Work Description

Title: Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame: experimental measurements and simulation results Open Access Deposited

h
Attribute Value
Methodology
  • Details have been discussed in the article in CARBON: Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame.
Description
  • Datasets for article in CARBON: Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame. The experiment VUV-AMS measurements ("VUV_AMS_C2H4_Counterflow.txt") consists aerosol mass spectra data from an atmospheric-pressure ethylene/oxygen/argon counterflow diffusion flame described in Johansson et al., Proc. Combust. Inst. 36, 799-806 (2017) doi:10.1016/j.proci.2016.07.130.

  • The experiment VUV-MBMS measurements ("VUV_MBMS_C2H4_Counterflow.txt") consists gas-phase data from an atmospheric-pressure ethylene/oxygen/argon counterflow diffusion flame described in Johansson et al., Proc. Combust. Inst. 36, 799-806 (2017) doi:10.1016/j.proci.2016.07.130.

  • 2D CFD simulation results by KAUST mechanism II ("CFD_KM2_results.xlsx") consists stabilized CFD gas-phase species profiles along different x,y,z coordinates. Species are given by mole fractions.

  • The SNapS2 simulation results ("SNapS2_results.zip") consist streamline I (from fuel side), i (from oxidizer side), and middle (DFFO = 5.0mm) for producing results in Fig. 5, Fig. 6, and Table 1. Three folders under each streamline ("C5H6", "C6H5CH3", and "C6H6") represent simulations by using different seeds (cyclopentadiene, toluene, and benzene respectively). The text files inside each folder are a single trace (time-history) for one SNapS2 simulation. Text file name consists "starting time"+"."+"simulation number"+".txt". For example 0.041.25.txt meaning the 25th simulation starting at 0.041s. Four columns inside the text files represent time, molecular mass, reaction index, and SMILES (Simplified molecular-input line-entry system) of the molecule.

  • Data citation: Wang, Q., Elvati, P., Kim, D., Johansson, K.O., Schrader, P.E., Michelsen, H.A., Violi, A. (2019). Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame: experimental measurements and simulation results [Data set]. University of Michigan Deep Blue Data Repository.  https://doi.org/10.7302/69e6-cd20
Creator
Depositor
  • bluelion@umich.edu
Contact information
Discipline
Citations to related material
  • Wang, Q., Elvati, P., Kim, D., Johansson, K.O., Schrader, P.E., Michelsen, H.A., Violi, A., 2019. Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame. Carbon 149, 328–335. https://doi.org/10.1016/j.carbon.2019.03.017
Resource type
Curation notes
  • Apr. 25, 2019 - Updated Citation to related material field to reflect article publication.
Last modified
  • 08/21/2019
Published
  • 04/01/2019
DOI
  • https://doi.org/10.7302/69e6-cd20
License
To Cite this Work:
Wang, Q., Elvati, P., Kim, D., Johansson, K. O., Schrader, P. E., Michelsen, H. A., Violi, A. (2019). Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame: experimental measurements and simulation results [Data set], University of Michigan - Deep Blue Data. https://doi.org/10.7302/69e6-cd20

Relationships

This work is not a member of any user collections.

Files (Count: 9; Size: 1.73 GB)

Datasets for article in CARBON: Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame.
The experiment VUV-AMS measurements ("VUV_AMS_C2H4_Counterflow.txt") consists aerosol mass spectra data from an atmospheric-pressure ethylene/oxygen/argon counterflow diffusion flame described in Johansson et al., Proc. Combust. Inst. 36, 799-806 (2017) doi:10.1016/j.proci.2016.07.130.
The experiment VUV-MBMS measurements ("VUV_MBMS_C2H4_Counterflow.txt") consists gas-phase data from an atmospheric-pressure ethylene/oxygen/argon counterflow diffusion flame described in Johansson et al., Proc. Combust. Inst. 36, 799-806 (2017) doi:10.1016/j.proci.2016.07.130.
2D CFD simulation results by KAUST mechanism II ("CFD_KM2_results.xlsx") consists stabilized CFD gas-phase species profiles along different x,y,z coordinates. Species are given by mole fractions.
The SNapS2 simulation results ("SNapS2_results.zip") consist streamline I (from fuel side), i (from oxidizer side), and middle (DFFO = 5.0mm) for producing results in Fig. 5, Fig. 6, and Table 1. Three folders under each streamline ("C5H6", "C6H5CH3", and "C6H6") represent simulations by using different seeds (cyclopentadiene, toluene, and benzene respectively). The text files inside each folder are a single trace (time-history) for one SNapS2 simulation. Text file name consists "starting time"+"."+"simulation number"+".txt". For example 0.041.25.txt meaning the 25th simulation starting at 0.041s. Four columns inside the text files represent time, molecular mass, reaction index, and SMILES of the molecule.

Data citation: Wang, Q., Elvati, P., Kim, D., Johansson, K.O., Schrader, P.E., Michelsen, H.A., Violi, A. (2019). Spatial dependence of the growth of polycyclic aromatic compounds in an ethylene counterflow flame: experimental measurements and simulation results [Data set]. University of Michigan Deep Blue Data Repository. https://doi.org/10.7302/69e6-cd20

Download All Files (To download individual files, select them in the “Files” panel above)

Total work file size of 1.73 GB may be too large to download directly. Consider using Globus (see below).



Best for data sets > 3 GB. Globus is the platform Deep Blue Data uses to make large data sets available.   More about Globus

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.