TCC III, Fired, Spark Plug Region Philipp Schiffmann, Ph.D. University of Michigan 2016

Acknowledgement Request for published use:

It is requested that ALL published use of the TCC engine simulation geometry and/or data be acknowledged with the following statement.

"The study here used publicly available TCC engine data, which was created with funding by General Motors through the General Motors University of Michigan Automotive Cooperative Research Laboratory, Engine Systems Division."

This README document is an overview of the cataloged data in the Deep Blue Data work deposit "TCC-III, Fired, Spark Plug Region", which is a permanent unaltered archive of the data used in Dr. Philipp Schiffmann's Ph. D. dissertation (<u>http://hdl.handle.net/2027.42/137636</u>) and subsequent publications , such as Philipp Schiffmann, David L. Reuss, Volker Sick, International Journal of Engine Research, 2017, DOI: 10.1177/1468087417720558.

This archive includes all measured pressures, velocity distributions, OH* distributions and computed one-per-cycle parameters, which were used the statistical analysis in the thesis. This document includes descriptions of the following.

Test Matrix and Engine Operation	(Slides 2 - 3),
Data Summary and File Structure	(Slides 4-11) ,
Engine Geometry	(Slides 12 – 27)
Engine Intake and Exhaust System Geometry	(Slides 28 -35).

Measured parameter locations and nomenclature are provided in the Geometry slides.

The Deep Blue Data TCC-III "Collection README.pdf" file contains references and errata, and will be updated in time.

TCC-III Fired, Spark Plug Region: Test Operating Conditions

The thirty four tests contained in the Spark Plug Region Work Deposit were designed to study the causes of cycle-to-cycle variability during the flame initiation period. The Velocity measurements and flame-OH* images are restricted to a small region near the spark plug (slide 9). The tests were conducted at eleven different combinations of equivalence ratio, fuel types, and nitrogen dilution. There are repeated tests for a total of 34 tests with 754 cycles per test. The operating conditions were, chosen to systematically vary the Markstein number, Ma, and unstretched laminar flame speed, S₁ as shown in the table below. Note that toluene was used at a fixed mass, thus varying as a percentage of primary fuel as noted in the table. Since these tests were conducted to study causes of glow-discharge spark ignition, all tests were conducted with fixed start of ignition, SOIgn, to maintain similar flow and thermodynamic conditions. It is noted that the start of ignition was the same for all tests, SOIgn = 342 ATDCE, which was the timing for Maximum Break Torque, MBT, for stoichiometric operation, $\phi = 1$. As a consequence, all of the lean, rich, and dilute operation here had very late combustion phasing.

		Methane			Propane						
		Air			Air			9 % N2 (by mass)			19 % N2
	Leanest	Lean	Stoich	Rich	Lean	Stoich	Rich	Lean	Stoich	Rich	Stoich
Equivaence Ratio	0.66	0.69	1.00	1.21	0.67	1.00	1.56	0.79	1.00	1.43	1.00
ṁ O2 [g/s]	0.48	0.48	0.47	0.47	0.48	0.47	0.46	0.44	0.43	0.42	0.38
ṁ N2 [g/s]	1.59	1.59	1.56	1.54	1.58	1.55	1.50	1.62	1.60	1.57	1.66
ṁ Fuel [g/s]	0.070	0.075	0.109	0.132	0.078	0.119	0.185	0.084	0.108	0.154	0.096
ṁ C7H8 [g/s]	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
A/F	25.3	24.0	16.8	14.0	23.0	15.5	10.0	19.6	15.5	10.8	15.5
C7H8, % fuel mass	14.1	13.4	9.6	8.1	12.9	8.8	5.9	12.2	9.7	6.9	11.1
Le (difficient)	1.0	1.0	na	1.14	1.75	na	0.97	1.86	na	0.99	na
Sı ̃[m/s]	0.55	0.61	0.96	0.86	0.74	1.22	0.57	0.77	0.98	0.59	0.68
δ _L [mm]	0.028	0.027	0.017	0.019	0.020	0.012	0.024	0.019	0.015	0.024	0.022
Ma	-0.8	-0.5	2.7	4.8	6.2	3.4	-1.4	5.2	3.4	-0.3	3.4
<i>L</i> ма [mm]	-0.015	-0.013	-0.045	0.09	0.125	0.040	-0.033	0.101	0.050	-0.007	0.074
IMEP [kPa]	212	250	328	287	234	337	259	250	311	278	212
COVIMEP [%]	8.3	4.5	1.3	4.5	6.3	0.8	6.3	5.0	1.8	5.5	8.2

TCC-III Fired, Spark Plug Region: Engine Operation and Data Summary

Spark Plug Region Summary							
	RPM	1300					
	MAP	40					
	Pressure-Cycles/Test	850					
	SOlgn, ATDCE	342					
Flow Fields	Imaged-Cycles/Test	754					
	CA/Image	2					
	Images/Cyc	21					
	Imaging Range, ATDCE	320-360					
	PIV Spatial Resolution	1 mm					
	PIV Grid	≈ 0.52 mm					
	Common Grid	0.50 mm					
	Image Plane	y = -4.5					
	Field of view	x = -10.25 to 9.25					
		z = -0.25 to -15.25					
OH* Images	Imaged-Cycles/Test	754					
	Images/Cycle	8					
	Imaging Range, ATDCE	344 - 360					
	Image-view direction	toward -x					

RPM - Revolutions Per Minute,

MAP – Manifold Absolute Pressure

ATDCE – degrees After Top Dead Center Exhaust, all data use this crank angle convention.

Data ID – File name used in archive directory indicating when the data was data taken. S_year_month_day_test#

Files in **blue-bold** font indicate recommendations from Schiffmann PhD dissertation.

Flame-OH* images are not included for tests noted in the table due to laser-to-intensifier timing errors.

TCC-III Spark Plug Region File Summary								
	Delivered	Delivered	Delivered					
Fuel	N2	Phi	С7Н8	IMEP	cov	OH*	Test ID	
	% Tot Mass	_	% Fuel		IMEP	Images		
		0.67	14%	238	5.4%	Y	S_2015_06_18_05	
		0.67	14%	233	6.3%	Y	S_2015_06_20_06	
		0.67	14%	230	7.1%	Y	S_2015_06_22_04	
		1.00	10%	334	1.1%	Y	S_2015_06_18_03	
	79%	1.00	10%	338	0.8%	Y	S_2015_06_25_25	
		1.00	10%	339	0.6%	Y	S_2015_06_26_13	
		1.59	6%	253	8.0%	N	S_2015_06_18_01	
		1.56	6%	287	4.7%	Y	S_2015_06_25_21	
		1.54	7%	293	3.8%	Y	S_2015_06_26_17	
		0.80	13%	265	3.6%	Y	S_2015_06_18_07	
Propane		0.78	13%	244	5.7%	Y	S_2015_06_22_08	
		0.78	13%	242	5.8%	Y	S_2015_06_26_21	
		1.00	11%	313	1.5%	Y	S_2015_06_25_23	
	81%	1.00	11%	312	1.9%	Y	S_2015_06_26_11	
		1.00	11%	308	2.0%	Y	S_2015_06_26_19	
		1.45	8%	240	8.2%	N	S_2015_06_18_11	
		1.42	8%	267	5.4%	Y	S_2015_06_20_04	
		1.43	8%	270	5.4%	Y	S_2015_06_23_03	
		1.01	12%	239	6.7%	N	S_2015_06_20_02	
	83%	1.00	12%	249	6.1%	Y	S_2015_06_22_06	
		1.00	12%	264	5.5%	Y	S_2015_06_26_15	
		0.66	150/	211	7.00/	V	S 2015 OC 2C 22	
		0.66	15%	211	7.9%	Y N	S_2015_06_26_23	
		0.66	15%	214	8.4%	N	S_2015_06_26_25	
		0.66	15%	210	8.4%	N	S_2015_06_26_27	
		0.68	15%	224	6.1%	Ŷ	S_2015_06_23_08	
		0.69	15%	229	6.4%	Ŷ	S_2015_06_23_10	
Mathana	70%	0.73	14%	267	3.4%	ř V	S_2015_06_19_03	
wiethane	79%	0.70	15%	254	3.8%	ř V	S_2015_06_19_05	
		1.01	11%	329	1.6%	ř V	5_2015_06_26_01	
		1.00	11%	330	1.0%	Y Y	5_2015_06_26_03	
		1.00	11%	324	2.7%	Y	5_2015_06_26_09	
		1.20	3%	290	3.7%	ř N	5_2015_06_19_0/	
		1.22	5% 9%	285	4.7% 5.1%	N N	5 2015 06 26 05	

Fired Spark Plug Region: Data Summary and File Structure

Slides 4 – 11 summarize the archive data-file **directory structure (Slide 6)**. There are four measured-data directories at the top level, engine **pressure data**, the **original** and **common grid flow fields**, and flame **OH* images**. The measurements were acquired simultaneously at multiple crank angles, during 754 contiguously engine cycles, during 34 tests from 11 operating conditions. Each of the top 4 top directory contains eleven sub-directories corresponding to the eleven **Test Conditions (Slide 2)**; The data for the 34 engine tests, cataloged by **Test ID (Slide 3)**, are found in these sub-directories.

Pressure data

Pressure data for each test is cataloged in Excel Workbooks, which contain worksheets with the following parameters.

Test Info	(pressure-data cycle number vs. imaged-data cycle numbers)
Per_Run_Summary	(test average & standard deviation)
Per_Cycle_Data	(cycle averaged pressure parameters, heat release, and spark-plasma energy and duration.)
Ensemble_Average	(cylinder volume and average pressures per crank angle)
P_IntakePlenIn (kPa)	(5 measured pressures (Slide 7) acquired each 0.5 crank angle degree)
P_IntkPort (kPa)	
P_Cyl (kPa)	
P_ExhPort (kPa)	
P_ExhPlenOut (kPa)	
HR Rate (J per CAD)	Apparent Heat Release each 0.5 crank angle.
Cumulative HR (J)	Cumulative Apparent Heat Release each 0.5 crank angle

There is one Pressure-Data file for each test, located in the directory corresponding to its Test Condition. The Pressure files include parameters that were directly measured or computed as described in **Schiffmann's Dissertation** (<u>http://hdl.handle.net/2027.42/137636</u>).

The Pressure Data directory also contains the following three Excel workbooks.

- 1. The 1/test parameters compiled from each test in a single worksheet.
- 2. The 1/0.5CA ensemble-averaged pressure and heat-release parameters for all 34 tests (one worksheet per parameter).
- 3. The computed **1/cycle Parameters (Slide 8)** used in the statistical analysis (one worksheet per each of the 34 tests) located in ...\Fired_Spark_Plug_Region-Schifmann\Pressure_Data\CC_1300RPM_40kPa_Fired_SpkPlg_1perCycle_Imaged+flowfielddata

Flow Field Files (original & common grids)

Velocity distributions were measured in a the plane near the spark plug shown in Slide 9. Each flow field is in a text file, B000##.txt, and has the x,y,z coordinates and u,v,w velocity components of the two-component PIV measurements. Each velocity file contains the velocity distribution from one image pair, taken with frame straddling. Thus, one image was taken at the beginning of the specified crank angle, and one was take $\Delta t \mu s$ earlier (laser pulse separation), at the end of the previous crank angle.

The velocity data are located in the directories, original_grid_flow_fields or the common_grid_flow_fields (Slide 11). The Common Grid was used to compute the 1cycle velocity parameters, which are the file

...\Fired_Spark_Plug_Region-Schifmann\Pressure_Data\CC_1300RPM_40kPa_Fired_SpkPlg_1perCycle_Imaged+flowfielddata ... The original and common grids are described in Slide 11, along with the **Resolution and Dynamic Range**.

The PIV Data-File Directories (Slide 7) are cataloged by

Test Condition	Fuel,_phi_yN2, (e.g., C3H8_Phi=1_yN2=009 where y is the mole fraction of added N_2 dilution).
Test ID,	S_year_month_day_test#, (e.g., S_2013_01_30_01).
Test cycle number,	Cycle=00001 to Cycle=0754
Crank angle,	B00001.txt – B00021.txt, where the 21 flow fields were measured every two crank angles
	between 320 – 360 ATDCE.

Flame OH* Images

Directory _OH_Images contains text files of images, which recorded both the plasma discharge and early flame-kernel OH* chemiluminescence. The files contain the intensity of the 600 x 800 pixel camera array, recorded every 2 crank angles, from 344 – 360 ATDCE (2 degrees after SOIgn to TDC, where the flame became larger than the field of view), and every cycle. The images have had only white-field correction applied, to account for spatial variation of the image intensifier sensitivity. Images are catalogued by

Test Condition	Fuel,_phi_yN2, (e.g., C3H8_Phi=1_yN2=009 and y is the mole fraction of added N ₂ dilution).
Test ID,	S_year_month_day_test#, (e.g., S_2013_01_30_01).
Test cycle number,	Cycle=00001 to Cycle=00754
Crank angle,	Cycle=0###_344[CA ATDCE].txt to Cycle=0###_360[CA ATDCE].txt .

The file header is from LaVision Davis .imx files, interpreted as follows.

LaVision	camera chip	Scale	Origin	Coord.		Scale	Origin	Coord.	
Davis version	size, pixels size	Factor	Offset	Direction	units	Factor	Offset	Direction	units
#DaVis 8.3.0 2-D image	800 600 800	0.433322	-19.5	"x"	"mm"	-0.0433322	2.2	"z"	"mm"

Fired Spark Plug Region : Pressure Data-File Directory Structure

Pressure Measurement Locations, TCC-III

TCC-III Fired, Spark Plug Region: 1/cycle Parameters

This table summarizes the computed 1/cycle parameters used for the statistical analysis in Schiffmann's dissertation, which are in the Microsoft Excel workbook

TCCIII DeepBlue CC_1300RPM_40kPa_fired_Cycle_Imaged+flowfielddata+burnt+POD+LamTurbTime_wGraph_20160605.xlsx located in the Pressure Data directory.

	Pressu	re		Flam	e, Mie scattering
P_Cyl	IMEP(cycle k)	cylinder pressure	Ave Area	348-360 ATDCE	Burned gas area from images of 2-D laser sheet
P_Cyl	IMEP(cycle k-1)		Ave Wrinkledness	348-360 ATDCE	
P_Cyl	Peak Location, aTDCE		Total Area	348-360 ATDCE	
P_Cyl	Peak, kPa		Total Wrinkledness	348-360 ATDCE	
P_Intk_Port	Peak Location, aTDCE	pressure at the intake runner-port interface	# Burnt-Gas Pockets	348-360 ATDCE	
P_Intk_Port	Peak		dA/dCA	349-359 ATDCE	area change per CA
P_Intk_Port	CycleAve				
P_Exh_Port	Peak Location, aTDCE	pressure at the exhaust runner-port interface			
P_Exh_Port	Peak				Flame, OR ¹
P_Exh_Port	CycleAvg		OH* Area	344-360 ATDCE	2-D imge projection of 3-D OH*
P_Intk_Plen_In	Peak Location, aTDCE	pressure at the intake plenum inlet	Major/Minor axis length	342-350 ATDCE	
P_Intk_Plen_In	Peak		OH* cg. x-pos	344-360 ATDCE	
P_Intk_Plen_In	CycleAve		OH* cg. z-pos	344-360 ATDCE	
P_Exh_Plen_Out	Peak Location, aTDCE	pressure at the exhaust plenum outlet	Avg OH* Intensity	344-360 ATDCE	
P_Exh_Plen_Out	Peak		StdDev OH* Intensity	344-360 ATDCE	
P_Exh_Plen_Out	CycleAve		OH* dA/dCA	345-359 ATDCE	
rpm	CycleAve		Area @ $^{ au}$ lam-turb size	mm^2	flame area at time of laminar to turbulent transition
^γ compression		intake polytropic compression coefficient	Lam log slope	mm^2/s	Slope of log(A) vs log(t) during initial laminar growth
^γ expansion		exhaust polytropic expansion coefficient	Turb log slope	mm^2/s	Slope of log(A) vs log(t) during turbulent growth
	AHR		Inflection time [ms] Lam log offset, [mm^2]		Location of maximum dA/dt
Burn0010	CAD	crank angles between SOIgn and 10% MFB	Turb log offset		
Burn1090	CAD	crank angles between 10% and 90% MFB	$^{\tau}$ lam-turb [ms]		time from SOIgn to laminar-turbulent transition
CA10	ATDCE	crank angle at 10% MFB	$^{ au}$ lam-turb [CAD]		CA from SOIgn to laminar-turbulent transition
CA50	ATDCE	crank angle at 50% MFB	τ lam-turb to CA10 [CAD]		
CA90	ATDCE	crank angle at 90% MFB			Valacity
HR_Total	J	total heat release from AHR analysis			Velocity
	Spark Pla	asma	V	320-360 ATDCE	velocity magnitude averaged over sub area of Fig.1
	•		Vz	320-360 ATDCE	z-vel. component, averaged over sub area of Fig.1
Spark Duration		electrical discharge duration for each cycle	Vx	320-360 ATDCE	x-vel. Component, averaged over sub area of Fig.1
Spark Energy		electrical energy delivered to the spark plug each cycle	vonMises strain	320-360 ATDCE	(Appendix 1) averaged over sub area of Fig.1
Spark Area	342-350 ATDCE	from images	Shear Strength	320-360 ATDCE	(Appendix 1) averaged over sub area of Fig.1
Spark x-pos	342-350 ATDCE	from images	SwirlStrength	320-360 ATDCE	(Appendix 1) averaged over sub area of Fig.1
Spark z-pos	342-350 ATDCE	from images			

Details of the parameters and nomenclature can be found in Philipp Schiffmann's Ph. D. dissertation (<u>http://hdl.handle.net/2027.42/137636</u>) and in subsequent publications referenced in the Deep Blue Data TCC Engine Collection README.pdf file. **8**

Spark Plug Region Coordinate System and Image Plane

Fired Spark Plug Region: Flame OH* and Flow Data-File Directory Structure

Cycle=00006

Cycle=00007

Cycle=00008

Flame OH* Image Files

B00010.txt

B00011.txt

B00012.txt

Spark Plug Region: FOV, Velocity Resolution, and Dynamic Range

Original Grid:

The boundaries of the PIV The field of view (FOV) vary a bit from test to test but are about x = -12 to +10, and z = -1 to -14 mm and in the plane y = -4.5 mm for all PIV measurements in the Spark Plug Region. The interrogation window was 1.04 mm on a 0.52 mm grid. The laser-sheet thickness was measured to be 1mm.

Common Grid:

The original PIV grid and a re-gridded version of the data is available for direct comparison of velocity metrics. The re-gridded datasets loose one grid at edge of the FOV and at the edges of the burned gas regions. The re-gridded data sets also use interpolation to replace locally bad vectors.

Velocity Range:

The minimum and maximum resolved velocity are defined here using the criterion that PIV correlation-peak displacements, Δx_{piv} , need be limited to 0.2 pixels and 8 pixels, respectively, as described in Ref.1. A practical resolution limit of 0.2 pixels is used here, as demonstrated in Refs.2 & 3. Thus, an estimated dynamic range of 40:1 one is achieved. The laser-pulse separation for these tests was $\Delta t = 10$ ms, to achieve the 8 pixel maximum particle separation. The velocity dynamic range for any data set can be computed as follows. Since 32x32pixel interrogation spots and grid-spacing (Δx)_{grid}, of 50% overlap are used in all tests here) the resolution dynamic range can be estimated as

$V \downarrow min = 0.2 [2\Delta x \downarrow grid / 32\Delta t]$ and $V \downarrow max = 8 [2\Delta x \downarrow grid / 32\Delta t]$

where V is m/s when Δx_{grid} is in meters (from the velocity data file) and Δt in seconds. For all tests in the Spark Plug Region, $\Delta x_{grid} = 0.5$ mm and $\Delta t = 10 \ \mu$ s for a dynamic range from 0.6:25 m/s.

^{1.} Adrian, R.J. and J. Westerweel, Particle image velocimetry. 2011: Cambridge University Press.

^{2.} Reuss, D.L., M. Megerle, and V. Sick, Particle-image velocimetry Measurement Errors when Imaging through a Transparent Engine Cylinder. Measurement Science and Technology, 2002.

^{3.} Megerle, M., V. Sick, and D.L. Reuss, Measurement of Digital PIV Precision using Electrooptically-Created Particle-Image Displacements. Measurement Science and Technology, 2002. 13: p. 997-1005.

^{4.} Abraham, P.S., D.L. Reuss, and V. Sick. High-speed particle image velocimetry study of in-cylinder flows with improved dynamic range. in SAE Paper 2013-01-0542. 2013.

TCC-III Engine Geometry

The Slides 10 – 24 quantify the TCC-III engine geometry, that was used to create the CFD .stl and igs files. In addition, these geometry slides define the nomenclature and locations of the pressure transducers and thermocouples cataloged in the Pressure Data Files.

Scanned figures of original printed material are used to avoid transposition errors. The Deep Blue Data TCC-III Collection README file contains errata, which are updated as they become available.

	TCC-II	I Engine Geometry	
Bore, cm	9.20	Connecting-rod length, cm	23.1
Stroke, cm	8.60	Piston-pin offset, cm	0.0
Clearance @ TDC, cm	0.95	Conn rod offset, cm	0.0
Combustion chamber volume, cc	63.15	Exhaust Valve Closing, aTDCexh	12.8
Top-land crevice volume, cc	0.37	Intake Peak Lift, aTDCexh	114.8
Spark-plug crevice volume, cc	0.02	Intake Valve Closing, aTDCexh	240.8
TDC Volume, cc	63.54	Exhaust Valve Opening, aTDCexh	484.8
Swept volume, cc	571.7	Exhaust Peak Lift, aTDCexh	606.8
Geometric CR	10.0	Intake Valve Opening, aTDCexh	712.8
Effective (IVC) CR	8.0	Valve-seat angles, deg.	30/45/60/75
Steady-flow swirl ratio	0.4	Spark Plug	AC Delco R44LTS

Slot cut in the head between the "flow-box" and "cam-carrier base plate" to allow spark plug and pressure transducer

TCC-III Overview

The three-piece head "cam carrier" (cam and lifters) "base plate" (valves & guides) "flow box" (ports, plug, valve seats)

Plenum Interior Dimensions & Measurement Locations

Dimensions in mm

Combustion Chamber

Coordinates

Head Top View

Exhaust Runner and Port

Intake and Exhaust Probe Inserts For pressure transducers and thermocouples

TCC-0 single-angle Valves

Figure 3 Details of the TCC-engine shrouded intake valve.

TCC Valve Seat Anthology

Nominal Cam Timing

Crank angle, deg aTDC exhaust

Cam Profile Original used for grinding cams

F-252	•		CAM (CONTOU	R DATA	1.1	
ANGLE	OPENING	CLOSING	ANGLE	OPENING	CLOSING	e.,	
0 1 2 3 4	8.8900 8.8864 8.8758 8.8580 8.8580 8.8331	8.8900 8.8864 8.8758 8.8580 8.8580 8.8331	40 4841 42 4443 44	3.4591 3.2182 2.9780 2.7397 2.5045	3.4647 %3.2246 2.9853 %2.7481 2.5141		
5 6 7 8 9	8.8011 8.7620 8.7158 8.6625 8.6021	8.8011 8.7620 8.7158 8.6625 8.6021	4045 46 3647 48 3249	2.2736 2.0485 1.8306 1.6212 1.4218	182.2846 2.0610 441.8448 1.6374 401.4402		-
10 11 12 13 14	8.5346 8.4600 8.3783 8.2896 8.1939	8.5346 8.4600 8.3783 8.2896 8.1939	50 1951 52 1953 54	1.2337 1.0582 0.8963 0.7490 0.6167	1.2547 661.0820 0.9233 720.7793 0.6508		
15 16 17 18 19	8.0911 7.9813 7.8646 7.7409 7.6102	8.0911 7.9813 7.8646 7.7409 7.6102	~55" 56 1957+0 58 1~59	-0.4997 0.3979 -0.3109 0.2379 0.1776	0.2892 0.2331	6	T
20 21 22 23 24	7.4727 7.3284 7.1772 7.0194 6.8548	7.4728 7.3286 7.1775 7.0197 6.8552	60 62 1/63 64	0.1290 0.0904 0.0605 0.0381 0.0220	0.1882 60.1525 0.1242 10.1016 0.0830	6	do
25 26 27 28 29	6.6837 6.5061 6.3222 6.1320 5.9357	6.6842 6.5067 6.3229 6.1329 5.9367	€65 4 66 67 68 13 ⁸ 69	0.0113 0.0047 0.0014 0.0002 0.0000	*0.0669 0.0522 10.0384 0.0259 00.015319		
30 31 32 33 34	5.7335 5.5256 5.3123 5.0939 4.8707	5.7347 5.5271 5.3140 5.0959 4.8730	70 71 72 73		0.0074 0.0025 0.0006 0.0000		
6035 36 3637 38 3070	4.6431 4.4116 4.1768 3.9393 3.6998	4.6458 4.4148 4.1805 3.9435 603.7046					

25

HIGH OUTPUT IGBT COIL 30-2853

The model **30-2853 HO IGBT Coil** is specially designed for racing applications and does not require a CDI or external Igniter to function. This is a very high energy coil so you must take special attention to the quality of the connections. Make sure to apply a liberal amount of dielectric grease to the connector terminals and the tip and body of the spark plugs. Failure to do this may cause arcs to the cylinder head and cause a misfire.

The 30-2853 Kit Contains:

1 High Output IGBT Coil 1 Mating Connector & 6 Contacts

SPECIFICATIONS:

Output (no load): Output (50pF load): Output Energy: Peak Secondary Current: Arc Duration: Turns Ratio Maximum Current: Maximum Battery Voltage: Base Dwell: Max Continuous Dwell: Max Intermittent Dwell: Mating Connector: Mating Connectos: High Tension Wire Terminal:

103 mJ +/- 7% 102 mA +/- 10% 2.9mS +/- 10% 71:1 19 Amps 17 Volts 3.0 mS 9 mS but don't exceed 40% duty cycle 80% duty cycle, 5 seconds maximum Packard/Delphi 12162825 "Pull to Seat" Packard/Delphi 12124075 "Pull to Seat"

40kV minimum

40kV +/- 10%

PINOUT:

- A: Coil Trigger (0-5V signal)
- B: Coil Trigger (Ref Ground)
- C: Ground to Cylinder Head
- D: Battery Ground
- E: Battery Positive (Relay or switched ignition)

IMPORTANT!

The contacts are "Pull to Seat" meaning you must feed the wire through the connector housing BEFORE you crimp on the contacts. The wire is then pulled back into the housing and the contact locks in place. The contact cannot be inserted or removed from the rear (wire side entry) of the housing

DWELL:

When setting the dwell the following guidelines should be used:

- Target a base dwell time of 3mS and only increase it when needed due to high cylinder pressures.
- The maximum individual coil dwell "ON" time must not exceed 9mS at any time, regardless of engine RPM. Exceeding this time will cause the coil to overheat and fail.
- For continuous duty the maximum "ON" time must remain below 40% duty (on 40% of the time, off 60% of the time). Exceeding this will cause the coil to overheat and fail.
- For short bursts, the coil dwell can go as high as 80% "ON" duty but these forays need to be short (under 5 seconds or so) and cannot be frequent.

For technical assistance, contact AEM Tech support at emstech@aempower.com

TCC-III GT-Power Summary of Intake and Exhaust Systems

The following slides provides detailed information on the intake and exhaust system geometries. This was used to create the GTPower 1-D model .gtm and .gdx files (located in the TCC-III_Geometry directory shown in Slide 10). In addition, the geometry slides define the nomenclature and locations of the pressure transducers and thermocouples cataloged in the Pressure Data Files.

Scanned figures of original printed material are used to avoid transposition errors. The Deep Blue Data TCC-III Collection README file contains errata, which are updated as they become available.

N₂

TCC-II Engine & Systems

TCC-II Critical Flow Metering System, Air only

TCC-III Critical Flow Fuel Metering Systems, Air & Fuel

Seeder Flow-Metering System,

TCC-III Engine Exhaust System

