Work Description
Title: Predicting Crystal Structures using Digital Alchemy Inverse Materials Design and the Random Forest Technique of Machine Learning Open Access Deposited
Attribute | Value |
---|---|
Methodology |
|
Description |
|
Creator | |
Depositor |
|
Contact information | |
Discipline | |
Funding agency |
|
Keyword | |
Citations to related material |
|
Resource type | |
Last modified |
|
Published |
|
DOI |
|
License |
(2018). Predicting Crystal Structures using Digital Alchemy Inverse Materials Design and the Random Forest Technique of Machine Learning [Data set], University of Michigan - Deep Blue Data. https://doi.org/10.7302/Z2T72FN9
Relationships
- This work is not a member of any user collections.
Files (Count: 3; Size: 1.58 GB)
Thumbnailthumbnail-column | Title | Original Upload | Last Modified | File Size | Access | Actions |
---|---|---|---|---|---|---|
ReadMe_Geng_CrystalStructures.pdf | 2018-01-28 | 2018-01-28 | 142 KB | Open Access |
|
|
openDataForest.zip | 2018-01-02 | 2018-01-02 | 1.58 GB | Open Access |
|
|
getShapeVerticesFromPos.py | 2018-01-28 | 2018-01-28 | 1 KB | Open Access |
|
#given a pos file name, return the particle vertices array in all frames
import numpy as np
def getShapeVerticesFromPos(filename):
#particle shape vertices
allVerts = []
with open(filename,'r') as f: #With syntax for using the open command deletes it when scope ends
for line in f:
#line with 'poly3d' has shape vertices information
if 'poly3d' in line:
temp = line.replace('"','');
temp = temp.split()
#number of vertices
N_vertices = int(temp[3]);
#one shape vertices
verts = np.zeros(N_vertices*3, dtype=float);
for i in range(N_vertices*3):
verts[i] = float(temp[i+4]);
#append the shape to result
allVerts.append(verts)
allVerts = np.array(allVerts, float)
return allVerts
#filename = "diamond_seed1_k0.00_phi0.60_N128_V32.pos"
#allVerts = getShapeVerticesFromPos(filename)