusion

In this chapter, the domain misclassification was introduced as a form of the non-
sampling error, which could affect the bias properties of the dual frame estimators. The effect of
the domain misclassification exceeds its effect as a type of measurement or reporting error in the
domain membership information. The misclassified domains may affect the standard dual frame
estimators substantially. This is due to the fact that the standard dual frame estimators require
accurate information about the domain membership. Based on this information, the adjustment

factor is applied to the design weights for dual frame estimation.

In this chapter, we derived expressions for the analytic bias that results when the standard
dual frame estimators are applied to data with different domain misclassification mechanisms.
These bias expressions indicated that the correlation between the misclassification probabilities
and the study variable y within each domain is an important determinant of the misclassification
bias. Also, the expected total of the y variable for the misclassified cases within each domain is
another determinant of the misclassification bias. Controlling these two determinants could be

the key for reducing the misclassification bias in the standard dual frame estimators.

The misclassification bias can be reduced by following the best practices during the data
collection, under which the measurement errors are controlled especially for the domain
membership variable. Also, calibrating the data using the auxiliary variables which are correlated
with the study variable and the misclassification probabilities could be a promising approach for

adjusting the misclassification error. This approach is motivated by the domain-level correlation

114



between the misclassification probabilities and the study variable y as a determinant for the
misclassification bias. In the simulation studies, calibrating the standard dual frame estimators
with X, which is correlated with y, or with z, which is correlated with the misclassification
probabilities, due to the high correlation with the domains, was enough to adjust for the domain

misclassification bias.

In addition to introducing the domain misclassification problem in this chapter, the JCE
was introduced as a robust dual frame estimator to the domain misclassification error. The JCE
does not necessarily need any information about the domain classification. Therefore, the
misclassification problem does not affect the JCE estimates as long as the domain membership
information was not added to the calibration auxiliary variable vector. Interestingly, adding the
misclassified domains to the JCE auxiliary variable vector does not lead to substantially biased
estimates, as long as the domains are misclassified at random. This is due to the fact that the
effect of the misclassified domains in the context of the JCE is a measurement error effect.
Moreover, under the GLM model, calibrating the dual frame samples in JCE by the misclassified
domains ignoring the strata totals was enough to result in reduced bias estimates. This is due to
the effect of adding the domain membership in the calibration auxiliary variable vector. As
discussed in (2.28) and (2.29) in Chapter 2, adding this information results in unbiased estimates.

However, the measurement error in the domain membership results in slightly biased estimates.
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Table 4.1: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the CLR model population under P,y =0.40and in

the presence of the misclassification problem.

reIs\i)(Z)rilse Misclassification | Ype YFC\j\l/IE.z Yice., lec\i/IE.x Y ce x YFC\7\:E.XZ Yicexe Yiceo  Yicexo  Viceo
FRM OWOM 5.02 -0.04 -0.07 000 -0.03 0.00 -0.03 -0.05 -0.02 -0.02
MCAR OWOM -6848 005 -0.02 001 -0.03 001 -0.03 0.05 0.01 0.01
MAR2 OWOM -67.41 355 353 0.07 006 0.07 0.06 3.54 0.05 0.05
MAR3 OWOM -68.10 0.13 0.04 0.08 0.03 0.08 0.03 0.12 0.08 0.08
MAR4 OWOM -66.87 369 364 0.09 008 0.09 0.08 3.67 0.07 0.07
MARS5 OWOM -70.31  -0.05 -0.12 -0.06 -0.11 -0.05 -0.11 0.01 0.00 0.00
MARG6 OWOM -6892 337 312 0.03 0.00 0.03 0.00 3.57 0.06 0.06
FRM OWNM -2.46 0.02 -0.05 0.03 -0.03 0.02 -0.03 0.03 0.03 0.02
MCAR OWNM -70.77 -0.06 -0.12 -0.02 -0.06 -0.02 -0.06 -0.05 -0.02 -0.02
MAR2 OWNM -69.79 354 349 -0.05 -0.07 -0.05 -0.08 3.55 -0.05 -0.05
MAR3 OWNM -70.21  0.07 0.01 -0.01 -0.02 -0.01 -0.02 0.03 -0.02 -0.02
MAR4 OWNM -69.21 366 3.64 0.01 0.02 0.01 0.02 3.63 -0.01 0.00
MARS OWNM -72.39  -0.04 -0.12 -0.02 -0.05 -0.02 -0.05 0.00 0.01 0.01
MARG6 OWNM -71.29 334 3.04 0.01 0.00 0.01 0.00 3.56 0.02 0.02
FRM TWM 2.48 -0.12 -0.12 -0.10 -0.07 -0.10 -0.07 -0.09 -0.08 -0.07
MCAR TWM -69.18 0.07 0.02 0.06 0.03 0.06 0.03 0.10 0.06 0.06
MAR2 TWM -6791 359 357 0.06 0.05 0.06 0.05 3.57 0.04 0.04
MAR3 TWM -68.60 0.05 -0.02 0.04 -0.02 004 -0.02 0.03 0.02 0.02
MAR4 TWM -67.73 368 364 0.04 004 0.04 0.04 3.67 0.04 0.04
MARS TWM -70.56  0.10 0.03 0.05 0.02 0.04 0.02 0.13 0.09 0.09
MARG6 TWM -69.62 330 3.11 0.02 0.01 0.02 0.01 3.49 0.02 0.03
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Table 4.2: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the CLR model population under P,y =0.40and

in the presence of the misclassification problem.

reIs\I)(z)lzlse Misclassification | Yqye YFC\7VIE.Z Yice. Ylf\;aVIE.x Yice x YF\Cj\l/IE.xz Yicexe Yiceo  Yicexo  Viceo
FRM oOwWOM 5.55 194 184 178 1.69 1.78 1.70 1.94 1.78 1.78
MCAR OWOM 6849 2.07 1.95 1.89 1.79 1.89 1.79 2.08 1.91 1.91
MAR?2 OWOM 6742 410 399 1091 1.74 1.91 1.74  4.10 1.93 1.93
MAR3 OWOM 68.11 2.02 1.91 1.89 1.75 1.88 1.75 1.99 1.86 1.86
MAR4 OWOM 66.88 422 413 1091 1.79 1.91 1.79 4.18 1.88 1.88
MARS5 OWOM 70.32 2.15  2.00 1.93 1.83 1.93 1.83 2.42 2.16 2.16
MARG6 OWOM 6893 397 369 197 1.83 1.97 1.84 421 2.11 2.12
FRM OWNM 3.31 1.93 1.79 1.77 1.63 1.77 1.63 1.94 1.79 1.79
MCAR OWNM 70.78 2.07 1.89 1.88 1.72 1.89 1.72  2.07 1.89 1.89
MAR2 OWNM 69.79 4.07 3.96 1.86 1.75 1.86 1.75 4.08 1.87 1.87
MAR3 OWNM 7022 215 197 196 1.80 1.96 1.80  2.09 1.90 1.91
MAR4 OWNM 69.22 423 4.15 1.98 1.87 1.99 1.87 4.18 1.95 1.95
MARS OWNM 7240 205 194 187 1.77 1.88 1.78  2.28 2.06 2.07
MARG6 OWNM 71.30 3.91 3.59 1.91 1.81 1.91 1.81 4.18 2.05 2.06
FRM TWM 3.43 192 182 1.74 1.64 1.74 1.64 1.90 1.72 1.72
MCAR TWM 69.19 2.08 1.93 1.93 1.79 1.92 1.79 2.11 1.95 1.94
MAR?2 TWM 6792 410 404 188 1.78 1.89 1.78  4.09 1.88 1.89
MAR3 TWM 68.61 2.14 1.99 1.96 1.82 1.96 1.82 2.14 1.96 1.96
MAR4 TWM 67.74 424 416 196 1.84 1.96 1.85 4.22 1.93 1.93
MARS5 TWM 70.57 2.15 201 1.98 1.84 1.98 1.84 2.33 2.16 2.16
MARG6 TWM 69.63 391 3.68 1093 1.79 1.93 1.79  4.16 2.05 2.05
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Table 4.3: Simulation RB (%) for FWE and JCE estimators of Y , estimated from the GLR model population under P,y =0.40and in

the presence of the misclassification problem.

reIs\i)(z)lilse classﬁiation Yene er\;ile.z Yice. er\;ile.x Yice x YFC\’;\IIIE.XZ Yicee Yicew  Yacexs  Yicews  Yiceo  VicEwo  VicExD
FRM OWOM 6.05 095 578 0.63 384 0.63 3.83 0.10  0.07 0.07 0.16 0.12 0.12
MCAR OwWOM -68.28 0.69 561 045 370 046 370 -0.10 -0.10 -0.10 -0.12  -0.10 -0.10
MAR2 OWOM -66.89 581 1044 0.67 392  0.67 392 423 0.09 0.09 4.49 0.13 0.12
MAR3 OwWOM -67.96 059 543 040 3.58 041 3.59  0.08 0.03 0.04 0.11 0.08 0.08
MAR4 OWOM -66.54 551 10.10 037 359  0.38 360 420 -0.03 -0.03 4.48 0.02 0.02
MARS OwWOM -68.77 483 901 320 6.02 3.20 6.02 -0.09 -0.07 -0.07 -0.05 -0.04 -0.04
MARG6 OWOM -67.45 899 1273 3.02 592  3.03 592 414 -0.09 -0.09 4.51 -0.05 -0.05
FRM OWNM -2.08 043 571 027 375 0.27 375 -0.02 -0.05 -0.05 0.01 -0.01 -0.01
MCAR OWNM -70.64 040 562 026 370 0.26 370 -0.06 -0.07 -0.07 -0.05 -0.04 -0.04
MAR2 OWNM -69.59 531 1033 025 3.78 0.26 379 407 -0.08 -0.08 4.34 -0.04 -0.04
MAR3 OWNM -70.30 0.12 528 0.09 349 0.09 349 -0.07 -0.07 -0.07 -0.04 -0.03 -0.03
MAR4 OWNM -69.20 528 10.18 0.14 3.59 0.14 359 426 -0.05 -0.05 4.56 -0.01 0.00
MARS OWNM -71.36 460 9.08 3.06 6.06 3.06 6.06 0.04 0.03 0.03 0.08 0.06 0.07
MARG6 OWNM -69.88  8.57 1253 2770 5.78  2.71 578 421 -0.08 -0.08 4.62 -0.01 -0.01
FRM TWM 3.96 1.34 574 091 380 091 3.80 0.07 0.06 0.06 0.14 0.11 0.11
MCAR TWM -6891 098 546 063 358 0.63 358 -030 -025 -025 -0.25 -0.20 -0.21
MAR2 TWM -67.54 6.16 1038 0.80 3.77  0.80 377 416 -0.04 -0.04 4.38 -0.04 -0.04
MAR3 TWM -68.59 087 529 0.60 351 0.60 351 -0.04 -0.03 -0.04 -0.01 0.00 0.00
MAR4 TWM -67.17 599 10.17 0.59 354  0.60 3.54 430 -0.05 -0.05 4.55 -0.04 -0.03
MARS TWM -69.17 519 894 344 594 344 594 -0.08 -0.09 -0.08 -0.04 -0.02 -0.01
MARG6 TWM -68.11 938 12.73 328 587 3.29 587 424 -0.02 -0.02 4.64 0.03 0.03
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Table 4.4: Simulation RMSE (%) for FWE and JCE estimators of Y , estimated from the GLR model population under P,y =0.40and

in the presence of the misclassification problem.

reg)(())rlllse classl\i/[f;(s:ation Yene Y;\?\IIE.Z Yice. YFC\7VIE.X Yice x YFC\Aa:E.xz Yicew  Yicew  Yicew Vi Vacen  Yiceso  Yicexo
FRM OWOM 6.58 263 620 230 435 230 4.35 2.25 2.08 2.08 2.38 2.18 2.17
MCAR OwWOM 68.29 261 6.07 228 425 228 4.25 234 212 2.12 2.44 2.20 2.20
MAR2 OWOM 66.90 6.38 10.71 257 456  2.57 456 493 2.38 2.39 5.17 242 242
MAR3 OwWOM 6797 272 599 238 423 238 4.23 247 225 2.25 2.54 2.28 2.28
MAR4 OWOM 66.56 6.06 1037 242 423 242 424 485 231 231 5.11 2.32 232
MARS OwWOM 68.78 548 931 395 639 396 639 267 244 2.45 2.76 2.51 2.51
MARG6 OWOM 6746 934 1294 386 632 3.86 632 494 254 2.54 5.31 2.62 2.62
FRM OWNM 3.15 243  6.13 219 425 219 4.25 224 2.07 2.07 2.33 2.13 2.13
MCAR OWNM 70.64 252 608 229 427 230 427 237 221 2.21 243 224 2.25
MAR2 OWNM 69.60 590 10.60 238 439 238 439 474 227 2.27 5.01 2.33 2.33
MAR3 OWNM 70.31 259 579 230 4.09 230 4.09 243 2.19 2.20 2.47 2.22 222
MAR4 OWNM 69.21 590 1046 243 426 243 426 492 229 2.29 5.22 2.35 2.35
MARS OWNM 7137 528 940 384 644 385 6.44 275 2.46 2.47 2.83 2.52 2.52
MARG6 OWNM 69.89 894 1275 3.62 620  3.62 620 496 244 2.44 5.34 2.49 2.49
FRM TWM 4.68 275 6.16 234 431 2.35 431 224 2.06 2.06 2.30 2.10 2.10
MCAR TWM 6892 277 596 239 418  2.39 4.18 239 219 2.19 2.47 2.24 2.24
MAR2 TWM 67.55 6.66 10.64 251 437 2351 437 482 227 2.27 5.06 237 2.37
MAR3 TWM 68.60 266 580 236 412 236 412 237  2.20 2.20 2.44 2.24 2.24
MAR4 TWM 67.19 6.54 1045 250 419 2351 420 494 230 2.30 5.20 2.36 2.36
MARS TWM 69.18 576 924 412 630 4.12 6.31 2.58 2.38 2.38 2.67 2.45 2.45
MARG6 TWM 68.12 9.72 1295 4.07 628 4.07 6.28 499 244 2.44 5.36 2.50 2.50
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Appendix 4.1: Proof of Proposition 4.1

les = ZSC dk yk + Zsab (1 o Il?bac ) mkdk yk + Zsab Il?b’cdk yk (4-1 1)

Yois = 20 GVt 2 Ayt 2, My, =2 1 md,y +> 1Py, (412)
Note that Ep (018°) = Ey (8, )-Eqp (1) = m 7 (4.13)

where E ( ) denote the joint expectation with respect to sampling distribution p (S) and

misclassification distribution q(smis | S) where S_.. is the sample s with misclassification. Where

mis
Oy is a sampling indicator for observationk, E (§k ): z, which is the sample selection
probability. Also, E, (Ikab"C ) = ¢ is the conditional probability of misclassification from the

overlapping domains to non-overlapping domains.

By Vo | = Yo Yo+ Yo+ By (2 10y, -, 1 md,y, ) (4.14)
Bias (Vs ) = Epe (Vo)=Y = By (2, 1y = 2, 1 mydly, (4.15)
=B (X 10y + 2 10, — 0 1Ay, —(1-0) X 170y, ) (4.16)
=B (X, A1+ Y, APy -0, Sy, ~(1-0) Y, 1P dy,) (@.17)

:qu(zuaﬁkl;‘bﬁdkyk)zzuabEp(a)Eq/p( Py =Y Vi (4.18)

Bias, (les ) oY, (4.19)

where ¢ = y** for all k.
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Appendix 4.2: Proof of Proposition 4.2

Yo = 20 MY+ 2 (12187 )dey + 2 107 md,y, (4.20)
Yiie = 20 GVt 20 AVt 20, My =20 1Edy + D 15 md, y, (4.21)
By (Vo) =Y +E(Z, 1 my =Y, If’abdkyk) (4.22)
Bias,, (v, ) =E (ZSC Eomd Y, - If’abdkyk) (4.23)
=E,, (ZS 15%°m,d, Y, +Zsh 15%m,d, Y, —Zsa 15°°d, y, —Zsb If’abdkyk) (4.24)
-E,, (ezsa Edy, +(1-0) 3 12d,y, = 1ed,y - I,f’abdkyk) (4.25)
-E,, ((9—1)2Ua SNy —0Y, 5, Iﬁ’abdkyk) (4.26)
= (0= X, %=, v (4.27)
Bias,, (Y, )= 7 ((.9-1)Zua O yk) (4.28)

Where E_ | (If’ab ) = »“® which is the probability of misclassification from the non-overlapping

domains to overlapping domains.
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Appendix 4.3: Proof of Proposition 4.4
Under the two-way TWM misclassification

A

Bias,, (V) = Epo X A1 G0 ) B ((0-1) 2, A 10y 03, 815¥ 0y, ) (429)

Bias (m|s) Z yabc 9 IZ ycabyk HZ ycab
Z yabcyk Z yabcyk +Yabz }/abc abz yabc

( abz }/abc +N sz ]/abc bz 7abc)/
=(Nao Xy, 7Y N X, 70 ) Ny = NV
(Z }/abc + NabY —ab,c sz 7/&1bc_'_77ab,czuab yk )/Nab

_Nabz ( ab,c —abc /Nab+N Y

=N, (gab(%?bcaYk) e )

where

6o (75 9) = 2, (75 = 7Y (Y = Vao ) N

where Y, = Z yk/Nb and 7°°= Z yabc/Nab.

Similarly

Z ycab (ga(%fab yk)+7/acabYa)
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(4.30)

(4.31)

(4.32)

(4.33)

N, Yo7 ™ (4.34)

(4.35)

(4.36)

(4.37)

(4.38)



2 Y =N (6 (7 ) + 7)) (4.39)
where

e (7 v ) = 20 (7 =7 ) (v - Vo) /N, (4.40)

G (7 v) = 20, (e =7 ) (v - V) /N, (4.41)

whereY_a=Z:Uayk/Na,Y_b=Z:Ubyk/Nb }/aab Z ycab/N and 7bcab Z ycab/Nb‘

Bias,, (Yo ) = N (0 (77, ) +77Vas ) -

2
442
(1=OIN, (6, (7™ v )+ 727V ) =N, (6, (73 ) + 7Y, ) -
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Chapter 5

Joint Calibration as a Model-based Approach for Dual Frame

Estimation

5.1 Introduction

In chapter 1, the dual frame estimation problem was introduced in the context of the
probability sampling theory. In chapters 2, 3 and 4, the JCE was introduced as a model-assisted
design-based approach for dual frame estimation. In this chapter, we will explore the dual frame
estimation problem in the context of the prediction theory. The correspondence between the
model-based dual frame estimation and the design-based joint calibration will be explored. A
preface for the prediction theory is introduced in Section 5.2. The dual frame estimation problem
is discussed in the context of the prediction theory in Section 5.3. Different model-based
estimators are derived and compared with the JCE estimators in Section 5.4. A conclusion is

discussed in Section 5.5.
5.2 The Prediction Theory

In this section, we briefly discuss the difference between probability sampling theory and
prediction theory as a basis for design-based and model-based estimations, respectively. The
following example shows the difference between the two approaches by presenting the well-

known ratio estimator based on the sampling and prediction theories.
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Example 5.2.1

Suppose that we have data collected on two continuous variables Yy and X in sample S from a

population U of size N, where Yy is known only for the sampled cases in S, assume X is known for

all cases in U, which means that X = ZU X, 1s known. We want to estimate the population total

ofy, Y =3 V.

Under the probability sampling theory, selection probabilities 7z, = p(k € S) are used to

adjust the sampled cases in S. The estimated total of y can be written as
V=3 7'y (5.1)

where 7, ' work as the design weight that adjusts for the sampling selection design. This

estimator in (5.1) is a design-unbiased estimator for the population total Y as follows

E(Y)=E(X, %) =E(X, 'y ) =Y (5.2)

where E denotes the expectation with regard to the sampling selection, |, is a sample selection
identifier variable which equal 1 for the sampled cases in S and 0 for the non-sampled cases in C
and E ( I ) = 7, . The estimator in (5.1) is the well-known Horvitz-Thompson estimator proposed

by Horvitz and Thompson (1952). Under simple random sampling design without replacement

(srswor), the estimator in (5.1) can be written as

Y =Ny (5.3)

S
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where Y, =Zsyk/n.

When population totals N and X are known, under srswor, the well-known ratio estimator

can be written as
Y = NX ¥, /%, (54)

where X :stk/n and izzu Xk/N .
Under prediction theory, the population total of y can be written as

Y :ZSYk +Zc Yk (5.5)

where C is a set of the non-sampled cases. In these settings, predicting y for the non-sampled

cases and consequently predicting zc Y, to estimate Y is the main idea behind the prediction

theory (Valliant, Dorfman, & Royall, 2000). This can be performed by modeling the sampled

cases in S and then the fitted model can be used to predict Zc Y, by ﬂzc X, . Where the

estimated total can be written as

Y= y+BD X =D Y+ { szyk}zcxk (5.6)
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[YA _ZS Yi
hIRI

} works as an implicit estimator for . Generally, the Best Linear Unbiased (BLU)

estimator of Y can be achieved by using the BLU estimator ,5’ . Under the ratio model, where the

expectation and variance of Yy, are

Eg(yk):ﬁxk 57
{Vé(yk)zazxk G

following the general prediction theorem, the BLU estimator ,é can be written as
B=Y./% (5.8)

Therefore, substituting £ in (5.6) by ,3 in (5.8) results in the well-known ratio estimator as in

(5.4)
Y= v +BY % =NXY,/% (5.9)

In this example we highlighted the fact that the results of both the probability sampling
theory and the prediction theory may coincide. This happens when the model-based BLU
estimators reduce to familiar design-based estimators. The same property will be explored in the

next two sections for the dual frame estimation problem.
5.3 The Dual Frame Estimation Problem Under The Prediction Theory

In this section, the dual frame estimation problem will be discussed in the context of the

prediction theory. Since the dual frame estimation problem is a multiplicity problem resulting
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from the fact that some cases have more than one chance of being selected in the survey as
discussed in (Mecatti, 2007), the same problem should have different properties under the
prediction theory. This is because the prediction theory depends less heavily on the probability
sampling design and depend more on the relationship between the variables (Valliant, Dorfman,
& Royall, 2000). Under the prediction theory, the population total of y based on a dual frame

design from population U =U, UU, can be written as

YZZSA yk+ZsB yk—st yk+chk (510)

where S, =S, NSy, a subset of duplicates, and c=c, UcCy, C, and C; are the non-sampled cases

from frame A and B, respectively. Where Zs Y, 1s known, the dual frame estimation problem

is to predict ZC Y, after excluding the duplicates, k € S, . A weighted version of (5.10) can be

written as
DI A IR DI (5.11)

where s=5, Us, w{ is a weighting variable to account for the duplicates and &/ is an

identifier variable for duplicates. w{ and & can be defined as

d o5 =

2 kes,Ns
d={ =M% (5.12)

1 kes,ns
Wk A B
1 kes,Nsg

0 kes,Nsg

Note that ZS W'y, — ZS ol = ZS Y, - This means that as long as the duplicates are identifiable

and ) &7y, can be subtracted from )  w{'y, , the dual frame estimation problem becomes
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identical to a single frame estimation problem, where the main interest is to predict zc Y -

Therefore, where the estimated total Y can be written as

\f—z y, + P Zszyk]Z X, (5.13)

Y- Y
> X

implicit estimator of the population model parameter £ . Where the estimation error can be

we need to find an unbiased estimator for the parameter ﬁ = [ } , where 8 works as an

written as
Y-Y =53 x-B> X (5.14)

Y is model-unbiased if [E p ( ﬁ' ) - ﬁ'} ZC X; =0, where the subscript & denotes the expectation

with respect to the prediction model. With regard to the estimation error variance of an estimator

Y , it can be derived as

v§(\f—Y)=(Zcxi)2v§(ﬁ)+v§(zcyi) (5.15)

In order to obtain the BLU estimator Y , we need to minimize the error variance in (5.15), which
requires the BLU estimator £ . This means that, under the prediction theory, the dual frame

estimation problem reduces to a single frame estimation problem and so the general prediction

theorem applies.
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5.4 Model-based Dual Frame Estimation Examples

In this section, different model-based dual frame estimators are derived under different
population models. These estimators will be compared with the JCE estimators derived in
Chapter 2. Since all the derivations follow the general prediction theorem for the single frame
prediction problem, we will not present the derivations. More details on the general prediction

theorem can be found in (Valliant, Dorfman, & Royall, 2000).
Example 5.4.1: Common Ratio Model and Ratio Estimator

Under the ratio model in (5.7), the same results in example 5.2.1 apply under the dual frame

estimation. The ratio estimator in (5.9) is identical to the JCE which can be written as

YAJCE = NX(ZSA Yk +ZSB Yk )/(ZSA Xy +ZSB Xk) (5.16)

When the probability of sampling duplicates, k €S, NS, is ignorable.

Example 5.4.2: Common Mean Model and Expansion Estimator

Under the common mean model, where the expectation and variance of Yy, are

{Ef(yk)zﬂ (5.17)

B=Y; (5.18)
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Therefore, substituting £ in (5.13) by ,BA’ in (5.18) results in the well-known expansion estimator

Y= Ye+BY % =Ny, (5.19)

This estimator is identical to the common mean model form of the JCE which can be written as

Ve =N(Z, Vet 2, v /(na+ne) (5.20)

When the probability of sampling duplicates, k € S, NS, is ignorable.
Example 5.4.3: Linear Regression Model and Linear Regression Estimator

Under the linear regression model, where the expectation and variance of Yy, are

Eg(yk)=a+,8xk
X (5.21)
{ V.(Y)=0

the BLU of Y can be written as the well-known linear egression estimator

Y=N[y,+b(X-%)] (5.22)

where b=3" (y, ~.)(% ~%)/> (% %)

This estimator is identical to the linear regression model form of the JCE which can be written as

(5.23)

R {ZSA Yk"'ZSB yk+b{—_ZSAXk+ZSBXkJ]

Y... =N X
ICE N, +Ng N, +Ng
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n,+ng n,+ng n,+ng

2
X X X X
where bzs(yk _ZSA Y +ZSB yk][xk _ Sa k+z k /z ZSA k"‘ZSB k] an

when the probability of sampling duplicates, k € S, NS, is ignorable.

Example 5.4.4: Group Mean Model and Stratified Expansion Estimator

Under the Group Mean Model, where the expectation and variance of Yy, are

E.(y,)=
§(ylk) ’uJ (524)
2
Ve (yi) =0
the BLU of Y can be written as the well-known stratified expansion estimator
7 _ ZJ Njysj (5.25)

where s; denotes the sample cell U, ~ s with sample size n; and Vsj = ZS Y / n; . Under the

ignorable probability of sampling duplicates, k € S, NS, this estimator in (5.25) is identical to

the group mean model form of the JCE which can be written as
Yie =, (n o )(Z yk+szj yk) (5.26)

where s,; and s, denote the sample cell u,, ~'s, and U, ~'s, with sample sizes n,; and n,

respectively.
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5.5 Conclusion

As discussed in Chapter 1, the overlap between the dual frame design samples results in a
multiplicity problem, in which the overlap domain ab includes cases that could be selected twice.
The dual frame estimation tries to adjust for this multiplicity problem in the context of the
probability sampling theory. Since the prediction theory depends on the relationship between the
variables, the dual frame estimation problem has different properties under this theory. In this
chapter, the dual frame estimation problem was explored in the context of the prediction theory,
in which we found that the dual frame estimation problem is to identify the duplicates and to

predict the non-sampled cases.

Similar to the situation for single frame estimation, where the model-based estimators can
reduce to well-known design-based estimators, we found that the dual frame model-based
estimators can reduce to forms of the JCE. In fact we found that the dual frame estimation
problem reduces to a single frame estimation problem and so the general prediction theorem
applies. This means that the JCE can be reintroduced as a model-based dual frame estimator,
where the general prediction theorem can help in exploring the properties of the JCE under the

prediction theory.
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Chapter 6

Conclusions and Discussion

6.1 Summary of Dissertation

In this dissertation, the Joint Calibration Estimator (JCE) was proposed as a dual frame
estimator that closely meets the desirable properties for the dual frame estimators. The properties
of the JCE were discussed through the dissertation chapters. Chapter 1 specified some desirable
properties for the dual frame estimators. These properties were discussed for each of the standard
dual frame estimators. Chapter 1 concluded with the emergent need for a dual frame estimator
that meets these desirable properties. This estimator should be unbiased or approximately so,
internally consistent, efficient with low MSE, applicable with standard survey software, robust to
non-sampling errors and extendable for multiple frame surveys. Also, it should avoid any
unreasonable data or information requirements and should be robust to non-sampling errors in

estimator’s requirements.

In Chapter 2, the JCE was introduced as an approximately unbiased dual frame estimator.
A general expression for the bias resulting from JCE was theoretically derived. This derivation
enhanced our understanding and interpretations of the JCE performance. Now it is clear that the
performance of the JCE is controlled by the relationship between the study variables and the

auxiliary variables, where the best performance happens when the auxiliary variables can
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interpret the variability in the study variables, or at least when the auxiliary variables are strong
correlates of the study variables. Due to the reduced variance of the calibrated estimates, the JCE
proved to be an efficient estimator with low MSE. Generally, the efficiency of the JCE depends
on how well the variability in the study variables is explained by the auxiliary variables. Since
the joint calibration approach results in only one weighting variable, the JCE is an internally
consistent estimator that can be applied by standard survey software. Finally, it is straightforward

to apply the JCE for the multiple frame surveys estimation.

In Chapter 3, the properties of JCE for dual frame surveys were explored in the presence
of the nonresponse error. A general expression for the bias of JCE was theoretically derived; this
bias is due to the nature of the nonresponse and the joint calibration approach itself, the latter
was derived in Chapter 2. Empirically, the JCE proved to be robust to the nonresponse error as
long as a strong set of auxiliary variables is used. This strong set should explain both the
response mechanism and the main study variables. Generally, the efficiency of the JCE depends
on how well the response mechanism and the variability in the study variables are explained by
the auxiliary variables. In the presence of the nonresponse, the JCE can work as both a dual
frame estimator that combines the dual frame samples and an adjustment method that adjusts for

the nonresponse error.

In Chapter 4, the most unique feature of the JCE was discussed. As opposed to the
standard dual frame estimators, the JCE does not require domain membership information. Even
if included in the calibration auxiliary variables, the effect of the randomly misclassified domains
does not exceed the measurement error effect. Therefore, JCE tends to be robust for the

misclassified domains if included in the auxiliary variables. In this chapter, we derived the
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analytic bias resulting in the standard dual frame estimators from domain misclassification. The
misclassification bias expression indicated that within each domain, both the expected total of
the study variable for the misclassified cases and the correlation between the misclassification
probabilities and the study variable are determinants of the misclassification bias. Therefore,
calibrating the data using the auxiliary variables which are correlated with the study variable and
the misclassification probabilities could be a promising approach for adjusting the

misclassification error.

In Chapter 5, the properties of the dual frame estimation problem were explored under
the prediction theory. Since the prediction theory depends on the modeled relationship between
the variables, the dual frame estimation problem has different properties under the prediction
theory relative to its properties under the probability sampling theory. In this chapter, we found
that, under the prediction theory, as long as the duplicates are identifiable, the dual frame
estimation problem reduces to a single frame estimation problem and the general prediction
theorem for single frame surveys applies. We also found that the model-based dual frame
estimators may reduce to the JCE estimators derived in Chapter 2 under the probability sampling

theory.

6.2 Future Research and Extensions

There are several extensions to the JCE estimator proposed in this dissertation. For
example, in Chapter 2, we derived the JCE for the multiple frame surveys, where the design is
composed of more than two frames, but we did not compare the performance of the JCE

estimator and the performance of the other dual frame estimators under the multiple frame
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surveys. For the optimal dual frame estimators, it is difficult to extend the estimator to the
multiple frame case. The applicable estimators are extendable but require more domain
membership information. In general, under dual frame designs, the JCE achieved comparable
results to the standard dual frame estimators with fewer requirements. Under multiple frame
designs, the JCE is expected to be a more efficient and practical estimator than the standard

estimators.

Another extension is related with the multiplicity information problems discussed in
Chapter 4. In this chapter, we only discussed the domain misclassification as an example of the
multiplicity information problems. Other problems such as item nonresponse and unknown
multiplicity information need to be explored more extensively. Comparisons between the JCE
and the standard dual frame estimator in the presence of these problems need to be conducted.

Moreover, real information about the magnitude of problems and practical solutions is needed.

Although it is an important objective in most surveys, multiple frame estimation for
domains or subpopulations has never been examined in the literature. The properties of the
standard dual frame estimators need to be explored for domain estimation. The use of auxiliary
information in single frame domain estimation is well documented in the literature (Estevao &
Sdrndal, 1999, 2004; Hidiroglou & Patak, 2004). Therefore, since it depends on accommodating
the auxiliary information for dual frame estimation, the joint calibration approach for dual frame

domain estimation needs to be examined.

In this dissertation, the JCE was introduced for dual frame estimation. However, in the
future the JCE could be extended to be a general approach for combining data from multiple

sources. For example, multiple datasets from different surveys could be combined to provide
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more accurate estimates for study variables that are commonly collected in these surveys. In this
case, as long as the calibration auxiliary variables are collected in all surveys, JCE can be easily
applied. Finally, extending the ideas in Chapter 5 is necessary to study the properties of the JCE

under the prediction theory.
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