
Aimless Transition Ensemble Sampling and Analysis
(​ATESA​​)

Written and published by Tucker Burgin, © 2018
tburgin@umich.edu

Introduction

This document describes the usage of the ATESA python program to automate transition path
sampling with the aimless shooting sampling method, using Amber installed on a cluster with a
batch system (either PBS or Slurm). The code is designed to function flexibly under varied
conditions and to communicate helpfully with the user at all times; however, as with most
academic code, it was not created by a professional software developer, and is likely to contain
undiscovered and undocumented bugs. Please feel free to contact the developer at the email
address above or to raise issues on ​the project’s GitHub page​.

As of October 2018, ATESA is publicly visible; however development is NOT complete for either
this software itself or for this document. See the section titled “Development Notes” below for
details on the current state of ATESA and future plans.

A thorough explanation of aimless shooting (AS) as a technique and its relationship to other
methods is beyond the scope of this document, and it is assumed that the reader is acquainted
with the relevant theory. If this is not the case, an excellent primer is available from ​Beckham
and Peters 2010​. With that said, AS is a method to perform efficient, unbiased sampling of the
region of phase space corresponding to a putative transition state. Because by definition the
transition state is a local maximum in energy along at least one dimension, this region is difficult
to sample using conventional simulations. The AS approach is to leverage one or more “guess”
transition state structures (which are obtained by other methods as a prerequisite to beginning
AS with ATESA) as a seed, which will be “aimlessly” “shot” through phase space using
unbiased initial velocities chosen from the Boltzmann distribution. The resulting trajectory is
simultaneously also attempted in reverse (using initial velocities of opposite direction and equal
magnitude), and if after simulations the two trajectories converge to different energetic basins
(one products, one reactants), then the reactive trajectory connecting them is considered a
success. New starting points are daisy-chained from older successful ones by taking an early
frame from the reactive trajectory as the initial coordinates, and in this way it is ensured that
sampling remains nearby the transition state separatrix.

ATESA documentation 1

https://github.com/team-mayes/ATESA
https://pubs.acs.org/doi/abs/10.1021/bk-2010-1052.ch013
https://pubs.acs.org/doi/abs/10.1021/bk-2010-1052.ch013

ATESA automates this process with a system of independent “threads” representing one
particular path in the search through phase space. A thread has a given set of initial
coordinates, which it repeatedly “shoots” until it finds a successful reactive trajectory, at which
point it picks a new shooting point on the reactive trajectory and continues. Because threads run
entirely in independently, ATESA scales perfectly so long as sufficient computational resources
are available.

Table of Contents

Introduction 1

Table of Contents 2

Development Notes 2

Scope of ATESA 3

Installation 3

Quickstart Instructions 4

Setting Up the Working Environment 4

Usage 5

Troubleshooting 16

Development Notes

Last Updated October 8th, 2018. Currently, ATESA is functionally complete, in that there are no
core features currently intended but not implemented. However, the code has not been
thoroughly bug-tested, nor have unit tests with a high degree of coverage been implemented.
Finally, integration with installation packages or update pipelines has not been finalized.
Collectively, these three goals represent the development priorities for ATESA in the immediate
future.

Because ATESA remains so rough around the edges, and because it has not been published in
the scientific literature yet, interested users are encouraged to keep an eye on the project until it
is more complete, which is expected within the next year. If you are eager to get started, please
contact me at the email address given in the header of this document and I would be delighted
to work with you on getting ATESA configured and working for you, and to discuss the
appropriate citation, if applicable.

ATESA documentation 2

Scope of ATESA

ATESA automates a particular Transition Path Sampling (TPS) workflow that uses the flexible
length aimless shooting algorithm of ​Mullen ​et al​. as its main workhorse. TPS is an approach to
obtaining and analyzing a reaction coordinate that describes a given chemical transformation on
a computationally tractable timescale.

The aimless shooting TPS workflow used by ATESA. Of these steps, the first two (Model
Reactants and Transition State Guess) are not (at least yet) part of ATESA and must be
handled by the user separately.

ATESA requires first that a simulation-ready model of the reactant state for the desired reaction
be obtained by any means. Then, one or more transition state guesses are prepared by
stretching the relevant bonds (either manually by directly modifying coordinates, or using biased
simulations) to distances between their expected product and reactant states (note that at this
stage, the researcher will have injected an assumption about the reaction mechanism into the
method. Successful TPS finds ​a reaction coordinate, but it does not guarantee that it is ​the
“real” reaction coordinate as it might hypothetically be observable in nature with a really, really
good microscope.)

Once the TS guess(es) is/are available, ATESA can be used to automate arbitrarily
parallelizable aimless shooting sampling of the transition state ensemble, inertial likelihood
maximization to obtain a suitable reaction coordinate, committor analysis to validate that
reaction coordinate, and equilibrium path sampling to obtain the energy surface along that
reaction coordinate.

Installation

<Insert install instructions here>

Care has been taken to ensure that atesa.py is compatible with Python versions 2 and 3;
however, considerably more testing has been performed in Python 3, and as such this is the
recommended version. Some older pytraj installations may not support Python 3, and will throw

ATESA documentation 3

http://doi.org/10.1021/acs.jctc.5b00032
http://doi.org/10.1021/acs.jctc.5b00032
http://doi.org/10.1021/acs.jctc.5b00032

an ImportError when Python 3 attempts to read them. If this happens, reverting to Python 2
should​ be an acceptable alternative, rather than requiring a more recent version of pytraj.

Quickstart Instructions

Although you are encouraged to read through the Usage section in more detail to get a grasp of
what ATESA is capable of, many users will want to make a quick attempt at using the software
to gauge its usefulness to them. If this sounds like you, <then what?>

Setting Up the Working Environment

Setting up your working environment to properly supply ATESA with all the necessary files and
directories is essential, but is also designed to be as painless as possible. There are four
directories that must be considered:

1. The “home” directory, which must contain:
a. The “templates” directory, and
b. The “input_files” directory

2. The directory from which ATESA is called

Of these, only one is defined in the input file (see ​home_directory below). The home directory
does not need to contain anything other than the two subdirectories named above. By default,
home is set to the directory that actually contains the atesa.py script, and its subdirectories are
prepackaged there as well for the user to edit as necessary.

The “templates” directory must be named exactly that, and should contain at minimum just one
file, named “batch_[batch_system].tpl”, where [batch_system] is either “slurm” or “pbs” (​sans
quotes) in accordance with the batch system type being used. This file is a Jinja2 template file
that is used as a template for the code to fill when constructing batch jobs, and the example file
included in the installation package can be edited as the user sees fit. Templated spots are
denoted by double curly braces (​e.g.​, ​{{ example }}​) and spots that the user does not wish to
include for whatever reason can be safely deleted without error (or without error from ATESA,
anyway — the batch system may complain if essential arguments are not supplied!) At
minimum, you will likely need to modify the module dependencies and exact manner of calling
sander in accordance with the setup of the batch system you are using. If the groupfile option is
included in the input file, then another template appropriate for submitting groupfile jobs and
called “batch_[batch_system]_groupfile.tpl” is required instead.

The “input_files” directory must also be named exactly that, and contains at minimum two files
for a standard ATESA run: “init.in” and “prod.in”. These are the Amber input files for initialization
and production runs, respectively, which refer (again, respectively) to the extremely short job

ATESA documentation 4

each shooting move makes starting from the shooting point to select its initial velocities, and the
longer jobs in the forward and reverse directions from the initialization run during which
commitment to basins A or B is awaited. Since the “prod” runs choose their initial velocities from
their input coordinate files, the settings ​ntx=5 and ​irest=1 are ​mandatory​. If they are omitted or
changed, the program may appear to run without issue, but the resulting trajectories will not
accurately represent aimless shooting moves. Another input file, “committor_analysis.in”, is
required if the ​committor_analysis option is supplied in the ATESA input file. This file should
specify simulations that do not read in velocities from their input coordinates (​ntx=1 and ​tempi=
whatever ​temp0​ is set to).

The Amber input files may be left mostly unchanged, but at minimum the user will have to define
the appropriate qm_region (and accompanying &qmmm namelist variables) for their system.
Advice on choosing the appropriate region, and documentation on Amber input files more
broadly, is outside the scope of this document; the user is referred to the Amber documentation
for whatever version of the software they are using.

Finally, the directory from which ATESA is called is used as the relative location from which
pointers to other locations in the ATESA input file are interpreted. If you use exclusively
absolute paths, then this is of no concern.

Once the directories have been set up, the following files are required:

● The input file identified with the ​-i flag in the command line call (see the Usage section
for details)

● The topology file for the model, identified with the ​topology​ option in the input file
● One or more coordinate files to begin aimless shooting from, identified with the

initial_structure​ option in the input file

Warning​: there are two rules about the naming of the initial structure files. First, the file names
cannot contain space (‘ ‘) characters, as these would break certain functions of the software. If
this rule is violated, the code will exit with an helpful error message. However, the code will not
automatically exit if the other rule is violated: no file name can be equivalent to another with an
underscore followed by an integer appended to it. For instance, the following pair of initial
coordinate filenames will cause catastrophic failure without a helpful error message:
“coordinates.rst7” and “coordinates.rst7_1”. However, the following pair is acceptable:
“coordinates.rst7” and “coordinates_1.rst7”.

Usage

After installation, ATESA is called from the command line like so:

atesa [-O] [-i as.in] [-w working_directory]

ATESA documentation 5

The ​-O flag indicates whether or not the working directory should be overwritten if it already
exists. If ​-O is not supplied and the working directory does exist, the program exits without doing
anything. This is included as a safety measure to help avoid accidental deletion of existing data.
The working directory defaults to ​`pwd`/as_working and can also optionally be set using the
working_directory option in the input file (see below; in the event that both are specified, the
input file entry takes precedence). This option is included in the command line to support
working directories whose literal names may not be known in advance, such as scratch
directories created by a batch system dynamically.

The input file indicated with the ​-i flag is required (although if it is not specified in the command
line it will take on the default name ​as.in​), and all the settings for the AS run are specified
within as described in the rest of this section.

The input file should consist only of lines with the following format (​sans​ brackets):

[variable_name] = [variable_value]

The two spaces flanking the equality sign (​=​) are mandatory, and no comments or other
characters are permitted on the line. Unless otherwise specified, all variable values should be
given without quotes, even for strings or names of files, ​e.g.​,

topology = ts_guess.prmtop

The variable names accepted, their possible values, and their defaults are detailed below. If a
variable is not specified in the input file, it will take on its default value, but take note that for a
normal AS run ​commit_fwd​​, ​commit_bwd​​, and ​candidate_op are non-optional and do not have
default values. Although most of the default values are likely to be acceptable in most cases, the
user is ​strongly advised to at least skim this list in full before attempting any simulations, to
avoid wasted time and/or resources.

home_directory

A string identifying the “home” directory of the ATESA run. This is the

directory within which the folders named “templates” and “input_files” are

stored. Default = the folder that atesa.py is located in

initial_structure

The filename corresponding to the initial coordinate file or files. The

program will interpret the indicated path(s) relative to the directory from

which it is called (​not relative to ​home_directory​​). Pattern recognition is

supported, iff ​if_glob​​ = True. Default = inpcrd

ATESA documentation 6

if_glob

Boolean indicating whether or not to interpret ​initial_structure as a

glob argument for pattern recognition. Accepted values are ‘True’ or ‘False’

(case-insensitive, without quotes). If using this option, matching files are

only searched for in the directory from which atesa.py is called (todo: fix

this?) Default = False

topology

Filename corresponding to the topology file for the coordinate files.

Only a single topology file is supported; if aimless shooting is desired on

multiple structures with different topologies, each topology must have its own

instance of ATESA. The program will interpret the indicated path relative to

the directory from which it is called (​not relative to ​home_directory​​). Default

= prmtop

n_adjust

Maximum number of frames from which the initial coordinates of the next

shooting point are allowed to deviate from the initial coordinates of the last

successful shooting move. The actual number of frames is chosen randomly in the

range [1,​n_adjust​​]. Default = 50

batch_system

Indicates the type of batch system that is being employed. Accepted

values are ‘PBS’ and ‘Slurm’ (case-insensitive, without quotes). ​Warning​: if

the wrong value is chosen here the program will potentially fail without

returning a helpful error message! Default = slurm

working_directory

The directory name to perform all the simulations in and output the log,

output, and status files to. This should be a folder name that does not exist

yet, which folder will be created in the given location; if it does exist, and

the program was called with the -O flag, then it will be overwritten. This

option supersedes the working directory given with the -w flag in the command

line call, if applicable. ​Note that for analysis runs using the ​resample​​,

rc_eval​​, or ​committor_analysis options, ​working_directory should point to an

existing directory containing the results of a previous ATESA run (and in this

case it will not be overwritten). Default = as_working

commit_fwd

A list-formatted object defining commitment to the “fwd”, or products

basin. The format for this list is as follows:

[[mask1A,mask2A...],[mask1B,mask2B...],[dist1,dist2...],[‘<lt/gt>’,‘<lt/gt>’...]]

Each ‘mask’ should be an Ambermask-formatted string (​including quotes​; see

Amber documentation for mask formatting details) matching the desired atom or

ATESA documentation 7

group of atoms (if more than one atom is matched, the center of mass of the

selection is used). Each ‘dist’ value should be a number giving the cutoff

distance in Å between the corresponding masks, and finally ‘lt’ or ‘gt’ for

each column indicates whether the cutoff is passed when the distance is less

than or greater than the given value. An example of a correctly formatted

commit_fwd​​ line is given below:

commit_fwd = [['@1’,’@2’],[‘@3’,’@4’],[1.50,2.75],[‘lt’,’gt’]]

This commitment criterion is met when the distance between atom 1 and atom 3 is

less than 1.5 Å, ​and the distance between atom 2 and atom 4 is greater than

2.75 Å. If chosen correctly, this variable should correspond to a state that

can confidently be said to have commited to proceeding to products, rather than

to reactants. For now, only distance-based commitment definitions are

supported, but angles, dihedrals, and/or literal pytraj input may be supported

in the future (especially if a user specifically requests it, so don’t be shy!)

There is no default for this variable; it must be supplied manually (can be

omitted if ​resample​​ = True, or if ​rc_definition ​​is provided​).

commit_bwd

As ​commit_fwd​​, but this time corresponding to commitment in the “bwd” or

reactants direction. There is no default for this variable; it must be supplied

manually (can be omitted if ​resample​​ = True, or if ​rc_definition ​​is provided​).

candidate_op

A list-formatted object corresponding to the candidate order parameters

(OPs) that the reaction coordinate may be constructed from during LMAX. If an

OP is not included here, it cannot be taken into account when determining the

reaction coordinate! Each of the corresponding distances, angles, and/or

dihedrals indicated by this variable will be measured at the end of each

shooting move and, along with the corresponding basin of one of the

trajectories, will be passed into the output file in the proper format for the

LMAX code produced by Baron Peters. The format of this variable is as follows:

[[mask1A,mask2A,...],[mask1B,mask2B,...],[mask1C,mask2C,...],[mask1D,mask2D,...]]

Each column of this variable corresponds to one OP, with each mask representing

one atom (or the center of mass of many atoms) to include in the measurement.

If a mask is supplied for each row of a given column (​i.e.​, for masks A through

D for the same numerical column), the corresponding dihedral angle is measured;

if only three (A through C) are given, it’s an angle; and if only two (A and B)

are given it’s a distance. To omit a mask for any given position, simply use an

empty string, ‘’. An example of a correctly formatted ​candidate_op line is

given below:

candidate_op = [[‘@1’,’@2’,’@3’],[‘@4’,’@5’,’@6’],[‘@7’,’@8’,’’],[‘@9’,’’,’’]]

ATESA documentation 8

This is interpreted as the dihedral defined by atoms 1,4,7,9; the angle between

atoms 2,5,8; and the distance between atoms 3,6. If a row is empty (contains

only empty strings) it may be omitted without error. There is no default for

this variable; it must be supplied manually.

Alternatively to the explicit definition described above, ​candidate_op can be

defined implicitly by giving a mask and a coordinate file as such:

candidate_op = [‘:10<@3.5’,’ts_guess.rst7’]

This example will automatically select every second- through fourth-order OP

(bonds, angles, and dihedrals) that can be constructed from any of the atoms

found within 3.5 angstroms of residue 10 in the coordinate file ts_guess.rst7

(which is interpreted using the topology file given in the ​topology option).

Explicit masks are also accepted (that is, they do not have to be formatted to

match all atoms within a distance). The user should be aware that for implicit

definitions based on even quite modest distances, tens of thousands or even

millions of candidate order parameters may be produced, which can significantly

slow down resampling and outputting of data. This option provides a means of

sampling the full configuration space around the transition state for

likelihood maximization without requiring the user to exhaustively curate the

definitions of those OPs by other means.

restart_on_crash

A boolean indicating whether or not threads that crash (do not produce a

restart file) during the initialization step (that is, during the first

simulation step for each shooting move, wherein the initial velocities are

chosen) should be allowed to remain dead (False) or resubmitted to the queue

(True). Failure of this type typically indicates either errors in the jobs

themselves (​e.g.​, a typo in the Sander input file) or insufficient resources

(memory or walltime) (in which case you would want to set this option to

False), or poor convergence in the QM structure (in which case you may want to

set this to True, to automatically reroll the initial velocities in hopes of

obtaining a more convergent simulation). Note that this does not influence the

behavior of the program when a simulation runs successfully but does not

converge to the product or reactant basins. Default = False

max_fails

An integer corresponding to the number of times a thread is allowed to

“fail” (that is, the simulations proceed but either do not converge to a

product or reactant state (as defined by ​commit_fwd ​​and commit_bwd​​) within the

walltime of the corresponding batch jobs, or both converge to the same basin)

in a row​. If this number of failed runs is met before a successful run, the

corresponding thread will be terminated without impacting the others. This is

intended to provide a way to eliminate shooting points that have strayed too

ATESA documentation 9

far from the separatrix to continue to succeed. This variable can be set to a

negative value to remove the limit and continue submitting jobs until the

max_moves​​ or ​max_accept​​ limit is met (whichever comes first). Default = 10

max_moves

An integer corresponding to the total number of shooting moves that each

thread is allowed to attempt before being terminated, regardless of the outcome

of any given move. This effectively puts a cap on the total computational

expense that ATESA might incur. This variable can be set to a negative value to

remove the limit and continue submitting jobs until the ​max_fails or ​max_accept

limit is met (whichever comes first). Default = 100

max_accept

An integer corresponding to the total number of accepted shooting moves

that each thread is allowed to make before being terminated. In effect, this

sets an upper limit on the number of unique shooting points that a given thread

will explore (assuming that ​always_new is set to “False”; see below), and if

this is the only active limit, then AS terminates when each thread has explored

exactly that number of points. This variable can be set to a negative value to

remove the limit and continue submitting jobs until the ​max_fails or ​max_moves

limit is met (whichever comes first). Default = 100

degeneracy

An integer corresponding to the number of duplicate (or “degenerate”)

threads that should be spawned for each of the given initial structures. At a

value of 1, only a single thread is produced per structure. This option

provides a way to scale up the rate of sampling arbitrarily for a single given

structure, without needing to call multiple instances of ATESA. Default = 1

init_nodes

Number of nodes to dedicate to each job during the initialization step.

This value fills the {{ nodes }} template spot in the initialization batch

file. Default = 1

init_ppn

Number of processors per node to dedicate to each job during the

initialization step. This value fills the {{ ppn }} template spot in the

initialization batch file. Default = 1

init_walltime

Walltime to permit each initialization step. Should consist of

colon-separated integers of format HH:MM:SS (​e.g.​, 01:30:00). This value fills

the {{ walltime }} template spot in the initialization batch file. Default =

01:00:00

init_mem

ATESA documentation 10

Amount of memory per processor to assign each job during the

initialization step. This value fills the {{ mem }} template spot in the

initialization batch file, and can be safely ignored if you have removed that

spot from your batch template. Default = 4000mb

prod_nodes

Number of nodes to dedicate to each job during the production step. This

value fills the {{ nodes }} template spot in the production batch file. Default

= 1

prod_ppn

Number of processors per node to dedicate to each job during the

production step. This value fills the {{ ppn }} template spot in the production

batch file. Default = 1

prod_walltime

Walltime to permit each production step. Should consist of

colon-separated integers of format HH:MM:SS (​e.g.​, 01:30:00). This value fills

the {{ walltime }} template spot in the production batch file. Because atesa.py

implements the flexible length aimless shooting algorithm, each job may not use

up the full walltime it is allocated, even if it is unable to complete the

number of steps indicated in the Amber input file in that time. Instead,

production simulations are dynamically cancelled once they meet the either of

the commitment criteria given in the ​commit_fwd ​​and ​commit_bwd options. Default

= 01:00:00

prod_mem

Amount of memory per processor to assign each job during the production

step. This value fills the {{ mem }} template spot in the production batch

file, and can be safely ignored if you have removed that spot from your batch

template. Default = 4000mb

fork

Integer indicating the number of threads to spawn from each successful

shooting move. If ​fork = 1, each thread simply continues upon success (subject

to the termination criteria). For larger values, in addition to the continued

thread, each successful move spawns ​fork ​​- 1 new threads (named by appending a

new numbered suffix to the name of the parent thread). Threads spawned in this

manner do not inherit the histories of their parents; that is, they are treated

as new for the purposes of termination criteria. For this reason, if threads

would otherwise only terminate based on ​max_accept or ​max_moves (because

max_fails is turned off or is never reached), then for values of ​fork greater

than 1, the only termination criterion is effectively the amount of time for

which ATESA is allowed to run. Default = 1

always_new

ATESA documentation 11

Boolean dictating whether a new shooting point is obtained from the last

successful reactive trajectory only after successful moves (False), or after

every shooting move regardless of outcome (True). Setting this option to “True”

results in the exploration of a wider ensemble of candidate transition states

and may improve acceptance ratios (or rather, prevent them from getting worse

over time), but it has not been rigorously shown that this is preferable for

obtaining a “better” reaction coordinate. Default = False

groupfile

This option indicates that jobs should be submitted together in a

groupfile rather than as individual batch jobs. It should be given as an

integer equal to the number of simulations per job (where 0 means no groupfiles

are used, and 1 means groupfiles with one simulation each are used). This

option is for users of computing clusters that don’t support shared computation

(​i.e.​, multiple different batch jobs sharing one node) and thus must allocate

all the cores on each node for each job. Groupfile jobs are submitted to the

batch system using the batch job options whose names begin with “prod” (as

opposed to “init”). Because the constituent simulations of groupfile jobs

cannot be terminated without cancelling the entire job, this option disables

flexible length aimless shooting. For this reason, users are encouraged to

choose their ​prod_walltime option with extra caution to avoid cutting off

potentially convergent jobs early, or else wasting computational resources

simulating already-converged structures. The user is encouraged to run a few

simulations manually to estimate the walltime required for the system to meet

the given definition of commitment, and then add 50% onto that to be safe. Be

aware that the current build of atesa.py will sometimes submit groupfiles with

groupfile​​-1 simulations when ​groupfile is an odd number; this may change in

future versions. ​Warning​: Currently, committor analysis is not supported with

groupfile​​ > 0. Default = 0

groupfile_max_delay

A time in seconds that groupfiles are permitted to await being “filled”

before they will be submitted regardless of size. This option is disabled when

set to 0, in which case groupfiles will wait indefinitely for the number of

simulations indicated in ​groupfile to populate them before being submitted to

the batch system. This option provides a means of compromising on computational

efficiency in exchange for decreasing the time that simulations have to wait

for others to complete before they can begin. For example, consider the

situation in which ​groupfile = 5, and there are nine jobs in the queue

(numbered 1-9, respectively):

groupfile_1: contains 1, 2, 3, 4, 5, submitted right away

groupfile_2: contains 6, 7, 8, 9, _, awaiting completion of groupfile_1

In this case, four of the nine threads will be waiting at any given time,

unless a ​groupfile_max_delay setting is included. This option also provides a

ATESA documentation 12

failsafe in the event that fewer simulations are queued than the groupfile is

waiting for (in which case if this option is set to 0, the program will

continue indefinitely without doing anything). If ​groupfile = 0, this option

does nothing. Default = 3600

The following commands have to do with performing analysis on existing ATESA data, rather
than generating new data. In each case, ​working_directory should point to an existing
directory containing ATESA data from a previous run. ​Warning: you are advised to ensure that
your calls to ATESA do not include the ​-O flag when attempting analysis runs, to avoid
accidentally deleting data instead of analyzing it!

resample

Boolean to indicate that this run should not perform any new simulations,

instead building a new “as.out” file from existing files using a new value of

candidate_op​​. This option allows the user to modify the order parameters that

are considered during LMAX, without the need to rerun the simulations.

Resampling is performed inside the working directory identified in the input

file, and requires the presence of the log file produced in the course of the

simulations in that directory. When this option is set to “True”, the

otherwise-mandatory options ​commit_fwd and ​commit_bwd can be omitted from the

input file. Default = False

rc_definition

If this option is supplied, then this run will not perform any new

simulations, and will instead create a new file (rc_eval.out) that provides a

sorted list of the values of the reaction coordinate (based on the definition

given here, as described below) at each shooting point. This information is of

value in performing committor analysis and equilibrium path sampling.

Computation is performed inside the working directory identified in the input

file, and requires the presence of the log file produced in the course of the

simulations in that directory. The reaction coordinate equation is supplied as

a python-interpretable line of code, where each of the order parameters defined

in ​candidate_op can be used as a variable, named OP# (where # is the index of

the column in ​candidate_op that defines the order parameter (starting from 1)).

Unlike in other options, space characters (‘ ‘) are tolerated. An example of a

correctly formatted ​rc_definition​​ is:

rc_definition = 2.44*OP3 + 1.21*OP1 - 3.56

where OP3 and OP1 refer to the coordinates given by the third and first columns

of ​candidate_op​​, respectively. Functions of the OPs can also be used in place

of the OPs themselves using the standard python mathematical operators (+, -,

*, /, **, %) and any mathematical functions interpretable by the numpy library

(​e.g.​, numpy.sin(), numpy.log(), ​etc​.), such as in this example:

ATESA documentation 13

rc_definition = 3.53*(OP3+OP2) - 0.99*(4*numpy.sin(OP1)**2) + 2.17

This string is interpreted using the python function eval(), which means that

you can feed ATESA arbitrary code to execute; for this reason among others,

‘os.system(‘rm -rf /’)’ makes a poor reaction coordinate. Note that if you

supply this option, ​rc_minmax must also be supplied (unless you want to use raw

values, see below). There is no default value for this option.

rc_minmax

A list object that defines the minimum and maximum observed values for

the OPs defined in ​candidate_op​​. This allows them to be converted to reduced

variables, as is standard when using an RC definition obtained from likelihood

maximization. This is formatted as a two-row nested list of minimum and then

maximum values whose row corresponds to the OPs in ​candidate_op​​, ​e.g.​:

rc_minmax = [[3.3,‘’,1.41],[5.2,‘’,3.9]]

In this example, OP1 is stated to have a range of 3.3 to 5.2, and OP3 is

between 1.41 and 3.9. No values are given for OP2, which is acceptable iff

rc_definition does not contain OP2. Furthermore, if there are more than three

OPs, those whose indices are larger than the largest included in ​rc_definition

may be omitted (so ​e.g. maybe in the above example OP4 is also defined, but is

omitted in ​rc_minmax ​​because it does not appear in ​rc_definition​​). If you want

to use the raw values of the OPs instead, give ​rc_minmax = ‘’ or else omit it

entirely. Default = ‘’

include_qdot

committor_analysis

List of variables to define committor analysis. If this option is

included, no new aimless shooting simulations are performed and instead the

program performs committor analysis to analyze whether the putative reaction

coordinate defined by ​rc_definition, rc_minmax​​, and ​candidate_op ​​is suitable

(thus, these options must be supplied alongside this one). The given

working_directory must contain existing ATESA data, along with the

corresponding as.log file. As with aimless shooting, a detailed description of

committor analysis is outside the scope of this document, so be sure you

understand what you’re doing before attempting to use this option. The correct

format of this option is as follows (note that as usual, no spaces (‘ ‘) are

allowed):

committor_analysis = [n_shots,rc_ts,rc_tol,min_points,min_dist]

Of these values, rc_ts and rc_tol are floats or integers, and the rest are

strictly integers. The output of a committor analysis run is a file named

ATESA documentation 14

committor_analysis.out, containing the data for a histogram of p​
B
values for

n_shots simulations starting from each of the shooting points in the given

working_directory with a reaction coordinate value within rc_tol of rc_ts. If

any two shooting points are from the same thread and have at least min_dist

shooting moves separating one another, only the earlier of the two is included

(this option is intended to help ensure decorrelation between analyzed shooting

points; it can be set to 1 to ignore it). If there are fewer than min_points

eligible shooting points, the difference is made up by equilibrium path

sampling-style confined sampling using the options in ​eps_settings​​, but on a

single window centered on rc_ts (regardless of the n_windows setting in

eps_settings​​). The simulations performed in the course of committor analysis

use the options whose names begin with “prod”. The working directory for the

simulations will be a new subfolder within the as_working directory called

committor_analysis, and that is also where the results are outputted to.

Default = []

eps_settings

List of variables to define equilibrium path sampling. If this option is

included, no new aimless shooting simulations are performed and instead the

program performs equilibrium path sampling to measure the free energy profile

(a.k.a. the potential of mean force, PMF) along the reaction coordinate defined

by ​rc_definition and ​candidate_op​​. As with aimless shooting, a detailed

description of equilibrium path sampling is outside the scope of this document,

so be sure you understand what you’re doing before attempting to use this

option. At least one initial coordinate file from each of the RC windows should

be defined in ​initial_structure in order to produce a complete PMF, but if any

are missing the program will continue with a warning. The correct format of

this option is as follows (note that as usual, no spaces (‘ ‘) are allowed):

eps_settings = [n_windows,k_beads,rc_min,rc_max,traj_length,overlap]

n_windows is an integer number of evenly-spaced EPS windows into which to

divide the space along the reaction coordinate between rc_min and rc_max (both

floats or integers). Similarly, k_beads is an integer number of evenly-spaced

beads or “nodes” into which to divide each trajectory of traj_length steps.

Finally, overlap is an integer or float indicating the additional width along

the RC to append to either side of each RC window. This helps ensure overlap

between windows when backing out the free energy profile from the histogram

data.

The input file for each EPS production runs is templated from “eps_in.tpl”

(located in the templates directory; “input_files/init.in” is still used for

EPS initialization runs), in which the only templated slots are {{ nstlim }}

and {{ ntwx }}. Note that traj_length must be divisible by k_beads. Just as in

aimless shooting, EPS runs consist of both initialization and production runs

(and their corresponding input file options.) Indeed, with the exception of

ATESA documentation 15

n_adjust​​, the fwd and bwd commitment definitions, resample​​, and ​always_new​​, all

of the above options apply to equilibrium path sampling in the same way they

applied to aimless shooting (including the termination criteria!) If either of

the boolean options mentioned above are included in the input file along with

eps_settings​​, the program will exit with an informative error message, while

the three non-boolean options are simply ignored. Also note that while

eps_settings and ​committor_analysis are not incompatible, if both are supplied

only a committor analysis run will be performed (using settings from

eps_settings as necessary, as described in the documentation for that option).

Warning: it is advisable to set EPS to run in a different working_directory

than any previous ATESA runs, to avoid accidental overwriting of files or

misinterpretation of pre-existing data as new data by the EPS code. Default =

[]

eps_dynamic_seed

An integer or list of integers of length “n_windows” from ​eps_settings​​.

Including this option indicates that empty EPS windows should be dynamically

seeded using the results of other EPS shooting moves. When this option is

omitted, windows that do not contain any points initially (​i.e.​, those into

which none of the coordinate files matched by ​initial_structure fall) will

throw a warning and then remain empty throughout the EPS run. When this option

is instead set to an integer, new threads are spawned inside of empty windows

when those windows are visited by trajectories centered in other windows, up to

that integer value of new threads. Finally, if a list is given, then the value

corresponding to each window (starting from the left with smaller RC values)

indicates the number of threads to spawn in that window. With this option, the

full range of EPS windows defined in ​eps_settings can be sampled from even if

the supplied initial structures do not span the full range of those windows (so

long as at least one initial structure is given that does, in fact, occupy a

window to which a non-zero number of threads have been assigned with this

option). Note that ​degeneracy still duplicates the given initial structures as

usual when this option is given, and that each of the resulting threads counts

towards the total for the given window. If more initial structures than the

given ​eps_dynamic_seed value for that window are supplied manually, they will

still all be used. Note also that in practice it may take extremely long for

some windows to be entered in this way depending on where the structures that

are supplied fall; for this reason, it is advisable to begin with structures

known to have a reaction coordinate value near the transition state(s). Default

= ‘’

Troubleshooting

Although every effort has been made to provide helpful error messages to correspond to every
foreseeable issue, the fact remains that not every issue is, in fact, foreseeable. This section is

ATESA documentation 16

designed to help the user troubleshoot should they run into issues not accompanied by a
custom error message.

Issues running ATESA will fall into one of three categories, based on where in the pipeline the
issue arises:

1. The local shell or the batch system
2. Amber
3. ATESA itself

Here, I will attempt to describe how to identify the category of error being encountered, and
provide suggestions as to where to look for the culprit.

The local shell or the batch system

Errors encountered by these systems will appear in one of two places. If the shell encounters an
error, it will be reported directly in the command line after ATESA is called. This likely indicates
an issue with the installation of the software, or of Python itself (ATESA is written in Python 3
and has not been extensively tested in Python 2, so check your version). Command line errors
will also arise if the batch system does not recognize the formatting of the batch files submitted
by ATESA; double-check that you have set the input variable batch_system correctly, and that
your batch templates are of the correct format. Also, note that if ATESA is called from inside a
batch job (as is recommended when performing many simulations), the command line output
will be piped to the batch output file for that job.

Errors encountered by the batch system will also appear in batch output files, but in this case
they will appear in the individual batch job output files in the working directory. These errors are
likely to do with the formatting of the batch template files used by ATESA to create its job batch
files. For example, if the user has removed the line in the batch template indicating the nodes to
be assigned to the job, ATESA will not complain (as omitting variables in the templates is
supported in general), but the batch system will (because this particular variable is mandatory).
Other batch system errors include those not specific to ATESA, such as insufficient funds on the
user account; to check whether a given error is of this type, try submitting a job that does not
involve ATESA.

Amber

Amber has its own output file for each job, usually given by the suffix “.out” or “.mdout” in the
working directory (note: ATESA has an output file named with the “.out” suffix in this directory,
as well.) If an error arises here, it likely indicates an issue with the formatting of the input
coordinate or topology files, or else with the input file passed to Amber. Another common source

ATESA documentation 17

of error is the absence of the necessary quantum mechanics files (located in
$(AMBERHOME)/dat/slko/​; if these are missing they may need to be installed for you by a user
with root access) for the chosen level of theory, which is DFTB in the default input file. ATESA
has been successfully tested on Amber 14, 16, and 18, although I did encounter an unusual
error in the ability of Amber 14 to perform some quantum mechanical simulations.

ATESA

Errors encountered by ATESA will be outputted into the command line in the event that the
program has been called directly, or else into the batch output file in the event that it has been
called in a batch job. If an error message appears beginning with “Error:” without a
corresponding Python traceback, then it is a custom error and I hope that the accompanying
message is clear (note that internal errors from pytraj (​e.g., “Error: NetCDF file has no frames.“)
are normal, and can usually be ignored). If a Python traceback appears, it indicates an error that
I did not foresee. Conceivably, errors of this type could have to do with improperly installed
dependencies, especially Jinja2 or pytraj. One possible troubleshooting option is to retry the job
with the default settings to see if the error persists — if it does not, add on custom settings
one-by-one (starting with those you are least confident in) until the culprit is found.

Although the user is of course permitted under the license to attempt to debug the code
themselves (and to use the modified code in whatever manner they see fit), no one finds it easy
to read someone else’s code, especially if they are not especially fluent in Python (as I admit I
am not). If you encounter an issue with ATESA that you cannot resolve, I encourage you to
raise an issue on the ​corresponding GitHub page​, or to send me an email directly. And if you
encounter an error that you ​did resolve by modifying the code, I would love to hear about that,
too!

Not happy with the results?

One final type of issue is the case where the software has functioned as intended, but has not
provided results that satisfy you. Perhaps your acceptance ratios are very poor, or even zero, or
perhaps LMAX was unable to confidently determine a reaction coordinate from the as.out file. In
such cases, you are encouraged to look to the chemistry. A chronically poor acceptance ratio,
even across many degenerate threads or slightly different input coordinate files, probably
indicates that your initial coordinates are not as close to the reaction separatrix as you might
have hoped. Even if they are very close, an extremely steep energetic landscape makes
aimless shooting difficult, and depending on the context of your study may indicate an incorrect
putative reaction mechanism. You should also consider making ​n_adjust smaller; although a
larger value can explore phase space more efficiently, it also increases the risk of a thread
straying too far from the separatrix and being unable to climb back up, resulting in poor
acceptance ratios after that step. This effect can be mitigated by setting ​always_new to “​True​”.

ATESA documentation 18

https://github.com/team-mayes/aimless_shooting/issues

A high value of ​fork will offset this risk, as well, but be mindful of the ballooning computational
cost.

If acceptance is good but LMAX is struggling, consider resampling your existing simulation files
(using ​resample = True​) with more order parameters included; it’s possible that you left
something out.

ATESA documentation 19

