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ABSTRACT

Towards Least Privilege Principle:
Limiting Unintended Accesses in Software Systems

by

Beng Heng Ng

Chair: Atul Prakash

Adhering to the least privilege principle involves ensuring that only legitimate

subjects have access rights to objects. Sometimes, this is hard because of permission

irrevocability, changing security requirements, infeasibility of access control mecha-

nisms, and permission creeps. If subjects turn rogue, the accesses can be abused.

This thesis examines three scenarios where accesses are commonly abused and lead

to security issues, and proposes three systems, SEAL, DeGap, and Exposé, to detect

and, where practical, eliminate unintended accesses.

Firstly, we examine abuse of email addresses, whose leakages are irreversible. Also,

users can only hope that businesses requiring their email addresses for validating af-

filiations do not misuse them. SEAL uses semi-private aliases, which permits gradual

and selective controls while providing privacy for affiliation validations.

Secondly, access control mechanisms may be ineffective as subject roles change and

administrative oversights lead to permission gaps, which should be removed expedi-

tiously. Identifying permission gaps can be hard since another reference point besides

xii



granted permissions is often unavailable. DeGap uses access logs to estimate the gaps

while using a common logic for various system services. DeGap also recommends

configuration changes towards reducing the gaps.

Lastly, unintended software code re-use can lead to intellectual property theft and

license violations. Determining whether an application uses a library can be difficult.

Compiler optimizations, function inlining, and lack of symbols make using syntactic

methods a challenge, while pure semantic analysis is slow. Given a library and a set

of applications, Exposé combines syntactic and semantic analysis to efficiently help

identify applications that re-use the library.
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CHAPTER I

Introduction

1.1 Problem Statement

As early as 1975, Saltzer and Schroeder noted that every program and every user

of a system should operate using the least set of privileges necessary to complete the

job [107]. Strict adherence to the least privilege principle prevents security issues

such as privilege creep [3, 121]. Unfortunately, violations of the principle are all too

common [83, 87], with the common reasons being (i) security unawareness, (ii) hedging

privileges for future usability, and (iii) insecure defaults. Using manual analysis, Felt

et al. found that 15% to 30% of Chrome extensions are over-privileged, while the

same is true for 10% to 20% of the most popular Android applications [42]. They

also note that permission systems are effective in protecting against vulnerabilities in

benign-but-buggy applications. However, users are required to make decisions about

permissions on almost every download. This can quickly lead to security fatigue

when security is perceived as a barrier rather than an enabler [43]. In their study on

Windows users, Motiee et al. found 69% of the participants did not apply the user

account control (UAC) approach correctly, all used administrator accounts, and 91%

were unaware of the need to adhere to the least privilege principle [87]. Thus, checking

for violation of the principle plays an important role in enhancing the security of a

system.
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1.2 Terminologies

In various literatures, the distinction between a privilege and a permission often

depends on the context. For example, in the hardware domain, the term “privilege”

is preferred over “permission”. In some literatures, such as a manual for an Operating

System [9], a privilege overrides a permission in the event of a conflict. In this thesis,

I will use the two terms interchangeably.

In Lampson’s seminal work on protection [70], he described a permission as an

access right granted to a subject to access an object. Thus, a permission is represented

by a tuple (s, o, r) that denotes subject s as being authorized to access object o using

access right r. We will use the same terminologies in this thesis.

1.3 Why is Access Control Hard?

Administrating access control is an iterative process of granting and reviewing; the

administrator creates an access control policy to grant the necessary permissions, and

reviews the policy over time. However, in practice, this process can be fraught with

challenges, which I will list before providing examples and motivating three works,

SEAL, DeGap, and Exposé, for this thesis.

Irrevocability The object owner may not have the ability to revoke a granted per-

mission. In other words, the effect of granting the permission is irreversible.

Changing Security Requirements As the saying goes, “Security is a process, not

a product”1. The security requirements of a system may change. While this is

typically not a cause for concern on its own, when coupled with irrevocability,

the security implications can become harder to manage.

Lack of Access Control Mechanisms An access control mechanism may be lack-

1The saying is often attributed to Bruce Schneier of Counterpane Security Systems.

2



ing or impractical. This can lead to access rights being acquired, sometimes

implicitly and without an object owner’s knowledge.

Permission Creep Permission creep occurs when a subject’s role changes, but the

permissions associated with the previous role are not revoked [121].

1.3.1 Email Address Leakages

The Spamhaus Project characterizes the traditional problem of email spam as

an issue of consent rather than content [122]. With current email addresses, once

an address leaks without its owner’s consent, it becomes effectively compromised,

creating a struggle for the user to keep their addresses out of the hands of new

spammers. This is because the senders’ knowledge of email addresses is sufficient for

the senders to email the owners of the addresses, i.e., knowledge of the email addresses

cannot be revoked. Besides, technically, the only form of access control exists between

the owner and first degree contacts. Beyond that, owners have no means to control

who may acquire knowledge of the addresses.

While advances in technology have seen successes in filtering spam, most of these

techniques do not solve the root of the problem: once spammers have knowledge

of the victim’s email address, and can continue to spam the victim, or propagate

the address to other malicious senders. Furthermore, according to industry reports,

while the volume of spam has decreased, personalized spam is on the rise [64, 129], and

current state-of-the-art anti-spam technologies, which rely on the bulkiness property

of spam, may soon become insufficient. I will elaborate on SEAL, a method for

distributing semi-private email aliases to senders in Chapter III. Aliases are assumed

to eventually be leaked to spammers. The method allows a new alias to be created

while the leaked alias is rendered useless.

3



1.3.2 System Permission Gaps

System objects are guarded by permissions that serve as the first line of defense.

Ideally, only permissions that will be used should be granted. Unfortunately, this is

often hard to achieve because information about which permissions will be needed

is often unavailable. System administrators often tweak the permissions using out-

of-the-box permissions as baseline. However, due to the large number of objects,

it is tedious to configure every permission, such as whether all files on the system

should be world-writable. Without security policies to state the permissions needed

for every object on a system, there are no reference points for evaluating if all the

security requirements for the system are met. Thus, the desired security requirements

may differ from that actually configured for the system, leading to permission gaps.

Permission gaps can also occur on host machines when the roles of users change

but the permissions granted for their previous roles are not revoked [96]. Over time,

the extraneous permissions granted accumulate and result in permission creeps.

In Chapter IV, I will elaborate on DeGap, a tool for evaluating the permission gaps

for system services. DeGap estimates a reference point for computing the permission

gaps based on system logs.

1.3.3 Software Code Re-Use

Software code re-use is a common practice that allows developers to generate

applications under time and knowledge constraints. However, with the lack of access

control mechanisms, disparities between the author’s intention on how a piece of

code should be used and how it is actually being used can occur. Permissions to use

a piece of code are commonly granted using software licenses. Often, this requires

subjects to conform to the conditions specified in the license agreements. However,

enforcing these conformances can be hard. Once a developer has physical access to

a piece of code, it is hard to police its subsequent uses. An aggravating cause of

4



Table 1.1: Summary of permission-related entities for this thesis.
Tool Subjects Rights Objects Object Owner

SEAL Unauthorized
senders, e.g.,
spammers

Send email Email addresses Email address
owner

DeGap Processes,
Users

Read, Write,
Execute,
Connect

Files, SSHD,
User groups

System
administrator

Exposé Applications Re-use Software library Code author

failure to conform to the conditions is changing security requirements. For example,

when a piece of code is acquired by another company, its software license may be

updated with new conditions. Thus, even when the security requirements change,

the developer’s ability to use the original code remains unaltered.

Security implications resulting from software code re-use include intellectual prop-

erty theft. An application developer may re-use a piece of code without conforming

(either knowingly or unknowingly) to the conditions specified by the software license,

resulting in violation of the licenses, or worse still, intellectual property theft.

Existing efforts to solve the problem of detecting code re-use has largely assumed

the availability of source code. Little work has been done to solve the problem for

binaries compiled from the source code. Analyzing the binary code is important as it

is the authoritative source of information for a software library or application [104].

However, the set of challenges between analyzing source code and binaries differs.

When analyzing binaries, compiler optimizations, function inlining, and lack of sym-

bols in binary code make the task challenging for automated techniques. On the other

hand, semantic analysis techniques are relatively slow. In Chapter V, I will discuss

Exposé, a tool that takes a library and a set of binary applications as inputs. Ex-

posé combines symbolic execution using a theorem prover and function-level syntactic

matching techniques to achieve both performance and order applications according

to the likelihood of re-using the library’s code.

Table 1.1 summarizes the permission-related entities for the three different levels

5



that will be discussed in this thesis.

1.4 Thesis Statement

Because access rights can be abused in email address distribution, system services,

and software code re-use, thus leading to security implications such as email spam,

increased attack surface area, and intellectual property theft, methods to detect po-

tential unintended accesses, and thereby checking for violations of the least privilege

principle, are needed to improve security.

1.5 Contributions

1.5.1 Detecting Email Addresses Leakages

This thesis describes the design, implementation, and evaluation of SEAL [91], a

work on semi-private aliases. SEAL involves a mechanism that uses a life-cycle model

for permitting gradual, selective controls on the use of an email alias by senders with-

out requiring special infrastructure on the part of senders or receivers. Semi-private

aliases can also be used to authenticate a user belonging to a certain organization

and reveal only selected attributes to a service while hiding the real identity.

1.5.2 Detecting and Mitigating Permission Gaps in SSHD, auditd, and User

Groups

DeGap is a framework for detecting permission gaps for system services. DeGap

uses system logs to identify the permissions that are requested. Using that as an

approximation, it computes the permission gaps. This thesis discusses DeGap’s im-

plementation and the logic for analyzing permission gaps, as well as the algorithm

for proposing possible changes to the configurations towards minimizing permission

gaps. We also present our evaluation in using DeGap to support three services, SSHD,

6



auditd, and user groups.

1.5.3 Detecting Binary Code Re-Use

Our initial study on code re-use for two libraries found that some of the re-used

codes date back to more than 10 years ago [92]. Building on these results, this

thesis examines Exposé [93], a tool that combines symbolic execution using a theorem

prover and function-level syntactic matching techniques to achieve both performance

and high quality rankings of applications. We discuss the algorithm used as well

as our findings, including the performance and quality of the rankings for analyzing

two libraries. We also present the effects of different library versions and compiler

optimizations on the rankings.

1.6 Thesis Organization

Chapter II reviews the existing work on least privilege principle, access control

mechanisms, enforceable security policies, disposable email addresses, tightening sys-

tem permissions, and software similarity research. Chapter III elaborates on a method

to limit the impact of email address leakages. Chapter IV examines a framework for

discovering permission gaps at the system service level. Chapter V highlights the

problem of illegitimate software code re-use and presents techniques for detecting

binary code re-use while considering the effects of function in-lining, compiler op-

timizations, and lack of symbol information. Chapter VI concludes the thesis and

suggests possible future work.
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CHAPTER II

Literature Review

This Chapter reviews existing works in access control mechanisms, enforceable

security policies, disposable email addresses, tightening system permissions, and soft-

ware similarity research.

2.1 Access Control Mechanisms

Access control mechanisms are often used to ensure appropriate access rights,

which are determined by some security policies, are granted to the subjects. Access

control has been well-studied and several access control models have been proposed,

with Role-Based Access Control (RBAC), Discretionary Access Control (DAC), and

Mandatory Access Control (MAC) being the common models investigated [99, 61,

71, 97, 95]. The primary objective for access control is to restrict user activities, and

is typically enforced with a reference monitor that mediates every attempted access

by a subject to an object in the system [109, 108]. To deal with changing user roles,

Bertino et al. propose Temporal Role-Based Access Control (TRBAC) that allows

the access control policy to take effect for specific durations [27]. TRBAC requires

information about the durations for granting a subject access to an object. However,

this information is not always available. For example, it may not be clear when a

new employer will relinquish her role.
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2.2 Enforceable Security Policies

A great deal of work has been done in enforcing security policies and thus abiding

the least privilege principle. However, most of the work is performed at the archi-

tectural level. For example, Levin et al. propose extending the separation kernel

abstraction, such as those used in real-time embedded systems and virtual machine

monitors, to represent the enforcement of the least privilege principle [72]. Schneider

note that enforcing application-level security policies is a difficult problem in both

theory and practice [112]. In particular, he highlights two questions that need to be

addressed. Firstly, how can a reference monitor that intercepts all program actions

and blocks those that cause compromise be implemented? Secondly, how can one

define a suitable policy for the reference monitor to enforce?

Buyens et al. argue that the least privilege principle in software architecture is

often neglected due to the lack of systematic rules as well as guidance to explain

how the principle should be applied in practice [31]. They assume the worst case

permission assignments for a given set of use cases and propose architectural changes

to reduce violations of the principle. Scandariato et al. extend the work by proposing

a two-phase approach, preparation and analysis, for automatically detecting least

privilege violations in software architectures [110]. Their work assumes that proper

documentation exists, e.g., in UML, for the software architecture being analyzed.

While the assumption is expected to hold in a well-documented software architecture,

this may not be the case for other scenarios, such as those discussed in this thesis.

A corpus of work examines enforceable security policies from a theoretical per-

spective [40, 113, 22, 74]. Enforceable security policies can be enforced by moni-

toring system execution and modifying the execution if policies are violated. This

is achieved through the use of monitors, such as firewalls and security kernels (e.g.

SELinux [120]), and a set of automata that describe the possible transformations to

the execution. While enforceable policies play an important role in ensuring that

9



executions conform to the policies during runtime, our work focuses on checking for

potentially abusable accesses.

2.3 Disposable Email Addresses – SEAL

Towards limiting the impact of email address leakages, disposable email aliases

(DEA) have been suggested. Variants of DEAs are supported by several systems. We

divide current DEA solutions into two groups, characterizing them as either incom-

plete or overly restrictive. The first category of DEA systems comprises specialized

services that allow users to create DEAs but do not provide full email services. They

can be sub-categorized into receive-only systems that do not allow a user to reply

to emails, and temporary systems that only allow users to access their inbox for a

limited amount of time [4]. Others, e.g., Mailinator [7, 6], provide a single shared

inbox for all users, and so there is no notion of privacy; anyone with the email ID

string can access any email belonging to that email ID.

In the second category, the DEA systems are overly restrictive, either only per-

mitting the complete removal of an address to prevent spam or requiring that every

correspondent solve a CAPTCHA. One example of such work is Inexpensive Email

Addresses (IEA) [137]. IEA cryptographically generates exclusive email addresses

for each sender that must be verified by CAPTCHA. This greatly limits the sys-

tem’s practicality, making it difficult to use with automated systems like mailing lists,

newsletters, and password recovery services. For normal users, it requires them to go

through an extra step of solving a CAPTCHA before being able to send an email.

Yahoo Mail’s aliases require removal of an alias to prevent spam, once traditional

filters break down.

Ioannidis propose the concept of a Single-Purpose Address (SPA) [56], where an

SPA has cryptographic properties and encodes security policies that can be enforced

by receivers into the email address itself. When a receiver creates an SPA, an ex-
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piration date is supplied that determines its lifetime. This encoding of policy into

SPAs severely limits their usefulness; an encoded policy can never be changed during

the life of the email address, so a single compromise means the owner must live with

spam until the address expires or switch to a new key, thereby invalidating all of his

existing SPAs. The unlikely event of a server compromise also poses a much greater

problem for SPAs, since the leak of a key requires the owner to invalidate all of their

SPAs and start from scratch. In our work on SEAL, we avoid these limitations by

keeping state on the server, allowing the user to flexibly respond to address leaks by

restricting specific aliases. A side benefit of this is that in the event of a temporary

compromise of the server itself, once control is regained the user can restrict all of

their preexisting aliases, avoiding a temporary complete loss of service due to the

need to create and distribute entirely new email addresses.

The Tagged Message Delivery Agent (TMDA) is a challenge/response system

that aims to mitigate spam [126]. One feature of TMDA is tagged addresses that

can contain date information used in a similar manner to SPA for determining the

expiration of the addresses. Similar to SPA, the expiration date has to be determined

at the point of creation. Again, the tagged address may be leaked before it expires.

The free online classified advertising site Craigslist generates a random anonymous

email address for the user when a posting is made. While this conceals the user’s

real address from email harvesters that scrape websites, Craigslist is often attacked

by spammers who post fake advertisements. An unknowing user who replies to the

fake email reveals his real address. With SEAL, a user can simply use a semi-private

alias when responding to an ad on Craigslist, thus retaining an ability to block out

spam to that address at any point.

Open ID [103] permits users to sign up for external services using an existing email

ID, such as their Facebook ID or Google ID, while providing some privacy controls.

SEAL accomplishes a similar goal but without requiring the service provider to use
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a specific authentication infrastructure and having full control over the information

that is disclosed with the email alias.

Spam filtering has been well-studied [105, 139, 18, 19, 114, 84, 94, 138, 101, 47, 28,

118, 48, 66, 14], and is complementary to our approach. While SEAL is not a spam

filter, the life-cycle management controls provide an additional layer of spam control

when traditional spam filtering fails, without requiring an alias to be completely

disabled.

2.4 Tightening System Permissions – DeGap

The concept of permission gaps has been discussed previously in works on per-

mission gaps for Android applications by Felt et al. [41], Au et al. [20], and Bartel et

al. [21]. The phrase “over-provisioning of permissions” has also been used to describe

a similar notion [63].

The key distinction between DeGap and these works is that in these works, the

application is considered to be the subject, the set of granted permissions is consid-

ered to be the set of authorizations requested from the user when the application is

installed and the set of used permissions is considered to be an upper bound on the

set of permissions that could be used by the application, based on static analysis of

the code (which tends to be exhaustive). DeGap is looking at systems in a different

scenario where the set of used permissions is not computable by static analysis of the

system. The DeGap idea could still be useful in the context of Android applications.

It is possible that an application’s code could make use of more restricted permissions

than it does. In that case, log analysis with DeGap may help a developer identify

opportunities for tightening the permissions used within the code.

DeGap is not an access control mechanism; it complements existing access control

mechanisms by providing a means to verify the correctness of access control policies.

However, a brief review of existing access control mechanisms may be useful. Access
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control models, such as Role-Based Access Control (RBAC), Discretionary Access

Control (DAC), and Mandatory Access Control (MAC), have been proposed. Access

control is typically enforced with a reference monitor that mediates every access by

a user to an object in the system [109, 108]. In practice, perhaps SELinux [120] and

AppArmor [23] are the most widely accepted implementations of MAC. Both systems

provide monotonic security, which is also a goal of DeGap. However, these mecha-

nisms adopt a different philosophy from DeGap; SELinux and AppArmor begin by

restricting accesses to objects and relaxing the limits when needed, while DeGap aims

to identify accesses that are no longer required and then restricting these accesses.

Other research efforts to improve the permissions of a system typically resulted in

integrated tools that perform functions beyond permission checking, such as vulnera-

bility analysis. COPS, a work by Farmer et al., contains tools called dir.check and

file.chk that respectively check a list of directories and files for world-writability [36].

The Tiger Analytical Research Assistant (TARA) improved on COPS by including

more analysis scripts [2]. Bastille Linux is a tool that guides the user through harden-

ing the operating system [1]. While all of them may use different means, they return

a list of files and directories with world-readable or writable permissions. This is also

achievable using the find command on Linux-based systems [11]. We argue that the

challenge is not in finding such a list of directories and files, since this is likely to be

a huge list. Instead, the fundamental problem that we are solving with DeGap is in

determining if the permissions are indeed unused.

2.5 Software Similarity Research – Exposé

The work on software code re-use falls under the category of software similarity re-

search. Collberg and Nagra sub-categorized this field based on four applications: soft-

ware birthmarking, software forensics, plagiarism detection, and clone detection [34].

We summarize the objectives of the four applications in Table 2.1. The objective of
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Application Inputs Objective

Birthmark Detection P , Q
Similarity between properties of P and Q
that are invariant to common semantics-
preserving transformations.

Software Forensics R Ordered list of possible authors for R.
Plagiarism Detection S, T Similarity between properties of S and T .
Clone Detection U Duplicated codes in U .

Table 2.1: Sub-categories in software similarity research.

our work on Exposé is most similar to that of birthmark detection.

2.5.1 Syntactic Approaches

2.5.1.1 n-gram

Many of the works in birthmark detection are designed for interpreted languages,

typically Java (when compiled as Java bytecodes) [75, 55, 124, 123, 115]. There

are other works that, while not specific to Java bytecodes, use them for evaluation,

such as the work by Myles et al. [89]. The number of user-configurable options

affecting the output bytecodes during compilation of Java source code is limited. For

example, the original Java compiler javac does not provide any option that affects

how the bytecodes may be generated. This implies that given the Java source code,

compilations undertaken by different developers would likely yield highly similar Java

bytecodes. In contrast, compilers for compiled languages such as C/C++ offer users

different options, such as optimization levels and function inlining threshold, which

introduce variations in the output native code. Since Exposé models the sequence

of opcodes using n-gram, the variations can give rise to both false positives and

false negatives. The effect of false negatives is generally smoothened out by true

positives. False positives tend to be more problematic, which we mitigate using

semantic analysis.

Outside the domain of birthmark detection, several proposals on using n-gram
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Figure 2.1: Partial function call graph of a shared library.

Figure 2.2: Partial function call graph of an executable statically linked with the
shared library showing function inlining.

for malware detection and source code plagiarism have been proposed previously [73,

60, 15, 54, 59, 130, 111]. These works generate file signatures using n-gram, which

are used for classification. Exposé differs from these works in that we apply n-gram

at the function level, which provides us more precision without suffering from the

consequences of basic block re-ordering if we had used the basic block abstraction

level. To the best of our knowledge, we believe our work is the first to perform in-

depth analysis of applying n-gram at the function level for solving the code re-use

problem in binaries.

2.5.1.2 Approximate Graph Matching

Another approach is to identify syntactically similar binaries by using approximate

graph matching on the function call graphs. Hu et al. propose SMIT, a scalable

malware database management system for determining if a new malware is similar

to one that is previously observed [52]. Hu et al. modified the Munkres algorithm

under the assumption that if two nodes match, then their neighbors are also likely

to match. However, if this assumption fails, such as when function inlining occurs,
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the error may propagate to all neighbors, thus misleading the Munkres algorithm to

produce an incorrectly biased set of assignments. Function inlining typically happens

as part of the compiler’s optimization process, which eliminates function calls, thereby

improving runtime performance. Figure 2.1 shows the function call graph of a library,

while Figure 2.2 shows the graph for an application that is statically linked with the

same library. In Figure 2.1, compress calls compress2, which in turn calls three other

functions. However after being statically linked with an application, compress2 is

inlined into compress. Exposé attempts to mitigate the effects of function inlining

by allowing a library function to match with both another application function and

its caller.

2.5.2 Semantic Approaches

2.5.2.1 API-based

In addition to n-gram, other possible birthmarks include API sequence, call struc-

tures, and frequencies. Choi et al. propose extracting a static birthmark based on

the API call structure [33] while Tamada et al. extract the API information dynami-

cally [125]. Wang et al. propose using System Call Dependency Graph (SCDG), also

extracted dynamically, as birthmark [132]. The use of API and system call informa-

tion is useful if such information is available and unique. However, for our purpose,

this information may not necessarily be available. The symbols may be stripped and

thus possibly removing the function names. Also, for self-contained executables that

do not make system calls, such as compression libraries, these features cannot be

applied.

2.5.2.2 Symbolic Execution

BinHunt, a work by Gao et al., attempts to find semantic differences between

binaries using symbolic execution and theorem proving [45]. The authors propose
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finding semantic differences instead of syntactic differences. They argue that semantic

differences are more suitable for reflecting changes in program functionalities. They

attempt to compute the matching strength between basic blocks within two functions

across two binaries using symbolic execution to extract a set of constraints that

are then submitted to the theorem prover. A backtracking algorithm, guided by

the matching strength, is then applied to identify similarities between the control

flow graphs of the functions. In their first case study, it required about an hour to

complete the examination of several basic blocks. The authors explained that the

long computation time is due to syntactic differences between the functions. In their

second case study, analyzing two similar binaries of about 41,000 instructions took

approximately 30 minutes. While BinHunt is able to identify semantic differences with

high accuracy, it is less practical for analyzing huge number of files. Exposé aims to

quickly rank a set of executables with high true positive rate. BinHunt may then be

applied on the smaller set of files to determine if they are semantically identical with

a vulnerable library file.

2.5.3 Other Techniques

It may seem immediate that the state-of-the-art techniques for identifying obfus-

cated malware could be trivially applied for our problem domain. We first examine

static analysis approaches to malware detection. Moser et al. show that static anal-

ysis, which encompasses syntactic analysis, is ineffective in identifying obfuscated

malware and propose combining static with dynamic analysis [86]. Malware static

analysis generally identifies unique syntaxes such as section names and the legitimacy

of the entry point for the program for hints. Other hints include entry point in the

thread local storage section, shared libraries with no exported functions, low import

function count, and modified import function table [127]. These techniques were ef-

fective until malware authors removed these hints. In our context, the absence of
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such hints renders the techniques ineffective.

Recent works in identifying obfuscated malware have focused primarily on seman-

tic analysis [17, 102]. While we also use semantic analysis as a building block, it is

not entirely sufficient. One subtle difference between malware analysis and Exposé

is that the former identifies equivalences between binaries while the latter focuses on

discovering code re-use. In malware analysis, it is typically assumed that two func-

tionally equivalent binaries do not contain extraneous functions so as to minimize file

size. The function call graph usually remains mostly similar and has a smaller order.

On the other hand, in addition to library functions, applications mostly comprise

other functions, thus introducing substantial noise. Functions in the library may not

be linked into the application if they are not called by the application, resulting in

modified function call graphs. These interferences make our work an interesting and

a challenging one. A second subtle difference is that semantic analysis may fail due

the complexity of the functions and does not scale well if a large number of functions

in a library need to be compared with functions in a large number of applications.
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CHAPTER III

Mitigating Impact of Email Address Leakages

with SEAL

3.1 Introduction

This Chapter discusses rogue accesses to email addresses (objects) by senders

(subjects), and methods to detect and mitigate email address leakages.

Since its inception in the 1970s, electronic mail, or email, has come to largely

replace snail mail for a variety of reasons, including its low cost, user convenience,

ease of use, and high delivery efficiency. But for these very same reasons the prob-

lem of unsolicited bulk email messages, commonly referred to as spam, has grown

along with email since the 1990s, spurring huge research efforts for finding tools to

combat spam. Although the state-of-the-art in spam detection has been successful at

detecting most obvious cases of spam, false positives and false negatives are still not

entirely uncommon.

One primary cause of the spam problem is the way in which email addresses are

typically used. In order to maintain a fixed address at which one can be reached, the

vast majority of email addresses are treated as permanent by their owners and are only

abandoned in very rare circumstances. As a result, once a user’s email address leaks

to spammers, it is nearly impossible to entirely prevent them from sending messages
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to the user’s inbox. And although one may take extreme care to prevent one’s email

address from falling in to the wrong hands, because anyone with the address could

then leak it to a third party, either intentionally or unintentionally, such an effort

can easily be futile. The situation becomes further complicated if we consider that

users may later change their mind about whether they should have given their email

address to a certain party.

To compound the problem, some services require organization email addresses as

part of the proof of a user’s affiliation with the organization before deeming the user

as eligible for certain services or discounts. Early examples included Facebook, which

required university affiliations when it started. More recently, piazza.com is used by

many universities to host threaded forums between students and professors and, by

default, requires users to sign in with an email ID that authenticates them to their

university. This creates a potential dilemma for professors as to whether it is proper

to require students to sign up for an external service with a different privacy policy

than their university’s. Companies offering corporate discounts on their services, for

example, Sprint and AT&T in the U.S., also require that customers provide their

work-affiliated email ID to receive discounts on their monthly bills. While alternative

proof methods may be allowed, these are usually troublesome. This also creates

concerns: a work address is potentially being used to receive non-work email, making

it more susceptible to marketing use.

This Chapter describes a mechanism called semi-private aliases, a novel solution

that attempts to blend the user control provided by disposable email addresses with

the flexible nature of ubiquitous permanent email addresses to provide an email alias-

ing mechanism that can limit misuse without being overly restrictive to either the

address owners or their trusted correspondents. Semi-private aliases are email ad-

dresses that can be attached seamlessly to a user’s regular inbox, and serve as aliases

for that inbox which can be distributed in the same fashion as Disposable Email
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Addresses (DEAs) [81, 117]. These aliases make two significant contributions:

1. Concept of Alias Lifecycle: A lifecycle, in the form of a state machine, allows the

user to adaptively add restrictions to an alias as the effects of an address leak

begin to show themselves. Starting out as unrestricted and open to all incoming

mail, an alias can be marked partly restricted when unsolicited email begins to

be received, resulting in no added restrictions for those who have corresponded

with the alias before the identified compromise. New senders sending to a partly

restricted alias receive a CAPTCHA challenge, after which the user is prompted

to accept or reject that sender’s correspondence. Once an alias has reached the

point where the user does not expect any new contacts on it, they may mark

it as fully restricted, at which time only those contacts on the alias’ whitelist

are permitted to send. Finally, a user may disable an alias if it eventually falls

entirely out of use.

2. Affiliation Validation: When deployed by an organization, the service can be

used by individuals in the organization to validate their organizational affiliation

(and, optionally, selected other information, such as their name or role) to

external service providers without the risk of exposing private information to

the providers by simply providing an email alias.

A challenge in designing a system for semi-private aliases, called SEAL, is how to

make it work with existing email infrastructure and services as well as not put sig-

nificant authentication steps (e.g., CAPTCHAs) along desired communication paths.

SEAL achieves these goals.

We note that SEAL primarily aims to give user selective control over their privacy

rather than provide complete anonymity over the web. We assume that the SEAL

infrastructure is trusted, but we attempt to design it so that the theft of information

in the databases maintained by SEAL for its functioning is of limited use to spammers.

21



Figure 3.1: Overview of SEAL.

The Chapter is structured as follows. We first present SEAL from an end-user’s

perspective in Section 3.2. We also discuss the design and describe our prototype in

Section 3.3. Next, we evaluate the effectiveness of the system in restricting aliases

and tracing alias leakages, and the deployment of our system in a real world scenario

in Section 3.4. Finally, we discuss potential limitations and defenses against potential

attacks on the SEAL design in Section 3.5 before concluding in Section 3.6.

3.2 User’s Perspective

Senders correspond with users of SEAL using semi-private email aliases. An ex-

ample of such an alias would be bob.89dtzx3r@sealserver, where bob is the alias

name and 89dtzx3r is the randomization string. An alias is formed by joining the

alias name and the randomization string with a delimiting character in between. The

alias name is specified by the user while the randomization string is a randomly

generated string, created by SEAL.

Figure 3.1 shows an overview of the email interactions between a SEAL user and

a sender who wishes to correspond with that user. A user of the SEAL service sends

mail through a SEAL server which processes the mail and forwards it to the recipient.

A person sending to a SEAL user addresses their mail to the users semi-private alias,

and the SEAL service performs any necessary restrictions, after which the mail can
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be forwarded to the user at their normal inbox. Users can also manage their aliases

directly over a provided web interface.

To become a user of SEAL, one creates an account with an email provider and

configures the account to relay emails through SEAL. Theoretically, the system could

also play the role of an email provider. However, segregating the roles has two prac-

tical advantages.

Reduced Attack Surface Leveraging existing email providers allows SEAL to ob-

viate the need to provide message storage. This reduces the attack surface of

SEAL and also insulates the user’s emails from theft or corruption in the event

of an attack.

User Familiarity Most users are already familiar with the user interfaces of their

current email providers. Many email providers also provide other useful features.

Using existing email providers eliminates the need for users to learn a new

interface and allows them to continue using their favorite features.

To achieve this, we require the mail provider to support sending mails over au-

thenticated SMTP. This is necessary to prevent masquerading attacks on SEAL.

In addition to normal emails, the user can also send command emails to two

Service Addresses that allow the user to provide instructions to SEAL. Users can

also receive feedback on the commands from these Service Addresses. Table 3.1 lists

the commands supported. When an email is received at a Service Address, only

the Subject line is parsed for commands. Table 3.2 summarizes whether a sender

is allowed to send email to a semi-private alias for each of the different alias states.

Figure 3.2 shows the state transitions of an alias.
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3.2.1 Lifecycle of a Semi-Private Alias

After creating a user account, the user can request an alias name that is not in

use by other users. Using the alias name, the user can request aliases for distribution

Figure 3.2: State diagram for alias.
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Table 3.1: Commands used by SEAL. All commands are specified in the email Subject
line. The contents of the message bodies are ignored.

Command Service Account Subject Line
Request alias getalias@sealserver 〈alias name〉
Partly restrict alias service@sealserver restrict 〈alias〉
Fully restrict alias service@sealserver restrict full 〈alias〉
Trust sender service@sealserver trust 〈email address〉
Distrust sender service@sealserver distrust 〈email address〉

Table 3.2: Capability matrix between sender status (columns) and alias states (rows).
A ‘3’ denotes that the sender is allowed to send to the alias, while a ‘7’
denotes the contrary. CAPTCHA denotes that the sender will be arbitrated to
be trusted or not by solving a CAPTCHA challenge and receiving explicit
permission from the user.

Distrusted Unknown Trusted
Unrestricted 3 3 3

Partly Restricted 7 CAPTCHA 3

Fully Restricted 7 7 3

Disabled 7 7 7

Time

bob.rzkyt7y4

bob.u1pvwf47

bob.wa12tfcm

unrestricted
partly

restricted
fully

restricted disabled

Figure 3.3: Lifecycle scenarios of three aliases. The unshaded part of a bar shows the
alias is unrestricted while the shaded part shows that it has been leaked
and becomes restricted.
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to contacts. Figure 3.3 shows the lifecycles for three aliases. At t1, the user requests

a new alias for the alias name bob. We discuss the different methods for requesting

a new alias in Section 3.2.3. The system returns the new alias bob.rzkyt7y4 which

can be distributed to the user’s contacts. The user corresponds with the contacts on

bob.rzkyt7y4 until he observes that it has been leaked at t2 and informs SEAL via a

command email. SEAL then marks all senders prior to t2 as trusted, marks the alias

as partly restricted, and generates the successor alias bob.u1pvwf47.

At this point, it may be possible that spammers prior to t2 are erroneously marked

as trusted. However, this is reversible. The user can refine which senders should be

trusted. Another possible approach may be to let the user decide the earliest time

when the first spam to the alias is found and to mark all senders prior to that time

as trusted. However, if the user makes a mistake in finding the first spam, mail from

legitimate senders may be blocked, especially for automated systems like mailing lists.

Therefore, we decided to take the more conservative approach.

Between t2 and t3, SEAL checks that the senders of emails sent to the leaked

bob.rzkyt7y4 are trusted before relaying the emails to the user. This also indicates

that the sender has not updated his address book to send to the new unrestricted

alias bob.u1pvwf47 and so upon the user’s reply, SEAL sends the original sender a

reminder of the change. Email from untrusted senders is dropped. If the sender is

neither trusted nor untrusted, we drop the mail and send a CAPTCHA to the sender.

If the sender solves the CAPTCHA, a command email is sent to the user seeking

permission to trust the sender. When the user agrees, the sender is added to the

group of trusted senders and notified. Requiring the sender to solve a CAPTCHA

first prevents the user from being overrun with requests, narrowing them down to

requests only for senders who are likely to be human. Requiring the user’s approval

to add the sender ensures that consent is explicitly given.

At t3, the first alias, bob.rzkyt7y4 is changed to the fully restricted state. In this
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state, only trusted senders can successfully send emails to the user. No new sender

can become trusted as no CAPTCHA will be issued. At time t4, bob.u1pvwf47 is

found to be leaked. The new successor bob.wa12tfcm is created. Trusted senders

still sending to bob.rzkyt7y4 will receive the notification to update the address of

the user to the newest successor, which in this case is bob.wa12tfcm. At time t5, the

original alias is disabled and no emails will be delivered through it to the user.

3.2.2 Affiliation Validation: Aliases as Proof of Affiliation

As mentioned in the introduction, semi-private aliases can also be used as a means

of providing proof of a user’s affiliation with some organization in order to gain

access to certain services or discounts. Trivially, our implementation could be trivially

extended further, with the organization providing an additional service that allows

its members to attach additional information profile to each alias and hosting that

profile on a directory service as a more detailed proof of the identity associated with

a certain alias address. With our current real-world usage in providing access to

students to piazza.com forums, we have only needed to provide affiliation validation

at this time.

3.2.3 Requesting an Alias

The user may need to distribute aliases under myriad scenarios. We broadly

categorize them as online and offline. By online, we mean that the user needs to

distribute an alias while she has network access to SEAL’s server. In contrast, in an

offline scenario, the user is not able to interact with SEAL over the network. However,

we assume that there are opportunities for the user to access SEAL at some point in

time prior to needing an alias. We sub-categorize online scenarios into alias requests

and retrievals. An alias request creates a new alias that the user can distribute to a

new contact. An alias retrieval refers to scenarios where the user wishes to retrieve a
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From: bob@sealserver

To: getalias@sealserver

Subject: bobhome

Figure 3.4: Example email sent by Bob to request an alias.

From: getalias@sealserver

To: bob@sealserver

Reply-To: bobhome.b3f9cehd@sealserver

Subject: bobhome.b3f9cehd@sealserver

Body:

Your new randomized email is:

"bobhome.b3f9cehd@sealserver"

Append this to your recipient list. We do not recommend using this

address for multiple recipients.

Figure 3.5: Example response to Bob’s alias request.

previously requested alias associated with a website URL. To minimize the learning

curve, it is important that minimal effort be required from the user when requesting

new aliases under the different scenarios. We now give an overview of the most likely

scenarios and describe briefly four mechanisms provided by SEAL to request aliases

under different scenarios.

3.2.3.1 Request via Command Emails

In an online scenario, a user who has access to an email client can send command

emails to the service address getalias@sealserver to request a new alias. This is

the catchall mechanism since we can assume that users will normally have access to

some email client. The server responds with an email containing an alias that the

user can distribute to contacts. SEAL’s response would be stored in the user’s inbox.

We also allow the user to specify a hint as a reminder to the context under which the

alias is generated. Figure 3.5 shows a request example on the left and the server’s

response on the right.
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3.2.3.2 Request via Browser Extensions

Another common online scenario requires the user to request an alias which may be

subsequently needed for identification purposes. Specific examples of such a scenario

include accessing the user’s account information for a website and posting on forums.

To cater to such situations, SEAL provides a browser extension that uses magic

sequences for alias request and retrieval.

To detect the magic sequences, we use the same approach as PwdHash [106]. In

that work, a browser extension transparently generates a unique password for the

user. The other functionalities of the two extensions differ. We developed a Firefox

extension that operates in two modes, request and retrieval, triggered by two magic

sequences. For each browser session, when a magic sequence is detected, the extension

authenticates the user with our system via their credentials. Once authenticated, a

session key is generated and stored by the extension for the current session. Request

mode automatically fetches a new alias from our server and is triggered by typing the

magic sequence “##[alias]#[hint]#”. A salted hash of the site’s domain is stored.

Retrieval mode is triggered by the magic sequence “##$” and is used when the user

logs in to a previously registered site that requires an email address for authentication.

The salted hash of the domain is used for looking up the previously created alias.

3.2.3.3 Request for Offline Distribution

The most challenging scenarios occur when a user is offline. For example, the

user could be filling out a paper form at some place lacking an Internet connection.

Though we have not implemented this, we envisage an SMS service that replies with

a new semi-private alias whenever the user makes a request. In addition, a mobile

application that caches several aliases while it has network access and dispenses them

as needed could be used.

An even more challenging scenario is posting email IDs on web pages, printed
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Figure 3.6: SEAL architecture.

documents, or on business cards. Since such IDs are widely disseminated, they are

likely to generate both spam and legitimate use very quickly, even if the IDs are

semi-private aliases. We discuss a potential solution to the problem in Section 3.5.

3.3 Architecture

SEAL’s architecture is illustrated in Figure 3.6. The three main components in

SEAL’s core are the Dispatcher, Email Processor, and Command Processor. The

Dispatcher receives emails over SMTP and passes them to the appropriate modules.

If the email is a normal email, it is dispatched to the Email Processor. Otherwise,

a command email is sent to the Command Processor. Other than using emails, it is

also possible to interact with the Command Processor over HTTP/S. We discuss the

components with reference to their functionalities.

Figure 3.8 shows a simplified version of our database. Each user has a salt that is

used for hashing sensitive information, such as the sender’s email addresses. This is

to limit potential information loss in the event that SEAL is compromised.
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3.3.1 Account Creation

The user creates a SEAL account by visiting SEAL’s signup page and specify-

ing the username, password, and relay address. The Signup Manager records this

information to the database. The username and password are used for SMTP authen-

tication by the user’s mail provider when sending email through SEAL. All incoming

messages to aliases and replies to command emails are sent to the relay address. By

storing only the basic necessary information for SEAL’s proper functioning, we aim to

minimize the risks of theft of sensitive user data should our server ever become com-

promised. While our system works with any existing email account whose provider

supports sending email as a user of another SMTP server, ideally, a new account

should be created so as to start from a clean slate since the existing address might

have already been leaked.

3.3.2 Alias Request

Requests for new aliases are sent to Alias Creator. This could be done either

using a command email or an HTTP GET Request. The Alias Creator takes an

alias name and an optional hint as inputs. If the alias name has not been taken by

another user, Alias Creator creates a randomization string of length eight. We allow

32 possible alphanumeric case-insensitive characters (excluding ‘0’, ‘o’, ‘i’, and ‘l’ to

avoid potential user confusion) in the randomization string, providing a base entropy

of 240 bits for each alias address. This is one critical part that helps make it difficult

for a spammer to correctly distinguish valid aliases from invalid ones. Implicitly, since

the maximum allowable length of an email ID is 64 characters and a delimiter is used,

this restricts the alias name to a maximum of 55 characters.

The optional hint replaces the user’s name in the To header and can be used to

remind the user of the context for which the alias is intended. Figure 3.7 shows an

example of a hint “work”. To prevent the original sender from observing the hint, it
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From: alice@sealserver

To: "work" bob@gmail.com

Reply-To: alice@sealserver

Subject: Business Proposal

Body:

Dear Bob, ...

Figure 3.7: Example of using hint.

Figure 3.8: Simplified SEAL database. In table aliasrand, the states 0, 1, and 2
mean unrestricted, partly restricted and fully restricted respectively.

is removed in the reply mail to the sender.

3.3.3 Managing the Alias Lifecycle

An alias’ lifecycle begins when the user makes a request. Alias Creator then

creates an entry in the database.

When a new email is received for an alias from a non-user, the Dispatcher checks

the state of the alias. If it is unrestricted, Email Header Processor (EHP) replaces

the To header with the user’s relay address and appends the alias to the Reply-To

header before sending it out. This causes the user to send their reply to the alias,

which will result in SEAL processing the reply mail to appear as if it had been sent

by that alias.

On the other hand, if the alias is restricted, the email is dispatched to the
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Restriction Checker, which then checks if the sender is trusted. If it is, the email is

relayed to the email provider via EHP. If the sender is new, the Restriction Checker

tells EHP to generate a CAPTCHA response for the sender. Otherwise, the sender is

untrusted and the email is dropped.

If an email arrives from a user, it is dispatched directly to EHP, which will replace

the From header with the alias specified in the To header, so long as it is owned by

that user.

If Dispatcher detects that the incoming email is a response to a CAPTCHA chal-

lenge, it forwards the email to CAPTCHA Verifier, which will validate the response

and send a system message to the user to confirm the sender as trusted. While waiting

for user validation, the sender will be treated as untrusted.

The user may mark a particular alias as partly restricted or fully restricted. This is

done by sending a command email to service@sealserver, which will be dispatched

to the Alias Restricter. Similarly, the user may mark a sender as trusted or

untrusted. The command is dispatched to Sender Truster. Note that the restriction

level for an alias is monotonically increasing. Once an alias is leaked, it cannot reach

the unleaked state again. On the other hand, the trust level for a sender is reversible.

One possible method to automate the process of restricting leaked aliases is to

leverage existing spam technologies. For example, when an incoming mail to a par-

ticular alias is flagged by a spam filter, we automatically restrict the alias. However,

given the condition of current-state-of-the-art anti-spam technologies, false positives

are still possible. Thus, to avoid erroneously marking an alias as leaked, we let the

user perform the marking.

3.4 Evaluation

We implemented a proof-of-concept system using Postfix as the mail transfer agent

and Dovecot Simple Authentication and Security Layer (SASL) for user authentica-
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Figure 3.9: Number of emails received daily for the control and subject aliases.

tion [100, 39]. We implemented the system core as Postfix advanced content filter

using Python scripts. This allows us to examine and modify email headers. Frontend

web scripts provide account management functions for users. We also implemented

a browser extension for Firefox by modifying PwdHash [106] so that the user can

request reproducible email IDs for filling out web forms. There are three main parts

to our experiments. In the second part, we offered the system as an option to a

class that was asked to sign up with a discussion forum that requires their affiliation

with the university to be validated using email addresses. Lastly, we registered with

several websites and studied potential address leakages.

3.4.1 Effectiveness of Partly Restricting Aliases

To examine the effectiveness of our system in restricting aliases in a real world

scenario, we registered twice with a website that promises users discounts and points

on merchandises using two different aliaseson two email accounts, one of which served

as a control. The website was chosen because it actively sends subscribers emails.

On Day 40, we restricted both the control and subject aliasby transitioning it to a

partly restricted state. Additionally, we marked the website as untrusted from the
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subject account. The number of emails sent to each of the aliases were plotted in

Figure 3.9, which shows that in contrast to the control alias, no emails were sent to

the restricted alias after Day 40. This allows us to conclude that the website was

able to continue sending mails on a partly restricted alias when it is not marked as

untrusted. Conversely, once marked as untrusted, it is not able to send emails to the

subject alias. Note that the difference in the number of emails received by the aliases

on the same day are due to the site sending different emails to each alias.

3.4.2 Affiliation Validation

To study the system being used in a real world scenario where a web service

requires an official email address for validating the user’s affiliation, for one semester,

we provided the students of a class an option to use the system for receiving updates

from a discussion forum that accepts only email addresses having university domains.

Including three instructors, there were 68 potential participants. The students were

neither incentivized nor disincentivized to use SEAL. They would have been able to

register with the discussion forum using their academic email addresses. 55 (80.9%)

people proceeded to create aliases and used SEAL actively for the whole semester.

Five of the users created two aliases, one created three aliases, and another created

five aliases. The others created one alias. Figure 3.10 shows the number of emails

processed by SEAL per day while Figure 3.11 shows the daily number of aliases that

were active. The days with low email transactions coincide with weekends, school

break, and public holidays. While not all aliases may be active daily, the figures show

that the number of users using the system remains relatively constant throughout the

semester. Even though the system is only a prototype, there were no participants who

stopped using the system prematurely, demonstrating the practicality of the system

prototype.
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3.4.3 Leakages

In this part of the experiments, we examine potential leakages of email aliases.

3.4.3.1 Leakage by Websites

To examine whether websites and mailing lists are sources of email address leak-

ages, we created aliases and used them to register with 56 websites. In an attempt

to diversify the websites instead of choosing only those ranked as highly popular by

survey companies such as Alexa [16], the websites were chosen arbitrarily by searching

for keywords including “shopping”, “fast cash”, “movies”, “music”, “cheap flights”,

and “education”. We attempted to register with 70 web sites, succeeding in reg-

istering on 56 of them. Two of the websites initially rejected the registrations as

they did not accept email id lengths exceeding 30 characters. However, we were able

to register successfully after using a shorter alias name to satisfy that requirement.

Three websites disallowed the period character in email ids. We do not view this as

a limitation of our system since the RFC clearly states that the email id may be up

to 64 characters long and the period character is allowed [53]. Remaining 10 failures

were due to them requiring credit card information and real cellphone numbers.

Using aliases we also registered with another 101 websites from 15 categories

listed by Alexa as the most popular sites using unique random aliases [16]. The 15

categories are arts, business, computers, games, health, home, kids and teens, news,

recreation, reference, regional, science, shopping, society, and sports. In addition,

we subscribed to 15 mailing lists. The mailing lists were ranked amongst having the

most subscribers by L-Soft, the company that invented electronic mailing lists [76].

After fifteen days, we collected and analyzed the domains from which the senders

are emailing each of the alias. We used the domains from the email envelopes instead

of the email headers, since it is easy for an adversary to spoof the “From” header.

Figure 3.12 shows the distribution for the different number of aliases for varying
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Table 3.3: Table of aliases used for website, mailing list and newsletter registrations,
sorted in increasing number of unique sender domains. The first column
lists the Case IDs while the second column shows the alias. The third
column indicates the number of unique domains of the senders and the
last column lists some of the domains. In the interest of space, entries
with senders from more than six unique domains are truncated.

Case ID # Sender Domains
A1 2 website.mlb.com, bounce.ed10.net
A2 2 emailconfirm.com.com, noreply.gamespot.com
A3 2 australia.care2.com, bounce.bluestatedigital.com
A4 2 connect.match.com, returnpath.bluehornet.com
A5 2 bounce.em.ign.com, bounce.mkt1839.com
A6 2 paypal.com, bounce.ed10.net
A7 2 signaturesurveys.com, server220.go-mama-hosting.com
A8 2 b.mypoints.com, mail.hpshopping.com
A9 2 envfrm.rsys5.com, animoto.com
A10 2 crosswalkmail.com, salememail.net
A11 2 email.decrease4u.net, QuickenLoans.com
A12 2 ebay.com, us.emarsys.net
A13 3 email-bounces.amazonses.com, facebookmail.com,

bounce.game.e.playdom.com
A14 3 echineselearning.com, in.constantcontact.com, bmsend.com
A15 3 mail.christianmingle.com, ChristianMingle.com, believe.com
A16 3 pandaresearch.com, paidsurveysforyou.com, arcamax.com
A17 4 yourfreesurveys.com, surveyhelpcenter.com, myview.com,

bounce.exacttarget.com
A18 5 rootsweb.com, email.ancestry.ca, email.ancestry.com.au,

email.ancestry.com, email.ancestry.co.uk
A19 6 ssprd9.net, 5in5now.com, clearvoicesurveysmail.com,

mailboto24.com, bounce.npdmr.com, mailboto21.com
A20 6 jangomail.com, ownattention.com, freebieape.info,

royalofficials.com, weekenddefeat.com, galabenefits.com
A21 13 litmus.modulelaunches.net, squaresz.com, nast.zoncatalor.com,

tourer.fillsavings.com, ecipwriver.com, tingly.muterdepordet.com,
etc.

A22 14 downpours.net, berks.philosophersr.com, unff.neswooleston.com,
brazil.lxxia.com, pinch.istrowesturase.com, paolo.flatstudio.net,
etc.

A23 16 mydailymoment.com, list.cheapflights.com, inboxpays.com,
bounces.lifescript.com, inboxdollars.com, mailboto21.com, etc.

A24 128 sellingprocess.info, theconfident.info, yourcouponworld.info,
mycontentsite.info, mycrowdsourcecentral.info, emilestone.info,
etc.
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Figure 3.12: Histogram of the number of aliases for different number of unique sender
domains.

number of unique sender domains. Table 3.3 lists examples of the sender domains.

In the interest of space, only interesting cases are shown.

There were mails sent to 88 of the aliases. 62 (70.45%) of the aliases had senders

from one domain. Having senders from multiple domains do not necessarily constitute

leakages as some domains are affiliated. We define two domains to be affiliated if the

registrants for the domains are the same or they are declared to be affiliated in the

privacy policies or terms of service. Referring to Table 3.3, we examined the domain

affiliations for Cases A1 through A20 and identified sender domains affiliated for each

alias.

We noticed that for Cases A21 through A24, the number of unique sender domains

ranged from 13 to 128. We returned to examine the private policies for these websites.

All four policies stated that email addresses will be shared with other sites. An

example of such clauses is, “We may share User information with third parties as

reasonably necessary for us to operate this website and to provide offers and services

to Users”. It is easy for users to miss such clauses as they are usually obscured

amongst lengthy privacy policies.
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Table 3.4: Table of aliases used for classified advertising and forum postings, sorted
in increasing number of unique sender domains. The layout is the same as
in Table 3.3. Sender domains in bold are identified instances of leakages.

Case
ID

Aliases # Sender Domains

B1 m4kkxa4d 1 my.ohecampus.com
B2 dpuxqbxg 1 gmail.com
B3 bob.m4kkxa4d 2 health.webmd.com, webmdmessage.com
B4 bob.n13va5ck 2 adobe.com, macromedia.com
B5 bob.qf11md51 2 alibaba.com, hotmail.com
B6 bob.wa12tfcm 8 maestro.independenttraveler.com, cruisecritic.com,

tripadvisor.com, gmail.com, lists.sniqueaway.com,
lists.airfarewatchdog.com, etc.

B7 bob.dpuxqbxg 14 scmc050.net, ns2014560.ovh.net, kataros.com,
fbi.gov, gmx.us,
s15355439.onlinehome-server.info,
muhleheidemusikanten.nl, etc.

While investigating the sender domains, the ease with which we were able to

find all emails sent to a particular alias was very encouraging. This demonstrated

the advantage of using aliases for investigating potential leakages. Without using

aliases, it might have been an extremely challenging task for the user to distill out

bad websites such as for Cases A21 through A24. The user can then surgically mark

the aliases for these cases as leaked without affecting the registrations for the good

websites.

3.4.3.2 Leakages by Online Posts

To study the email address leakages through online message postings, we posted

messages on seven forums and one popular classified advertising site. These were

found from amongst the 45 sites we used in Section 3.4.3.1. For each posting, we

generated a new alias and displayed it in clear in the message body. After 15 days,

we examined the mails sent to these aliases. Table 3.4 shows the sender domains for

aliases that had emails sent to them. We observed two leakages on two forums hosted

by tripadvisor.com and webmd.com. These are Cases B1, B3, and B6. Cases B1 and
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B3 are related. Clearly, the sender in Case B1 was intending to send to bob.m4kkxa4d.

However, perhaps due to parsing error, the mail was sent to m4kkxa4d instead. We

were able to observe this abnormality because we intercepted all emails sent to our

server. The email in Case B1 was not forwarded to the user’s email provider. The

emails sent in Cases B4 and B5 were legitimate responses to our forum postings.

In addition, there were 24 emails from various senders sent to the alias that we

used for posting an advertisement on a classified advertising site. These are Cases

B1 and B6 in Table 3.4. Based on the email contents, seven of these appear to

be legitimate queries, while the remaining 17 emails contained messages that were

irrelevant to the original context. Six emails claimed to be from the administrator of

the site, one from FBI and one from a reputable bank. Eight of them contained links

to external suspicious sites.

3.4.4 Timing Performance

Email systems use a store-and-forward model. Numerous factors contribute to-

wards the time taken for an email to be sent to its recipient, including network

latency, spam or virus detection filtering, and overloaded relay servers. While delays

are generally tolerable, any additional processing on the emails by servers such as

SEAL should be reasonable. Towards understanding the timing overheads incurred

by SEAL, we measured the arrival times of emails at the email relay servers as in-

dicated by the time stated in the Received header field. While this is not ideal

for several reasons including clock skew between different servers, incorrect date and

time on some servers, and timing information having only a granularity of seconds,

it allows us to approximate the overhead incurred by SEAL. Moreover, the lack of

access to other servers does not allow us a detailed comparison of performance data.

We synchronized SEAL’s clock with an NTP server and assume that other servers

did the same. The Received header fields are added by each SMTP server as the
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Table 3.5: Percentages for five groups of shortest delays.
Delay (secs) Percentage Number

0 to 1 81.383 103,189
1 to 2 9.465 12,001
2 to 3 1.779 2,255
3 to 4 0.900 1,141
4 to 5 0.605 767

email is accepted. Figure 3.13 shows an example of these fields for an email. We

compute the differences between the timestamps of two consecutive entries and refer

to them as delays. In the example, we use the delay between entries 2 and 3 as an

indication of the processing time required by SEAL to analyze and forward the email.

At entry 2, the email is marked as received by SEAL, after which it is processed. It is

then sent to the outgoing queue with entry 3 added. While we could have timed the

scripts, the lack of data from other servers would render any comparison meaningless.

Table 3.5 shows the percentages for the five groups of the shortest delays. 126,794

delays for emails were collected from one of the author’s email accounts and a SEAL

account. The mean and standard deviation for these delays is 105.116 seconds and

21,232.627 seconds respectively. 3,706 delays were incurred by SEAL, with the maxi-

mum and minimum delays being five and one seconds respectively. The average delay

contributed by SEAL is 0.274 seconds. This is at 0.00494 standard deviation away

from the mean. This can also be inferred from Table 3.5 that shows the percentages

for the five groups of shortest delays. 81.383% of the delays are from zero seconds to

one second, in which SEAL’s average delay lies. The delay incurred by SEAL is thus

insignificant in comparison to other delays.

3.5 Discussion - Security and Usability

Although our construction of semi-private aliases seeks to minimize inconvenience

to legitimate senders, there are remaining issues, some of which also apply to existing
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(6) by 10.231.190.83

with SMTP id dh19csp37616ibb;

Sat, 25 Feb 2012 07:02:20 -0800 (PST)

(5) by 10.50.178.73

with SMTP id cw9mr7274127igc.23.1330182140761;

Sat, 25 Feb 2012 07:02:20 -0800 (PST)

(4) from seal.eecs.umich.edu

(d-110-235.eecs.umich.edu. [141.212.110.235])

by mx.google.com

with ESMTP id no10si2673927igc.10.2012.02.25.07.02.20;

Sat, 25 Feb 2012 07:02:20 -0800 (PST)

(3) from seal.eecs.umich.edu (localhost [127.0.0.1])

by seal.eecs.umich.edu (Postfix)

with ESMTP id EE11954C72F

for <johnsmith@gmail.com>;

Sat, 25 Feb 2012 10:05:12 -0500 (EST)

(2) from backend.www.inm.smartertravel.net

(backend.www.inm.smartertravel.net [75.98.73.172])

by seal.eecs.umich.edu (Postfix)

with ESMTPS id CA35354C722

for <ads.j1pdkqa5@seal.eecs.umich.edu>;

Sat, 25 Feb 2012 10:05:12 -0500 (EST)

(1) from smarter (helo=localhost)

by backend.www.inm.smartertravel.net

with local-bsmtp (Exim 4.76)

(envelope-from

<b-KEEXNPCTCQ-38936-2893808-AWDSubscriptionUtils

@lists.airfarewatchdog.com>)

id 1S1J8d-0007SB-QG

for ads.j1pdkqa5@seal.eecs.umich.edu;

Sat, 25 Feb 2012 10:02:19 -0500

Figure 3.13: Values of the Received header fields for an email, annotated with the
order in which they were pushed onto the mail header. The receipt
timestamps are highlighted in gray.
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DEA systems. During the transition of an alias to the restricted state, there are some

cases in which known legitimate senders may be treated as untrusted. For instance, in

a more severe case, if a user is subscribed to a mailing list under a semi-private alias

that the user later marks as restricted, and then the domain name of the mailing

list’s server is changed, the mailing list would then be treated as untrusted and

would likely ignore our service’s prompts to solve a CAPTCHA challenge, resulting

in that newsletter being silently blocked. One simple mitigation would be to deliver

these messages to the user’s spam folder, instead of completely blocking them (this

requires cooperation between SEAL and the mail provider). The user can then mark

the senders that are incorrectly delivered as trusted.

Another concern is the potential that spammers could also misuse SEAL. For

example, they could create aliases to be used in the From field of spam messages,

providing a channel for the recipients of spam to respond (e.g. to spam advertise-

ments). But it is not clear if this offers significant advantages to spammers. Spam-

mers already have the ability to create multiple email addresses using mail servers

they control and, as far as we are aware, this does not help them bypass existing spam

defense mechanisms. This is an area for further investigation. Note that a spammer

would still have to create an account with an email provider that is coupled with their

SEAL account. Legitimate SEAL servers could be configured to permit only coupling

with email providers that have checks against spammer registration or receipt of large

amounts of bulk mail in short intervals (e.g., Gmail appears to have such controls).

Illegitimate SEAL servers that are primarily designed to protect spammers would

probably get blacklisted over time, just as mail servers do.

Spammers could also attempt to attack SEAL protocols directly. For example,

a spammer could attempt to spoof a legitimate user and send commands to add

themselves to the trusted set. But, to do that, the spammer would need several

pieces of information that are not easy to get: email ID with the mail provider
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and account userid/password on SEAL. Email sent to command addresses, such as

getalias@sealserver, is rejected unless it arrives over an authenticated SMTP session

and the commands are executed under the identity of the user that authenticated,

rather than the content of the “From” field in the message headers.

Spammers could attempt to compromise SEAL infrastructure as well. While

SEAL servers should be secured using best practices, one should minimize the damage

that results in case the server is compromised. We consider two forms of attacks: (1)

a one-time intrusion that simply steals all the data within the databases and (2) an

active attack where the attacker compromises the code within the server. In the first

case, the only email IDs that the attacker gets hold of are the user’s email ID at the

mail provider (Gmail ID in Figure 3.6. All other email IDs are stored as salted hashes,

which should be difficult to reverse1. Our implementation recommends that the user

create a fresh, private account on the Gmail provider. That email address should not

be publicly used – all email from it is routed via the SEAL server by configuration of

SMTP settings within the mail provider. Recipients only see semi-private aliases. If

the email ID at the mail provider is ever leaked, it is easy to change, since it is only

relevant to the owner and not shared.

In the second case, if a spammer compromises the SEAL servers, they can monitor

emails flowing through the system and collect addresses. While this is serious, the

addresses collected are limited to the time that the attack goes unnoticed. It is

certainly less serious than the compromise of an email provider, where both older

messages and future email are potentially accessible.

SEAL is not designed to provide anonymity against local network snooping. A

government, for example, could monitor the network channels to a SEAL server and

collect emails, since they could go over unauthenticated and unencrypted SMTP

from arbitrary senders. As far as we are aware, this is not a typical attack used by

1Besides, if the spammer had a dictionary of email IDs, there are cheaper means of verifying
them than trying to do a dictionary attack on the salted hashes.
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spammers.

Despite our efforts to make SEAL easy to use and minimize impact on non-spam

senders, we acknowledge that some users will still prefer permanent addresses to semi-

private aliases. Permanent addresses have the advantage that they can be printed on

business cards, are easy to remember, and thus hand out. With SEAL, a user could

generate an alias on a mobile device and then write it by hand on a form or business

card (which may not be too bad for one-on-one situations). For better scalability

when the user is handing out the cards to a large number of users, a possible solution

would be to publish a means for a requester to send a text message and receive the

alias as a response. This ties the requester’s cell phone number to the alias. Cell

phones are sufficiently common now among email users that we don’t see this as a

significant usage barrier.

For publishing email IDs on web pages, we are currently experimenting with a

mechanism that generates a semi-private alias on the web page based on the IP

address from which the HTTP request was received. The reason for looking into this

is to investigate if this provides additional means to identify servers that are used to

harvest email IDs from web sites. We are still in the process of collecting data from

this mechanism.

One significant usability concern with SEAL is that, over time, one person could

appear multiple times in an address book. This would occur when email containing

aliases in the From or To fields is sent to a group. When those aliases are added to

an address book, one person may end up with multiple aliases in an address book.

This occurs today also to some extent as people both have work and personal email

accounts. As a result, many address books permit multiple email IDs to be associated

with one person. With SEAL, being able to mark an email ID as the preferred or

primary email ID will be useful. In our design, we require the alias name of an

alias to be associated with a single account. As a result, a SEAL-compatible address
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book could automatically associate all email IDs that have the same alias name (e.g.,

aliasname.*@sealserver) with the same person.

As mentioned before, the browser extension for using aliases as web usernames

was adapted from PwdHash [106], and so it comes with some of the same limitations

as their work, including lack of portability to all applications that render HTML, vul-

nerability to spyware coexisting on the same computer, and susceptibility to attacks

on DNS to confuse the resolution of domain names. One potential improvement in

usability over PwdHash comes from the convenient fact that the username field is

not normally scrambled on login web forms, so that the user can more easily see the

fetching and replacement of their username and know that it was successful. It is also

notable that while the user must input a sensitive password when using PwdHash,

the information being input for our extension is not nearly as sensitive, and so attacks

such as focus stealing are not likely to pose as substantial a threat to web account

security.

3.6 Conclusion

The current paradigm does not provide email address owners sufficient control of

their addresses, leading to email address leakages, and thus rogue accesses to email ad-

dresses. In addition to traditional risks posed by underground crackers, some services

require the users’ official addresses to validate their affiliations with certain organiza-

tions. Current technologies do not allow users to provide alternative addresses that

do not over-disclose user information to these services.

We propose the concept of semi-private email aliases and its embodiment, SEAL,

a system that provides users more control over their email aliases and allows web ser-

vices to validate the user’s affiliation with an organization without having access to

the user’s private information. Semi-private aliases are randomized email addresses

that can be restricted progressively when the user detects that they have leaked. This
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is related to the common disposal feature of DEA systems. However, what distin-

guishes SEAL from other DEA systems is that it both includes a more advanced

mechanism for managing finer-grained alias lifecycles, allowing for a more flexible

approach to retiring compromised email addresses, and also that it integrates fully

with current email systems while at the same time not being overly restrictive. Ex-

perimental results indicate that SEAL can be useful in controlling unsolicited email,

while being compatible with existing email systems.

In organizational settings, SEAL also permits use of aliases to validate a user’s

affiliation, while preventing disclosure of the work-related email ID or associated in-

formation. This proved useful in a test deployment where an instructor of a freshmen

course at our institution required students to use an online forum provided by Pi-

azza.com but did not wish to require the students to disclose their university email

ID to the service because of concerns about student privacy. Piazza.com’s default

sign-up mechanism uses student’s email IDs to validate their university affiliation.

Over 80% of students chose to use email aliases issued by SEAL rather than their

university email ID, to sign up at Piazza.com.
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CHAPTER IV

Reducing System Permission Gaps

with DeGap

4.1 Introduction

Permissions for system objects (e.g. files and network sockets) on host machines

are granted explicitly via configuration files or system data structures such as inodes.

Discovering potential permission gaps for system services can be hard. As operating

systems and software mature, clear-cut cases of vulnerabilities due to permission

gaps in commonly used software, such as allowing everyone to read and write critical

log files for syslog-ng [32], will likely be discovered and fixed. However, new or

less commonly used software may not have been subjected to a sufficient level of

scrutiny, potentially allowing permission gaps to arise and persist. Actual occurrences

of this include file permission vulnerabilities in openswitch-pki [26], logol [25], and

extplorer [24].

Furthermore, different systems often have different ways of managing object per-

missions. For example, file permissions in Unix are configured via mode bits. But, per-

missions in various network services, such as SSHD daemon, are usually controlled via

configuration files. In SSHD daemon, a variety of settings are used, such as AllowUsers

(a list of users) and PermitRootLogin (a Boolean flag), to control access.

49



One method for identifying potential permission gaps is to use static analysis of a

system. In several works on Android apps [41, 20, 21], the authors compared two sets

of permissions for an Android app: (1) permissions used by the app from the user;

and (2) the permissions that could be used by the app, based on static analysis of

the code. The extra permissions used could pose a potential risk, even though static

analysis shows them to be unused because malware could potentially exploit them

by, say, code injection.

Unfortunately, the technique of doing static analysis on a system to identify gaps

is not broadly applicable. In [21], an example of a firewall with too liberal permissions

is used to motivate the need for closing permission gaps. But, static analysis of ser-

vices listening behind the port and comparing it with firewall permissions is unlikely

to identify the gaps because, usually, only the firewall is responsible for doing the

blocking of remote requests. There is only one reference point, the firewall policy,

and there is nothing else to compare with to identify a potential gap. Similarly, a ser-

vice like ssh daemon can use potentially all the available configuration settings, even

permissive ones, and static analysis of ssh daemon is unlikely to identify permission

gaps.

Furthermore, any permission gap analysis is likely to be computing an estimate of

a gap. Security requirements change over time and may not even be precisely known.

A user may have been granted access to a object at some point in time but may no

longer need access. The administrator of the object may not be aware of the change.

Even in the static analysis example, there could be a rare app that wants to acquire

extra permissions from users, anticipating a future capability in the app.

The above leads to the question of what is the best we can do in an automated

manner, given that permission gaps exist in systems but static analysis is not feasible

and any analysis must necessarily be an estimate? We make use of a simple idea

to derive an estimate of the permission gap. DeGap examines the past usage of
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objects and compares them with the granted permissions to derive an estimate of the

permission gap, i.e., opportunities that users should consider for tightening object

permissions.

Information on past usage is often available in log files or can be collected by

appropriately auditing the system. Unfortunately, there are two problems. First, logs

typically contain overwhelming amounts of data. They are often poorly formatted

for detecting break-ins [116], let alone unneeded permissions. While there are tools

utilizing these logs for various purposes including file integrity checking, intrusion

detection, and troubleshooting [12, 88, 77, 133], to the best of our knowledge, logs are

not currently easy to use for identifying permission gaps. Second, different services,

such as as file systems, firewalls, and services such as ssh, use different methods for

configuring permissions. Providing a generalized solution that works for multiple

services appears to be non-trivial.

In this Chapter, we describe DeGap, a common framework for discovering per-

mission gaps and suggesting solutions for configuration settings towards reducing

the gaps. We used DeGap to analyze logs generated by two very different services:

auditd and SSHD, with respect to utilized permissions. Users can use the tool to help

determine a lower bound on the set of permissions for a object that is consistent with

its usage during a selected period. These permissions are then compared with the

assigned permissions to expose potential permission gaps. DeGap then proposes a set

of suggested configurations for achieving that lower bound. While we demonstrate

the feasibility of our framework in the setting of system objects, it should be readily

applicable to other scenarios, such as helping users to improve privacy settings in

social networks.

Overall, we make the following contributions:

• We describe a framework and a set of principles that we used to design DeGap

for identifying permission gaps. This framework was designed with applicability
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to different services in mind, and we describe the framework’s core components

while also highlighting the design nuances for the components that need cus-

tomization for different services.

• We implemented DeGap, and demonstrate the flexibility of the framework by

developing components for extracting and analyzing permission gaps from logs

and configuration settings for both auditd and SSHD.

• We show that DeGap is able to discover permission gaps by presenting an

analysis performed using DeGap on the permissions of several actively used

machines. For SSHD, we discovered that two users had not had their access

revoked even though it was no longer required. Also, DeGap was able to identify

that legitimate users only used the public key authentication method to log on to

one of the servers, but password-based authentication was unnecessarily allowed.

The server had been the target of password brute-force attacks, suggesting

that revoking the password-based authentication method could serve as a low-

impact means of tightening the authentication policy and enhancing security.

For auditd, DeGap discovered a private key for one service that was mistakenly

set to be world-readable. It also found two additional files on the servers that

could be exploited to execute a privilege escalation attack. Finally, DeGap

identified various user groups that were unused during monitoring and were

candidates for tightening.

• We demonstrate DeGap ability to automatically suggest changes that can be

made to configurations for reducing permission gaps. For both SSHD and auditd,

DeGap generated correct suggestions for reducing permission gaps.

• For auditd, which generates extensive logs, we explore potential improvements

to the auditing process that can speed up subsequent permission gap analysis.
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The Chapter is structured as follows. Section 4.2 discusses the limitations of

DeGap. Section 4.4 presents definitions and basic techniques that are used as building

blocks for for discovering gaps and identifying fixes. Section 4.5 describes the system

architecture. Section 4.6 presents evaluation results. Section 4.7 explores techniques

for speeding up parsing of logs by modifying the way logs are collected. Finally,

Section 4.8 presents conclusions and directions for future work.

4.2 Limitations

DeGap uses logs, which record past accesses to objects over the period of analysis.

Clearly information about prior accesses provides no guarantee regarding patterns of

future access. But in the absence of the ability to accurately predict future uses,

DeGap provides a means for identifying potential permission gaps so long as access

patterns remain unchanged.

An adversary may have accessed a object prior to or during an analysis of the

logs by DeGap. DeGap is not able to distinguish legitimate accesses from illegitimate

ones. Illegitimate accesses can be filtered out if they are known prior to analysis, for

example using reports from an intrusion detection system. DeGap provides a database

and a query engine that supports the exclusion of known illegitimate accesses. For

unknown illegitimate accesses, an attacker’s activity will be treated as normal; in that

case, DeGap can still be useful in tightening the system to prevent other attacks that

did not occur during the analyzed period.

We note that since accesses are logged after they have occurred, DeGap is by de-

sign incapable of preventing illegitimate accesses as they happen. Without reinventing

the wheel, we leave this responsibility to existing tools, such as intrusion detection

systems. The same limitation applies to other security alerting systems [57], such

as Tripwire, a popular open-source system that detects changes to file system ob-

jects [13].
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4.3 Relationship between Permission Gaps, Permission Creep,

and Attack Surfaces

Eliminating permission gaps inherently stops permission creep and reduces the

attack surface of a system. It may therefore be useful to understand the relationship

between these terms, and the implications of this relationship.

Permission creep is an insidious accumulation of permission gaps over time [96], for

example, due to granting employees additional permissions beyond their normal roles

for a temporary need, but failing to revoke permissions when employees leave or the

need disappears. Resolving the permission gap problem implies that the permission

creep problem will also be resolved. However, the converse is untrue since permission

gaps can still exist in the absence of permission creep. For example, in the case of a

single user system, permission creep is unlikely to occur while permission gaps may

exist. The term “permission creep” is also used by Vidas et al. [131]. However, the

semantics of that term would better match that of “permission gap” in our context

as well as Felt et al. [41] and Bartel et al.’s work [21].

The attack surface of a system is the set of methods available to a potential

attacker for gaining access to a system with the potential to inflict damage [80].

Clearly, having a smaller attack surface roughly corresponds to having a more secure

system. Granted permissions contribute to a system’s attack surface and permission

creep increases the attack surface “area”. Eliminating the attack surface entirely by

removing all permissions is impractical, but in pursuing an adequate level of security,

it should be the system owner’s objective to reduce their system’s attack surface as

much as is practical. DeGap provides necessary information to help achieve this.
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4.4 Tightening System Permission Gaps

As a reminder, we represent a permission as a tuple (s, o, r) that denotes subject

s as having the right r to access object o. In turn, system objects are collectively

guarded by a set of granted permissions PG = {g1, g2, . . . , gn}, where each gi is a

permission tuple (si, oi, ri). A subset TrueGap of granted permissions PG are not

required for all legitimate accesses to succeed. This subset constitutes the true per-

mission gap for the system. These extraneous permissions potentially increase the

attack surface of the system, and the goal is to help users discover these gaps and

recommend ways of fixing them.

The problem is that computing TrueGap is generally not possible for an auto-

mated tool in the sense that the precise set of legitimate accesses that should be

allowed normally cannot be automatically inferred if the only reference point avail-

able is the set of granted permissions. A second reference point is needed to compute

an estimate of the gap.

We attempt to compute an estimate of the TrueGap by using past accesses, usually

recorded in system logs, as a second reference point that can be compared with

PG. Since permissions have to be granted explicitly for objects in system services

to be accessible, we can simplify PU to represent the set of permissions that were

appropriately authorized, as per log files, i.e., PU ⊆ PG. Let P∆ represent the set

of permission gaps, where P∆ = PG \ PU . There is no permission gap if and only if

P∆ = ∅.

In a static system (where PG and TrueGap do not change), the permission gap

P∆ from the above definition will be be an upper bound on TrueGap. How tight this

bound is will generally depend on both the quality of the log files and the period of

time that they cover. The approach we take is that since TrueGap must be estimated,

a reasonable choice, as good as any available for most services, is to estimate the gaps

based on past usage. At least, that way, users have some well-defined reference point
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when deciding whether to tighten permissions. Using this definition also permits

users to ask the following question:

Given a permission that is proposed to be revoked, were there actions

in the past that would have been denied had the permission never been

granted in the first place?

We believe that being able to answer the above question is important before

revoking permissions as it may be indicative of denial-of-service problems that may

arise with permission revocations. Using a firewall analogy, if blacklisting a sub-

domain of IP addresses is proposed as solution to prevent attacks from a subset of

nodes in that domain, it is important to consider whether there have been legitimate

accesses from that sub-domain in recent past. If there were, then blacklisting the

entire sub-domain may turn out to be an unacceptable option.

Our approach of using best-effort estimation of gaps is consistent with the ap-

proach in other areas of applied security. IDS systems and virus detection systems

do not always guarantee correctness. They are still useful to administrators as an aid

in securing systems.

Finally, we note that we used a model of subjects, objects, and rights to express

permissions. Without loss of generality, the approach could be extended to support

more detailed models of permissions, e.g., where subjects, objects, and rights have

attributes and granted permission is viewed as a combination of approved attributes of

subjects, objects, and rights. The key requirement is that there be a way to compute

PG \ PU , given PG and PU .

4.4.1 Gap Analysis and Traceability

Our goal in gap analysis is not only to determine whether there is a permission

gap, but exactly the setting in a configuration file or the permission on an object

that contributes to the gap, i.e., the question of mapping PG \ PU back to specific
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configuration settings; ideally, the administrator should be told the specific setting

that contributes to the gap rather than having to make guesses. This is particularly

important because gaps are likely to be reported at a lower level of abstraction by

the tool than what an administrator is going to be used to.

The challenge in identifying the settings in a configuration file that are candidates

for tightening is that a reverse mapping from P∆ to a configuration setting may

not always be available or straightforward to provide. For example, if logs indicate

that remote root login to SSHD is not required, identifying the specific place to make

the change (e.g., PermitRootLogin field or the AllowUsers field) will require a fair

amount of domain knowledge. One potentially has to write two parsers, one to go from

a configuration file to PG and another from gaps to specific settings in a configuration

file.

DeGap supports two approaches to the problem for discovering changes in con-

figuration settings that lead to reducing the permission gap. In the first approach,

the existence of a reverse map from gaps to configuration settings is assumed to be

available for a service and can be provided to DeGap. We used this approach first

for analyzing gaps with file permissions using logs from auditd.

In the second approach, the existence of a reverse map from gaps to configuration

settings is assumed to be unavailable. We only require the availability of a one-way

transform from configuration settings to PG. We used this approach analyzing gaps in

configuration settings in sshd config using SSHD authentication logs and later also

applied it to auditd logs. The second approach requires less work in applying DeGap

to a new service since a reverse map from gaps to configuration settings does not

have to be defined. However, the first approach can sometimes be more efficient. In

this Chapter, we will primarily discuss the second approach since we have found it

to work sufficiently well in practice that the extra work of creating a reverse map is

probably not worthwhile.
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In the second approach, to identify changes in settings that could reduce the

gap, the basic idea is to generate potential deltas to a configuration file that tighten

permissions and map the modified configuration files to a set of granted permissions

P ′
G. We then determine if P ′

G helps close the permission gap with respect to a set of

required permissions PU .

Permission gaps can be tightened (reduced) by restricting PG to P ′
G where P ′

G ⊂ PG.

This involves eliminating permissions. To eliminate the gap P∆ completely, one must

choose P ′
G = PG \ P∆. Realistically, this is not always possible as there are limits on

the granularity of the granted permissions that can be influenced by the configuration

settings. For example, for file permissions, changing the other mode bits in UNIX

will impact all non-owner and non-group users.

In general, removing permissions by changing the configuration settings leads to

three possible outcomes: under-tightening, over-tightening, or both. Over-tightening

affects usability - some accesses in PU would have been denied. Under-tightening

exposes the system to accesses that are not in PU . For a static system (where PG has

not changed over the logging period), we claim the following propositions:

Proposition IV.1. (Over-Tightening Rule) P ′
G is over-tightened with respect to re-

quired permissions PU if and only if PU \ P ′
G 6= ∅.

Proposition IV.2. (Under-Tightening Rule) P ′
G is under-tightened with respect to

required permissions PU if and only if P ′
G \ PU 6= ∅.

Proof. First, let P ′
G be an over-tightened permissions configuration. This is equivalent

to saying that there exists some permission u that has been requested but not granted;

that is, u ∈ PU \ P ′
G and hence PU \ P ′

G 6= ∅.

Similarly, let P ′
G be an under-tightened permissions configuration. This is equiva-

lent to saying that there exists some permission g that is granted but never requested,

so that g ∈ P ′
G \ PU and hence P ′

G \ PU 6= ∅.
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We note that it is possible for a configuration change to result in P ′
G that is both

over-tightened and under-tightened with respect to PU . This could theoretically occur

if the configuration change results in revocation of multiple permissions that are not

sufficient to close the gap, but some of the revoked permissions are in the set PU . For

Unix files, removing group permissions on a file could result in such a situation.

The over-tightening rule is a simplification of the reality. Since PG is really a

snapshot of granted permissions, there is a possibility that PU \ PG is not empty –

permissions could have been tightened during or after the logging period, because of

a change in security requirements and deletion of some objects, but before a snapshot

of PG was taken. If that is the case, we want (PU \ P ′
G) ⊂ (PU \ PG) to hold. If true,

then the configuration change contributes to reducing the permission gap between PG

and PU ; otherwise not. We accommodated this scenario by normalizing PU (replacing

it with PU \ PG) thereby removing requests in the log that pertain to objects that no

longer exist or permissions that administrators have revoked. Once PU is normalized,

the over-tightening and under-tightening rules continue to apply.

To test if a configuration setting contributes to the permission gap, we can simply

simulate a change to the setting to obtain P ′
G, and compute PU \ P ′

G. If PU \ P ′
G = ∅,

the setting contributes to the permission gap. On the other hand, if new tuples show

up in PU \ P ′
G, that means that changing the setting caused some actions in PU to

be denied. The setting does not contribute to the permission gap. Additionally, we

check that P ′
G \ PU = ∅. Otherwise, some of the previously granted subjects will be

denied access with the changed setting.

In general, if there are n possible atomic deltas to an existing configuration setting,

it will require O(n) checks to identify all the deltas that can lead to tightening the

gap without over-tightening. The above idea also applies to finding potentially stale

members in a group. As an example, for SSHD, the AllowUsers field specifies a list of

authorized users. To detect users in the list that could be contributing to a permission
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Figure 4.1: Conceptual model for DeGap. Arrows indicate dataflow. Shaded compo-
nents are specific to the service being analyzed.

gap, one simply needs to simulate removing each user one by one and, for each P ′
G,

determine if PU \ P ′
G = ∅; if yes, the user’s authorization was not used for login and

the user is a candidate for removal from the AllowUsers field. For auditd logs, we

can apply a similar technique to periodically analyze membership lists in /etc/group

for key groups for potential pruning.

4.5 System Architecture

4.5.1 Overview

Figure 4.1 shows the architecture of DeGap. Shaded boxes in the figure are spe-

cific to each service being analyzed (e.g., SSHD, file system permissions). Bulk of

the gap analysis system and the database is automatically generated from schemata

that describe the attributes of subjects, objects, rights, and format of the service

configuration files.

A Log Parser extracts permissions used during accesses from either log files or

directly from a service logging facility and system activities and puts it in a SQLite

permissions database. For services, writing logs to a file is usually more efficient than

writing to the database on the fly [46] and most services can log to files out of the
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box. Thus, in DeGap’s implementation, we adopt a hybrid approach where we use log

files to record object accesses but post-process the logs to store required permissions,

PU , to a database so as to permit a general-purpose query engine to help analyze

permission gaps.

The Config. Parser is a service-specific component that generates the granted set

of permissions PG. For services where configuration files are used to define granted

permissions (e.g., SSHD), it reads in configuration files and generates PG. For others,

like file system permissions on our Linux servers, it extracts data from the file per-

mission mode bits. For configuration files, it also extracts a sequence of configuration

settings, C, that are used by another component, Config. Generator, to help discover

settings that could be changed to reduce permission gaps.

The DB Schema/Query Mapper is similar in spirit to tools like Django [10] in

that it takes as input a schema and generates the initial tables for the Permissions

Database. We also use it to generate SQL queries from query templates. Query tem-

plates provide simple ways of querying the database using select-project-join (SPJ)

queries [38] on entities and attributes in the configuration schema. SPJ queries are

highly expressive though not full SQL; full SQL is also available. Users who wish to

extend DeGap or make custom queries can either use templates or full SQL. Other

key components of the gap analysis system, Config. Generator and Config. Evaluator,

internally make use of templates as well as direct queries on the database, wrapped

in Python code.

Config. Evaluator takes as input candidate configuration file (or settings) that a

user would like to evaluate against PU , the requests in the log files. It reports back

whether the candidate configuration leads to a system that has a narrower gap than

PG without over-tightening.

Config. Generator uses specifications for configuration parameters (described in

Section 4.5.4 and in Figure 4.5) as input and generates alternatives for configuration
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settings that are tighter than the current settings. It then evaluates those modified

settings using the Config. Evaluator to determine whether they tighten the permis-

sions without over-tightening them. The subset of alternatives that are acceptable

are presented to the user. Config. Generator can also apply a greedy algorithm (pre-

sented in Section 4.5.4) to generate a sequence of configuration setting changes that

is maximal. In other words, tightening any remaining setting further leads to an

over-tightened system.

4.5.2 Principles

The architecture and its mapping to an implementation reflects certain design

principles:

• Build once, reuse many times:

The DB Schema/Query Mapper and the Config. Generator segregate the logic

of DeGap from the semantics of the logs and configurations for the service

being analyzed. These components are generic and can be used across different

services being analyzed.

• Minimalistic Design: To amortize the cost of gathering and writing the data,

logs tend to contain as much of the data as possible. However, much of the data

is usually unneeded for the computation of permission gaps . Moreover, many

accesses are essentially identical to earlier accesses, except for their timestamps.

We aim to keep the database model simple, the size of database small, and to

provide a simple language for making queries related to gap analysis.

• Handle scale by appropriate optimizations: The set PU can be very large in

practice. We use optimizing for doing gap analysis on large sets so that P ′
G

usually does not have to be compared with all entries in PU .
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Figure 4.2: Database model for DeGap. Underlined substrings are used as table
names.

4.5.3 Database Model

Figure 4.2 summarizes the database model used for DeGap. The model follows

from our definitions in Section 4.4. A object is accessed by a subject using an access

right. An subject may access a object using multiple access rights while a object

may be accessed by multiple subjects using different access rights. Each granted

permission is associated with a subject, an access right, and a object. The “Granted

Permission” and “Used Permission” tables correspond to PG and PU respectively. The

“New Granted Permission” table has the same attributes as the “Granted Permission”

table, but stores the set of granted permissions P ′
G for a modified set of configurations

C ′, which we will elaborate shortly in Section 4.5.4. The reason for storing both PG

and P ′
G is to allow the user to evaluate the potential permission gaps as a consequence

of a new set of configurations.

The “Permission Config” and “New Permission Config” tables are used for storing

the configurations used for determining PG and P ′
G. More than one configuration may

affect a certain permission, and each configuration may affect multiple permissions.

The “Config Specification” table describes the type, possible values, and default

value for each configuration. They are used for generating a new set of configurations

C ′ and will be discussed further in Section 4.5.4.

Figure 4.2 does not show the attributes within each table (e.g., Object, Right, and
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Subject). Those are service-specific. For example, SSHD will have different attributes

than a filesystem. These tables are generated by the DB Schema/Query Mapper from

the schema for the service’s permissions.

4.5.4 Permission Gap Analyzer

For DeGap to be useful, users should be able to evaluate the effect on permissions

when a configuration setting is changed. Towards this end, the Permission Gap

Analyzer (PGA) provides the following capabilities:

• Evaluate a proposed configuration setting change: The gap analyzer uses Over-

Tightening Rule and Under-Tightening Rule (see Section 4.4) to help evaluate

a proposed configuration setting with respect to PU . Over-tightening of per-

missions could be a concern since there could be potential denial-of-service to

legitimate users.

• Generate a list of candidate configuration changes: The gap analyzer uses the

specs for configuration generation to automatically iterate through possible one-

step changes to configuration settings and identify the settings that can be

tightened to reduce the gap.

• Generate a sequence of configuration changes: The gap analyzer can identify a

full sequence of changes to a configuration file that provides a maximal solution

to gap reduction. The solution is maximal and not necessarily optimal, in the

sense that any additional tightening of settings in the configuration file will

lead to over-tightening. But, there could be other sequence of changes that

are longer in length or result in lower gap with respect to some objects. In

general, finding an optimal sequence is likely to require exponential time as

given n possible individual tightening steps, there can be 2n combinations of

tightening steps. We therefore focus on finding a maximal sequence rather than
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Require: Configurations C ′

Require: Granted permissions PG
Require: Used permissions PU
P ′
G = Permissions granted by configuration C ′

if P ′
G ⊆ PG and PU ⊆ P ′

G then
SaveResults(C ′, P ′

G)
if (P ′

G \ PU) ≡ ∅ and (PU \ P ′
G) ≡ ∅ then

return tightest {Can’t tighten further}
end if
return tighter

end if
return bad

Figure 4.3: Algorithm for Config. Evaluator, E.

an optimal solution. Given that we are working with estimates of permission

gaps, we believe this is a reasonable and practical strategy.

In the algorithms that follow, we use PG to refer to granted permissions, PU to refer

to required permissions (these are derived from logs), and P ′
G to refer to a candidate

for granted permissions. C refers to the combination of configuration settings that

result in PG. C ′ refers to the combination of configuration settings that result in P ′
G.

We discuss each of the above features of permission gap analyzer below. Gap

analyzer also permits users to make direct queries on the database via SQL of via

query templates. We will discuss those in Section 4.5.5 briefly. They are a convenience

feature of the system to support specific queries on the permissions database and to

allow extensibility of the tool.

4.5.4.1 Config. Evaluator

The Config. Evaluator E takes in C ′, PG, and PU , then computes the permissions

P ′
G that would be granted by configuration C ′. It compares P ′

G with PG and PU , and

returns three possible results: tighter, tightest, and bad. C ′ is bad if P ′
G is not

a subset of PG, or at least one permission in PU is denied by P ′
G. Otherwise, P ′

G is

tighter than PG. To check if P ′
G is the tightest possible set of permissions, in addition
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Require: Configurations C
Require: Granted permissions PG
Require: Used permissions PU

for all cj ∈ C do
ret = ok
while ((c′j = restrict setting(cj)) is valid)

and (ret 6= tightest) do
C ′ = (C − {cj}) ∪ {c′j} {Replace cj with c′j}
ret = ConfigEvaluator(C ′, PG, PU)
{Also saves good results to database}
if ret 6= bad then
C = C ′

end if
cj = c′j

end while
end for

Figure 4.4: Greedy Algorithm for Discovering a Maximal Patch.

to the two conditions, we check that P ′
G is not being over-tightened and not being

under-tightened, i.e., P ′
G \ PU ≡ ∅ and PU \ P ′

G ≡ ∅. The algorithm for E is shown in

Figure 4.3.

4.5.4.2 Automatically Generating Alternative Configurations

To assist PGA in generating alternative configurations, a user specifies the format

of a configuration file, along with choices for each field, as shown in Figure 4.5. The

current version of the system views configuration files as a sequence of fields, where

each field can either have (i) a single value from a domain or a set of values, or (ii) a

sequence of values from a domain. This can obviously be generalized to allow nested

fields, but is adequate as a proof-of-concept.

Each specification has three parts: type, values, and default. Type is specified

as either oneof or setof. We found these two types sufficient for analyzing per-

missions for SSHD, auditd, and user groups, but more types can be easily added. If

type is oneof, the values part is mandatory. It specifies the possible values for the

configuration in increasing order of tightness and is delimited by ‘—’. In Figure 4.5,
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field = {type = <type>,

values = <value 1> | <value 2> | ... | <value n>,

default = <default>}

PermitRootLogin = {type = oneof,

values = yes | without-password |

forced-commands-only | no,

default = yes}

AllowUsers = {type = setof(subject),

default = *}

Figure 4.5: Configuration specification format and examples for PermitRootLogin

and AllowUsers for SSHD.

PermitRootLogin is specified as having type oneof and can take four values, yes,

without-password, forced-commands-only, and no in order of increasing strictness.

It is specified to have a default value of yes, thus, if PermitRootLogin is not present

in the SSHD configuration file, the value yes will be used.

If the type is setof, the configuration takes a set of values, such as AllowUsers

for SSHD. These configurations typically specify a range of values for two categories,

subjects, or objects. Specifying a range of values for access rights is rare but possible.

If a configuration affects only a subset of a certain category, computing permission

gaps for permissions excluding those affected by the category is redundant. Towards

optimization, we allow the user to augment the type with either subject, object,

or right. Using this annotation, PGA pre-filters the permissions for the specified

category for computing operations such as PG \P ′
G. We will elaborate on type setof

in Section 4.5.4.2.

The Config. Generator is used for tightening a single configuration setting from a

given state. It provides a Python method restrict setting(c) that generates a more

restricted value for a field c. Repeated calls to the function return subsequent choices

for that field (when choices are exhausted, the function returns None, which is equiv-

alent to False in conditionals in Python). This function is used to automatically find
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the list of all possible configurations that only tighten a setting as well as a maxi-

mal solution of a sequence of configuration tightening steps using a greedy algorithm.

The function restrict setting(c) works as follows for the two types of fields that are

currently supported:

Type oneof fields Using the Configuration Generation Specification, restrict setting(c)

returns the next (tighter) value for a field c in a configuration. If a configuration type

is oneof, the generator returns the value that follows the current one. For example,

if the current value for PermitRootLogin is without-password, then the function

on the first call returns forced-commands-only, on the second call returns no, and

finally returns Python’s None.

Type setof fields If the configuration type is setof, each time restrict setting(c)

is called to restrict a set, it simply removes one element in the set that has not been

previously removed. For example, if AllowUsers were “user1, user2, user3”, it would

generate the following sequences: “user2, user3”, “user1, user3”, “user1, user2” and

Python’s None. Note that it only removes one value from the current list and does

not generate all subsets. So, the procedure is linear in the size of the set.

In practice, sets can have special values such as *, which denote all possible values

from a domain that are difficult to enumerate and apply the above strategy. For

example, in sshd config, if AllowUsers is missing, the default value for that can

be considered to be *. The question then is how we represent PG and generate alter-

natives for tighter configurations when the values of an attribute cannot be feasibly

enumerated? One approach that we considered using is suggested in the SPAN sys-

tem [49] where internally security policies are using binary decision diagrams and a

SQL front-end is provided to the users for querying. A limitation of SPAN is that it

requires all attributes to converted to integer ranges and there were concerns from a

scalability perspective.
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To address the problem of handling field values that are difficult to enumerate,

we use a projection on PU on the appropriate domain as the initial recommendation

for the set of all granted permissions. There is no loss of generality since DeGap

is concerned with reducing PG towards PU . For example, if AllowUsers is missing

(equivalent to *) and two subjects user1 and user2 are the only ones who successfully

logged in, the tool will recommend narrowing down * to the set {user1, user2}.

4.5.4.3 Greedy Algorithm for Discovering a Maximal Patch

The Config. Generator includes a greedy algorithm to compute a maximal patch

to a configuration automatically. This is achieved by iteratively restricting each con-

figuration and testing if the new set of granted permissions is a subset of the original

one without rejecting any required permission. The algorithm is shown in Figure 4.4.

4.5.4.4 Improving Performance of Algorithms for Large Logs

In practice, the set PU can be large. It can be important to efficiently compute

PU \P ′
G without having to go through every required permission in the database. Our

implementation uses the following intuition to improve the performance. We first

attempt to identify PG \ P ′
G, the set of permissions that were revoked in going from

PG to P ′
G. We then do a database projection of this difference on both objects and

subjects. This gives us the objects and subjects that can be impacted by the change.

We then only compute PU \ P ′
G on the rows in PU for which the subject and objects

are in the projection of PG \ P ′
G.

As an example, if the change in going from PG to P ′
G is to remove user1 from

AllowUsers field, then the projection of PG \ P ′
G on subjects will result in the set

user1. In this case, the only permissions from PU that are going to be relevant for

computing PU \ P ′
G are those for which the subject is user1.
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Object.path = ?

Object.type = (LIKE,"%private key%")

ReqPerm = ?

Access.label = (=,"other-read")

Figure 4.6: An example of a query for auditd for the paths of files having types that
match SQL pattern “%private key%” and have been read by others as
indicated by “other-read”.

General Form

distinct = [yes|no]

count = [?|(<cmp>,i)]
<table 1>.<attrib 1> = [?|<constraint expression>]

.

.

<table m>.<attrib n> = [?|<constraint expression>]

Figure 4.7: General form of a query. The comparison operator <cmp> can be either
<, <=, >, >=, <>, ! =, or == .

4.5.5 DB Schema and Query Mapper

The DB Schema and Query Mapper loads a user query, then extracts tables and

their attributes from the database, and dynamically generates an SQL query before

submitting it to the database. A significant advantage of the Query Mapper is that the

user does not have to manually craft SQL queries for basic uses. For our experiments,

we found that the Query Mapper suffices for investigating permission gaps; however

an advanced user may choose to query the database directly if it is required.

A user can make three kinds of queries. The first kind of queries are SPJ queries

and are made by the Query Mapper on the SQL database directly. The second kind

of queries are gap analysis queries. The third kind of queries are configuration change

queries.

SPJ queries allow users to formulate their own queries, thus they can leverage their

domain knowledge to search for permissions granted to certain objects. The user sim-

ply specifies constraints using pairs having the format (<operator>, <constraint
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〈atom〉 ::= (〈operator〉, 〈operand〉)|(〈expr〉)
〈expr〉 ::= 〈atom〉〈operator〉〈expr〉|〈atom〉

C ::= 〈expr〉

Figure 4.8: BNF for constraint expression C. The 〈operator〉 refers to one of the SQL
operators, while the 〈operand〉 refers to a user-specified value, typically
an integer or a quoted-string.

value>), where <operator> is one of SQL’s comparison operator. For example, if a

user knows that files having types containing keywords “private key” may be possi-

ble targets for attackers, she may make a query using the query template shown in

Figure 4.6 to list all the other-read requests on files matching “%private key%” for

further analysis. Figure 4.7 shows the general form of such queries. A query com-

prises key-value pairs, where the key is either one of the keywords or an attribute in

a table. The keywords are count and distinct. The count keyword can be either

‘?’ that indicates a query for the number of results, or a pair (<cmp>, i) where

<cmp> is a comparison operator used for evaluating the number of results against an

integer i. The distinct keyword removes duplicates in the results. An attribute is

specified with its name preceded by its table name. Its value can be either ‘?’ or a

constraint expression using the format specified in Figure 4.8. An advantage of using

SQL’s operator is that rich SQL features such as regular expressions are allowed in

the queries. For example, the user may feel that all files with filename containing

“passwd” pose great security risks if their permissions are weak; using a prepared

query, it is straightforward for the user to restrict their search for permission gaps to

such files.

Gap analysis queries pertain to asking questions regarding permission gaps and

how they may be reduced. There are two kinds of gap analysis queries that we have

found useful. Firstly, given a specific change to a configuration setting, a user can ask

what are the permission gap changes with respect to PU . This is helpful for a user
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who is deciding if a change should be made. The Query Mapper may inform the user

that the permission gap is (i) under-tightened, i.e., there are subjects who are granted

permissions and did not previously access the object, (ii) over-tightened, i.e., there

are subjects who were previously granted access but were denied given the change, or

(iii) no permission gap, i.e., all subjects who were previously granted permissions and

accessed the object still have the permissions, and all subjects who did not access the

object are now denied.

The second gap analysis query we found useful is that the user can request for a

list of possible one-step changes to the configuration settings that lead to reduction in

the permission gap without over-tightening. There may be different ways to reduce

permission gaps. For example, for SSHD, to disallow root login, the user can either set

PermitRootLogin to “no”, exclude root from AllowUsers, or both. The user may

use the result to selectively modify the configuration file. One can think of this type

of one-step analysis to have the same semantics as a breadth-first-search for a set of

tightened configurations.

The last kind of queries, the configuration change queries, return a set of config-

uration settings that can help reduce the permission gaps without over-tightening.

This kind of queries provide a list of sequence of changes to the configuration settings

that help reduce permission gaps without over-tightening. This uses the results from

the Greedy Configuration Speculator discussed in Section 4.5.4.

The objective of dynamically creating an SQL query is to use the minimal tables

needed to fulfill the query. A näıve approach of using all tables will erroneously

introduce constraints on tables that are not intended to be queried. The Query

Mapper creates a query dynamically by first generating a tree of the tables rooted at

the “Object” table, where each node corresponds to a table and each edge corresponds

to one or more relationships between two tables. A breadth-first search is used for

this purpose. To prevent cycles, the “Right” and “Subject” tables will always be leaf
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nodes. The Query Mapper then finds the paths to all the tables that will be queried.

All tables along the paths are then included in the query.

4.6 Evaluation

We implemented DeGap in Python and used SQLite for the database for detecting

permission gaps in SSHD, auditd, and user groups. The three scenarios have vastly

different ways for specifying permissions. File permissions are specified in the file

system’s inode structure and retrieved using system calls. On the other hand, SSHD

configurations and user groups are stored in configuration files. Also, the types of

configuration values differ, i.e., binary versus ranges. Additionally, for SSHD, certain

configuration settings, such as PermitRootLogin and AllowUsers, interact to deter-

mine if a certain permission should be granted.

Approximately 382 lines of code were required for the modules used for for an-

alyzing both SSHD and auditd. Additionally, SSHD required 440 lines while auditd

required 414 lines. In other words, 46.5% of SSHD’s code and 50.0% of auditd’s code

were re-used.

4.6.1 Case Study: SSHD

In this section, we describe our experiences with analyzing SSHD logs using De-

Gap. We considered SSHD as a single object and subjects to be users attempting

to connect with the service. Access rights had a method attribute that specified if

either password-authentication or public-key authentication was used. The permis-

sions were set in a configuration file found at /etc/ssh/sshd config. For ease of

discussion, we will focus on the fields PermitRootLogin, PubkeyAuthentication,

PasswordAuthentication, and AllowUsers. Their use was inferable from our SSHD

logs.

We evaluated the SSHD logs from two machines in our department. The servers
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PermitRootLogin = {type = oneof,

values = yes | without-password |

forced-commands-only | no,

default = yes}

PubkeyAuthentication = {type = oneof,

values = yes | no,

default = yes}

PasswordAuthentication = {type = oneof,

values = yes | no,

default = yes}

AllowUsers = {type = setof(subject),

default = *}

Figure 4.9: Configuration generation rules used as input to DeGap.

were used as a source code repository and a web-server for hosting student projects

for a class. Since accesses to SSHD are logged by default, we did not have to make

any changes to the system.

4.6.1.1 Analyzing Permission Gaps

We now examine the application of DeGap towards analyzing the permission gaps.

For both case studies, we used the configuration generation rules specified in

Figure 4.9 for hinting to the Config. Generator how the values for each field should

be tightened. PubkeyAuthentication and PasswordAuthentication could be either

yes or no. If without-password was used, root would not be able to login using a

password. If forced-commands-only was used, only public-key authentication would

be allowed for root. PermitRootLogin and AllowUsers were given as examples in

Section 4.5.4.2 and will not be discussed here.

Server 1 Figure 4.10 shows the configurations used by SSHD on the first server.

Four users, including root, were allowed to access the systems (Note: userids are

74



PermitRootLogin yes

AllowUsers user1 user2 root user3

PubkeyAuthentication yes

PasswordAuthentication yes

Figure 4.10: Partial configurations used by SSHD for Server 1.

PermitRootLogin without-password

AllowUsers user1 root

PubkeyAuthentication yes

PasswordAuthentication no

Figure 4.11: Tightened partial configurations for Server 1 as suggested by DeGap
after running it against the logs and configuration files.

anonymized). Both the publickey and password authentication methods were al-

lowed. As specified by AllowUsers, four users, user1, user2, user3, and root were

allowed to connect to the two systems via SSHD.

We instructed DeGap to automatically compute possible tightest configurations.

The set of configurations suggested by DeGap is shown in Figure 4.11. We manually

verified the results using traditional tools such as grep to search for keywords such as

“Accepted” in the log files. Only user1 and root did access the server, suggesting that

permission creep had occurred for two users. Upon checking with the owner of the

server, we confirmed that they were student instructors for a course more than a year

ago and had been granted the permission to access the server. However, after the end

of the semester, these students were not removed from AllowUsers. All users only

used public-key authentication. DeGap correctly suggested that three configurations

should be tightened: PermitRootLogin should be set to without-password instead of

yes, AllowUsers should include only user1 and root, and PasswordAuthentication

should be disabled by setting its value to no.

Server 2 Figure 4.12 shows the SSHD configurations used by Server 2. All three

options shown in Figure 4.12 were found to be yes. Also, the AllowUsers field
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PermitRootLogin yes

PubkeyAuthentication yes

PasswordAuthentication yes

Figure 4.12: Partial configurations used by SSHD for Server 2.

PermitRootLogin no

AllowUsers user1 user2

PasswordAuthentication yes

PubkeyAuthentication yes

Figure 4.13: Tightened partial configurations for Server 2 as suggested by DeGap
after running it against the logs and configuration files.

was not specified. This implied that anyone could connect to Server 2 using either

password or public-key authentication over ssh.

DeGap suggested the configurations for Server 2 shown in Figure 4.13. We can

observe that the AllowUsers field was recommended to be specified with user1 and

user2. The PasswordAuthentication and PubkeyAuthentication field were shown

to retain their original values of “yes”. Again, we were able to manually verify that

user1 and user2 did access Server 2, with user1 using the public-key authentication

method, while user2 used the password authentication method.

In summary, we observe that DeGap correctly discovered the changes to configu-

ration setings for each server to reduce their respective permission gaps. For Server

1, an unused authentication method was proposed to be disabled. For Server 2, a

much stricter setting for AllowUsers having only two users were suggested.

4.6.1.2 Log Size vs. Permission Database Size

Table 4.1 compares the number of lines in the SSHD logs and the corresponding

number of tuples for the Subject, Right, and Object table. Comparing the large

number of log entries and relatively smaller number of tuples in the Right table,

there was a large number of duplicated accesses, many due to password brute-force
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Table 4.1: Comparison between number of entries in log file and number of tuples in
database for SSHD.

Server # of Log
Entries

# of tuples in DB Table

Subjects
Rights

Objects
Success Failure

sshd-server1 579,788 74 32 73,395 1
sshd-server2 262,223 80 44 49,213 1

attacks. For example, for sshd-server1, 73,395 accesses that failed using the password

authentication method originated from 66 subjects. Except for one, the remaining

65 IP addresses do not belong to our university’s network. The savings in space was

reflected in the log sizes, where the ratio of the log sizes to the database sizes were

8.31 and 6.47 for sshd-server1 and sshd-server2 respectively.

4.6.2 Case Study: auditd

In this section, we describe the application of DeGap towards finding file permis-

sion gaps using logs generated by auditd. We examined the auditd logs, which were

collected over seven days on 17 departmental servers at our school. The servers were

installed with Fedora 15 with patches regularly applied. Over the period, for each

server on the average, we collected over 12 million file open and execute events for

over 345,000 files by over 200 users. Auditd is the primary means used by admin-

istrators to collect accesses to system objects for Linux kernel 2.6. Logs generated

by auditd are often scrutinized during security audits for unauthorized accesses. For

this data collection, we added a rule for recording execve and open syscalls on files,

“-a exit,always -F arch=b64 -S execve -S open”, to auditd’s rule file. The

analysis was performed on two identical machines, both having two Dual-Core AMD

Opteron 2218 Processors and 16GB RAM. We present the results below.

We examined two syscalls, open and execve. A successful call to open indicates

that the calling process has acquired the read and write access rights specified by
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the open flags (O RDONLY, O WRONLY, O RDWR). While one could log other syscalls such

as read and write to ascertain the actual accesses carried out on a object, the open

flags already circumscribe these access rights. Moreover, logging these syscalls leads

to expensive disk operations.

Leveraging Query Language Regex We performed a query that leverages the

query language’s regular expression matching capabilities. We searched for files with

types matching the SQL pattern “%private key%” using the query shown in 4.6. On

all the machines, we found that the RSA private keys for Dovecot, a popular IMAP

and POP3 server, on all analyzed servers were world-readable. We verified this by

checking Dovecot’s SSL configuration file, which is also world-readable. If an attacker

obtains the key, she can generate a fake certificate and launch a man-in-the-middle

attack. In fact, it is highlighted on Dovecot’s SSL configuration page that no users,

except root, require access to the key file [119]. The administrator agreed that the

other read permission should be removed.

Dealing with File Semantics Analyzing all file accesses may result in DeGap sug-

gesting a large number of files with permission gaps, and consequently unnecessarily

complex results. To keep the list of files manageable, DeGap only considered suc-

cessful syscalls. Also, we ignored files in /dev and /proc. The /dev directory stores

device files for all devices, while the /proc directory contains virtual files, which are

constantly updated with the system’s information. In addition, we ignored symbolic

links, since the access granted to the target of a symbolic link ultimately depends on

the permissions set on the target itself.

Deriving Used File Permissions for Unix Semantics Each entry for an access

on a file in an auditd log must be mapped to a form so that it is amenable for

comparison with granted permissions, as defined by the Unix permission mode bits.
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euid==ouid
or euid==0

egid==ogid

no

owner

yes

group

yes

other

no

Figure 4.14: Decision trees for determining file role type, i.e. owner, group, or other.

This is tricky to do since an entry contains information about the userid and the type

of access, but not how that relates to a permission mode bit.

Each access on a file was analyzed by first determining the role types, owner,

group, or other, using the decision trees in Figure 4.14. The required permission

bit for either read or write access can be computed by checking the last two bits

of the open syscall’s flags against the access modes O RDONLY, O WRONLY, and

O RDWR. For executables, the execute permission bit is required if the file is ac-

cessed using the execve syscall.

It is also necessary to determine if the suid or sgid bit is required. If the

ouid/ogid is the same as the euid/egid but the euid/egid differs from the syscall’s

uid/gid, then the suid/sgid bit is required. This also implies that the suid/sgid

bit in the file’s mode must be set. Otherwise, it is the scenario where the process

calls the setuid()/setgid() function to lower its own privileges. This typically oc-

curs during system boot and the process relinquishes its root privileges as a security

measure against an exploitable vulnerability being used by an attacker for privilege

escalation.

DeGap does not need to analyze an owner’s used permissions, since a permission

gap with respect to an owner is somewhat meaningless with Unix’s discretionary
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distinct = yes

count = ?

Right.description = "other-write"

GrPerm.has gap = yes

Figure 4.15: Query used for finding the number of files that have permission gaps
for other-write permissions. The query for other permissions can be
achieved by changing the operand for Op.description.

access control model; an owner can always acquire additional rights to their objects.

Aggregating Used Permissions for Related Files We sometimes found a need

to treat a collection of files as a single object, rather than as individual objects, for

the purpose of gap analysis. As one example, In the case of Apache web server, there

is usually a directory cgi-bin that contains executable web content. Normally, all

files in that folder are intended to be viewed as a collection with files having identical

permissions. We leverage SQL’s regular expression to allow a user to treat a collection

of files as one object by by specifing a regular expression pattern on full file pathnames;

all matching files are then treated as one object. Typically, the aggregation is over

files of the same type (e.g., *.cgi) within the same directory (e.g., /var/www/cgi-bin).

A log entry for one file is attributed to all the files covered by the aggregation. The

net result is that gap analysis will show a common gap for all the files that are part

of an aggregation.

File Permission Gaps In this part of the analysis, we take a macro view on the

permission gaps. Using the query shown in Figure 4.15, we were able to identify a

large number of files with permission gaps.

Figure 4.16 shows the number of files and directories that have the original read,

write, or execute permission set with the number of files whose corresponding permis-

sions were actually used. For files, respectively, only 0.592%, 0.00432%, and 2.59% of

the group read, write, and execute permissions were actually used. More importantly,
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Figure 4.16: Number of files and directories with permissions set and actually used.
Note the log-scale used for the number of files and directories.

only 0.0592% and 0.181% of the other read and execute permissions were used. No

writes by other users were observed.

As for directories, the percentages for group read (list), group write (modify), other

read, and other write were 0.0128%, 0.0429%, 0.0354%, and 0.341% respectively.

World-writable files presented a huge security risk since an adversary could easily

modify the files while violating the non-repudiation principle. While there were 14,348

world-writable files, fortunately they belonged to only 17 users. These files include

research data, papers, consultation reports, honor code violation report, class teaching

material, exams, research proposals, and correspondent information.

The risks of world-readable files are not necessarily less than those of world-

writable files. In total, we observed 1,133,894 world-readable files. Based on filenames

in the auditd log, some of the user files potentially contained sensitive information

such as visa applications, passwords (both hashed and plaintext), and emails. For

one user, while the inbox was not world-readable, the outbox was.
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We applied DeGap towards generating configuration settings for reducing the

permission gaps for files. DeGap was able to propose the correct suggestions for

reducing the permission gaps.

While it may be overly idealistic to remove every unused permission, the huge

discrepancies in the number of files whose permissions were set and actually used

illustrate the enormous potential for some of these redundant permissions to be re-

moved. The large number of files may lead to manageability issues. The list can be

fed into another system capable of extracting semantic information about the files to

rank files according to potential criticality from access control perspective.

4.6.3 Case Study: Tightening /etc/group

The passwd and group files in the /etc directory are used to manage users on

Unix-based OSes. We now discuss how DeGap can be used to identify dormant

groups, which can possibly be removed from group, during the monitoring period.

DeGap can also be used to tighten passwd. However, this is less interesting and can

be achieved easily using other means. Thus, we will not discuss DeGap’s usage for

the purpose of tightening passwd.

We considered a group to be dormant if it was not used to access files. We used

the same logs in Section 4.6.2 as inputs1. However, we re-defined the object to be a

collection of all the files (instead of each file being a single object). Also, there is only

a single access (instead of read, write, and execute accesses).

The group files for all 17 servers were the same. This implied that a truly dormant

group must be dormant across all servers. Thus, after finding the dormant groups

for each server, we computed the intersection of these groups to determine a set of

dormant groups for all servers. From this set, we removed groups having system users

as members, since such groups are less likely to be susceptible to permission creeps.

1While other logs, e.g., SSHD logs, may allow us to estimate active users, they may not provide
sufficient information for determining whether a certain group is dormant.
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Table 4.2: Comparison between average number of entries in log files and average
number of tuples in databases for auditd.

# of Log
Entries

# of tuples in DB Table

Subjects
Rights

Objects
Success Failure

12,607,326 215 5,454,845 136 345,669

We identified system users as those whose home directories are not /, etc, bin, sbin,

or var. 526 out of 565 groups were found to be dormant during monitoring. While

it may be possible that there are false positives, as we acknowledged earlier to be a

limitation of log-based approaches, it provides a starting point for administrators to

tighten the group file.

4.7 Improving Log Parser Performance

Making queries on the permissions database and running gap analysis was rela-

tively fast. Most queries were interactive, with slowest ones taking up to a minute.
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Table 4.3: Timings for various benchmarks when auditd is activated (auditd-def),
and when the modified kernel for improving auditd is used
(auditd-degap).

auditd-def auditd-degap

blogbench (writes, more is better) 577.5 574
blogbench (reads, more is better) 6956 7401.66
apache-1.4.0 (requests/sec, more is better) 14623.58 25517.87
postmark (total time in secs, less is better) 124.67 124.83
postmark (transaction time in secs, less is better) 56.33 55.83
postmark (read Mb/sec, more is better) 50.84 50.77
postmark (write Mb/sec, more is better) 146.38 146.19

In contrast, parsing the log files and populating the database for auditd took almost

an hour. The main reason is that log files generated by auditd were large, even when

restricted to only file accesses of interest (open and execute). To determine if there

were opportunities to speed up the parsing, we examined the possibility of modifying

auditd’s kernel code to generate more efficient log files and report the findings here.

We observed that many applications tended to make the same accesses to the same

objects repeatedly. For example, some log entries differed only in their timestamps.

While having such fine-grained information may be useful under some situations, such

as analyzing the sequence of events that leads up to an intrusion, it is not useful for

discovering permission gaps.

We modified the Linux kernel’s auditd code to check and eliminate most duplicate

entries at event capture time. We computed the SHA256 of an entry’s fields that were

not used for computing permission gaps and checked that the entry had not been

previously logged against a bounded buffer that recorded previous unique events. If

the entry’s hash was found to be previously logged in the bounded-buffer, the entry

was discarded and not written out to the logs. We used a two-level prefix tree for

storing the hashes. The first two bytes were used for determining the branch to be

taken towards the leaf that stores the remaining hash data. The clock algorithm [35]

was adapted to evict old entries from the bounded-buffer.
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We compared the average number of entries in the log files to the average number

of tuples for Subject, Right, and Object tables as shown in Table 4.2, using a bounded-

buffer for 327,680 hashes. The ratios of the log sizes to the database sizes are shown

in Figure 4.17. On average, the logs were found to be approximately five times larger

than the databases for our datasets. If logs from a modified auditd were used, the

cost of parsing the logs could potentially be cut by approximately 80%, given the

smaller size of the logs.

To examine the performance impact on auditd with additional checking, we ran

three filesystem benchmarks, blogbench [37], apache benchmark [8], and postmark [67],

on a system with the default auditd (auditd-def), and duplicates-eliminating auditd

(auditd-degap). Table 4.3 shows the results.

We observe that the performance impact of adding a feature to auditd to re-

move duplicates (except for timestamp) is minimal. In fact, for apache benchmark,

auditd-degap handled about 1.7 times more requests per second than auditd-def.

Apache benchmark probably showed a significant improvement in auditing with du-

plicate removal because large fraction of access requests in the benchmark were found

to be duplicates (over 99%). As a result, the need for auditd to log the events, and

thus file I/O, is significantly reduced. On the other hand, in case of blogbench, dupli-

cate entries were negligible (approximately 2%). From these results, we conclude that

for workloads that are repetitive in the files they access, removing duplicates during

auditing is potentially advantageous, while not sacrificing performance significantly

during log collection for workloads with few duplicates.

4.8 Conclusions

Permission gaps can expose a system to unnecessary risks. This can be worsened

by permission creep that can be hard to eliminate in practice [96]. Without infor-

mation about whether permissions are actually used, identifying and thus removing
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permission gaps is a challenge. Towards a common framework for extracting this

information, we propose DeGap. We described the framework, and demonstrated the

applicability of DeGap for analyzing file and SSHD permissions from auditd and SSHD

logs respectively, while highlighting the nuances.

From SSHD logs, we found two users being granted access to a server when they

should have been disallowed, suggesting permission creep. Additionally, we found that

legitimate users only accessed the server using public key authentication. Despite this,

the server had allowed password authentication while being subjected to password

brute-force attacks. In addition to identifying the permission gaps, DeGap correctly

proposed the changes needed for the configuration settings to eliminate these gaps

without over-tightening the permissions.

From auditd logs, leveraging the user’s domain knowledge on potential security

threats, DeGap found that Dovecot’s private key was world-readable on all the servers

we tested, contradicting the recommendation on Dovecot’s site [119]. DeGap also

found a large number of user files with permission gaps for world-read or world-write.

Some of these files appeared to contain sensitive information including passwords.

This suggests that the tool could be useful to both administrators and typical users for

detecting permission gaps. DeGap also uncovered dormant user groups as candidates

for removal from /etc/group.
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CHAPTER V

Discovering Potential Binary Code Re-Use

with Exposé

5.1 Introduction

For a piece of code to be re-used, physical ownership of the code (or a copy of it)

is sufficient. However, this does not imply that permission has been explicitly and

legitimately granted to a subject to use the code. Unfortunately, sometimes it is in-

feasible to have an access control mechanism that can determine and enforce granting

of access rights (besides the inclusion of a usage license with the software package),

thus leading to security implications. Without the ability to mediate accesses, we

have to fall back to binary code re-use detection techniques, which we discuss in this

Chapter.

5.1.1 Security Implications of Binary Code Re-Use

Developers who do not adhere to the conditions specified in the license agreement

for a piece of code should not be allowed to use it. Otherwise, software license

violations and intellectual property theft can occur [85]. Organizations go to great

lengths to prevent leakage of their software intellectual property. But, significant risks

exist due to channels that are difficult to monitor and control. One channel occurs
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when a developer within an organization inadvertently uses a library with a license

that would later require the organization to openly release the software that makes

use of the library. In an anecdotal example, a researcher ran into this issue when using

Berkeley DB, thinking that it was under Berkeley license and thus acceptable to use on

a project with a company without a fee. It turned out that while the early versions

of Berkeley DB were indeed under the Berkeley license, more recent versions were

significantly more restrictive, and could have put the company’s software at risk with

the free version of the license. In another case, researchers found an Internet filtering

software using libraries for image recognition from OpenCVS without including a

copy of its BSD license text as stipulated by their authors [134].

5.1.2 Other Applications of Detecting Code Re-Use

Besides detecting illegitimate accesses, another application for detecting code re-

use is to identify software that are statically linked to an unpatched version of a library.

While the library’s author may prefer a patched version of the library to be used over

an unpatched one, this is not always possible. This can lead to situations where

bugs and vulnerabilities in the libraries can be inherited by the applications [92, 58].

Often, the associations between a library and statically-linked applications are not

tracked (developers may know it, but users usually do not). Examples of such binaries

are (i) customized in-house applications that are not actively maintained, (ii) third-

party software, and (iii) pre-installed binaries that come with the operating systems.

Over time, bugs and vulnerabilities may be discovered and patched in the libraries.

However, they can continue to remain in such applications for a while. Ng et al.

termed this phenomenon as latent vulnerabilities [92]. The problem is also studied

by Jang et al. in their work on ReDeBug [58], albeit using source code (our focus is

on binary code), for uncovering such vulnerabilities.
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5.1.3 Possible Approaches

One possible approach to the problem of controlling code re-use may be to lever-

age mechanisms from digital rights management (DRM). Thus, the compiler will be

analogous to the media player while the source code or library will be analogous to

the digital media. In other words, a more robust access control mechanism is needed

beyond the current practice of using software licenses. However, this approach will

not be backward compatible with existing software development paradigms. Besides,

scalability may be an issue when determining who may use the code.

Another approach that we will examine in this Chapter is to detect the presence

of illegitimate code re-use. The problem of identifying malign code re-use has been

studied extensively for the case of source code. It includes works such as ReDe-

Bug [58], DECKARD [62], CCFinder [65], and CP-Miner [73]. However, only few

works, such as BinHunt [45], BitShred [60], and SMIT [52], have been proposed for

the case of detecting binary code re-use. Reps et al. advocate analyzing executable

binary code as it is the authoritative source of information for an application, and

note that there are at least three varieties of binary code analysis problems: (i) source

code and binary are available, (ii) binary with symbol/debugging information is avail-

able, and (iii) binary without symbol/debugging information (stripped binary) [104].

According to Reps et al., the third type of problem is the most challenging, and is

the common situation when one uses off-the-shelf applications. We examine the third

type of problem for code re-use, and aim to address the following challenges in a

scalable manner.

1. Function inlining Compilers often perform inlining on small functions to elim-

inate function call overheads.

2. Lack of Symbol Information Symbols, which can be helpful in matching

functions, are commonly absent. Our analysis shows that at least 80% of the
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applications lack symbols.

3. Code mutation due to compiler options Different compiler options can

lead to syntactically different but semantically equivalent code being emitted.

Towards identifying binary code re-use, we propose Exposé for identifying poten-

tial code re-use between a library and a set of applications. This does not necessarily

mean that identified applications derive the re-used code from the library directly.

Besides statically linking with the library, a developer could have compiled the appli-

cation containing source code for a library. Abstractly, in identifying library re-use,

we want to identify the set of functions from the library that are used within an ap-

plication. Unfortunately, this can be a tedious task, even with manual analysis using

disassemblers and analysis tools like IDA Pro. If an organization wishes to do this

for a large number of applications, the task can be overwhelming.

The main contributions of this Chapter include the following.

• We identify function inlining, lack of symbol information, and code mutation due to

varying compiler options as significant challenges for detecting code re-use in binaries.

• To overcome these challenges while ensuring scalability, we propose a multi-phase

technique, with the first phase being a fast pre-filtering step to identify a small set of

relevant functions in the application that are good candidates for doing a match with

the library functions. Subsequent phases do a more thorough matching to ensure a

high-quality match. For the first phase (fast), we identified four attributes – number

of input parameters, out-degree, function size, and cyclomatic complexity – that

determine a set of candidate function pairs (between a library and an application) for

a subsequent phase (slower) of semantic matching using a theorem prover. We also

use syntactic techniques for matching functions that are not amenable to semantic

matching. We propose a method to compute the distance scores used for ranking

applications in the order of likelihood that they are using the library.
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• We implemented Exposé to evaluate our techniques. Exposé successfully ranked an

application known to use a library above a set of 128 other applications known not to

use the same library. Using another test library, Exposé ranked 10 out of 2,927 ap-

plications amongst the top 11 positions. We verified the correctness with a signature

scanner. On manual investigation, the single application, which was not detected by

the scanner to use the library, was identified as most likely using some functions from

the library.

• Exposé was able to distinguish applications using the different versions of a library,

as well as variants compiled using different compiler options.

• Exposé analyzed 97.68% and 99.48% of the applications within five minutes and 10

minutes respectively.

In Section 5.2, we discuss the scope and limitations of the work. In Section 5.3, we

detail our approach. In Section 5.4, we provide experimental results and evaluation

of our technique. And finally, we conclude in Section 5.5.

5.2 Assumptions and Scope

When we say that an application “uses” a library, we mean that the application is

either statically linked to the library, or has been compiled together with the library’s

source code. Our work focuses on examining these more challenging cases rather than

dynamically linked libraries, where the names of the shared libraries typically pro-

vide enough information to correctly identify them; moreover, the names of exported

functions can be easily extracted and leveraged for identification purpose. Also, up-

dating a dynamically linked library will automatically update the applications that

dynamically link to it. However, static linkage of code from libraries continues to be

common. An advantage of static linkage is that the library does not have to be dis-

tributed with the code and fewer assumptions need to be made about the availability
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Table 5.1: Percentage of binaries without symbols in various Linux distributions.

Distributions
Total # of
Files

# without Symbols

(#) (%)
Ubuntu 10.04 4268 4254 99.672
Fedora 13 4355 4080 93.685
DVL 1.5 13325 10760 80.750
Debian 5.0.4 4077 4039 99.068
Mandriva Free 2010 5610 5603 99.875

of the library.

We acknowledge the challenge in providing an efficient and effective solution for

the code re-use problem. Thus, we focus our efforts in finding a solution that is prac-

tical. By practical, we mean that the technique should rank candidate applications

with true positives in the highest ranks within a reasonable amount of time. The

sorted binaries can then be prioritized for further analysis for the presence of specific

functions of interests using a combination of manual and more detailed techniques

that are typically less scalable.

To further complicate the problem of identifying library re-use, many applications

are optimized so that they lack symbol data. Symbol data could have been used

to identify names of functions that are used within an application, which could be

checked against the names of functions in a library. We ran a script that checks for

presence of symbols against the binaries from several Linux distributions. As shown

in Table 5.1, at least 80% of binaries on the systems do not have symbols. This is

not surprising as symbols consume unnecessary disk space on production systems.

We therefore assume the absence of symbols in this work. Of course, symbols can

be trivially leveraged to improve our results in practice. Implicitly, tools leveraging

symbols, such as objdump, will not suffice for most cases.

We assume a benign library usage environment in which functions from the li-

braries or an entire library is used to build applications. A developer is assumed not
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Figure 5.1: Exposé overview.

to be attempting to obfuscate the use of the functions in the library. Existing tech-

niques to de-obfuscate the binary, such as [78] and [79], can be applied if necessary.

Moreover, the problem is significant enough even without obfuscated library re-use.

Lastly, we would like the matching to be relatively insensitive to different compiler

options. For example, we do not make any assumptions about compiler optimizations

that result in basic block re-ordering or function inlining.

5.3 Approach

The inputs to Exposé are two sets of disassembled functions, F and G, that are

respectively derived from a library and an application. The goal of the technique

is to find the set of functions in F that are likely to be in G. From the results of

the match, Exposé attempts to compute a matching score that can be used to rank

the results from a large number of applications for a given library. A smaller score

corresponds to more similarities.

The library functions in the set F are extracted from a single object file generated

by linking all the object files. The functions in the set G are simply extracted by

analyzing the application binary. In both cases, extracting the function call graphs

is trivial since the linker resolves all the symbols.

Figure 5.1 shows an overview of the different phases for our approach. The pre-

filtering phase prepares a set of candidate function pairs for computing semantic

equivalence by removing improbable function pairs and functions of no interest to us.

Next, we compute the IS-pairs to identify equivalent functions. For the remaining

functions, we compute the MAY-pairs using syntactic techniques. Exposé then com-
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putes a distance score that summarizes the pairings by considering the caller/callee

relationships.

Algorithm 1 provides an algorithmic overview of the various phases for our tech-

nique. In the following sub-sections, we discuss the details of each phase.

5.3.1 Pre-Filtering

Symbolic execution has the advantage of being sound under typical variations in

instruction opcodes and optimizations that may be introduced by compilers. But,

comparing two functions via symbolic execution can have a scalability problem, usu-

ally as a consequence of having many possible paths through the functions. The

pre-filtering phase selects candidate function pairs by excluding loader support func-

tions and improbable function pairs to avoid unnecessary symbolic executions, which

are computationally intensive.

Loops also require special handling to limit the search space. These problems are

widely acknowledged and are currently an area of intense research [30, 50, 135, 136].

To simplify the problem, we only consider the first iteration of each loop.

5.3.1.1 Excluding Loader Support Functions

Given a binary, identifying the functions is basically straightforward, except for

a few nuances. During compilation, compilers insert loader support functions to

provide support for loading, executing, and terminating the application. However,

varying functions are inserted by the compiler depending on the compilation options.

For example, stubs such as i686.get pc thunk.bx or i686.get pc thunk.cx are

inserted when the fPIC option is specified. To avoid misleading matches with these

functions, we exclude them from our pairing algorithm. We list these functions in

Table 5.2 for the GCC compiler. Table 5.2 shows the common functions that we have

observed and may not be exhaustive. Procedure 1 assumes that these functions are
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do global ctors fini array

do global dtors fini array start

do global ctors aux fini array end

do global dtors aux frame dummy

i686.get pc thunk.bx start

i686.get pc thunk.cx start

init array libc csu fini

init array start libc csu init

init array end

Table 5.2: List of common functions excluded.

already excluded.

5.3.1.2 Excluding Improbable Function Pairs

Ideally, we would like to test all functions in F with functions in G for semantic

equivalence using symbolic execution. But, this would not be a scalable approach.

Towards achieving a balance between scalability and correctness, Exposé uses the

following criteria based on attributes that are easy to compute for quickly filtering

out non-probable function pairs and selecting suitable candidate pairs to test for

semantic equivalence.

• Same number of input arguments.

• Same out-degrees.

• Cyclomatic complexity of less than 15.

• Function size of less than 300 bytes.

Two functions are more likely to be equivalent if they have the same number of

input arguments and out-degrees. Cyclomatic complexity reflects the number of inde-

pendent paths [82]. Symbolically executing a function with high cyclomatic complex-

ity quickly degenerates into the path explosion problem. Also, large functions, which

usually imply more execution paths, generally lead to disproportionate slowdowns

when computing for semantic equivalences. Figure 5.2 and 5.3 show the cumulative
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distribution functions for the function size and cyclomatic complexity of 582,959 func-

tions respectively. We chose to perform symbolic execution on function pairs with

cyclomatic complexity less than 15 and function sizes less than 300 bytes. 455,078

(78.06%) of the functions satisfy these criteria. In Procedure 1, the sub-procedure

MeetCriteria is responsible for rejecting improbable function pairs.

5.3.2 Computing semantic matches (IS-pairs)

If they are semantically equivalent, Exposé adds the pairing to the IS-pairs set.

We define functions fi and gj to form an IS-pair if fi is semantically equivalent to

gj. For determining semantic equivalence, we use the method proposed by King in

which a sequence of instructions are executed symbolically by substituting the input

variables with symbolic formulas [68].

To perform symbolic execution, each instruction is translated into a set of con-

straints on the symbolic formulas. Additionally, constraints on the path conditions

and input variables are created. We assert that the input variables for both functions

are equivalent. We then extract a set of outputs as a consequence of the function ex-

ecuting along each path. A theorem prover is then used to query for the satisfiability

of the output equivalences.

To compare paths in the two functions, Exposé uses the STP constraint solver

proposed by Ganesh et al. [44]. We modified the translator from the Binary Analysis

Platform by Brumley et al. [29], to process x86 instructions and interface directly

with STP. We assume that functions use GCC’s default calling convention, cdecl

[98]. In cdecl, the calling function pushes function arguments onto the stack from

right to left, and the return value is saved in the EAX register. We did not include

support for other calling conventions because there is currently no efficient method

for distinguishing all calling conventions.

We consider two functions to be a matched IS-pair if we can find satisfiable output
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Figure 5.2: Cumulative distribution of function sizes.

equivalences between the paths in the two functions. On the other hand, if the output

equivalences cannot be satisfied, we cannot assert that the two functions are not

equivalent. This is because of the simplifications in the matching process to achieve

scalability. For example, we assumed that functions called within the functions being

matched to have a null behavior to reduce matching cost and avoid inter-procedural

symbolic execution. As a result, inlining could cause two matching functions to

diverge. For example, suppose fx calls fy in the library and the corresponding code

for fx in the application is gx. We may fail to match fx with gx if fy is inlined with

fx to produce gx during compilation.

We note that when we find two functions f and g to form an IS-pair, they are

equivalent only under some abstractions. For example, one abstraction we make is

that the behaviors of any functions called by f and g are ignored. We also ignore

possible differences in the values of CPU registers at the end of the execution since

compiler optimizations can introduce differences in the use of registers. Our hope is

that these approximations will turn out to be acceptable on real data sets since the

end goal is to narrow down the candidate set of applications to a small number that

can be manually inspected or analyzed.

It turns out that the lack of a semantic match does not necessarily mean that

97



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  15  100  10000  1e+06  1e+08

P
ro

b
a

b
ili

ty

Cyclomatic Complexity

CDF for Cyclomatic Complexity

Figure 5.3: Cumulative distribution of function cyclomatic complexities.

the functions are semantically different. If a match is found, then the functions are

equivalent. But the absence of a match does not prove that the functions are different.

For example, semantic matching is sensitive to order of parameters and return values.

If we make a wrong assumption about the calling conventions, semantic matching

could fail to return a match.

Semantic matching can also return false positives if some outputs or side-effects

of the functions, e.g., register values, are important, but not modeled as inputs or

outputs. We found instances of those to be rare on practical data sets. We found one

instance in our data sets and it was due to a function stub in both the library and

the application.

5.3.3 Syntactic function matching (MAY-pairs)

For the set of library functions for which Exposé is unable to find IS-pairs, we

adopt a heuristic approach for generating matched function pairs, called MAY-pairs

based on a similarity measure. False positives can be a problem with such approaches.

To help reduce false positives significantly, we factored in both function-level similarity

and caller-callee relationships. A MAY-pair is a pairing between two functions fi and

gj such that the following two properties are satisfied.
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1. fi makes a function call to itself if, and only if, gj makes a function call to itself.

That is, fi is recursive if, and only if, gj is recursive.

2. The biased cosine distance value for the fi and gj pair is amongst the r-th

smallest biased cosine distance values for pairings between fi and all functions

in G.

Implementation-wise, we chose r to be five. Thus, for each function in the library,

we first identified up to five similar functions in an application using a biased cosine

distance.

Identifying function recursion is trivial. Therefore we will focus our discussion on

the second property. We compute the cosine distance of the n-gram word frequencies

between two functions fi and gj. The biggest challenge in computing syntactic dis-

tances is in handling syntax variations. Ensuring exactness will result in intolerance

of any variation in the syntax. On the other extreme, correctness is compromised if

all forms of syntax are tolerated. Thus Exposé uses n-gram in a bid to smoothen

slight variations in the syntax. An advantage of using the n-gram based approach is

its robustness against code relocations made by the compilers, primarily for the pur-

pose of optimization. Code relocations occur during block re-ordering and function

inlining.

It is possible that compilers use instructions that are semantically equivalent but

syntactically different. For example, “mov eax, 0” is semantically equivalent to “xor

eax, eax”, but syntactically different. One possible solution to mitigate such differ-

ences is to normalize the instructions such that all instructions that are members of

a set of semantically equivalent instructions are replaced with the same instruction.

While this is a possible improvement to Exposé, we find that the effects of seman-

tically equivalent but syntactically different instructions are usually smoothened out

by syntactically equivalent instructions.
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Listing 1 shows the instructions in a basic block of the shared library libz.so and

Listing 2 shows the instructions for a semantically equivalent basic block. Three of the

opcodes differ between the two basic blocks despite having similar mnemonics. Since

sequences of instructions having the same mnemonics are likely to be semantically

similar, we assign intermediate representation values to similar mnemonics, as shown

in the first column of the two listings. Additionally, we do not consider the operands

when computing the trigrams since, intuitively, they are highly variable.

A larger value of n would require the binaries to have longer common subsequences

of opcodes for a good match. This implies that the number of true positives is also

reduced for large n, and the algorithm is less tolerant of opcode variations. On the

other hand, if n is too low, the number of false positives will be high as short common

subsequences are sufficient for the binaries to match. Empirically, we find three to

be a good value for n. Thus, Exposé computes trigrams for the opcodes. Using the

intermediate representation, the first trigram word in Listing 1 would therefore be

(0x7A, 0x7A, 0xD2). Computation of n-grams can be expensive in both space and

time. Nagao et al. proposed an efficient technique that does not require a separate

table for storing the n-gram words during computation [90]. We implemented their

algorithm for computing the trigrams.

5.3.3.1 Eliminating Function Prologues and Epilogues

Function prologues and epilogues do not contribute any additional information on

whether two functions are equivalent. A function prologue is responsible for setting

up the stack frame. A function epilogue destroys the stack frame and restores the

original value of the base pointer. Table 5.3 shows the typical function prologue and

two equivalent epilogues on 32-bit machines. We exclude prologues and epilogues

from the generation of our n-gram words.
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Prologue Epilogues
push ebp pop ebp leave
mov ebp,esp retn retn

Table 5.3: Typical x86 function prologue and two possible epilogues.

5.3.3.2 Computing Cosine Distance from n-grams

Suppose we let Nx be the vector of trigram word frequencies in x. Then we can

define the cosine distance between fi ∈ F and gj ∈ G as in Equation 5.1.

ci,j = 1− Ni �Nj

|Ni| � |Nj|
(5.1)

Cosine distance computes the cosine of the angle between two vectors of the same

dimension. A value of 1 indicates that the two vectors are fully independent, while a

value of 0 implies they are exactly the same.

It is possible for two distinct function pairs to have the same cosine distance value.

To encourage function pairs that are more likely to be similar and discourage function

pairs that are unlikely to be similar, we bias the cosine distance value, ci,j, using three

rules. Firstly, if fi and gj have different out-degrees, increase ci,j by 0.1. Functions

with different out-degrees are less likely to be similar. However, it is still possible for

such functions to be similar, such as when inlining occurs. Next, if fi and gj have

the same out-degrees, decrease ci,j by 0.05. Lastly, if fi and gj have the same number

of non-zero input parameters, decrease ci,j by 0.2. The values used for biasing are

derived empirically and we have found them work well in our experiments.

5.3.4 Distance Score

Given the results of matches for each function in the library to a corresponding

function in the application, Exposé computes a summary score to help rank the

results. A match could be generated by semantic equivalence (which is a Boolean
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value) or by the heuristic approach (which is a value between 0 and 1, with lower-

values indicating higher similarity). We now explain how the distance score for the

two sets of functions F and G is computed. The procedure comprises three main

steps. The first step involves computing the local score by observing the neighbors

of the two functions fi and gj whose pairing can be found in MAY-pairs. Based on

the local scores, the second step identifies candidate function pairs whose functions

have corresponding lowest local scores. The third step attempts to group functions

in the library that match functions in the application with the same caller/callee

relationships.

5.3.4.1 Computing Local Scores

Given the set of MAY-pairs, we want to find the best possible match. Recall that

for each function in the library, Exposé has five potential MAY-pairs to functions in an

application based on best cosine scores. It seems that we could just run a mincost

bipartite matching algorithm, but we found that it can give undesirable results, which

eventually cause too many false positives. The problem is that it does not take into

account caller-callee relationships and if f erroneously matches with g, the error can

propagate because it prevents g from being correctly matched.

To get more robust matching, Exposé computes a local score, li,j, for every MAY-

pair (fi, gj) as shown in Algorithm 2, factoring in the callers and callees of fi and gi.

This is a recursive procedure that will lead to better similarity scores for functions

with similar callers or similar callees. To account for function inlining, which may

occur when a library is linked into an application, the procedure allows pairing be-

tween fi and a caller function of gj when computing the minimum cost assignment.

For the same reason, we also allow pairings between a callee function of fi with gj.

Hungarian algorithm (also called Munkres algorithm) [69] is used to find the best

localized mapping between the caller/callee functions of fi and gj.
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5.3.4.2 Inconsistent MAY-pairs Elimination

To help find a high-quality bipartite matching from the pairs, Exposé identifies

and removes inconsistent MAY-pairs after computing the local scores for all MAY-pairs.

We consider the pairing between two functions fi and gj to be consistent only if the

minimum local score for fi corresponds to gj and if the minimum local score for gj

corresponds to fi. Otherwise, the pairing is inconsistent and Exposé eliminates them

from the set of MAY-pairs.

After eliminating inconsistent MAY-pairs, we normally end up with a bipartite

matching (since the minimum scores in rows and columns are usually unique). If not,

we can run a standard bipartite matching algorithm to generate the final pairs.

5.3.4.3 Grouping Related Matching Functions

We prefer matches in which both callers and callees are matched to isolated

matches. Based on this intuition, given a set M of final matched pairs (which includes

both IS-pairs and the consistent MAY-pairs), Exposé groups the library functions as

follows. Given a matched pair (f1, g2) in M , if there is another pair (f2, g2) in M

such that f1 calls f2 and g1 calls g2, Exposé puts f1 and f2 in the same group. This

is achieved programmatically by finding undirected cycles of length four where edges

are formed by function calls or pairings. We show a trivial example in Figure 5.4. In

this example, two groups exist, with the first group consisting of f1 and f2 and the

second group consisting of f3.

To give preference to matched groups over isolated matches, Exposé scales the

cosine distance of each matched function fi by dividing by the size of its group (recall

that lower scales indicate higher similarity).

To compute an overall composite matching score between a library and an ap-

plication, Exposé uses a simple method for ranking the matches: the final distance

score is obtained by taking the average of the scaled cosine distances of the pairs in
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Figure 5.4: Function grouping, given a set of matching pairs.

the final matched set, M . This simple method worked quite well for the purpose of

ranking, as discussed in the next section.

5.4 Results and Evaluation

The experimental objectives are to understand how well Exposé performs qualita-

tively (in terms of ranking matching applications to a given library) and quantitatively

(in terms of timing performance). Our experiments were conducted on machines with

Intel Xeon processor at 2.50 GHz running Redhat Enterprise Linux release 5.4.

5.4.1 Quality of Ranking of Applications

For this experiment, we wanted to evaluate the quality of Exposé’s rankings. One

challenge we encountered was the lack of ground truth, since it would not have been

possible for us to manually analyze thousands of binaries. To address the challenge,

we conducted the experiment in two parts. In the first part (controlled), Exposé

generated rankings for a given library against a small set of applications that we

knew to be using the library. In the second part (uncontrolled), Exposé computed

rankings for another library against a large set of applications for which we had little
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Table 5.4: 10 smallest distance scores using libpng as test library. Smaller scores
indicate better matches between the library and the applications.

File Score Elapsed
(min)

Size
(kb)

feh-static 0.273 0.235 482.10
feh-shared 0.288 0.181 435.50
sash 0.290 1.599 595.04
bash 0.306 3.754 663.69
md5sum 0.312 0.210 18.93
sln 0.314 0.885 449.10
gawk-3.1.5 0.330 1.188 293.05
tar 0.342 0.776 188.20
sed 0.353 0.739 93.18
cpio 0.355 0.821 51.53

information about their library usages. We used different libraries for the two parts

to study Exposé’s ability to work for different libraries.

5.4.1.1 Controlled

We used libpng v1.2.43 as the test library. The library is commonly used by

applications for processing PNG images. The version of the library we used contained

a buffer overflow vulnerability CVE-2010-1205 resulting from insufficient checks on

buffer space in the function png push process row. For the test applications, we

compiled two versions of a simple image viewer application called feh. The first

version, feh-static, was statically linked with the test library, while the second

version, feh-shared, used dynamic linking and was used as a control. In addition,

we included 128 executable binaries from the /bin directory of one of the RedHat

machines. These applications were unlikely to use libpng. We ran Exposé for finding

code re-use of the libpng test library in the set of test applications. The results for

the 10 smallest scores are shown in Table 5.4. From the results, we observe that

feh-static correctly had the nearest distance score.
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Table 5.5: 15 smallest distance scores using zlib as test library.
File Score Elapsed

(min)
Size
(kb)

dpkg-deb 0.07 1.352 174.40
rsync 0.09 5.762 262.93
sash 0.10 2.159 595.04
insmod.static.old 0.11 2.827 692.80
modinfo.old 0.14 1.283 107.64
depmod.old 0.14 1.317 131.54
depmod 0.14 1.256 88.28
modinfo 0.14 1.175 64.12
modprobe 0.14 1.258 77.17
rateup 0.14 1.416 337.43
insmod.old 0.14 1.369 174.46
ddd 0.19 6.755 2707.53
psp 0.21 0.044 22.38
snort 0.22 2.164 676.97
jpegtran 0.22 0.379 77.69

5.4.1.2 Uncontrolled

To test Exposé’s ability to correctly rank a large set of applications, we used 2,927

unique application binaries (determined by their SHA-1 hash) from DVL v1.5 [128], a

Linux distribution based on Slackware containing a large collection of applications for

practicing purpose by penetration testers. We used zlib v1.2.3 as the test library.

The choice of the library was intentional because it contained identifiable signatures.

Our techniques did not make use of the signature; the signature was only used to

estimate the ground truth.

To verify the correctness of the results, we used Clamscan to analyze the same

set of applications for the known signature. Clamscan is an open-source tool for

scanning applications using known signatures, and it is more commonly used as

part of ClamAV, an anti-virus engine [5]. The library contained 88 functions. Us-

ing Clamscan, we identified 10 application binaries that made use of zlib, all us-

ing version 1.2.3: depmod, modinfo, modprobe, rateup, sash, rsync, depmod.old,

insmod.old, insmod.static.old, and modinfo.old.

Table 5.5 ranks 15 application binaries with the nearest distance scores. We
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Figure 5.5: Cumulative distribution of distance scores. The inset shows the probabil-
ities for scores between 0 and 0.25.

observe that the 10 application binaries detected by Clamscan were amongst the top

11 scores. There was one surprise. dpkg-deb, which was not detected by Clamscan,

was ranked first.

We used Clamscan on dpkg-deb using the signature for zlib v1.2.2 and a positive

result was returned. Additionally, we examined dumping out the strings in the binary

and found that it contained the string “inflate 1.2.2 Copyright 1995-2004 Mark Adler”,

indicating that it was possibly linked with zlib v1.2.2 at some point. This was

further confirmed by disassembling dpkg-deb with IDA Pro [51] and comparing the

instructions. The small similarity score (indicating a good match) for version 1.2.3

was achieved because the set of zlib functions called by dpkg-deb was a subset of

the functions that did not vary significantly between versions 1.2.2 and 1.2.3.

Figure 5.5 shows the cumulative distribution of the distance scores for all 2,927

binary applications. The distance scores for the true positives were ranked above that

for all other applications except dpkg-deb. This indicates that Exposé can be helpful

in significantly narrowing down the number of binaries that need to be examined for

a closer match.
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Table 5.6: Distance scores of applications compiled with different zlib versions com-
pared with zlib v1.2.3.

App zlib version Score
app1 1.1.3 0.034
app2 1.1.4 0.034
app3 1.2.1 0.010
app4 1.2.2 0.010
app5 1.2.3 0.006
app6 1.2.4 0.020

5.4.2 Library Versions and Compiler Options

Next, we did experiments to study Exposé’s ability to distinguish among library

versions and its sensitivity to common compiler optimization options.

5.4.2.1 Distinguishing Library Versions

Our goal here was to determine if Exposé could be effective in identifying spe-

cific library version use without resorting to specialized methods such as computing

differences among libraries or generating signatures for the differences. As an ini-

tial test case, we compiled a test application statically linked with different versions

of zlib and ran Exposé against zlib v1.2.3. The functions called were the same

and included modified functions across the different library versions. The results

are shown in Table 5.6. We found that the distance score increases as the version

is further away from the current version, indicating that Exposé can be effective in

distinguishing variations in the binaries.

We next evaluated Exposé with different versions of zlib on the 11 applications

(including dpkg-deb) that evidently made use of zlib. The results are shown in

Table 5.7. We observe that the 10 applications that were statically linked with zlib

v1.2.3 have the smallest distance scores with zlib v1.2.3. However, dpkg-deb

also has its smallest distance score with zlib v1.2.3. In addition, its distance score

with zlib v1.2.2 is also relatively small. We found four functions in both v1.2.2
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Table 5.7: Distance scores between the 11 applications with smallest distance scores
and different zlib versions. The smallest distance scores for each appli-
cation are bolded. The correct version used by the application is marked
with an asterisk (*).

Application v1.1.4 v1.2.2 v1.2.3 v1.2.4
dpkg-deb 0.300 0.073* 0.070 0.285
rsync 0.270 0.092 0.089* 0.303
sash 0.267 0.154 0.103* 0.295
insmod.static.old 0.443 0.156 0.108* 0.683
modinfo.old 0.441 0.205 0.135* 0.426
depmod.old 0.407 0.209 0.137* 0.431
depmod 0.431 0.214 0.137* 0.441
modinfo 0.443 0.209 0.139* 0.441
modprobe 0.436 0.211 0.139* 0.448
rateup 0.432 0.211 0.142* 0.454
insmod.old 0.443 0.220 0.142* 0.431

and v1.2.3 to have IS-pairs: compressBound, deflatePrime, deflateBound and

zcalloc. These matches contributed the most to the small distance score. All these

functions were found to be unchanged between the two versions.

To further analyze the relative contributions of IS-pairs and MAY-pairs to the final

scores, Table 5.8 shows the number of IS-pairs, number of MAY-pairs and the final

score that would have resulted if only MAY-pair scores were used for the 11 applications

for the various library versions. Our findings indicate that the count of MAY-pairs or

the score from MAY-pairs, while useful as a component for generating a ranking of

applications, is less effective in distinguishing among versions, probably because n-

gram matching is not likely to produce significant differences for versions of the same

library. On the other hand, the count of IS-pairs, even if small, is a very good

indicator for identifying the likely library version.

We note that when we attempted to use semantic matching based on symbolic

execution to the entire set of library functions, the matching task took too long (it

did not finish). Our results suggest that restricting the semantic-match approach

to a promising set of candidate functions, based on an appropriate criteria (e.g.,
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Table 5.8: Number of tuples (number of IS-pairs, number of MAY-pairs, average MAY-
pair scores) for the top 11 binaries in the same order as Table 5.5.

File v1.1.4 v1.2.2 v1.2.3 v1.2.4
dpkg-deb 0, 38, 0.34 4, 39, 0.35 4, 34, 0.33 1, 36, 0.36
rsync 1, 27, 0.30 3, 33, 0.33 3, 32, 0.34 1, 42, 0.35
sash 0, 31, 0.30 2, 39, 0.36 3, 42, 0.36 1, 46, 0.33
insmod.static.old 0, 34, 0.30 2, 41, 0.36 3, 46, 0.37 0, 21, 0.68
modinfo.old 0, 26, 0.48 2, 27, 0.47 3, 33, 0.47 1, 31, 0.47
depmod.old 0, 24, 0.44 2, 29, 0.48 3, 31, 0.47 1, 32, 0.47
depmod 0, 26, 0.46 2, 30, 0.47 3, 31, 0.47 1, 33, 0.47
modinfo 0, 23, 0.46 2, 26, 0.47 3, 29, 0.47 1, 28, 0.47
modprobe 0, 25, 0.45 2, 26, 0.47 3, 30, 0.47 1, 30, 0.48
rateup 0, 30, 0.48 2, 35, 0.47 3, 41, 0.47 1, 45, 0.48
insmod.old 0, 32, 0.47 2, 34, 0.49 3, 37, 0.48 1, 36, 0.47

same number of inputs/out-degrees or low cyclomatic complexity), can still produce

good match results, including identifying the right library version, while significantly

enhancing scalability.

5.4.2.2 Robustness under Varying Compiler Options

To study the robustness of Exposé under different compiler options, we compiled

the test application using different compiler options. We verified that the compiled

applications were different using bsdiff, a tool for generating patch files between

binaries. We obtained the scores 0.031, 0.008, 0.006, and 0.054 for compiler options

O1, O2, O3, and Os respectively. The distance score is the smallest when the applica-

tion was compiled with the same compiler option as zlib, i.e., O3. Comparing with

the results in Table 5.5, the distances obtained for applications using other compiler

options are also relatively small.

5.4.3 Timing Performance

Figure 5.6 shows the cumulative distribution of the elapsed times. The elapsed

times do not include the times taken for disassembling the binaries since that will
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Figure 5.6: Cumulative distribution of elapsed times.

vary depending on the disassembler’s performance. We used IDA Pro [51] as our

disassembler. Exposé analyzed 97.68% and 99.48% of the binaries within five and

10 minutes respectively, with the longest analysis taking 57.62 minutes. Our results

demonstrate the scalability of Exposé clearly.

5.5 Conclusion

Identifying code re-use has many important security applications such as detect-

ing illegitimate software usage and vulnerable or buggy code re-use. Previous ef-

forts towards solving the problem largely focused on detecting code re-use in source

code. With Exposé, we aim to provide a practical solution for detecting potential

binary code re-use, which is challenged by the lack of symbols, function inlining, and

compiler-induced instruction variations.

Exposé determines candidate function pairs from a library and an application for

semantic matching based on the number of input parameters, out-degree, function

size, and cyclomatic complexity. We also use function level n-gram analysis to deter-

mine matching for pairs that are not amenable to symbolic execution. Thus, for each
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function in the library, we have either one of the three results: a semantic match, a

syntactic match with a distance measure, or no match to a function in an application.

When applied to a large number of applications for the given library, these results

are summarized into a score for ranking the match quality between the library and

the application.

To evaluate the ranking quality, we used Exposé to identify an application stati-

cally linked with libpng and placed with a set of 128 applications not known to be

statically linked with libpng. In this controlled experiment designed to overcome the

lack of ground truth, Exposé ranked the application statically linked with libpng at

the top. Using another test library, zlib, Exposé ranked 2,927 applications, with the

top 10 out of 11 applications also found to use zlib by a signature scanner. Upon

manual analysis, the top ranked application that was not detected by the signature

scanner was found to be linked with an earlier version of the library that contained

similar functions as the test library. When we varied the compiler options, and used

different versions of a test library, Exposé generated the shortest distances (or very

close to that value) between applications and the library variants they were using.

Exposé analyzed 97.68% and 99.48% of the binaries within five and 10 minutes re-

spectively.
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Algorithm 1 Compute distance score between two sets of functions F and G.
Require: Disassembled functions F = {f1, f2, . . . , fm}
Require: Disassembled functions G = {g1, g2, . . . , gn}

IS-Pairs = ∅
MAY-Pairs = ∅

{STEP 1: Populate IS-pairs with function pairs that are semantically equivalent and MAY-pairs
with pairs that are either not tested for semantic equivalence or test does not return true.}
for i = 1→ m do

Ai = ExtractAttributes( fi )
for j = 1→ n do

Bi = ExtractAttributes( gj )
if MeetCriteria( fi, Ai, gj , Bj ) ∧
IsSemanticallyEquivalent( fi, gj ) then
{STEP 1a: Test for semantic equivalence between fi and gj .}
IS-Pairs = IS-Pairs ∪ (fi, gj)

else
{STEP 1b: Add (fi, gj) to MAY-Pairs. The MAY-Pairs data structure keeps at most 5
gj ’s per fi with the smallest cosine distance from fi.}
MAY-Pairs.add(fi, gj)

end if
end for

end for

{STEP 2: Compute localdist score for each MAY-pair.}
for all (fi, gj , ci,j) ∈ MAY-Pairs do

localdist[fi][gj ] = CalcLocalScore( (fi, gj , ci,j) )
end for

{STEP 3: Eliminate inconsistent MAY-pairs. }
C = ∅
for i = 1→ m do

u = RowMin(localdist, i)
for j = 1→ n do

v = ColMin(localdist, j)
if u = v then

C = C ∪ {(fi, gj)}
end if

end for
end for

{STEP 4: Form function groups.}
H = FunctionGrouping( C )

{STEP 5: Find average distance of scaled localdist scores and divide by number of IS-pairs.}
s = 0
for all (fi, gj) ∈ C do

s = s + localdist[fi][gj ]/SizeOfGroup(H, fi)
end for
s = s/SizeOf(C)
s = s/SizeOf(IS-Pairs)
return s
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Listing 1 Basic block in libz.so.
IR Opcode Mnemonic

7A 8B 6B 70 mov ebp, [rbx+70h]

7A 48 8B BB 80 00 00 00 mov rdi, [rbx+80h]

D2 85 ED test ebp, ebp

EF 41 0F 49 EC cmovns ebp, r12d

D2 48 85 FF test rdi, rdi

55 74 05 jz short loc_2CC2

10 E8 96 F0 FF FF call _free

Listing 2 Semantically equivalent basic block in modprobe.
IR Opcode Mnemonic

7A 44 8B 63 70 mov r12d, [rbx+70h]

7A 48 8B BB 80 00 00 00 mov rdi, [rbx+80h]

D2 45 85 E4 test r12d, r12d

EF 44 0F 49 E5 cmovns r12d, ebp

D2 48 85 FF test rdi, rdi

55 74 05 jz short loc_4054F1

10 E8 E7 C0 FF FF call _free
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Algorithm 2 Compute local score between two functions fi and gj.

function CalcLocalScore (fi, gj, d)
if d >DEPTHLIMIT then

return ci,j
end if
cp = CalcParentLocalScore(fi, gj, d)
cc = CalcChildLocalScore(fi, gj, d)
li,j = (ci,j + cp + cc)/3
return li,j
end function

function CalcParentLocalScore (fi, gj, d)
for all parent fp of fi do

for all parent gp of gj do
m[fp][gp] = CalcLocalScore( fp, gp, d + 1 )

end for
m[fi][gp] = CalcLocalScore (fi, gp, d + 1)

end for
li,j = CalcMunkres( m[fi][gp] )
return li,j
end function

function CalcChildLocalScore (fi, gj, d)
for all child gc of gj do

for all child fc of fi do
m[fc][gc] = CalcLocalScore( fc, gc, d + 1 )

end for
m[fc][gj] = CalcLocalScore (fc, gj, d + 1)

end for
li,j = CalcMunkres( m[fi][gp] )
return li,j
end function
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CHAPTER VI

Conclusions and Future Work

6.1 Contributions

This thesis discusses the challenges of adhering to the least privilege principle,

specifically in three common scenarios where traditional access control mechanisms

are ineffective and accesses can be abused. For three scenarios where accesses are

commonly abused, it discusses methods to detect such accesses, and where practically

feasible, techniques to propose changes to access control policies to remove them.

• SEAL Uses semi-private email aliases to limit impact of email address leakages.

• DeGap Detects permission gaps using logs to estimate needed permissions, and

proposes solutions to mitigate the gaps.

• Exposé Detects binary code re-use towards preventing illegitimate uses.

In the first scenario, this thesis focuses on the problem of email leakages, where the

email address (object) is accessed by rogue senders (subjects). As characterized by

the Spamhaus Project, spam is really an issue of consent rather than content [122].

In the current paradigm, email address owners do not have an effective means of

protecting themselves against email address leakages. In addition, some businesses

require users to disclose their official email addresses to validate their affiliations with

certain organizations. This can over-disclose user information to those businesses.

This thesis presents the concept of semi-private email aliases and discusses its imple-
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mentation in SEAL, a system that allows users more control over their email aliases.

SEAL also allows web services to validate a user’s affiliation with an organization

without having access to the user’s official email address, which might have to be

used for strictly official purposes according to company policies. SEAL distinguishes

itself from other DEA systems by including a more advanced mechanism for managing

finer-grained alias lifecycles, thus allowing more flexibility when retiring compromised

email addresses. SEAL also integrates well with current email systems while at the

same time not being overly restrictive. Our findings show that SEAL is compatible

with existing email systems and can be effective in controlling unsolicited emails. For

validating affiliations, SEAL proved useful when used in a real life scenario where an

instructor of a freshman course required students to sign-up for an online forum. The

objective was to prevent the students’ university email IDs from being disclosed to

the service. Over 80% of the students chose to use SEAL rather than their university

email IDs.

In the second scenario, this thesis is concerned with systems whose permissions

are guarded by access control mechanisms, and system objects are accessed by other

processes or users (subjects). Specifically, this thesis examines permission gaps, which

expose a system to needless risks. Existing work on access control mechanisms focuses

on methods for describing access control policies. However, the lack of information

about which permissions are actually used can make the task of identifying and re-

moving permission gaps hard. This thesis describes DeGap, a framework that uses

a common logic for computing permission gaps across different services. In our ex-

periments for analyzing SSHD logs, DeGap found users and authentication methods

that should be removed from SSHD configuration files. From auditd logs, DeGap

discovered numerous files that were granted unneeded permissions, including Dove-

cot’s private key and password files that were world-readable. DeGap also uncovered

potentially dormant user groups that could be removed from /etc/group.
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In the third scenario, towards mitigating illegitimate code re-use, this thesis elab-

orates on detecting accesses of binary code. To detect code re-use, which has many

important security applications including intellectual property theft and vulnerable

code inheritance, this thesis presents Exposé. Previous efforts towards detecting code

re-use focuses on source code. Exposé aims to provide a practical solution for binaries.

The task is challenged by the lack of symbols, function inlining, and compiler-induced

instruction variations. Exposé combines syntactic techniques based on n-gram with

semantic analysis. When applied to a large number of applications for a given library,

these results are summarized into a score for ranking the match quality between the

library and the application. In our experiments, to overcome the lack of ground truth

when evaluating the ranking quality, we used Exposé to identify an application stat-

ically linked with libpng and placed with a set of 128 applications not known to be

statically linked with libpng. Exposé ranked the application statically linked with

libpng at the top. Using another test library, zlib, Exposé ranked 2,927 applica-

tions, with the top 10 out of 11 applications also found to use zlib by a signature

scanner. Manual analysis showed that the top ranked application that was not de-

tected by the signature scanner was linked with an earlier version of the library that

contained similar functions as the test library. When we varied the compiler options,

and used different test library versions, Exposé generated the shortest distances (or

very close to that value) between applications and the library variants they were us-

ing. Exposé analyzed 97.68% and 99.48% of the binaries within five and 10 minutes

respectively, demonstrating its practicality.

Having a single mechanism to solve the problem of detecting and mitigating un-

intended accesses for all three scenarios is a major challenge due to each of them

having different characteristics. However, lessons from studying these characteris-

tics can help us approach similar problems more systematically as shown in Figure

6.1. Before we elaborate on these characteristics, it is important to note that one
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Figure 6.1: Summary of approaches towards detecting and mitigating unintended ac-
cesses.

must be able to define a permission, i.e., the subjects, access rights, and objects as

a pre-requisite. For a given system, the ability to detect the subjects, access rights,

and objects in the system determines the granularity for which unintended accesses

can be detected and mitigated. For example, suppose there is an office (object) that

people (subjects) can enter (access right). If one is able to identify the individual

subjects accessing the office, then one may mitigate unintended accesses to the office

at the granularity of individuals. Otherwise, if one can only detect people entering

the office but not distinguish between them, one can only prevent all or none of the

people from entering the room.

If a system has an access control mechanism, such as in DeGap, the problem of

detecting and mitigating unintended accesses can be focused on reducing the permis-

sion gaps, since the ability to detect accesses is implied, while mitigation will involve

removing extraneous permissions. In other words, the objective of the problem is to

make the set of granted permissions be equivalent to the set of needed permissions.

In the absence of an access control mechanism, the ability to intercept and evaluate

accesses is necessary for solving the problem. Interception would imply the ability to
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detect accesses. It also allows one to develop a mechanism for denying unintended

accesses, such as in the case of SEAL.

If an access control mechanism is absent and accesses cannot be intercepted, then

one needs to depend on the observable states of a system with and without an access

for detecting it. In other words, if a change in the system’s state can be observed

when an access occurs, then it may be possible to provide a mechanism for detecting

the access, such as for Exposé. However, mitigation may be hard or expensive. One

possible approach is to try to prevent some types of system changes. For example,

for the case of code re-use, it is theoretically possibly for a compiler to verify that a

library is being used legitimately by contacting a server. However, clearly there are

practicality issues.

If the system state does not change when an access occurs, then detecting and

mitigating unintended accesses is likely to be infeasible. In that case, perhaps pene-

tration testing and auditing techniques can be applied to analyze a system.

6.2 Future Work

Looking forward, DeGap currently automatically proposes the set of permissions

that excludes accesses not found in the logs. However, users may want more flexibility

in specifying specific accesses to exclude. Additional research is needed to achieve this

flexibility.

In addition, the number of objects with permission gaps may become prohibitively

large, such as when there is a large number of files. Not all permission gaps may have

the same level of threats. Thus, it may be possible to generate scores to rank the

objects that reflect the different threat levels. Machine learning techniques could be

used to extract object attributes, such as file types and access patterns, that can be

used towards computing a score for ordering objects based on likelihood of access

abuses.
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When tightening permission gaps, there may be dependencies between services

such that removing access for a particular subject to a certain service is sufficient

to prevent it from accessing other services. This may be useful in scenarios where

modifying the access control policies of certain services is not desirable. In a trivial

example, to prevent a certain user from logging in to a system, changing the firewall

rules may not be acceptable while denying ssh access may be sufficient. Techniques

to identify such opportunities for tightening permission gaps may thus be useful.

In this thesis, DeGap generates solutions to tighten permission gaps based on

models generated manually by users. However, it may be beneficial to automate the

task. Research into this may involve taint tracking as well as system replay methods.

Challenges also remain for detecting malign binary code re-use. For example, with

the growing popularity of mobile computing devices, such as tablets, detecting malign

binary code re-use across different platforms may uncover common security issues.
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