
Guide	to	inferring	Probability	Model	
Ensembles	(PMEs)	for	detrital	zircon	data	
and	calculating	Bayesian	Population	
Correlation	(BPC)	
	
Table	of		Contents	

1. Included	files	–	a	brief	description	of	the	
contents	of	this	package	

2. Installation	versus	execution	from	MATLAB	
3. Dependencies	–	the	MATLAB	versions	and	
toolboxes	necessary	to	run	the	scripts.	

4. Workflow	–	step	by	step	instructions	for	running	
the	scripts	

5. General	Notes	–	useful	information	on	running	
the	scripts	that	doesn’t	fit	in	the	step	by	step	
guide	

6. Tested	Hardware	–	specifications	of	machines	on	
which	the	script	has	been	run.	

	
1.	Included	files	
	

Included	in	this	package	are	scripts	necessary	in	order	to	infer	PMEs,	
estimate	BPC	uncertainties,	display	calculated	BPC	values,	display	PME	plots,	
and	infer	the	shared	proportions	of	two	samples	based	on	BPC	values.		In	
addition	to	being	presented	in	their	original	form	as	MATLAB	scripts,	these	
files	have	been	compiled	into	a	standalone	application.		Installers	for	the	
application	for	Windows	and	Mac	are	also	included.		The	main	folder,	which	
contains	this	document,	contains	a	main	menu	.m	file	and	accompanying	.fig	
file:	
	

‘BPCmainmenu.m’	–	MATLAB	script	of	the	main	menu	for	PME	
inference	and	BPC	calculations,	through	which	all	included	
functionality	can	be	accessed.	
	



‘BPCmainmenu.fig’	–	MATLAB	file	that	contains	information	about	the	
graphical	user	interface	(GUI)	for	the	main	menu	script.	

	 	 	
The	following	subdirectories	are	also	contained	in	this	package:	
	

‘backend/’	–	contains	scripts	the	user	does	not	need	to	access	directly.		
A	short	readme	file	in	the	folder	discusses	the	function	of	each	script.	
This	folder	also	contains	two	third-party	scripts,	which	are	noted	in	
the	Dependencies	section,	below.	
	
‘sample_data/’	–	includes	a	set	of	sample	data	with	which	the	scripts	
can	be	tested	(see	section	Workflow,	below).	
	

The	installers	for	the	standalone	applications	(useful	if	the	user	lacks	
MATLAB	or	one	of	the	required	toolboxes—see	Dependencies	section	below)	
are:	
	
	 ‘BPCinstallerWin_web.exe’	–	this	is	the	installer	for	Windows	
	
	 ‘BPCinstallerMac_web.app’	–	this	is	the	installer	for	Mac	
	
Note	that	these	installers	require	an	Internet	connection	and	were	compiled	
using	the	MATLAB	and	operating	system	versions	listed	in	the	Tested	
Hardware	section	below.	

	
The	package	also	contains	a	text	readme	file,	a	text	license	file	for	the	set	of	
scripts,	and	this	introductory	document.		
	

2.	Installation	versus	execution	from	MATLAB	
	

If	the	user	lacks	the	required	versions	of	MATLAB	and	the	toolboxes	used	by	
the	BPC	scripts	(see	Dependencies	section),	then	the	BPC	scripts	can	be	
installed	as	a	standalone	application.		This	requires	running	one	of	the	two	
installers	(‘BPCinstallerWin_web.exe’	for	Windows	machines,	
‘BPCinstallerMac_web.app’	for	Mac)	and	clicking	through	the	on-screen	
instructions.		The	installers	were	created	using	a	built	in	function	in	MATLAB,	
and	were	compiled	using	the	MATLAB	and	OS	versions	listed	under	the	
Tested	Hardware	section.		An	Internet	connection	is	required	for	this	
installation	because	the	installer	downloads	and	installs	the	MATLAB	
runtime	environment.		Note	that	these	standalone	applications	operate	
independently	of	the	.m	files	contained	in	this	package,	and	the	directory	into	
which	you	install	the	application	shouldn’t	affect	its	functionality.		The	
sample	data	that	we	use	in	the	example	Workflow	section	below	will	not	be	
installed	using	the	installer.		In	order	to	work	with	this	data,	the	user	must	



make	sure	to	download	it	in	addition	to	the	installer	and	then	open	the	
download	location	using	the	BPC	application.	
	
Note	that	if	you	run	the	standalone	application	instead	of	the	MATLAB	files,	
there	will	likely	be	times	when	you	start	the	application	or	issue	a	command	
and	the	application	appears	not	to	do	anything	for	several	seconds.		Despite	
these	periods	of	seeming	inactivity,	the	application	is	likely	continuing	as	
intended.		In	addition,	please	only	click	buttons	once	on	the	GUI	and	then	
wait	for	the	function	to	execute.	

	
On	windows	machines,	the	parallel	computing	performed	by	the	scripts	may	
cause	the	objection	of	Windows	firewall.		On	Mac	machines,	note	that	the	
actual	application	file	will	be	located	at	‘installed_directory/application/BPC’,	
where	‘installed_directory’	is	specified	by	the	user	during	installation.	

	
3.	Dependencies	

Note:	Dependencies	were	assessed	using	the	MATLAB	function	
matlab.codetools.requiredFilesAndProducts.		The	user	can	check	which	
toolboxes	they	have	installed	in	MATLAB	by	typing	‘ver’	into	the	command	
window.	
	
The	BPC	scripts	require	the	following	MATLAB	toolboxes	(versions	shown	in	
parentheses):	
	 MATLAB	(9.3)	
	 Optimization	Toolbox	(8.0)	
	 Statistics	and	Machine	Learning	Toolbox	(11.2)	
	 Curve	Fitting	Toolbox	(3.5.6)	
	 Parallel	Computing	Toolbox	(6.11)	
	 Global	Optimization	Toolbox(3.4.3)	
	
Two	additional	third-party	scripts	are	required	for	our	collection	of	scripts	to	
function:			

nearestSPD.m,	which	is	copyright	(c)	2013,	John	D'Errico,	and	is	
provided	according	to	the	license	text	contained	in	
“nearestSPD_license.txt”,	distributed	with	our	collection	of	scripts.		
parfor_progressbar.m,	which	is	copyright	(c)	2016,	Daniel	Terry,	and	is	
provided	according	to	the	license	text	contained	in	
“parfor_progressbar_license.txt”.	

	
4.	Workflow		
	 	

The	first	step	of	the	workflow	is	to	start	the	standalone	application,	or	run	
the	‘BPCmainmenu_GUI.m’	script	from	MATLAB	(ensuring	that	your	MATLAB	



installation	meets	the	version	and	toolbox	requirements	shown	in	the	
Dependencies	section	below).		Upon	doing	so,	you	should	see	a	simple	
window	with	buttons:	
	

	
	
These	four	buttons	allow	access	to	the	major	functions	included	in	this	
package	by	clicking	the	respective	button.		The	remainder	of	this	workflow	
includes	4	parts:	A,	B,	C,	and	D,	which	correspond	with	the	four	buttons.		Part	
A	shows	how	to	infer	PMEs	and	calculate	BPC.		Part	B	shows	how	to	plot	
PMEs.		Part	C	shows	how	to	extract	probability	values	from	the	PMEs	to	a	.csv	
file.		Part	D	shows	how	to	infer	the	shared	proportions	of	two	zircon	age	
populations	from	their	BPC	value.			
	
Note:	For	this	demonstration,	we	run	our	collection	of	scripts	on	the	4	
random	subsamples	(from	data	of	Pullen	et	al.,	2014,	and	Thomson	et	al.,	
2017),	included	with	the	scripts	in	the	folder	‘sample_data/’.	If	the	scripts	are	
run	on	these	data,	the	results	should	resemble	those	found	in	this	document.	

	
A.	Infer	Probability	Model	Ensembles	(PMEs),	
estimate	BPC	uncertainties,	and	display	BPC	values	
from	a	single	GUI	using	BPConeclick_GUI.m.	
	
For	the	samples	you	want	to	model,	save	the	best	ages	of	these	samples,	
along	with	analytical	uncertainties	(1σ),	in	two-column	.csv	files,	as	follows:	
	



	
	
The	first	column	is	the	preferred	measured	age	for	each	analysis	in	millions	
of	years	and	the	second	column	is	the	1σ	analytical	uncertainty	calculated	for	
the	preferred	measured	age.	
	
Ensure	that	the	.csv	files	corresponding	to	all	desired	samples	are	located	in	a	
single	folder,	with	no	other	.csv	files.		I	suggest	creating	a	new	folder.		Click	
the	“Infer	PMEs	and	display	BPC”	button	from	the	main	menu.		You	should	see	
the	following	window	appear:	
	



	
	
Click	the	“Select	Data	Folder”	button	to	select	the	folder	where	your	.csv	files	
are	located.		The	path	of	this	folder	will	then	appear	next	to	the	button.		
Change	the	age	bounds	if	desired,	though	bounds	of	1	Ma	and	4000	Ma	
should	generally	be	used	unless	there	is	a	strong	reason	to	use	a	different	set	
of	bounds.		BPC	values	calculated	using	a	given	set	of	bounds	are	not	directly	
comparable	to	BPC	values	calculated	using	a	different	set	of	bounds.		Enter	the	
number	of	cores	you	desire	to	be	used	for	the	BPC	analysis.		If	this	textbox	is	
left	blank,	all	available	cores	will	be	used.	
	
If	a	folder	has	been	selected,	the	filenames	of	the	sample	.csv	files	will	be	
shown	in	the	listbox	on	the	left	side	of	the	window.		The	BPC	values,	once	
calculated,	will	be	shown	in	an	NxN	matrix,	where	N	is	the	number	of	
compared	samples.		The	“Sample	order”	textbox	allows	you	to	change	the	
order	in	which	the	samples	will	appear	in	this	matrix.		To	specify	the	order,	
type	the	indices	of	the	sample	filenames	(shown	in	the	listbox)	in	the	desired	
order,	separated	by	commas	(e.g.	‘1,	3,	4,	2,	5’).		See	the	text	in	the	window	



for	further	instructions.		You	can	also	leave	“Sample	order”	blank	or	enter	“y”	
to	use	the	default	order	shown	in	the	listbox,	or	you	can	type	“auto”	to	
automatically	order	the	samples	in	terms	of	lowest	to	highest	mean	BPC	
value	calculated	with	all	other	samples.	

	
Click	“Calculate	and	display	BPC”	in	order	to	begin	the	process	of	inferring	
PMEs,	estimating	BPC	uncertainty,	and	ultimately	displaying	BPC	values.		
First,	the	script	will	infer	PMEs	for	the	samples	in	the	referenced	folder.		
During	this	time,	a	progress	bar	will	appear	that	says	“Inferring	PMEs…”.		
Next,	BPC	uncertainties	will	be	estimated	during	which	time	a	progress	bar	
saying,	“Estimating	BPC	uncertainties…”,	will	appear.		Inferring	PMEs	and	
calculating	BPC	uncertainties	each	take	significant	time,	as	discussed	in	the	
General	Notes	section,	but	progress	is	saved.		If	the	script	is	interrupted,	
restart	it	in	the	same	way	as	is	described	here,	and	the	portions	of	the	
process	that	were	already	completed	will	not	be	run	again.		If	a	complete	
recalculation	is	desired,	the	files	created	by	the	program	should	be	deleted	
manually.		The	directory	structure	of	these	saved	files	is	described	in	the	
General	Notes	section.	
	
While	the	script	is	running,	MATLAB	may	appear	not	to	be	busy,	causing	
confusion	(see	further	discussion	in	the	General	Notes	section).		After	the	
required	calculations	are	complete,	you	should	see	a	color-coded	table	
output	to	a	new	figure:	
	



	
	

This	figure	shows	the	BPC	value	and	uncertainty	for	each	pair	of	compared	
samples.		The	colors	illustrate	the	BPC	value	on	the	MATLAB	parula	colormap	
stretched	from	0	to	1.		In	addition,	the	“BPC	value”	and	“BPC	uncertainties	(1	
sigma)”	fields	in	the	window	are	populated	with	values	that	can	be	copied	to	
the	clipboard.	
	
To	re-display	BPC	values	after	the	analysis	is	complete,	simply	re-run	
BPConeclick_GUI.m	by	clicking	on	the	“Infer	PMEs	and	display	BPC”	button	
from	the	main	menu.		Because	completed	analyses	won’t	be	re-done,	the	
function	will	quickly	display	BPC	values.	
	
B.	Displaying	Probability	Model	Ensembles	(PMEs)	
using	PMEplot_GUI.m	

	
Plotting	a	PME	can	be	done	only	after	PMEs	have	been	inferred	using	
‘BPConeclick_GUI.m’	above.		Click	the	“Plot	PMEs”	button	on	the	main	menu.		
You	should	see	the	following	window:	
	



	
	
Again	use	“Select	Data	Folder”	to	select	the	folder	where	the	sample	.csv	files	
are	stored.		As	with	evalBPC_GUI.m,	the	folder	path	will	be	shown	next	to	the	
button	and	the	samples	contained	in	the	folder	will	be	shown	in	a	listbox	on	
the	left.		Highlight	the	desired	sample(s)	in	the	listbox	and	specify	options	
using	the	text	boxes	and	check	boxes.		Options	that	can	be	specified	in	
textboxes	include	the	x	domain	over	which	modeling	was	conducted	(this	is	
not	just	the	desired	bounds	of	the	plot;	use	the	same	x	min	and	x	max	values	
as	for	‘makePME_GUI.m’	and	‘BPCunc_GUI.m’),	and	x	and	y	resolution	for	the	
plot,	and	the	number	of	the	figure	for	output.	If	more	than	one	figure	is	
plotted,	then	subsequent	figures	will	be	plotted	in	sequentially	numbered	
plots.	In	addition,	checkboxes	allow	you	to	specify	whether	to	highlight	the	
maximum	likelihood	probability	model	in	the	PME	plot,	whether	to	title	the	
plot	with	the	sample	name,	whether	to	use	a	linear	or	logarithmic	probability	
scale,	and	whether	to	include	a	dotplot	of	measured	ages	in	the	figure.		The	
dotplot	appears	in	a	thin	band	beneath	the	probability	models,	similar	to	



plots	shown	in	Pullen	et	al.	(2014).		The	dotplot	and	maximum	likelihood	
model	can	be	plotted	in	their	own	figure	windows,	as	well,	which	can	be	
useful	if	the	further	processing	of	the	figures	is	intended	in	vector-based	
graphics	software.		The	number	of	cores	for	the	operation	can	also	be	
specified.	Once	the	desired	options	are	specified,	click	“Plot	PME”.		A	progress	
bar	should	appear.		Once	reading	and	processing	the	data	is	complete,	the	
resulting	plot(s)	will	appear:	
	

	
	
In	this	example,	“Highlight	maximum	likelihood	model”	was	selected,	along	
with	“Show	dot	plot	of	measured	ages”,	and	all	other	check	boxes	were	left	
blank.		The	x	and	y	resolutions	were	set	to	1000.		This	figure	shows	a	natural	
logarithmic	age	scale.		In	this	script,	the	area	covered	by	the	probability	
models	of	the	PME	is	discretized	into	cells	in	the	x	and	y	directions	with	the	
number	of	cells	in	one	dimension	equal	to	the	resolution	input	into	the	GUI.		
Then,	the	cells	that	have	probability	models	that	pass	through	them	are	
colored	according	to	the	number	of	models	that	pass	through	them,	using	the	
MATLAB	parula	colormap.	



	
If	more	than	one	sample	was	selected	in	the	listbox	in	the	main	window,	the	
PME	plots	for	each	selected	sample	will	appear	sequentially.	

	
C.	Extract	probability	values	from	PMEs	using	
PME2CSV_GUI.m	
	
The	PDFs	that	constitute	a	PME	are	a	collection	of	functions,	and	their	values	
can	be	queried	at	a	given	set	of	x	values	using	PME2CSV_GUI.m.		This	can	be	
an	effective	way	to	obtain	the	function	values	of	a	PME	for	further	processing.		
First,	click	“Extract	PME	values	to	a	.csv	file”	in	the	main	menu.		You	should	
see	the	following	window:	
	

	
	
First,	click	“Select	Data	Folder”,	which	will	open	a	directory	selection	dialog.		
The	selected	directory	should	contain	the	.csv	files	that	correspond	to	each	
modeled	sample—this	is	the	same	data	folder	that	BPConeclick_GUI.m	uses.		
The	listbox	will	then	show	the	names	of	samples	with	.csv	files	saved	in	the	
data	folder.		Select	the	sample(s)	for	which	you	want	to	extract	values,	then	
choose	options,	including	the	x	min	and	max	values—these	must	be	the	
values	that	you	used	for	modeling	the	data.		Check	the	box	to	output	linear	
rather	than	logarithmic	probability	values.		Enter	the	maximum	number	of	
probability	models	from	which	you	wish	to	extract	values—a	default	value	of	
10000	is	listed.		Remove	this	default	and	leave	the	space	blank	to	use	all	the	
probability	models	in	a	PME,	but	this	may	result	in	a	very	large	output	that	



takes	a	long	time	to	write	to	disk.		Optionally	enter	a	number	of	cores	to	use	
for	processing	(leave	blank	to	use	all	cores	available).		In	the	lower	left	
corner,	manually	enter	the	desired	ages	at	which	you	wish	to	output	the	
probability	density,	or	load	a	one-column	.csv	file	of	desired	ages	by	clicking	
the	button.		This	.csv	should	consist	of	a	single	column	with	age	values	in	Ma	
with	no	header.		Then,	click	the	“Retrieve	PDF	Values”	button.		A	progress	bar	
should	appear	which	says	“Evaluating	PDFs…”,	and	a	message	box	will	appear	
when	the	process	is	complete.			
	
The	script	creates	a	new	subdirectory	within	the	data	folder	you	specified	
called	‘PMEvalues/’	and	writes	.csv	files	containing	PDF	values	at	the	queried	
ages	in	that	subdirectory.		Output	.csv	files	are	named	according	to	the	
sample	name,	followed	by	‘PMEvals.csv’.		In	these	output	.csv	files,	the	first	
column	lists	the	queried	ages.		Then,	each	successive	column	displays	the	
probability	density	values	of	one	PDF	at	each	of	the	queried	age	values.		Each	
column	(except	the	first)	contains	values	from	a	single	PDF.	

	
D.	Inferring	the	shared	fractions	of	two	populations	
from	BPC	values	using	BPC2frac_GUI.m	

	
BPC	values	have	a	functional	relationship	to	the	shared	fraction	of	two	
detrital	zircon	populations	(the	fraction	of	age	peaks	of	each	population	that	
is	shared	with	the	other	population),	which	can	be	derived	analytically	(see	
paper	text).		Thus,	a	BPC	value	can	non-uniquely	constrain	the	shared	
fractions	of	both	populations.		This	calculation	is	facilitated	by	the	
BPC2frac_GUI.m	script.		First,	click	the	“Infer	shared	fractions	of	parent	
populations	from	BPC”	button	in	the	main	menu.		The	following	window	
should	appear:	
	

	
	
Fill	out	the	text	box	fields,	including	BPC	value	and	uncertainty,	along	with	
the	sample	sizes	of	the	compared	samples.		The	BPC	age	and	uncertainty	
come	from	the	results	of	part	A.		In	specific	circumstances,	the	shared	
proportion	of	one	sample	may	be	assumed.		For	instance,	if	two	samples	are	



taken	from	two	positions	on	the	same	river	network	such	that	the	water	and	
sediment	that	flow	past	the	first	sample	location	subsequently	flow	past	the	
second	sample	location,	then	all	the	age	peaks	in	the	first	sample	can	be	
assumed	to	be	shared	with	the	second	sample,	resulting	in	an	f1	value	of	1	
(see	text	for	discussion).		If	f1	can	be	assumed,	then	enter	it	as	well.		If	no	f1	
value	is	entered,	then	the	output	will	appear	like	this:	
	

	
	
Here,	colors	indicate	the	relative	likelihood	of	coordinate	pairs	of	(f1,	f2)	
values.		These	values	are	obtained	by	solving	Eqn.	C.7	in	Appendix	C	in	the	
text	numerically	for	the	given	BPC	value	and	uncertainty.		This	result	was	
generated	for	a	BPC	value	of	0.75,	uncertainty	of	0.05,	and	sample	sizes	of	
100	and	300.	
	
If	f1	can	be	assumed,	the	output	will	appear	like	this:		



	
	
Here,	the	plot	shows	the	likelihoods	of	different	values	of	f2	for	the	given	
value	of	f1.		This	example	plot	was	generated	using	the	same	parameters	as	
above,	plus	an	f1	value	of	1.		In	addition,	the	mean	and	standard	deviation	of	
this	distribution	are	output	to	the	MATLAB	Command	Window.	
	

	
5.	General	Notes,	Common	Problems,	Clarifications	

	
MATLAB	may	appear	not	to	be	busy	even	though	the	script	is	running:	
Once	you	start	any	of	these	scripts	from	the	GUI	(by	clicking	“Generate	PMEs”	
or	equivalent),	the	progress	bar	may	appear	under	other	MATLAB	windows.		
In	addition,	a	blinking	cursor	will	appear	in	the	MATLAB	Command	Window,	
and	MATLAB	will	not	display	the	word	“Busy”,	as	it	usually	does	for	a	script	
run	from	the	command	line,	even	though	the	script	is	running.		The	
screenshot	below	shows	the	MATLAB	screen	while	the	script	is	running.		
This	behavior	will	occur	with	all	scripts	included	in	our	package	when	
run	from	GUIs.	

	
The	standalone	applications	can	be	slow	to	respond:	As	noted	above,	
when	the	standalone	applications	are	started	or	a	button	is	clicked,	the	
response	of	the	application	may	be	delayed.		The	standalone	application	will	
often	be	far	more	delayed	than	the	MATLAB	script.		When	this	occurs,	please	
wait	for	the	application	to	respond	rather	than	reissuing	a	command,	which	
will	cause	operations	to	be	run	more	than	once.	



	
	

Expected	time	for	script	running:	The	scripts	makePME.m	and	BPCunc.m	
(and	equivalently	makePME_GUI.m	and	BPCunc_GUI.m)	will	take	a	significant	
amount	of	time	to	run.		These	scripts	compare	every	possible	pair	of	samples	
in	an	input	dataset.		Mathematically,	the	number	of	possible	pairs	in	a	given	
dataset	is	given	by	(N	choose	2),	where	N	is	the	number	of	samples	in	a	given	
dataset.		makePME.m	and	BPCunc.m	both	take	minutes	to	tens	of	minutes	for	
each	sample	plus	an	equivalent	time	for	each	possible	sample	pair.		This	time	
is	distributed	over	as	many	cores	as	are	available	for	processing,	such	that	
the	total	processing	time	(in	hours)	can	be	estimated	as	

𝑇 = 0.2− 0.5 ℎ𝑜𝑢𝑟𝑠 ∗  
𝑁 + (𝑁 𝑐ℎ𝑜𝑜𝑠𝑒 2)

# 𝑐𝑜𝑟𝑒𝑠 	
	
These	times	were	calculated	on	a	2014	Macbook	Pro	with	2.2	GHz,	4-core	
processor	and	16	GB	RAM.	

	
Progress	is	saved	when	running	the	scripts.		The	scripts	that	run	for	
significant	lengths	of	time	(makePME.m	and	BPCunc.m,	or	equivalently	
makePME_GUI.m	and	BPCunc_GUI.m)	run	a	Monte	Carlo-based	analysis	on	
each	sample	and	each	possible	pair	of	samples	in	the	input	dataset,	which	
take	approximately	minutes	to	tens	of	minutes	per	sample	or	sample	pair,	as	
discussed	in	the	above	note.		These	scripts	immediately	save	the	results	of	
their	analysis	on	each	sample	or	pair	of	samples	as	soon	as	the	analysis	is	
complete.		The	scripts	look	for	these	files	when	run	and	do	not	run	duplicate	
analyses	for	samples	or	sample	pairs	that	have	already	been	completed.		
Thus,	if	one	of	these	scripts	is	interrupted	in	the	middle	of	execution,	it	can	
be	restarted	without	losing	the	analyses	that	have	already	been	completed.		
Effectively,	your	progress	is	saved	as	the	script	runs.		However,	this	feature	
also	means	that	if	one	of	the	files	that	the	scripts	write	and	read	becomes	



corrupted	or	somehow	unusable	to	the	script,	it	must	be	deleted	manually	in	
order	to	signal	to	the	script	to	redo	that	analysis.		If	you	suspect	that	such	a	
corruption	has	occurred,	for	ease	I	suggest	deleting	the	‘chains/’,	‘log/’,	and	
‘unc/’	folders	created	by	the	scripts	and	re-running	them.		See	the	section	
“Workflow	Detail”	about	the	relevant	scripts	for	a	description	of	the	file	
architecture.	
	
File	architecture	of	makePME.m	and	associated	scripts	for	PME	
inferrence:	As	the	makePME	script	runs,	it	generates	two	.csv	files	per	
sample	in	the	selected	folder,	plus	two	additional	.csv	files	for	each	possible	
pairing	of	samples	in	the	selected	folder.	For	a	given	sample	or	sample	pair,	
one	of	the	two	files	contains	a	PME	(a	Markov	chain),	and	is	named	with	the	
sample	name	followed	by	‘chain.csv’.	Each	row	of	the	‘chain.csv’	file	
corresponds	to	a	different	probability	model	that	has	been	accepted	into	the	
PME.	The	columns	store	the	values	of	the	50	model	parameters	of	each	of	
these	probability	models.	The	second	of	the	two	files	per	sample	or	sample	
pair	contains	a	list	of	the	log	likelihood	values	of	the	PME	inferred	for	that	
sample	or	sample	pair.	This	second	file	is	named	with	the	sample	name	
followed	by	‘logLk.csv’.	The	‘logLk.csv’	file	is	a	single	column,	where	each	row	
contains	a	log	likelihood	value	that	corresponds	with	the	model	in	the	same	
row	of	the	‘chain.csv’	file.	These	files	appear	in	a	subdirectory	of	the	folder	
containing	the	sample	.csv	files	named	‘chains/’.	

	
In	addition,	log	files	are	generated	during	each	run	and	are	stored	in	a	‘log/’	
folder.		The	filenames	of	the	log	files	match	the	filenames	of	the	
corresponding	sample	.csv	files	with	“log.txt”	appended.	

	
The	files	resulting	from	the	comparison	of	two	samples	are	named	as	above	
except	the	names	of	the	two	samples	are	concatenated	such	that	the	
filenames	read	“SampleName1_SampleName2chain.csv”,	where	
“SampleName1”	and	“SampleName2”	are	the	filenames	of	the	sample	.csv	
files	and	“chain.csv”	could	also	be	“logLk.csv”	or	“log.txt”.	

	
File	architecture	of	BPCunc.m	and	associated	scripts	for	estimating	BPC	
uncertainties:	BPCunc.m	creates	an	additional	subdirectory	in	the	folder	
you	selected,	called	‘unc/’.		In	this	folder,	one	additional	.csv	file	is	created	for	
each	sample	along	with	one	.csv	file	for	each	pair	of	samples.		The	files	
created	for	individual	samples	contain	simulated	age	samples	obtained	by	
resampling	the	PME	for	each	sample,	along	with	the	likelihood	value	of	the	
maximum	likelihood	model	for	that	simulated	sample	(see	text	for	
discussion).		These	files	end	with	‘resample.csv’	and	each	column	
corresponds	to	a	single	simulated	sample.		Column	headers	are	the	maximum	
likelihood	values	of	each	simulated	sample.		The	files	created	for	pairs	of	
samples	contain	the	likelihood	values	of	the	maximum	likelihood	model	for	
pairs	of	simulated	samples,	and	end	with	‘jointML.csv’.		These	files	are	a	
single	column	of	maximum	likelihood	values.			



	
An	additional	subdirectory,	‘unc/log/’,	is	created,	where	a	log	file	is	stored	
for	each	sample	or	pair	of	samples	for	which	BPC	uncertainty	is	estimated.	

	
Age	bounds	used	for	modeling	PMEs	are	not	saved.	At	this	time,	the	
domain	over	which	modeling	is	conducted	is	not	saved	with	the	PME	models	
and	likelihoods,	so	the	user	must	be	sure	to	be	consistent	in	defining	their	
domain.		We	recommend	a	domain	of	1	to	4000	Ma,	unless	otherwise	is	
necessary.		All	modeling	is	done	in	log	age	space,	as	discussed	in	the	paper	
text.	

	
6.	Tested	hardware	
	 This	software	has	been	successfully	used	on:	

2014	Macbook	Pro,	2.2	GHz,	4-core	processor	and	16	GB	RAM,	
MATLAB_R2017b,	macOS	10.12.6	

HP	Windows	10	machine,	12-core	processor	and	64	GB	RAM,		
MATLAB_R2016b.	

	


