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Abstract 

  Dual frame surveys are becoming more common in survey practice due to rapid changes 

in the cost of survey data collection, as well as changes in population coverage patterns and 

sample unit accessibility. Many dual frame estimators have been proposed in the literature. Some 

of these estimators are theoretically optimal but hard to be applied in practice, whereas the rest 

are applicable but not as optimal as the first group. All the standard dual frame estimators require 

accurate information about the design domain membership.  

  In this dissertation, a set of desirable properties for the dual frame estimators is specified. 

These properties are used as criteria to evaluate the standard dual frame estimators. At the same 

time, the Joint Calibration Estimator (JCE) is proposed as a new dual frame estimator that is 

simple to apply and meets most of the desirable properties for dual frame estimators.  

  In Chapter 2, the JCE is introduced as an approximately unbiased dual frame estimator, 

with a degree of unbiasedness depending on the relationship between study variables and 

auxiliary variables. The JCE achieves better performance when the auxiliary variables can fully 

explain the variability in the study variables of interest or at least when the auxiliary variables are 

strong correlates of the study variables. The JCE for point estimates can be applied by standard 

survey software and can easily be extended to multiple frame survey estimation. In Chapter 3, 

the JCE properties are explored in the presence of the nonresponse error. Theoretically and 

empirically, the JCE proves to be robust to nonresponse error as long as a strong set of auxiliary 



   

   

xi 

 

variables is used. This strong set should predict both the response mechanism and the main study 

variables.  

  Finally, the effect of domain misclassification on the dual frame estimators is discussed 

in Chapter 4. Since the JCE does not require domain membership information, it tends to be 

robust against domain misclassification even if domain totals are included in the calibration 

auxiliary variables. 
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Chapter 1 

Dual Frame Samples Estimation 

1.1  Introduction 

Historically, dual frame designs have been used to achieve better population coverage at 

lower survey cost than single frame alternatives. The early applications of the dual frame 

designs, or multiple frame designs in general, were in business surveys such as the Sample 

Survey of Retail Stores (Hansen, Hurwitz, & Madow, 1953) and in agriculture surveys 

(González-Villalobos & Wallace, 1996). Dual frame area-landline surveys, composed of an area 

frame and Random-Digit-Dialing (RDD) landline telephone frame, were shown to achieve better 

population coverage at lower cost (Lepkowski & Groves, 1986). With rapid changes in the cost 

of survey data collection, changes in population coverage patterns and sample unit accessibility, 

dual frame sample surveys are becoming more common in survey practice. For example, dual 

frame telephone surveys that combine RDD landline telephone samples and cell phone samples 

emerged to reduce the noncoverage of “cell-only” households in RDD landline telephone 

surveys (Brick et al., 2007; Blumberg & Luke, 2011; Keeter, 2006; Keeter, Kennedy, Clark, 

Tompson, & Mokrzycki, 2007; Link, Battaglia, Frankel, Osborn, & Mokdad, 2007). At the same 

time, Address-Based-Sampling (ABS) sampling has been explored as a complement or an 
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alternative to the RDD telephone surveys in a number of recent studies (Link, Battaglia, Frankel, 

Osborn, & Mokdad, 2006, 2008; Link & Lai, 2011). 

In dual frame surveys, the intersection between the two frames can be non-overlapping 

(Figure 1.1), partially overlapping (Figure 1.2) or completely overlapping (Figure 1.3) (Lohr, 

2009, 2011). In non-overlapping dual frame designs, the estimation is straightforward since the 

sampling plan can be considered as a stratified sample with two strata. However, in the 

overlapping designs, the estimation is not as straightforward. Due to the overlap, simply adding 

the two samples’ estimated totals results in a biased estimate of the overall total. Standard dual 

frame estimators adjust for the overlap or multiplicity in the intersecting domain (Lohr, 2011). 

The standard dual frame estimators present many methodological and practical problems 

in their implementation (Lohr, 2011). These problems can delay the processing of  “quick turn-

around” surveys. At the same time, the correct identification of the design domain for each 

sample element is essential. Therefore, non-sampling errors in the determination of design 

domain membership can affect the efficiency of estimates (Lohr, 2011; Mecatti, 2007). 

Figure 1.1: Non-overlapping frames A and B 

 

 

 

 

  

A  B
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Figure 1.2: Partially overlapping frames A and B with three domains a, b and ab 

 

 

  

 

Figure 1.3: Completely overlapping frames A and B with two domains a and ab 

 

 

 

 

Since dual frame designs have become more common in practice, it has been important to 

find simple, yet efficient dual frame estimators that can be applied easily in survey practice, with 

fewer requirements and comparable or better efficiency, compared to standard dual frame 

estimators. This chapter provides background information on the standard dual frame estimators 

and their properties. Desirable properties of estimators from dual frame surveys are discussed in 

Section 1.2. An overview of the standard dual frame estimators in the context of the desirable 

properties is discussed in Sections 1.3 and 1.4. Conclusions and motivations for the dissertation 

are presented and discussed in Section 1.5. 

1.2 Desirable Properties for Dual Frame Estimators 

Lohr (2011) identified the following five desirable properties for dual frame estimators. 

(1) An estimator should be unbiased for the corresponding finite population quantity.  (2) An 

A  B

a bab

A B

a ab
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estimator should be internally consistent; that is, the multivariate relationships in the data should 

be preserved.  For example, the sum of the estimated totals for male and female smokers should 

be equal to the estimated total for all smokers. Internal inconsistency may happen if estimators 

are dependent on study variable y, requiring a different set of weights for each study variable.  

(3) An estimator should be efficient, with low Mean Square Error (MSE).  (4) An estimator 

should be of a form that can be calculated with standard survey software. This means that only 

one set of weights is available for all study variables and design variable or replicate weights are 

available for formula-based or replication-based variance estimation, respectively.  (5) An 

estimator should be robust to non-sampling errors. 

In addition to the previous properties, the following three properties should be added.  (6) 

Data requirements for estimator should be reasonable. For example, information about design 

domain membership or variance and covariance components might be required for some 

estimators, but only poorly measured or unreliable components could be available in practice, 

which adds to the burden of computing the estimator.  (7) An estimator should be robust to non-

sampling errors in the estimator’s requirements.  For example, although some estimators might 

theoretically be efficient, reporting errors in the required information about design domain 

membership or biased estimates of the required variance and covariance components could result 

in biased or non-optimal estimators. And finally, (8) an estimator should be applicable for dual 

frame and multiple frame surveys. Since most of the multiple frame estimators are proposed for 

dual frame surveys, the previous properties should be explored in the context of multiple frame 

surveys, as well. As will be discussed in the next chapters, the last three properties are the 

primary motivation for the current study.       
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1.3 Dual Frame Estimators for Surveys 

Let  1, .., , ..,U k N  denote a target population of  N elements, and let 

 1,.., , ..,A AU k N  
and  1,.., , ..,B BU k N  denote two overlapping sub-populations. The two 

sub-populations are not assumed to be exclusive, that is: 0A B abU U U   and A BU U U . 

The dual frame design sample s is composed of two samples  A A As s U  and  B B Bs s U   

selected from the two overlapping populations AU  and BU  using a sample design with inclusion 

probabilities  A
k Ap k s    and  B

k Bp k s   , where the frame populations agree with the 

target populations. Base weights to compensate for unequal selection probabilities are denoted 

by  ,A B
k k kd d d , 1A A

k kd   
for As  and by 1B B

k kd   for Bs .  Let AN  and BN  denote the 

population sizes and An  and Bn  denote the sample sizes for frames A and B, respectively. Let 

ca A B  , cb A B   and ab A B  , where c denotes complement of a set, and a As a s  , 

b Bs b s  , A
ab As ab s   and B

ab Bs ab s  . Most of the standard dual frame estimators of a 

population total take the form 

ˆ ˆ ˆ ˆ
a ab bY Y Y Y             (1.1)  

to estimate the true population total a ab bY Y Y Y    . 

A standard estimation method can be used to find domain a  and  b estimates of totals 

ˆ
a

a k ks
Y d y  and ˆ

b
b k ks

Y d y  for a population characteristic, Y.  However, to find âbY , 

consider the estimators ˆ
A
ab

A
ab k ks

Y d y  and ˆ
B
ab

B
ab k ks

Y d y . For each sample, the estimators of 
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population totals are unbiased for the corresponding domain total aY , abY and bY ,  

ˆ ˆ A
a ab a abE Y Y Y Y      and  ˆ ˆ B

b ab b abE Y Y Y Y     . Therefore adding the two sample estimated 

totals results in a biased population estimate 

ˆ ˆ ˆ ˆ 2A B
a ab b ab a ab bE Y Y Y Y Y Y Y Y                     (1.2) 

Finding an unbiased dual frame estimator for Y can be accomplished by using a weighted 

average of the estimators ˆA
abY  and ˆB

abY . The unbiased dual frame estimator can take the form 

 ˆ ˆ ˆ ˆ ˆ1A B
a ab ab bY Y Y Y Y               (1.3)  

where  0,1  is a composite factor combining ˆA
abY  and ˆB

abY . Estimators of domain sizes ˆ A
aN , ˆ A

abN , 

ˆ B
abN  and ˆ B

bN  are defined by setting 1ky   for all 1,...,k n  in ˆA
aY , ˆA

abY , ˆB
abY  and ˆB

bY , and the dual 

frame estimator in (1.3) can be used to find the population total estimate N̂ . Consequently, an 

unbiased dual frame estimator for population mean Y  can be written as ˆ ˆY Y N .  The weighted 

version of the estimated total in (1.3) can be written as 

ˆ
A B A B

k k k k k k k k k ks s s s
Y m d y m d y w y w y              (1.4) 

where kw  is a final weight. The adjustment factor km  can be written as 

1

1

1

a
A
ab

k B
ab

b

k s

k s
m

k s

k s




 
  
 

 
 

         (1.5) 
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Until recently, the weighted version in (1.4) has not been explicitly defined in the 

literature. However, in a comprehensive chapter on multiple frame surveys, Lohr (2009) has set 

out the weighted version for the different estimators. The explicit weighted version is essential 

for (1) application of standard survey software, and (2) finding estimators other than totals and 

means, such as the ratio estimator ˆ
k k k ks s

R w y w x   or the simple linear regression 

coefficient estimator 2ˆ
k k k k ks s

w x y w x    .  

It is worth noting that all dual frame estimators in the following sub-sections are 

approximately unbiased, the first desirable property for multiple frame survey estimators. At the 

same time, with regard to the fifth property, the effect of non-sampling errors may be 

qualitatively different from those in single frame surveys (Brick, Flores-Cervantes, Lee, & 

Norman, 2011) because non-sampling errors may causally associate with the sampling frame. 

Also, sampling from more than one frame results in non-sampling errors with differential effects, 

adding to the complexity of the assessment and adjustment for these errors. Finally, most of the 

following estimators require accurate information about domain membership, which might be 

affected by reporting errors and, in turn, leading to a biased Ŷ .     

1.3.1 Hartley Estimator (HE) 

The standard Hartley (1962) dual frame estimator (HE) for the estimated total of y can be 

written as   

 ˆ ˆ ˆ ˆ ˆ1A B
HE a HE ab HE ab bY Y Y Y Y              (1.6)  
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Hartley (1962, 1974) proposed choosing the composite factor HE  to minimize the variance of 

ĤEY . The optimizing value of HE  can be written as 

      
   

ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ

B B B A A
ab b ab a ab

HE A B
ab ab

V Y Cov Y Y Cov Y Y

V Y V Y


 



            (1.7)  

Generally, the components of (1.7) are unknown and need to be estimated from the data. 

An estimated version of HE  can be written as 

       
   

ˆ ˆ ˆ ˆ ˆ ˆ, ,
ˆ

ˆ ˆ ˆ ˆ

B B B A A
ab b ab a ab

HE A B
ab ab

V Y Cov Y Y Cov Y Y

V Y V Y


 



            (1.8)  

The weighted version of ĤEY  can be written as in (1.4) with the modification factor 

1

ˆ

ˆ1

1

a

A
HE ab

k
B

HE ab

b

k s

k s
m

k s

k s





 


 
 

 
 

         (1.9) 

The domain post-stratified version of ĤEY  can be written as  

  ˆ ˆˆ ˆ ˆ ˆ ˆ1
ˆ ˆ ˆ

post A Ba ab b
HE a HE ab HE ab b

a ab b

N N N
Y Y Y Y Y

N N N
            (1.10)  

where aN  , abN  and bN  denote the population sizes for domains a, ab and b, respectively. 

ˆ
a

a ks
N d  and ˆ

b
b ks

N d  are the estimated non-overlapping domain totals and 
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 ˆ ˆˆ ˆ ˆ1A B
ab HE ab HE abN N N     is the overlapping domain estimated total, where ˆ

A
ab

A
ab ks

N d  and 

ˆ
B
ab

B
ab ks

N d . 

Although ĤEY  can be classified as an efficient estimator, it is internally inconsistent since 

it generates weights that are dependent on the study variables, y. This restricts the practical 

application of HE using standard survey software. HE also requires accurate estimates of 

variance and covariance components for finding composite factor, ĤE . Biased estimates of the 

required variance and covariance components could result in non-optimal ĤEY .  Finally, deriving 

HE for multiple frame surveys is also more complicated due to the need to estimate the 

covariance terms required for composite factors, HE . 

1.3.2 Fixed Weight Estimator (FWE) 

Choosing an arbitrary fixed value  0,1  for the composite factor in (1.3) (e.g.  =0.5) 

yields the unbiased Fixed Weight Estimator (FWE), which depending on the arbitrary choice 

may or may not be as efficient as the HE (Hartley, 1962). The post-stratified version of F̂WEY  can 

be written as in (1.10) with the fixed value composite factor  0,1  instead of HE . The FWE is 

internally consistent and results in only one set of weights for all study variables. Also, deriving 

FWE for multiple frame surveys is straightforward. The weighted version of FWE can be written 

as in (1.4) and (1.5), with the fixed value composite factor  0,1 .  

1.3.3 Fuller-Burmeister Estimator (FB) 
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Fuller and Burmeister (1972) extended Hartley’s dual-frame estimator of population 

totals by considering information about the maximum likelihood estimator ˆ
abN  of the overlap 

domain population size abN . The Fuller-Burmeister estimator (FB) of total of y can be written in 

the form of estimated domain totals as 

   1FB 1FB 2FB
ˆ ˆ ˆ ˆ ˆ ˆ ˆ1A A B B A B
FB a ab ab b ab abY Y Y Y Y N N             (1.11) 

The optimal values of 1FB  and 2FB  are chosen to minimize the variance of F̂BY . Skinner 

(1991) desctibed F̂BY  as a maximum likelihood estimator (MLE) since it can be derived from 

maximum likelihood (ML) principles. Although it is an efficient estimator with a small 

asymptotic variance, the FB estimator is, like the HE, study-variable dependent and internally 

inconsistent. Therefore, the FB cannot be applied using the standard survey software. Finding the 

optimal values of 1FB  and 2FB  requires estimation of the variance and covariance components. 

Biased estimates of these components could result in a non-optimal estimator F̂BY .  Deriving FB 

for multiple frame surveys is also more complicated due to the need to estimate the covariance 

terms required for composite factors, 1FB  and 2FB . Finally, the HE can be considered a special 

case of the FB where the composite factor 2FB 0  .  

1.3.4 Single Frame Estimator (SFE) 

Bankier (1986) and Kalton and Anderson (1986) proposed the Single Frame Estimator 

(SFE) which treats the dual frame design as a single frame design. The SFE treats the dual frame 

design as a stratified design composed of three strata, one for each design domain, estimating 
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joint inclusion probabilities. Provided domain membership is known, SFE weights are much 

easier to calculate than the HE and the FB estimators (Bankier, 1986). Under an assumption that 

the probability of duplicate sample selection from the separate frames is negligible, the single 

frame estimator ŜFEY  can be written as the weighted version in (1.4), with adjustment factor 

 
 

1

1

1

1

a

B A B A
k k k ab

k
A A B B
k k k ab

b

k s

d d d k s
m

d d d k s

k s





 

   
  




            (1.12) 

Under simple random sampling, or other self-weighting sample design, the SFE is a 

special case of the HE where the composite factor   1B A B
HE k k kd d d


  .  Raking ratio or 

regression estimation can be used to adjust the SFE (Bankier, 1986; Lohr & Rao, 2000; Rao & 

Skinner, 1996; Skinner, 1991). Under simple self-weighting sample designs, adjusting the 

inclusion probabilities in the overlapping domains by SFE adjustment factors is straightforward. 

However, this adjustment is complicated under complex sampling designs, such as stratified 

samples, because adjusting the inclusion probabilities for an overlapping domain case selected in 

frame A requires knowing the inclusion probability of the same case in frame B.  

ŜFEY  is not an efficient estimator, but it is internally consistent since it generates only one 

set of weights for all study variables, y. The standard survey software can be used to find ŜFEY . 

Deriving SFE for multiple frame surveys, under simple random sampling plans, is 

straightforward.  It is, however, more complicated with complex sampling plans.  
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1.3.5 Pseudo-Maximum Likelihood Estimator (PML) 

Skinner and Rao (1996) extended the maximum likelihood FB estimator to achieve 

internal and design-based consistency under complex designs and developed the Pseudo-

Maximum Likelihood Estimator (PML). Under unknown abN , the pseudo-maximum likelihood 

estimator, ˆ PML
abN , can be derived as the smaller of the roots of the quadratic equation  

   2
ˆ ˆ1 ˆ ˆ1 1 1 0

A B
A Bab abP P

P P P ab P ab
B A B A

N N
x x N N

N N N N

     
  

          
     

 (1.13) 

The PML estimator can be written as 

 
  ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ1
ˆ ˆ ˆ ˆ1

PML PML PML
A B A BA ab B ab ab

PML a b P ab P abA B
a b P ab P ab

N N N N N
Y Y Y Y Y

N N N N
 

 
 

    
 

 (1.14) 

where P  is chosen to minimize the variance of ˆ PML
abN  as  

    
 

   
ˆ

ˆ ˆ

B
a B ab

P B A
a B ab b A ab

N N V N

N N V N N N V N
 


       (1.15) 

The weighted version of PML P̂MLY  can be written as in (1.4) with the adjustment factor 

 

   

ˆ

ˆ

ˆ
ˆ

ˆ ˆˆ ˆ1

ˆ
ˆ1

ˆ ˆˆ ˆ1

ˆ

ˆ

PML
A ab

aA
a

PML
Aab

p abA B
p ab p ab

k PML
Bab

p abA B
p ab p ab

PML
B ab

bB
b

N N
k s

N

N
k s

N N
m

N
k s

N N

N N
k s

N


 


 

 




 
   
    
  


     (1.16) 
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P̂MLY  is both an internally consistent and an efficient estimator. Standard survey software 

can be used to compute P̂MLY .  However, PML requires accurate estimates of variance 

components for calculating the composite factor, p . Biased estimates of the required variance 

components could result in non-optimal P̂MLY . Deriving PML for multiple frame surveys is also 

more complicated due to the need to estimate the covariance terms required for composite 

factors, p . 

1.3.6 Multiplicity Estimator (ME) 

Since some population elements have multiple opportunities to be selected as sample 

elements, estimation of population statistics from multiple frame surveys can in general be 

formalized as a multiplicity problem. Meccati (2007) introduced a simple dual frame estimator, 

the Multiplicity Estimator (ME), which depends on the multiplicity information, kM , the number 

of frames that case k belongs to. The multiplicity estimator for multiple frames design with Q 

overlapping frames can be written as  

 1ˆ
q

q
ME k k kQ s

Y M w y              (1.17) 

The weighted version of ME can be written as in (1.4) and (1.5) with composite factor 

1
kM  . This estimator comes under the Generalized Multiplicity-adjusted Horvitz-Thompson 

(GMHT) approach proposed by Singh & Mecatti (2011). Beside the flexibility of extending the 

ME to general multiple frame designs, only partial multiplicity information is required for this 

estimator. It can be obtained by asking the sampled unit how many frames they belong to. Under 
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dual frame designs, both the ME and the FWE are equivalent where the composite factor 

0.5  . Both can be considered as special cases of the HE. 

M̂EY is an internally consistent, which can be computed by standard survey software, but 

inefficient estimator. ME does not require full information about specific design domain 

membership; only partial information about total memberships kM  is enough. Thus, deriving 

ME for multiple frame surveys is a straightforward. 

1.3.7 Pseudo-empirical Likelihood Estimator (PEL) 

Rao and Wu (2010) proposed the Pseudo-empirical likelihood (PEL) estimator, which 

depends on finding the adjustment factor km  based on maximizing an empirical log likelihood 

function which can be written as 

    

     

 
   

p ,p ,p ,p log log
ˆ ˆ

1
                                           log log

ˆ ˆ

A
a ab

B
b ab

p abA B AaA B
a ab ab b k ak k abks s A

a ab

p ab Bb
k bk k abks s B

b ab

NNn n
w p w p

N N N

NN
w p w p

N N






 



 


 

 



 (1.18) 

where  1p ,....,
aa a anp p  ,  1p ,...., A

ab

A A A
ab ab abn

p p


 ,  1p ,....,
bb b bnp p   and  

 1p ,...., B
ab

B B B
ab ab abn

p p


  are probability measures corresponding to poststratified samples as , A
abs , 

bs   and B
abs , respectively, and P  can be obtained as  

 
 

   
ˆ

ˆ ˆ

B
a B ab

P B A
a B ab b A ab

N N V N

N N V N N N V N
 


       (1.19) 



   

   

15 

 

subject to the constraints 

1,   1

1,   1

and

A
a ab

B
b ab

A B
ab ab

A
ak abks s

B
bk abks s

A B
abk k abk ks s

p p

p p

p y p y

 

 



 
 

          

(1.20) 

The weighted version of PEL can be written as in (1.4) with the modification factor 

 

 

 

ˆ

ˆ ˆ

ˆ ˆ1

ˆ

PMLai
A ab a

i

A
PML Aabi

p ab ab
i

k B
PML Babi

p ab ab
i

PMLbi
B ab b

i

p
N N k s

w

p
N k s

w
m

p
N k s

w

p
N N k s

w






 





 
  



 


       (1.21) 

PEL can be classified as an efficient estimator, but, as in the case of the HE and the FB, it 

is study-variable dependent and internally inconsistent. This restricts the practical application of 

PEL using standard survey software. As in the case of PML, PEL requires accurate estimates of 

variance components for finding the composite factor, p .  Biased estimates of the required 

variance components could result in non-optimal P̂ELY . Deriving PEL for multiple frame surveys 

is also more complicated due to the need to estimate the covariance terms required for composite 

factors, p . 



   

   

16 

 

1.4 Variance Estimation 

Except for PML, variance estimation is straightforward for the internally consistent dual 

frame estimators (FWE, SFE and ME) that produce only one set of weights. In this case the 

weight adjustment factor does not depend on the individual study variable, y. Therefore, the dual 

frame variance can be estimated by adding the estimated variances of the estimators for two 

samples as 

 ˆ
A B

k k k k k ks s
V Y V m d y V m d y                   (1.22) 

However, for PML and the internally inconsistent dual frame estimators HE, FB and PEL, the 

variability in the estimated composite factor   must be captured in the variance estimation. The 

variability added by calibrating the design weights to population totals should also be considered 

in the variance estimation. For these estimators, PML, internally inconsistent estimators and 

calibrated dual frame estimators in general, jackknife and bootstrap methods are recommended 

for variance estimation (Lohr, 2011; Lohr & Rao, 2000; Skinner & Rao, 1996). 

1.5 Conclusions and Motivations 

1.5.1 Conclusions 

The standard dual frame estimators can be classified into three groups. The first group 

includes the optimal estimators HE, FB and PEL, which have optimal theoretical properties but 

present methodological and practical problems due to their complexity, especially in the case of 

the multiple frame surveys (Lohr & Rao, 2000, 2006; Mecatti, 2007; Skinner, 1991). The second 
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group includes the estimators FWE, SFE and ME which are readily calculated in practice but 

achieve lower efficiency relative to the optimal estimators. The third group has a single 

estimator, the pseudo-optimum estimator PML. It is a balance between the previous groups. 

PML has more practical applicability than the optimal estimators in the first group, and better 

efficiency than the practical estimators in the second group (Lohr, 2011; Lohr & Rao, 2000; 

Skinner & Rao, 1996). PML has a smaller mean square error (MSE) than FB and HE, since the 

variability in estimating the components of the composite factor in FB and HE adds to the 

estimated variance in MSE (Skinner & Rao, 1996). 

Most of the standard dual frame estimators require accurate information about domain 

membership (multiplicity information). If this information is not available before the data 

collection (e.g. from properties or actual matching of frames), multiplicity information for each 

sample unit should be collected during the interview. Ideally, such information on frame 

membership should be free from reporting bias or measurement errors, but this is not typically 

the case in practice (Lohr & Rao, 2006). Moreover, the rate of nonresponse or misreporting for 

the domain membership questions could be even higher when surveying sensitive characteristics 

or elusive populations (Mecatti, 2007). Such problems in measuring the domain membership can 

have a direct effect on the error properties of the dual frame estimator.  

1.5.2 Motivation 

The previous discussion indicates that there is still a need for a dual frame estimator that 

satisfies more the desirable properties discussed earlier. In this dissertation, a new dual frame 

estimator will be introduced and evaluated in the context of these desirable properties. This 

estimator depends on the general calibration approach introduced by Deville and Sarndal (1992). 
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In the literature, dual frame samples can be calibrated separately, before combining the two 

samples, or jointly, after combining the two samples. However, the implicit potential of jointly 

calibrating dual frame samples has not been explored.  

Since calibration generates unbiased auxiliary variable estimates under dual frame 

designs, there is an interest in developing and testing the calibration effect on the study variables 

estimates. In the following chapters, the Joint Calibration Estimator (JCE) will be introduced as 

opposed to the standard dual frame estimators discussed in this chapter. The JCE will be 

empirically compared to the standard FWE estimator. Comparisons will be made under a full 

response assumption and in the presence of non-sampling errors arising from survey nonresponse 

or domain misclassification.  
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Chapter 2 

Joint Calibration Estimator for Dual Frame Surveys 

2.1 Introduction 

Chapter 1 presented a review of past and current literature on dual frame estimation. In 

this chapter, we provide an overview of calibration weighted estimation and introduce the model-

assisted design-based Joint Calibration Estimator (JCE) for dual frame estimation. The properties 

of the JCE are explored under the ‘ideal situation’ in which non-sampling errors are absent. The 

calibration approach is discussed in Section 2.2. The JCE is introduced in Sections 2.3 and 2.4. 

In Sections 2.5 and 2.6 a bias and a variance estimator for JCE are derived. The performance of 

JCE in comparison with one of the dual frame estimators presented in Chapter 1 is explored in a 

simulation study described in Section 2.7. The simulation results and findings are presented and 

discussed in Sections 2.8 and 2.9. 

2.2 The Calibration Approach 

A standard weighting procedure in both single and dual frame designs is to rake or post-

stratify weights to external population control totals. In dual frame surveys, raking or post-

stratification can be performed before combining the two samples to adjust for, say, differential 

nonresponse in the samples from the separate frames (Brick et al., 2011). Also, these techniques 
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can be performed after combining the two samples to retrieve properties of the original sampling 

weights lost in the combining step (Lohr, 2011; Lohr & Rao, 2000).  

Raking and post-stratification are special cases of calibration adjustment. Calibration can 

be conceptualized as a method of constraining the weights by conditioning on auxiliary variable 

distributions (Deville & Särndal, 1992; Deville, Särndal & Sautory, 1993). A comprehensive 

description of calibration weighting methods can be found in (Särndal, 2007). 

In the single frame survey design, where the sample  s s U  is selected from the 

population U using a sample design with inclusion probability of  k p k s   , the base 

weights are denoted by 1k kd   for s. Let ky  be the kth value of the variable of interest, and 

 1, .., , ..,k k kj kJx x x x  an auxiliary variable vector of dimension  1, ...,j J , where both ky  

and kx are observed for the sample elements k s . The Horvitz-Thompson estimator for the 

total of y is ĤT k ks
Y d y  .  In a complete response situation, with known auxiliary totals for 

the  1,..,j J  auxiliary variables,    11, .., , .., , .., , ..,k kj kJU U Uj JX X X x x x     X , Deville 

and Särndal (1992) defined calibration as a method to find the calibrated weights kw  which 

minimize a distance measure  ,k kG w d  between the calibrated weights kw  and the base weights  

kd . This minimization of the distance function is subject to the constraint that the calibration-

weighted total of the auxiliary variable values k kjs
w x  equals the known population total for 

the auxiliary , 1, . . . ,jX j J   as 

=k ks
w x X            (2.1)    
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This calibration problem results in final calibrated weights 

 k k k kw d F q  x            (2.2) 

where  k kF q x  is the inverse of  ,k k kG w d w  .   denotes a vector of Lagrange multipliers 

used in the minimization and kq  is a positive value which scales the calibrated weights in (2.2). 

It is common practice to use 1kq  . As an alternative to the distance minimization approach, 

Estevao and Särndal (2000) introduced the functional form approach to build the calibration 

estimators. Since both approaches lead to the same estimators, we will focus on the first one. 

Many distance measures have been proposed for calibration. Deville and Särndal (1992) 

defined the desirable properties of these functions as (1) for every fixed 0kd  ,  ,k kG w d   is 

nonnegative, differentiable with respect to kw , strictly convex and  , 0k kG d d  , and (2) 

 ,k k kG w d w   is continuous. Empirically, there are small differences in the calibrated 

estimates derived from different distance measures (Singh & Mohl, 1996; Stukel, Hidiroglou, & 

Särndal, 1996). We will focus here on the linear case in which the chi-square distance function 

 2
2k k kw d d  is used, and 1kq   is assumed.  

Under the chi-square distance function, calibration solution finds ,kw k s  by 

minimizing the distance function  2* *2k k ks
w d d  

subject to the calibration equation  

=k ks
w x X , where 

kd 

 are arbitrary initial weights (a base weight or an adjusted version). This 

minimization generates the Lagrange
 
multiplier vector 
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    1
λ k k k k k kU s s

d d
     x x x x        (2.3) 

When the calibration factor is  1 λk kg   x , the final calibrated weights is  

     1* 1 λ 1k k k k k k k k k k kU s s
w d d d d

            x x x x x x      (2.4) 

and the calibrated estimated total of y is 

ŵ k ks
Y w y             (2.5)    

The auxiliary variables’ vector characterizes the final calibration estimator. Let E
 and 

V
 denote the expectation and variance with respect to the calibration model . Under the 

univariate auxiliary variable 1k x  for all k U , corresponding to the following common mean 

model 

 
  2

k

k

E y

V y







 
 

             (2.6) 

when the overall population total is NX , the calibration factor is   1*
k ks

Ng d


  , and the 

calibrated estimated total of y is the well-known expansion estimator 

  1
* *

ŵ k k ks s
Y N d y d


             (2.7)    

When k kxx  for all k U , which corresponds to the ratio model ( k ky x  is constant on average 

for any fixed kx ), the expectation and variance of ky  are 
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 
  2

k k

k k

E y x

V y x







 
 

             (2.8) 

When XX , the calibration factor is   1
*

k k ks
g X d x


  , and the calibrated estimated total of 

y is the well-known ratio estimator 

  1
* *

ŵ k k k ks s
Y X d y d x


            (2.9)    

For the multivariate auxiliary variable  1,k kxx  for all k U , corresponding to the simple 

regression model with an intercept, assume the same model for all elements, 

 
  2
k k

k

E y x

V y




 


  
 

            (2.10) 

Here kx  is the value for element k of a continuous variable x, and the population total vector is 

 ,N XX . The calibrated estimated total of y is the well-known regression estimator 

 *ˆ ˆ ˆ
w k k HT k k k ss U s

Y w y Y x d x B             (2.11)   

where ĤTY  is weighted by the modified base weights kd  , and   1* *ˆ x x xs k k k k k ks s
B d y d


   . All 

the previous estimators, in (2.7), (2.9) and (2.11), are special cases of the well-known 

Generalized Regression Estimator (GREG), which is a general estimator derived from the chi-

square distance function. At the same time, Deville and Särndal (1992) found that calibration 

estimators derived with distance functions other than the chi-square are asymptotically 
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equivalent to the GREG. Therefore, the GREG variance estimator can be used interchangeably 

for any of the other calibration estimators.  

The variance of ŵY  is 

    ˆ k l
w kl k lU

k l

e e
V Y   

 
  

    
  

          (2.12) 

where  &kl p k l s   ,  l p l s   , Bk k k Ue y   x , and BU
 can be written as  

  1

BU k k k kU U
y


  x x x . The corresponding estimated variance is 

     ˆˆ ˆ ˆkl k l
w k k l ls

kl

v Y w e w e
  




          (2.13) 

where ˆˆ Bk k k wse y   x  and   1

B̂ws k k k k k ks s
w y w


  x x x . 

Generally, the idea behind calibration appeals to practitioners since the GREG estimator 

in (2.11) can be written as a linear combinations of observations 
ky  with calibrated weights 

kw   

that are sample-dependent (Deville & Sarndal, 1992). At the same time, the approach assures the 

external consistency, where the estimated totals of auxiliary variables are the same as the 

population totals. 

In the following sections, the implicit potential of calibration method for combining data 

will be explored. Since the main idea behind calibration is to find a set of weights which 

guarantee that the estimated auxiliary totals conform to known population totals, the same idea 

can be used to combine two samples. As opposed to the standard dual frame estimators discussed 
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in Chapter 1, the Joint Calibration approach will be introduced as a method for combining dual 

frame samples. In addition to the practical simplicity of Joint Calibration, it is flexible enough to 

accommodate varying forms of available auxiliary variables in dual frame estimation. 

In single sample designs, a strong correlation between auxiliary variables and the study 

variable implies that the weights that perform well for the auxiliary variables should also perform 

well for the study variable and results in asymptotically unbiased calibrated estimates (Deville & 

Sarndal, 1992). The same idea can be applied to the dual frame estimation, where strong 

associations between the auxiliary variables and the study variable results in asymptotically 

unbiased dual frame estimates, as proved in Proposition 2.1 in Section 2.5. 

2.3 Joint Calibration Estimator (JCE) 

Under the dual frame design, where  E  denotes design-based expectation,  

 
A

k k As
E d  x X ,  

B
k k Bs

E d  x X  and  
A B

k k k ks s
E d d  x x X , calibration conditioning on  

A B
k k k ks s

w w  x x X  should achieve  
A B

k k k ks s
E w w  x x X . Consequently, a powerful 

set of auxiliary variables, that are strong predictors for the study variable y, should result in 

  Y
A B

k k k ks s
E w y w y   , as proven in Proposition 2.1 in Section 2.5.  

Under the complete response assumption, calibrated estimates can be parameterized 

under the dual frame design through re-deriving the calibration factors as explicit components 

for each sample of the dual frame sample. By jointly calibrating the two datasets, the calibration 

problem will be to find final weights kw , k s  to satisfy the calibration equation 
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A B
k k k k k ks s s

w w w    x x x X         (2.14) 

through minimizing the following distance function 

 2
2k k ks

w d d          (2.15) 

The distance function can be split into two components for the two samples A and B as follows 

   2 2
2 2

A B
k k k k k ks s

w d d w d d           (2.16)  

Consequently, the joint calibration weights are 

 
 
 
1

1
k k A

k
k k B

d k s
w

d k s



     

x

x
        (2.17) 

where     1

k k k kk kU s s
d d

    x x x x  and the joint calibration factor is  1k kg    x . 

Recall, the dual frame estimator for the total of y, can be written as in equation (1.3), and 

the weighted version expressed as in equations (1.4) and (1.5). A modified version of equation 

(1.4) can be written as 

ˆ
A B

a ab ab b
k k k k k k k k k ks s s s

Y d y m d y m d y d y              (2.18) 

Consequently, where auxiliary variable 1k x  for k U , the main constraint in (2.14) can be 

written as 

ks
w N              (2.19) 



   

   

27 

 

and the following constraints can be added to the calibration minimization problem 

  k k a bw d k s s             (2.20) 

This constraint is identical to 

*

a a
k k as s

w d N            (2.21) 

and 

*

b b
k k bs s

w d N            (2.22) 

In (2.21),  *

a
k a k ks

d N d d  , whereas, in (2.22),  *

b
k b k ks

d N d d  . In fact, the 

calibration problem with the three constraints, (2.19), (2.21) and (2.22), is identical to post-

stratifying the sample by the design domain totals ,  and a ab bN N N . Therefore, calibrating by 

these totals yields the unbiased dual frame estimator (1.3), where the modification factors 

 and A B
k km m  for the overlap domain have the same value km

 
and can be written as 

   A B
ab ab

A B
k ab k k ab abs s

m N d d k s s                    (2.23) 

At the same time, the joint calibration factor can be written as 

  
a

A B
ab ab

b

a ks
a

A B
k ab k k ab abs s

b
b ks

N d
k s

g N d d k s s

k sN d




   
 


 


      (2.24) 
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It is worth noting that by using the joint calibration factor in (2.24), this version of JCE is 

identical to the post-stratified version of the Fixed Weight Estimator (FWE) 

  ˆ ˆ ˆ ˆ ˆ1
ˆ ˆ ˆ

post A Ba ab b
FWE a ab ab b

a ab b

N N N
Y Y Y Y Y

N N N
     

       (2.25)  

where .5   and   ˆ ˆ ˆ1A B
ab ab abN N N    . Interestingly, the same conclusion can be reached 

based on Remark 2.1 proved by Lündstrom and Sarndal (1999):  

“Suppose the population is divided into P groups 
1 , ..., , ....,p PU U U  and that the group total 

x
p

kU  is known for 1, ...,p P ,  and used in the calibration. Let , 1, ...,pc p P ,  be arbitrary 

positive constants. Then the initial weights
k kd d  and the initial weights k p kd c d  ,for pk r ,  

give exactly the same final weights when  2

k k k ks
w d d q   is minimized and 1 xk kq    

holds.” 

Under multiple frame design, when the population is divided into P domains and when 
kd   is 

replaced by p kc d   in the distance function, where 
pc  is the dual frame composite factor, 

minimizing the chi-square distance  

 2

2p

k p k

P s
p k

w c d

c d






            (2.26)     

under the constraints 
p

k ps
w N , achieves an asymptotically unbiased calibration estimator, 

and implicitly combines the samples. Under dual frame design, pc  can be written as 
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1

1

1

a
A
ab

p B
ab

b

p s

p s
c

p s

p s




 
  
 

 

         (2.27)   

However, we should have a fixed 
pc  within each domain. So using 0.5  , which follows the 

fixed weights dual frame estimator (FWE), results in the asymptotically unbiased calibrated 

estimator. In this case, considering that , ,A BN N N  and abN  are known, the calibrated total of y 

can be written in form of domain-level means as 

 
  ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1
A B A BB A ab

a b ab abA B

a b ab ab

N N N N N
Y Y Y Y Y

N N N N
 

 
 

    
 

 

   (2.28)  

  

When abN  is unknown, the calibrated total of y can be written as  

 
  ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1
A B A BB A A B

a b ab abA B

a b ab ab

N N N N N N N
Y Y Y Y Y

N N N N
 

 
   

    
 

   

 (2.29)  

 

Consequently, calibrating the dual frame to the totals of domains (a, ab & b ) is identical to the 

FWE and gives unbiased estimates. This means that the calibration constraints or the auxiliary 

variables used determine forms of the JCE, some of which might be identical to the standard dual 

frame estimators. In the next section, more general forms of JCE are discussed. 

The JCE can be applied to the general case of multiple frames. Under the dual frame 

design, the JCE for population total of y can be written as 

ˆ
BA

JCE k k k k k ks s s
Y w y w y w y              (2.30) 
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where  1k k kw d   x  and     1

k k k k k k k
A B A B

k k k kU s s s s
d d d d

         x x x x x x x . 

Under multiple frame designs, when the population is divided into P domains, the JCE for 

population total of y can be written as 

ˆ
p

JCE k kP s
Y w y               (2.31) 

where  1k k kw d   x  and   can be written as 

    1

k k k k
p p

k kU P s P s
d d


      x x x x         (2.32) 

2.4 Examples of Joint Calibration Estimators  

The auxiliary variable vector characterizes the final JCE for dual frame estimation. For 

example, under the univariate auxiliary variable 1k x  for k U , which corresponds to the 

common mean model in (2.6), where the overall population total is NX , the joint calibration 

factor is 

  1

A B
k k ks s

g N d d


            (2.33)   
 

By calibrating the concatenated or “stacked” datasets for each frame’s sample, 

A B
k k k ks s

w w N  x x . This JCE estimate is appropriate when it is thought that the true 

common mean   is the same for all k U . However, another JCE estimate is appropriate when 
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it is thought that   vary between design domains  , ,d a ab b . This estimate uses the calibration 

factor in (2.24). 

When k kxx  for k U , corresponding to the ratio model in (2.8), and when XX , the 

joint calibration factor is 

  1

A B
k k k k ks s

g X d x d x


           (2.34)  

By calibrating the stacked dataset, 
A B

k k k ks s
w w X  x x . This JCE estimate is appropriate 

when it is thought that 
kx  is the same, for all k U .  

Another JCE estimate is appropriate when it is thought that 
kx  vary between design 

domains  , ,d a ab b . This estimate uses the calibration factor 

 
a

A B
ab ab

b

a k ks
a

A B
k ab k k k k ab abs s

b
b k ks

X d x
k s

g X d x d x k s s

k sX d x




   
 


 


     (2.35) 

Obviously, this estimate requires knowledge of the separate totals  , ,a ab bX X X . 

Under the multivariate auxiliary variable  1,k kxx  for k U , which corresponds to the 

simple regression model with intercept in (2.10), where the population total vector is  ,N XX  

the calibrated estimate of the total, ĴCEY , can be written as 
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   ,ˆ ˆ ˆ ˆ
A B

A B A B
JCE HT HT k k k k k sU s s

Y Y Y x d x d x B            (2.36)   

where    1
,ˆ

A B A B

A B
s k k k k k k k k k k k ks s s s

B d y d y d d


      x x x x x x . This JCE estimate is 

appropriate when it is thought that 
kx   is the same, for all k U . With more than one 

auxiliary variable, the multivariate formula can be written as 

   ,ˆ ˆ ˆ ˆ
A B

A B A B
JCE HT HT k k k k k sU s s

Y Y Y d d B      x x x      (2.37)    

where  1, .., , ..,k k kj kJx x x x  is the auxiliary variable vector with  1, ...,j J  dimensions. 

Interestingly, since  
A B

k k k ks s
d d x x  is always greater than kU x , the term 

   ,ˆ
A B

A B
k k k k k sU s s

d d B   x x x  in (2.37) can be viewed as a negative sign correction 

factor applied to the biased summation of the ˆ A
HTY  and ˆB

HTY  from both samples. Note that all the 

JCE forms can be derived from the general JCE form in (2.37).  

Another interesting multivariate calibration estimator is the complete post-stratified 

estimator, which corresponds to the group mean model, calibrating on known post-stratified cell 

counts. When the sizes of the population groups pN  and the classification vector used to code 

membership in one of P mutually exclusive and exhaustive groups are known, and 

 1 ,..., , ...,k k k pk Pk     x  is the auxiliary variables vector, the calibrated estimator is the well-

known post-stratified estimator. The joint calibration factor takes the form  
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 A B
p p

p k ks s
N d d   where A

ps  denotes the sample cell 
p AU s  and B

ps  denotes the sample 

cell 
p BU s . The calibrated estimator of the total of the study variable y can be written as  

   ˆ
A B
p p

A B
p p

p
JCE k k k kP s s

k ks s

N
Y d y d y

d d
 


  

 
      (2.38)   

In the group mean model, it is implicitly assumed that mean and variance are shared by 

all elements within the same group p as 

 
  2

k p

k p

E y

V y





 

             (2.39) 

Similarly, when the group totals pX  
are known and  1 1 , ..., , ...,k k k k k pk pk Pk Pkx x x x     x  is 

used as the auxiliary variables vector, this corresponds to the group ratio model, where mean and 

variance are shared by all elements within the same group p as 

 
  2

k p k

k p k

E y x

V y x





 

             (2.40) 

Both the group mean model and the group ratio model may be classified under the group 

models (Sarndal, Swensson & Wretman, 1992). Since the groups in the group models can serve 

as strata, JCE would have better performance if this informative design has been incorporated 

into the auxiliary variable vector. 
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2.5 Joint Calibration Estimator Bias 

In this section, an approximate JCE bias is derived. This helps in understanding the 

mechanism of the joint calibration approach in combining the dual frame design samples in 

contrast to the other dual frame estimators. At the same time, it highlights the JCE as a model-

assisted design-based estimator for which the design-based bias properties are affected by the 

association between the study variable y and the auxiliary variable vector x. 

Proposition 2.1 

The bias of the JCE estimator, ĴCEY , in (2.30) is given approximately by 

  ,ˆ
ab

A B
JCE kU

Bias Y e           (2.41)   

where  

 , ,BA B A B
k k k Ue y   x ,    1

,B
A B A B

A B
U k k k k k k k kU U U U

y y


      x x x x x x  (2.42)   

Appendix 2.1 presents the derivation of (2.41). 

Note that the dual frame estimation bias can be derived from (1.2) in Chapter 1 as 

 ˆ ˆ
ab

A B kU
Bias Y Y y            (2.43)   

This means that the joint calibration approach uses ,B A B
k Ux  to attenuate the bias for each abk U  

to reduce the bias in (2.43). Therefore, the reduction in dual frame estimation bias due to the 

joint calibration is ,B
ab

A B
k UU
 x , which is the difference between (2.43) and (2.41). Proposition 
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2.1 emphasizes the need to identify powerful auxiliary variables that can predict study variable y. 

The more ,B A B
k Ux  is able to predict ky  for each abk U , the more reduction in bias. The bias of 

ĴCEY  in (2.41) is independent of the sampling design used to draw As  and Bs  as long as the set of 

auxiliary variables kx  is the same. 

Corollary 2.1 

When a perfect linear relationship exists in the population between the study variable ky  and the 

auxiliary vector kx , as = Bk k Uy x , for every k U , the bias of the JCE estimator in (2.41) can be 

written as 

   ,ˆ B B 0
ab

A B
JCE k U UU

Bias Y    x        (2.44)   

This is due the fact that when this perfect linear relationship between ky  and xk  exists, 

,B =BA B
U U . That is, the bias of ĴCEY  is a function of the difference between two regression vectors  

,BA B
U  and BU . This perfect relationship will not hold in practice. However, the bias in (2.41) will 

be reduced if the perfect linear relationship between ky  and kx  comes close to being attained. 

We should use auxiliary variables kx such that the residuals  , ,BA B A B
k k k Ue y   x  are small. This 

happens when the residuals  Bk k k Ue y   x  are small. Using such a set of auxiliary variables 

kx  guarantees reduced bias and variance of the JCE as a dual frame estimator.  

Corollary 2.1 helps us in understanding the relationship between the study variable y and 

the auxiliary variable vector x. The performance of the JCE is controlled by the association 
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between y and x, where the best performance happens when  (1) x more closely matches the 

population model or  (2) x includes some strong correlates of y. Although the first case results in 

greater reduction in bias, the second case is more appealing due to an unknown population model 

required for the first case. 

Assuming that the same model holds for all units in the whole population, ,1
ab

A B
kU

ab
e

N
  

asymptotically follows  0,N V  where V is  1
abO N  , the bias of the mean estimator 

  ,1ˆ
ab

A B
JCE kU

Bias Y e
N

  , where ˆ ˆ
JCE JCEY Y N , converges in probability to 0 in large 

populations,  ˆ 0p
JCEBias Y  . This is due to the fact that the variance of the zero mean  

  ,1ˆ
ab

A Bab
JCE kU

ab

N
Bias Y e

N N
   is proportional to  2 1 ab

ab ab
P

P O N
N

  , where ab
ab

N
P

N
 , and  

0abP

N
  as N  . This means that the JCE estimator of mean, ˆ

JCEY , is a consistent estimator 

of population mean, Y .  

2.6 Joint Calibration Estimator Variance estimation 

Where variance of ŵY  under single frame design can be written as in (2.12), under dual 

frame design variance of ĴCEY  can be written as  

 ˆ
A B ab

A A B B ab ab
A B abk l k l k l

JCE kl kl klA A B B ab abU U U
k l k l k l

e e e e e e
V Y

     
        

             
        

     (2.45) 
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where ab A Bs s s  , for  , ,D A B ab ,  D D D D
kl kl k l     ,  &D

kl Dp k l s   ,  D
k Dp k s   , 

 D
l Dp l s   , B

D

D
k k k Ue y   x , and   1

B
DD D

k kUU k kU
y


  x xx . Assuming negligible values of 

,  ab ab
kl k   and ab

l , the corresponding estimated variance is 

        ˆ ˆ ˆ ˆˆˆ
A B

A B
A A B Bkl kl

k k l l k k l ls s
kl kl

JCE w e w e w e w ev Y
 
         (2.46) 

where ˆˆ B
D

D
k k k wse y   x , and   1

B̂
D D D

ws k k k k k ks s
w y w



  x x x . 

2.7 Simulation study 

Simulation studies were used to evaluate the performance of the JCE relative to the 

standard FWE dual frame estimator under the complete response assumption. In these studies, 

the estimation bias and mean squared error are used to compare different estimators. The 

simulation studies focus on the estimate of the population total of a variable y.  

Two population models were used to generate simulated populations. For both models, 

the finite population size was 100,000N   with domains population sizes 40,000,aN 

50,000abN   and 10,000bN  . The population was grouped into J=6 strata with sizes 

1 10,000,N   2 20,000,N   3 30,000,N   4 25,000,N   5 5,000N   and 6 10,000N  . Frame sizes are

90,000AN   (all cases in domains a and ab) and 60,000BN   (all cases in domains ab and b). 

The distribution of the population elements over the strata and the domains is presented in Table 

2.1. 
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Table 2.1: Distribution of the population elements over the six strata and the three domains. 

 Frames and domains  

 A   
  B  

Strata a ab b Total 

1 10,000   10,000 
2 20,000   20,000 
3 10,000 20,000  30,000 
4  25,000  25,000 
5  5,000  5,000 
6   10,000 10,000 

Total 40,000 50,000 10,000 100,000 

 
The first population model is a common linear regression model (CLR), ,jk jk jky x    

for 1,..,k N  and  1,..., 6j   strata, where    ,  and ,jk jkx xx N N        . Here the mean 

of y is the same for all population strata and design domains. The second population model is a 

group linear regression model (GLR), which can be written as the first model but with  

 ,xj xjk Nx     and ,jk N     .  In both models, an auxiliary variable, dkz , was 

generated as ,dk o d dkz       for  = a,ab,bd  where 200o   and  0,350dk N  .  For both 

the first and the second models, the simulation factors were as follows: 

1. Sampling Designs 

a) Simple Sampling Design: simple random samples were selected from both frames.  

b) Complex Sampling Design: stratified sample with equal allocation to five strata from 

frame A, and a simple random sample from frame B. 

2. Sample size 

a) Equal allocation where 500An   and 500Bn  .  
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b) Proportional allocation where 600An   and 400Bn  . 

c) Extreme allocation where 900An   and 100Bn  . 

3. Domain means 

a) Small-differences in domain means where 5,a  6ab   and 7b  .  

b) Frame-different means where 5,a  5ab   and 10b  . 

c) Large-differences in domain means where 5,a  10ab   and 15b  . 

4. Correlation between jky and
jkx  

a) The population correlation coefficient is 0.40xy  .  

b) The population correlation coefficient is 0.60xy  . 

c) The population correlation coefficient is 0.80xy  . 

The correlation levels in the last factor determine the population model parameters as presented 

in Table 2.2. Regarding to the CLR model, different values of x  and   are deliberately 

assumed to generate different correlation levels. Since 
xj  does not contribute to the correlation, 

it is almost fixed across the correlation levels. This applies for the GLR model, except that 
xj  is 

different across the 6 strata.   
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Table 2.2: Model parameters based on correlation levels between jky and jkx . 

 xy  

Model parameters 0.40xy   0.60xy   0.80xy   

CLR Model    

 ,jk x xx N     750,192N   780,288N   760,384N  

 ,jk N       0,440N   0,384N   0,288N  

GLR Model    

 11 ,x xk Nx     487,192N   500,288N   480,384N  

 22 ,x xk Nx     618,192N   640,288N   620,384N  

 33 ,x xk Nx     750,192N   780,288N   760,384N  

 44 ,x xk Nx     881,192N   919,288N   900,384N  

 55 ,x xk Nx     1013,192N   1059,288N   1039,384N  

 66 ,x xk Nx     487,192N   500,288  N   479,384N  

 ,jk N       0, 440N   0,384  N   0,288N  

These sets of simulation factors combine to form 108 simulation studies, 54 simulation 

studies for each population model. One thousand replicates of initial samples of 1,000 cases were 

run for each study, resulting in standard error less than 60 for difference in the biases between 

FWE and JCE estimators. To simulate a dual frame design, within each simulation replicate, two 

samples were independently drawn from both frames A and B. These samples were ‘stacked’ to 

form dual frame sample s. 

Dual frame estimation methods were then applied to each simulated dual frame sample.  

FWE with 0.5   represents the standard fixed weight dual frame estimator, F̂WEY . FWE with 

0.5   means that after applying the base weights, A
kd  and B

kd , for each sample, the 

combination step adjusts the base weights using a composite factor 0.5  . The auxiliary 
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variables were then used to calibrate the adjusted base weights to the auxiliary totals for three 

combinations of x and z resulting in the calibrated versions .
ˆcal
FWE zY , .

ˆcal
FWE xY  and .

ˆ cal
FWE xzY . 

Additionally, in conjunction with x, the design domain, D = (a, ab, b), and frame identifiers, F = 

(A,B), were used to calibrate the adjusted base weights resulting in .
ˆcal
FWE xDY  and .

ˆcal
FWE xFY . 

For the JCE, the base weights, A
kd  and B

kd  were applied for each sample, and then the 

auxiliary variables x and z were used to calibrate the base weights directly, resulting in the JCE 

estimators, .ĴCE zY , .ĴCE xY  and .ĴCE xzY . Additionally, under the GLR model, .ĴCE zJY , .ĴCE xJY  and  

.ĴCE xzJY were produced using the same auxiliary variables used in .ĴCE zY , .ĴCE xY  and .ĴCE xzY , 

respectively, except that stratum totals were also included in the calibration auxiliary variable 

set. Also, .ĴCE xDY  and .ĴCE xFY  were produced using the same auxiliary variables used in .
ˆcal
FWE xDY  

and .
ˆcal
FWE xFY , respectively. 

The biases in the JCE estimates and the FWE estimates were assessed through a 

comparison of the survey estimate Ŷ, to the population parameter Y  for the synthetic finite 

population. Relative Bias of parameter estimates (RB) was computed as 

1000
ˆ

100
1000

ii
Y

RB Y Y
 

   
 
 

         (2.47) 

The Relative Root Mean Squared Error (RMSE) for each estimator was computed as 

 2

1000

ˆ
100

1000

i

i

Y Y
RMSE Y




         (2.48)  

for 1000 replications or simulated dual frame samples for each simulation specification.    
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2.8 Simulation Results 

In this section, only results for the simple sampling design are discussed, since simulation 

results for complex sampling designs, in Appendix 2.2, show the same patterns of results 

consistent with proposition 2.1. As indicated in Figure 2.1, under simple sampling design from 

the CLR model population, where 500An   and 500Bn  , 5,a   6ab   and 7b  , and under 

0.4 correlation between jky  and 
jkx , JCE_Dx ( .ĴCE xDY ) and JCE_Fx ( .ĴCE xFY ) gave exactly the 

same results as FWE_Dx ( .
ˆcal
FWE xDY ) and FWE_Fx ( .

ˆcal
FWE xFY ), respectively. This is consistent with 

the proof in (2.28) and (2.29) where calibrating the base weights by the population totals of 

design domain in .ĴCE DY  or frame totals in .ĴCE FY  is identical to FWE with 0.5  , F̂WEY . These 

four estimators (JCE_Dx, JCE_Fx, FWE_Dx and FWE_Fx) give almost unbiased estimates, 

where the estimate expectations almost equal 84,252,408, the population total Y. The same 

applies under all the simulation studies, as long as the design domain or the frames are 

considered in the calibration auxiliary variables vector. Therefore, the results for FWE_Dx and 

FWE_Fx are not included in the simulation tables or in our discussion. 

As indicated in Figures 2.2 and 2.3, under simple sampling design from the CLR or GLR 

model populations, where 500An   and 500Bn   and 5,a   6ab   and 7b  , when complete 

response is assumed, the standard estimator F̂WEY  achieves nearly unbiased estimates. Under the 

CLR model, as indicated in Figure 2.2, the proposed ĴCEY  estimators achieve relative biases 

comparable to the standard estimator F̂WEY  or its calibrated versions, ˆcal
FWEY ’s. This means that 

calibrating the ‘stacked’ samples directly by z or x in .ĴCE zY , .ĴCE xY and .ĴCE xzY was enough to 
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combine the two samples without the composite factor  , under the complete response 

assumption. The same applies under the other sample allocations and domain means as in Table 

2.3. 

Figure 2.1: The standard estimator FWE and the proposed estimator JCE of Ŷ , estimated from 
CLR model population under simple sampling design 

 

  Under the CLR model, in Table 2.3, there are no apparent differences between the 

relative biases for the different simulation studies. For example, neither the association level 

between y and x nor the domain means have any effect on the relative biases in .ĴCE xY and .ĴCE xzY   

or .ĴCE zY  and .ĴCE xzY , respectively. The RMSE’s, in Figure 2.3 and Table 2.4, show the same 

patterns as the relative biases, although RMSE’s for ĴCEY  were slightly lower than RMSE’s for 

ˆcal
FWEY . 
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Figure 2.2: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated under the 
CLR model population under simple sampling design, equal allocation and small domain mean 

differences 

 

    With regard to the sample allocation, in Table 2.3, there is no apparent difference 

between the relative biases in .ĴCE zY , .ĴCE xY  and .ĴCE xzY  across allocations. However, the effect of 

the sample allocation is more obvious on the RMSE, in Table 2.4, due to the effect of the sample 

allocation on the estimated variance. The proportional allocation, 600An   and 400Bn  , tends 



   

   

45 

 

to have smaller RMSE due to the smaller estimated variance, relative to the extreme allocation, 

900An   and 100Bn  . Slight differences can be noted between the RMSE for the proportional 

allocation, 600An   and 400Bn   and the equal allocation, 500An   and 500Bn  , due to the 

small difference in sample size allocations. A similar sample allocation effect applies under the 

GLR model in Table 2.6 as well. 

 As indicated in Figure 2.3, under simple sampling design from the GLR model 

population, where 500An   and 500Bn   and 5,a   6ab   and 7b  , the JCE estimators 

.ĴCE zY , .ĴCE xY  and .ĴCE xzY  are subject to higher relative biases than .
ˆcal
FWE zY , .

ˆcal
FWE xY  and .

ˆ cal
FWE xzY , 

respectively. This means that calibrating the ‘stacked’ samples directly by z or x in .ĴCE zY , .ĴCE xY  

and .ĴCE xzY  is not a satisfactory method for providing estimates from the dual frame sample. 

Adding the strata totals to the calibration in .ĴCE zJY , .ĴCE xJY  and .ĴCE xzJY  , as in Figure 2.3 and 

Table 2.5, resulted in reduced relative biases. Thus calibrating the ‘stacked’ samples directly by 

strata J and z or x in .ĴCE zJY , .ĴCE xJY  and .ĴCE xzJY  is a more satisfactory way to combine the two 

samples under the complete response assumption. 

Under the GLR model, in Table 2.5, the domain means do not have any effect on the relative 

biases in .ĴCE zY  and .ĴCE xzY . As in Figure 2.3, the higher the correlation between y and x the lower the 

relative biases achieved in .ĴCE xY  and .ĴCE xzY . Generally, the RMSE, in Figure 2.3 and Table 2.6, show 

the same patterns as the relative biases.  



   

   

46 

 

Figure 2.3: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated from the 
GLR model population under simple sampling design, equal allocation, and small domain mean 

differences 
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2.9 Discussion and Conclusion 

  In dual frame designs, three groups of variables may contribute to the estimation 

problem. The first group includes the study variables, y. The second group includes the auxiliary 

variables, which might be associated with the study variable, such as x, or might not, such as z. 

The design domains, D, are the third group. Thinking about the relationship between these 

groups or variables can guide understanding about more satisfactory dual frame estimation 

approaches. Figure 2.4 shows the relationship between these different variables as studied in the 

simulation, where the bidirectional arrows indicate the association between two variables and the 

dashed arrows indicate different estimation scenarios.  

  Regardless of the relation between y and D, when accurate information about the design 

domains, D , is available, adding this information to the JCE auxiliary variable vector results in 

an unbiased estimate of the population total of  y, (see arrow 1 in Figure 2.4). This is due to the 

fact that adding D to the auxiliary variable vector results in an estimator which is identical to the 

standard FWE dual frame estimator with 0.5  . When a strong relationship exists between z 

and D (arrow 2, Figure 2.4), adding z to the JCE auxiliary variable vector results in reduced-

biased estimates of Y (arrow 3, Figure 2.4). When a strong association exists between x and y 

(arrow 5, Figure 2.4), adding x to the JCE auxiliary variable vector results in an almost unbiased 

estimate of Y (arrow 4, Figure 2.4). Moreover, if adding x to the auxiliary variable vector results 

in a calibration model that closely matches the population model, this results in unbiased 

estimates of Y.  
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Figure 2.4: The relations between the study variable (y), auxiliary variables (x, z) and design 
domains (D) as guidance for dual frame estimation 

 

 

 

 

 

  In summary, the JCE was proposed here as a new model-assisted design-based dual 

frame estimator that can achieve parallel efficiency to that of the standard dual frame estimators. 

JCE has achieved a level of bias and MSE that is comparable to the standard estimator, FWE, 

under the assumption of complete response. JCE for point estimates is also easier to use in 

practice. Moreover, applying JCE does not necessarily require any information about the design 

domain membership, information required for standard dual frame estimators. 

   Generally, the performance of JCE depends on the agreement between the population 

model and the working model in the calibration, and to a lesser degree, on the association 

between the auxiliary variable and the study variable. Under the complete response assumption, 

when the auxiliary vector or the implicit calibration model more closely matches the population 

model, JCE yields almost unbiased dual frame estimates. When the models do not agree, JCE has 

a higher level of bias than the standard FWE estimator. Thus, the extent of the association 

between the study variable y and the auxiliary variable x is an important determinant factor of the 

JCE performance. 

z 

D 

x 

y 
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JCE ought to be preferred to the standard dual frame estimators, since it only depends on 

calibrating the pooled datasets to available auxiliary variables, a step already performed in 

standard dual frame estimation. In JCE, practitioners only need to apply the raking or 

poststratification step using available auxiliary variables, which are most likely related to the 

study variables. In addition, unlike the optimal dual frame estimators, JCE yields only one 

weighting variable to be used with the study variables. JCE can be easily extended to the 

multiple frame case; extending standard dual frame estimators to the multiple frame design is not 

readily done. 

Finally, the JCE dual frame estimator has five of the desirable properties discussed in 

Chapter 1. It is unbiased or approximately so, internally consistent, efficient, applicable for point 

estimates with standard survey software and applicable to multiple (more than two) frame 

surveys. The other desirable properties will be explored in the subsequent chapters. 
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Table 2.3: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under simple sampling 
design.  

  

Sample size Domain means ρxy F̂WEY  .
ˆcal
FWE zY  .ĴCE zY  .

ˆcal
FWE xY  .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY  

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 0 -0.01 0.01 -0.01 -0.03 -0.01 -0.03 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 0.05 0.02 0.03 -0.01 -0.03 -0.01 -0.03 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 0.05 0.04 0.07 0.03 0.01 0.02 0 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 0.03 0.02 0.06 0.06 0.08 0.06 0.08 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 0.07 0.04 0.05 0.07 0.06 0.07 0.06 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 0.01 0 0.08 0 0.05 0 0.05 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 -0.03 -0.04 -0.07 -0.05 -0.06 -0.05 -0.06 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 -0.02 -0.05 -0.06 -0.07 -0.05 -0.07 -0.05 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 -0.01 -0.02 -0.05 -0.03 -0.03 -0.04 -0.04 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 -0.04 -0.05 -0.08 -0.02 -0.04 -0.02 -0.04 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 -0.07 -0.1 -0.09 -0.04 -0.02 -0.04 -0.02 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 -0.13 -0.13 -0.11 -0.07 -0.03 -0.07 -0.03 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 0 -0.01 0 0.06 0.08 0.06 0.08 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 0.05 0.02 0.06 0.04 0.07 0.04 0.07 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 -0.02 -0.02 0 0.02 0.06 0.02 0.07 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 0.1 0.09 0.09 0.07 0.09 0.07 0.09 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 0.15 0.12 0.11 0.07 0.07 0.07 0.07 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 0.12 0.12 0.07 0.05 0.03 0.05 0.03 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 0.01 0 0.07 -0.05 -0.01 -0.05 -0.02 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 0.05 0.02 0.1 -0.04 0 -0.04 0 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 -0.05 -0.06 0.02 -0.02 0.02 -0.03 0.02 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 0.04 0.03 0.07 -0.02 0.02 -0.02 0.02 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 -0.08 -0.11 -0.08 -0.05 -0.02 -0.05 -0.02 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 0.06 0.06 0.09 0.06 0.1 0.06 0.1 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 -0.09 -0.1 -0.12 -0.04 -0.09 -0.04 -0.09 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 0.03 0 0 0.01 -0.02 0.01 -0.02 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 0.05 0.05 0.05 0 -0.05 0 -0.05 
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Table 2.4: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under simple 
sampling design. 

 

Sample size Domain means ρxy F̂WEY .
ˆcal
FWE zY .ĴCE zY

 .
ˆcal
FWE xY .ĴCE xY .

ˆ cal
FWE xzY .ĴCE xzY

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 2.27 1.93 1.8 1.74 1.63 1.74 1.64 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 2.21 1.93 1.82 1.74 1.63 1.74 1.64 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 2.88 2.51 2.56 2.29 2.33 2.29 2.33 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 2.3 1.96 1.79 1.81 1.65 1.81 1.65 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 2.25 1.96 1.85 1.78 1.67 1.78 1.67 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 2.86 2.49 2.55 2.28 2.33 2.28 2.33 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 2.24 1.95 1.82 1.76 1.65 1.76 1.65 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 2.14 1.88 1.77 1.72 1.64 1.72 1.64 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 2.78 2.42 2.49 2.18 2.22 2.18 2.23 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 2.29 2 1.84 1.62 1.49 1.62 1.49 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 2.16 1.9 1.79 1.54 1.44 1.54 1.44 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 2.7 2.35 2.4 1.88 1.91 1.88 1.92 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 2.27 1.94 1.79 1.58 1.44 1.58 1.44 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 2.19 1.88 1.79 1.55 1.46 1.55 1.46 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 2.71 2.34 2.4 1.89 1.93 1.88 1.93 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 2.18 1.87 1.74 1.51 1.41 1.52 1.41 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 2.13 1.79 1.7 1.45 1.38 1.44 1.38 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 2.81 2.44 2.51 1.92 1.98 1.92 1.99 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 2.3 2.01 1.87 1.21 1.14 1.22 1.14 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 2.21 1.91 1.78 1.12 1.07 1.12 1.07 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 2.93 2.58 2.63 1.54 1.58 1.54 1.58 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 2.33 2.04 1.88 1.21 1.1 1.21 1.1 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 2.26 1.98 1.86 1.18 1.1 1.18 1.1 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 2.85 2.51 2.59 1.54 1.62 1.54 1.62 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 2.32 2.06 1.86 1.21 1.11 1.21 1.11 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 2.23 1.99 1.87 1.17 1.11 1.17 1.11 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 2.85 2.51 2.59 1.49 1.57 1.49 1.57 

   



   

   

52 

 

Table 2.5: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under simple sampling 

design. 

 

Sample size Domain means ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY  .ĴCE zJY .ĴCE xJY .ĴCE xzJY

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 0.02 0.02 5.76 -0.03 3.8 -0.02 3.8 -0.05 -0.08 -0.08 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 0.01 0 5.77 -0.08 3.77 -0.07 3.77 -0.05 -0.11 -0.11 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 -0.01 0 5.74 -0.04 3.81 -0.04 3.8 -0.1 -0.11 -0.12 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 0.13 0.13 5.82 0.14 3.82 0.14 3.82 0.06 0.07 0.07 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 0.12 0.11 5.79 0.11 3.78 0.12 3.78 0.04 0.05 0.04 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 0.08 0.1 5.8 0.05 3.76 0.06 3.75 0.01 -0.02 -0.02 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 0.07 0.07 5.73 0.08 3.82 0.09 3.81 0.02 0.04 0.03 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 0.14 0.13 5.79 0.12 3.88 0.13 3.88 0.1 0.09 0.1 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 0.16 0.19 5.86 0.2 3.95 0.21 3.94 0.11 0.15 0.14 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 0.07 0.07 6.06 0.07 3.37 0.07 3.36 0.03 0.07 0.06 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 0.08 0.07 6.05 0.04 3.34 0.05 3.35 0.04 0.05 0.05 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 -0.03 -0.01 5.97 0.03 3.36 0.04 3.35 -0.06 0.02 0.03 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 0.05 0.05 6.11 0.11 3.4 0.11 3.4 0.07 0.09 0.09 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 -0.1 -0.11 5.93 0 3.31 0.01 3.31 -0.1 -0.01 -0.01 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 -0.11 -0.09 5.92 -0.08 3.23 -0.06 3.24 -0.15 -0.13 -0.13 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 -0.12 -0.11 5.83 -0.04 3.24 -0.04 3.25 -0.19 -0.09 -0.08 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 0.01 -0.02 5.94 0.02 3.32 0.02 3.32 -0.07 -0.01 -0.01 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 0.04 0.06 5.98 0.07 3.35 0.07 3.35 -0.04 0.02 0.02 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 -0.13 -0.12 5.95 0.01 2.47 0.02 2.47 -0.19 -0.04 -0.04 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 -0.07 -0.09 5.97 0.01 2.47 0.01 2.47 -0.14 -0.04 -0.04 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 -0.09 -0.08 5.96 0.02 2.5 0.02 2.5 -0.19 -0.04 -0.04 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 0.02 0.03 6.15 -0.02 2.47 -0.01 2.47 -0.07 -0.03 -0.03 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 0.08 0.07 6.22 0.02 2.5 0.02 2.5 -0.01 0.01 0.01 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 0.13 0.16 6.34 0.08 2.57 0.08 2.57 0.06 0.06 0.07 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 0.07 0.08 6.13 0 2.47 0.01 2.47 -0.03 -0.04 -0.04 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 0.02 0 6.06 -0.03 2.44 -0.02 2.44 -0.07 -0.06 -0.06 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 0.09 0.11 6.13 0.1 2.58 0.1 2.58 0.02 0.06 0.06 
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Table 2.6: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under simple 

sampling design. 

Sample size Domain means ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY  .ĴCE zJY .ĴCE xJY .ĴCE xzJY

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 2.44 2.45 6.19 2.22 4.3 2.22 4.31 2.33 2.15 2.15 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 2.26 2.27 6.16 2.1 4.26 2.1 4.26 2.15 2.01 2.02 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 2.86 2.96 6.5 2.67 4.69 2.67 4.68 2.89 2.65 2.65 

n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 2.47 2.47 6.23 2.17 4.28 2.17 4.28 2.33 2.09 2.09 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 2.32 2.3 6.17 2.11 4.25 2.12 4.25 2.19 2.03 2.04 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 3 3.09 6.58 2.73 4.67 2.73 4.66 3 2.71 2.71 

n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 2.38 2.45 6.17 2.2 4.33 2.2 4.33 2.3 2.11 2.11 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 2.26 2.31 6.19 2.09 4.37 2.09 4.37 2.19 2.03 2.03 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 2.95 3.14 6.67 2.73 4.81 2.72 4.81 2.99 2.68 2.68 

n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 2.29 2.32 6.42 1.81 3.77 1.8 3.76 2.13 1.73 1.72 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 2.28 2.25 6.4 1.76 3.73 1.76 3.73 2.12 1.7 1.69 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 2.83 2.93 6.68 2.29 4.12 2.29 4.12 2.9 2.32 2.33 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 2.35 2.42 6.49 1.92 3.82 1.92 3.82 2.24 1.83 1.83 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 2.28 2.33 6.32 1.81 3.73 1.81 3.73 2.17 1.73 1.73 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 2.83 2.96 6.63 2.25 3.97 2.25 3.97 2.88 2.26 2.27 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 2.34 2.35 6.21 1.83 3.66 1.83 3.67 2.21 1.76 1.76 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 2.25 2.3 6.32 1.79 3.72 1.79 3.72 2.16 1.7 1.7 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 2.87 3 6.72 2.28 4.08 2.28 4.07 2.93 2.29 2.29 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 2.33 2.38 6.34 1.44 2.8 1.44 2.8 2.23 1.37 1.37 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 2.22 2.24 6.33 1.39 2.8 1.4 2.8 2.1 1.33 1.33 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 2.94 3.08 6.73 1.81 3.12 1.81 3.12 3 1.8 1.8 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 2.43 2.53 6.57 1.47 2.81 1.47 2.82 2.35 1.39 1.39 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 2.26 2.36 6.6 1.4 2.84 1.4 2.84 2.19 1.34 1.34 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 2.88 3.04 7.05 1.75 3.14 1.75 3.14 2.95 1.75 1.76 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 2.42 2.46 6.53 1.39 2.79 1.39 2.79 2.27 1.33 1.33 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 2.3 2.35 6.44 1.37 2.76 1.37 2.76 2.18 1.3 1.31 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 2.97 3.14 6.9 1.73 3.15 1.73 3.14 2.98 1.73 1.73 
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Appendix 2.1: Proof of Proposition 2.1 

Where the calibration estimator in (2.38) is equivalent to the GREG estimator in (2.34), the JCE 

can be written as 

   ˆ ˆ ˆ ˆ
A B

JCE k k k k k k kU s s
Y y d y y d y y             (2.49)    

, , ,ˆ ˆ ˆ            =
A A B B

A B A B A B
k s k k k k s k k k k sU s s s s
B d y d B d y d B         x x x    (2.50)    

, , ,ˆ ˆ ˆ ˆ
A A B B

A B A B A B
JCE k s k k k k s k k k k s kU s s s s U

Y Y B d y d B d y d B y             x x x  (2.51)    

, , ,ˆ ˆ ˆ ˆ

B B B B B B
A A B B

A B A B

A B A B A B
JCE k s k k k k s k k k k s kU s s s s U

k U k k U k k U k U k k U k k UU s s U s s

Y Y B d y d B d y d B y

d d d d

        

         

     
     

x x x

x x x x x x
 (2.52)    

where  Bk k k Ue y   x   and      1
BU k k k kU U

y


  x x x  

ĴCEY Y A C             (2.53)    

Where 

A B
k k k k ks s U

A d e d e e      

  ,ˆ B
A B

A B
k k k k k s UU s s

C d d B       x x x  

     ĴCEE Y Y E A E C            (2.54)    

 
A B ab

k k k kU U U U
E A e e e e              (2.55)    

     ,ˆ. B
A B

A B
k k k k k s UU s s

E C E d d E B       x x x      (2.56)    
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 ,ˆ      . B
ab

A B
k s UU

E B   x         (2.57)   

By Taylor Linearization, the estimator ,ˆ A B
sB  can be defined as 

   
   

1
, ,

2

ˆ B

        

A B A B
s U k k k k k k kU s U

k k k k k k k k kU U s U

B d y y

y d



  



   

  

   

  
   

x x x x

x x x x x x x
     (2.58)   

where 

+
A B

k k k k k k k k ks s s
d y d y d y


  x x x  

+
A B

k k k k k k k k ks s s
d d d


    x x x x x x  

+
A B ab

k k k k k k k k k kU U U U U
y y y y y


      x x x x x  

+
A B ab

k k k k k k k k k kU U U U U
          x x x x x x x x x x  

   1,ˆ A B
s k k k k ks s

B d y


 
  x x x  

   1,BA B
U k k k kU U

y


 
  x x x  

   
   

1
, ,

2

ˆ B B B

       

A B A B
s U U U k k k k k k kU s U

k k k k k k k k kU U s U

B d y y

y d


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

   

    

   

  
   

x x x x

x x x x x x x
     (2.59)   

 , ,ˆ B B BA B A B
s U U UE B             (2.60)   

         1 1,
U

ˆ BA B
s k k k k k k k kU U U U

E B y y
 

 
      x x x x x x     (2.61)   

         1 1,ˆ BA B
s U k k k k k k k kU U U U

E B y y
 

 
      x x x x x x     (2.62)   
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          1 1

ab
k k k k k k k k kU U U U U

E C y y
 

 
         x x x x x x x    (2.63)   

Consequently, under dual frame design  

          1 1ˆ
ab ab

JCE k k k k k k k k k kU U U U U U
E Y Y e y y

 

 
          x x x x x x x  (2.64)   

    1

ab
k k k k k kU U U

y y


 
    x x x x        (2.65)   

 ,B
ab

A B
k k UU

y   x           (2.66)   

  ,ˆ
ab

A B
JCE kU

B Y e            (2.67)   

where  , ,BA B A B
k k k Ue y   x  
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Appendix 2.2: Results for Complex Sampling Designs 

Table 2.7: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under complex sampling 

design.  

 Sample size Domain means ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 0.13 0.1 0.13 0.13 0.13 0.13 0.13 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 0.11 0.06 0.05 0.05 -0.01 0.05 -0.01 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 0.06 0.07 0.08 0.02 -0.02 0.01 -0.02 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 0.01 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 0.06 0 0.02 0.01 0 0.01 0 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 0.01 0.02 0.08 -0.04 0.01 -0.04 0.01 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 -0.02 -0.06 -0.12 -0.05 -0.1 -0.06 -0.1 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 -0.01 -0.07 -0.1 -0.06 -0.06 -0.07 -0.07 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 0.02 0.02 -0.03 -0.01 -0.03 -0.02 -0.04 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 0.08 0.05 0.01 0.04 0.04 0.04 0.04 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 0.11 0.06 0.06 0.05 0.09 0.05 0.09 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 -0.14 -0.13 -0.09 -0.13 -0.06 -0.13 -0.06 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 -0.16 -0.2 -0.18 -0.16 -0.11 -0.16 -0.11 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 0.05 0.01 0.03 -0.04 0 -0.04 0 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 -0.02 -0.01 0.02 -0.01 0.05 0 0.05 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 0.1 0.05 0.04 0.01 0.03 0.01 0.03 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 0.09 0.04 0.04 0.03 0.04 0.03 0.04 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 0.03 0.04 0.01 -0.03 -0.03 -0.03 -0.03 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 0.04 0 0.1 0 0.03 0 0.03 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 0.03 -0.02 0.07 0.02 0.05 0.02 0.05 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 -0.09 -0.08 0.01 -0.03 0.02 -0.03 0.02 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 0.1 0.05 0.08 -0.05 -0.03 -0.05 -0.03 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 0.05 0 -0.01 -0.02 0.01 -0.02 0.01 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 0.04 0.05 0.09 0.07 0.11 0.07 0.11 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 0.01 -0.03 -0.03 -0.07 -0.1 -0.08 -0.1 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 0.01 -0.04 0.03 0.02 0.01 0.02 0.01 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 0.01 0.02 0.05 -0.05 -0.1 -0.05 -0.1 
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Table 2.8: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under complex 

sampling design. 

 

Sample size 
Domain 
means 

ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY  .ĴCE xY .

ˆcal
FWE xzY  .ĴCE xzY

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 2.3 2.06 1.96 1.91 1.81 1.91 1.81 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 2.24 2.09 1.99 1.91 1.81 1.92 1.81 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 2.78 2.44 2.51 2.24 2.29 2.23 2.29 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 2.29 2.11 1.94 1.92 1.77 1.92 1.77 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 2.31 2.13 2.02 1.93 1.83 1.93 1.83 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 2.83 2.5 2.56 2.27 2.33 2.26 2.33 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 2.22 2.04 1.93 1.91 1.81 1.91 1.82 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 2.2 2.03 1.96 1.86 1.79 1.86 1.79 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 2.79 2.53 2.61 2.28 2.34 2.28 2.34 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 2.28 2.09 1.96 1.68 1.6 1.68 1.6 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 2.19 1.99 1.9 1.58 1.5 1.58 1.5 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 2.73 2.45 2.55 1.98 2.07 1.98 2.07 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 2.27 2.11 1.97 1.69 1.57 1.69 1.57 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 2.18 2.02 1.93 1.66 1.57 1.66 1.57 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 2.75 2.51 2.6 2.04 2.11 2.04 2.11 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 2.2 2.04 1.88 1.65 1.52 1.65 1.53 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 2.13 1.89 1.84 1.49 1.44 1.49 1.44 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 2.71 2.44 2.54 1.93 1.99 1.93 1.99 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 2.26 2.11 2.02 1.3 1.25 1.3 1.25 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 2.28 2.09 1.95 1.2 1.16 1.2 1.16 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 2.9 2.61 2.66 1.56 1.62 1.55 1.61 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 2.36 2.17 2.07 1.34 1.3 1.34 1.3 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 2.27 2.08 2 1.25 1.19 1.25 1.19 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 2.86 2.62 2.71 1.56 1.62 1.56 1.62 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 2.46 2.3 2.15 1.35 1.28 1.35 1.28 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 2.31 2.14 2.03 1.28 1.22 1.28 1.23 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 2.87 2.55 2.62 1.53 1.58 1.53 1.59 
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Table 2.9: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under complex sampling 

design. 

 

Sample size Domain means ρxy F̂WEY  .
ˆcal
FWE zY  .ĴCE zY  .

ˆcal
FWE xY  .ĴCE xY .

ˆcal
FWE xzY  .ĴCE xzY  .ĴCE zJY .ĴCE xJY .ĴCE xzJY

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 0.17 0.14 5.9 0.11 3.93 0.11 3.92 0.07 0.06 0.06 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 0.05 0.01 5.79 -0.02 3.82 -0.01 3.82 -0.04 -0.05 -0.05 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 -0.02 0 5.75 0.01 3.86 0.01 3.85 -0.11 -0.07 -0.07 

n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 0.03 -0.01 5.73 0.07 3.8 0.07 3.8 -0.06 0.01 0.01 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 0.11 0.07 5.78 0.07 3.77 0.07 3.77 0.02 0.02 0.02 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 -0.08 -0.05 5.66 -0.09 3.64 -0.08 3.64 -0.13 -0.15 -0.15 

n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 -0.02 -0.05 5.6 -0.05 3.67 -0.05 3.67 -0.11 -0.11 -0.11 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 0.01 -0.02 5.69 -0.06 3.73 -0.05 3.74 -0.05 -0.09 -0.08 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 -0.06 -0.03 5.68 0.04 3.81 0.05 3.81 -0.08 0.01 0.01 

n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 0.15 0.12 6.1 0.04 3.33 0.04 3.33 0.11 0.05 0.05 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 0.1 0.06 6.06 0.05 3.36 0.05 3.36 0.06 0.06 0.06 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 -0.04 -0.01 5.97 0.05 3.37 0.06 3.37 -0.04 0.04 0.05 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 0.14 0.11 6.13 0.01 3.32 0.02 3.32 0.12 0.03 0.03 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 -0.11 -0.15 5.89 -0.02 3.29 -0.01 3.29 -0.11 -0.01 -0.01 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 -0.14 -0.11 5.94 -0.08 3.26 -0.07 3.26 -0.13 -0.11 -0.1 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 0.21 0.18 6.07 0.07 3.35 0.07 3.35 0.1 0.05 0.04 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 0.15 0.11 6.01 0.02 3.3 0.01 3.3 0.04 0.01 0.01 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 0 0.03 5.99 0 3.33 0 3.32 -0.04 -0.02 -0.02 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 0.13 0.09 6.13 0.02 2.49 0.02 2.49 0.03 -0.01 -0.01 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 0.09 0.05 6.09 -0.01 2.46 0 2.46 0.02 -0.03 -0.03 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 0.01 0.03 6.03 0.03 2.51 0.02 2.5 -0.06 -0.01 -0.01 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 -0.1 -0.13 6.02 -0.1 2.4 -0.1 2.4 -0.18 -0.09 -0.09 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 -0.03 -0.06 6.11 -0.07 2.42 -0.07 2.42 -0.1 -0.07 -0.07 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 0.13 0.16 6.36 0.02 2.54 0.03 2.55 0.09 0.03 0.04 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 0.05 0.01 6.04 0.03 2.51 0.03 2.5 -0.09 0 -0.01 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 0.05 0.01 6.06 0.04 2.51 0.04 2.51 -0.08 -0.01 -0.01 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 0.15 0.18 6.19 0.12 2.6 0.12 2.6 0.08 0.09 0.08 
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Table 2.10: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under complex 

sampling design. 

Sample size Domain means ρxy F̂WEY  .
ˆcal
FWE zY  .ĴCE zY  .

ˆcal
FWE xY  .ĴCE xY .

ˆcal
FWE xzY  .ĴCE xzY  .ĴCE zJY .ĴCE xJY .ĴCE xzJY

n1=500, n2=500 βd =(5,6,7) ρxy = 0.40 2.62 2.51 6.36 2.31 4.5 2.32 4.51 2.4 2.22 2.22 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.40 2.49 2.42 6.23 2.23 4.37 2.23 4.38 2.3 2.15 2.15 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.40 3.02 3.08 6.57 2.76 4.8 2.76 4.79 2.99 2.74 2.75 

n1=500, n2=500 βd =(5,5,10) ρxy = 0.40 2.59 2.53 6.21 2.27 4.36 2.27 4.36 2.38 2.15 2.15 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.40 2.51 2.47 6.26 2.23 4.36 2.22 4.36 2.37 2.17 2.17 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.40 3.08 3.1 6.48 2.79 4.63 2.79 4.63 3.07 2.78 2.79 

n1=500, n2=500 βd =(5,10,15) ρxy = 0.40 2.68 2.64 6.09 2.3 4.24 2.31 4.24 2.46 2.18 2.19 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.40 2.56 2.52 6.17 2.29 4.33 2.29 4.33 2.38 2.18 2.19 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.40 2.97 3.08 6.51 2.75 4.73 2.74 4.73 2.98 2.7 2.7 

n1=500, n2=500 βd =(5,6,7) ρxy = 0.60 2.41 2.35 6.5 1.92 3.8 1.92 3.8 2.22 1.83 1.83 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.60 2.36 2.31 6.44 1.84 3.8 1.84 3.79 2.18 1.76 1.76 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.60 2.87 2.9 6.66 2.29 4.12 2.29 4.12 2.87 2.32 2.32 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.60 2.42 2.4 6.52 1.94 3.78 1.94 3.79 2.23 1.82 1.82 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.60 2.4 2.4 6.33 1.92 3.77 1.92 3.77 2.29 1.84 1.84 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.60 3.01 3.03 6.69 2.39 4.07 2.39 4.07 3 2.41 2.41 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.60 2.55 2.48 6.52 1.96 3.84 1.96 3.84 2.34 1.88 1.88 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.60 2.39 2.38 6.42 1.87 3.76 1.87 3.75 2.24 1.79 1.79 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.60 2.93 3.01 6.73 2.24 4.05 2.24 4.04 2.91 2.25 2.24 
n1=500, n2=500 βd =(5,6,7) ρxy = 0.80 2.55 2.45 6.55 1.48 2.86 1.48 2.86 2.33 1.41 1.41 
n1=600, n2=400 βd =(5,6,7) ρxy = 0.80 2.39 2.36 6.49 1.47 2.83 1.47 2.83 2.22 1.38 1.38 
n1=900, n2=100 βd =(5,6,7) ρxy = 0.80 3.01 3.12 6.82 1.83 3.14 1.83 3.13 3.01 1.82 1.82 
n1=500, n2=500 βd =(5,5,10) ρxy = 0.80 2.6 2.53 6.49 1.47 2.77 1.47 2.77 2.38 1.41 1.41 
n1=600, n2=400 βd =(5,5,10) ρxy = 0.80 2.4 2.34 6.51 1.45 2.8 1.45 2.8 2.19 1.39 1.39 
n1=900, n2=100 βd =(5,5,10) ρxy = 0.80 3.11 3.2 7.15 1.86 3.17 1.86 3.18 3.07 1.84 1.84 
n1=500, n2=500 βd =(5,10,15) ρxy = 0.80 2.52 2.42 6.47 1.42 2.85 1.42 2.85 2.3 1.35 1.35 
n1=600, n2=400 βd =(5,10,15) ρxy = 0.80 2.43 2.4 6.46 1.42 2.84 1.42 2.84 2.25 1.35 1.35 
n1=900, n2=100 βd =(5,10,15) ρxy = 0.80 3.04 3.22 6.98 1.81 3.2 1.81 3.2 3.07 1.79 1.79 
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Chapter 3 

Joint Calibration Estimator in the Presence of Nonresponse Errors 

3.1 Introduction 

Chapter 2 provided an overview of the calibration approach and introduced the Joint 

Calibration Estimator (JCE) for dual frame estimation. The properties of the JCE were explored 

under the full response assumption; the simulation studies in Chapter 2 assumed the absence of 

the non-sampling errors. In this chapter, our concern is with dual frame surveys affected by unit 

nonresponse. That is, the values of the study variable y are not observed for all elements in the 

full samples As  and Bs ; y values are observed only for the elements in response sets Ar  and Br  of 

the full samples As  and Bs , respectively. In this chapter, we assume that y is affected by unit 

nonresponse only, and from now on, we will use ‘nonresponse’ instead of ‘unit nonresponse’.     

In this chapter, the JCE performance is explored in the presence of nonresponse. The JCE 

is introduced in this chapter as both a dual frame estimator and an approach for nonresponse 

adjustment. The nonresponse problem is discussed in Section 3.2. The JCE in the presence of 

nonresponse is presented in Sections 3.3 and 3.4. The bias for JCE in the presence of 

nonresponse is derived in Section 3.5. The performance of JCE in comparison with standard 

FWE dual frame estimator in the presence of nonresponse is explored by a simulation study 
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described in Section 3.6. The simulation results and findings are presented and discussed in 

Sections 3.7 and 3.8.  

3.2 Nonresponse in Dual Frame Design 

As discussed in Chapter 1, the standard dual frame estimators assume that for each 

sample, the estimators of population totals are approximately unbiased for the corresponding 

domain total. This means that âY  and b̂Y  are unbiased estimates for aY  and bY , respectively, and 

both ˆ A
abY  and ˆB

abY  are unbiased for abY . Based on this assumption, either (1.3) or (1.4) achieves 

unbiased dual frame estimates, which is the first desirable property for dual frame estimators, as 

discussed in Chapter 1. Any violations of the unbiased domain estimates assumption results in 

biased dual frame estimates, which contradicts three of the eight desirable properties for dual 

frame estimators. These three properties are: 1) unbiasedness, 2) efficiency and 3) robustness. 

Biased domain estimates can result from several sources of non-sampling error, including 

nonresponse, non-coverage and misclassification (measurement) errors. In this chapter, we focus 

on the nonresponse error while in Chapter 4 we will explore misclassification error as a form of 

measurement error. 

In dual frame designs, the nonresponse problem tends to be more complicated than for 

single frame designs since the samples from the different frames can have different nonresponse 

properties. For example, Brick, Dipko, Presser, Tucker, and Yuan (2006) showed that in dual 

frame telephone surveys, samples from the Random-Digit-Dialing (RDD) landline frames and 

cell phone frames can suffer from differential nonresponse due to noncontact resulting from 

differential accessibility. Differential accessibility occurs as a result of individuals’ telephone 
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usage preferences or patterns. Some studies have indicated that this kind of nonresponse bias 

could be more severe than the non-coverage error resulting from non-coverage of the non-

landline households in the RDD landline telephone surveys (Brick et al., 2006; Kennedy, 2007). 

In order to adjust for nonresponse in dual frame designs, the estimation problem will not 

be as straightforward as simply applying the design weights and combining the samples. An 

adjustment step is necessary either before or after the combining step. Consequently, the dual 

frame estimator might have a different form other than (1.3) or (1.4). For example, Brick et al. 

(2011) proposed a post-stratified estimator as a method to treat the differential accessibility 

nonresponse problem in dual frame telephone surveys.  A composite factor  

0 . . .
ˆ ( ) ( )l c c lm c l lm l c lmRR RR RR RR RR RR RR     was proposed to reduce the differential accessibility 

nonresponse bias. lRR , .l lmRR , cRR  and .c lmRR  are the response rates among the landline sample 

dual users, the landline sample landline-mainly users, the cell sample dual users, and the cell 

phone sample landline-mainly users, respectively. Identifying the landline-mainly users (persons 

who predominantly use landline telephones although they have cell phones) requires collecting 

more data during the interview about the households’ telephone usage patterns. Moreover, no 

exact information about .l lmRR  and .c lmRR  is available, and only estimated response rates, 
^

.l lmRR  

and 
^

.c lmRR , can be used.  

If frame A denotes the RDD landline frame and frame B denotes the cell phone frame, 

Brick and his colleagues (2011) identified the telephone service post-stratified dual frame 

estimator as 
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 0 0
ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ
A Ba ab ab b

ps a ab ab bA B
a ab ab b

N N N N
Y Y Y Y Y

N N N N
     

       
(3.1) 

Even more complicated estimators that explicitly incorporated the landline mainly and cell 

mainly dual user domain estimates have been proposed by Brick et al. (2011). This means that 

the nonresponse problem not only affects the desirable properties of the dual frame estimators 

but also the weight adjustment prescribed in the standard dual frame estimators. 

Under single frame designs, the stochastic model of survey response views the response 

set  r r s  as the result of two probabilistic selections. In the first, sample s is selected from 

population U, and in the second, a response set r is realized as a subsample from the sample s. 

Two approaches for adjusting the nonresponse that fall under the stochastic model label are the 

two-phase approach and the calibration approach (Deville & Särndal, 1992; Lundström & 

Särndal, 1999; Särndal & Lundström, 2005; Särndal, Swensson, & Wretman, 1992). In the two-

phase approach, assuming that the conditional response distribution,  q r s , is known, the first-

order response probabilities  Pr kk r s    are known and can be used to adjust for nonresponse. 

Using the adjusted design weights k kd  , the unbiased two-phase estimator of y total can be 

written as 

 ˆ
k k kr

Y d y
          

(3.2) 

In practice, the response probabilities k  are unknown and the estimated response 

probabilities k̂  can be used instead to adjust the base weights kd . To estimate the response 

probabilities, assumptions about the response mechanism are needed. Based on the presumed 
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response mechanism, a response model is formulated to estimate the response probabilities k . 

For example, Little (1986) and Ekhlom and Laaksonen (1991) estimated the response 

probabilities from logistic regression models. Since this requires modeling the response 

mechanism, the two-phase approach is a population based method to adjust for nonresponse, 

which means that it requires case-level information for the nonrespondents. On the other hand, 

Lundström and Särndal (1999) suggested the calibration approach as a simple and unified 

sample based method to reduce both the nonresponse bias and variance. It adjusts the 

respondents directly using the available auxiliary variable totals. In addition to the lack of any 

needed pre-modeling steps in the calibration approach, the auxiliary information is needed only 

for the responding elements k r . As a property of the calibration approach, the auxiliary 

variables should contribute to reducing the nonresponse bias and the variance of estimates, as 

well (Chang & Kott, 2008; Kott, 2006; Kott & Chang, 2010; Särndal & Lundström, 2005). In 

practice, post-stratification and weighting-class adjustment, which are special cases of 

calibration, are used extensively to adjust for nonresponse (Lohr, 1999). Although the choice of 

calibration variables does not require an explicit modeling step, implicit modeling would help in 

justifying the selection of the auxiliary variables to be used. 

Under dual frame designs and the stochastic model of survey response, the same two 

approaches for adjusting for nonresponse can be identified, the two-phase approach and the 

calibration approach. In the two-phase approach, the response mechanism or model is required 

for each separate frame. This requires developing the mathematical formulation of the response 

model in each sample and selecting the explanatory variables for these models from the available 

auxiliary variables for that frame. Under the calibration approach, the dual frame samples can be 
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calibrated separately, before combining the two samples, or jointly, after combining the two 

samples (Lohr, 2011). In the following section, the JCE is introduced as a dual frame estimator 

that waives the combination step and uses a single set of available auxiliary variable totals to 

adjust for nonresponse in the combined dual frame sample. 

Under the calibration approach, the nonresponse mechanism is assumed to be a function of 

a set of covariates, the model variables. These covariates may or may not coincide with the 

calibration benchmark variables in the calibration equation (Chang & Kott, 2008; Kott, 2006; 

Kott & Chang, 2010). In this chapter, we will assume that both model and benchmark variables 

coincide and that these variables are available only for respondents, k r  where r is response set  

 r r s , and not available for k U r  .   

3.3 The Joint Calibration in the Presence of Nonresponse 

When nonresponse is present in a single frame design, let  1, .., , ..,k k kj kJx x x x  denote 

the auxiliary variables vector observed for the response set elements k r , and assuming the 

corresponding auxiliary population totals  1 , .., , ..,k kj kJU U U
x x x    X  are known, the joint 

calibration problem is to find final weights kw , k r , that satisfy the calibration equation 

k kr
w  x X            (3.3) 

through minimizing the distance function 

 2
2k k kr

w d d          (3.4) 
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The dual frame design yields response sets  A A Ar r s  and  B B Br r s , which when 

combined yield  ,A Br r r . Similarly,  a a ar r s ,  b b br r s ,  A A A
ab ab abr r s  and  B B B

ab ab abr r s  

denote dual frame domain response sets. Where the calibration equation in (3.3) can be written 

as 
A B

k k k kr r
w w  x x X , the distance function in (3.4) can be split into two components 

   2 2
2 2

A B
k k k k k kr r

w d d w d d           (3.5)  

Using a Lagrange
 
multiplier to obtain a minimum distance measure  ,k kG d w  between kd  and 

kw  under the calibration constraints, the joint calibration weights are 

 k k A
k

k k B

d v k r
w

d v k r

 
 


         (3.6) 

Where  1 xk r kv     is the joint calibration factor in the presence of nonresponse and

    1

k k k kr k kU r r
d d

    x x x x , the resulting JCE estimator is 

ĴCE k kr
Y w y            (3.7) 

Note that under the single frame design, the final calibration weights kw  are calibrated to the 

auxiliary information and may implicitly account for nonresponse. Särndal and Lündstrom 

(2005, 2010) classified the auxiliary information kx  into two kinds, *
kx  and o

kx . The population 

auxiliary information, *
kx , which is known for every k U  and the sample auxiliary information, 

o
kx , which is known only for k s . Therefore, if both kinds are included in the calibration 
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auxiliary information kx , the calibration weights kw  imply that * *
k k kr U

w  x x  and 

o o
k k k kr s

w d x x , where o
k ks

d x  is unbiased estimate for o
kU x . 

In the presence of nonresponse, the Joint Calibration approach is motivated by Remark 

6.3 in Särndal and Lundström (2005). Based on the remark and under a single frame design, 

when a perfect linear relationship exists in the population between the study variable ky and the 

auxiliary vector kx ,  

=k ky x , for every k U         (3.8) 

where   is a column vector of unknown constants, then the calibration estimator ŵY  gives an 

exact estimate of the target total Y as 

   ˆ = = = =w k k k k k kr r U U
Y w y w y Y     x x       (3.9) 

Although the perfect linear relationship in (3.9) does not hold in practice, this result suggests that 

using a powerful auxiliary vector kx  which has a strong linear relationship with the study 

variable ky  results in a calibration estimator ŵY  that will closely approximate the target 

population total Y. The same argument holds under dual frame designs where (3.9) can be 

written as 

 ˆ + = = =
A B

w k k k k k kr r U U
Y w y w y y Y    x       (3.10) 
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However, note that this property is conditional on the agreement between the calibration model 

and the population model as proven for the full response condition in Appendix 2.1 in Chapter 2. 

3.4 Examples of Joint Calibration Estimators in the Presence of Nonresponse 

The auxiliary variable vector characterizes the final JCE for dual frame estimation.  For 

example, under a univariate auxiliary variable 1k x  for all k U , which corresponds to the 

common mean model, where the overall population total is NX , the joint calibration factor is 

  1

A B
k k kr r

v N d d


            (3.11)   
 

By calibrating the combined datasets, 
A B

k k k kr r
w w N  x x . Then ĴCEY  can be written as 

   1
ˆ

A B A B
JCE k k k k k kr r r r

Y N d y d y d d


           (3.12)   
 

Under the Simple Random Sampling (SRS) design, ĴCEY  in (3.12) can be written as 

ˆ
A B

A B r B A r
JCE

A B B A

m f y m f y
Y N

m f m f





        (3.13)   

 

where the sampling fractions are A A Af n N  and B B Bf n N  for samples A and B, 

respectively, and where A
ry  and B

ry  are the estimated means 
A

k Ar
y m  and 

B
k Br

y m  from 

the respondents Am  and Bm  for samples A and B, respectively. If the nonresponse is not 

completely at random across the two samples, calibration under the common mean model will 

not adjust for nonresponse bias. However, ĴCEY  in (3.12) still finds use if there are no better 
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auxiliary variables; it gives better estimates, with reduced bias, than the non-calibrated standard 

dual frame estimators.   

Where k kxx  , for all k U , which corresponds to the ratio model, kU
X x X , 

the joint calibration factor can be written as 

  1

A B

A B
k k k k kr r

v X d x d x


            (3.14)   
 

By calibrating the combined datasets, 
A B

k k k kr r
w w X  x x . Then ĴCEY  can be written as 

   1
ˆ

A B A B
JCE k k k k k k k kr r r r

Y X d y d y d x d x


          (3.15)   
 

Under the Simple Random Sampling design, ĴCEY  in (3.15) can be written as 

ˆ
A B

A B r B A r
JCE A B

A B r B A r

m f y m f y
Y NX

m f x m f x





        (3.16)   

 

where kU
X x N   and A

rx  and B
rx  are the estimated means 

A
k Ar

x m  and 
B

k Br
x m  

from the respondents Am  and Bm  for samples A and B, respectively. If the nonresponse does not 

occur completely at random, joint calibration under the ratio model will not adjust for 

nonresponse bias.  

Under the multivariate auxiliary variable  1,k kxx  for all k U , which corresponds to 

the simple regression model with intercept, where kx  is the value for element k of a continuous 

variable x, and the population total vector is  ,N XX , ĴCEY  can be written as 
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  ˆ ˆ ˆ ˆ
A B

A B
JCE HT HT k k k k k rU r r

Y Y Y x d x d x B             (3.17)   

where   1ˆ
r k k k k k kr r

B d y d


 x x x . This estimator gives better protection against nonresponse 

bias than the ratio model estimator, since the regression estimator is nearly unbiased under equal 

response probability within groups (Särndal & Lundström, 2005). 

Another interesting multivariate calibration estimator is the complete post-stratified 

estimator, which corresponds to the group mean model, where the calibration is on known post-

stratified cell counts. When the sizes of the population groups pN  are known and the 

classification vector used to code membership in one of P mutually exclusive and exhaustive 

groups  1 ,..., , ...,k k k pk Pk     x  is used as the auxiliary variables vector, the calibrated 

estimator will be the well-known post-stratified estimator.   

Under the dual frame design, the joint calibration factor takes the following form 

  1

A B
p p

k p k kr r
v N d d



            (3.18)    

where A
pr  denotes the sample cell p AU r  and B

pr  denotes the sample cell p BU r . In this case, 

ĴCEY  can be written as
 

   1
ˆ

A B
p p

A B
p p

p k k k kP r rJCE k kr r
N d y d yY d d



          (3.19)   
 

Under the Simple Random Sampling design, ĴCEY  in (3.19) can be written as 
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; ;ˆ
A B A B A B
p p p r p p p r

JCE p A B B AP
p p p p

m f y m f y
Y N

m f m f




        (3.20)   
 

where A
pf  and B

pf  are sampling fractions within group p for samples A and B, respectively, and 

where ;
A
p ry  and ;

B
p ry  are the estimated means A

p

A
k pr

y m  and B
p

B
k pr

y m  from the 

respondents A
pm  and B

pm  for group p in samples A and B, respectively.   

In the group mean model, it is implicitly assumed that mean and variance are the same 

for all elements within the same group p. Similarly, where the group totals pX  
are known and  

 1 1 , ..., , ...,k k k k k pk pk Pk Pkx x x x     x  is used as the auxiliary variable vector, this corresponds 

to the group ratio model, where ratio mean and variance are shared by all elements within the 

same group p.  Both the group mean model and group ratio model may be classified as group 

models. Since the groups in the group models can serve as strata, JCE would have better 

performance if this informative design has been included in the auxiliary variables totals. At the 

same time, if nonresponse does not occur at random within every group, calibration under the 

group model will not fully adjust for the nonresponse bias, however, it should adjust for bias 

resulting from differential nonresponse across groups. 

3.5 Analyzing the Bias due to Nonresponse in Joint Calibration Estimators 

As in Särndal and Lundström (2005), the unconditional bias of the calibrated estimates 

can be evaluated jointly with respect to the sampling design  p s  and the response distribution  

 |q r s  as 
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      ˆ ˆ ˆ|pq w p q w pq wBias Y E E Y s Y E Y Y           (3.21)   
 

Proposition 3.1 

Under a univariate auxiliary variable 1k x  for all k U , where the JCE can be written 

as in (3.12), and where response probabilities are  Pr A
A A kk r s    and  Pr B

B B kk r s    for 

samples A and B, respectively, the unconditional bias of JCE in (3.12), as derived in Appendix 

3.1, can be approximately written as 

   
 

ˆ A B

A B

A B
k k k kU U

pq JCE A B
k kU U

y y
Bias Y N Y

 

 

 
     

 
 

      (3.22)   
 

 This means that bias is proportional to the difference between the response probabilities-

weighted mean 
 
 

A B

A B

A B
k k k kU U

A B
k kU U

y y 

 





 
 

 and the population mean kU
Y y N  . Even if the 

response probabilities are constant throughout the population U, the bias in (3.22) does not 

vanish since 

   ˆ A B
k kU U

pq JCE
A B

y y
Bias Y N Y

N N

 
   
  

 
       (3.23)   

 

The relative bias of JCE in (3.12), as derived in Appendix 3.1, can be written as 

  ; ;

,
ˆ A B

k k k ky y

JCE A B
U U

Cov Cov
relbias Y

y
 




         (3.24) 
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where 
  

; 1
A
k k

A A
k U k UU

y

y y
Cov

N

  





, 
  

; 1
B
k k

B B
k U k UU

y

y y
Cov

N

  





, 
A

kA U
U N


   , 

B
kB U

U N


    and 

 ,

A B
k kU UA B

U N

 




 

. Even with constant response probabilities A
k  and 

B
k  throughout the two populations AU  and BU , respectively, the covariance terms 

;A
k ky

Cov


 and 

;B
k ky

Cov


 do not equal zero. 

Proposition 3.2 

  Under a continuous auxiliary variable k kxx  for all k U , where JCE can be written as 

in (3.15), the unconditional bias of JCE in (3.15), as derived in Appendix 3.2, can be 

approximately written as 

   
 

ˆ A B

A B

A B
k k k kU U

pq JCE A B
k k k kU U

y y Y
Bias Y X

Xx x

 

 

 
     

 
 

      (3.25)   
 

 This means that bias is proportional to the difference between the response probabilities-

weighted mean 
 
 

A B

A B

A B
k k k kU U

A B
k k k kU U

y y

x x

 

 





 
 

 and the population ratio 
Y

X
. The relative bias of JCE in 

(3.12), as derived in Appendix 3.2, can be written as 

 
, ,

; ;

,
ˆ A B

k k k k

A B A B
U U xU Uy y

JCE A B
xU U

Cov Cov y y
relbias Y

y
 

 



  
       (3.26) 
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where 
 

,

A B
k k k kU UA B

xU
kU

x x

x

 




 


. 

Proposition 3.3 

  A general expression for the unconditional bias of JCE, as derived in Appendix 3.3, can 

be approximately written as 

     , , ,
; ; ;

ˆ 1 1
ab A B

A B A B A A B B
pq JCE k k k k kU U U

Bias Y e e e              (3.27) 

Where  , ,
; ;

A B A B
k k k Ue y B   x  and    1

,

;B
A B A B

A B A B A B

U k k k k k k k k k k k kU U U U
y y    


      x x x x x x . 

Under full response when A
k  and B

k  are close to one,  

  ,ˆ
ab

A B
pq JCE kU

Bias Y e          (3.28) 

This is consistent with bias under full response in proposition 2.1 in Chapter 2. Also, in the 

presence of the nonresponse, the bias of ĴCEY  in (3.27) is independent of the sampling design 

used to draw As  and Bs . However, the bias in (3.27) depends on the response distributions,  

 Pr A Ak r s  and  Pr B Bk r s , and their unknown response probabilities, A
k  and B

k , for samples 

A and B, respectively. Proposition 3.3 emphasizes the need to identify powerful auxiliary 

variables that can predict study variable y and can identify response probabilities-homogeneous 

groups, in which A
k  and B

k  are homogeneous.  
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Corollary 3.3 

Where a perfect linear relationship exists in the population between the study variable ky and the 

auxiliary vector kx , as =k ky x , for every k U , the bias of the JCE estimator, ĴCEY , in (3.27) 

can be written as 

       ,
;

ˆ 1 1 B B 0
ab A B

A B A B
pq JCE k k k k k U UU U U

Bias Y          x x x   (3.29)   

This is due the fact that when this perfect linear relationship between ky  and kx  exists, 

,
;B =BA B

U U . This shows that the bias of ĴCEY  is a function of the difference between two regression 

vectors, ,
;BA B

U   and BU . This perfect relationship will not hold in practice. However, the bias in 

(3.27) will be reduced if the perfect linear relationship between ky  and kx  comes close to being 

attained. We should use auxiliary variables kx  such that the residuals  , ,
; ;BA B A B

k k k Ue y   x  are 

small. This happens when  Bk k k Ue y   x  are small. Using this set of auxiliary variables kx  

guarantees reduced bias and variance of the JCE as a dual frame estimator in the presence of 

nonresponse. 

3.6 Simulation study 

Simulation studies were used to evaluate the performance of the JCE relative to the 

standard dual frame estimators under different nonresponse mechanisms. The simulated 

populations generated in Chapter 2 were used again in this chapter. The simulation factors are as 

the following 
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1. Sampling Designs 

a) Simple Sampling Design: simple random samples were selected from both frames.  

b) Complex Sampling Design: equally allocated stratified sample from frame A, and 

simple random sample from frame B. 

2. Sample size:  Equal allocation where 1500An   and 1500Bn  .  

3. Domain means: Large-differences domains’ means where 5,a   10ab   and 15b  . 

4. Correlation between jky  and 
jkx  

a) The population correlation coefficient is 0.40xy  .  

b) The population correlation coefficient is 0.60xy  . 

c) The population correlation coefficient is 0.80xy  . 

5. Response mechanisms 

a) Simple Response Propensity Model (MCAR), where overall response rate is 30% (i.e., 

the response R has propensity  pr 1 .30R   ). 

b) Response Propensity by Auxiliary Variable x (MAR2), where  

 pr 1| .19R x c    and  pr 1| .34R x c   . c is the 1st quartile of x. 

c) Response Propensity by Frame (MAR3), where 
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 pr 1| .33R F A    and  pr 1| .25R F B   . 

d) Response Propensity by Frame and Auxiliary Variable x (MAR4), where 

 pr 1 | , .21R F A x c    ,  pr 1 | , .16R F B x c    , 

 pr 1 | , .38R F A x c     and  pr 1 | , .28R F B x c    . 

e) Response Propensity by Design Domain  (MAR5), where   

 pr 1| .24R D a    ,   pr 1 | .41R D ab A   , 

 pr 1 | .14R D b    and   pr 1| .27R D ab B   . 

f) Response Propensity by Design Domain and Auxiliary Variable x (MAR6), where   

 pr 1| , .14R D a x c    ,   pr 1 | , .29R D ab A x c    , 

 pr 1| , .09R D b x c    ,   pr 1 | , .19R D ab B x c    , 

 pr 1 | , .29R D a x c    ,   pr 1 | , .44R D ab A x c    , 

 pr 1| , .18R D b x c     and   pr 1 | , .29R D ab B x c    . 

These sets of simulation factors combine to form 72 simulation studies, 36 simulation 

studies for each population model. One thousand replicates of initial samples of 3,000 cases were 

run for each study. To simulate a dual frame design, within each simulation replicate, two 

samples were drawn separately from both frames A and B. These samples were ‘stacked’ to form 
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dual frame sample s. Conditional on the response mechanism, response sets Ar  and Br  were 

realized using estimated response propensities applied within each frame sample.  

3.7 Simulation Results 

  As in Chapter 2, only results for simple sampling design are discussed, since simulation 

results for complex sampling designs, in Appendix 3.4, show the same patterns of results. 

Generally, in the presence of nonresponse, biases in F̂WEY  were present. Adding the calibration in 

the standard estimators, ˆcal
FWEY ’s reduced the nonresponse bias of the estimator. Under the CLR 

model, in Table 3.1, the proposed ĴCEY  estimator achieves relative biases comparable to the 

standard estimator calibrated versions, ˆcal
FWEY ’s. Under the GLR model, in Figure 3.1 and Table 

3.3, the JCE estimators .ĴCE zY , .ĴCE xY  and .ĴCE xzY  have higher relative biases than .
ˆcal
FWE zY , .

ˆcal
FWE xY  

and .
ˆcal
FWE xzY , respectively. Adding the strata totals to the calibration in .ĴCE zJY , .ĴCE xJY  and .ĴCE xzJY  

results in reduced relative biases. Note that, for F̂WEY , the relative biases in Table 3.1 and the 

RMSE’s in Table 3.2 are almost the same. This implies that RMSE for F̂WEY  is completely 

dominated by squared-bias. The same applies under the GLR model in Tables 3.3 and 3.4. 

  Under the CLR model in Table 3.1, adding the calibration by z in .
ˆcal
FWE zY  resulted in lower 

relative nonresponse biases than the un-calibrated estimator F̂WEY .  Even lower relative 

nonresponse biases were achieved in the calibrated estimator .
ˆcal
FWE xY  which uses x in the 

calibration step. Except for the x-dependent nonresponse mechanisms MAR2, MAR4 and 

MAR6, where the nonresponse mechanisms and the auxiliary variable x are dependent, 
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calibrating with z in .
ˆcal
FWE zY  was enough to adjust for the nonresponse errors. Also under the same 

x-dependent nonresponse mechanisms, the higher the correlation between y and x, the less 

successful is calibrating with z, in .
ˆcal
FWE zY , in reducing the nonresponse bias. Calibrating with x in 

.
ˆcal
FWE xY  was enough to adjust for the nonresponse errors under all nonresponse mechanisms and 

under all y and x correlation levels. 

  With regard to the JCE estimators in the presence of nonresponse errors, relative biases in 

.ĴCE zY  and .ĴCE xY  were comparable to relative biases in .
ˆcal
FWE zY  and .

ˆcal
FWE xY , respectively. 

Calibrating the ‘stacked’ samples directly by x in .ĴCE xY  was enough to adjust for the 

nonresponse bias under all the nonresponse mechanisms and all y and x correlation levels. 

Except for the x-dependent nonresponse mechanisms, calibrating the ‘stacked’ samples directly 

by z in .ĴCE zY  was enough to adjust for the nonresponse bias. Calibrating the ‘stacked’ samples 

directly by both x and z in .ĴCE xzY  gave comparable results to .ĴCE xY . Generally, the RMSE show 

similar patterns as the relative biases. However, RMSE’s for .ĴCE zY  and .ĴCE xY  were slightly lower 

than RMSE’s for .
ˆcal
FWE zY  and .

ˆcal
FWE xY , respectively. 

  Under the GLR model with 0.4 correlation level, in Figure 3.1, calibrating by z in .
ˆcal
FWE zY  

reduced the relative bias. However, biases for the case of x-dependent nonresponse mechanisms 

MAR2, MAR4 and MAR6, and D-dependent nonresponse mechanisms MAR5 and MAR6, 

remained. Calibrating by x in .
ˆcal
FWE xY  reduced the relative bias for most of the nonresponse 

mechanisms. However, small relative biases for the D-dependent nonresponse mechanisms 
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MAR5 and MAR6 remained. The same applies under the other correlation levels, as in Table 

3.3, however, the reduction in the relative biases is controlled by the correlation between y and x. 

Figure 3.1: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated from the 
GLR model population under simple sampling design and ρxy = 0.40 

 

  With regard to the proposed JCE estimators, calibrating the ‘stacked’ samples directly in

.ĴCE zY , .ĴCE xY  and .ĴCE xzY  reduced the error in comparison with the non-calibrated standard 
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estimator F̂WEY . However, the JCE estimators .ĴCE zY , .ĴCE xY  and .ĴCE xzY  have higher relative biases 

than .
ˆcal
FWE zY , .

ˆcal
FWE xY  and .

ˆcal
FWE xzY , respectively. Adding the strata totals to the calibration in .ĴCE zJY ,  

.ĴCE xJY  and .ĴCE xzJY  reduced relative biases, and in contrast with .
ˆcal
FWE zY , adding the strata totals to 

the calibration in .ĴCE zJY  resulted in reduced relative biases in one of the D-dependent 

nonresponse mechanisms, MAR5. In contrast with .
ˆcal
FWE xY , adding the strata totals to the 

calibration in .ĴCE xJY  resulted in reduced relative biases under all the proposed nonresponse 

mechanisms. Again, under the GLR model, calibrating the ‘stacked’ samples directly by both x 

and z in .ĴCE xzJY  gave comparable results to .ĴCE xJY . The RMSE show same patterns as relative 

biases. However, RMSE’s for .ĴCE zJY , .ĴCE xJY  and .ĴCE xzJY  were slightly lower than RMSE’s for 

.
ˆcal
FWE zY , .

ˆcal
FWE xY  and .

ˆcal
FWE xzY , respectively. 

3.8 Discussion and Conclusion 

  In this chapter we addressed one of the desirable properties discussed in Chapter 1; the 

JCE was introduced as a dual frame estimator that is robust to the nonresponse errors conditional 

on using a powerful set of auxiliary variables. We investigated both the properties of the JCE as 

a dual frame estimator in the presence of nonresponse error and the implicit potentials of the JCE 

in attenuating the nonresponse bias under various nonresponse mechanisms. A general 

expression for the bias of the JCE estimator was derived. Expressions for Relative biases for 

different JCE estimators were derived, as well. The bias expression is composed of both 

nonresponse and dual frame estimation bias. These bias and relative bias expressions emphasize 

the need to identify powerful auxiliary variables that can predict study variable y and explain the 
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nonresponse mechanism. Identifying these variables guarantees reduced bias and variance for the 

JCE as a dual frame estimator in the presence of nonresponse. 

  The performance of the JCE was explored empirically in the presence of nonresponse. 

When the auxiliary vector and the implicit calibration model more closely approximate the 

population model and the nonresponse mechanism, JCE yields almost unbiased dual frame 

estimates. This is consistent with Särndal and Lundström (2005) definition of powerful auxiliary 

vectors for reducing nonresponse, where the auxiliary vector should explain both the response 

propensity and the main study variables. The simulation results indicated that nonresponse can 

lead to biased dual frame estimates. Calibrating the FWE estimates may reduce the nonresponse 

bias. This reduction depends on using a set of strong auxiliary variables that explains the 

nonresponse mechanism. At the same time, the JCE results were comparable to the calibrated 

FWE estimates. 

  As derived theoretically, the correlation between the study variable and the response 

probabilities within each sample contribute to the increase of the estimates’ relative biases. This 

is clear in the x-dependent nonresponse mechanisms where the relative biases were the highest 

among all the other mechanisms. In this case the correlation between the study variable and the 

response probabilities is due to the correlations between the auxiliary variable x and both the 

study variable and the response probabilities. Adding x to the calibration step either in FWE or in 

JCE is enough to adjust for the nonresponse bias under the x-dependent nonresponse 

mechanisms. 

  Finally, this chapter only addressed the nonresponse as one form of the non-sampling 

errors. More research is needed to explore the performance of the JCE in the presence of the 
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other kinds of non-sampling errors. In the next chapter, we will address the effect of the 

measurement domain misclassification error on the JCE.   
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Table 3.1: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under simple sampling 

design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY .

ˆcal
FWE xY  .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY

MCAR ρxy = 0.40 -69.99 -0.01 -0.05 0.00 -0.02 0.00 -0.02 
MAR2 ρxy = 0.40 -68.93 3.41 3.40 0.03 0.03 0.03 0.03 
MAR3 ρxy = 0.40 -69.49 0.03 -0.01 0.03 0.01 0.03 0.02 
MAR4 ρxy = 0.40  -68.44 3.62 3.63 0.02 0.04 0.02 0.04 

MAR5 ρxy = 0.40  -71.96 0.00 -0.02 0.00 0.00 0.00 0.00 

MAR6 ρxy = 0.40  -70.76 3.29 3.06 0.03 0.03 0.04 0.03 

MCAR ρxy = 0.60 -69.99 -0.03 -0.03 -0.01 0.00 -0.01 0.00 
MAR2 ρxy = 0.60 -68.25 5.16 5.17 0.01 0.01 0.00 0.01 
MAR3 ρxy = 0.60 -69.24 -0.02 -0.02 0.00 0.00 -0.01 0.00 
MAR4 ρxy = 0.60  -67.65 5.17 5.14 0.02 0.02 0.02 0.02 

MAR5 ρxy = 0.60  -71.93 -0.04 -0.04 -0.01 -0.01 -0.01 -0.01 

MAR6 ρxy = 0.60  -70.05 4.68 4.30 -0.01 -0.02 -0.01 -0.02 

MCAR ρxy = 0.80 -69.98 0.00 -0.01 0.04 0.00 0.03 0.00 
MAR2 ρxy = 0.80 -67.61 7.48 7.48 0.07 0.05 0.06 0.05 
MAR3 ρxy = 0.80 -69.43 -0.03 -0.02 0.02 0.00 0.02 0.00 
MAR4 ρxy = 0.80  -67.32 7.45 7.43 0.06 0.05 0.06 0.05 

MAR5 ρxy = 0.80  -71.89 0.02 0.01 0.00 -0.02 0.00 -0.02 

MAR6 ρxy = 0.80  -69.64 6.87 6.40 0.02 0.01 0.02 0.01 
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Table 3.2: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under simple 

sampling design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY .

ˆcal
FWE xY  .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY

MCAR ρxy = 0.40 69.99 2.03 1.91 1.87 1.75 1.88 1.76 
MAR2 ρxy = 0.40 68.94 3.98 3.91 1.90 1.76 1.90 1.76 
MAR3 ρxy = 0.40 69.50 2.05 1.94 1.88 1.75 1.88 1.76 
MAR4 ρxy = 0.40  68.45 4.17 4.12 1.92 1.79 1.92 1.80 

MAR5 ρxy = 0.40  71.97 2.10 1.96 1.93 1.80 1.93 1.80 

MAR6 ρxy = 0.40  70.76 3.89 3.62 1.92 1.78 1.92 1.79 

MCAR ρxy = 0.60 70.00 2.11 1.93 1.71 1.56 1.72 1.56 
MAR2 ρxy = 0.60 68.26 5.53 5.48 1.69 1.55 1.70 1.55 
MAR3 ρxy = 0.60 69.25 2.07 1.90 1.69 1.55 1.70 1.55 
MAR4 ρxy = 0.60  67.66 5.55 5.47 1.74 1.58 1.75 1.59 

MAR5 ρxy = 0.60  71.94 2.11 1.94 1.74 1.60 1.75 1.60 

MAR6 ρxy = 0.60  70.06 5.09 4.69 1.69 1.55 1.69 1.56 

MCAR ρxy = 0.80 69.99 2.21 2.04 1.33 1.24 1.33 1.24 
MAR2 ρxy = 0.80 67.62 7.77 7.73 1.34 1.24 1.33 1.24 
MAR3 ρxy = 0.80 69.44 2.22 2.05 1.33 1.24 1.32 1.24 
MAR4 ρxy = 0.80  67.33 7.75 7.69 1.33 1.23 1.33 1.23 

MAR5 ρxy = 0.80  71.89 2.18 2.04 1.34 1.25 1.34 1.25 

MAR6 ρxy = 0.80  69.65 7.19 6.70 1.32 1.23 1.32 1.23 
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Table 3.3: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under simple sampling 

design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY   .

ˆcal
FWE xzY  .ĴCE xzY .ĴCE zJY .ĴCE xJY .ĴCE xzJY

MCAR ρxy = 0.40 -69.98 0.00 5.65 -0.07 3.65 -0.06 3.66 -0.03 -0.11 -0.10 
MAR2 ρxy = 0.40 -68.47 5.18 10.52 0.03 3.76 0.03 3.77 4.36 -0.01 0.00 
MAR3 ρxy = 0.40 -69.57 -0.26 5.30 -0.21 3.44 -0.20 3.44 0.01 -0.06 -0.06 
MAR4 ρxy = 0.40  -68.38 4.86 10.12 -0.18 3.50 -0.17 3.51 4.33 -0.02 -0.02 

MAR5 ρxy = 0.40  -70.77 4.00 8.86 2.57 5.82 2.58 5.82 -0.09 -0.16 -0.16 

MAR6 ρxy = 0.40  -69.60 8.33 12.68 2.48 5.81 2.49 5.81 4.15 -0.10 -0.10 

MCAR ρxy = 0.60 -69.97 0.03 6.00 0.00 3.30 0.01 3.30 0.00 0.00 0.00 
MAR2 ρxy = 0.60 -68.34 6.89 12.47 0.05 3.38 0.05 3.38 6.05 0.06 0.05 
MAR3 ρxy = 0.60 -69.57 -0.27 5.63 -0.14 3.13 -0.14 3.13 0.05 0.06 0.06 
MAR4 ρxy = 0.60  -67.77 6.82 12.31 -0.15 3.16 -0.15 3.16 6.28 0.07 0.07 

MAR5 ρxy = 0.60  -70.94 4.30 9.44 2.39 5.29 2.40 5.28 -0.01 0.05 0.05 

MAR6 ρxy = 0.60  -69.19 10.28 14.68 2.18 5.16 2.18 5.16 6.10 0.04 0.03 

MCAR ρxy = 0.80 -70.01 -0.10 5.95 -0.04 2.42 -0.04 2.42 -0.16 -0.07 -0.07 
MAR2 ρxy = 0.80 -67.48 9.39 14.92 -0.07 2.42 -0.06 2.42 8.46 -0.10 -0.11 
MAR3 ρxy = 0.80 -69.57 -0.46 5.52 -0.21 2.23 -0.21 2.23 -0.18 -0.09 -0.09 
MAR4 ρxy = 0.80  -67.20 9.20 14.63 -0.21 2.27 -0.20 2.26 8.57 -0.09 -0.09 

MAR5 ρxy = 0.80  -70.63 4.32 9.49 1.73 3.88 1.73 3.88 -0.18 -0.10 -0.10 

MAR6 ρxy = 0.80  -68.61 12.49 16.72 1.56 3.79 1.57 3.78 8.11 -0.14 -0.14 
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Table 3.4: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under simple 

sampling design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY   .

ˆcal
FWE xzY  .ĴCE xzY .ĴCE zJY .ĴCE xJY .ĴCE xzJY

MCAR ρxy = 0.40 69.99 2.55 6.12 2.27 4.22 2.27 4.23 2.41 2.20 2.20 
MAR2 ρxy = 0.40 68.48 5.77 10.77 2.35 4.35 2.35 4.35 4.98 2.25 2.25 
MAR3 ρxy = 0.40 69.58 2.64 5.83 2.35 4.07 2.35 4.07 2.42 2.22 2.22 
MAR4 ρxy = 0.40  68.39 5.49 10.39 2.39 4.15 2.39 4.16 4.94 2.26 2.26 

MAR5 ρxy = 0.40  70.78 4.77 9.17 3.47 6.20 3.47 6.21 2.65 2.44 2.44 

MAR6 ρxy = 0.40  69.61 8.71 12.90 3.43 6.22 3.44 6.22 4.91 2.43 2.43 

MCAR ρxy = 0.60 69.98 2.41 6.41 1.97 3.78 1.97 3.78 2.30 1.93 1.93 
MAR2 ρxy = 0.60 68.35 7.30 12.67 1.96 3.85 1.96 3.85 6.47 1.90 1.90 
MAR3 ρxy = 0.60 69.58 2.44 6.08 1.95 3.62 1.95 3.62 2.29 1.87 1.87 
MAR4 ρxy = 0.60  67.78 7.23 12.51 1.98 3.66 1.98 3.66 6.69 1.91 1.91 

MAR5 ρxy = 0.60  70.95 4.95 9.71 3.07 5.59 3.08 5.58 2.52 2.02 2.02 

MAR6 ρxy = 0.60  69.20 10.56 14.86 2.97 5.50 2.97 5.49 6.60 2.09 2.09 

MCAR ρxy = 0.80 70.02 2.61 6.43 1.57 2.83 1.57 2.83 2.49 1.52 1.52 
MAR2 ρxy = 0.80 67.49 9.71 15.09 1.58 2.84 1.58 2.84 8.79 1.53 1.53 
MAR3 ρxy = 0.80 69.59 2.64 6.03 1.56 2.66 1.57 2.66 2.46 1.48 1.48 
MAR4 ρxy = 0.80  67.21 9.54 14.81 1.62 2.72 1.62 2.72 8.89 1.54 1.54 

MAR5 ρxy = 0.80  70.64 5.04 9.79 2.32 4.14 2.32 4.14 2.72 1.61 1.61 

MAR6 ρxy = 0.80  68.62 12.74 16.89 2.24 4.07 2.24 4.07 8.53 1.67 1.67 
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Appendix 3.1: Proof of Proposition 3.1 

   1
ˆ

A B A B
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Y N d y d y d d


           (3.30)    

   ˆ ˆ
pq JCE pq JCEBias Y E Y Y           (3.31) 
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Similarly,  
B B

B
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B B

B
pq k kr U
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 by their expected values, the 

unconditional bias can be approximately written as
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With regard to the relative bias, it can be written as 
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Since, 0A
k   for all bk U  and 0B

k   for all ak U , the relative bias can be written as 
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Appendix 3.2: Proof of Proposition 3.2 
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Appendix 3.3: Proof of Proposition 3.3 
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Appendix 3.4: Results for Complex Sampling Designs  

Table 3.5: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under complex sampling 

design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY  .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY

MCAR ρxy = 0.40 -69.98 0.04 0.00 0.05 0.03 0.05 0.03 
MAR2 ρxy = 0.40 -68.98 3.67 3.65 0.06 0.06 0.05 0.05 
MAR3 ρxy = 0.40 -69.54 0.05 0.01 0.04 0.03 0.04 0.03 
MAR4 ρxy = 0.40  -68.32 3.58 3.55 0.09 0.09 0.08 0.09 

MAR5 ρxy = 0.40  -71.66 -0.01 -0.04 0.01 0.01 0.00 0.00 

MAR6 ρxy = 0.40  -70.80 3.35 3.10 0.02 0.03 0.02 0.02 

MCAR ρxy = 0.60 -70.02 -0.10 -0.09 -0.08 -0.07 -0.09 -0.07 
MAR2 ρxy = 0.60 -68.53 4.93 4.95 -0.09 -0.07 -0.09 -0.07 
MAR3 ρxy = 0.60 -69.56 -0.05 -0.05 -0.06 -0.05 -0.06 -0.06 
MAR4 ρxy = 0.60  -67.72 4.99 4.98 -0.07 -0.06 -0.08 -0.06 

MAR5 ρxy = 0.60  -71.93 -0.02 -0.01 -0.03 -0.02 -0.03 -0.02 

MAR6 ρxy = 0.60  -70.19 4.85 4.51 -0.06 -0.04 -0.06 -0.04 

MCAR ρxy = 0.80 -69.98 0.05 0.07 0.02 -0.01 0.02 -0.01 
MAR2 ρxy = 0.80 -67.50 7.27 7.32 0.02 0.01 0.02 0.01 
MAR3 ρxy = 0.80 -69.53 0.01 0.04 -0.02 -0.03 -0.02 -0.03 
MAR4 ρxy = 0.80  -67.22 7.31 7.32 0.02 0.02 0.02 0.02 

MAR5 ρxy = 0.80  -71.69 0.04 0.08 0.00 -0.01 0.00 -0.01 

MAR6 ρxy = 0.80  -69.59 6.95 6.57 0.03 0.03 0.03 0.03 
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Table 3.6: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under complex 

sampling design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY  .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY

MCAR ρxy = 0.40 69.99 2.34 2.18 2.12 1.98 2.13 1.98 
MAR2 ρxy = 0.40 68.99 4.30 4.21 2.14 1.99 2.14 1.99 
MAR3 ρxy = 0.40 69.55 2.33 2.20 2.15 2.01 2.15 2.02 
MAR4 ρxy = 0.40  68.33 4.26 4.15 2.17 2.02 2.17 2.02 

MAR5 ρxy = 0.40  71.67 2.36 2.23 2.14 2.02 2.15 2.02 

MAR6 ρxy = 0.40  70.81 4.10 3.83 2.21 2.08 2.21 2.08 

MCAR ρxy = 0.60 70.03 2.21 2.08 1.72 1.64 1.72 1.64 
MAR2 ρxy = 0.60 68.54 5.37 5.34 1.74 1.64 1.74 1.65 
MAR3 ρxy = 0.60 69.57 2.23 2.12 1.75 1.66 1.75 1.66 
MAR4 ρxy = 0.60  67.73 5.43 5.38 1.78 1.68 1.78 1.69 

MAR5 ρxy = 0.60  71.94 2.21 2.11 1.76 1.68 1.76 1.69 

MAR6 ρxy = 0.60  70.20 5.31 4.96 1.77 1.71 1.78 1.71 

MCAR ρxy = 0.80 69.99 2.30 2.14 1.41 1.32 1.41 1.32 
MAR2 ρxy = 0.80 67.51 7.59 7.59 1.40 1.31 1.39 1.31 
MAR3 ρxy = 0.80 69.54 2.32 2.17 1.42 1.34 1.42 1.34 
MAR4 ρxy = 0.80  67.23 7.63 7.60 1.42 1.35 1.43 1.35 

MAR5 ρxy = 0.80  71.70 2.35 2.20 1.42 1.35 1.42 1.35 

MAR6 ρxy = 0.80  69.60 7.31 6.90 1.42 1.35 1.42 1.34 
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Table 3.7: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under complex sampling 

design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY   .

ˆcal
FWE xzY  .ĴCE xzY .ĴCE zJY .ĴCE xJY .ĴCE xzJY

MCAR ρxy = 0.40 -70.00 -0.02 5.70 -0.02 3.76 -0.02 3.77 0.01 -0.02 -0.01 
MAR2 ρxy = 0.40 -68.87 5.09 10.52 -0.02 3.80 -0.01 3.80 4.31 -0.01 -0.01 
MAR3 ρxy = 0.40 -69.73 -0.34 5.31 -0.23 3.50 -0.23 3.51 -0.02 -0.04 -0.04 
MAR4 ρxy = 0.40  -68.52 4.78 10.12 -0.22 3.55 -0.21 3.56 4.30 0.00 0.00 

MAR5 ρxy = 0.40  -70.59 4.11 9.02 2.71 6.00 2.72 6.00 0.02 -0.03 -0.02 

MAR6 ρxy = 0.40  -69.56 8.29 12.74 2.49 5.90 2.50 5.91 4.19 -0.02 -0.01 

MCAR ρxy = 0.60 -70.02 -0.08 5.87 -0.10 3.21 -0.09 3.21 -0.12 -0.10 -0.10 
MAR2 ρxy = 0.60 -68.37 7.17 12.71 -0.08 3.26 -0.08 3.25 6.28 -0.06 -0.07 
MAR3 ρxy = 0.60 -69.68 -0.42 5.46 -0.28 2.99 -0.28 2.99 -0.09 -0.06 -0.06 
MAR4 ρxy = 0.60  -67.77 6.72 12.20 -0.23 3.08 -0.23 3.07 6.20 -0.01 -0.01 

MAR5 ρxy = 0.60  -70.61 4.11 9.25 2.24 5.15 2.24 5.15 -0.15 -0.07 -0.08 

MAR6 ρxy = 0.60  -69.24 10.36 14.71 2.14 5.13 2.14 5.13 6.13 -0.03 -0.03 

MCAR ρxy = 0.80 -70.00 -0.02 6.04 0.05 2.52 0.05 2.52 -0.10 0.02 0.02 
MAR2 ρxy = 0.80 -67.45 9.19 14.74 0.00 2.49 0.00 2.49 8.25 -0.04 -0.04 
MAR3 ρxy = 0.80 -69.56 -0.36 5.63 -0.13 2.33 -0.13 2.33 -0.12 -0.02 -0.02 
MAR4 ρxy = 0.80  -66.85 9.05 14.50 -0.16 2.32 -0.16 2.32 8.43 -0.04 -0.04 

MAR5 ρxy = 0.80  -70.60 4.21 9.46 1.77 3.94 1.77 3.94 -0.20 -0.03 -0.03 

MAR6 ρxy = 0.80  -68.48 12.47 16.76 1.70 3.92 1.70 3.92 8.17 -0.02 -0.02 
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Table 3.8: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under complex 

sampling design and 30 % response rate. 

  

Non-response ρxy F̂WEY  .
ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY   .

ˆcal
FWE xzY  .ĴCE xzY .ĴCE zJY .ĴCE xJY .ĴCE xzJY

MCAR ρxy = 0.40 70.01 2.63 6.23 2.40 4.39 2.39 4.39 2.49 2.29 2.28 
MAR2 ρxy = 0.40 68.88 5.72 10.81 2.45 4.46 2.44 4.46 4.97 2.32 2.32 
MAR3 ρxy = 0.40 69.74 2.73 5.92 2.46 4.22 2.45 4.22 2.56 2.33 2.32 
MAR4 ρxy = 0.40  68.53 5.48 10.44 2.48 4.28 2.47 4.29 4.99 2.36 2.35 

MAR5 ρxy = 0.40  70.59 4.89 9.38 3.63 6.44 3.63 6.44 2.69 2.46 2.45 

MAR6 ρxy = 0.40  69.57 8.73 13.01 3.55 6.39 3.55 6.39 5.00 2.54 2.53 

MCAR ρxy = 0.60 70.03 2.56 6.34 2.06 3.76 2.06 3.75 2.36 1.93 1.93 
MAR2 ρxy = 0.60 68.38 7.59 12.92 2.09 3.81 2.09 3.81 6.70 1.96 1.96 
MAR3 ρxy = 0.60 69.70 2.61 5.99 2.08 3.58 2.08 3.57 2.37 1.92 1.92 
MAR4 ρxy = 0.60  67.78 7.17 12.43 2.11 3.67 2.11 3.67 6.62 1.95 1.95 

MAR5 ρxy = 0.60  70.62 4.86 9.58 3.04 5.50 3.04 5.50 2.53 2.03 2.03 

MAR6 ρxy = 0.60  69.25 10.67 14.92 3.02 5.52 3.02 5.51 6.64 2.08 2.08 

MCAR ρxy = 0.80 70.01 2.71 6.57 1.63 2.96 1.63 2.96 2.53 1.55 1.55 
MAR2 ρxy = 0.80 67.47 9.55 14.94 1.67 2.96 1.67 2.96 8.61 1.58 1.58 
MAR3 ρxy = 0.80 69.57 2.76 6.21 1.65 2.80 1.65 2.80 2.55 1.55 1.55 
MAR4 ρxy = 0.80  66.86 9.42 14.71 1.69 2.82 1.69 2.82 8.77 1.58 1.58 

MAR5 ρxy = 0.80  70.61 5.03 9.81 2.42 4.24 2.42 4.24 2.69 1.65 1.65 

MAR6 ρxy = 0.80  68.49 12.76 16.96 2.42 4.25 2.42 4.25 8.59 1.70 1.70 
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Chapter 4 

Joint Calibration Estimator in the Presence of Domain 

Misclassification 

4.1 Introduction 

After exploring the performance of JCE in the presence of nonresponse in Chapter 3, in 

this chapter, we are interested in exploring the performance of JCE in comparison with the 

standard dual frame estimators in the presence of domain misclassification for sample units. In 

this chapter, the domain misclassification problem is discussed in Section 4.2. The 

misclassification bias for the standard dual frame estimators is derived in Section 4.3. The 

performance of JCE in comparison with the standard FWE dual frame estimator in the presence 

of the misclassification and nonresponse errors is explored by a simulation study described in 

Section 4.4. The simulation results and findings are presented and discussed in Sections 4.5 and 

4.6. 

4.2 Domain Misclassification in Dual Frame Design 

In Chapters 2 and 3, the Joint Calibration Estimator (JCE) was introduced as a new dual 

frame estimator that requires a simpler set of requirements than standard dual frame estimators 

while achieving comparable efficiency. Standard dual frame estimators depend on identifying the 
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design domains during the data collection. Consequently, the performance of these estimators is 

sensitive to the errors in measuring the domain membership, or the simple multiplicity 

information (Mecatti, 2007). The multiplicity information problems include (i) Domain 

misclassification; this problem will be discussed in detail in this chapter, (ii) Item missing 

nonresponse in the multiplicity information, where the standard imputation can be used to impute 

the missing multiplicity information (Rubin, 1987) and (iii) Unknown multiplicity information, 

where for some groups the multiplicity information cannot be identified. For example, Zero-

banks are 100-series banks with no listed residential numbers (Casady & Lepkowski, 1993). The 

list-assisted RDD designs do not implicitly cover phone numbers in the Zero-banks, but the ABS 

frame does cover this domain. Where many dual frame designs can be generated from combining 

RDD landline telephone sample and an ABS sample, in some designs, the Zero-banks domain 

should be explicitly identified in the ABS sample for sake of the unbiased dual frame estimation. 

However, practically speaking, identifying whether the sample case belongs to a zero-bank or 

not is not an easy task. Thus zero-banks cases will be forcibly embedded within the landline 

households. 

Back to the domain misclassification problem, it is uncommon to have access to the 

domain membership information before conducting the survey (e.g., from properties or actual 

matching of frames). Therefore, this information should be obtained during the data collection. 

For example information about landline telephone service should be obtained in the area-landline 

dual frame surveys (Lepkowski & Groves, 1986); even more detailed information about the 

landline and cell phone services should be obtained in the landline-cell dual frame telephone 

surveys (Brick et al., 2006; Kennedy, 2007 ). Collecting this information could be burdensome 

for some respondents and could lead to more unit non-response. It is even worse when dealing 
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with rare populations such as persons with a rare disease or for elusive or hidden populations 

such as the homeless, illegal immigrants or drug consumers (Lepkowski, 1991; Mecatti, 2007; 

Sudman & Kalton, 1986). For example, in The National Incidence Study of Child Abuse and 

Neglect, a dual frame design combines a list frame of all maltreated children investigated by 

Child Protective Services agencies and another sample frame compiled from reports of 

maltreated children provided by sources such as the police and school staff. Due to the lack of a 

list frame for the second frame, identifying the domain membership or the multiplicity 

information was problematic (Clark, Winglee, & Liu, 2007).   

Beside the knowledge of the domain membership for every sampled unit, ideally, such 

information should be free from reporting or measurement errors, but this is not typically the 

case (Lohr & Rao, 2006). The correct classification of the sampled units into the domains in each 

frame is required to apply either the optimal or practical dual frame estimators as discussed in 

Chapter 1. The performance of the optimal dual frame estimator is dependent on the correct 

classification assumption. In practice, achieving the correct classification for all cases is almost 

impossible because, as any other study variable, the domain membership variable could be 

affected by the measurement or the reporting error. Therefore, the sampled units could be 

misclassified into the wrong domain. Misclassification happens when a sample unit is classified 

into the wrong design domain, such as when in RDD-cell phone dual frame surveys, households 

owning both landline and cell phone are misclassified as landline only households. In agriculture 

dual frame surveys, domain misclassification occurs if a farm sampled in the area frame is 

incorrectly classified with respect to its list frame membership (Lesser & Kalsbeek, 1999). It is 

even more challenging in longitudinal dual frame surveys (Lu & Lohr, 2010). Generally, it is 

difficult to identify misclassified units, and to estimate the misclassification rate. This means that 
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the optimal dual frame estimators could have less than optimal performance (Lohr, 2011; Lohr & 

Rao, 2006). 

As discussed in Chapter 1, Meccati (2007) introduced the Multiplicity Estimator (ME) 

(1.17), which depends on partial multiplicity information kM , the number of the frames that case 

k belongs to, in order to adjust for the multiplicity and combine the different samples. Although 

the ME estimator somewhat relaxes the burden of collecting full multiplicity information, it is 

sensitive to the domain membership misclassification. Unlike the standard dual frame estimators, 

identifying the design domains is not necessarily required for the JCE. Thus, the JCE should be 

robust to multiplicity information problems such as missing multiplicity information or 

misclassification. In the presence of the multiplicity problems, the joint calibration approach 

tends to have higher efficiency than the standard dual frame estimators. In the next section, a 

misclassification bias expression is derived to help identify misclassification bias components. 

This formulation will enhance our understanding of the effect of the misclassification error on 

the standard dual frame estimates. 

4.3 Analyzing the Bias due to Domain Misclassification in the Standard Dual 

Frame Estimators 

In this section, the analytic bias due to domain misclassification is derived. This bias 

affects the standard dual frame estimators. However, it does not affect the JCE, which does not 

necessarily require any domain membership information for its general application. In the 

presence of domain misclassification and where miss  is the domain-misclassified sample s, the 

unconditional bias of the standard dual frame estimators in (1.4), m̂isY , can be evaluated jointly 
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with respect to the sampling design  p s  and the conditional misclassification distribution  

 |misq s s  as 

      ˆ ˆ ˆ|pq mis p q mis pq misBias Y E E Y s Y E Y Y          (4.1) 

Since the domain misclassification is more likely to occur in certain directions (Lohr, 

2011), the domain misclassification can be classified as a one-way or two-way misclassification. 

Under the one-way misclassification, the misclassification problem can occur only from the 

overlapping to the non-overlapping domains, One-Way Overlapping Misclassification (OWOM), 

where the sample cases in the overlapping domains, A
abs  and B

abs , could be misclassified into the 

non-overlapping domains, as  and bs .  Another one-way misclassification mechanism happens 

when the misclassification problem occurs only from the non-overlapping to the overlapping 

domains, One-Way Non-overlapping Misclassification (OWNM), where the sample cases in the 

non-overlapping domains, as  and bs , could be misclassified into the overlapping domains, A
abs  

and B
abs . In the two-way misclassification (TWM), the sample cases either in the overlapping 

domain or in the non-overlapping domains could be misclassified into the wrong domains. 

In the following propositions, the domain misclassification bias in the standard dual 

frame estimators is derived. In propositions 4.1 and 4.2, the analytic bias for the one-way 

misclassifications, OWOM and OWNM, are derived. In proposition 4.3, the analytic bias for the 

two-way misclassification, TWM, is derived. 
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Proposition 4.1 

Under the one-way OWOM misclassification, where the sample cases in the overlapping 

domains, A
abs  and B

abs , could be misclassified into the non-overlapping domains, as  and bs , the 

estimated total Y in (1.4) can be written as 

 , ,ˆ 1
c ab ab

ab c ab c
mis k k k k k k k k ks s s

Y d y I m d y I d y          (4.2) 

where        , , , , , , ,A B A B A B
k k k k k k c a b ab ab abd d d m m m s s s s s s     and ,ab c

kI  is a 

misclassification indicator for observation k from the overlapping domains A
abs  and B

abs   

misclassified into non-overlapping domains as  and bs , respectively.  

Under this misclassification pattern, the unconditional bias resulting from domain 

misclassification, as derived in Appendix 4.1, can be written as 

  ,ˆ ab c
pq mis abBias Y Y         (4.3) 

where ,ab c  is the probability of misclassification from the overlapping  to the non-overlapping 

domains. This means that the value of the misclassification probability ,ab c  and the population 

total Y for overlapping domains abY  determine the magnitude of the bias resulting from 

misclassification. 
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Proposition 4.2 

Under the one-way OWNM misclassification, where the sample cases in the non-overlapping 

domains, as  and bs , could be misclassified into the overlapping domains, A
abs  and B

abs , the 

estimated total Y in (1.4) can be written as 

 , ,ˆ 1
ab c c

c ab c ab
mis k k k k k k k k k ks s s

Y m d y I d y I m d y         (4.4) 

where ,c ab
kI  is a misclassification indicator for observation k from the non-overlapping domains  

as  and bs  misclassified into overlapping domains A
abs  and B

abs , respectively.  

Under this misclassification pattern, the unconditional bias resulting from domain 

misclassification, as derived in Appendix 4.2, can be written as 

    ,ˆ 1c ab
pq mis a bBias Y Y Y           (4.5) 

Where  0,1   is the dual frame estimation composite factor and ,c ab  is the probability of 

misclassification from the non-overlapping to the overlapping domains. This means that the 

misclassification probability ,c ab  and a weighted average of population totals for non-

overlapping domains   1 a bY Y    determine the magnitude of bias resulting from domain 

misclassification. 
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Proposition 4.3 

Under the two-way TWM misclassification, where the sample cases either in the overlapping 

domains or in the non-overlapping domains could be misclassified into the wrong domains, the 

net unconditional bias resulting from misclassification, can be written as 

    , ,ˆ 1ab c c ab
pq mis ab a bBias Y Y Y Y            (4.6) 

These misclassification biases in (4.3), (4.5) and (4.6) assume that the misclassification 

indicators are identically distributed and that , ,and c ab ab c
k kI I  are Bernoulli random variables with 

parameters , , and c ab ab c  , respectively. In the following proposition, a general expression for 

the misclassification bias is derived. 

Proposition 4.4 

A general expression for the unconditional bias resulting from the two-way TWM 

misclassification that assumes that each element k in the overlapping domain has a 

misclassification probability,  , ,ab c ab c
k kE I   and each element k in the non-overlapping domains 

has a misclassification probability  , ,c ab c ab
k kE I  , as derived in Appendix 4.3, can be written as 

    
       

, ,

, , , ,

ˆ ,

1 , ,

ab c ab c

mis ab ab k k ab

c ab c ab c ab c ab

a a k k a a b b k k b b

pq Y N y Y

N y Y N y Y

Bias   

       

  

   
   (4.7) 

where =
ab

ab k abU
Y y N , , ,=

ab

ab c ab c
k abU

N  , =
a

a k aU
Y y N , , ,=

a

c ab c ab
a k aU

N  , 

=
b

b k bU
Y y N  and , ,=

b

c ab c ab
b k bU

N  .  , ,ab c

ab k ky   is the population covariance between 
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the misclassification probabilities ,ab c

k  and the values of the target variable ky  within the 

overlapping domains ab. Also,  , ,c ab

a k ky   and  , ,c ab

b k ky   are the population covariance 

between the misclassification probabilities ,c ab

k  and the values of the target variable ky  within 

the non-overlapping domains a and b, respectively. These covariances can be written as follows 

    , , ,,
ab

ab c

ab k k ab

ab c ab c
k k abU

y Ny Y            (4.8) 

    , , ,,
a

c ab

a k k a

c ab c ab
k a k aU

y Ny Y            (4.9) 

    , , ,,
b

c ab

b k k b

c ab c ab
k b k bU

y Ny Y            (4.10) 

In the previous propositions, the bias in the dual frame estimators resulting from the 

misclassification problem was explored. Obviously, the misclassification bias depends on two 

components: 

a) The expected total of ky  for the misclassified cases within each domain,

,ab c
ab abN Y , ,c ab

a a aN Y  and ,c ab
b b bN Y . 

b) The correlation between the misclassifications probabilities and the study variable 

y within the different design domains, supported by the within domains 

covariances,  , ,ab c

ab k ky  ,  , ,c ab

a k ky   and  , ,c ab

b k ky  . 

This means that the misclassification bias can be controlled during the data collection process by 

following the best practices that decrease the measurement error in reporting the domain 

membership variable. At the same time, the misclassification bias can be adjusted based on the 
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second component by implicitly predicting the misclassification probabilities. This can be 

performed by calibrating the data by an auxiliary variable that is correlated with the study 

variable y and the misclassification probabilities. This step can be performed either in the 

standard dual frame estimators or in the JCE. In the standard dual frame estimators, the 

calibration step comes after combining the data based on the misclassified domains. When 

misclassification probabilities are known, Lohr (2011) proposed an adjustment factor for the 

misclassification bias for the FWE estimator, which is consistent with our derivations of the 

misclassification bias.  

In JCE, the domain misclassification does not affect the estimates as long as no domain 

membership information was added to the auxiliary variable vector, x. However, even if 

misclassified domain membership information was added to the auxiliary variable vector, adding 

more auxiliary variables which are correlated with the study variable y and the misclassification 

probabilities is enough to reduce the bias resulted from the misclassified domain. Moreover, the 

effect of using the misclassified domains as the sole auxiliary variable in JCE is less significant 

than the effect of the domain misclassification in the standard dual frame estimators. This is due 

the fact that in the standard dual frame estimators, classifying the sampling units into the domain 

correctly is required before applying the composite factor . However, in JCE, this 

misclassification error is accounted for as a measurement in the auxiliary variables.     

4.4 Simulation study 

Simulation studies were used to evaluate the performance of the JCE relative to the 

standard dual frame estimators in the presence of different misclassification and nonresponse 
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mechanisms. The same populations generated in Chapter 2 were used in this chapter. The 

simulation factors are as the following: 

1. Sampling Designs: Simple Sampling Design where simple random samples were selected 

from both frames.  

2. Sample size:  Equal allocation where 500An   and 500Bn   under full response 

assumption and 1500An   and 1500Bn   in the presence of nonresponse.   

3. Domain means: Large-differences domains’ means where 5,a   10ab   and 15b  . 

4. Correlation between jky  and 
jkx  : The population correlation coefficient is 0.40xy  . 

5. Response mechanisms 

a) Full Response Mechanism (FRM), where overall response rate is 100%. 

b) The same 6 response mechanisms in Chapter 3 

I. Simple Response Propensity Model (MCAR). 

II. Response Propensity by Auxiliary Variable x (MAR2). 

III. Response Propensity by Frame (MAR3). 

IV. Response Propensity by Frame and Auxiliary Variable x (MAR4). 

V. Response Propensity by Design Domain (MAR5). 

VI. Response Propensity by Design Domain and Auxiliary Variable x (MAR6). 
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6. Misclassification mechanisms 

a) The one-way OWOM misclassification mechanism, where the misclassification 

probabilities were    , ,.1 and .1A ab a B ab b   . This means that 10 % of the sample A 

overlapping domain ab cases are misclassified in non-overlapping domain a and 10 % 

of the sample B overlapping domain ab cases are misclassified in non-overlapping 

domain b. 

b) The one-way OWNM misclassification mechanism, where the misclassification 

probabilities were  , .1A a ab   and  , .1B b ab  . This means that 10 % of the sample A 

non-overlapping domain a cases are misclassified in overlapping domain ab and 10 % 

of the sample B non-overlapping domain b cases are misclassified in overlapping 

domain ab. 

c) The two-way TWM misclassification mechanism, where the misclassification 

probabilities were      , , ,.1,  .1,  .1A a ab B b ab A a ab      and  , .1B b ab  .  

These sets of simulation factors combine to form 42 simulation studies, 21 simulation 

studies for each population model. One thousand replicates of initial samples of 3,000 cases were 

run for each study where nonresponse was present. For the FRM response mechanism, the initial 

sample sizes were 1,000 cases. To simulate a dual frame design, within each simulation replicate, 

two equal-size samples were drawn separately from both frames A and B, where 1,500A Bn n 

, and 500A Bn n   for the FRM response mechanism. These samples were ‘stacked’ to form 

dual frame sample s. Conditional on the misclassification and response mechanisms, the 



   

   

111 

 

misclassified response sets  and A Br r  were realized and the misclassified domains were 

generated. 

4.5 Simulation Results 

  Generally, as indicated in Tables 4.1 and 4.3, in the presence of non-sampling errors, 

domain misclassification or nonresponse, biases in F̂WEY  are present. Even under the complete 

response, in Figure 4.1, domain misclassification results in biased F̂WEY . The bias magnitude 

varies based on the misclassification mechanism; the one-way OWNM and the two-way TWM 

mechanisms result in smaller relative biases than the one-way OWOM does, as in Figure 4.1. 

Under the complete response assumption, the biases that result under the OWOM mechanism are 

positive sign biases, however it is negative sign biases under the OWNM. The summation of the 

biases resulting from the OWOM and OWNM mechanisms equals the net bias resulting from the 

TWM mechanism. Since the effect of adding the nonresponse besides the misclassification is the 

same as its effect as a sole non-sampling error, discussed in Chapter 3, we will only highlight the 

effect of the misclassification error.  

  Under the CLR model, in Table 4.1, the standard estimator F̂WEY  is affected by the 

misclassification error, whereas the proposed estimators .ĴCE zY , .ĴCE xY  and .ĴCE xzY  are not. Adding 

the calibration in the standard estimators .
ˆcal
FWE zY , .

ˆcal
FWE xY  and .

ˆcal
FWE xzY  reduces the misclassification 

bias and achieved relative biases comparable to the JCE estimators, .ĴCE zY , .ĴCE xY  and .ĴCE xzY . 

Interestingly, adding the misclassified domain variable to the auxiliary variable vector in the JCE 
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estimators, .ĴCE xDY  and .ĴCE xzDY , does not result in misclassification-biased estimates as in F̂WEY . 

Even calibrating only by the misclassified domains in .ĴCE DY  results in almost unbiased estimates. 

Generally, the relative mean square errors show same patterns as the relative biases, as indicated 

in Table 4.2. However, MSE’s for .ĴCE zY  and .ĴCE xY  were slightly lower than MSE’s for .
ˆcal
FWE zY   

and .
ˆcal
FWE xY , respectively. 

  Under the GLR model, in Figure 4.1 and Table 4.3, the JCE estimators .ĴCE zY , .ĴCE xY  and 

.ĴCE xzY  are subject to higher relative biases than .
ˆcal
FWE zY , .

ˆcal
FWE xY  and .

ˆcal
FWE xzY , respectively. However, 

the relative biases in .ĴCE zY , .ĴCE xY  and .ĴCE xzY  were smaller than the standard estimator F̂WEY . 

Adding the strata totals to the calibration in .ĴCE zJY , .ĴCE xJY  and .ĴCE xzJY  resulted in reduced relative 

biases. Clearly in Figure 4.1, adding the misclassified domain variable to the auxiliary variable 

vector in the JCE estimators,  .ĴCE DY , .ĴCE xDY  and .ĴCE xzDY , does not result in misclassification-

biased estimates as in F̂WEY . The relative mean square errors show similar patterns to relative 

biases, as indicated in Figure 4.1 and Table 4.4. However, MSE’s for .ĴCE zLY , .ĴCE xLY  and .ĴCE xzLY  

were slightly lower than MSE’s for .
ˆcal
FWE zY , .

ˆcal
FWE xY  and .

ˆcal
FWE xzY , respectively. 
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Figure 4.1: Simulation RB (%) and RMSE (%) for FWE and JCE estimators estimated from the 
GLR model population under full response and ρxy = 0.40 
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4.6 Discussion and Conclusion 

  In this chapter, the domain misclassification was introduced as a form of the non-

sampling error, which could affect the bias properties of the dual frame estimators. The effect of 

the domain misclassification exceeds its effect as a type of measurement or reporting error in the 

domain membership information. The misclassified domains may affect the standard dual frame 

estimators substantially. This is due to the fact that the standard dual frame estimators require 

accurate information about the domain membership. Based on this information, the adjustment 

factor is applied to the design weights for dual frame estimation.  

  In this chapter, we derived expressions for the analytic bias that results when the standard 

dual frame estimators are applied to data with different domain misclassification mechanisms. 

These bias expressions indicated that the correlation between the misclassification probabilities 

and the study variable y within each domain is an important determinant of the misclassification 

bias. Also, the expected total of the y variable for the misclassified cases within each domain is 

another determinant of the misclassification bias. Controlling these two determinants could be 

the key for reducing the misclassification bias in the standard dual frame estimators. 

  The misclassification bias can be reduced by following the best practices during the data 

collection, under which the measurement errors are controlled especially for the domain 

membership variable. Also, calibrating the data using the auxiliary variables which are correlated 

with the study variable and the misclassification probabilities could be a promising approach for 

adjusting the misclassification error. This approach is motivated by the domain-level correlation 
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between the misclassification probabilities and the study variable y as a determinant for the 

misclassification bias. In the simulation studies, calibrating the standard dual frame estimators 

with x, which is correlated with y, or with z, which is correlated with the misclassification 

probabilities, due to the high correlation with the domains, was enough to adjust for the domain 

misclassification bias. 

  In addition to introducing the domain misclassification problem in this chapter, the JCE 

was introduced as a robust dual frame estimator to the domain misclassification error. The JCE 

does not necessarily need any information about the domain classification. Therefore, the 

misclassification problem does not affect the JCE estimates as long as the domain membership 

information was not added to the calibration auxiliary variable vector. Interestingly, adding the 

misclassified domains to the JCE auxiliary variable vector does not lead to substantially biased 

estimates, as long as the domains are misclassified at random. This is due to the fact that the 

effect of the misclassified domains in the context of the JCE is a measurement error effect. 

Moreover, under the GLM model, calibrating the dual frame samples in JCE by the misclassified 

domains ignoring the strata totals was enough to result in reduced bias estimates. This is due to 

the effect of adding the domain membership in the calibration auxiliary variable vector. As 

discussed in (2.28) and (2.29) in Chapter 2, adding this information results in unbiased estimates. 

However, the measurement error in the domain membership results in slightly biased estimates.   
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Table 4.1: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under 0.40xy  and in 

the presence of the misclassification problem. 

  

Non-
response 

Misclassification F̂WEY  .
ˆcal
FWE zY .ĴCE zY .

ˆcal
FWE xY .ĴCE xY .

ˆcal
FWE xzY  .ĴCE xzY .ĴCE DY  .ĴCE xDY .ĴCE xzDY

FRM OWOM 5.02 -0.04 -0.07 0.00 -0.03 0.00 -0.03 -0.05 -0.02 -0.02 
MCAR OWOM -68.48 0.05 -0.02 0.01 -0.03 0.01 -0.03 0.05 0.01 0.01 
MAR2 OWOM -67.41 3.55 3.53 0.07 0.06 0.07 0.06 3.54 0.05 0.05 
MAR3 OWOM -68.10 0.13 0.04 0.08 0.03 0.08 0.03 0.12 0.08 0.08 
MAR4 OWOM -66.87 3.69 3.64 0.09 0.08 0.09 0.08 3.67 0.07 0.07 
MAR5 OWOM -70.31 -0.05 -0.12 -0.06 -0.11 -0.05 -0.11 0.01 0.00 0.00 
MAR6 OWOM -68.92 3.37 3.12 0.03 0.00 0.03 0.00 3.57 0.06 0.06 
FRM OWNM -2.46 0.02 -0.05 0.03 -0.03 0.02 -0.03 0.03 0.03 0.02 

MCAR OWNM -70.77 -0.06 -0.12 -0.02 -0.06 -0.02 -0.06 -0.05 -0.02 -0.02 
MAR2 OWNM -69.79 3.54 3.49 -0.05 -0.07 -0.05 -0.08 3.55 -0.05 -0.05 
MAR3 OWNM -70.21 0.07 0.01 -0.01 -0.02 -0.01 -0.02 0.03 -0.02 -0.02 
MAR4 OWNM -69.21 3.66 3.64 0.01 0.02 0.01 0.02 3.63 -0.01 0.00 
MAR5 OWNM -72.39 -0.04 -0.12 -0.02 -0.05 -0.02 -0.05 0.00 0.01 0.01 
MAR6 OWNM -71.29 3.34 3.04 0.01 0.00 0.01 0.00 3.56 0.02 0.02 
FRM TWM 2.48 -0.12 -0.12 -0.10 -0.07 -0.10 -0.07 -0.09 -0.08 -0.07 

MCAR TWM -69.18 0.07 0.02 0.06 0.03 0.06 0.03 0.10 0.06 0.06 
MAR2 TWM -67.91 3.59 3.57 0.06 0.05 0.06 0.05 3.57 0.04 0.04 
MAR3 TWM -68.60 0.05 -0.02 0.04 -0.02 0.04 -0.02 0.03 0.02 0.02 
MAR4 TWM -67.73 3.68 3.64 0.04 0.04 0.04 0.04 3.67 0.04 0.04 
MAR5 TWM -70.56 0.10 0.03 0.05 0.02 0.04 0.02 0.13 0.09 0.09 
MAR6 TWM -69.62 3.30 3.11 0.02 0.01 0.02 0.01 3.49 0.02 0.03 
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Table 4.2: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the CLR model population under 0.40xy  and 

in the presence of the misclassification problem. 

  

Non-
response 

Misclassification F̂WEY  .
ˆcal
FWE zY .ĴCE zY .

ˆcal
FWE xY .ĴCE xY   .

ˆcal
FWE xzY  .ĴCE xzY .ĴCE DY  .ĴCE xDY .ĴCE xzDY

FRM OWOM 5.55 1.94 1.84 1.78 1.69 1.78 1.70 1.94 1.78 1.78 
MCAR OWOM 68.49 2.07 1.95 1.89 1.79 1.89 1.79 2.08 1.91 1.91 
MAR2 OWOM 67.42 4.10 3.99 1.91 1.74 1.91 1.74 4.10 1.93 1.93 
MAR3 OWOM 68.11 2.02 1.91 1.89 1.75 1.88 1.75 1.99 1.86 1.86 
MAR4 OWOM 66.88 4.22 4.13 1.91 1.79 1.91 1.79 4.18 1.88 1.88 
MAR5 OWOM 70.32 2.15 2.00 1.93 1.83 1.93 1.83 2.42 2.16 2.16 
MAR6 OWOM 68.93 3.97 3.69 1.97 1.83 1.97 1.84 4.21 2.11 2.12 
FRM OWNM 3.31 1.93 1.79 1.77 1.63 1.77 1.63 1.94 1.79 1.79 

MCAR OWNM 70.78 2.07 1.89 1.88 1.72 1.89 1.72 2.07 1.89 1.89 
MAR2 OWNM 69.79 4.07 3.96 1.86 1.75 1.86 1.75 4.08 1.87 1.87 
MAR3 OWNM 70.22 2.15 1.97 1.96 1.80 1.96 1.80 2.09 1.90 1.91 
MAR4 OWNM 69.22 4.23 4.15 1.98 1.87 1.99 1.87 4.18 1.95 1.95 
MAR5 OWNM 72.40 2.05 1.94 1.87 1.77 1.88 1.78 2.28 2.06 2.07 
MAR6 OWNM 71.30 3.91 3.59 1.91 1.81 1.91 1.81 4.18 2.05 2.06 
FRM TWM 3.43 1.92 1.82 1.74 1.64 1.74 1.64 1.90 1.72 1.72 

MCAR TWM 69.19 2.08 1.93 1.93 1.79 1.92 1.79 2.11 1.95 1.94 
MAR2 TWM 67.92 4.10 4.04 1.88 1.78 1.89 1.78 4.09 1.88 1.89 
MAR3 TWM 68.61 2.14 1.99 1.96 1.82 1.96 1.82 2.14 1.96 1.96 
MAR4 TWM 67.74 4.24 4.16 1.96 1.84 1.96 1.85 4.22 1.93 1.93 
MAR5 TWM 70.57 2.15 2.01 1.98 1.84 1.98 1.84 2.33 2.16 2.16 
MAR6 TWM 69.63 3.91 3.68 1.93 1.79 1.93 1.79 4.16 2.05 2.05 
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Table 4.3: Simulation RB (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under 0.40xy  and in 

the presence of the misclassification problem. 

  

Non-
response 

Mis-
classification F̂WEY  .

ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY  .ĴCE zJY .ĴCE xJY .ĴCE xzJY .ĴCE DY  .ĴCE xDY .ĴCE xzDY

FRM OWOM 6.05 0.95 5.78 0.63 3.84 0.63 3.83 0.10 0.07 0.07 0.16 0.12 0.12 
MCAR OWOM -68.28 0.69 5.61 0.45 3.70 0.46 3.70 -0.10 -0.10 -0.10 -0.12 -0.10 -0.10 
MAR2 OWOM -66.89 5.81 10.44 0.67 3.92 0.67 3.92 4.23 0.09 0.09 4.49 0.13 0.12 
MAR3 OWOM -67.96 0.59 5.43 0.40 3.58 0.41 3.59 0.08 0.03 0.04 0.11 0.08 0.08 
MAR4 OWOM -66.54 5.51 10.10 0.37 3.59 0.38 3.60 4.20 -0.03 -0.03 4.48 0.02 0.02 
MAR5 OWOM -68.77 4.83 9.01 3.20 6.02 3.20 6.02 -0.09 -0.07 -0.07 -0.05 -0.04 -0.04 
MAR6 OWOM -67.45 8.99 12.73 3.02 5.92 3.03 5.92 4.14 -0.09 -0.09 4.51 -0.05 -0.05 
FRM OWNM -2.08 0.43 5.71 0.27 3.75 0.27 3.75 -0.02 -0.05 -0.05 0.01 -0.01 -0.01 

MCAR OWNM -70.64 0.40 5.62 0.26 3.70 0.26 3.70 -0.06 -0.07 -0.07 -0.05 -0.04 -0.04 
MAR2 OWNM -69.59 5.31 10.33 0.25 3.78 0.26 3.79 4.07 -0.08 -0.08 4.34 -0.04 -0.04 
MAR3 OWNM -70.30 0.12 5.28 0.09 3.49 0.09 3.49 -0.07 -0.07 -0.07 -0.04 -0.03 -0.03 
MAR4 OWNM -69.20 5.28 10.18 0.14 3.59 0.14 3.59 4.26 -0.05 -0.05 4.56 -0.01 0.00 
MAR5 OWNM -71.36 4.60 9.08 3.06 6.06 3.06 6.06 0.04 0.03 0.03 0.08 0.06 0.07 
MAR6 OWNM -69.88 8.57 12.53 2.70 5.78 2.71 5.78 4.21 -0.08 -0.08 4.62 -0.01 -0.01 
FRM TWM 3.96 1.34 5.74 0.91 3.80 0.91 3.80 0.07 0.06 0.06 0.14 0.11 0.11 

MCAR TWM -68.91 0.98 5.46 0.63 3.58 0.63 3.58 -0.30 -0.25 -0.25 -0.25 -0.20 -0.21 
MAR2 TWM -67.54 6.16 10.38 0.80 3.77 0.80 3.77 4.16 -0.04 -0.04 4.38 -0.04 -0.04 
MAR3 TWM -68.59 0.87 5.29 0.60 3.51 0.60 3.51 -0.04 -0.03 -0.04 -0.01 0.00 0.00 
MAR4 TWM -67.17 5.99 10.17 0.59 3.54 0.60 3.54 4.30 -0.05 -0.05 4.55 -0.04 -0.03 
MAR5 TWM -69.17 5.19 8.94 3.44 5.94 3.44 5.94 -0.08 -0.09 -0.08 -0.04 -0.02 -0.01 
MAR6 TWM -68.11 9.38 12.73 3.28 5.87 3.29 5.87 4.24 -0.02 -0.02 4.64 0.03 0.03 
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Table 4.4: Simulation RMSE (%) for FWE and JCE estimators of Ŷ , estimated from the GLR model population under 0.40xy  and 

in the presence of the misclassification problem. 

 Non-
response 

Mis-
classification F̂WEY  .

ˆcal
FWE zY .ĴCE zY  .

ˆcal
FWE xY .ĴCE xY  .

ˆcal
FWE xzY  .ĴCE xzY  .ĴCE zJY .ĴCE xJY .ĴCE xzJY .ĴCE DY  .ĴCE xDY .ĴCE xzDY

FRM OWOM 6.58 2.63 6.20 2.30 4.35 2.30 4.35 2.25 2.08 2.08 2.38 2.18 2.17 
MCAR OWOM 68.29 2.61 6.07 2.28 4.25 2.28 4.25 2.34 2.12 2.12 2.44 2.20 2.20 
MAR2 OWOM 66.90 6.38 10.71 2.57 4.56 2.57 4.56 4.93 2.38 2.39 5.17 2.42 2.42 
MAR3 OWOM 67.97 2.72 5.99 2.38 4.23 2.38 4.23 2.47 2.25 2.25 2.54 2.28 2.28 
MAR4 OWOM 66.56 6.06 10.37 2.42 4.23 2.42 4.24 4.85 2.31 2.31 5.11 2.32 2.32 
MAR5 OWOM 68.78 5.48 9.31 3.95 6.39 3.96 6.39 2.67 2.44 2.45 2.76 2.51 2.51 
MAR6 OWOM 67.46 9.34 12.94 3.86 6.32 3.86 6.32 4.94 2.54 2.54 5.31 2.62 2.62 
FRM OWNM 3.15 2.43 6.13 2.19 4.25 2.19 4.25 2.24 2.07 2.07 2.33 2.13 2.13 

MCAR OWNM 70.64 2.52 6.08 2.29 4.27 2.30 4.27 2.37 2.21 2.21 2.43 2.24 2.25 
MAR2 OWNM 69.60 5.90 10.60 2.38 4.39 2.38 4.39 4.74 2.27 2.27 5.01 2.33 2.33 
MAR3 OWNM 70.31 2.59 5.79 2.30 4.09 2.30 4.09 2.43 2.19 2.20 2.47 2.22 2.22 
MAR4 OWNM 69.21 5.90 10.46 2.43 4.26 2.43 4.26 4.92 2.29 2.29 5.22 2.35 2.35 
MAR5 OWNM 71.37 5.28 9.40 3.84 6.44 3.85 6.44 2.75 2.46 2.47 2.83 2.52 2.52 
MAR6 OWNM 69.89 8.94 12.75 3.62 6.20 3.62 6.20 4.96 2.44 2.44 5.34 2.49 2.49 
FRM TWM 4.68 2.75 6.16 2.34 4.31 2.35 4.31 2.24 2.06 2.06 2.30 2.10 2.10 

MCAR TWM 68.92 2.77 5.96 2.39 4.18 2.39 4.18 2.39 2.19 2.19 2.47 2.24 2.24 
MAR2 TWM 67.55 6.66 10.64 2.51 4.37 2.51 4.37 4.82 2.27 2.27 5.06 2.37 2.37 
MAR3 TWM 68.60 2.66 5.80 2.36 4.12 2.36 4.12 2.37 2.20 2.20 2.44 2.24 2.24 
MAR4 TWM 67.19 6.54 10.45 2.50 4.19 2.51 4.20 4.94 2.30 2.30 5.20 2.36 2.36 
MAR5 TWM 69.18 5.76 9.24 4.12 6.30 4.12 6.31 2.58 2.38 2.38 2.67 2.45 2.45 
MAR6 TWM 68.12 9.72 12.95 4.07 6.28 4.07 6.28 4.99 2.44 2.44 5.36 2.50 2.50 
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Appendix 4.1: Proof of Proposition 4.1 

 , ,ˆ 1
c ab ab

ab c ab c
mis k k k k k k k k ks s s

Y d y I m d y I d y          (4.11) 

, ,ˆ
a b ab ab ab

ab c ab c
mis k k k k k k k k k k k k k ks s s s s

Y d y d y m d y I m d y I d y          (4.12) 

Note that        , , ,
|. . .ab c ab c ab c

pq k k p k q p k k kE I E E I         (4.13) 

where  pqE  denote the joint expectation with respect to sampling distribution  p s  and 

misclassification distribution  |misq s s  where miss  is the sample s with misclassification. Where  

k  is a sampling indicator for observation k,  p k kE    which is the sample selection 

probability. Also,  , ,
|

ab c ab c
q p k kE I   is the conditional probability of misclassification from the 

overlapping domains to non-overlapping domains. 

 , ,ˆ
ab ab

ab c ab c
pq mis a b ab pq k k k k k k ks s

E Y Y Y Y E I d y I m d y             (4.14) 

     , ,ˆ ˆ
ab ab

ab c ab c
pq mis pq mis pq k k k k k k ks s

Bias Y E Y Y E I d y I m d y       (4.15) 

  , , , ,1   A B A B
ab ab ab ab

ab c ab c ab c ab c
pq k k k k k k k k k k k ks s s s

E I d y I d y I d y I d y           (4.16)    

  , , , ,1   
ab ab ab ab

pq

ab c ab c ab c ab c
k k k k k k k k k k k k k k k kU U U U

E I d y I d y I d y I d y            (4.17) 

     , , , =
ab ab ab

ab c ab c ab c
pq k k k k p k q p k k k kU U U

E I d y E E I d y y        (4.18) 

  ,ˆ ab c
pq mis abBias Y Y          (4.19) 

where , ,ab c ab c
k   for all k. 
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Appendix 4.2: Proof of Proposition 4.2 

 , ,ˆ 1
ab c c

c ab c ab
mis k k k k k k k k k ks s s

Y m d y I d y I m d y          (4.20)  

 , ,ˆ
a b ab c c

c ab c ab
mis k k k k k k k k k k k k k ks s s s s

Y d y d y m d y I d y I m d y           (4.21) 

   , ,ˆ  =
c c

c ab c ab
pq mis k k k k k k ks s

E Y Y E I m d y I d y        (4.22) 

   , ,ˆ  =
c c

c ab c ab
pq mis k k k k k k ks s

Bias Y E I m d y I d y       (4.23) 

 , , , ,=
a b a b

c ab c ab c ab c ab
pq k k k k k k k k k k k k k ks s s s

E I m d y I m d y I d y I d y        (4.24) 

  , , , ,= 1
a b a b

c ab c ab c ab c ab
pq k k k k k k k k k k k ks s s s

E I d y I d y I d y I d y          (4.25) 

  , ,= 1
a b

c ab c ab
pq k k k k k k k kU U

E I d y I d y           (4.26) 

  , ,= 1
a b

c ab c ab
k kU U

y y            (4.27) 

    ,ˆ  1
a b

c ab
pq mis k kU U

Bias Y y y            (4.28) 

Where  , ,
|

c ab c ab
q p kE I   which is the probability of misclassification from the non-overlapping 

domains to overlapping domains. 
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Appendix 4.3: Proof of Proposition 4.4 

Under the two-way TWM misclassification 

      , , ,ˆ  + 1
ab a b

ab c c ab c ab
pq mis pq k k k k pq k k k k k k k kU U U

Bias Y E I d y E I d y I d y          (4.29) 

   , , ,ˆ = + 1
ab a b

ab c c ab c ab
pq mis k k k k k kU U U

Bias Y y y y           (4.30) 

, , , ,=
ab ab ab ab

ab c ab c ab c ab c
k k k k ab k ab kU U U U

y y Y Y            (4.31) 

 , , ,=
ab ab ab

ab c ab c ab c
ab k k ab ab k ab ab k abU U U

N y N Y N Y N         (4.32) 

 , , ,=
ab ab

ab c ab c ab c
ab k k ab ab k ab ab abU U

N y N Y N N Y         (4.33) 

 , , , , ,=
ab ab ab

ab c ab c ab c ab c ab c
ab k k ab ab ab k k ab ab abU U U

N y N Y Y y N N Y           (4.34) 

  , , ,=
ab

ab c ab c ab c
ab k k ab ab ab abU

N y Y N N Y          (4.35) 

  , ,= ,ab c ab c
ab ab k k abN y Y           (4.36) 

where  

    , , ,,
ab

ab c

ab k k ab

ab c ab c
k k abU

y Ny Y            (4.37) 

where =
ab

ab k abU
Y y N  and , ,=

ab

ab c ab c
k abU

N  . 

Similarly  

  , ,, ,=
a

c ab c ab

a a k k a a

c ab
k kU

N y Yy            (4.38) 
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and  

  , ,, ,
b

c ab c ab

b b k k b b

c ab
k kU

N y Yy             (4.39) 

where  

    , , ,,
a

c ab

a k k a

c ab c ab
k a k aU

y Ny Y            (4.40) 

    , , ,,
b

c ab

b k k b

c ab c ab
k b k bU

y Ny Y            (4.41) 

where =
a

a k aU
Y y N , =

b
b k bU

Y y N , , ,=
a

c ab c ab
a k aU

N   and  , ,=
b

c ab c ab
b k bU

N  . 

    
       

, ,

, , , ,

ˆ ,

1 , ,

ab c ab c

mis ab ab k k ab

c ab c ab c ab c ab

a a k k a a b b k k b b

pq Y N y Y

N y Y N y Y

Bias   

       

  

   
    (4.42) 
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Chapter 5 

Joint Calibration as a Model-based Approach for Dual Frame 

Estimation 

5.1 Introduction 

In chapter 1, the dual frame estimation problem was introduced in the context of the 

probability sampling theory. In chapters 2, 3 and 4, the JCE was introduced as a model-assisted 

design-based approach for dual frame estimation. In this chapter, we will explore the dual frame 

estimation problem in the context of the prediction theory. The correspondence between the 

model-based dual frame estimation and the design-based joint calibration will be explored. A 

preface for the prediction theory is introduced in Section 5.2. The dual frame estimation problem 

is discussed in the context of the prediction theory in Section 5.3. Different model-based 

estimators are derived and compared with the JCE estimators in Section 5.4. A conclusion is 

discussed in Section 5.5. 

5.2 The Prediction Theory 

In this section, we briefly discuss the difference between probability sampling theory and 

prediction theory as a basis for design-based and model-based estimations, respectively. The 

following example shows the difference between the two approaches by presenting the well-

known ratio estimator based on the sampling and prediction theories.  
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Example 5.2.1 

Suppose that we have data collected on two continuous variables y and x in sample s from a 

population U of size N, where y is known only for the sampled cases in s, assume x is known for 

all cases in U, which means that kU
X x  is known. We want to estimate the population total 

of y, kU
Y y  . 

Under the probability sampling theory, selection probabilities  k p k s    are used to 

adjust the sampled cases in s. The estimated total of y can be written as 

1ˆ
k ks

Y y            (5.1) 

where 1
k
  work as the design weight that adjusts for the sampling selection design. This 

estimator in (5.1) is a design-unbiased estimator for the population total Y as follows 

     1 1ˆ
k k k k ks U

E Y E y E I y Y            (5.2) 

where E denotes the expectation with regard to the sampling selection, kI  is a sample selection 

identifier variable which equal 1 for the sampled cases in s and 0 for the non-sampled cases in c 

and  k kE I  . The estimator in (5.1) is the well-known Horvitz-Thompson estimator proposed 

by Horvitz and Thompson (1952). Under simple random sampling design without replacement 

(srswor), the estimator in (5.1) can be written as 

 ˆ
sY Ny           (5.3) 
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where s ks
y y n . 

When population totals N and X are known, under srswor, the well-known ratio estimator 

can be written as 

ˆ
s sY NX y x           (5.4) 

where s ks
x x n  and kU

X x N . 

Under prediction theory, the population total of  y can be written as 

k ks c
Y y y            (5.5) 

where c is a set of the non-sampled cases. In these settings, predicting y for the non-sampled 

cases and consequently predicting kc
y  to estimate Ŷ  is the main idea behind the prediction 

theory (Valliant, Dorfman, & Royall, 2000). This can be performed by modeling the sampled 

cases in s and then the fitted model can be used to predict kc
y  by kc

x . Where the 

estimated total can be written as 

ˆ
ˆ ks

k k k ks c s c
kc

Y y
Y y x y x

x


 
     

  

   
     (5.6) 
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ˆ
ks

kc

Y y

x

 
 
  




 works as an implicit estimator for  . Generally, the Best Linear Unbiased (BLU) 

estimator of Y can be achieved by using the BLU estimator ̂ . Under the ratio model, where the 

expectation and variance of ky  are 

 
  2

k k

k k

E y x

V y x







 
 

            (5.7) 

following the general prediction theorem, the BLU estimator ̂  can be written as 

ˆ
s sy x            (5.8) 

Therefore, substituting   in (5.6) by ̂  in (5.8) results in the well-known ratio estimator as in 

(5.4) 

ˆˆ
k k s ss c

Y y x NX y x           (5.9) 

 In this example we highlighted the fact that the results of both the probability sampling 

theory and the prediction theory may coincide. This happens when the model-based BLU 

estimators reduce to familiar design-based estimators. The same property will be explored in the 

next two sections for the dual frame estimation problem.  

5.3 The Dual Frame Estimation Problem Under The Prediction Theory 

In this section, the dual frame estimation problem will be discussed in the context of the 

prediction theory. Since the dual frame estimation problem is a multiplicity problem resulting 
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from the fact that some cases have more than one chance of being selected in the survey as 

discussed in (Mecatti, 2007), the same problem should have different properties under the 

prediction theory. This is because the prediction theory depends less heavily on the probability 

sampling design and depend more on the relationship between the variables (Valliant, Dorfman, 

& Royall, 2000). Under the prediction theory, the population total of y based on a dual frame 

design from population A BU U U   can be written as 

A B d
k k k ks s s c

Y y y y y             (5.10) 

where d A Bs s s  , a subset of duplicates, and A Bc c c  , Ac  and Bc  are the non-sampled cases 

from frame A and B, respectively. Where 
d

ks
y  is known, the dual frame estimation problem 

is to predict kc
y  after excluding the duplicates, dk s . A weighted version of (5.10) can be 

written as 

d d
k k k k ks s c

Y w y y y            (5.11) 

where A Bs s s  , d
kw  is a weighting variable to account for the duplicates and d

k  is an 

identifier variable for duplicates. d
kw  and d

k  can be defined as 

 
2 1

   and   
1 0

A B A Bd d
k k

A B A B

k s s k s s
w

k s s k s s


    
      

     (5.12) 

Note that d d
k k k k ks s s

w y y y    . This means that as long as the duplicates are identifiable 

and d
k ks

y  can be subtracted from d
k ks

w y , the dual frame estimation problem becomes 
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identical to a single frame estimation problem, where the main interest is to predict kc
y . 

Therefore, where the estimated total Ŷ  can be written as 

ˆ
ˆ ks

k ks c
kc

Y y
Y y x

x

 
   

  

 
       (5.13) 

we need to find an unbiased estimator for the parameter 
ˆ

ˆ ks

kc

Y y

x


 
  
  




, where ̂  works as an 

implicit estimator of the population model parameter  . Where the estimation error can be 

written as 

ˆˆ
i ic c

Y Y x x             (5.14) 

Ŷ  is model-unbiased if   ˆ 0ic
E x      , where the subscript   denotes the expectation 

with respect to the prediction model. With regard to the estimation error variance of an estimator 

Ŷ , it can be derived as  

       2 ˆˆ
i ic c

v Y Y x v v y            (5.15) 

In order to obtain the BLU estimator Ŷ , we need to minimize the error variance in (5.15), which 

requires the BLU estimator ̂ . This means that, under the prediction theory, the dual frame 

estimation problem reduces to a single frame estimation problem and so the general prediction 

theorem applies. 
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5.4 Model-based Dual Frame Estimation Examples 

In this section, different model-based dual frame estimators are derived under different 

population models. These estimators will be compared with the JCE estimators derived in 

Chapter 2. Since all the derivations follow the general prediction theorem for the single frame 

prediction problem, we will not present the derivations. More details on the general prediction 

theorem can be found in (Valliant, Dorfman, & Royall, 2000). 

Example 5.4.1: Common Ratio Model and Ratio Estimator 

Under the ratio model in (5.7), the same results in example 5.2.1 apply under the dual frame 

estimation. The ratio estimator in (5.9) is identical to the JCE which can be written as 

   ˆ
A B A B

JCE k k k ks s s s
Y NX y y x x           (5.16) 

When the probability of sampling duplicates, A Bk s s  , is ignorable. 

Example 5.4.2: Common Mean Model and Expansion Estimator 

Under the common mean model, where the expectation and variance of ky  are 

 
  2

k

k

E y

V y







 
 

            (5.17) 

the BLU estimator ̂  can be written as 

ˆ
sy             (5.18) 
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Therefore, substituting   in (5.13) by ̂  in (5.18) results in the well-known expansion estimator 

ˆˆ
k k ss c

Y y x Ny            (5.19) 

This estimator is identical to the common mean model form of the JCE which can be written as 

   ˆ
A B

JCE k k A Bs s
Y N y y n n          (5.20) 

When the probability of sampling duplicates, A Bk s s  , is ignorable. 

Example 5.4.3: Linear Regression Model and Linear Regression Estimator 

Under the linear regression model, where the expectation and variance of ky  are 

 
  2

 k k

k

E y x

V y




 


  
 

            (5.21) 

the BLU of Ŷ  can be written as the well-known linear egression estimator 

 ˆ
s sY N y b X x             (5.22) 

where     2

k s k s k ss s
b y y x x x x     .  

This estimator is identical to the linear regression model form of the JCE which can be written as 

ˆ A B A B
k k k ks s s s

JCE
A B A B

y y x x
Y N b X

n n n n

   
    

     

   
    (5.23) 
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where 

2

A B A B A B
k k k k k ks s s s s s

k k ks s
A B A B A B

y y x x x x
b y x x

n n n n n n

      
       
          

     
  and 

when the probability of sampling duplicates, A Bk s s  , is ignorable. 

Example 5.4.4: Group Mean Model and Stratified Expansion Estimator 

Under the Group Mean Model, where the expectation and variance of ky  are 

 
  2

 jk j

jk j

E y

V y









 




            (5.24) 

the BLU of Ŷ  can be written as the well-known stratified expansion estimator 

ˆ
jj sJ

Y N y           (5.25) 

where 
js  denotes the sample cell 

jU s  with sample size jn  and 
j j

s j js
y y n . Under the 

ignorable probability of sampling duplicates, A Bk s s  , this estimator in (5.25) is identical to 

the group mean model form of the JCE which can be written as 

   ˆ
Aj Bj

j
JCE k kJ s s

Aj Bj

N
Y y y

n n
 


         (5.26) 

where Ajs  and Bjs  denote the sample cell 
A j AU s  and 

B j BU s  with sample sizes Ajn  and Bjn , 

respectively.  
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5.5  Conclusion 

As discussed in Chapter 1, the overlap between the dual frame design samples results in a 

multiplicity problem, in which the overlap domain ab includes cases that could be selected twice. 

The dual frame estimation tries to adjust for this multiplicity problem in the context of the 

probability sampling theory. Since the prediction theory depends on the relationship between the 

variables, the dual frame estimation problem has different properties under this theory. In this 

chapter, the dual frame estimation problem was explored in the context of the prediction theory, 

in which we found that the dual frame estimation problem is to identify the duplicates and to 

predict the non-sampled cases.  

Similar to the situation for single frame estimation, where the model-based estimators can 

reduce to well-known design-based estimators, we found that the dual frame model-based 

estimators can reduce to forms of the JCE. In fact we found that the dual frame estimation 

problem reduces to a single frame estimation problem and so the general prediction theorem 

applies. This means that the JCE can be reintroduced as a model-based dual frame estimator, 

where the general prediction theorem can help in exploring the properties of the JCE under the 

prediction theory.  
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Chapter 6 

Conclusions and Discussion 

6.1 Summary of Dissertation 

  In this dissertation, the Joint Calibration Estimator (JCE) was proposed as a dual frame 

estimator that closely meets the desirable properties for the dual frame estimators. The properties 

of the JCE were discussed through the dissertation chapters. Chapter 1 specified some desirable 

properties for the dual frame estimators. These properties were discussed for each of the standard 

dual frame estimators. Chapter 1 concluded with the emergent need for a dual frame estimator 

that meets these desirable properties. This estimator should be unbiased or approximately so, 

internally consistent, efficient with low MSE, applicable with standard survey software, robust to 

non-sampling errors and extendable for multiple frame surveys. Also, it should avoid any 

unreasonable data or information requirements and should be robust to non-sampling errors in 

estimator’s requirements.  

  In Chapter 2, the JCE was introduced as an approximately unbiased dual frame estimator. 

A general expression for the bias resulting from JCE was theoretically derived. This derivation 

enhanced our understanding and interpretations of the JCE performance. Now it is clear that the 

performance of the JCE is controlled by the relationship between the study variables and the 

auxiliary variables, where the best performance happens when the auxiliary variables can 
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interpret the variability in the study variables, or at least when the auxiliary variables are strong 

correlates of the study variables. Due to the reduced variance of the calibrated estimates, the JCE 

proved to be an efficient estimator with low MSE. Generally, the efficiency of the JCE depends 

on how well the variability in the study variables is explained by the auxiliary variables. Since 

the joint calibration approach results in only one weighting variable, the JCE is an internally 

consistent estimator that can be applied by standard survey software. Finally, it is straightforward 

to apply the JCE for the multiple frame surveys estimation. 

  In Chapter 3, the properties of JCE for dual frame surveys were explored in the presence 

of the nonresponse error. A general expression for the bias of JCE was theoretically derived; this 

bias is due to the nature of the nonresponse and the joint calibration approach itself, the latter 

was derived in Chapter 2. Empirically, the JCE proved to be robust to the nonresponse error as 

long as a strong set of auxiliary variables is used. This strong set should explain both the 

response mechanism and the main study variables. Generally, the efficiency of the JCE depends 

on how well the response mechanism and the variability in the study variables are explained by 

the auxiliary variables. In the presence of the nonresponse, the JCE can work as both a dual 

frame estimator that combines the dual frame samples and an adjustment method that adjusts for 

the nonresponse error. 

  In Chapter 4, the most unique feature of the JCE was discussed. As opposed to the 

standard dual frame estimators, the JCE does not require domain membership information. Even 

if included in the calibration auxiliary variables, the effect of the randomly misclassified domains 

does not exceed the measurement error effect. Therefore, JCE tends to be robust for the 

misclassified domains if included in the auxiliary variables. In this chapter, we derived the 
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analytic bias resulting in the standard dual frame estimators from domain misclassification. The 

misclassification bias expression indicated that within each domain, both the expected total of 

the study variable for the misclassified cases and the correlation between the misclassification 

probabilities and the study variable are determinants of the misclassification bias. Therefore, 

calibrating the data using the auxiliary variables which are correlated with the study variable and 

the misclassification probabilities could be a promising approach for adjusting the 

misclassification error.  

  In Chapter 5, the properties of the dual frame estimation problem were explored under 

the prediction theory. Since the prediction theory depends on the modeled relationship between 

the variables, the dual frame estimation problem has different properties under the prediction 

theory relative to its properties under the probability sampling theory. In this chapter, we found 

that, under the prediction theory, as long as the duplicates are identifiable, the dual frame 

estimation problem reduces to a single frame estimation problem and the general prediction 

theorem for single frame surveys applies. We also found that the model-based dual frame 

estimators may reduce to the JCE estimators derived in Chapter 2 under the probability sampling 

theory.       

6.2 Future Research and Extensions 

There are several extensions to the JCE estimator proposed in this dissertation. For 

example, in Chapter 2, we derived the JCE for the multiple frame surveys, where the design is 

composed of more than two frames, but we did not compare the performance of the JCE 

estimator and the performance of the other dual frame estimators under the multiple frame 
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surveys. For the optimal dual frame estimators, it is difficult to extend the estimator to the 

multiple frame case. The applicable estimators are extendable but require more domain 

membership information. In general, under dual frame designs, the JCE achieved comparable 

results to the standard dual frame estimators with fewer requirements. Under multiple frame 

designs, the JCE is expected to be a more efficient and practical estimator than the standard 

estimators. 

Another extension is related with the multiplicity information problems discussed in 

Chapter 4. In this chapter, we only discussed the domain misclassification as an example of the 

multiplicity information problems. Other problems such as item nonresponse and unknown 

multiplicity information need to be explored more extensively. Comparisons between the JCE 

and the standard dual frame estimator in the presence of these problems need to be conducted. 

Moreover, real information about the magnitude of problems and practical solutions is needed. 

Although it is an important objective in most surveys, multiple frame estimation for 

domains or subpopulations has never been examined in the literature. The properties of the 

standard dual frame estimators need to be explored for domain estimation. The use of auxiliary 

information in single frame domain estimation is well documented in the literature (Estevao & 

Särndal, 1999, 2004; Hidiroglou & Patak, 2004). Therefore, since it depends on accommodating 

the auxiliary information for dual frame estimation, the joint calibration approach for dual frame 

domain estimation needs to be examined.    

In this dissertation, the JCE was introduced for dual frame estimation. However, in the 

future the JCE could be extended to be a general approach for combining data from multiple 

sources. For example, multiple datasets from different surveys could be combined to provide 



   

   

138 

 

more accurate estimates for study variables that are commonly collected in these surveys. In this 

case, as long as the calibration auxiliary variables are collected in all surveys, JCE can be easily 

applied. Finally, extending the ideas in Chapter 5 is necessary to study the properties of the JCE 

under the prediction theory. 
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