######################################################### ### Tsunami simulation files for the Cascadia tsunami ### manuscript by Salaree et al (2021) submitted to GRL. ######################################################### ####### CONTENT: 1. simul.tar.gz 2. slip.xyz 3. dep.xyz 4. slip.dyn.xyz 5. dep.dyn.xyz 6. def.smp.xyz 7. def.rand.xyz 8. README (this file) ####### DESCRIPTION: 1. simul.tar.gz Compressed archive of 1-a. Fields of maximum tsunami amplitude in binary raster format (.grd). These files are GMT-readable (Generic Mapping Tools; https://www.generic-mapping-tools.org). 1-b. Virtual gauge files. These are multiple column ASCII files. Column belongs to each of the gauges and rows are time series recorded at that station. ** Structure: the hierarchy is magnitude --> rupture scenario Rupture scenarios for each magnitude (MX.Y) are stored in stored in respective magnitude folder as RXXXX sub-directories where XXXX is the index number for the scenario. ------------------------------------------------------- 2. slip.xyz Three column (lon,lat,slip) ASCII file of the slip field. This is the output of locking model (Schmalzle et al, 2014). 3. dep.xyz Three column (lon,lat,depth) ASCII file of rupture depth. This is the output of locking model (Schmalzle et al, 2014). ------------------------------------------------------- 4. slip.dyn.xyz Three column (lon,lat,slip) ASCII file of the slip field. This is the output of dynamic rupture model (Ramos et al, 2021). 5. dep.dyn.xyz Three column (lon,lat,depth) ASCII file of rupture depth. This is the output of dynamic rupture model (Ramos et al, 2021). ------------------------------------------------------- 6. def.smp.xyz Three column (lon,lat,slip) ASCII file of the deformation field. This is the a generic form of the model from Priest et al (2010). ------------------------------------------------------- 7. def.rand.xyz Three column (lon,lat,slip) ASCII file of the deformation field. This is the randomized ("noisy") version of the locking model (Schmalzle et al, 2014). +++++++++++++++++++++++++++++++++++++++++++++++++++++++ Notes: The tsunami simulation algorithm MOST (Method of Splitting Tsunami; Titov et al, 2016) is available via NOAA (https://nctr.pmel.noaa.gov/model.html). Surface deformation fields for ruptures can be calculated from the slip field using earthquake scaling laws (e.g., Geller, 1976) and deformation algorithms (e.g., Mansinha & Smylie, 1971). +++++++++++++++++++++++++++++++++++++++++++++++++++++++ References: Geller, R.J., 1976. Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66(5), pp.1501-1523. Mansinha, L.A. and Smylie, D.E., 1971. The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61(5), pp.1433-1440. Vancouver Priest, G.R., Goldfinger, C., Wang, K., Witter, R.C., Zhang, Y. and Baptista, A.M., 2010. Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Natural Hazards, 54(1), pp.27-73. Ramos, M. D., Huang, Y., Ulrich, T., Li, D., Gabriel, A. and Thomas, A., 2021, Assessing margin-wide rupture behavior along the Cascadia megathrust using 3-D dynamic rupture simulations, Journal of Geophysical Research [preprint available at https://eartharxiv.org/repository/view/2141/] Schmalzle, G.M., McCaffrey, R. and Creager, K.C., 2014. Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15(4), pp.1515-1532. Titov, V., Kânoğlu, U. and Synolakis, C., 2016. Development of MOST for real-time tsunami forecasting (Doctoral dissertation, American Society of Civil Engineers). ########### END OF FILE