
Kernel-based Visualization of Point

Patterns in Python with Application to

Tornado Landing Data

Weifeng Hu
Computer Science, University of Michigan ∗

March 25, 2015

∗Mentored by Dr. Stilian Stoev

1



Abstract

Many data sets come as point patterns of the form (longitude, latitude,
time, magnitude). The examples of data sets in this format includes tor-
nado events, origins/destination of internet flows, earthquakes, terrorist
attacks and etc. It is difficult to visualize the data with simple plot-
ting. This research project studies and implements non-parametric kernel
smoothing in Python as a way of visualizing the intensity of point patterns
in space and time. A two-dimensional grid M with size mx×my is used to
store the calculation result for the kernel smoothing of each grid points.
The heat-map in Python then uses the grid to plot the resulting images on
a map where the resolution is determined by mx and my. The resulting
images also depend on a spatial and a temporal smoothing parameters,
which control the resolution (smoothness) of the figure. The Python code
is applied to visualize over 56,000 tornado landings in the continental U.S.
from the period 1950 - 2014. The magnitudes of the tornado are based on
Fujita scale.

1 Introduction

Internet traffic flow can be visualized as large point patterns in a plane. The
Internet data comes in the format of (longitude, latitude, payload, time). The
same data format is also applicable to tornadoes touchdown data, where the
payload is the Fujita scale of tornado incidents, earthquake and terrorist at-
tacks. Since the data varies both spatially and temporally, it is difficult to
visualize them using simple plot. As a result, this research project implements
in Python kernel smoothing, which is a non-parametric statistical methodology
that can easily and computationally efficiently visualize large point patterns in
space. Kernel smoothing allows visualization and further analysis of spatial-
temporal features in point-patterns such as locations, timing and magnitude of
the internet traffic.

This research report describes the experimental methods of implementing
kernel smoothing in Python programming language. We use 56,000 tornado
data from the past five decades and visualize them using Python heat map. In
particular we will be focusing on the formulas that are applied to the input
data. The output of the Python program will be a matrix containing the results
of kernel smoothing and the matrix is plotted on a heat map of the United
States based on the values of its entries. Further analysis includes taking the
differences of two output images with different temporal bandwidth to observe
the change in tornado intensity over different periods of time.

This project also studies how to improve the computational efficiency in
Python when kernel smoothing is applied to relatively large data sets and/or

1



high resolution of the resulting images is required. We implemented an algo-
rithm that creates a smaller two-dimensional grid S with size n×n. For a point
on the bigger grid M, we only apply kernel smoothing to grid points that fall
within the grid S. Intuitively, the size of grid M plays no role in computation in
this algorithm, which allows us to handle larger resolution in relatively efficient
way.

2 Kernel Smoothing Methodology

Kernel smoothing is a technique to estimate the real valued function by using its
noisy observations. Consider the data set (xi, yi, ti, pi), where x is the longitude,
y is the latitude, t is the time and p is the payload of the network data. In order
to visualize the data points in the map, we need to use couple formulas for kernel
smoothing. The kernel of the data can be calculated using the formula

K(x, y) =
1

2 · π
· e

−(x2+y2)
2 (1)

K is the probability density function of the covariate normal distribution
with zero mean and variance to be the covariance matrix.

Σ =

[
1 0
0 1

]
After we obtain the formula for kernel, the spatial kernel smoothing can also

be obtained using

Kh(x, y) =
1

h2
·K(

x

h
,
y

h
) (2)

In formula 2, h is the smoothing parameter called bandwidth. It has strong
influences in the result. However, choosing a appropriate bandwidth is relatively
difficult.

We also consider temporal kernel smoothing because the data varies with
time. Temporal kernel smoothing uses a different bandwidth, denoted as ht. The
formula for temporal kernel smoothing, when given a bandwidth ht is shown
below. Note that temporal kernel smoothing only affects the point after a
specific time. If the input time is negative, meaning the data happens before
the time, we return the temporal kernel smoothing as zero.

Tλ(t) =

{
λ · e−tλ t > 0

0 t ≤ 0
(3)

We visualize the data points on a map using Python heat map by first
creating a two-by-two grid M. We divide the grid, according to user’s input of

2



number of pixels in x direction mx and number of pixels in y direction my, such
that

xk = x0 + ∆x · (k +
1

2
), k = 1, 2, 3 · · · ,mx − 1 (4)

yl = y0 + ∆y · (l +
1

2
), l = 1, 2, 3 · · · ,my − 1 (5)

Therefore, for every x, y point in the grid M, when given a bandwidth h and
data of size N, can be calculated using

Ph(x, y, t) =
1

N
·
N∑
i=1

pi ·Kh(x− xi, y − yi) · Tλ(t− ti) (6)

The following figure shows the implementation in Python of the kernel
smoothing formulas.

3 Algorithm

The algorithm, however, is in order of mx · my · N when implemented using
nested loops in Python. The scaling efficiency becomes problematic when the
user requires high resolution, i.e. bigger values of mx and my. As a result, a
new algorithm is implemented to improve the efficiency of the program. The
pseudo-code is described below.

3



1: procedure Calc index(min, max, position, pixel)

2: index = int(pixel · (position−min)
max−min )

3: return index
4: end procedure
5:

6: procedure S Matrix Entries(k, h, row, col)

7: entry = 1
2·π·h2 · e−

1
h2 ·((row−(k+1))2+(col−(k+1))2)

8: return entry
9: end procedure

10:

11: for i = 0 to 2 · k do
12: for j = 0 to 2 · k do
13: S(i, j) = S Matrix Entries(k, bandwidth, i, j)
14: end for
15: end for
16:

17: S = normalize(S)
18:

19: for i = 0 to number of data points do
20: X index = Calc index(min(xi),max(xi), xi,mx)
21: Y index =Calc index(min(yi), max(yi), yi, my)
22: m idx left = max(0, X index− k)
23: m idx right = min(X index+ k + 1,mx)
24: m idy left = max(0, Y index− k)
25: m idy right = min(Y index+ k + 1,my)
26: s idx left = max(0, k −X index)
27: s idx right = min(k +mx −X index, 2 ∗ k + 1)
28: s idy left = max(0, k − Y index)
29: s idy right = min(k +my − Y index, 2 ∗ k + 1)
30: xm = [m idx left : m idx right]
31: xs = [s idx left : s idx right]
32: ym = [m idy left : m idy right]
33: ys = [s idy left : s idy right]
34: M [xm, ym]+ = S[xs, ys] · pi · Tλ(t− ti)
35: end for

This algorithm uses a smaller two dimensional grid S of size s × s,to apply
kernel smoothing only to the grid points that are close to the data of interest,
i.e. those falling within the grid S. The value of k determines the size of grid S.
Intuitively the algorithm, when given a data size N, is in order of k2 · N . We
can see that it is easy to handle higher resolution map now because the pixels
mx,my play no role in computation except memory storage in computers.

Notice that the last part of the pseudo-code presented involves the calcula-

4



tions to update the specific regions of the matrix. The math involves using max
or min to find out which regions of matrix M needs to be updated by the matrix
S. We take into consideration of the edge cases where the smaller S matrix may
go out of bound of the bigger M matrix when applying kernel smoothing to a
region. After we manage to determine which regions need to be updated, we
used vectorization in Python that helps improve the speed of the program.

4 Result & Applications

We first apply the algorithm for tornado data, which is similar to internet data
because it has touchdown longitude and latitude, time and Fujita scale. We
extracted all 56,000 tornado data for the past 50 years. The data is loaded in
Python and the heat map is drawn on the map of the United States.

Figure 1: Tornado Touchdown Data Visualized on Heatmap of the United States

We can see the “tornado alley” in the US map from Figure 1. The “tornado
alley” is area where tornado is most frequent. The core of “tornado alley”
extends from northern Texas, Oklahoma, Kansas and Nebraska. Figure 1 clearly
shows that the states with high frequency of tornado are Oklahoma, Texas,
Colorado and Kansas, which is very consistent with the areas that are recognized
as in the “tornado alley”. The values on the colorbar is calculated based on
the temporal bandwidth, spatial bandwidth and Fujita scale of the touchdown
tornado using the calculation described in Algorithm section.

We can also investigate the change in intensity over years. The plots below
shows how the intensity of tornado touchdown changes in the United States in
a ten-year interval for the past 50 years.

5



(a) Intensity of Tornado From 1950 to 1960 (b) Tornado Intensity Change From 1960 to 1970

(c) Tornado Intensity Change From 1970 to 1980 (d) Tornado Intensity Change From 1980 to 1990

(e) Tornado Intensity Change From 1990 to 2000 (f) Tornado Intensity Change From 2000 to 2010

It is clear in the plots that for the first ten years(Figure (a)), there are more
incidents of tornado touchdowns in states such as Oklahoma and Kansas. In
Figure (b), we can see that the intensity of tornado shows a dramatic increase in

6



the northern part of the country like Wisconsin, Iowa and Illinois. In Figure (c)
the intensity of the tornado in the northern part of the United States decreased
while the intensity of tornado in southern states such as Mississippi, Texas and
Alabama, which is on the east part of the core areas of the “tornado alley”,
increased significantly than first two decades. The Figures (d), (e), (f) show
the most recent intensity changes of tornado touchdowns. We can see from the
plots that there is a dramatic increase in both the frequency and the intensity
of tornadoes on the north part of the “tornado alley” from year 1990 to 2010.
It suggests that the frequency of tornado is increasing towards the northern
part of “tornado valley” in the state of South Dakota, the boarder of North
Dakota and Wisconsin and extends to the Canadian broader. Moreover, the
frequency of tornado also increases towards the southeast part of the “tornado
alley”. In Figures (e) and (f), which is the most recent change in intensity of
tornado, southern states such as Florida, Georgia, and Alabama have suffered
more incidents of tornado than in 1950s. However, the intensity of tornado show
little changes in northern states like New York and Massachusetts, and the east
coast.

We can also investigate the total intensity of tornado in the past six decades.
The figure below shows the total intensity calculated using kernel smoothing.

Figure 2: Total Intensity of Tornado Touchdown in the Past Decades

Note that the intensity of tornado starting from 2010 is calculated only based
on year 2010-2014. However, we can see that the total intensity is still almost
the same as the past years. It is because during 2011 there was a Tornado
Super Outbreak, which is the largest tornado outbreak ever recorded. As a
result, the total intensity in 2010-2014 still matches the intensity level of the
previous decades thanks to the Super Outbreak in 2011.

7



In conclusion, the result of this project shows that the intensity of tornado
shows greater increase in the states that are on the north of the “tornado alley”
such as South Dakota and Nebraska. The southern states that are on the
east of the “tornado alley” such as Mississippi and Alabama also suffer from
an increase in tornado intensity recently. The intensity of tornado shows little
change in northern states and the east coast. However, the states in the “tornado
alley” like Oklahoma and Texas still suffer high intensity of tornado in the past
50 years, which can be seen in Figure 1. In short, the intensity of tornado
touchdowns has a trend to increase towards the north of the “tornado alley”
to the Canadian boarder, and towards the east of the “tornado alley” to the
southern states of the US.

8



5 Appendix - Python Code

Please click on the following link for more information
https://github.com/weifhu0124/Undergraduate Research

References

[1] Tornado History Project
http://www.tornadohistoryproject.com/

[2] Tornado Alley
http://www.si.edu/Content/SE/Educator%20Guides/Tornado EdGuide R5.pdf/

9


