{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "f0feadba", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import matplotlib.dates as mdates\n", "import keras\n", "from keras.models import Sequential\n", "from keras.layers import Dense, LSTM, Dropout\n", "from sklearn.preprocessing import MinMaxScaler\n", "from sklearn.metrics import mean_absolute_error, mean_squared_error\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "64329d74", "metadata": {}, "outputs": [], "source": [ "# Loading and preprocessing the data\n", "df = pd.read_csv('water_levels.csv', parse_dates=['date'])\n", "df.set_index('date', inplace=True)\n", "target = df['Water levels'].values.reshape(-1, 1)" ] }, { "cell_type": "code", "execution_count": 3, "id": "3d59f982", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Water levels | \n", "
---|---|
date | \n", "\n", " |
1941-04-01 | \n", "6417.24 | \n", "
1941-05-01 | \n", "6417.31 | \n", "
1941-06-01 | \n", "6417.32 | \n", "
1941-07-01 | \n", "6417.48 | \n", "
1941-08-01 | \n", "6417.62 | \n", "
... | \n", "... | \n", "
2018-08-01 | \n", "6382.10 | \n", "
2018-09-01 | \n", "6381.80 | \n", "
2018-10-01 | \n", "6381.40 | \n", "
2018-11-01 | \n", "6381.30 | \n", "
2018-12-01 | \n", "6381.30 | \n", "
933 rows × 1 columns
\n", "