This data set was created with the purpose to study the electron pitch angle distributions on dayside closed crustal fields at Mars and to compare with theoretical predictions made by numerical modeling. Analyzing the plasma environment of the crustal fields was another point of study to determine if whistler waves can interact with high energy superthermal electrons.
These datasets support the findings of Townsend et al. (2020). In this article, we project profiles of rock mass shear strength into the shallow subsurface (~30 m depth) using the Hoek and Brown criterion with Geological Strength Index (GSI) observations of outcrop structure and surface conditions, and Schmidt hammer rebound values of intact (unfractured) rock hardness. We compare these projected rock mass shear strength profiles to shear-wave velocity profiles collected using shallow geophysical arrays. We evaluate our methods in the Western Transverse Ranges of southern California, which exhibit strong gradients in the depth of latest-Mesozoic through Cenozoic sedimentary rocks exposed at the surface today, and in erosion rates quantified from catchment-average cosmogenic radionuclide concentrations and low-temperature apatite and zircon (U-Th)/He thermochronometry. We find that stratigraphic age and burial depth exerts the strongest apparent control on rock strength and S-wave velocities, likely due to diagenetic changes associated with burial. For rocks of the same age and inferred burial history, we observe that shear strength and S-wave velocities are positively correlated with erosion rate. We suggest that increasing erosion rates cause decreased residence time of rock masses within the critical zone, resulting in less weathered rocks.
These data are TLA events identified in MACCS magnetometer data throughout 2015. These events are short-timescale (< 60 s), large -amplitude (> 6 nT/s) magnetic disturbances measured at Earth's surface that are analyzed for space weather research purposes. and The events were identified in a year's worth of magnetic field data using an algorithm developed in the MATLAB platform. The algorithm dBdt_main.m can be run using the associated scripts (clean_maccs.m, simple_dbdt.m, extremes1.m, newdbdt.m) to return the events in the 2015_AllEvents.csv file. The substorm onset delays of each event are determined with the onset_delays.m script and the substorm event list 20191127-15-56-substorms.csv (both included).
Conducting quantitative metrics-based performance analysis of first-principles-based global magnetosphere models is an essential step in understanding their capabilities and limitations, and providing scope for improvements in order to enhance their space weather prediction capabilities for a range of solar conditions. In this study, a detailed comparison of the performance of three global magnetohydrodynamic (MHD) models in predicting the Earth’s magnetopause location and ionospheric cross polar cap potential (CPCP) has been presented. Using the Community Coordinated Modeling Center’s Run-on-Request system and extensive database on results from various magnetospheric scenarios simulated for a variety of solar wind conditions, the aforementioned model predictions have been compared for magnetopause standoff distance estimations obtained from six empirical models, and with cross polar cap potential estimations obtained from the Assimmilative Mapping of Ionospheric Electrodynamics (AMIE) Model and the Super Dual Auroral Radar Network (SuperDARN) observations. We have considered a range of events spanning different space weather activity to analyze the performance of these models. Using a fit performance metric analysis for each event, we have quantified the models’ reproducibility of magnetopause standoff distances and CPCP against empirically-predicted observations, and identified salient features that govern the performance characteristics of the modeled magnetospheric and ionospheric quantities.
Citation to related publication:
Mukhopadhyay, A., et al. (2020). Global Magnetohydrodynamic Simulations: Performance Quantification of Magnetopause Distances and Convection Potential Predictions. Forthcoming.
Reconstructed CT slices for a right medial cuneiform (entocuneiform) of Cantius mckennai (University of Michigan Museum of Paleontology catalog number UMMP VP 81820), as a series of TIFF images. Raw projections are not included in this dataset.
Reconstructed CT slices for a right navicular of Cantius mckennai (University of Michigan Museum of Paleontology catalog number UMMP VP 81831), as a series of TIFF images. Raw projections are not included in this dataset.
Reconstructed CT slices for a right astragalar [astragalus] body of Cantius mckennai (University of Michigan Museum of Paleontology catalog number UMMP VP 81827), as a series of TIFF images. Raw projections are not included in this dataset.
Reconstructed CT slices for a right calcaneum of Cantius mckennai (University of Michigan Museum of Paleontology catalog number UMMP VP 81821), as a series of TIFF images. Raw projections are not included in this dataset.