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Grüneisen parameter, 1.55 [80] to 2.0 [137, 155], the results of the Slack

relation are shown with gray-shaded band . . . . . . . . . . . . . . . 159

B.7 Variations of the decomposed, acoustic and optical components of the

lattice thermal conductivity of pristine UO2 crystal with temperature.

The ECMD results use the Yamada empirical potentials [218]. . . . . 160

xx



B.8 Variations of the predicted effective lattice thermal conductivity of

UO2 with temperature, for the porosity and grain-boundary scattering

effects. The results are from NEAIMD and the scattering and porosity

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.9 (a) Atomic structure of UO2 in the (111) plane. Temperature depen-

dence of the effective charge of UO2 atoms in the (b) (001), (c) (101),

and (d) (111) plane. The upper and lower panels are for the pore sur-

face and the bulk, respectively. The effective charge of U and O atoms

at T = 0 K are also shown with the dashed lines. . . . . . . . . . . . 162

B.10 The iso-charge-density difference surfaces of (a) U5+ and (b) U3+ com-

pared to U4+. The cut-off bond lengths of U-O used are 2.33 and 2.29
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ABSTRACT

TUNING STRUCTURE AND THERMAL EVOLUTION OF HIGH-ZT
THERMOELECTRICS USING FIRST PRINCIPLES

by

Hyoungchul Kim

Chair: Massoud Kaviany

In this study, using the first-principles based atomistic simulations, we address

tuning of the atomic structure of thermoelectric (TE) materials manifested through

the roles of phonons and charge carriers in the TE figure-of-merit (ZT ). This com-

putational work suggests new, systematic and extensive methods to analyze such

temperature-dependent phonon scatterings and charge carrier mechanisms mediated

with temperature-evolved lattice vibration. Through a unified and integrated ap-

proach we show that, bulk, homogeneous high-ZT materials take advantage of atomic

displacements through their bond softening, phase change, anharmonicity, thermal

disorder, and phonon red shifting to reduce their lattice thermal conductivity, while

enhancing (or non-deteriorating) their charge transport properties. The TE conver-

sion of intermediate waste heat (600 < T < 900 K) is most practical and we consider

a range of structures (rocksalt-/antifluorite-based chalcogenides, filled/substituted

skutterudites, and icosahedral-based borides) and show how each structure allows for

atomic tuning for improved ZT .

Ab-initio molecular dynamics (AIMD) show the rocksalt structure (PbTe) ex-

xxxv



periences thermal disorder (high-temperatures, off-lattice dislocation due to anhar-

monicity) and this leads to temperature-dependent effective mass and band conver-

gence and suppression or the long-range acoustic phonon transport, resulting in high

ZT . Through ab-initio phase diagram prediction we reveal that point and phase-

boundary scatterings significantly reduce lattice thermal conductivity in filled skut-

terudites (BaxCo4Sb12). With AIMD we show in atomic substitution Co4(Sb,Ge,Te)12

configuring the pnicogen rings lowers lattice thermal conductivity and suggest the

combination of filler and substitution will further reduce lattice thermal conduc-

tivity. With direct non-equilibrium AIMD we predict the anomalous temperature-

independent behaviors of the Seebeck coefficient and lattice thermal conductivity of

the icosahedral-based borides (B13C2). Our statistical entropy analysis supports this

significant vibrational contribution (phonon softening) to the Seebeck coefficient. In

antifluorite-based chalcogenides (β-Cu2Se), the large displacement of the Cu+ ions

in the interstitial sites results in low lattice thermal conductivity, and we suggest

alloying Se with Te for higher ZT .

We compare these first-principles based predictions with the available experiments

and find good agreement. In this study, we have demonstrated the relations, metrics

and tuning of the thermal evolution of the atomic displacements for optimal phonon

and charge carrier TE properties.

xxxvi



Chapter 1

Introduction

Thermoelectricity is direct conversion of heat energy into electrical power (and

vice versa) expected to have a significant impact in power generation from waste heat

and sub-room-temperature cooling. Its efficiency is presented by the thermoelectric

(TE) figure-of-merit (ZT ),

ZT =
α2
SσeT

κe + κL
, (1.1)

where T , αS, σe, κe, and κL are temperature, the Seebeck coefficient, electrical con-

ductivity, and electronic and lattice thermal conductivities. To consider improvement

of ZT , it is divided into the power factor, α2
Sσe, and the thermal transport, κ = κe

+ κL. Simultaneous increase in the power factor and decrease in the total thermal

conductivity is a challenge, since they are highly coupled. So the goal is to increase

ZT even though one of those two may change undesirably.

In this chapter, we discuss the analyses/computations of the TE transport pro-

cesses involving phonon and charge carriers. We also discuss the goal/focus/objective
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of our high-ZT materials search.

1.1 Tuning Atomic Structures for High ZT

In search for high-ZT materials, the bulk, homogeneous compounds have been

receiving increased attention and have shown superior results compared the pure

bulk materials. Nevertheless such compounds still have low TE efficiency (consid-

ering practical usage), thus requiring complex TE-module system for achieving the

best performance possible. So, parallel to the advances in the nanostructured (e.g.,

superlattice, quantum dot, wire and well) TE materials, the bulk compounds using

advances in tuning of atomic motion and displacement have evolved. There have been

recent experimental and theoretical/computational prediction successes in this area.

Atomistic motion/displacement in TE materials allows for tuning properties for

superior ZT . In classical mechanics, the Hamiltonian H(r,p) is a function describing

the energy state of a mechanical system. The total Hamiltonian of a system (N

particle) is

H(r,p) =
3N∑
i=1

p2i
2m

+
N∑
i=1

[φext(ri) +
N∑
i<j

φij(ri − rj)], (1.2)

where r is the position vector, p is the momentum, m is the mass, φext is the external

potential, and φij is the interparticle pair potential. Neglecting the external effects,

the total Hamiltonian is determined by the position, momentum and interactions of

particles. In quantum mechanics, similarly, the Hamiltonian operator of the system
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Atomic Motion/Displacement

ZT = 
2σeT

(κe + κL) 
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Figure 1.1: The TE figure-of-merit and the four transport properties within it (top
panel). Each property is related to the atomic structure, displacement and motion
(lower panel). By proper tuning of these atomic properties, the figure-of-merit is
optimized.
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is the sum of its kinetic and potential energy,

H = − ~2

2m
∇2 + φ(r) and φ = φext + φc + φs, (1.3)

where ~ is the reduced Planck constant, φc is the crystal potential (in harmonic os-

cillator, φc = Γx2/2), and φs is the scattering potentials. As stated in Eqs. (1.2)

and (1.3), the accurate description and prediction of the atomic motion/displacement

is essential. Also these become even more important since the electronic and struc-

tural metrics derived from harmonic and quasi-harmonic approximations have several

limits. These accurate predictions are now possible with the advances in multi-scale

and multi-physics treatments of TE properties. So, using these and example struc-

tures [lead tellurides (Chapter 3), skutterudites (Chapters 4 and 5), boron carbides

(Chapter 6), copper selenides (Chapter 7), and uranium dioxides (Appendix B)], we

investigate the roles of atomic thermal displacement in these high ZT materials.

As shown in Fig. 1.1, enhancement of the TE transport properties, the Seebeck co-

efficient, electrical conductivity, and thermal conductivity, can be achieved by choos-

ing/modifying the various independent and coupled contributions. We approach these

with perspective of the effects of the atomic motions/displacements. Especially, the

electronic metrics (e.g., charge localization, band convergence, and phonon-coupled

effects) of the intrinsically or extrinsically displaced atoms are closely related with

the power factor and electronic thermal conductivity. The structural metrics for

these displacements (e.g., force constants, phase, mass difference, and displacement

parameter) show their dominant roles in the lattice thermal conductivity.

4



This research examines the effects of tuned atomic motions/displacements on the

TE transport, with the aim of gaining understanding and finding the fundamen-

tal solutions for achieving high-ZT . Employing the first-principles based analyses,

we successfully predict the temperature- and constituent-dependent atomic motions.

Detail explanations of each energy carriers are given in the following sections.

1.2 Phonon Roles in TE Properties

In most solids, the acoustic phonons are the dominant heat carriers, while the

optical phonons dominate the scattering of the electrons in semiconductors. So, un-

derstanding and predicting the roles of phonons in TE materials is essential for tuning

their transport properties. From Eq. (1.3), the Hamiltonian of the phonon (p) system

is expressed as

Hp =
∑
r

1

2m
p2(r) +

1

2

∑
r,r′

di(r)Dij(r − r′)dj(r
′), (1.4)

where Dij is the dynamical matrix element, di is the displacement of atom i. As

expected, the phonon properties, including their interactions with other carriers, are

determined by the elemental constituents and their position and movement. Then in

tuning the structural metrics of the high ZT materials, the simplest and most effective

manners of achieving high ZT is the reduction of lattice thermal conductivity.

Figure 1.2 schematically illustrates the various phonon scattering strategies used

in this research to reduce the lattice thermal conductivity. The lattice thermal con-
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ductivity of the bulk, homogeneous TE materials is very sensitive to the temperature.

If the thermal vibration is harmonic, then in a perfect single crystal, at high tem-

peratures the mean-free-path of the phonons is infinite (no interphonon scatterings

occurs). We represent this ideal transport on top of Fig. 1.2, for high temperature (T

≫ TD), as a large constant. Due to anharmonic atomic motions and the interphonon

scatterings (mainly the Umklapp processes; Appendix B and Chapter 3) the real

single-crystal solids show a T−1 temperature dependence at high temperatures. The

scattering by electron-phonon interactions (Chapter 6), grain boundary (Appendix

B), and impurity dominant (∼ T 3) are dominant at low temperature (T ≪ TD). This

is also shown in Fig. 1.2.

The high-temperature behavior is consistent with the Slack relation [98, 105, 185],

κL,S(T ) =
3.1× 104⟨M⟩V 1/3

◦ T 3
D,∞

T ⟨γ2G⟩N2/3
, (1.5)

where ⟨M⟩ is the average atomic weight, N is the number of atoms, V◦ is the average

volume per atom, TD,∞ is the Debye temperature, and ⟨γG⟩ is the average Grüneisen

parameter, over the temperature range considered. The Slack relation successfully de-

scribes the lattice thermal conductivity dominated by the long-range acoustic trans-

port and interphonon scattering, including moderate anharmonicity. However, the

modern TE materials are not limited to these bulk, homogeneous, moderate grain-

boundary and impurities materials. Rather, the new materials have extended to

compounds and alloys, so the accurate considerations of significant other scattering

mechanisms (e.g., high anharmonicity, phase-boundary, large mass fluctuation, and
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large displacement effects) are required. Interestingly these scattering mechanisms

which are accompanied with unique defect (or local) structures, are highly temper-

ature dependent (Fig. 1.2). Previous lack of systematic approach, including the

thermal evolution and disorder, has been one of the shortcomings in the analyses. In

this research, we suggest new, systematic and extensive analysis methods to analyze

such temperature-dependent phonon scatterings based on first principles. In partic-

ular, the high anharmonicity and the large (local or interstitial) atomic displacement

observed at high temperatures, which are significant but unexplored phonon scatter-

ing mechanisms, are considered with appropriate example structures (skutterudites

in Chapters 4 and 5, boron carbides in Chapter 6, and copper selenides in Chapter 7).

With these significant, structure-related scatterings, the long-range acoustic phonon

transport is mostly suppressed, and the lattice thermal conductivity reaches a plateau

(i.e., temperature independent, ∼ T 0), similar to the minimum (amorphous) lattice

thermal conductivity suggested by Cahill and Pohl [33, 34].

1.3 Charge Carriers and Their Roles in TE Prop-

erties

The electronic TE transport properties, the power factor and the electronic ther-

mal conductivity, are governed by the transport/interaction mechanisms of the charge

carriers (electron, hole, and polaron) with phonons, etc. As mentioned in the previous

section, these properties are highly coupled, thus challenging to control them inde-
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pendently (Fig. 1.3 top, right image). From Eq. (1.3), the electronic Hamiltonian He

with the relevant electron (e) and nucleus (n) potential energies, φ = φn−e + φe−e +

φn−n, is given as

He = −
∑
i

~2

2m
∇2 − e2c

4πϵ◦
(
Ne∑
i

Nn∑
I

3I

|RI − ri|
+

Ne∑
i

Ne∑
j<i

1

|ri − rj|
+

Nn∑
I

Nn∑
J<I

zIzJ
|RI −RJ |

,

(1.6)

where R is the position of nuclei and z is the atomic number. As expressed in Eq.

(1.6), these electronic properties are also highly affected by the atomic structure,

motion and displacement. So, the optimization of the structural metrics (e.g., charge

localization, band convergence, and phonon-coupling effects) for achieving high ZT

introduced in relation to phonons in Section 1.2 also induce negative changes in the

electronic properties.

The overall tuning mechanisms for the charge carriers (electron, hole, polaron,

and magnon) considered in this research are illustrated in Fig. 1.3. Each carrier con-

tributes to the electronic TE transport properties and they are highly coupled with the

phonons through the effects of the constituent atoms and the temperature-dependent

atomic displacements.These relations allow for range of possible enhancements to the

TE transport properties through each of the charge carrier. For the electron obeying

the classic band theory, outlined in Fig. 1.3, the prominent tuning processes are the

phonon drag, significant anharmonic lattice vibration (band convergence of lead tel-

lurides in Chapter 3), and phonon softening (boron carbides in Chapter 6). For the

polaron and magnon derived from the hopping and spin theories, phonon-assisted po-

laron hopping and the phonon-mediated spin pumping are possible. In addition, some
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constituent-atom tuning may provide other effects (copper selenides in Chapter 7) in

electronic state of the alloyed or doped TE materials. Although these effects have

been examined in several experiments, no reliable confirmation or accurate prediction

with the first principles has been reported yet. So, these complementary electronic

tuning mechanisms, such as phonon assisted or resonant state, provide for simultane-

ous additional increases in the Seebeck coefficient and electrical conductivity which

are useful for achieving high-ZT TE materials.

1.4 Thesis Objective and Organization

The major objective of this work is to understand/predict/tune the roles of the

phonon and charged carriers in the four TE transport properties in search for high

ZT bulk, homogeneous materials. The thesis is organized in eight chapters and two

appendices as follows.

Chapter 2 introduces various computational methods used throughout this the-

sis. A brief overview/description of the multiple time- and length-scale treatments

provides an integrated understanding for the calculations of the ground-state atomic

structure, the electronic and phonon states, and their interactions and TE transport

properties.

In Chapter 3, the effects of thermal-disordered anharmonicity in solids (here,

PbTe) on phonons and electrons are examined using the density-functional theory

(DFT) (including equilibrium ab-initiomolecular dynamics, EAIMD) and equilibrium

classical molecular dynamics (ECMD). The band convergence phenomenon occurring
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with increased temperature is closely related to the structural thermal evolution (i.e.,

thermal disorder) and the TE properties of the p-doped PbTe. Lack of short-range

order causes local overlap of the valence orbitals and increase in the density-of-states

near the Fermi level. The effective mass becomes temperature dependent peaking in

the converged-band regime. With ECMD and the Green-Kubo formula, the reduction

in the lattice thermal conductivity (suppression of short- and long-range acoustic

phonon transports) is also verified. The described thermal-disorder roles lead to high

ZT , and in good agreement with the experimental results.

Chapter 4 proposes an unique structural ordering of a filler atom leading to mul-

tiphase scattering in the filled skutterudites, one of promising high-performance TE

materials. Using the cluster expansion (CE) and the DFT, the solid-state phase dia-

gram of BaxCo4Sb12 and several stable (ground-state) configurations of Ba ordering

over the intrinsic voids are calculated. Their lattice thermal conductivity is greatly

influenced by the topology of the filler species. The lattice thermal conductivity pre-

dicted using ECMD shows a minimum in the two-phase mixture regime, dominated

by the significantly reduced long-range acoustic phonon transport.

In Chapter 5, substituting pnicogen rings of skutterudite crystals is suggested as

tune and lower lattice thermal conductivity, a cage-breathing scattering. Based on

DFT calculations, the substituted Ge atoms form the softest bonds in the compound

acting as a pseudo-rattler with distinct mode-flattening features and a local phonon

softener (comparable to rattlers in filled skutterudites). The collective modes of this

lattice configuration induce the breathing mode in the cage which is highly correlated

with the reduction in lattice thermal conductivity. The lattice thermal conductivity
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predicted with non-equilibrium ab-initio molecular dynamics (NEAIMD) is in good

agreement with the experimental results and the point-defect scattering model. We

suggest that this new scattering mechanism can be combined with the conventional

rattling mechanism, thus causing further reduction in lattice thermal conductivity in

these hybrid structures.

Chapter 6 examines the anomalous temperature-independent behavior of the See-

beck coefficient and lattice thermal conductivity of B13C2 through the polaron and

phonon evolutions observed using the first-principles calculations. The lattice dy-

namics analysis shows that the unique icosahedron structures dominate the optical

phonon modes and C-B-C intericosahedral bonds dominate the local acoustic vi-

bration. The temperature-induced Jahn-Teller distortion and the electron-phonon

coupling in the icosahedron structures creating the small polarons (i.e., charge trap-

ping and phonon softening) are identified. Using EAIMD and NEAIMD methods

(including entropy and energy analyses), the Seebeck coefficient and its components,

and the lattice thermal conductivity are predicted as a function of temperature and

compared with experiments and good agreements are found. Softened and localized

phonons make significant vibrational contribution to the Seebeck coefficient and allow

for an amorphous-like lattice thermal conductivity.

In Chapter 7, comprehensive computational analyses of the phonon and electronic

properties of the β-Cu2Se and a few similar compounds (e.g., Cu2Te), using the first

principles. The temperature-dependent lattice dynamics show large interstitial dis-

placement of the Cu+ ions and a rather rigid Se framework. These results allows

for significant suppression of the lattice thermal conductivity and weak temperature
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dependence, ∼ T−0.3. We examine the roles of cations and anions such as Cu (or

Ag) and Se (or Te) in the electronic TE properties. Then we suggest that the alloys

of β-Cu2Te and β-Cu2Se are promising high ZT materials, since they have compa-

rable electronic transport properties but reduced lattice thermal conductivity due to

additional phonon scattering (e.g., mass fluctuation).

Chapter 8 summaries the highlights the findings of this study and proposes future

directions for the related research.

Appendix A presents various contributions to the Seebeck coefficient through en-

tropy analysis, phonon-softening, and charge-carrier interactions. The computational

results for boron carbides provide examples of phonon softening effects on the Seebeck

coefficient.

In Appendix B, the roles of various thermal energy carriers (i.e., electron, polaron,

and lattice) in the total thermal conductivity κ= κe + κep + κL of UO2 are treated and

predicted. We show that the role of surface representing pores present in the common

sintered-powder specimen used experiments, is the cause of the polaron formation.

The predicted total thermal conductivity results are compared with the experiments

and good agreement is found. With NEAIMD and ECMD simulations, we show that

the long-range acoustic phonon transport dominates to high temperature (T < 1500

K) and the charge carriers (polarons and intrinsic electrons) contribute to the total

thermal conductivity for T > 1500 K.
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Chapter 2

Computational Methods

2.1 Overview

Understanding the roles of atomic structure and the thermal evolution of phonon

and charge carriers would allow for the tuning of the TE properties for achieving su-

perior TE figure-of-merit. Accurate description of the atomic structure is essential for

predicting the behaviors of these carriers (their states and interaction mechanisms),

and this is still changing and improving. These accurate predictions are now possible

with advances in multiple time and length-scale [ab-initio, classical MD, Boltzmann

(meso), and macro] treatments.

In this chapter, brief overview and description of the computational methods used

in the later chapters are given. Figure 2.1 is a diagrammatic sketch of the overall com-

putations performed in this work on the TE properties research, with a comparison

with the equivalent conventional experiments on TE property characterizations. Each

part will be explained in detail in the following sections.
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Figure 2.1: Diagram of overall calculation methodologies, from structure prediction
to TE transport properties. Comparison between computational physics and experi-
ments of TE research are also shown.
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2.2 Structure Prediction and Electronic States

In order to mathematically describe the atomic configuration of the crystalline

sublattice, the CE method is applied [173]. An occupation variable σi is used for

the configurational variable, which takes a value 1 if the site has an occupant and -1

if it is vacant. The CE is constructed from this description, assuming an on-lattice

Hamiltonian that can be expressed exactly as a series expansion of configurational

basis functions of the form

E(σ) =
∑
{α}

VαΓα(σ), Γα(σ) =
∏
i∈α

σi, (2.1)

where α denotes a cluster of sites (pairs, triplets and so forth, as well as lone sites),

and all possible clusters of the sublattice sites are included in the sum. Γα(σ) rep-

resents the cluster basis function, which partially describes the occupancy state of

the cluster α [173], and the coefficients Vα are the effective cluster interactions (ECI)

that specify the contribution from each cluster. Many of the ECI are equivalent by

crystal symmetry, and the series in Eq. (2.1) can be truncated to reflect the rela-

tively small contribution from clusters comprised of many sites or those describing

long length-scales.

To predict the total energy and the electronic states of (cluster-expanded) crys-

talline solid structures, the DFT, one of the most successful approaches (in both

computing time cost and accuracy) is used. In fact, all matter and its physical

and chemical phenomena are explained with the states and interaction of the nuclei
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and electrons. So, for accurate description and prediction of matter, the quantum-

mechanical methods, i.e., solving the Schrödinger’s wave equations HΨ = EΨ, are

the promising and fundamental (first principles) choice. In the beginning the era of

this method (around 1930’s), only the simple hydrogen-like atoms were dealt under

limited conditions and accuracy. This followed by a long period where the underlying

difficulties made it not possible for researchers to deal with real applications, e.g., the

many-body problems. The breakthrough came with two important theorems (by P.C.

Hohenberg, W. Kohn, L.J. Sham, et al.), the electron density ρ(r) and the energy

functional. The electron density ρ(r) is

ρ(r) =
N∑
i

|ϕi(r)|2, (2.2)

where r is the position vector, ϕ is the electron states (or orbitals). The total (ground-

state) energy E◦ is

E◦ = E[ρ(r)]

= EKE[ρ(r)] + Eext[ρ(r)] + EH[ρ(r)] + EXC[ρ(r)],

= EKE[ρ(r)] + Eeff [ρ(r)],

= − ~2

2m

N∑
i=1

∫
drϕ∗

i (r)∇2ϕi(r) +

∫
drVext(r)ρ(r) +

e2c
2

∫
dr

∫
dr′ρ(r)ρ(r

′)

|r − r′|
+

∫
dr
∂EXC[ρ(r)]

∂ρ(r)
ρ(r), (2.3)

where ec is the electron charge, Vext is the external potential (for a crystalline solid,

the Vext is simplified with the ionic interaction between nuclei and electrons, Vext =
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Vion). To determine the ground-state energy, above total energy functional, Eq. 2.3

should be minimized. At the energy functional minimum, the energy states ϕi are

self-consistent solutions of the Kohn-Sham equations,

[− ~2

2m
∇2 + Vion(r) + VH(r) + VXC(r)]ϕi(r) = εiϕi(r), (2.4)

where εi is the Kohn-Sham eigenvalue associated with electronic state i, VH is the

Hartree potential of electrons, VXC is the exchange-correlation functional. Depending

on the system, one of approximate expressions of the exchange-correlation energy [i.e.,

local (LDA), semi-local (GGA, GGA-PW91, GGA-PBE), semi-nonlocal (meta-GGA),

and hybrid (B3LYP)] can be choused. Nowadays, DFT method is capable of treating

a few thousand atoms with very good accuracy and efficiency. Comparing with the

classical MD, to generate good (empirical) interatomic potential has been always one

of fundamental questions. In the DFT formalism, it do not depend on any external

parameters (except given atomic numbers) although determining or constructing a

good XC functional is important on results.

This DFT calculation is also applied to parameterize the ECI and determine the

truncation of the series. Calculations is performed using the Vienna ab-initio Simu-

lation Package (VASP) [116] within the Perdew-Burke-Ernzerhof (PBE) parameteriza-

tion of the generalized gradient approximation (GGA) for exchange and correlation

[154] and using the projector augmented wave (PAW) method [26, 117]. Truncation of

the CE is performed using a genetic fitting method [88] to optimize the leave-one-out

cross-validation (CV) score. Starting from the predicted ground-states, ensemble av-
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erage quantities can be obtained from Monte Carlo (MC) using the cluster expanded

Hamiltonian. Integration of these quantities permits the determination of the free

energies, which can be used to construct a phase diagram of the configurational order

on the crystalline sublattice.

2.3 Lattice Dynamics and Phonon Properties

As shown in Fig. 2.2, two different methods are used to predict the lattice dynam-

ics and phonon properties. Starting with the ground-state structure confirmed with

the computation (CE-DFT and MC in Section 2.3) or experiments, to model/simulate

phonons in crystalline solids is possible with the empirical potential or DFT. Here,

the DFT-based phonon calculation (i.e., finite displacement method) is focused and

the ECMD (i.e., the Fourier transform of the velocity autocorrelation function) is

used only for the high-temperature predictions.

The total energy of a system E◦ is

E◦ = E[r(ν1, λ1), · · · , r(νn, λN)], (2.5)

where r(ν, λ) is the point of the ν-th atom in the λ-th unit cell and n and N are the

number of atoms in a unit cell and the number of unit cells. The force F and force

constant Γij are

Fi(ν, λ) = − ∂E◦

∂ri(ν, λ)
, (2.6)
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Figure 2.2: Diagram of lattice dynamics and phonon calculation including static and
dynamic approaches. Important equations used in phonon calculation are also shown.

21



and

Γij(ν, λ; ν
′, λ′) =

∂2E◦

∂ri(ν, λ)∂rj(ν ′, λ′)
= −∂Fj(ν

′, λ′)

∂ri(ν, λ)
, (2.7)

where i (or j) is the Cartesian index, ν (or ν ′) is the index of atoms in a unit cell, and

λ (or λ′) is the index of unit cell. In finite displacement method, the force constant

is approximated as

Γij(ν, λ; ν
′, λ′) ≃ −Fj(ν

′, λ′; ∆xi(ν, λ))− Fj(ν
′, λ′)

∆ri(ν, λ)
, (2.8)

where Fj(ν
′, λ′; ∆ri(ν, λ)) is the force on atom with a finite displacement ∆ri(ν, λ)

and usually Fj(ν
′, λ′) = 0. The dynamical matrix is

Dij(ν, ν
′;k) =

1
√
mνmν′

∑
λ′

Γij(ν0; ν
′, λ′)exp{ik · [r(ν ′, λ′)− r(ν0)]}, (2.9)

where m is the atomic mass and k is the wave vector. The equation of motion is

given as ∑
ν′j

Dij(ν, ν
′;k)εj(ν

′;kα) = mν [ω(kα)]
2εi(ν;kα), (2.10)

where ε is the eigenvalue and α is the band index of wave vector k. Applying the

diagonalization of D(k), phonon frequency (ω) is obtained by

[ω(kα)]2δD,αα′ =
∑
νiν′j

εi(ν;kα)
∗Dij(ν, ν

′;k)εj(ν
′;kα). (2.11)

The static (or frozen) lattice dynamics and phonon properties of crystalline struc-

ture is calculated with various DFT calculations implemented in the VASP [116]
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and PHONON [151] codes. The PBE parameterization of the GGA for the exchange-

correlated functional [154] and the PAW method for modeling core electrons [26, 117]

are generally used. All phonon and thermodynamic properties are predicted using

fits of interatomic force constant tensors to the calculated Hellmann-Feynman (HF)

forces. The total energy and HF forces are found starting from the fully-relaxed

configuration, such that initial ionic forces were less than 10−5 eV/Å. Ionic displace-

ments of 0.03 Å of each atom were sampled along all three directions. Diagonalization

of the dynamical matrix yields the phonon dispersion curves, density-of-states (Dp),

and many thermodynamic properties (e.g., atomic displacement, free energy, entropy,

heat capacity, and internal energy) under the harmonic approximation.

The dynamic (or high-temperature) lattice dynamics and phonon properties are

investigated by the atomic trajectories obtained from ECMD or EAIMD. The temperature-

dependent phonon density-of-states are also obtained from EAIMD and the Fourier

transform of the velocity autocorrelation function over enough time (at least 20 ps)

and reasonable time-steps (∼ 1 fs). MD simulations are performed on supercells

prepared with enough atoms and thermally-expanded lattice parameters.

2.4 Coupling Effects of Electron and Phonon

The electron-phonon (e-p) interaction plays a central role in a variety of physical

phenomena, including superconductivity, Peierls instability, and polaronic transport

[105, 124]. The e-p coupling parameter is calculated from the self-consistent change

in the potential of electrons interacting with a phonon mode with norm-conserving
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Figure 2.3: Scattering of a plane electron wave in a crystal demonstrating the electron-
phonon interaction.

pseudopotential and a plane-wave cutoff energy. Fully-relaxed structures are simu-

lated with an electron-momentum mesh and a phonon-momentum mesh grid. The

e-p coupling parameter is calculated from the self-consistent change in the potential

of electrons interacting with a phonon mode [75]. Here the e-p interaction matrix

M i,j,ν
k′
e,ke

is

M i,j,ν
k′
e,ke

= (
~

2mωi,j
ke,k′

e

)1/2⟨ψj
k′
e
| δφν

kp
| ψi

ke
⟩, (2.12)

where δφν
kp

is the phonon perturbation for a particular mode, and ψ is the wavefunc-

tion, ke and k′
e are electron wave vectors with band indices i and j. kp is phonon

wave vectors with the mode number ν. This e-p matrix is a basic quantity giving the

probability of electron scattering from an initial electron state with momentum ke to

a final electron state by a phonon with momentum kp and mode index ν (Figure 3.3).

Once the matrix elements are determined, the corresponding e-p scattering rate γ̇ can

be obtained by using the Fermi’s golden rule [105]. This transition rate is represented

in terms of the interaction matrix M i,j,ν
k′
e,ke

as

γ̇(initial → final) =
2π

~
|⟨ψfinal|He−p|ψinitial⟩2δD(Ef − Ei ∓ ~ων

kp
)

=
2π

~
|M i,j,ν

k′
e,ke

|2δD(Ej
k′
e
− Ei

ke
∓ ~ων

kp
), (2.13)
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where δD is the Dirac-delta function. Here the - and + signs in the delta function with

electron energies correspond to a phonon emission and absorption, respectively. Very

often the energy change of the scattered electron due to the absorption or emission of

a phonon is neglected because the scale of phonon energy is generally much smaller

than that of electron energy.

The Eliashberg spectral function α2F (ω) is defined as the sum over contribution

to the coupling from each phonon mode, [29, 36, 157]

α2F (ω) =
1

De(EF)

∑
ke,k′

e,kp

|M i,j,ν
k′
e,ke

|2δD(Ei
ke
)δD(E

j
k′
e
)δD(ω − ων

kp
), (2.14)

where De(EF) is the density-of-states per atom and spin at the Fermi level (EF).

2.5 TE Transport Properties

The TE energy conversion between heat and electrical power is evaluated by the

conversion efficiency of TE system, ZT [Eq. (1.1)]. Based on the electron and phonon

states of a system (see Fig. 2.1), all TE transport properties are predicted as below.

2.5.1 Electronic transport properties

The Onsager transport relation states that every flux ji of quantity i within a

system is given by the linear combination of each driving forces Fj,

ji =
∑
j

LijFj, (2.15)
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where Lij are the coupling transport coefficients. For the TE system, the electrical

and heat flux are given in terms of the macroscopic gradients (i.e., electric field and

temperature gradient) with coupling tensors. The electronic TE properties such as

αS, σe, and κe, are derived from the Onsager transport relation and the Boltzmann

transport equation (BTE) with energy and temperature-dependent relaxation time

τe(Ee,T ) [3, 23, 89, 105, 106, 152, 156, 162, 206] as follows:

The differential electrical conductivity σd,e,α(Ee) is [148, 176]

σd,e,α(Ee) = e2cτe(Ee)v
2
e,α(Ee)De,α(Ee)(−

∂f ◦
e

∂Ee

), (2.16)

where Ee is the electron energy, τe is the relaxation time, ve,α is the group velocity,

f ◦
e is the Fermi-Dirac equilibrium distribution, and De,α is the electronic density-of-

states. Here ve,α is given by

ve,α = { 2

mi,e,α

γα(Ee)[
dγα(Ee)

dEe

]−2}1/2, (2.17)

and De,α(Ee) is given by

De,α(Ee) =
21/2m

3/2
i,e,α

π2~3
γα(Ee)

1/2[
dγα(Ee)

dEe

], (2.18)

where mi,e,α(T ) is the temperature-dependent density-of-states effective mass at α

point, γL(Ee) = Ee(1 + Ee/∆Ee,g,L) for the non-parabolic bands, while γΣ(Ee) = Ee
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for the parabolic band [3, 23, 87, 156, 206]. The carrier concentration ni is

ni =

∫ ∞

ECBM

De,C(Ee)f
◦
e (Ee)dEe − {

∫ EVBM,L

−∞
De,L(Ee)[1− f ◦

e (Ee)]dEe

+

∫ EVBM,Σ

−∞
De,Σ(Ee)[1− f ◦

e (Ee)]dEe}. (2.19)

The electrical conductivity σe is

σe,α =

∫ ∞

0

σd,e,α(Ee)dEe and σe =
∑
α

σe,α. (2.20)

The Seebeck coefficient αS is

αS,α =
1

ecT
[

∫∞
0
σd,e,α(Ee)(Ee − EF)dEe∫∞

0
σd,e,α(Ee)dEe

] and αS =

∑
α αS,ασα∑

α σα
. (2.21)

The electronic thermal conductivity κe is

κe,α =
1

e2cT
{
∫ ∞

0

σd,e,α(Ee)(Ee − EF)
2dEe −

[
∫∞
0
σd,e,α(Ee)(Ee − EF)dEe]

2∫∞
0
σd,e,α(Ee)dEe

}

and κe =
∑
α

κe,α. (2.22)

In the DFT-based electronic transport calculations, the crystal structure and

eigen-energies obtained from DFT (i.e., VASP of WIEN2k platform) are employed in

the BoltzTraP code. Within the Boltzmann transport theory the temperature- and

doping-level-dependent conductivity σe(T, µe) and the Seebeck coefficient αS(T, µe)
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are given by

σe,αβ(T, µe) =
1

V

∫
σe,αβ(Ee)[−

∂f ◦
e (T,Ee)

∂Ee

]dEe, (2.23)

αS,αβ =
∑
γ

(σ−1
e )αγνe,βγ, (2.24)

with

νe,αβ(T, µe) =
1

ecTV

∫
σe,αβ(Ee)(Ee − µe)[−

∂f ◦
e (T,Ee)

∂Ee

]dEe, (2.25)

where µe is the chemical potential. The energy projected conductivity tensor is

σe,αβ(Ee) =
1

N

∑
i,k

e2cτe,i,kve,α(i,k)ve,β(i,k)
δ(Ee − Ee,i,k)

dEe

, (2.26)

where i is the band index, N is a normalization depending on the number of k-points

sampled in the Brillouin zone, and ve,α(i,k) is the i component of band velocity

∇kEe(k).

2.5.2 Lattice thermal conductivity

The ECMD with Green-Kubo formula are one of the well-known techniques to

predict lattice thermal conductivity. In general, ECMD presents the behavior of a

group of atoms by solving Newton’s 2nd law of motion for the atoms with a given set

of empirical potentials. With the derivation from M.S. Green [83] and R. Kubo [118],

a formalism that linear transport coefficients are related to the time dependence of

equilibrium fluctuations in the conjugate flux [134], lattice thermal conductivity is

given with the heat current autocorrelation function (HCACF) decay [99, 105, 111,
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133, 134], i.e.,

κL =
V

kBT 2

∫ ∞

0

⟨q(t) · q(0)⟩
3

dt, (2.27)

where t is time, and ⟨q(t) · q(0)⟩ is the HCACF. The heat current vector (q) is given

by

q =
1

V

d

dt

∑
i

Eiri =
1

V
[
∑
i

Eiui +
1

2

∑
i,j

(Fij · ui)rij], (2.28)

where Ei, ri, and ui are the energy, position, and velocity vectors of particle i, and

rij, and Fij are the interparticle separation and force vectors between particle i and

j. The resultant HCACFs were then directly integrated and the κL was set as the

average value in the stable regime of the integral.

Non-equilibrium (or direct) method is another computational technique to predict

lattice thermal conductivity. Here, it is derived from the law of heat conduction (i.e.,

Fourier’s law), the time rate of heat transfer is proportional to the negative gradient

in the temperature and to the area [105, 106]. The lattice thermal conductivity using

NEAIMD is computed as the ratio of an applied heat flux to the resulting temperature

gradient [190, 207],

κL = −[Q(t)/A](dT/dx)−1, (2.29)

where the overbar designate the time average, Q(t) is the heat flux, and A is the cross-

sectional area of a simulation cell. As shown in Fig. 2.4, the heat flux is imposed

by dividing the simulation cell into sections of equal width, and exchanging kinetic

energy between hot and cold sections. The temperature gradient along the x axis is

computed from the mean temperature of adjacent sections. For simulations we use the
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VASP code modified to perform NEAIMD-energy exchange [103, 142] as reported in

[190, 207]. Because the exchange of kinetic energy results in non-Newtonian dynamics

in the hot and cold sections, only the linear portion of the temperature gradient is

considered in calculating the lattice thermal conductivity.

2.6 Summary

Computational approaches offer a range of complementary insights. We have

developed systematic and balanced (accuracy and computation-time cost) computa-

tional methods for predicting the ground-state structure, and the electron and phonon

properties. In TE (coupled carrier transport and multicomponent systems), compu-

tational methods are contributing more than ever to the development of new, superior

TE materials and their applications.
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Chapter 3

Roles of Thermal Disorder in Lead

Tellurides

3.1 Introduction

Thermoelectricity allows for direct conversion of heat into electrical power with

significant potential for power generation. Lead telluride (PbTe), a chalcogenide with

simple rocksalt structure (space group Fm3̄m, see Fig. 3.1), is a well-known mid-

temperature TE material for power generation [145, 152, 186]. Its recent studies as

a high-ZT material has shown (i) resonant-state enhancement of the Seebeck effect

[2, 92], (ii) reduced thermal conductivity using embedded nanostructures [24, 76, 89],

and (iii) band convergence by dopant tuning [152, 153]. In addition, there have been

experimental and theoretical studies of its anharmonic lattice dynamics (ferroelectric

instability) [31, 48, 223], however, this has not been related to its electronic band

convergence and TE properties. In this chapter, we examine the thermal disorder
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Figure 3.1: The crystal structure of PbTe. (a) Conventional cell of PbTe showing
simple cubic structure. (b) The first Brillouin zone for the primitive cell of PbTe and
its high symmetry k-points.

caused PbTe electronic band convergence, using first-principles calculations (including

EAIMD) and investigate the roles of disorder and convergence in the charge- and

phonon-related TE properties.

PbTe has octahedral coordination (rocksalt structure, see Fig. 3.1) and its lattice

dynamics manifests high degree of anharmonicity [31, 140, 145, 223]. This reduces the

phonon conductivity [48, 140]. In the thermal-disordered structure of Pb compounds,

the Pb atoms are moved further off-centered compared to the chalcogen atoms, with

the following trend among dislocation of compounds: PbS < PbSe < PbTe. Based on

these, the origin of low thermal conductivity of PbTe has been explained [48, 140, 223].

The abnormal temperature-dependent bandgap energy (i.e., increase with increase in

temperature) has also been explained by lattice dynamics using the Debye-Waller

factor calculations (larger Pb displacements compared to Te) [108]. In comparison,

studies of band convergence in PbTe are very limited. Although the existence of a

second valence band edge was first proposed by Allgaier [6] based on the temperature
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dependence of the Hall effect, no exact physical explanation or direct evidence of the

band convergence of PbTe has yet been reported [182]. However, recent studies of

band convergence and its analytic model have pointed to improved TE properties in

PbTe [24, 153]. A three-band model accounts for the non-parabolicity and anisotropy

of the conduction-band and the valence-band at L <111> points using the Kane

model, while using the parabolic and isotropic behavior for the secondary valence-

band along the Σ <110> direction [8, 87, 153, 162, 206].

3.2 Calculation Methods

3.2.1 Thermal-disordered structures from EAIMD

We investigate the high-temperature behavior of PbTe structure by obtaining the

thermal-disordered structure of PbTe using EAIMD with the VASP code [116], i.e., we

find with increase in temperature anharmonic lattice vibration distort crystal sym-

metry and in turn the electrons respond to the displaced ionic positions. Using the

Born-Oppenheimer approximation, the atomic positions and velocities are updated

with the Verlet algorithm. The forces on ions at each configuration are used to update

the ionic positions at an elapsed time step and we iterate to calculate the trajectory of

the system. The EAIMD simulations are performed on supercells consisting 54-atoms

(3×3×3 primitive cells) and 64-atoms (2×2×2 conventional cells) along with and the

PAW-based DFT (also used for the static calculations) [26]. Considering thermal ex-

pansion with temperature changes, we prepare the PbTe supercells with experimental
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Figure 3.2: Time-dependent radial distribution function evolutions of PbTe supercell
at T = 700 K. Each snapshot is average of 64 displaced coordinates obtained from (a)
initial, and (b) a well-converged EAIMD step. Average radial distribution functions
of all snapshots (2nd step, 0 to 11 ps) are also shown.

results for thermally-expanded lattice parameter, a(T ) = 6.422 + (0.9546×10−4)T +

(2.615×10−8)T 2 for 293 to 973 K [205]. The proper cell volume at each tempera-

ture is locked during EAIMD calculations. The Brillouin zone is sampled at only the

gamma point. We carry out constant-temperature simulations using Nosé thermo-

stat for 6 ps (0.2 fs time steps). After reaching equilibrium using a NV T ensemble,

another calculation is performed for 11 ps (1 fs time steps), and we find good energy

convergence and temperature stability. During EAIMD calculations, the Fermi-Dirac

smearing factor (kBT , where kB is the Boltzmann constant) for each temperature

was also applied to ensure reliable thermal-disordered atomic coordinates. Finally,

all temperature-dependent atomic coordinates are obtained from EAIMD snapshots

at each temperature.

To verify the snapshots are represent stable structures and motion, we addressed
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the statistical uncertainty. As noted above, two step approach is used to find a stable

snapshot. As shown in Fig. 3.2, we find our second step simulations are fully relaxed

and it provides energy-converged structures with low statistical uncertainty. Every

snapshot is average of 64 displaced coordinates of PbTe and is used in the calculations

of the transport properties. (The error bars of the atomic displacement of each atom

will be shown in Fig. 3.3, indicate the statistical uncertainty.) These verification

processes are used to ensure shots are indeed representative.

3.2.2 Electronic structures and transport properties

Our electronic calculations employs the full-potential linearized augmented plane-

wave method [183] as implemented in the WIEN2k code [25]. We calculate all TE

transport properties of thermal-disordered p-type PbTe using WIEN2k and BoltzTraP

[127] codes, and a ECMD code written for this problem. All PbTe transport prop-

erties are calculated from the common DFT band energies (0 K). However, those

DFT band energies obtained from thermally-disordered structure (EAIMD snap-

shots at each temperature) and the Fermi-Dirac smearing factors are also used in

the transport-property calculations. We expect/show these two temperature effects

(atomic configurations and smearing) are sufficient to illustrate the abnormal changes

of PbTe properties with temperature. The muffin-tin radii are chosen to be 2.5 a.u.

for all atoms. The plane-wave cutoff Rkmax = 7.0 suffices for good convergence. Due

to the large atomic masses (Pb and Te), spin-orbit interaction is included for the

relativistic effects. Convergence of the self-consistent calculation cycle is performed
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using 2769 (for frozen structure) and 36 (for high-temperature structure) k-points

inside the reduced Brillouin zone to within 0.0001 Ry with a cut-off of -6.0 Ry be-

tween the valence and the core states. Since TE transport properties are sensitive to

band structures near the Fermi surface, we use the Engel-Vosko generalized gradient

approximation to avoid the underestimation of bandgap energy (a well-known prob-

lem with DFT calculations) [67]. The spin-orbit interaction is also included for the

relativistic effects. In the transport calculations, the original k-mesh is interpolated

onto a mesh five times as dense and the eigenenergies are found with BoltzTraP code.

Within the Boltzmann transport theory the temperature- and doping-level-dependent

conductivity σe(T, µe) and the Seebeck coefficient αS(T, µe) are given in Section 2.5.1

[see Eqs. (2.23), (2.24), (2.25), and (2.26)].

3.2.3 ECMD and lattice thermal conductivity calculations

Previous lattice thermal conductivity results of PbTe using classic MD [42, 159]

are limited and require special attention due to the strong anharmonic coupling ef-

fects [48]. Using atomic substitutions [42] and various vacancy configurations [159],

reduced lattice thermal conductivity of PbTe has been predicted using classical MD.

In order to consider the anharmonic behaviors of PbTe structures, we use the thermal-

disordered configurations (from EAIMD) and the potential models appropriate for the

covalent and rigid-ionic bonds. For these bonds, we use the Morse and the three-cosine

interatomic potentials with effective ionic charges [223], parameterized for two-body
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Table 3.1: The Morse and the three cosine interatomic potential parameters for PbTe.
The effective atomic charges of Pb and Te are 0.72 and -0.72 [223], respectively.

Two-body φ◦ (eV) a (1/Å) r◦ (Å) Three-body φθ (eV) θ◦ (◦)
Pb-Te 0.465 0.863 3.68 Te-Pb-Te 0.680 90.0
Te-Te 0.394 1.51 4.22

(Pb-Te and Te-Te) and three-body (Te-Pb-Te) interactions, i.e.,

φ(rij) = φ◦{[1− exp(−a(rij − r◦))]
2 − 1}, (3.1)

φ(θijk) = (1/2)φθ(cos θijk − cos θ◦)
2, (3.2)

where φ◦, rij, and θ are the dissociation energy, interatomic separation distance, and

bond angle. The parameters φ◦, rij, and θ are determined by fitting to both the

ab-initio calculated total energy and the experimental elastic constants. Utilizing

a multi-variable fitting procedure in the GULP code [72], we obtain the parameters

listed in Table 3.1. The fitted pair potential undergo GULP optimization of the crystal

structure under constant pressure. All related thermo-mechanical properties (e.g.,

elastic constants, bulk modulus, shear modulus, the Grüneisen parameter, and ther-

mal expansion coefficient) are listed in Table 3.2 and compared with the reported

experiments with good agreements.

The ECMD with the Green-Kubo formalism is used for the prediction of lattice

thermal conductivity κL. It is expressed with HCACF decay equation and heat

current vector [99, 105, 111, 133, 134], Eqs. (2.27) and (2.28). Details are given

in Section 2.5.2. After checking the size effect of ECMD, average are found over

all three directions for a system consisting of 8×8×8 conventional unit cells (4096
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Table 3.2: Comparison of bulk mechanical properties found from the interatomic po-
tentials with those from experiments. Cij, B, G, γG, and α are elastic constants, bulk
modulus, shear modulus, Grüneisen parameter, and thermal expansion coefficient.

C11 (GPa) C12 (GPa) B (GPa) G (GPa) γG α (10−5/K)
Reference [96] 128.1 4.4 - - - -
Reference [57] 105.3 7.0 39.8 21.4 - -
Reference [5] 108.0 7.7 41.1 - - -
Reference [208] - - - - 1.45 -
Reference [60] - - - - - 1.8
This work 108.0 7.5 41.0 21.0 1.66 1.78

atoms). The Verlet leapfrog algorithm with the Nosé-Hoover thermostat and the

Berendsen barostat are used in NpT ensemble for 200 ps and then in NV E for 100

ps to reach the equilibrium. Then 3000 ps raw data are obtained for the calculation

of heat current vector. The resultant HCACFs are then directly integrated and the

κL is set as the average value in the stable regime of the integral.

3.2.4 Analytic models for TE properties

The TE properties are obtained using the Onsager TE coupling and the Boltz-

mann transport equation (BTE) with relaxation time approximation (RTA). [3, 23,

89, 152, 156, 162, 206]. Detail derivations and descriptions about all electronic TE

properties are presented in Section 2.5.1. Here ∆Ee,g,α is the bandgap energy at α

point. The carrier mobility depends on τe(Ee) and effective mass mi,e,α which are

also temperature dependent. The τe(Ee) is phonon dominated (three mechanisms).

The EAIMD calculated mi,e,α(T ) for all bands are used in Eqs. (2.17) and (2.18).

Including the lattice thermal conductivity from ECMD, then ZT is obtained from

Eq. (1.1).
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Figure 3.3: Calculated radial distribution functions of PbTe supercell obtained from
(a) EAIMD, and (b) ECMD.

3.3 Results and Discussion

3.3.1 Lattice dynamics of thermal-disordered structures

Using EAIMD and ECMD simulations, we verified the abnormal anharmonic lat-

tice dynamics of PbTe over the temperature range. The lattice coordinates of each

atom for each time step is collected, and the results are averaged to obtain overall

radial distribution function (RDF), as shown in Fig. 3.3. Our simulations successfully

reproduce all related lattice dynamics results [31, 223], peak broadening with rising

temperature and non-Gaussian asymmetry.

Figure 3.3 shows the RMS atomic off-centering (compared to 0 K) of the ions as

a function of temperature. Under the Debye harmonic approximation for isotropic
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lattice, the RMS displacement ∆ is [105]

∆ ≡ ⟨[(dj − d◦) · sj]2⟩1/2 = { 3~
mωD

[
1

4
+ (

T

TD
)2
∫ TD/T

0

xdx

ex − 1
]}1/2, (3.3)

where dj and d◦ are the displacement vectors of the atom j and the central atom, sj

is the equilibrium position unit vector of the atom j, TD is the Debye temperature,

and ωD is the Debye frequency (= kBTD/~). The Debye model is more realistic model

than the Einstein model, all atoms vibrate as harmonic oscillator with one frequency.

The Debye model also assumes the atoms vibrate as harmonic oscillators, but now

with a distribution of frequencies which is proportional to ω2 and extends to the De-

bye frequency ωD. So, we can compare the difference between the Debye model and

our EAIMD predictions in terms of the anharmonicity. The results for this relation
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are also shown in Fig. 3.4 and the contrast (shown with vertical arrows) demon-

strates the anharmonic effect predicted by EAIMD. Among the symmetry-equivalent

displaced sites, the amplitude of the Pb displacement is larger than that of Te atoms.

This result is highly consistent with the Debye-Waller factor calculation [108], i.e.,

abnormal bandgap energy increase with temperature. In addition to that, two well-

known physical properties related to solid anharmonicity, the Grüneisen parameter

and thermal expansion coefficient, are also listed in Table 3.2. The calculated results

are in good agreement with the reported values in the literatures [60, 208] and show

the extent of anharmonicity. The vibration-mode frequencies of Pb and Te are no-

ticeably different, i.e., the Te ions constitute the optical frequency peak (f◦,Te ∼ 2.3

THz), while the Pb ions dominate in the acoustic regime (f◦,Pb ∼ 1.5 THz). These

features cannot be explained with the harmonic or quasi-harmonic models for the

lattice dynamics.

3.3.2 Temperature-dependent electronic structures

From the orbital model perspective, the thermal disorder causes local orbital over-

lapping. Figures 3.5(a) to (d) show the equilibrium atomic positions at 0, 300, 700,

and 1100 K along with their charge density distribution. In the presence of thermal

disorder, the orbital overlaps increase significantly with temperature. At high tem-

perature, local charge densities are distorted and the valence band distributions are

altered.

Also, the distorted De (total and partial) plots are shown in Fig. 3.6. At high
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Figure 3.5: The charge densities and atomic positions of PbTe, for (a) T = 0, (b) 300,
(c) 700, and (d) 1100 K. A slice (101) illustrates the electron-density distribution (a
distance from origin of 16.8 Å). The charge density contours are for 0 (blue) to 0.289

(red) eÅ
−3
.

temperatures the vibration amplitudes are substantial and modify the screening prop-

erties of the electron density [49]. The De for the structures at 300 and 700 K are

compared with the frozen structure in Fig. 3.6(a). The static De(T = 0 K) is not

populated at the top of the valence bands, indicating the light hole at L-point, a non-

parabolic Kane distribution at the valence edge. The onset of appearance of much

larger hole effective mass starting at ∼ -0.2 eV below the edge, is manifestation of a

resonance near -0.25 eV. It results from the heavy hole in the Σ-direction [182]. At

0 K, this strongly increases De(T ) below -0.2 eV and is the reason for the unusual

doping and temperature dependence of the TE power factor [182]. Compared to De(T
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= 0 K), the thermal disorder of PbTe structure makes for unique modifications in the

De(T ), as shown in Fig. 3.6(a). The EAIMD results for De(T ) show the band conver-

gence of the heavy and light holes at high temperatures. First, there is a transition

from the non-parabolic (low T ) to parabolic (high T ) De(T ) in a principal valence

band. Second, comparing 0 and 700 K, the sharp De(T ) peak (near -0.2 eV, 0 K)

splits into two peaks (near -0.12 and -0.4 eV, 700 K). These are highly related with

the band convergence at high temperatures. The projected De plots [Fig. 3.6(b)] for

T = 0, 300, and 700 K indicate the orbital contributions to valence band change with

temperature. Also they demonstrate that the local orbital overlaps and the valence

band distortion become significant with increased temperature. For T = 0 K, the

Te 5p orbital dominate contribution to the first and second valence bands of PbTe.

Contributions from Pb (6s) and Te (4d and 5p) to the formation of valence band

are found at high temperatures, while contribution from Te 5p slightly diminishes.

As a result, the thermal disorder and the corresponding increase in the local orbital

overlaps (i.e., contribution from Pb 6s, Te 4d, and Te 5p orbitals at T = 700 K) alter

the distribution of the valence bands of PbTe at high temperatures.

Thermal-disorder bond anharmonicity leads to the phonon-phonon Umklapp and

normal scatterings and reduction of phonon conductivity at high temperatures [48,

49, 140]. In such rocksalt group IV-VI semiconductors, the outer s electrons and part

of the p electrons are non-bonding and are expected to form a shell of relatively large

radius [140]. This is the well-known reason for the high anharmonicity of the bonds

in these materials and the ultimate cause of their low lattice thermal conductivity

[48, 49, 140]. Further results on thermal-disorder lattice thermal conductivity (using
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Table 3.3: The calculated longitudinal and transverse components of the effective
electron (or hole) masses (divided by me) at the L- and Σ-points, as a function of
temperature.

T (K) Longitudinal Transverse
|me,e,L,l| |mh,e,L,l| |mh,e,Σ,l| |me,e,L,t| |mh,e,L,t| |mh,e,Σ,t|

300 0.141 0.167 1.66 0.0438 0.0563 0.243
400 0.102 0.161 1.75 0.0459 0.0704 0.168
500 0.208 0.134 2.50 0.0420 0.0592 0.198
600 0.204 0.186 2.12 0.0521 0.0876 0.162
700 0.196 0.231 1.25 0.0495 0.113 0.198
800 0.185 0.441 0.96 0.0651 0.122 0.219

ECMD) will be given in later paragraphs.

The calculation of the band structures (Fig. 3.7) and bandgap energies (Fig.

3.8) as a function of temperature are important in explaining the band convergence.

The calculated band structures of PbTe supercell provide a clear evidence for band

convergence at high temperature (above 450 K), the secondary valence band in the

Σ-direction is overcome by the first valence band of L-point and PbTe becomes an

indirect bandgap. From the band structures and the electronic density-of-states,

we have also verified the bandgap energy changes with temperature (Fig. 3.8). The

temperature dependence of the bandgap energy ∆Ee,g for PbTe is modeled [3] as ∆Ee,g

= 0.19 + (0.42×10−3)T for T ≤ 400 K and ∆Ee,g = 0.358 eV for T > 400 K, in good

agreement with experimental results [196]. Noting that the general underestimation of

the bandgap energy in DFT calculation, the calculated results have a similar behavior

as the experiment.

Such thermal disorder electronic band alterations are quantified by temperature-

dependent mi,e,α(T ). Some previous analyses treated this as constant value m◦
i,e,α, or

semi-temperature dependent mi,e,α(T ) = mi,e,α(0)[∆Ee,g,α(T )/∆Ee,g,α(0)] [87, 89, 92,
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Figure 3.7: Calculated band structures of PbTe supercell (3×3×3 primitive cells) at
(a) T = 0, (b) 300, (c) 700, and (d) 1100 K.
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145, 153, 206]. Using the DFT band structure of the thermal-disordered PbTe, we

calculate the effective masses for each band in at Brillouin zone points and direction

(fitted to parabolic model) as a function of temperature. The band effective mass

(mi,e,α)b is 1/(mi,e,α)b = (1/~2)[∂2Ee(k)/∂k
2]α (i = h or e and α is location in Brillouin

zone) [105, 153]. This can be written in the tensor form as

M−1
ij =

1

~2
∂2Ee(k)

∂ki∂kj

and me,e = [det|Mij|]1/3. (3.4)

With the assumed parabolic Ee-k relationship at band extrema, the parabolic Ee can

be generalized to

Ee = Ee,◦ + Ax(kx − k◦,x)
2 + Ay(ky − k◦,y)

2 + Az(kz − k◦,z)
2, (3.5)

where coefficient Ai is constant and (k◦,x, k◦,y, k◦,z) is the coordinate of band min-
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ima/maxima. Assuming isotropic dispersion at specific point, the effective mass ten-

sor has equal diagonal tensor elements me,e,xx = me,e,yy = me,e,zz (off-diagonal ele-

ments are zero m−1
e,e,ij = 2Aiδij) and all Ai’s are equal. Thus the effective mass tensor

reduces to me,e = 1/2Ai. In order to maintain such scalar calculation, each compo-

nents, longitudinal and transverse, of effective mass is calculated independently. The

electron/hole pockets of PbTe can be characterized by a longitudinal mass (mi,e,l)

along the corresponding direction and two transverse masses (mi,e,t) in the plane per-

pendicular to the longitudinal direction (with above parabolic-isotropic assumption).

The value for each direction is quite different (i.e., longitudinal components are al-

ways larger than transverse) and this holds for the temperature range. This is in

good agreement with a well-known feature of PbTe. The calculated effective mass
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components are shown in Table 3.3. The density-of-states effective mass mi,e,α =

N
2/3
i,α (mi,e,α)b = N

2/3
i,α (mi,e,α,lm

2
i,e,α,t)

1/3
b , where Ni,α is orbital degeneracy of each valley

(Ne,L = Nh,L = 4 and Nh,Σ = 12 [87, 145, 153]). The results for the electron and hole

mi,e,α, as a function of temperature, are shown in Fig. 3.9. Note that the electron/hole

effective mass at T = 0 K and band locations L- and Σ-points are me,e,L = 0.130me,

mh,e,L = 0.225me, and mh,e,Σ = 1.51me. These are very close to those reported in [8].

Below 450 K, labeled as the ”single-band regime”, the L-point dominates and it is a

light hole band. For 450 < T < 800 K, labeled as the ”converged-band regime”, the

heavy hole of Σ-point band become curved (be lighter) and matches with the light

hole L-point band. Simultaneously, the promotion of the holes from the light to heavy

valence bands increases mh,e,Σ in the converged regime. Thus the two bands converge

and play a central role as the combined first valence band (light and heavy hole). So,

the resultant effective mass increases and peaks around 500 K. These clearly show

the band convergence effect in 450 < T < 800 K.

3.3.3 TE transport properties with thermal-disordered struc-

tures

As described in the methods (Section 3.2), the transport calculations are done us-

ing the Boltzmann transport equations with energy-dependent relaxation time τe(Ee).

Although τe(Ee) can be determined from the wave function and the perturbation

potential obtained from the first-principle calculations, this is very challenging. Here
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Figure 3.10: Calculated energy-dependent electron-phonon relaxation times, for 300
and 700 K. The subscripts A, OD, and OP refer to acoustic, optical with deformation
potential couplings, and optical with polar coupling.

instead we use the relaxation time models [23, 89, 140, 156, 206, 216] with three

dominant electron scattering mechanisms [156, 216], namely, i) acoustic (A), ii) op-

tical with deformation potential couplings (OD), and iii) optical phonons with polar

coupling (OP). The total τe(Ee), using the Matthiessen rule, is

1

τe(Ee)
=
∑
i=1−3

1

τe−p,i(Ee)
, i = A,OD, or OP. (3.6)

The models and their parameters are given in [23, 89, 140, 156, 206, 216]. Figure

3.10 shows the calculated energy-dependent relaxation times as a function of electron

energy, for T = 300 and 700 K. At low Ee (practical doping), the electron-optical

phonons scattering with polar coupling is dominant.

The calculated transport properties are illustrated in Figs. 3.11(a) to (c), namely

αS, σe, and κ = κe + κL (κe is calculated with BoltzTraP), as a function of tem-
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Figure 3.11: Predicted TE properties of PbTe, and comparison with experiments
[152]. (a) Temperature dependence of the Seebeck coefficient, (b) electrical conduc-
tivity, and (c) total thermal conductivity, for three different carrier concentrations
np. (d) Temperature variations of lattice thermal conductivity and its short- and
long-range acoustic and optical components. Cut-off frequency of 1.5 THz is used
[99, 105, 111]. The amorphous-phase minimum lattice thermal conductivity is also
shown.

perature, for three different hole concentrations np (the Fermi energy). The available

experimental results [152] are also shown. The Hall factor rH and the Hall coefficient

RH, np = rH/ecRH, are used in the calculations of np [87, 153, 206], i.e.,

rH,α =

∫∞
0
(− ∂f◦

e

∂Ee
)γα(Ee)

3/2dEe

∫∞
0
(− ∂f◦

e

∂Ee
)τe(Ee)

2γα(Ee)
3/2[dγα(Ee)

dEe
]−2dEe

{
∫∞
0
(− ∂f◦

e

∂Ee
)τe(Ee)γα(Ee)3/2[

dγα(Ee)
dEe

]−1dEe}2
. (3.7)

The trends in the temperature dependence of the TE properties are highly correlated

with the thermal-disorder behavior of PbTe. The Seebeck coefficient reaches a plateau
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after 500 K because the parabolic Σ-band is dominant above this temperature. For

more complete calculation, the Seebeck coefficient can be expressed as the sum of

αS,presence and αS,transport [64]. Here αS,presence is the sum of contributions to the carrier-

induced entropy change, i.e., αS,presence = αS,mix + αS,spin + αS,vibration, where the right

hand side terms are change of the entropy-of-mixing, spin entropy, and vibrational

entropy upon adding a charge carrier, respectively. The other contribution αS,transport

is equal to the net energy transferred in moving a carrier divided by qeT , where qe

is the carrier charge. In this study, we approximate that αS,mix is the dominant and

the only contribution, since αS,spin, αS,vibration, and αS,transport are estimated to be

negligible. These are justified due to (i) not including the magnetic properties, (ii)

negligible vibrational contribution, and (iii) no significant change in the mechanism

of charge transport over entire temperature range (300 to 800 K). The reduction in

the electrical conductivity and the decrease in the total thermal conductivity also

result from the thermal disorder and the effective mass changes. The heavy- and

light-hole band convergence has a dominant role in the charge transport. As the

band effective mass increases, the electronic contribution to the thermal conductivity

is reduced [158]. The De slope and its peaks near the band edge often dictate the

overall performance, and semiconductors with heavy electron masses and multiple

valleys have high ZT potential. For all predicted properties, there are good agreement

with experiments [152].

The lattice thermal conductivity κL is determined using the ECMD results and

the Green-Kubo HCACF decay [99, 105, 111]. Figure 3.11(d) shows the predicted κL

as a function of temperature, and demonstrates the suppression of the lattice thermal
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conductivity in the thermal-disordered structures (> 500 K). The ECMD results are:

κL(300 K) = 3.1 and κL(700 K) = 0.9 W/m-K. The results show that κL decreases

noticeably with increased temperature. The minimum conductivity κmin [33, 34] for

the amorphous phase is also shown, and gives κmin ≈ 0.32 W/m-K (for T > 2TD,

where TD,PbTe = 130 K [140, 152]) using the PbTe properties [208]. Figure 3.11(d)

includes the results reported in [152] using the total thermal conductivity and the

Wiedemann-Franz law. The results of the Slack relation [98, 105, 185] for the lattice

thermal conductivity of crystal at high temperatures (T > 0.1TD) are also shown in

Fig. 3.11(d), using the properties listed in Table 3.2. Prior to the onset of significant

thermal disorder (T < 500 K), the ECMD results are in good agreement with the Slack

relation (T−1 dependence). For T > 500 K, the thermal-disorder scattering becomes

significant the lattice thermal conductivity becomes independent of temperature. This

shows that the κL in thermal-disordered PbTe structure has two phonon transport

regimes, pseudo-symmetry (single-band) and pseudo-amorphous (converged-band).

The thermal-disordered structures represent a pseudo-amorphous phase which has

high temperature anharmonic vibrations. In Fig. 3.11(d), we also decompose κL(T )

of PbTe into three components, namely, the acoustic short-range, acoustic long-range,

and optical [99, 105, 111], i.e.,

κL =
1

kBV T 2

(
AA,shτA,sh + AA,lgτA,lg +

∑
i

BO,iτO,i

1 + τ 2O,i

)
= κL,A,sh+κL,A,lg+κL,O, (3.8)

where the τi is time constant, Ai and Bi are constants, and the subscripts sh, lg, A,

and O refer to short-range, long-range, acoustic, and optical. From Fig. 3.11(d), the
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short- and long-range acoustic phonon contributions are dominant and most affected

by the thermal disorder. The long-range acoustic contribution is almost saturated to

the amorphous κL limit, but short-range is still changing up to 800 K. Note that κL

decreases most noticeably in the converged-band regime.

Combining all four TE properties from DFT and ECMD/Green-Kubo calcula-

tions, the predicted ZT of p-doped PbTe as a function of temperature, is shown in

Fig. 3.12(a), along with the experimental results [152]. The results are for three dif-
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ferent carrier concentrations np, including peak performance at np = 9.0×1019 cm−3.

The results for thermal-disordered structures are in good agreement with the experi-

ments [152]. In order to confirm the thermal-disorder effective mass calculations, the

results of two analytical models [constantm◦
i,e,α and temperature-dependentmi,e,α(T )]

are shown in Fig. 3.12(b). With the temperature-dependent effective mass (Fig. 3.9),

the analytical model prediction matches the DFT and the experimental results. In

contrast, the constant effective mass [m◦
e,e,L = m◦

h,e,L = 0.13, m◦
h,e,Σ = 1.3] results

[8], i.e., neglecting the band convergence (450 < T < 800 K) and divergence (T <

450 K and T > 800 K), underestimate ZT over the entire temperature range. The

thermal-disorder model and its effective mass of the altered band structures reveal

the high-ZT PbTe behavior.

Due to the computation resource and time limitations, the time and length do-

mains of EAIMD simulations are limited. So, we have used the number of atoms in

the periodic cell to simulate the extended system effects. In order to reliably predict

the thermal-disordered structure and its electronic structures, by minimizing the sta-

tistical uncertainties, we use i) long enough simulation time to find well-converged

structures, and ii) large number of atom in a simulation cell to minimize the draw-

backs of the periodic boundary condition. These highly correlate with transport

properties such as the phonon/electron lifetime and mean free path. Because of these

limitations on the EAIMD simulaitions, we pursued quantitative verifications such as

the ones on the selection of representative snapshots, before entering the transport

property calculations.
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3.4 Summary

In summary, we investigate the abnormal band convergence and TE properties

of PbTe using ab-initio thermal-disordered structures, i.e., at high temperatures the

atoms do not occupy the ideal lattice positions, thus affecting the charge and phonon

transports. Thermal disorder modifies the charge effective mass and suppresses the

phonon short- and long-range acoustic contributions, resulting in high ZT for the

converged-band, pseudo-amorphous structure (acoustic phonon suppression). Un-

derstanding of the thermal disorder provides an insight into design of improved TE

chalcogenides.
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Chapter 4

Order-Disorder Transition of Filled

Skutterudites

4.1 Introduction

High-performance TE materials including skutterudites [135, 147, 170, 201, 202],

metal silicides [69], complex chalcogenide compounds [97], clathrates [43, 163], half-

Heusler alloys [112], and oxide materials [197] are sought for efficient power generation.

Skutterudites are particularly promising due to their robust mechanical properties

[171] and allow for single or multiple filling with rare-earth and alkaline-earth metals

that reduce the lattice thermal conductivity κL [135, 139, 146, 147, 170, 201].

Binary skutterudites are compounds with the general formula MX3 (M = Co, Rh,

Ir and X = P, As, Sb) having a crystal structure with a BCC lattice and belonging to

the space group Im3. The structure consists of a periodic array of trigonally distorted

and tilted MX6 octahedrons. The metal M at the center is octahedrally coordinated
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by the pnicogen X [169]. The tilt of the MX6 octahedrons gives rise to empty spaces

(icosahedral voids) that form a body-centered sublattice. As first shown in [102], the

voids are large enough and can be filled by foreign species entering as cations, however,

the filler solubility limit is less than a full filling of all available voids [178, 201].

Binary skutterudites possess very high charge carrier mobilities and the interest

in these compounds as novel TE materials for power generation followed a suggestion

[186] and observation [139] that their κL can be dramatically reduced upon filling

the structural voids. Recent research has resulted in the TE figure-of-merit (ZT ),

Eq. 1.1, of n-type skutterudites approaching the value of 1.5 at 800 K [121]. While

the presence of the filler species in the skutterudite matrix seems to be essential

for achieving low κL and hence high ZT , whether the filler acts as a rattling local

vibration mode [135, 147, 170, 201] or plays some other important role [43, 100, 115,

210] remains controversial. So far the only insight into the role of ordered phases

on the κL of partially-filled skutterudites has been the observation in [147] that the

random distribution of filler ions scatter phonons more effectively than when most

voids are filled.

In this chapter, we address the issue of ordering of the filler species, a topic that has

not yet been explored and that has a great influence on scattering of heat-conducting

phonons. To this end we examine BaxCo4Sb12, a skutterudite with a large filling

fraction limit for Ba, using theoretical and computational treatments.
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4.2 Calculation Methods

4.2.1 Cluster expansions

We explored the ground-state configurations among all possible ways of arranging

Ba atoms on sites of the fillers in CoSb3 using DFT calculations, guided by the

CE method. To fit the ECI of the CE, we calculated the total energy of 28 Ba-

vacancy configurations over the void sites (BCC sublattice) of CoSb3 using DFT.

The DFT calculations were performed using the VASP code [116] within the PBE

parameterization of the GGA for exchange and correlation [154] and using the PAW

method [26, 117]. Details are given in Section 2.2. In the total energy calculations

all atomic positions as well as the unit cell dimensions were fully relaxed. The ECI

were fit to reproduce the formation energies (∆Ef ) of BaxCo4Sb12, defined as

∆Ef,i = Ex
◦,i − [(1− x)EV

◦,i + xEBa
◦,i ], (4.1)

where Ex
◦,i is the total energy of the crystal with Ba atoms (concentration x), EV

◦,i

is the total energy of the crystal without any Ba (i.e., CoSb3), and E
Ba
◦,i is the total

energy of the crystal when all Ba sites are filled (i.e., BaCo4Sb12). Figure 4.1 shows

the DFT formation energies ∆Ef as well as those predicted by the CE. The CE was

also used to predict energies of other Ba-vacancy configurations not considered with

DFT. The ground-state structures are those that lie on the convex hull. These are

stable ordered phases that should be stable at low temperature. The weighted CV

score, an estimate of the predictive error of the CE, which is considered reasonably
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Figure 4.1: Convex hull of BaxCo4Sb12 compounds computed through the formalism
of CE. Formation energies predicted from the CE and calculated from DFT as a
function of Ba composition. The large orange circles indicate ground-state atomic
structures and are confirmed by the DFT calculations.

small. The optimized CE includes 10 ECI and has a cross validation score of 6

meV/site and an RMS error of 4 meV/site.

4.2.2 Molecular dynamics simulations

In order to obtain the empirical MD potentials of compounds in the intermediate

concentration, we used the combinative rules (CRs) with the empty CoSb3 and fully-

filled BaCo4Sb12 potentials from [100]. The Morse potential is useful for covalent

bonds and is

φ(rij) = φ◦{[1− exp(−a(rij − r◦))]
2 − 1}, (4.2)
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where φ◦ is the depth of the potential energy minimum, a is a parameter related to

the depth and width of the potential well, and r◦ is the equilibrium bond length.

For the Morse parameters for A-B compounds (e.g., half-filled, x = 0.5), we used the

Lorentz-Berthelot mixing rules [68, 129, 161]. The A-B structural parameters (φ◦, a,

and r◦) are assumed to have the form of

φAB
◦ =

φA
◦ + φB

◦
2

, (4.3)

rAB
◦ = (rA◦ r

B
◦ )

1/2, (4.4)

aAB = (aAaB)1/2, (4.5)

where A and B are denoted as an empty (x = 0) and fully-filled structure (x = 1),

respectively. In our CRs method, the GULP code [72] was used for the prediction of

the phonon properties.

We use the Morse and three-cosine potentials, parameterized for two-body (Co-

Sb, Co-Co, Sb-Sb, and Ba-Sb) and three-body (Co-Sb-Sb) interactions [100, 129].

Interatomic potentials are simplified fields and the CRs are approximations, therefore

these potentials cannot accurately predict for example compound formation energy.

As related to κL, the structural parameters (Co-Sb first neighbor bond length r◦),

elastic properties (bulk modulus B and elastic constant Cij), average phonon speeds

up,g,A, and specific heat capacity cv (at 300 K) found from these potentials and from

DFT are summarized in Table 4.1.

Using CRs, the ECMD with the Green-Kubo formalism is used for the prediction

of lattice thermal conductivity at intermediate Ba composition. It is expressed with
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Table 4.1: Comparison of Ba0.25Co4Sb12 properties obtained from CRs and DFT.
The available results for CoSb3 are also listed. The up,g,A is along the Γ-N and Γ-H
directions.

r◦ B C11 C44 up,g,A cv
(Å) (GPa) (GPa) (GPa) (m/s) (J/mol-K)

CRs 2.56 78 155 37 3098 22.9
DFT 2.54 82 126 54 2526 23.0
Literature 82[222] 158[222] 57[222] 2934[135]

HCACF decay equation and heat current vector [99, 105, 111, 133, 134], Eqs. (2.27)

and (2.28). Details are given in Section 2.5.2. To minimize computation time and

size effects, the ECMD simulations were mostly performed on systems consisting of

many conventional unit cells (∼ 3600 atoms). While κL results are for a specific

direction for each atomic configuration, we verified that the phonon transport in

that direction is not noticeably affected by the small dimensions in the other two

directions. We also checked that the size effects were minor when using the supercell

system consisting of ∼ 3600 atoms [100]. The Verlet leapfrog algorithm with the

Nosé-Hoover thermostat and the Berendsen barostat were used in NpT ensemble for

200 ps and then in NV E for 100 ps to reach the equilibrium. Then 3000 ps raw data

were obtained for the calculation of heat current vector. The resultant HCACFs were

then directly integrated and the κL was set as the average value in the stable regime

of the integral.

According to the results of thermodynamic calculations [Figs. 4.1 and 4.5(a)], we

used five different atomic configurations as input structures of ECMD simulations at

300 K: empty ground-state [x = 0, Fig. 4.2(a)], solid-solution (x = 0.03 and 0.14),

γ-phase ground-state [x = 0.25, Fig. 4.2(b)], two-phase mixture (x = 0.33, 0.38, and
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(a) (b)

(c)

(d)

Figure 4.2: Various atomic structures (configurations) of BaxCo4Sb12 compounds. For
BaxCo4Sb12, the green large spheres represent the Ba atoms, the small blue spheres
represent the Co atoms, and the small brown spheres represent Sb atoms. (a) Empty
(x = 0), (b) γ-phase (ground-state of x = 0.25), (c) α-phase (ground-state of x =
0.5), and (d) fully-filled structure (x = 1).
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0.44), and α-phase ground-state [x = 0.5, Fig. 4.2(c)]. When temperature increased

to 800 K, all configurations of different Ba concentrations were obtained from solid-

solution structure (MC snapshot). During the ECMD simulation time of 3000 ps,

these atomic structures were very stable and confirmed with ECMD movie.

In the two-phase regime (0.25 < x < 0.5), the atomic structures used in ECMD

calculations, are divided into CoSb3 host and Ba filler atoms. We use two steps to set

up the mixture, first we construct a full-atomic configuration 14×2×2 supercells (sys-

tem volume ∼ 86,700 Å
3
) of α-phases. And then, we modify the Ba atom’ positions

to reach a composition (e.g., for x = 0.38, mixture is made first half with x = 0.25

and then second half with x = 0.5), keeping the desired Ba positions of the x = 0.25

and x = 0.5 in the CoSb3 host structures. Then in the ECMD simulations of these

mixture structures we use the empirical potentials from CRs. All ECMD two-phase

structures have a single two-phase interface and periodic boundary conditions in all

three directions.
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4.2.3 Phonon calculations

The DFT method directly calculates the force field using the VASP and PHONON

[151] codes. Details are given in Section 2.3. This ab-initio calculation of the HF

forces begins by the displacement of the Co, Sb, and Ba atoms along the x, y, and z

directions, ±0.03 Å. For the case of x = 0.25 ground-state structures, each displaced

configuration generates 2×3×65 = 390 components of the HF forces. The calculated

HF forces for quarter-filled structure and used in the PHONON.

Figure 4.3 shows the phonon branches for x = 0.25 (ground-state, γ-phase) from

using CRs and from DFT methods. The three acoustic branches have similar trends

(on the average). We compared the acoustic phonon characteristics, predicted using

CRs and DFT, and found good agreement in their predicted phonon density of states

and its integrated value. Comparison of the total phonon density-of-statesDp(ω) from

two methods is shown in Figs. 4.4(a) to (d). These are the total phonon density-

of-states of x = 0.25 (ground-state, γ-phase) compounds with respect to frequency.

Also, the integrated phonon density-of-states is given in Figs. 4.4(c) and (d). The

integrated phonon density-of-states is defined by

N(ω) =

∫ ω

0

Dp(ω)dω. (4.6)

Even though there are some apparent deviations for the group velocity and the en-

ergy along the Γ-N direction, the results show the overall sound speed and specific

heat capacity (includes all the modes) would agree well between the two methods

calculation.
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Figure 4.4: Calculated phonon density-of-states (and its integrated value) of the
Ba0.25Co4Sb12, as a function of frequency, using CRs and DFT. Here (b) and (d) are
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4.2.4 Analytical lattice thermal conductivity

The Cahill-Pohl thermal conductivity [33, 34] assumes all phonons have a mean

free path equal to one-half of their wavelength and is assumed to give the thermal

conductivity of the amorphous phase. So, it is designated as the minimum thermal

conductivity κmin of solid-state materials. The thermal conductivity in this model is

given by

κmin = (
π

6
)1/3kBn

2/3

3∑
i=1

up,g,i(
T

TD,i

)2
∫ TD,i/T

0

x3ex

(ex − 1)2
dx. (4.7)

When T > TD, above equation reaches its classical limit,

κmin =
1

2
(
π

6
)1/3kBn

2/3

3∑
i=1

up,g,i = 0.4kBn
2/3(up,g,L + 2up,g,T), (4.8)

where n is atomic number density, up,g,L is longitudinal and up,g,T is transverse phonon

speed [33, 34]. This gives κmin ≈ 0.37 W/m-K using CoSb3 properties and this κmin

result is also shown in Fig. 4.6(a).

Starting with κL of CoSb3 dominated by phonon-phonon scattering, we consider

phonon-point defects scattering and two-phase scattering for the compounds. In

Regime I, we considered only point-defects scattering. Using the Matthiessen rule

[105], the overall κL with the inclusion of phonon-point defects scattering is

1

κL(x)
=

1

κL(0)
+

1

κL,d
. (4.9)

68



Here

κL(x) =
κL(0)

1 + c(x)[x(1− x)]1/2
, (4.10)

where c(x) is the coefficient for point-defects scattering with respect to x [1, 37, 113,

135, 147], and the results are shown in Fig. 4.6(a) predicting a significant phonon

scattering in Regime I. For κL,d, we start with mass fluctuation scattering parameter

Γs is given by

Γs =
∑

x(1− x)[
M(Ba)

M
]2, (4.11)

where M is the mass of an average ternary cluster (BaxCo4Sb12), M = 4M(Co) +

12M(Sb) + xM(Ba) with 0 < x < 1. The lattice thermal conductivity limited by

the point-defects scattering κL,d is

κL,d =
kB

4πup,g,A(a1CT )1/2
, (4.12)

where CT is the relaxation time for interphonon scattering. The CT can be estimated

from the κL of empty CoSb3 [κL(0) = 7.9 W/m-K from ECMD simulation], i.e.,

CT =
(6n)1/3kB
2π4/3κL(0)

, (4.13)

where n is the atomic number density. This yields CT = 4.758×10−16 s. The param-

eter a1 is the coefficient for the Rayleigh point-defects scattering rate, which is given

by

a1 =
VcΓs

4πu3p,g,A
, (4.14)

69



Table 4.2: Data used in the analytical model of Regime I (point-defects scattering)
for various Ba concentrations.

x M Γs a1 κL,d c κL(W/mK)
0 1696.85 - - - - 7.9

0.02 1699.60 1.28e-04 3.12e-43 30.7 1.83 6.3
0.04 1702.35 2.50e-04 6.10e-43 22.0 1.82 5.8
0.06 1705.09 3.66e-04 8.93e-43 18.2 1.82 5.5
0.08 1707.84 4.76e-04 1.16e-42 15.9 1.82 5.3
0.10 1710.59 5.80e-04 1.42e-42 14.4 1.81 5.1
0.12 1713.33 6.78e-04 1.66e-42 13.4 1.81 4.9
0.14 1716.08 7.71e-04 1.88e-42 12.5 1.81 4.8
0.16 1718.83 8.58e-04 2.09e-42 11.9 1.80 4.7
0.18 1721.57 9.39e-04 2.29e-42 11.3 1.80 4.6
0.20 1724.32 1.02e-03 2.48e-42 10.9 1.80 4.6
0.22 1727.07 1.09e-03 2.65e-42 10.6 1.80 4.5
0.24 1729.81 1.15e-03 2.81e-42 10.3 1.79 4.4
0.25 1731.19 1.18e-03 2.88e-42 10.1 1.79 4.4

where Vc is the unit cell volume. The data are summarized in Table 4.2, and for

example, Γs(x = 0.5) is 1.513 × 10−3. This value matches that in [147] Γs(x = 0.5)

= 1.5464 × 10−3. κL(0) = 7.9 W/m-K is the average of ECMD results (x = 0). The

analytical model results for point defects scattering are shown in Fig. 4.6(a).

In the two-phase mixture (0.25 < x < 0.5, Regime II), the mixture of two ordered

phases (γ and α) creates significant two-phase scattering. Using the Matthiessen rule,

1

κL(two− phase)
=

xγ
κL,γ

+
1− xγ
κL,α

+
1

κL,d
, (4.15)

where xγ is the fraction of γ-phase in a γ-α mixture [135, 113, 37]. This overall

two-phase resistivity [κL(two-phase)] considers each phase resistivity (κL,α and κL,γ)

and the interfacial resistivity (κL,d) simultaneously. So, we denoted this as two-phase

scattering. In this calculation, both phase phonon conductivities, κL,α and κL,γ, are
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from the ECMD simulations. The thermal resistivity due to the interfacial two-phase

scattering is derived from CT = 4.578 × 10−16 s, Γs ≈ 0.0953x(1− x), up,g,A = 2934

m/s [135], a1 = 2.326 × 10−40, and 1/κL,d = 0.888[xγ(1− xγ)]
1/2 (m-K/W).

4.3 Results and Discussion

4.3.1 Determination of ground-state structures

We begin with a determination of a temperature composition phase diagram of

BaxCo4Sb12 by combining ab-initio calculations with the CE method and the MC

simulations. Thereafter, using ECMD simulations and the Green-Kubo fluctuation-

dissipation linear response theory and lattice thermal conductivity decomposition,

along with the phase diagram, we predict the lattice thermal conductivity of partially-

filled BaxCo4Sb12 as a function of concentration and temperature.

A prediction of phase stability at finite temperature requires the use of statistical

mechanics to account for entropic contributions to the free energy. The most im-

portant source of entropy in a partially-filled skutterudite arises from configurational

degrees of freedom associated with all possible ways of distributing Ba and vacancies

over the BCC sites of the filler sublattice. A mathematical description of these con-

figurational degrees of freedom is possible with the CE method [173]. An occupation

variable σi is specified for each Ba site i, which takes a value 1 if the site has a Ba-

atom occupant and −1 if it is vacant. The CE is constructed from Eq. (2.1). The

Γα(σ) are cluster basis functions that form a complete and orthonormal basis within
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the Ba-vacancy configuration space [173]. The expansion coefficients Vα are referred

to as ECI and can be determined from first principles. The CE describes the fully

relaxed energy of the crystal as a function of Ba-vacancy order/disorder and can be

viewed as a generalized Ising model with physically realistic interaction parameters.

The series in Eq. (2.1) can be truncated to reflect the relatively small contribution

from clusters comprised of many sites or those describing long-length scales. As

a result, DFT total energy calculations can be used to parameterize the ECI and

determine the truncation of the series. This was done using the DFT energies of 28

Ba-vacancy configurations over the filler sites of CoSb3 (see Figs. 4.1 and 4.2).

By applying MC simulations to the cluster expanded Hamiltonian, it is possible to

construct a temperature-composition phase diagram. The calculated phase diagram

shown in Fig. 4.5(a) exhibits prominent ordered phases at Ba compositions below or

near the experimental filling limit (x ≈ 0.44) [39]; the γ-phase has x = 0.25 and the α-

phase has x = 0.5. As shown in Figs. 4.5(b) and (c), the γ-phase is highly anisotropic

with Ba-Ba nearest neighbors along [111] and Ba-vacancy nearest neighbor pairs along

the other ⟨111⟩ family axes; it disorders at Tγ ≈ 350 K. Compared to that, the α-

phase has a higher symmetry with the filled Ba sites forming a diamond network; it

disorders at Tα ≈ 750 K. Because all relevant phase transitions are first order, phase

coexistence of the two phases can be obtained at intermediate x and low temperature.

At higher temperatures coexistence of each phase with a solid solution is obtained.
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4.3.2 Prediction of lattice thermal conductivity

The calculation of κL, and the interatomic potentials used in the ECMD simula-

tions for the intermediate concentrations of Ba were based on the CRs applied to the

empty CoSb3 and fully-filled BaCo4Sb12 potentials from [100].

From Fig. 4.5(a), there are six qualitatively different structural configurations

possible for Ba concentrations between 0 ≤ x ≤ 0.5, at 300 K: three ordered ground-

state structures (x = 0, 0.25, and 0.5), a solid solution (0 < x ≤ 0.16), a mixture

of γ-phase and solid solution (0.16 < x < 0.25), and a two-phase mixture of ordered

phases (0.25 < x < 0.5). Figure 4.6(a) shows the predicted κL of BaxCo4Sb12 as a

function of Ba concentrations. As input configurations in the ECMD simulations,

we used the ground-state ordered Ba configurations at x = 0, 0.25 and 0.5, Ba solid

solutions as obtained from MC snapshots (x = 0.03 and 0.14) and two-phase mixtures

with a single interface (e.g., for x = 0.38 ECMD cell consisted of one half having the

γ ordering at x = 0.25 and the other half having α ordering at x = 0.5; x = 0.33,

0.38, and 0.44). The results are in good agreement with experiment [39], showing

that as the Ba concentration increases, κL decreases noticeably. The minimum con-

ductivity relation κmin for amorphous phase is also shown, and this gives κmin ≈ 0.37

W/m-K using CoSb3 properties. Starting with κL of CoSb3 dominated by phonon-

phonon scattering, we consider only phonon-point defects scattering and two-phase

scattering for the compounds. On the top of Fig. 4.6(a), the state of Ba-vacancy or-

dering and two-phase mixtures are marked. Since Ba more or less randomly fills the

voids of CoSb3 in the solid-solution regime, phonons propagate through the CoSb3
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host structure with the randomly distributed Ba atoms acting as point defects. As

the phonon-boundary scattering is negligible except at low temperatures, this can

persist up to x = 0.25 (fully-ordered γ-phase). The overall κL with the inclusion

of phonon-point defects scattering is given by Eq. (4.10), and results are shown in

Fig. 4.6(a) predicting significant phonon scattering in Regime I. In the two-phase

mixture (0.25 < x < 0.5), the mixture of two ordered phases (γ and α) creates sig-

nificant interfacial scattering. This overall resistivity includes each phase resistivity

(1/κL,γ and 1/κL,α) and the interfacial resistivity (1/κL,d) simultaneously. While iso-

lated point defects scatter phonons due to a point discontinuity in bonding and mass

distribution, interfaces between two phases are two-dimensional discontinuities that

scatter phonons. This interfacial resistivity had been previously treated the same as

the point-defects scattering, so following that we use the treatment of Section 4.2.4,

i.e., 1/κL,d = 0.888[xγ(1− xγ)]
1/2 (m-K/W). We note that a more appropriate model

would include the interface concentration and the impedance mismatch between the

two phases as in the phonon boundary resistance [180]. Then, we have Eq. (4.15). The

dash line in Fig. 4.6(a) is for this two-phase scattering model and is in agreement with

ECMD predictions. We note that it is the two-phase mixture causing the significant

reduction in κL, by comparing with a hypothetical single-phase and the two-phase

structures, for x = 0.33. The ECMD results for these structures are κL(single-phase,

one of non-ground states) = 2.9 and κL(two-phase) = 1.4 W/m-K [data points and

their uncertainties are given in Fig. 4.6(a)]. The point-defects and two-phase scatter-

ing are two main reasons for the κL reduction in partially-filled structures, compared

with the empty structure. We also note that in the empty skutterudites the Umklapp
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scattering is important in the overall thermal conductivity as the point-defects and

two-phase scattering mechanisms are absent. In Fig. 4.6(a), the ECMD predicted κL

(∼ 1.0 W/m-K) and the two-phase scattering model show a minimum near x = 0.38,

and this minimum is close to κmin, predicted for the amorphous-phase κL.

Figure 4.6(b) shows the predicted κL for x = 0, 0.25, 0.33, and 0.5, as a function of

temperature, along with the experimental results [107]. The transition temperatures

(Tα and Tγ) of two ordered phases are marked in Fig. 4.5(a), and at T = 800 K there

is no ordered structure. So, we use the fully-disordered structures (configuration

snapshots of the MC simulations). The single-phase crystal follows the Slack relation

(κL ∼ T−1 dependence for T > 0.1TD) [98, 105, 185], while the two-phase mixtures

reaches a plateau, similar to amorphous solid κmin [105]. This reconfirms that the two-

phase mixtures can be considered as pseudo-amorphous structures with significant

reduction in κL for such crystalline TE materials.
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Figure 4.7: Lattice thermal conductivity decomposition and their variations with
respect to Ba concentrations. Decompositions were done using singular ECMD simu-
lation results - each concentration [as compared to Figs. 4.6(a) and (b) where average
over several simulations was used].
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In general, the heat is carried through skutterudites mostly by the acoustic phonons,

which are altered by the presence of this fillers [39, 43, 100, 115]. This significantly

reduces κL for the two-phase mixtures and is also confirmed in an analysis of a decom-

position of κL into the short-, long-range acoustic, and optical phonon components

[105], Eq. (3.8). After removing the high-frequency components of HCACF with

the Fourier low-pass filter (fcut−off = 1.5 THz determined from the acoustic phonon

dispersion results), the low-frequency acoustic portion are fitted with two exponential

decay terms. Each component of HCACF in Eq. (3.8) was then integrated indepen-

dently and Fig. 4.7 shows the results. The long-range acoustic phonon contribution is

dominant and most affected by Ba concentrations, while the short-range acoustic and

optical components are not. The κL,A,lg decreases most noticeably by the two-phase

scattering in the two-phase regime.

4.4 Summary

Our ECMD calculations indicate that in order to find a high-performance skutterudite-

based TE materials, one can greatly benefit from the presence of order-disorder phase

transitions of the filler species in the voids of the skutterudite structure, which leads

to two-phase coexistence and the presence of interfaces.
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Chapter 5

Cage-Breathing Lattice Dynamics

of Substituted Skutterudites

5.1 Introduction

Filling structural cages in the CoSb3 skutterudite crystal has lowered the lattice

thermal conductivity [139, 186], making filled skutterudites one of the best novel

TE materials for mid-temperature power generation applications [121, 177, 201]. An

alternative approach to lowering thermal conductivity is to distort the near-square

pnicogen (e.g., Sb) atomic rings, which are a characteristic feature of the skutterudite

structure, Im3(T 5
h ) [149]. Since vibration modes involving Sb rings dominate the

spectrum of heat-conducting phonons [52, 70], distortions of the rings should be

particularly effective in disrupting heat transport. A charge-compensated alloy (see

Fig. 5.1) can be obtained by substitution of IV-VI species (e.g., Sn-Te [123] or Ge-

Te [193, 194]), which has recently been shown to enhance Te solubility and, in the
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case of Ge-Te, imbalanced Ge/Te induces formation of finely dispersed Ge-Te-rich

skutterudite nanodots in the Sb-rich matrix. The enhanced point-defect scattering

and presence of nanoinclusions in these double-substituted skutterudites enabled them

to attain a TE figure-of-merit (ZT ) of 1.1, competitive with the best values for single-

filled skutterudites.

x

y

z

Sb4

Ge2Te2

Sb

Te

Ge

Figure 5.1: A typical crystal structure (left) of double-substituted skutterudite
CoSb3(1−x)Ge1.5xTe1.5x at x = 0.5, which mixes a variety of rings (right) of counter-
diagonal Ge2Te2 and Sb4. Orange, chartreuse, and purple spheres represent Sb, Ge,
and Te respectively.

The goal of this chapter is to understand the lattice dynamics of double-substituted

skutterudite CoSb3−m−nGemTen using DFT calculations (including ab-initio molec-

ular dynamics AIMD). Extensive computational and analytical works on low energy

structures reveal a compelling theoretical puzzle surrounding the role of pnicogen

rings in skutterudite heat transport.
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Table 5.1: Calculated properties of CoSb3 and CoGe1.5Te1.5. The literature results
for CoSb3 are also listed. TD, γG, B, Cij, and cv are the Debye temperature, the
Grüneisen parameter, bulk modulus, elastic constant, and specific heat capacity.

TD γG B C11 C44 cv
(K) (GPa) (GPa) (GPa) (J/mol-K)

CoSb3 305.9 1.11 91.89 174.6 66.34 22.9
CoGe1.5Te1.5 283.5 1.28 55.87 125.6 29.35 22.9
Ref., CoSb3 307 [35, 135] 0.95 [35] 82 [222] 158 [222] 57 [222] -

5.2 Calculation Methods

5.2.1 Phonon calculations

The VASP [116] and PHONON [151] codes were used for the ab-initio phonon cal-

culations. The VASP calculation were performed with the PBE parameterization of

the GGA for exchange and correlation [154] and using the PAW method [26, 117].

Details are given in Section 2.3. All phonon and thermodynamic properties (Table

5.1, with literature results for CoSb3 also listed [35, 135, 222]) are predicted using a

fit of interatomic force constant tensors to the calculated HF forces. Diagonalization

of the dynamical matrix yields the phonon dispersion, from which density of states

and atomic displacement tensors are obtained. The trace of the diagonalized atomic

displacement tensor is the atomic displacement parameter (ADP), a scalar measure

of single-atom vibration amplitude based on finite-temperature phonon mode occu-

pancy.
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5.2.2 AIMD simulations

The lattice thermal conductivity using NEAIMD is computed as the ratio of an

applied heat flux to the resulting temperature gradient [190, 207], Eq. (2.29). Details

are given in Section 2.5.2. For simulations we use the VASP code modified to perform

NEAIMD-energy exchange [103, 142] as reported in [190, 207]. The simulations are

performed on supercells of 192 atoms (3×1×2) and 384 atoms (6×1×2), constructed

as a solid-solution of pnicogen rings, based on the phase diagram of [41]. We equi-

librate each simulation using EAIMD for 1 ps with 0.5 fs time steps. Equilibration

is followed by 22 ps of NEAIMD using a 1 fs time step. This duration proved suffi-

ciently long to obtain converged lattice thermal conductivity. Because the exchange

of kinetic energy results in non-Newtonian dynamics in the hot and cold sections,

only the linear portion of the temperature gradient is considered in calculating the

lattice thermal conductivity.

5.3 Results and Discussion

5.3.1 Lattice dynamics of configured pnicogen rings

Based on the phase diagram calculation given in [41], the strong energetic prefer-

ence for short-range order of Ge/Te substituted on the pnicogen sublattice and charge-

balanced (i.e., counter-diagonal) rings are predicted. In here, we have focused our in-

vestigation of heat transport mechanisms on the charge-balanced CoSb3(1−x)Ge1.5xTe1.5x

alloy.
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The ADP values of various low-energy configurations of CoSb3(1−x)Ge1.5xTe1.5x

containing counter-diagonal Ge2Te2 rings (x = 0.25, 0.5 and 1) are shown in Figs.

5.2(a) and (b). Due to the strong covalent bonds of the rings, the ADPs of substitu-

tional atoms are not expected to be large. Surprisingly, the calculated ADP of Ge is

significantly larger than that of Sb for all three low-energy configurations considered

at x = 0.25 and 0.5. For comparison, Figs. 5.2(a) and (b) shows values for the Ba-

filled skutterudite BayCo4Sb12 at several values of y. The large ADP of the Ba filler

atom, relative to most atoms on the pnicogen rings, indicates the rattling behavior of

Ba. The rattling behavior of the Ba filler species is believed to cause a reduction in

the lattice thermal conductivity of partially-filled skutterudites. The RDFs obtained

from EAIMD also show the large displacement of Ge substitutional atoms. Com-

paring with the RDFs of Sb atoms, as shown in Fig. 5.2(c), those of Ge atoms are

broadened and shifted while those of Te atoms are not changed. These observations

are clearly verified the RDFs of different structural view-points (i.e., octahedra and

pnicogen rings).

While the Ge ADP is large for all compositions, it is maximized at x = 0.5 where

it becomes comparable to that of a Ba filler atom. This suggests that Ge atoms on

the counter-diagonal Ge2Te2 ring could play a similar role as a rattler. As reported

in references [20, 53, 115] rattler species inhibit heat transport by both (i) reducing

average vibrational frequencies via local bond-softening, and (ii) giving rise to low-

frequency ”guest” vibrational modes decoupled from the host crystal. In addition

to having a large ADP, Ge exhibits similar projected phonon dispersion curves to

those of Ba, as shown in Figs. 5.3 and 5.4. Phonon modes arising predominantly
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also shown. Blue and green spheres represent the Co and Ba filler atoms respectively.
(b) Atomistic configurations showing a pnicogen ring and octahedron consisting of
substituted atoms (x = 0.5).

from either Ba or Ge displacements show negligible dispersion, characteristic of local

deformational modes with low group velocity (see the color maps of sound speed in

Fig. 5.4).

Note that full phonon dispersion curves and phonon density-of-states (Dp) of

various substituted and filled compounds [CoSb3(1−x)Ge1.5xTe1.5x and BayCo4Sb12]

are shown in Fig. 5.4. In spite of this similarity to Ba filler, the collective modes

of substituted Ge deform different segments of the skutterudite crystal structure and

have different modal frequencies [i.e., Fig. 5.3(a) for Ge and Ba show 2.27 and

1.52 THz at Γ; 1.24 and 1.45 THz at X]. Additionally, the dominant vibrational

distortions of Ge responsible for its large ADP are along the diagonal of the counter-

diagonal Ge2Te2 rings, as illustrated in Fig. 5.3(b). Collectively, this corresponds

to a breathing mode (i.e., expansion/shrinkage) of the cage [see Fig. 5.3(a)]. We

consider whether the distinct highly-displaced Ge modes and rattler modes of Ba
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also shown.

can influence the phonon transport by simultaneously affecting different portions

of the phonon spectrum. Our preliminary ab-initio calculations show this hybrid

skutterudite structure (x = 0.5 and y = 0.5, which is close to the filling limit [179]),

will retain these distinct features. In particular, our results indicate mode flattening

in specific direction (Ge at X; Ba at Γ), overall phonon downshift (Ba), and distinct

softening induced in the guest vibrational mode frequencies.

5.3.2 Prediction of lattice thermal conductivity

Experimental measurements [41] on charge-balanced CoSb3(1−x)Ge1.5xTe1.5x solid

solutions show a dramatic decrease in the thermal conductivity with increasing x,
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the Wiedemann-Franz law) and the results of the point-defect model and NEAIMD
are shown. The minimum conductivity κmin (∼ 0.37 W/m-K) for the amorphous
CoSb3 phase [111] is also shown.
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as shown in Fig. 5.5(a). In fact, the minimum in the measured κL near x = 0.5

coincides with the maximum of the calculated Ge ADP. The total measured thermal

conductivity can be decomposed as κ = κL + κe, where κL and κe are the lattice

and electronic thermal conductivity, respectively. An experimental value of κL is

calculated by approximating and subtracting κe which, in turn, is determined from

the Wiedemann-Franz law. Here κe = NL,◦σeT , where σe is the measured electrical

conductivity and NL,◦ is the Lorenz number, determined from the experimental See-

beck coefficient by assuming a single parabolic band [81]. The experimental value of

κL obtained in this way, which Fig. 5.5(a) shows for several compositions at 500 K,

quickly decreases with initial substitution before reaching a plateau at intermediate

composition. The temperature dependence of κL, shown in Fig. 5.5(b), exhibits a

decreasing trend at all compositions.

In order to analyze the effect of pnicogen ring substitution on κL, we use experimentally-

and DFT-parameterized analytical models for phonon-phonon and point-defect scat-

tering [1, 37, 111, 113, 135, 147], as well as NEAIMD simulations [190].

Starting with κL of CoSb3 and CoGe1.5Te1.5, which are dominated by phonon-

phonon scattering, we add an analytical factor for point-defect scattering at interme-

diate alloy compositions [1, 37, 105, 111, 147]. Using the Matthiessen rule [105], the

overall κL with the inclusion of the point-defect scattering [100, 111] is

1

κL(x, T )
=

x

κL(0, T )
+

1− x

κL(1, T )
+

1

κL,d
. (5.1)
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Here κL(0,T ) and κL(1,T ) are obtained from the Slack relation [98, 105, 185],

κL,S(T ) =
3.1× 104⟨M⟩V 1/3

◦ T 3
D,∞

T ⟨γ2G⟩N2/3
, (5.2)

where ⟨M⟩ is the average atomic weight, N is the number of atoms, V◦ is the average

volume per atom, TD,∞ is the Debye temperature, and ⟨γG⟩ is the average Grüneisen

parameter. For the κL,d, the point-defect scattering parameter Γs, including mass

fluctuation and atomic displacement [1, 22, 143, 191] is

Γs = x(1− x)[(
∆M

M
)2 + 3γ2G(

∆R

R
)2], (5.3)

where M is the molecular weight of the CoSb3(1−x)Ge1.5xTe1.5x alloy and R is the

average atomic radius. The lattice thermal conductivity limited by the point defect

scattering κL,d is

κL,d =
kB

4πup,g,A(a1CT )1/2
, (5.4)

where CT is the relaxation time for phonon-phonon scattering including normal,

N-processes, and U-processes. Here CT can be estimated from the experimentally-

determined κL(0,T = 300 K) of 8.3 W/m-K for CoSb3. Using

CT =
(6n)1/3kB
2π4/3κL(0)

, (5.5)

where n is the atomic number density, yields CT = 4.758×10−16 s [111]. The param-
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eter a1 is the coefficient for the Rayleigh point-defects scattering rate, given by

a1 =
VcΓs

4πu3p,g,A
, (5.6)

where Vc is the unit cell volume. To clarify this effect with a rattler, the analytical

results for the partially-filled (y = 0.5) and for the hybrid structure (various x with

y = 0.5) are also shown in Fig. 5.5(a). Here the overall κL is given as [100, 111]

1

κL,y=0.5(x, T )
=

x

κL,y=0.5(0, T )
+

1− x

κL,y=0.5(1, T )
+

1

κL,d
, (5.7)

assuming κL,y=0.5(0,T ) is equal to κL,y=0.5(1,T ). Here κL,y=0.5(0,T ) is obtained from

the classical molecular dynamics results in [111]. Using this combined strategy (see

Fig. 5.3.2), we predict a further 33% reduction in κL (much closer to the theoretical

minimum, κmin, of an amorphous phase).

The juxtaposition of the point-defect scattering model and our experimental mea-

surements in Figs. 5.5(a) and (b) indicates favorable agreement between the two, sug-

gesting that the reduction in κL at intermediate substitution composition can largely

be attributed to scattering from point-defects, which take the form of mass disorder

and local atomic relaxations. Our analytical model does not account for the effect of

bipolar carrier transport in our calculation of κe, likely resulting in overestimation of

experimental κL values at high temperature. As shown in Figs. 5.5(a) and (b) the

NEAIMD prediction agrees with experimental and analytical results.
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5.4 Summary

We have demonstrated that Ge/Te double substitution on pnicogen rings is an

effective means of lowering the lattice thermal conductivity of skutterudites. Although

comparable in magnitude to the filler effect, substitution targets vibrational modes

are qualitatively different from those of fillers. So, we expect a combination of the

filler and substitution is likely to act in a complementary manner in suppressing the

thermal conductivity. This combined strategy (see Fig. 5.3.2) should therefore lead

to even lower thermal conductivity and higher ZT values than have been realized

using either strategy separately.
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Chapter 6

Coupled Polaron and Phonon

Effects of Boron Carbides

6.1 Introduction

Widely used boron carbides (B12+xC3−x), e.g., in refractories, abrasives, thermo-

electrics, nuclear reactors [54], have much unexplained structural and carrier transport

properties. Their primitive cell (R3m space group, rhombohedral representation) con-

tains an icosahedron of twelve atoms with strong covalent chains connecting them, as

shown in Fig. 6.1(a) [54]. They are very similar to the pure α-B12 structure [see Fig.

6.1(b)], with an icosahedron and polar linkers, however the inter-icosahedral bonds

are changed with the addition of carbon. So, boron carbides are hard solids with

the melting temperature of ∼ 2600 K [13, 54, 62]. Due to their polymorphism, their

crystal structure identification is still evolving [119], and they have high p-type carrier

density (∼ 1021 cm−3) [15, 62]. Odd number of B atoms (e.g., x = 1) removes bound
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Figure 6.1: The crystalline structure of boron-related compounds (B = green, C =
brown) : A primitive cell of (a) B13C2 and (b) pure α-B12, and (c) the magnified view
of a B12 icosahedron in B13C2 showing two different borons, the polar (Bpol; yellowish
green) and the equatorial (Beqt; dark green) atoms.

electrons, produces hole-like carriers (one hole per primitive cell) and the high hole

density, while stoichiometric compounds B12+xC3−x have moderate carrier density

[13, 64]. Their hardness and carrier density suggest large thermal conductivity (κ =

κe + κL, dominated by lattice thermal conductivity κL), high electrical conductivity

(σe), and small Seebeck coefficient (αS), but they have small κL and large αS, both

nearly temperature independent [14, 15, 30, 215]. Also, the small σe exponentially

increases with temperature [14, 30].

To explain these anomalous properties, two models have been suggested by Emin

et al. [15, 62, 66, 214]and Werheit et al. [119, 211]. The first is the small bipo-

laron model for the nonequivalent B11C icosahedra, suggesting localized charge (qe)

carriers with low mobility, i.e., phonon-assisted polaron hopping. The second model

is based on structural disorder in B12-(C-B-C), where the high density intrinsic de-
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fects accompanied by strong distortion compensate for the electron deficiency of ideal

metallic behavior and also reduce κ. This structural conjecture is still evolving with

the mentioned polymorphism [54, 211], as reported in the phase diagram and diffrac-

tion results demonstrating the abundances of phases [54]. The B11C-(C-B-C) model

is believed to be the lowest formation energy and the most relevant structure for

x = 0, whereas the B12-(C-B-C) is the most stable phase for x = 1 [36, 54, 203].

Those structural models are verified from the formation energy calculation using the

DFT [32, 36, 203]. Here we consider α-B12 and B13C2 structures containing a B12

icosahedron and a C-B-C inter-icosahedral chain, since they are the ground-state

structures from the energetic (thermodynamic) perspective and because there is a

distinct structural evolution with added carbon.

In this chapter, we present a comprehensive theoretical/computational analyses of

the polaron formation and phonon softening in B13C2, using ab-initio methods. We

predict/explain the temperature independencies of αS (including entropy analysis of

various contributions) and κL, and compare with available experimental results. Our

results show such anomalous behaviors are caused by polaron and phonon evolutions

due to the unique icosahedra and inter-icosahedral chains in B13C2.
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6.2 Calculation Methods

6.2.1 DFT calculations

We begin with the electronic structure and lattice dynamics using various DFT

calculations implemented in the VASP [116] and PHONON [151] codes. The PBE pa-

rameterization of the GGA for the exchange-correlated functional [154] and the PAW

method for modeling core electrons (energy cutoff = 520 eV) [26, 117] are used. De-

tails are given in Sections 2.2 and 2.3. The high-temperature lattice dynamics are

investigated by EAIMD. The temperature-dependent phonon density-of-states are

also obtained from EAIMD and the Fourier transform of the velocity autocorrelation

function over 22 ps. EAIMD simulations are performed on supercells consisting of 180

atoms. Considering thermal expansion, we prepare supercells with the experimental

thermal expansion coefficient (α = 5.73×10−6/K for 300 to 1970 K) [198] and lattice

parameter (a = 5.63 and c = 12.16 Å at T = 300 K) [54, 198] are used. The Bril-

louin zone is sampled at the gamma point. After constant-temperature simulations

with the Nosé thermostat for 1 ps (0.5 fs time steps) reaching equilibrium, we collect

atomic trajectories for 22 ps (1 fs time steps).

To predict αS and κL, we use the NEAIMD simulations. For non-equilibrium

simulations, we use the VASP code modified to perform NEAIMD-energy exchange

[103, 142] as reported in [190, 207]. As given in Eq. (2.29), the heat flux is imposed

by dividing the simulation cell into sections of equal width, and exchanging kinetic

energy (velocity swapping) between the hot and cold sections. Details are given in

Section 2.5.2. For further validation on the charge associated with each atom in the
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simulation cell (hot to cold), the Bader analysis [91] of charge-density grid is used

with the DFT charge density. NEAIMD simulations are performed on (hexagonal

representation) supercells consisting of 180 (hexagonal 2×1×2 supercell), 270 (2×1×3

supercell), and 360 (2×1×4 supercell) atoms. Structure preparations are same with

EAIMD simulations. We carry out constant-temperature simulations using a Nosé

thermostat for 1 ps (0.5 fs time steps). After reaching equilibrium, a non-equilibrium

calculation is performed for 22 ps (1 fs time steps).

The electron-phonon (e-p) coupling parameter is calculated from the self-consistent

change in the potential of electrons interacting with a phonon mode implemented

in the Quantum-ESPRESSO [75] package with norm-conserving pseudopotential and a

plane-wave cutoff energy of 40 Ry. Fully-relaxed structures are simulated with an

electron-momentum mesh of 8×8×8 and a 4×4×4 phonon-momentum mesh grid.

The calculation details of the e-p coupling parameter are presented in Section 2.4.

The Eliashberg spectral function α2F (ω) [29, 36, 157], the effectiveness of phonon

with energy ~ω to scatter electrons, is defined as Eq. (2.14).

6.2.2 Entropy and energy analyses of Seebeck coefficient

The overall αS can be expressed as sum of various contributions,

αS = αS,mix + αS,spin + αS,vib + αS,trans, (6.1)

where the right hand side terms are: change of entropy-of-mixing, spin entropy, vi-

brational entropy upon adding a charge carrier, and the net energy transferred in
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moving a carrier (divided by qeT ), respectively [63]. Each carrier mostly contributes

to αS in different way and specific conditions, however they are highly coupled and

interacting with phonon.

The mixing contribution to αS,mix is usually related with electron and dominant

in lightly-doped semiconductors. The αS,mix is then related to the change of mixing

entropy Smix upon adding a carrier:

αS,mix =
1

qe

∂Smix

∂N
=
kB
qe

ln(
1− f ◦

e

f ◦
e

), (6.2)

where kB is the Boltzmann constant and f ◦
e = N/NA is the ratio of electrons to sites

(Fermi function) [64, 63, 105]. The spin entropy Sspin contribution to αS is

αS,spin =
∆Sspin

qe
=
kB
qe

ln(
2s+ 1

2s◦ + 1
), (6.3)

where s◦ and s are net spins of the magnetic site in the absence and presence of the

spin carrier [63, 64].

For the αS,vib, reducing the local vibrational frequencies (phonon softening) in-

creases the vibrational entropy (Svib). The full crystal Hamiltonian (H) for the vi-

brational part of the energy is obtained by adding the potential and kinetic energy.

We write the Hamiltonian (for the quantum-harmonic oscillator) as [105]

Hvib =
∑
kp

~ω(kp)(f ◦
p +

1

2
), (6.4)

where f ◦
p is the equilibrium occupancy of phonon. Hvib is used to solve analytically for
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thermodynamic properties, e.g., the free energy Fvib is -kBT ln[
∑

exp(-Hvib/kBT )],

where the entropy is Svib = -∂Fvib/∂T . The phonon density-of-states gives the number

of modes with the frequency in the interval [ω, ω + dω], and first-order contribution

to the αS,vib is [15, 63, 64, 66]

αS,vib =
1

qe

∑
i

∂Svib,i

∂ωi

∆ωi

=
kB
qe

∑
i

(
−∆ωi

ωi

)[
~ωi/2kBT

sinh(~ωi/2kBT )
]2. (6.5)

From the high-temperature limit (kBT ≫ ~ω) and series expansions of the hyper-

bolic functions, the vibrational contribution to αS is αS,vib = (kB/qe)
∑

i(-∆ωi/ωi). To

calculate the transport Seebeck component αS,trans related with the phonon-assisted

hopping, additionally, we start from αS,trans,ep = ET/qeT , where subscript ep means

polaron and ET is the net vibrational energy that accompanies a phonon-assisted

hopping, i.e., [15, 61, 64, 66]

ET =
kBT

2

2
[
∂ln(γ̇1,2/γ̇2,1)

∂T1
− ∂ln(γ̇1,2/γ̇2,1)

∂T2
]T1=T2=T . (6.6)

Here γ1,2 (and γ2,1) are the hopping rates between site 1 to site 2 at temperatures T1

and T2. Using the binding energy relation with the local stiffness [15, 63, 64, 66], we

have

ET = Ea

∑
i

(
−∆ωi

ωi

)
~ωi/2kBT

sinh(~ωi/2kBT )
. (6.7)

In this chapter, we approximate that αS,vib and αS,trans are the dominant contri-

bution, since αS,mix and αS,spin are estimated to be negligible. These are justified due
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to heavy carrier density and non-ferromagnetic property for B13C2.

6.3 Results and Discussion

6.3.1 Lattice dynamics and polaron formation

To understand the vibrational behavior of B13C2, we begin with their lattice dy-

namics and electronic structures using various DFT methods. Based on Figs. 6.2(a)

to (c), three distinctive features (or unconventional bond behaviors) are observed

in within the B13C2 structure. (i) Since the bond length is inversely related to the

bond stiffness [105], the inter-icosahedral C-B-C chain bonds are the most rigid ones

(stronger than the intra-icosahedral and the polar-linker bonds). (ii) With increase in

temperature, the bond angle of the C-B-C chain (θchain) surprisingly decrease while

its bond length (rchain) become longer and the polar linker bonds are almost con-

stant. So, the Bchain atoms, the central atom of the most rigid bond, have a large

vibrational degree-of-freedom and this increases with temperature. (iii) Significant

lattice distortion of the B12 icosahedra is observed. These intra-bonds (e.g., Bpol-Bpol,

Beqt-Beqt, and Bpol-Beqt) do not monotonically increase and are distorted as temper-

ature increases. These findings are useful in explanation of the lattice distortion and

formation of polaron formation, as will be discussed later.

Figure 6.3 shows total and projected phonon dispersion curves using small dis-

placement method in the harmonic approximation. As we expected, B13C2, a hard

solid material, has high phonon energy (up to 200 meV) showing its rigid bonds. As
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shown in Figs. 6.3(c) and (d), most intra-icosahedral and polar linker bonds occupy

acoustic and moderate optical parts, while the inter-icosahedral C-B-C chain bonds

cover two local vibration modes [highest acoustic (∼ 40) and optical (∼ 190 meV)].

Despite the two-body (C-Bchain) bond in this chain having the shortest length (i.e.

most rigid one) in B13C2, its three-body angle is the most flexible (due to limited

neighbor atoms). Such Janus-faced C-B-C chain bond is unique in crystalline solids,

and we suggest that this provides evidence of its abnormal transport properties.

0 200 400 600 800 1000
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A
D

P
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Å
2 )

T (K)

 B13C2, Bpol and Beqt
 B13C2, Bchain

 B13C2, C
 α-B12, B

Figure 6.4: Calculated atomic displacement parameters for individual elements in
B13C2 and α-B12 as a function of temperature.

Figure 6.4 shows the calculated ADP (under harmonic approximation) for each of

the designated elements in B13C2 and α-B12. Due to the strong and stable covalent

bonds [181], for the overall icosahedral atoms, there is no distinct ADP difference

between the two structures. However, the ADP of chain B (Bchain) is twice that

of icosahedral B (Bpol and Beqt in B13C2 and α-B12). This large ADP of Bchain
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Figure 6.5: (a) Variation of total phonon density-of-states with temperature and (b)
the Eliashberg function spectrum for B13C2.

atoms is one of distinct lattice behaviors of B13C2 and we expect scattering of the

heat-conducting phonon wave as in rattlers [41, 139, 186]. Such phonon dispersion

and atomic displacement features in B13C2 lattice are shown in Fig. 6.5(a). These

show the phonon occupancy and roles contributed by each structural compartment

of B13C2. Note that optical phonons of the icosahedral bonds and C-B-C chains

result in the phonon softening and local vibrational frequency, respectively. In the

optical frequency domain, theDp is red-shifted as temperature increases. This phonon

softening is critical in explaining the temperature independence of αS. The Bchain

atoms mostly lead to the local phonon mode of ∼ 40 meV and weak force constant,

one of reasons for low κL of B13C2. This is consistent with the local phonon dispersion

and large ADP of Bchain atoms. Next, we show that phonon softening is caused by

the high-temperature Jahn-Teller distortion and polaron formation.
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The e-p interaction is critical in explaining the unusual properties of B13C2 [36,

77, 172, 211]. The α2F (ω) spectrum characterizes the strength of the e-p coupling of

the structure, and in Fig. 6.5(b). This is shown for B13C2 and α-B12 structures at

low temperatures. Because B13C2 has high carrier density, significant e-p interactions

are predicted, dominant in the icosahedral optical region, while α-B12 has negligible

couplings. So, e-p couplings are highly related with the lattice dynamics of icosahedral

structure and the trapped charge. Although the frozen structure of B13C2 (at T =

0 K) is an orthorhombic R3m and high symmetry icosahedral complexes, we expect

large geometrical distortion enhancing e-p interactions with increase in temperature,

i.e., the Jahn-Teller distortion effect. The distortion and localized charge distribution

of B13C2 result in polaron formation at high temperatures, and this causes bond

softening.

Figure 6.6(a) shows the low-symmetry lattice structure and the altered effective

charge of each atom, and contrasting them with the frozen (ideal) structure. At T =

0 K, the B12 icosahedron loses its electrons, while the inter-icosahedral C-B-C chain

is negatively charged. The effective charges of Beqt and Bpol are +0.92 and -0.01ec,

and these are highly consistent in the overall structure. However, these conditions

are not sufficient for polaron formation at low temperatures. Compared to that, the

Jahn-Teller distortion activated by temperature makes for unique modifications in the

charge distribution, as shown in Figs. 6.6(b) and (c). Also, the polaron formation

accelerates the lattice distortion (bond softening) and traps the local charge within the

distorted structure. The charge density (ne) plot shown in Fig. 6.6(b) clearly shows

the existence of polaron with the localized charges and lattice distortion. Comparing
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Figure 6.6: The Jahn-Teller distortion and polaron formation of B13C2. (a) A presen-
tation of carrier transport and averaged effective charge distribution at T = 0 K. (b)
Contours of constant charge density, and (c) distorted icosahedron (area surrounded
by a dashed line), at T = 900 K (for comparison, changes of bond length and ion
positions between 0 and 900 K, and effective charges at T = 900 K are also shown).

with high-symmetry position of ions (translucent color) shown in Fig. 6.6(c), highly-

charged atoms (e.g., Beqt with +2.4ec) attract/repel adjacent ions depending on their

polarity and accelerate the lattice distortions after producing the polarons. Using the

low-temperature structure as the reference (high-symmetric lattice and the associated

charge distribution), we can decipher the significant thermal lattice distortions. These

are observed by comparing the intra-boron bonds of the harmonic ADP results (∼

0.1 Å at T = 900 K in Fig. 6.4) with the high-temperature EAIMD snapshot results

[∼ 0.2 Å at T = 900 K in Fig. 6.6(c)]. The bond length analysis in Fig. 6.2 leads to

similar conclusion, i.e., significant distortions at high temperatures (large error bars
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for the intra-icosahedral bonds compared to other bonds at T = 900 K). These are

generally self-trapped, and cannot contribute to various transport properties at low

temperatures, but several hopping mechanisms activated by temperature [15, 63, 64]

are suggested. Next we show such phonon softening and polaron generation assisted

by e-p interactions can affect the abnormal behaviors of αS and κL in B13C2.

6.3.2 Prediction of Seebeck coefficient

We calculate the value of αS for B13C2 using the DFT-based methods, and Fig.

6.7 results show that αS becomes nearly independent of temperature above 600 K.

Temperature-independent αS is commonly observed in solids when high-temperature

charge conduction is dominated by the hopping of constant-density small polarons

[14, 15].
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Here, available experimental results [15] are confirmed with the direct method

and entropy analyses using DFT. Using NEAIMD shown in Fig. 6.8(a), we calculate

αS with this direct method, i.e., the charge difference under the applied temperature

difference [see Figs. 6.8 (a) and (b)] [105],

αS = −∆φe

∆T
. (6.8)

Here, the potential difference (∆φe) is computed as the ratio of charge difference

(∆qe) and the electric permittivity over the prescribed temperature difference (∆T )

over a distance (l), i.e.,

∆φe =

∫ L

0

ne

ϵeϵ◦
dx =

∆qel

ϵeϵ◦A
, (6.9)

where ϵe and ϵ◦ are the relative and free-space permittivities, and A is the cross-section

area of the simulation cell. For the relative permittivity of B13C2, the experimental

results [126, 211] are used. We note that the low-temperature discontinuities in ϵe

of B13C2 may be ignored because of the polarization and phase change of B13C2.

The simulations details are given in the method section. Figure 6.8(b) shows the

predicted charge distribution along the temperature gradient in the simulation cell.

This snapshot shows the trapped charge and polaron generation in high-temperature

icosahedra. The αS obtained from Eq. (6.8) is plotted in Fig. 6.7, showing an initial

sharp increase with temperature and temperature independence at high temperatures.

These NEAIMD predictions agree well with the available experimental results [15].

To explain this unusual αS(T ) behavior, two different contributions to αS are also
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Figure 6.8: (a) A schematic of B13C2 structure (hexagonal, 2×1×4 supercell) used
in NEAIMD simulations. Distributions of (b) charge and (c) temperature along a
simulation cell.

shown in Fig. 6.7. Using the temperature-dependent Dp shown in Fig. 6.5(a) and

Eq. (6.5), the high-temperature vibrational contributions to αS are predicted. Charge

carriers and their interactions cause a net energy transfer and in B13C2, the locally-

induced polarons change the net energy transfer by employing deformation energy and

hopping activation energy (Ea, ∼ 0.17 eV) [14, 15, 30]. The transport contributions

to αS are calculated with αS,trans,ep = ET/qeT and Eq. (6.7). As shown in Fig. 6.7,

the component αS,vib increases as the temperature increases, while αS,trans,ep rises from

zero, and reaches a peak at about 1/3 of the Debye temperature (TD, ∼ 750 K), and

then falls to a small value. Thus, we verify that the phonon softening contributes to
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αS in B13C2. The sum of these two contributions is in agreement with the temperature

dependence of the αS of B13C2 obtained from our NEAIMD and in experiments [15].

In the low-temperature regime, we note limitations in the extrapolated structural

parameters and the AIMD formalism (e.g., constant-volume calculation). Also we

note that the EAIMD results [Dp(T ), αS,vib, and αS,trans] are more complete thus

differ from the simple approximations used by Emin [14, 15]. The only two softening

modes he used are 10 and 60 meV, i.e., one acoustic and one optical (albeit the lowest

optical) mode. Based on our DFT predictions (see Figs. 6.3 and 6.5), more relevant

modes can be selected. Our results show that such low energy (acoustic) mode are not

affected by the phonon softening, so approximate models should include the higher

energy phonons.

6.3.3 Prediction of lattice thermal conductivity

The lattice conductivity results of B13C2 are also obtained from the NEAIMD

formulism as given in Eq. (2.29). Simulation details are given in the methods (Section

6.2.1). In order to consider the size limitation of NEAIMD, we check the size effect

with three different simulation cells (180, 270, and 360 atoms for B13C2).

The κL of the infinite structure is determined from the linear extrapolation of

their reciprocal relation (κ−1
L versus l−1) [190]. The final κL results of B13C2 shown

in Fig. 6.9 has a plateau behavior in overall temperature range. In order to em-

phasize this unusual temperature-independent κL behavior of B13C2, it is contrasted

with the results for α-B12, i.e., the Slack behavior (∼ T−1) [98, 105, 185]. As dis-

109



200 400 600 800 1000
0

10

20

30

T (K)

κ
L
 (

W
/m

-K
)

 
 

 
 

Experiment, B13C2 

Experiment, Boron 

 NEAIMD, B13C2

 NEAIMD, α-B12

Figure 6.9: Variations of B13C2 and α-B12 lattice thermal conductivity as a function
of temperature. The NEAIMD and available experimental results [187, 215] are also
shown.

cussed in the lattice dynamics and charge analyses, we find two distinct features, (i)

significant e-p coupling, and (ii) large ADP of the chain bond, affecting κL. Based

on the general temperature dependence of κL, various phonon scattering mechanisms

dominate in their respective regimes [105]. At low temperatures (T ≪ TD), phonons

are scattered by the grain-boundary and impurity, and by coupling with the electrons

(most important here). The high temperatures (T > 0.1TD) behavior is dominated by

inter-phonon scattering and follows the Slack relation for long-range acoustic phonon

transport. Although B13C2 and α-B12 have almost the same icosahedral structures,

the uniqueness caused by the addition of carbon into α-B12, makes for the high carrier

density and the C-B-C chain (inter-icosahedral) bond. Significant e-p interactions in

the icosahedra suppress the κL at low temperatures, while the large ADP of Bchain

scatters the heat-conducting phonon waves and reduces κL at high temperatures. In
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contrast, the κL of α-B12 is large and follows the Slack relation well. This is because

there are no significant phonon scattering sources (e.g., e-p interactions and high ADP

bonds). The predicted NEAIMD results are in good agreement with the experimental

results [187, 215].

6.4 Summary

Boron carbides are common high-temperature materials having anomalous prop-

erties not yet well explained. Here we showed how their polarons and phonons are

affected by the interaction between lattice dynamics and charge distributions. The

bond softening and e-p coupling caused by the high-temperature Jahn-Teller distor-

tion and polaron formation are observed in optical phonons of icosahedra. The unique

atomic displacement of the C-B-C chain bonds shows significant interphonon scatter-

ing of the acoustic modes. These theoretical and computational treatments predict

abnormal temperature independencies of the Seebeck coefficient and lattice thermal

conductivity, showing good agreement with experimental results. Understanding of

such coupled phonon and polaron effects of B13C2 offers insights for new TE materials.
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Chapter 7

Tuning of Electron and Phonon

Behaviors in Liquid-Like Copper

Selenides

7.1 Introduction

The copper selenide (Cu2Se) has been well-known as a mixed (electronic-ionic)

conductor with a significant phase transition. Above the transition temperature (Ttr

= 413 K), it has the antifluorite FCC structure (Fm3m; aka β-Cu2Se), while a

monoclinic-based superstructure (α-Cu2Se) is revealed below Ttr [27, 47, 93, 122, 192,

220]. Here, the antifluorite β-Cu2Se structure is considered for the high-temperature

TE applications. As shown in Fig. 7.1(a), the general crystal structure of the β-

Cu2Se consists of eight cations (Cu+) and four anions (Se2−) in its conventional cell.

However, this antifluorite structures have many interstitial sites, as shown in Fig.
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Figure 7.1: (a) The crystal structure of the β-Cu2Se. Blue and green spheres are Cu
and Se atoms. (b) Possible atomic sites for Cu+ and Se2− ions. The site designations
are given in the legend.

7.2(b). The Se atoms form a rigid framework (FCC site, 4a) in the β-Cu2Se crystal

lattice and Cu+ ions are distributed on the different interstitial sites (octahedral, 4b;

tetrahedral, 8c; trigonal site, 32f) [93, 122, 150]. These close-neighbor interstitial sites

allow for a significant migration of the cations (here Cu+ ions). Recent investigations

of the β-Cu2Se have been related to applications as superionic conductor [9, 21,

47] and as TE material [122, 220] (mainly due to the significant migration of Cu+

ions). In particular, the liquid-like properties of the β-Cu2Se leads to a total thermal

conductivity of κ = 0.8 W/m-K and show ZT of 1.5 at T = 1000 K [122]. However,

due to lack of theoretical treatments, especially at high temperatures, fundamental

understanding and predictions of the β-Cu2Se structure and its TE properties have

been lacking.

In this chapter, we present the first-principles based, comprehensive computational

analyses of the electronic and phonon properties of the β-Cu2Se and a few similar com-
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pounds (e.g., β-Cu2Te). We investigate the temperature and composition-dependent

lattice dynamics and electronic properties of these structures, is search of highest ZT

among them. We compare these predictions with the limited experimental results,

noting the challenges in these measurements.

7.2 Calculation Methods

7.2.1 DFT calculations

We calculate the high-temperature atomic structure and the lattice dynamics us-

ing various DFT calculations implemented in the VASP [116] and PHONON [151] codes.

The PBE parameterization of the GGA for the exchange-correlated functional [154]

and the PAW method for modeling core electrons (energy cutoff = 355 eV) [26, 117]

are used. Details are given in Sections 2.2 and 2.3. The high-temperature β-Cu2Se

structures are predicted using the EAIMD. EAIMD simulations on supercells con-

sisting of 96 (2×2×2 conventional cells) atoms. Considering the thermal expan-

sion, we prepare supercells with the experimental thermal expansion coefficient (α =

2.3×10−5/K for 300 to 773 K and α = 10.7×10−5/K for 773 to 1000 K) [122] and

lattice parameter (a = 5.864 Å at T = 453 K; a = 5.917 Å at T = 873 K) [122, 220].

The Brillouin zone is sampled at the gamma point. After constant-temperature sim-

ulations with the Nosé thermostat for 1 ps (0.5 fs time steps) reaching equilibrium,

we collect atomic trajectories for 22 ps (1 fs time steps).
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7.2.2 Transport properties calculations

The electronic properties are calculated with the full-potential linearized aug-

mented plane-wave method [183] as implemented in the WIEN2k code [25]. We cal-

culate all TE transport properties of high-temperature β-Cu2Se using WIEN2k and

BoltzTraP [127] codes, and a NEAIMD code. All the β-Cu2Se transport properties

are calculated from the DFT band energies. They are obtained from thermally-

disordered structure (EAIMD snapshots at each temperature) and the Fermi-Dirac

smearing factors are also used in the transport-property calculations. The muffin-tin

radii are chosen to be 2.5 a.u. for all atoms. The plane-wave cutoff Rkmax = 7.0

suffices for good convergence. Convergence of the self-consistent calculation cycle

is performed using 36 (for high temperature) k-points inside the reduced Brillouin

zone to within 0.0001 Ry with a cut-off equal to -6.0 Ry between the valence and

the core states. Since TE transport properties are sensitive to the band structures

near the Fermi surface, we use the modified Becke-Johnson exchange potential in

combination with the LDA-correlation to avoid the underestimation of the bandgap

energy (a well-known problem with the DFT method) [19, 199]. For the transport

calculations, the original k-mesh is interpolated onto a mesh five times as dense and

the eigenenergies are found with BoltzTraP code. Within the Boltzmann transport

theory, the temperature- and doping concentration-dependent conductivity σe(T, µe)

and Seebeck coefficient αS(T, µe) are found in Section 2.5.1 [see Eqs. (2.23), (2.24),

(2.25), and (2.26)].

The NEAIMD simulations are employed for the prediction of lattice thermal con-
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ductivity (κL). For non-equilibrium simulations, we use the VASP code modified to

perform NEAIMD-energy exchange [103, 142] as reported in [190, 207]. As given

in Eq. (2.29), the heat flux is imposed by dividing the simulation cell into sec-

tions of equal width, and exchanging kinetic energy (velocity swapping) between the

hot and cold sections. Details are given in Section 2.5.2. NEAIMD simulations

are performed on (hexagonal representation) supercells consisting of 192 (conven-

tional 4×2×2 supercell), 288 (6×2×3 supercell), and 384 (8×2×2 supercell) atoms.

Structure preparations are same as those for the EAIMD simulations. We carry out

constant-temperature simulations using a Nosé thermostat for 1 ps (0.5 fs time steps).

After reaching equilibrium, a non-equilibrium calculation is performed for 22 ps (1 fs

time steps).

7.3 Results and Discussion

7.3.1 Lattice dynamics

Using the lattice dynamics analyses based on the first-principles calculations, the

unique vibrational behavior of the β-Cu2Se (e.g., the distinct temperature-dependent

phonon softening due to the large interstitial displacement of the Cu atoms) are inves-

tigated. Figures 7.2(a) to (c) shows the temperature-dependent atomic trajectories

of the β-Cu2Se atoms obtained from the EAIMD simulations. The Cu atoms are

highly displaced and disordered, while the Se atoms nearly remain in a rigid frame-

work. This is quantified with the normalized directional changes of atomic density
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Figure 7.2: The EAIMD trajectories of the β-Cu2Se structures for 5 ps. Blue is for
Cu and green is for Se. (a) T = 500, (b) 700, and (c) 900 K.
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Figure 7.3: The normalized atomic density distribution of the β-Cu2Se structures for
10 ps. (a) T = 500, (b) 700, and (c) 900 K.

distribution for each element. In Figs. 7.3(b) and (c), the dimensionless atomic den-

sity distributions for the structure at T = 700 and 900 K are compared with the

results at T = 500 K in Fig. 7.3(a). The low-temperature structure of the β-Cu2Se

is not populated around the borders of the Se FCC and the Cu tetrahedral sites,

indicating no significant movement (i.e., migration between neighboring 8c sites) of

both elements at T = 500 K. For the Cu atoms, the nearest interstitial sites are ac-

cessed (occupied), and its density distribution is then broadened. This results from

the energy-preferable high occupancies of FCC (for Se) and 8c (for Cu) sites and

the sufficiently large barrier energy to prohibit the Cu migration. As temperature
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Figure 7.4: Calculated (a) total phonon dispersion curves, and (b) density-of-states
of the β-Cu2Se. The projected phonon density-of-states are also shown with the
appropriate colors.

increases, different displacements of these ions are observed. The density distribution

of Cu atoms becomes significantly scattered and migration among site occurs, but for

the Se atoms this is much limited. It is the existence of the multiple interstitial sites

(e.g., 32f trigonal) allows for such displacement and migration of the Cu+ ions.

Figures 7.4(a) and (b) show the calculated phonon dispersion, and the (total and

projected) density-of-states (Dp) for the β-Cu2Se. As expected, the heavy Se atoms

mostly occupy the high-phonon energy portion of the spectrum (> 3 THz), while

the Cu atoms cover the others. For the acoustic phonons (dominant heat carriers),

the contributions from the Cu and Se atoms are nearly equal, but the roles of Cu

ions are rather notable. The Cu atoms cause a flattened dispersion around 1 THz,

in all directions and this suppress the acoustic phonon propagation of the Se atom,

a similar role of the guest-atom vibration in the filled skutterudites [20, 41, 53, 115].
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Figure 7.5: Temperature-dependent electronic band structures of the β-Cu2Se. (a) T
= 500, (b) 700, and (c) 900 K.

This observation is consistent with the general vibration understanding (i.e., the rigid

Se framework and the mobile Cu+ ions) and suggest more (i.e., heat conduction and

local vibrational roles of the Cu+ ions) about the origin of the low lattice thermal

conductivity of the β-Cu2Se.

7.3.2 Electronic transport properties

The temperature-dependent electronic band structures of the β-Cu2Se are shown

in Figs. 7.5(a) to (c). The calculated band structures of the thermally-disordered

β-Cu2Se supercell provide more reliable electronic states at high temperature (above

450 K). As expected, the available results of the bandgap energy of the β-Cu2Se are

limited (∼ 1.25 eV at T = 300 K [188]), due to the many experimental challenges.

Here, we have verified that the bandgap energy of the β-Cu2Se is approximately 0.30

eV at T = 500 K and decreases as temperature increases (∼ 0.25 eV at T = 900 K).
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Figure 7.6: Electronic band structure of four antifluorite chalcogenides at T = 500
K. (a) Cu2Se, (b) Cu2Te, (c) Ag2Se, and (d) Ag2Te.
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The alloyed compounds are one of the most promising tuning strategies for achiev-

ing higher ZT (compared to the pristine structures). To explore these possible alloy

compounds of the β-Cu2Se, we examine the electronic band structures of a few an-

tifluorite chalcogenides (M2X for M = Ag, Cu and X = Se, Te) and the results are

shown in Figs. 7.6(a) to (d). The same β-Cu2Se is used. Note that the bandgap

energy decreases (increases) when alloying with Ag (Se) instead of Cu (Te). Also

note that significant changes in the band structure are found in the β-Cu2Te, while

the other compounds show only change in the bandgap energy (0.18 eV for β-Ag2Se

and 0.40 eV for β-Ag2Te). For the β-Cu2Te, its band structure shows enhancement

in the X- and A-direction conduction valleys. This makes the bandgap energy of the

β-Cu2Te an indirect 0.35 eV, with the possibility for high electron degeneracy. Such

features in the electronic states of the β-Cu2Te are very promising for achieving high

ZT , similar to the band-convergence effects of the PbTe [109, 153]).

Using the Boltzmann transport equations under the relaxation time approxima-

tion, the electronic TE transport properties of the β-Cu2Se and a few others (e.g.,

β-Cu2Te) are calculated. The calculated transport properties at two different tem-

peratures (T = 500 and 900 K) are shown in Figs. 7.7(a) to (d), as a function of

electron energy level. The trends in the composition dependence of the TE properties

are correlated with their band structure behaviors. Within the feasible doping range

(±0.17 eV up to 1020 cm−3), the Seebeck coefficients of the β-Cu2Te and β-Ag2Te

compounds are larger than that of β-Cu2Te, because of the enlarged bandgap and

increased electron degeneracy. Note that the power factor (divided by the relaxation

time) of the β-Cu2Te is the largest among the compounds considered. We suggest
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the alloy compounds of β-Cu2Te and β-Cu2Se are promising for superior ZT , since

they have comparable electronic transport properties but expected additional phonon

scattering (e.g., due to mass fluctuation).

7.3.3 Lattice thermal conductivity

For the phonon transport of the β-Cu2Se, its lattice thermal conductivity is ob-

tained from the NEAIMD method as expressed in Eq. (2.29). Simulation details were

given in the methods (Section 7.2.1). Considering the size limitation of NEAIMD, we

check the size effect with three different simulation cells (192, 288, and 384 atoms for

the β-Cu2Se).

The calculated results for the lattice thermal conductivity of the β-Cu2Se are

shown in Figs. 7.8(a) and (b). Figure 7.8(a) shows the supercell-size (l) dependence

of the calculated lattice thermal conductivity values, and their extrapolation to very

large l, for several temperatures. This extrapolation is common, and reliable practice

as reported in [190]. Figure 7.8(b) also shows variations of the lattice thermal conduc-

tivity with temperature and this is a rather abnormal temperature dependence, over

the temperature range (κL = aT b, where a = 12.8 and b = -0.38). While the bulk,

homogeneous materials dominated by the interphonon scattering with expect the T−1

dependency [98, 105, 185]. This behavior is not readily explained by the conventional

phonon scattering mechanisms, so designating the phonon-scattering mechanism of

the β-Cu2Se is challenging. In order to analyze this weak temperature-dependent

lattice thermal conductivity behavior of the β-Cu2Se, we can recall its lattice dynam-
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ics results discussed in Section 7.3.1. There we found two distinct features: (i) the

distinct phonon softening due to the large interstitial displacement of the Cu+ ions,

and (ii) the limited displacement and a framework role of the Se2− ions, both affecting

lattice thermal conductivity. Over the temperature ranges, most acoustic phonons

are highly scattered by the interphonon scattering. So, this unique weak temperature

independence is caused by the large interstitial displacement of the Cu+ ions. In

addition, the weak temperature dependence can be explained the effect of rigid Se

framework. Conclusively, these two different effects are combined, and it allows for

the weak temperature dependence in the lattice thermal conductivity of the β-Cu2Se.

In Fig. 7.8(b), the available experimental results are also shown and we note the

difference between the NEAIMD and the experimental results [122, 220]. These can

be due to the temperature-dependent instabilities arising from the significant atomic

migrations between adjacent NEAIMD simulation sections. It can also be due to

the problems related to atomic diffusion in the experiments (e.g., sample degradation

such as change in the Cu composition). We also note that the simple application of

the Wiedemann-Franz law with a constant (metallic) Lorenz number, can result in

the deduced lattice thermal conductivities which are unrealistic.

7.4 Summary

In summary, we investigate the temperature-dependent electronic and phonon

properties of the β-Cu2Se and similar compounds, using the first principles. The large

interstitial displacement of Cu+ ions dominates the scattering of heat-carrying phonon

126



propagation observed in a rather rigid Se framework, resulting in high ZT with the

significant suppression of lattice thermal conductivity. Exploring alloy compounds

[e.g., β-Cu2(Se,Te)], we note that further suppression of lattice thermal conductivity

and higher ZT can be expected, since the electronic TE transport properties are not

deteriorated.
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Chapter 8

Summary and Future Work

8.1 Contributions

This study investigates tuning of the TE materials atomic structure and their

thermal evolution for high ZT , using the first-principles based atomistic simulations.

The significance of this work is the introduction and prediction of the temperature

and constituent-dependent atomic motions and their roles in the phonon and charge

carriers TE energy conversion. This work is based on unified and integrated com-

putational methods (from prediction of the ground-state structure to prediction of

the TE transport properties). Through these techniques, we examine tuning the

TE transport properties by choosing/modifying the related independent and coupled

structural variables. The electronic metrics of high ZT are the intrinsic or extrinsic

control of the atomic displacement to affect the power factor and electronic ther-

mal conductivity. Through the structural metrics for these atomic displacements we

also show their dominant roles in the reduction of the lattice thermal conductivity.
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Several example structures (e.g., lead tellurides, skutterudites, boron carbides, and

copper selenides) are used to investigate the roles of the atomic thermal displacement

in achieving high ZT .

The significant contributions of this work are summarized below.

• Analyses on the roles of thermal disorder in lead tellurides With the EAIMD

simulations, we observe thermal disorder and find band convergence with in-

creased temperature and close relation between thermal disorder and TE prop-

erties of p-doped PbTe. Lack of short-range order causes local overlap of valence

orbitals and increase in density-of-states near the Fermi level. Effective mass

becomes temperature-dependent peaking in the converged-band regime. With

ECMD and the Green-Kubo autocorrelation decay we find reduction in lattice

thermal conductivity (suppression of short- and long-range acoustic phonon

transports). The described thermal-disorder roles lead to high ZT , and good

agreement with the experimental results [109].

• Investigation on order-disorder transition of filled skutterudites. Filled skut-

terudites are high-performance TE materials and we show how their lattice

thermal conductivity is greatly influenced by the topology of the filler species.

We predict the ab-initio phase diagram of BaxCo4Sb12 and find several stable

configurations of Ba ordering over the intrinsic voids. The lattice thermal con-

ductivity predicted using ECMD shows a minimum in the two-phase mixture

regime, dominated by significantly reduced long-range acoustic phonon trans-

port [111].
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• Analyses on cage-breathing lattice dynamics of substituted skutterudites. Based

on DFT calculations, the substituted Ge atoms form the softest bonds in the

compound acting as a pseudo-rattler with distinct mode-flattening features and

a local phonon softener (comparable to rattlers in filled skutterudites). The

collective modes of this lattice configuration induce the breathing mode in the

cage which is highly correlated with the reduction in lattice thermal conductiv-

ity. The lattice thermal conductivity predicted with NEAIMD simulations is in

good agreement with the experimental results and the point-defect scattering

model. We suggest that this new scattering mechanism can be combined with

the conventional rattling mechanism, thus causing further reduction in κL in

these hybrid structures [41].

• Understanding and prediction of the coupled polaron and phonon effects of boron

carbides. The anomalous temperature-independent behavior of the Seebeck co-

efficient and the lattice thermal conductivity of B13C2 are explained through

polaron and phonon evolutions found using EAIMD. Analyses of lattice dynam-

ics show that the unique icosahedron structures dominate the optical phonon

modes and C-B-C intericosahedral bonds dominate the local acoustic vibration.

We identify that the temperature-induced Jahn-Teller distortion and electron-

phonon coupling in icosahedron structures create small polarons (i.e., charge

trapping and phonon softening). We also verify that large-displacement chain

atoms scatter heat-conducting phonons. Using EAIMD and NEAIMD meth-

ods (including entropy and energy analyses), we predict the Seebeck coefficient
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and its components as well as the lattice thermal conductivity, and we find good

agreement with experiments. Softened and localized phonons make a significant

vibrational contribution to the Seebeck coefficient and allow for an amorphous-

like lattice thermal conductivity [110].

• Tuning of electron and phonon behaviors in liquid-like copper selenides. Using

the first principles, we analyze the phonon and electronic properties of the β-

Cu2Se and a few similar compounds (e.g., Cu2Te). The temperature-dependent

lattice dynamics shows large interstitial displacement of the Cu+ ions and a

rather rigid Se framework. These results in significant suppression of the lattice

thermal conductivity and weak temperature dependence, ∼ T−0.3. We examine

the roles of cations and anions such as Cu (or Ag) and Se (or Te) in the elec-

tronic TE properties. Then we suggest that the alloys of β-Cu2Te and β-Cu2Se

are promising high ZT materials, since they have comparable electronic trans-

port properties but reduced lattice thermal conductivity due to additional alloy

phonon scattering.

8.2 Proposed Future Work

Three possible extensions of this work are suggested below.

• Predictions employing direct DFT simulations should be extended to all TE

transport properties to complement the current BTE-RTA predictions. To ac-

curately model and predict the electronic TE transport properties, we still use

this classic model. However, we know this method is derived based on many as-
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sumptions and require empirically-based properties. In this study, we suggested

and used the direct ab-initio predictions of the lattice thermal conductivity and

the Seebeck coefficient. Additional comprehensive DFT methodologies cover-

ing electrical conductivity and electronic thermal conductivity are should be

developed.

• Extend to treatment of the phonon and charge carrier transport for the non-

periodic materials (e.g., organic or low-dimensional structures). These have

been receiving increased attention due to much anticipated potentials for tuning

as compared to the bulk materials. However, due to current limitations of the ab-

initio treatments, fundamental understanding and predictions of their structure

and TE properties are lacking. This study mainly focuses on the prediction and

tuning of the periodic materials in TE application. To complete this challenge,

further studies should consider the van der Waals force influencing transport

among neighboring structures and the important statistical approximations for

the non-periodic structures.

• Experimental investigations should be carried out on the proposed high-ZT

structures to verify the predicted scattering mechanisms and transport proper-

ties. Recent major theoretical advances now make possible multiple time and

length-scale simulations and prediction, and allow for exploring promising new

TE structures. In the future, we need to verify these new understandings and

predictions via the extensive experimental investigations.
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8.3 Outlook

This atomic-level treatment can be extended to meso-scale transport phenomena

to include the effect of nanostructures (bulk, non-homogeneous materials). Such

future progress is essential for exploring, understanding and designing new superior

ZT materials.
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Appendix A

Entropy Analysis of Seebeck

Coefficient

A.1 Introduction

The Seebeck effect is the formation of electric potential in presence of spatial

variation of temperature. In 1821, Seebeck observed that a temperature difference

between two ends of a metal bar created an electrical current in between, with the

voltage (difference in electric potential φe,i) being directly proportional to the tem-

perature difference [45]. Physically, when one side of a conductor is hot, electrons

have higher thermal energy and will diffuse to the cold side. The charge (carrier)

concentration rise on the cold side builds an internal electric field that resists the dif-

fusion. The Seebeck voltage is the steady-state potential difference under open-circuit

condition. Here,

−(φe,2 − φe,1) = αS(T2 − T1), (A.1)
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Figure A.1: Various contributions to the Seebeck coefficient with respect to different
carriers. Their physical interpretation and example of materials for each category are
also shown.

where αS is the Seebeck coefficient and Ti is the temperature of site i.

A.2 Derivation

As shown in Fig. A.1, various carriers contribute to the Seebeck coefficient. Also,

their interactions with electrons, magnons, phonons, and other charge carriers (e.g.,

polarons) substantially affect the Seebeck coefficient. Figures A.2(a) to (d) show the

atomistic schematics for those contributions. The overall Seebeck coefficient can be

expressed as the sum of two contributions [63, 64, 65, 141],

αS = αS,pres + αS,trans, (A.2)
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where αS,pres is the sum of contributions to the carrier-induced entropy change, i.e.,

αS,pres = αS,mix + αS,spin + αS,vib, (A.3)

where the right-hand side terms are change of the entropy-of-mixing, spin entropy, and

vibrational entropy upon adding a charge carrier, respectively. The other contribution

αS,trans is the net energy transferred in moving a carrier divided by qeT , where qe is

the carrier charge [63].

Each carrier mostly contributes to the Seebeck coefficient in different way and

specific conditions, however they are highly coupled and interacting with phonon. In

phononic point of view, most prominent contributions to the Seebeck coefficient can

be summarized as electron-phonon coupling [65, 73], phonon drag [65, 168], phonon-

mediated spin pumping [200], phonon-assisted carrier hopping [64, 65, 213], and

carrier-induced phonon softening [64, 65, 141]. Although those effects have been

examined in several experimental results [64, 65, 73, 141, 168, 200, 213], no over-

all coupling consideration or DFT-based calculation of phonon contributions to the

Seebeck coefficient have been reported yet. The analyses and tuning of its phonon

contribution is considered as one of promising strategies to achieve the high Seebeck

coefficient.

A.2.1 Mixing component

The entropy-of-mixing contribution is usually dominant in lightly-doped semicon-

ductors. The change of the entropy-of-mixing upon adding a carrier to a system is
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large because there are very few carriers per thermally available state [64, 90]. Figure

A.2(a) shows the electron mixing with a certain temperature gradient. The system

is described as spinless fermions (here, electron) on atomic sites. As given in [105],

the calculated degeneracy for this system is given by W = Na!/N !(Na - N)!, where

N is the number of electrons and Na is the number of atomic sites per unit cell.

The entropy is given by S = kBln(W ) = kBN ln(Z) + E/T . Using the Stirling’s

approximation, and differentiating with N , we have,

αS,mix =
kB
qe

ln(
1− f ◦

e

f ◦
e

), (A.4)

the so-called Heikes formula. Here f ◦
e = N/Na is the ratio of electrons to sites (carrier

concentration). An alternative form of this simple expression is obtained when the

ratio is expressed in terms of the energy of the electronic energy band, the chemical

potential (µ) and the thermal energy (kBT ) via the Fermi function, f ◦
e = 1/{exp[(Ee

- µ)/kBT ] + 1}, i.e.,

αS,mix = −kB
qe

(
Ee − µ

kBT
). (A.5)

In high-temperature regime, the electronic energy level shifts with temperature, and

the Seebeck coefficient become change. Figure A.2(b) show the thermal disorder effect

caused by a solid’s thermal expansion and the electron-phonon interaction.
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A.2.2 Spin component

As given in Eq. (A.1), the common Seebeck effect refers to the generation of an

electric potential ∆φ by placing a non-magnetic material in a temperature gradient

∆T . Extending the Seebeck effect to spins, a ferromagnetic alloy [200] can be an

example. Two spin channels would introduce different TE voltages and consequently

a spin voltage would be generated, ∆φ↑ - ∆φ↓ = (αS,spin ↑ - αS,spin ↓)∆T . The

contribution to the Seebeck coefficient that results from carriers’ presence altering the

systems spin entropy also becomes simple in absence of intersite magnetic interactions

[see Fig. A.2(b)]. Then the spin contribution for a carrier confined to a single magnetic

site is

αS,spin =
∆Sspin

qe
=
kB
qe

ln(
2s+ 1

2s◦ + 1
), (A.6)

where s◦ and s are the net spins of the magnetic site in the absence and presence of

the carrier, respectively [64].

A.2.3 Vibration component

As shown in Fig. A.2, many vibrational contributions to the Seebeck coefficient

are existed. The softening of the vibrational frequencies produces a change of the

vibrational entropy is one of examples. Figure A.2(c) show the polaron induced

phonon softening and the augmentation of vibrational component of the Seebeck

coefficient. The full crystal Hamiltonian for the vibrational part of the energy is

obtained by adding the potential and kinetic energy. As shown in [105], we write the
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Hamiltonian (for the quantum-harmonic oscillator) as [28, 189]

Hvib =
∑
q

~ω(q)(f ◦
p +

1

2
). (A.7)

This expression gives the Hamiltonian for the vibrational part of the energy, and it

can be used to solve analytically for a number of thermodynamic properties. The free

energy is [128]

Fvib = −kBT lnZ = −kBT ln[
∑
states

exp(−Hvib

kBT
)] = kBT ln[

∑
q

ln[2sinh
~ω(q)
2kBT

]. (A.8)

This entropy is the negative derivative of the free energy, i.e., [128]

Svib = −∂Fvib

∂T

= 3NkBT

∫ ω

0

{ ~ω
2kBT

coth(
~ω

2kBT
)− ln[2sinh(

~ω
2kBT

)]}Dp(ω)dω, (A.9)

where Dp(ω) is the phonon density-of-states for the structure. As shown in [105], the

phonon density-of-states give the number of modes with frequency lying in the interval

[ω, ω + dω]. From the high-temperature limit (kBT ≫ ~ω) and series expansions of

the hyperbolic functions, the above reduces to

Svib = −3NkB

∫ ∞

0

[(
~ω

2kBT
)(
2kBT

~ω
)− ln(

~ω
2kBT

)]Dp(ω)dω

= −3NkB

∫ ∞

0

Dp(ω)ln(ω)dω + 3NkB[1 + ln(kBT )]. (A.10)
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Equation (A.10) is given per atom,

Svib/atom = −kB
∫ ∞

0

Dp(ω)ln(ω)dω + kB[1 + ln(kBT )]. (A.11)

The last term is structure independent and cancels out when taking differences. Terms

involving ln(~) are generally left out of the above equation for convenience (they also

cancel when taking differences). Hence, the vibrational contribution to the Seebeck

coefficient [63, 64] is simplified in high-temperature region as

αS,vib =
∆Svib

qe
=
kB
qe

∑
i

−∆ωi

ωi

. (A.12)

A.2.4 Transport component

As shown in Fig. A.1, some charge carriers and their interactions cause the change

of net energy transfer. For example, locally-induced polarons change the net energy

transfer by employing deformation energy and hopping activation/transfer energy

[see Fig. A.2(d)]. To calculate αS,trans related with the phonon-assisted hopping, we

start from αS,trans = ET/qeT , where ET is the net flow of the vibrational energy that

accompanies a phonon-assisted hop from an initial site to a final site [61, 64], i.e.,

ET =
kBT

2

2
[
∂ln(γ̇1,2/γ̇2,1)

∂T1
− ∂ln(γ̇1,2/γ̇2,1)

∂T2
]T1=T2=T . (A.13)

Here γ̇1,2 (and γ̇2,1) are the hopping rates from site 1 to site 2 (and from site 2 to site

1), while site 1 is at temperature T1 and site 2 is at temperature T2. The ratio of the
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jump rate is

γ̇1,2
γ̇2,1

=

∫∞
−∞ exp[G(1, 2 : t)cos[F2(1, 2 : t) + ∆E12t/~]dt∫∞
−∞ exp[G(2, 1 : t)cos[F2(2, 1 : t) + ∆E21t/~]dt

, (A.14)

where,

G(1, 2 : t) =
∑
q

[φc
e−p,1coth(

~ω
2kBT1

) + φe−p,2coth(
~ω

2kBT2
)][cos(ωt)− 1], (A.15)

F2(1, 2 : t) =
∑
q

[φc
e−p,1 + φe−p,2]sin(ωt), (A.16)

and ∆E12 is the difference between final and initial site energies (including lattice-

relaxation energies) for a carrier that hops from site 1 to site 2. Here the functions

φe−p,1(φe−p,2) describe the coupling of the electronic state at site 1 (and site 2) to

vibrations of frequency ωp when unoccupied or occupied by a carrier, respectively.

A simple expression for ET is obtained when one observes that the binding energy

varies inversely with the local stiffness, Eb ∼ 1/Mω2, and one considers the limit of a

small fractional carrier-induced frequency shift, (ω - ωc)/ω = |-∆ω/ω| ≪ 1. So, Eq.

(A.13) simplifies to [63, 64]

ET = Ea

∑
i

(
−∆ωi

ωi

)
~ωi/2kBT

sinh(~ωi/2kBT )
. (A.17)
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A.3 Example: Phonon Softening and Polaron Hop-

ping for B13C2

Boron carbides (B12+xC3−x) have distinctive structures and unconventional bond-

ings. As shown in Fig. 6.1, a boron carbide unit cell (rhombohedral representation)

contains an icosahedron consisting of twelve atoms, and strong covalent bonds linking

icosahedra to one another. As a result, boron carbides are very stiff, hard solids with

melting temperatures of ∼ 2600 K [13, 54, 62]. Replacing carbon by boron atoms

removes bonding electrons and thereby produces hole-like charge carriers. Such non-

stoichiometry results in high densities of p-type charge carriers (∼ 1021 cm−3), or

about one hole per unit cell [13].

Boron carbides’ extraordinary hardness and high carrier densities suggest that

these solids would have large thermal conductivities and small Seebeck coefficients.

Yet many boron carbides have surprisingly small thermal conductivities and large

Seebeck coefficients, suggesting localized charge carriers that move with low mobility

by polaronic hopping.

The Seebeck coefficients of a boron carbide sample (x = 1) become nearly inde-

pendent of temperature above about 600 K (see Fig. 6.7). Temperature-independent

Seebeck coefficients are commonly observed in solids when high-temperature conduc-

tion is dominated by the hopping of constant density small polarons [14, 15]. Those

experimental results are confirmed using the DFT-based direct method, NEAIMD.

From [105], the potential difference (∆φe) is computed as the ratio of charge differ-

ence (∆qe) and the electric permittivity over the prescribed temperature difference
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(∆T ) over a distance (l) [see Eq. (6.9)].

For simulations we use the VASP code [116] modified to perform NEAIMD-energy

exchange [103, 142] as reported in [190, 207]. The simulations are performed on the

supercell of 360 atoms, based on the experimental results for thermally expanded

lattice parameter [198]. We equilibrate each simulation using the EAIMD for 1 ps

with a 0.5 fs time steps. Equilibrium is followed by 22 ps of NEAIMD using a 1-fs

time step. To clarify the charge associated with each atom along the simulation cell

(hot to cold), Bader’s analysis [91] on a charge density grid is used with a DFT charge

density.

The Seebeck coefficient is finally obtained from Eq. (A.1). As shown in Fig. 6.7,

the NEAIMD predictions of boron carbides agree with experimental results. To clarify

the origin of this unusual trend of boron carbides’ Seebeck coefficient, two phonon

contributions to the Seebeck coefficient are also shown in Fig. 6.7. First, reducing

the local vibrational frequencies (phonon softening) increases the vibrational entropy.

This entropy is from the negative derivative of the thermodynamic free energy and

can be simplified using the high-temperature limit (kBT ≫ ~ω) and series expansions

of the hyperbolic functions (see Section A.2.3). Hence, the vibrational contribution

to the Seebeck coefficient is given in Eq. (A.12). Also, some charge carriers and

their interactions cause the change of net energy transfer. In boron carbides, locally-

induced polarons change the net energy transfer by employing deformation energy

and hopping activation energy (Ea). To calculate the transport Seebeck component

related with the phonon-assisted hopping, we start from αS,trans,ep = ET/qeT and Eq.

(A.13). Using the binding energy relation with the local stiffness, the exact form of ET
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can be simplifies to Eq. (A.17). Using Eq. (A.17), a simple expression for the net flow

of vibrational energy, the transport contribution related with phonon-assisted hopping

is calculated. In the temperature-dependent phonon density-of-states obtained from

EAIMD and the Fourier transform of a velocity autocorrelation function over 22 ps

(with 1 fs steps), we observed the phonon softening of overall frequency domain.

This contribution to the high-temperature phonon part of the Seebeck coefficient.

The vibrational part (αS,vib) is increasing as temperature becomes higher. The other

contribution (i.e., αS,trans,ep) rises from zero, reaches a peak at about 1/3 of the relevant

Debye temperature (∼ 750 K), and then falls to a small value. Summing these two

contributions is in good agreement with the temperature dependence of the boron

carbide Seebeck coefficient from NEAIMD and experiment. Note that our EAIMD

decomposition provides different results with the results of Emin’s approximation

[14, 15].

Our theoretical and computational treatment demonstrates that boron carbides

have a high-temperature phonon softening and phonon-assisted polaron hopping con-

tributing to the Seebeck coefficient. Those understanding and new predictions show

this material is a good example to show phonon contributions to the Seebeck coeffi-

cient.
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Appendix B

Thermal Conductivity of Uranium

Dioxides

B.1 Introduction

Uranium dioxide (UO2) is a stable fluorite structure (CaF2 type, space group

Fm3m) containing 4 U4+ and 8 O2− ions in a conventional cell (Fig. B.1). This crys-

talline solid is one of the most common nuclear fission fuel materials with high melting

temperature (Tm ∼ 3120 K), radiation stability, and chemical compatibility but has

low thermal conductivity (κ) and fuel density impose. The low thermal conductivity

directly influences the thermal stability (e.g., local heating and swelling of the fuel

pellet) and the operating temperature [71, 165], so accurate thermal conductivity

data and possible improvements are important.

To explain the heat conduction mechanisms in UO2, various theoretical [51, 85,

175], computational [10, 16, 217, 218], and experimental [4, 7, 12, 17, 46, 79, 82, 94,
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y

xz

Figure B.1: Crystal structure of pristine UO2 using the conventional cell (blue is U
and red is O).

125, 136, 138, 155, 164, 209, 218] studies have been performed in the last five decades.

These include the effects of the crystalline structure [4, 138, 155, 164, 209, 218], non-

stoichiometry [82, 175], porosity [12, 125], and irradiation [7, 136]. These show large

grain and stoichiometric composition are favorable for heat conduction, while the

defects (e.g., pores remaining after sintering, and radiation-caused voids, impurities,

and fission products) hinder the transport of heat carriers. Also, it has been suggested

[4, 71, 85, 138, 164, 175] that charge carriers play a significant role in high-temperature

heat conduction. However, so far due to the absence of first-principles based results,

the fundamental understanding of the UO2 thermal conductivity mechanisms (includ-

ing the role of charged heat carriers) has been lacking.

In the large-bandgap energy crystalline materials, phonon is considered as the

dominant heat-conducting carrier [105]. The heat conduction of UO2 is dominated

by phonon transport up to moderate temperatures (T < 1500 K). This phonon be-
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havior (and lattice dynamics) is clearly explained by recent atomic-level simulations

based on the DFT, including prediction of its significant anharmonicity [219] and me-

chanical/thermodynamic/vibrational properties [80, 221]. In the high-temperature

regime (T > 1500 K), many reports have shown that the thermal conductivity of

UO2 is dominated by the charged-carrier transport [4, 71, 85, 105, 138, 164, 175].

Despite the semiconductor feature of UO2 crystal (bandgap energy ∆Ee,g ∼ 2.0 eV)

[18, 51, 55, 204], the classic band theory is inadequate in describing its electrical prop-

erties [11, 18, 51, 71, 84, 85, 86, 144, 167]. To explain the high-temperature behavior

of its thermal conductivity, the small-polaron hopping mechanism has been suggested

[11, 18, 38, 71, 84, 85, 166, 167]. This polaron model is evolving and has not been

yet been verified with first-principles based analysis.

Here, we present a comprehensive analysis of the thermal conductivity of UO2

crystals employing the DFT (including equilibrium/non-equilibrium molecular dy-

namics simulations) and analytic methods. We predict the temperature-dependent

lattice thermal conductivity (κL) of UO2 and compare our DFT predictions with

the available experimental results and the prediction of the ECMD results. The ef-

fects of porosity and grain boundary scatterings are modeled with the effective lattice

thermal conductivity. The charged carriers (polaron and electron) heat conduction

is examined through probing the charge distribution in search of small polarons in

the bulk and adjacent to the surface of UO2 crystal. We combine these to predict

the total thermal conductivity and compare with available experimental results for

sintered-powder UO2.
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B.2 Calculation Methods

B.2.1 Electronic properties and lattice dynamics

We calculate the electronic structures and the lattice dynamics of UO2 using the

DFT method implemented in the VASP [116] and the PHONON code [151], respectively.

The PBE parameterization of the GGA for the exchange-correlated functional [154]

and the projector augmented wave method for modeling the core electrons (energy

cutoff = 400 eV) [26, 117] are used. Details are given in Section 2.2. Since the

standard DFT calculations fail to simulate the strong correlations among uranium

5f electrons as reported in many studies [40, 55, 56, 58, 59, 114, 221], we use one

of the alternatives, the GGA+U method, to predict the exact electronic and phonon

behaviors of UO2. We apply the same value for the effective Hubbard parameter

(U = 4.5 eV and J = 0.51 eV) used in the literatures [40, 56, 58, 59, 114]. The

calculated total and projected electronic density-of-states (De) and bandgap energy

(∆Ee,g = 1.8 eV) are shown in Fig. B.2. We have reproduced the previous results

[40, 56, 58, 59, 114] and verified the suitability the GGA+U method.

All phonon and mechanical and thermodynamic properties are predicted using fits

of the interatomic force-constant tensors to the HF forces. Details are given in Section

2.3. For the high-temperature electronic structure and the lattice dynamics, the

EAIMD is employed. The EAIMD simulations are performed on supercells consisting

of 180 (bulk) and 90 (surface) atoms. To consider the thermal expansion, we prepare

supercells with the experimental thermal expansion coefficient and lattice parameter,

i.e., a(T ) = a◦(9.9734×10−1 + 9.802×10−6T - 2.705×10−10T 2 + 4.391×10−13T 3) and
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Figure B.2: Calculated projected (U 5f -6d and O 2p) and total electronic density-of-
states of pristine UO2. The Fermi level and bandgap energy are also shown.
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a◦ = 5.455 Å at T = 300 K [130]. The Brillouin zone is sampled at the Γ point.

After constant-temperature simulations with the Nosé thermostat for 1 ps (0.5 fs

time steps) reaching equilibrium, we collect atomic trajectories for 22 ps (1 fs time

steps).

B.2.2 Thermal conductivity

To predict the lattice thermal conductivity, we use the NEAIMD with the modified

VASP code based on the energy exchange method [103, 142] as reported in [190, 207].

As given in Eq. (2.29), the heat flux is imposed by dividing the simulation cell into

sections of equal width, and exchanging kinetic energy (velocity swapping) between

the hot and cold sections. Details are given in Section 2.5.2. Because the exchange

of kinetic energy results in non-Newtonian dynamics in the hot and cold sections,

only the linear portion of the temperature gradient is considered in calculating the

temperature gradient. For further validation on the charge associated with each

atom in the simulation cell (hot to cold), the Bader analysis [91] of charge-density

grid is used with the DFT charge density. Using the cubic UO2 conventional cell,

4×2×2 (total 192 atoms), 6×2×2 (total 288 atoms), and 8×2×2 (total 384 atoms)

are prepared as the supercells of NEAIMD simulations. The structure preparations

are same with those for the EAIMD simulations. As with EAIMD, the constant-

temperature simulations are carried for 1 ps (0.5 fs time steps) and after reaching

equilibrium, non-equilibrium calculations are performed for 22 ps (1 fs time steps).

In order to examine the NEAIMD results and clarify the validity of the available
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empirical potential models, the lattice thermal conductivity is calculated using the

ECMD results and the Green-Kubo HCACF decay [99, 105, 111, 133, 134]. The

HCACF decay equation and heat current vector are given as Eqs. (2.27) and (2.28).

Details are given in Section 2.5.2. After checking the size effect of ECMD simulations,

averages are obtained over all three directions for a system consisting of 6×6×6

conventional unit cells (2592 atoms). The Verlet leapfrog algorithm with the Nosé-

Hoover thermostat and the Berendsen barostat are used in the NpT ensemble for 200

ps and then in the NV E for 100 ps to reach equilibrium. Then 3000 ps raw data

are obtained for the calculation of q and the resultant HCACFs are then directly

integrated and the lattice thermal conductivity is set as the average value in the

stable regime of the integral.

B.2.3 Surface structure

To analyze the pores as they are present in common, sintered-powder UO2 sam-

ples, and their effects on the thermal conductivity, we use the well-established slab

models. Three models with simple termination of (100), (110), and (111) surfaces

and consisting of 90 atoms, are used. The slabs were defined with vacuum gaps of

about 10 Å to minimize the interactions between the slab faces [160]. As reported in

literatures [184, 195], the (111) surface consistently exhibits the lowest surface energy,

followed by the (110) surface, and finally the (100) surface having the highest energy.
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B.3 Results and Discussion

B.3.1 Lattice dynamics and thermodynamics properties

To understand the phonon behavior of UO2, we begin with the lattice dynamics

using various DFT. Figures B.3(a) and (b) show the phonon dispersion, density-of-

states (Dp), heat capacity (cv), and ADP using small displacement method in the

harmonic approximation. As we expected, heavy uranium atoms occupy the low-

phonon energy portion of the spectrum (< 6 THz), while oxygen atoms cover the

other. In Fig. B.3(b), the temperature-dependent heat capacity (per unit cell) is

obtained from the phonon density-of-states. The asymptotic value of cv = 9kB, the

classical-harmonic Dulong-Petit limit for solids, is shown and reached for T > TD,

where kB is the Boltzmann constant and TD is the Debye temperature, TD for UO2

= 377 K [212] and 383 K [74]. Note the quantum and anharmonicity effects at

low and high temperatures, respectively. Figure B.3(c) shows the ADP results for

each element. The ADP of O atoms is twice that of U. This large ADP of O is in

part caused by the presence of many interstitial sites in the fluorite structure. The

displacement has limited role in heat conduction, not enough to suppress the lattice

thermal conductivity as Cu atoms in the β-Cu2Se [122], or Ge atoms in Co(Sb,Ge,Te)3

[41].

The time- and temperature-dependent evolutions of the U and O atoms are in-

vestigated with the RDF. Figure B.4 compares the RDF of the bulk-pristine and

the pore-surface obtained from the atomic trajectories of EAIMD simulations. The

known RDF thermal evolutions of the bulk structure are predictable, i.e., the peak
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broadening and the non-Gaussian asymmetric feature with rising temperature (due to

its well-known anharmonicity). However, the RDFs of surface atoms in the slab model

are abnormal, i.e., position and intensity of peaks are different, over the temperature

range. As shown in Fig. B.4(b), the surface O-O and U-O bonds are significantly

softened (or shifted) while U-U bonds are strengthened. This is due to the relaxed

surface structure, with distorted atomic positions and interactions, since the surface

atoms have different coordination number and neighboring atoms. We expect these

structural distortions to lead to surface polaron formation (charge analysis is discussed

in Section B.3.3).

B.3.2 Lattice thermal conductivity

As described in the methods (Sections 2.5.2 and B.2.2), the NEAIMD-predicted

lattice thermal conductivity is computed as the ratio of an applied heat flux to the

resulting temperature gradient. Using three different simulations cell sizes, as shown

in Fig. B.5, we verify the expected size effect and extrapolate the lattice thermal

conductivity for the infinite structure, from the linear extrapolation of their reciprocal

relation. Figure B.6(a) shows the temperature dependence of this predicted lattice

thermal conductivity for the bulk, pristine UO2, and compares with the available

experimental results [17] and the analytical Slack relation (∼ T−1) [98, 105, 185],

κL,S(T ) =
3.1× 104⟨M⟩V 1/3

◦ T 3
D,∞

T ⟨γ2G⟩N2/3
, (B.1)
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where ⟨M⟩ is the average atomic weight, N is the number of atoms, V◦ is the average

volume per atom, TD,∞ is the Debye temperature, and ⟨γG⟩ is the average Grüneisen

parameter, over the temperature range considered. The predicted results are in good

agreement with the Slack relation and higher than the single-crystalline experiment

results. Applying the fitting to the power-allometric equation (κL = aT b, where a and

b are constants), this NEAIMD results show the exact T−1 temperature dependence

(a = 9315.7 and b = -1.07), the Slack relation. In addition, this is expected due to

the underestimation of the long-range phonon interactions with the limited size of the

NEAIMD supercell. We also compare the predictions with the ECMD results (for

various empirical interatomic potential models) [10, 16, 50, 217, 218] in Fig. B.6(b).

The Yamada interatomic potentials give the best agreement with the NEAIMD results

and the Slack relation. This supports the use of these potentials for investigation of

the lattice thermal conductivity with the ECMD which allows for decomposition and

extraction of the optical phonon contribution.

We decompose the ECMD results for the lattice thermal conductivity of UO2 into

the acoustic and optical components [98, 105, 133], κL = κL,A + κL,O, where A and

O denote the acoustic and optical. First, the optical component of HCACF is filtered

by the fast Fourier low-pass filter with a cutoff frequency of 6 THz [obtained from

the upper value of acoustic phonon dispersion in Fig. B.3(a)]. Then the acoustic

component is obtained by subtracting the optical part from the total conductivity.

The decomposed results are shown in Fig. B.7, and we note that the acoustic contri-

bution has the strong T−1 temperature dependence and dominates the lattice thermal

conductivity, while as expected the optical component is relatively small and indepen-
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dent of temperature. This is consistent with the phonon transport in bulk, crystalline

solids [98, 105]. The Slack relation represents the long-range acoustic transport.

To consider the effects of grain boundary and porosity, the relaxation time model

[95, 105] and the effective medium theory [104, 132, 174] are used. Staring with the

Slack relation for the pristine UO2 dominated by the phonon-phonon scattering, we

consider the additional grain-boundary scattering for the polycrystalline UO2. The

dominant phonon-phonon relaxation time (τp−p) is

τp−p =
3κL,S

ρcvu2p,g,A
, (B.2)

where ρ is density and up,g,A is the average sound speed. This gives τp−p(T = 300 K)

= 1.69 ps using the calculated pristine UO2 properties [cv(T = 300 K) = 227 J/kg-K,
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ρ(T = 300 K) = 11.0 g/cm3, up,g,T = 5750 m/s, and up,g,L = 3275 m/s]. Using the

Matthiessen rule, the overall relaxation time with inclusion of the grain-boundary

scattering τp−b is

1

τp
=
∑
i

1

τp,i
≈ 1

τp−p

+
1

τp−b

. (B.3)

The polycrystalline scattering (i.e., grain size effect) is based on the diffuse boundary

absorption and emission, i.e., the Casimir boundary scattering [95, 105]. With sim-

plifying assumptions (phonon mean-free-path equal to grain size, and average phonon

speed), we have 1/τp−b = up,g,A/dg, where dg is the grain diameter. Here we consider

the half-mixed grain structure of dg = 0.01 and 0.1 µm, and the total relaxation

time of grain-boundary scattering is obtained from 1/τp−b = 1/τp−b(dg = 0.01 µm) +

1/τp−b(dg = 0.1 µm). This gives τp−b = 2.37 ps for the simple average of the results
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Figure B.8: Variations of the predicted effective lattice thermal conductivity of UO2

with temperature, for the porosity and grain-boundary scattering effects. The results
are from NEAIMD and the scattering and porosity models.

for dg = 0.01 and 0.1 µm.

The effective thermal conductivity of porous media has been studied [104, 132,

174], and here we assume negligible conduction through the pores (i.e., κf , ≪ κL,

where κf is the pore fluid conductivity). A simple relation [104] for two-dimensional,

periodic porous solids with continuous pores gives ⟨κL⟩ = κL(1 - ε1/2), where ⟨κL⟩

is the effective lattice thermal conductivity and ε is the porosity. The temperature

dependence of the combined effective lattice thermal conductivity due to the grain-

boundary scattering (average of dg = 0.01 and 0.1 µm) and the pores (ε = 0.05)

is shown in Fig. B.8. For these grains the high-density sintered-powder specimen

(5% porosity), the grain-boundary scattering dominates at low temperatures. As

temperatures, the reverse is predicted.
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B.3.3 Electronic thermal conductivity

The quantitative prediction of the electronic thermal conductivity (κe) of UO2

has been challenging as given in Section B.1. Here we consider two electronic thermal

transport mechanisms, the polaron and the classical intrinsic conduction models.

The polaron model can be examined by the charge and bond analyses of the DFT

results [110, 120, 131]. Despite the ionic bonds and the polarization effect of the UO2

structure, in our DFT results for bulk, pristine crystal structure we not observe any

polaron formation over the temperature range of 0 to 2000 K. Since the pristine UO2

structure is a highly stable, homogeneous symmetric structure, we find no charge
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The iso-charge-density surfaces are set as (a) 0.0137 and (b) 0.0583 ec-Bohr

−3. Yellow
and cyan colors mean positive and negative charges.

localization (or trapping) and structural distortion even at high temperatures. To

explore such charge localization using the DFT, we use UO2 slab models with a

termination of (111) plane, as shown in Fig. B.9(a). Details are described in Section

B.2.3. Using the EAIMD simulations, we investigate the effective charges (qe) of U

and O atoms as a function of temperature, and the results are shown in Figs. B.9(b) to

(d). Due to the strong stability and high symmetry of the fluorite structure, initially

we did not expect the effective charge changes to be large. Surprisingly, the calculated

effective charge of the surface U atoms is significantly reduced and scattered compared

to the O atoms, at high temperatures (T > 500 K). For comparison, Figs. B.9(b)

to (d) also shows with dashed lines the effective charges for the pristine-bulk UO2

at T = 0 K. Note that qe,U and qe,O at T = 0 K are 2.40 and -1.20 ec respectively.

As proposed in [86, 101, 166], the polaron formation is by the charge localization of

U ions, 2U4+ → U3+ + U5+. So, we believe that such charge localization is one of
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the important requirements for polaron formation. Based on our predicted results,

the presence of surface (or defect) in UO2 allows for formation of polaron at high

temperatures. Another evidence to verify the existence of a small polaron is the

lattice distortion caused by its polarization field. This can be shown with the iso-

charge-density contours with positive or negative values from the differential charge

density, ρ+1(r) - ρ0(r), where ρ+1(r) is the charge density of the supercell with the

polaron and ρ0(r) is the charge density without any injected excess electron. In

Figs. B.10(a) and (b), the polarized and distorted bond lengths of the surrounding

O and U atoms induced by the small polaron are visible. The average U-O bond

length around the U4+ site (2.34 Å) on a pristine structure decreases to 2.30 for U5+,

while for the U3+ site it increases to 2.53 Å. Based on these results, we identify

that charge localized U atoms significantly attract/repel adjacent ions (i.e., distort

its lattice structure), and then small polaron is formed.

The polaron migration can be described by the distortion of the lattice deforma-

tion along a trajectory, i.e., the equilibrium configuration of two adjacent uranium

ion sites. The calculated total energy of a polaron along a migration path is shown

Fig. B.11(a). In the inset showing the displacements from point 0 to 4, the point 2

is identified as the activated state, a site with maximum total energy. The difference

between the total energy at the activated state (point 2) and the initial state (Point

0 or 4) equals to the activation energy, Ea = E◦,2 - E◦,1, where E◦,i is the total energy

of site i. We find that such difference between the maximum and equilibrium values

is about 0.213 eV for UO2. This value is consistent with the reported values (Ea is in

the range of 0.19 to 0.34 eV for nearly stoichiometric UO2 crystal) in the literature
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[11, 18, 51, 144]. In Fig. B.11(b), we compare this activation energy with the average

of kinetic energy (EKE = mv2i /2, where vi is the speed of ion i) obtained from the

atomic trajectories in EAIMD simulations. The average kinetic energy from an ideal

gas, EKE = 3kBT/2 is also shown. Figure B.11(b) clearly shows that the polaron

migration energy of 0.213 eV plays the role of threshold energy for T < 1600 K. In

this temperature range, we predict that the polaron migration is limited, because

the average kinetic energy of the ions is lower than the threshold polaron migration

energy.

The polaron electrical conductivity (σe,I) of UO2 is given by the general formula

of [11],

σe,I =
σ◦,I
T

2x(1− 2x)exp(− Ea

kBT
), (B.4)

where σe,I is the pre-exponential factor and x is the defect concentration. Here for

Ea we use the activation energy of a small polaron migration (Ea = 0.213 eV). From

the results of the extrinsic regime of [11], we find σe,I = (1.2×106/T )2x(1 - 2x)exp[-

0.213/(kBT )] for x = 0.01.

For the intrinsic electrical conduction model we use σe,II = neecµe, where ne is

carrier concentration and µe is the carrier mobility. The carrier concentration based on

the quantum-mechanical treatment of conduction electron carriers in a nondegenerate

state is expressed as [18]

ne =
2(2πme,ekBT )

3/2

h3p
exp(−∆Ee,g

2kBT
), (B.5)
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where me,e is the effective mass and hp is the Planck’s constant. This relation is then

approximated to be the simple form σe,II = σ◦,IIexp[-∆Ee,g/(2kBT )], where σ◦,II is

the pre-exponential factor. Based on the average results of [18], σ◦,II = 3.569×103

S/cm. Figure B.12(a) show the variations of the electrical conductivity as a function

of temperature, along with the experimental result for single-crystal UO2 [18].

The log(σe) versus 103/T for UO2 in Fig. B.12(a) shows trends corresponding

to the two activation energies, 0.213 (for T < 2000 K) and 0.9 eV (for T > 2000

K). Note that the polaron conduction matches the intrinsic conduction at around

2000 K. This is consistent with the experimental result of [11, 18]. Applying the

Wiedemann-Franz law [105], σe = NL,◦σeT , where NL,◦ is the Lorenz number, the

electronic thermal conductivity is obtained and shown in Fig. B.12(b). Similarly

the polaron contribution dominates for T < 2000 K, while the intrinsic conduction

dominates for T > 2000 K.

B.3.4 Total thermal conductivity

Combining phonon and charge transport contributions to the thermal conduc-

tivity, the temperature dependence of the predicted total thermal conductivity of

UO2 is shown in Fig. B.13, along with the available experimental results for sintered

UO2 powder. The experimental results show reduced lattice thermal conductivity

and larger electronic thermal conductivity, compared to the NEAIMD DFT calcula-

tions on the pristine structure. Considering the porosity (ε = 0.05) and the grain

boundary scattering (average of dg = 0.01 and 0.1 µm) in the sintered powder, the
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effective lattice thermal conductivity (Fig. B.8) and adding the two electronic ther-

mal conductivity contributions [Fig. B.12(b)], the predicted results for UO2 are in

good agreement with the experiments [17, 44, 71, 78, 164].

B.4 Summary

Thermal energy transport in UO2 by phonon, polaron and electron is of funda-

mental and practical interest and here we approached the three mechanisms from the

first principles. We used DFT-based AIMD to explore polaron formation at elevated

temperatures and the polaron hopping activation energy. We used NEAIMD and

ECMD to find the lattice thermal conductivity and its acoustic and optical compo-
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nents. Comparison between first-principles predictions and sintered-powder experi-

ments has always been historically challenging. Here we identify the pore surface as

necessary for the formation of polarons. Our predicted results show the lattice ther-

mal conductivity is dominated by the large-range acoustic phonon transport, i.e., the

Slack relation for T < 1500 K and is reduced by the pore and by the grain-boundary

scattering which when included compare well with experiments. The electronic con-

tributions from the hopping surface polarons and from intrinsic conduction electrons

contribute to the total thermal conductivity for T > 1500 K, and these predicted

activation energies are in general agreement with the experiments. The findings can

provide insight and help in achieving high-performance, reliable nuclear fuel materials.
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