% ************************************ % Parameter Values used for GDL Model % Jason Siegel, Denise McKay % Summer 2007 % % Used for 24 cell SERC stack % Gore 5620 MEAs, ETek ELATs % ************************************ % ************************************ % Stack properties % ************************************ FC_NUMBEROFCELLS=24.0; % number of cells in stack FC_ACTIVEAREA=300.0; % cell nominal active area (cm^2) FC_ACTIVEAREA_M2=FC_ACTIVEAREA/10000 ; % Cell nominal active area (m^2) FC_ANODE_VOLUME=0.00043; % total stack anode volume (m3) FC_ANODE_OUTLET_FLOW_CONSTANT=9.3440e-7;% anode outlet channel orifice constant (kg/s/Pa) FC_ANODE_INLET_FLOW_CONSTANT=9.3440e-7 ;% anode inlet channel orifice constant (kg/s/Pa) % Note: Due to hardware, there is now way to measure anode orifice % constants, we assume the k_an=k_ca, which results in H2 flow rates % close to supersonic flow, the orifice constants were then scaled % down by a factor of 1.2 to predict "reasonable" H2 mass flows % during purges FC_CATHODE_VOLUME =0.00038; % total stack cathode volume (m3) FC_CATHODE_OUTLET_FLOW_CONSTANT=11.31e-7;% cathode outlet channel orifice constant (kg/s/Pa) FC_CATHODE_INLET_FLOW_CONSTANT= 11.31e-7;% cathode inlet channel orifice constant (kg/s/Pa) FC_ANODE_OM_VOLUME=(0.00043/2+6*12 * 2.54 /100*pi*(3/8/2* 2.54 /100)^2); % anode outlet manifold volume (m3) Purge_K=(11.31e-7)*10;% % anode outlet manifold orifice constant (kg/s/Pa) % *********************************** % Air properties % *********************************** R_G_U=8.3145; % Universal Gas Constant (J/(mol*K)) CP=1004.0; % specific heat of air (J/(kg*K)) CV=718.0; % specific heat of water vapor (J/(kg*K)) GAMMA=1.4; % ratio of specific heat cnst pressure to cnst volume RHO=1.23; % air density at STP (kg/m^3) OXYGENMOLARMASS=32.0e-3; % Oxygen Molar Mass (kg/mol) NITROGENMOLARMASS=28.0e-3; % Nitrogen Molar Mass (kg/mol) OXYGENGASCONSTANT=R_G_U/OXYGENMOLARMASS; % Oxygen Gas Constant (J/(kg*K)) NITROGENGASCONSTANT=R_G_U/NITROGENMOLARMASS; % Nitrogen Gas Constant (J/(kg*K)) OMF_ca_in=0.21; % mole fraction of oxygen in air AIRMOLARMASS=OMF_ca_in*OXYGENMOLARMASS+(1-OMF_ca_in)*NITROGENMOLARMASS;% Air Molar Mass (kg/mol) % *********************************** % Water properties % *********************************** VAPORMOLARMASS=18.02e-3; % Water Vapor Molar Mass (kg/mol) VAPORGASCONSTANT=R_G_U/(VAPORMOLARMASS);% Water Vapor Gas Constant (J/(kg*K)) WATERDENSITY=997.0; % liquid water density (kg/m^3) H20_L_VISC=0.000405; % liquid water viscosity, Kaviany (kg/(m*s)) % *********************************** % Hydrogen properties % *********************************** HYDROGENMOLARMASS=2.016e-3; % Hydrogen Molar Mass (kg/mol) HYDROGENGASCONSTANT=R_G_U/(HYDROGENMOLARMASS); % Hydrogen gas constant (J/(kg*K)) % *********************************** % Electrochemistry % *********************************** FARADAYS=96485.0; % Faradays constant (C/mol e-) % *************************** % Gas Diffusion Layer % *************************** GDL_THICKNESS=0.0005; % thickness of single GDL (m) GDL_POR=0.5; % GDL porosity, Kaviany D_O2=3.0300e-5; % oxygen diffusion coeff, Kaviany (m2/s) D_V=3.4500e-5; % water vapor diffusion coeff, Kaviany (m2/s) D_H2=1.1400e-4; % hydrogen diffusion coeff, Kaviany (m2/s) imobile_sat=0.1; % Immobile saturation Limit, Kaviany H20_SURF_T=0.0644; % surface tension, Kaviany (N/m} GDL_AREA=FC_ACTIVEAREA_M2*GDL_POR; % GDL surface Area (m^2) N_GDL_SECs=3; % number of discrete GDL sections delta_y=GDL_THICKNESS/N_GDL_SECs; % thickness of discrete section (m) V_P=(FC_ACTIVEAREA_M2)*GDL_THICKNESS*GDL_POR/N_GDL_SECs; % volume of pore space in each section (m^3) Alg_V= 1000; % Part of evaporation rate, gamma=0.9*Alg_V, Kaviany Kk=6.0; df=7e-6; K_PERM=(df*df*GDL_POR*GDL_POR*GDL_POR/(16*Kk*(1-GDL_POR)*(1-GDL_POR) )); % absolute permiability, Kaviany (m^2) %K_PERM=2.55e-13; % absolute permiability, Kaviany (m^2) % *************************** % Membrane % *************************** MEMBRANEDRYDENSITY=0.0019; % membrane dry density (kg/cm3) MEMBRANEDRYEQVWEIGHT=1.0; % membrane dry equivalent weight (kg/mol) MEMBRANETHICKNESS=0.00381; % membrane thickness including catalyst layers, 1.5 mils (cm) lambda_max_diff=16.8; % maximum water content when equilibrated with liquid water, at activity a=3, T=30C, (Springer1991JECS) linear Interp from 3>a>1. lambda_max_drag=22; % maximum water content when equilibrated with liquid water, at activity a=3, T=80C (Springer1991JECS) % *************************** % Voltage parameters % *************************** h0 = -241980; % change in enthalpy, water in vapor phase (J/mol) s0 = -44.43; % change in entropy, water in vapor phase (J/(mol K)) T0 = 298.15; % reference temperature (K) p0 = 101325; % reference pressure (Pa) Ec=66e3; % activation energy (J/mol) iloss=0.001; % loss current density (A/cm2) b2=1268; % ohmic resistance parameter, Springer b11=0.005139; % ohmic resistance tuned parameter, Springer b12=0.00326; % ohmic resistance tuned parameter, Springer % *************************** % Identified Parameters % *************************** K1 = 1.165481158348826; % voltage parameter 1 K2 = 4.443112548896407e-06; % voltage parameter 2 K3 = 1.783746791063606; % voltage parameter 3 K4 = 3.267597642026195; % voltage parameter 4 alpha_n_d = 1; % scaling factor for electroosmotic drag alpha_D_w =12.0; % scaling factor for back diffusion %t_w =0.13146; % liquid water film thickness at GDL-channel interface (mm) t_w =0.12; % liquid water film thickness at GDL-channel interface (mm)