Citations for: Microbialite Occurrence Data for the Archean and Paleoproterozoic [Data set] Data set citation: Howard, C.M. and Sheldon, N.D. (2025). Microbialite Occurrence Data for the Archean and Paleoproterozoic [Data set]. University of Michigan - Deep Blue Data. Abell, P. I., McClory, J., Martin, A., & Nisbet, E. G. (1985). Archaean stromatolites from the Ngesi Group, Belingwe greenstone belt, Zimbabwe; preservation and stable isotopes — preliminary results. Precambrian Research, 27(4), 357–383. https://doi.org/10.1016/0301-9268(85)90094-4 Ahmad, M., Scrimgeour, I. R., Close, D. F., Wygralak, A. S., Edgoose, C. J., Donnellan, N. C., et al. (2013). Geology and mineral resources of the Northern Territory. Northern Territory Geological Survey. Retrieved from https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81446 Al-Hashim, M. H. (2016). Sedimentology and Geochemistry of the Mixed Carbonate-Siliciclastic Espanola Formation, Paleoproterozoic Huronian Supergroup, Bruce Mines-Elliot Lake Area, Ontario, Canada (Ph.D.). The University of Western Ontario (Canada), Canada -- Ontario, CA. Retrieved from https://www.proquest.com/docview/2714864793/abstract/B1237D8C61044A1CPQ/1 Allwood, A. C., Walter, M. R., Burch, I. W., & Kamber, B. S. (2007). 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research, 158(3), 198–227. https://doi.org/10.1016/j.precamres.2007.04.013 Almond, J., & Pether, J. (2009). Palaeontological heritage of the northern Cape (Palaeotechnical Report). South African Heritage Resources Agency. Retrieved from https://sahris.sahra.org.za/sites/default/files/website/articledocs/NC%20palaeotechnical%20report.pdf Altermann, W., & Lenhardt, N. (2012). The volcano-sedimentary succession of the Archean Sodium Group, Ventersdorp Supergroup, South Africa: Volcanology, sedimentology and geochemistry. Precambrian Research, 214–215, 60–81. https://doi.org/10.1016/j.precamres.2012.02.012 Altermann, W., & Nelson, D. R. (1998). Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal craton as inferred from precise U–Pb zircon ages from volcaniclastic sediments. Sedimentary Geology, 120(1), 225–256. https://doi.org/10.1016/S0037-0738(98)00034-7 Alvi, S. H., & Shaif, Mohd. (2021). Geochemical signatures of manganese ores around Barbil, Noamundi-Koira basin, Singhbhum Craton, Eastern India. Geology, Ecology, and Landscapes, 5(4), 260–268. https://doi.org/10.1080/24749508.2020.1720489 Amard, B., & Bertrand-Sarfati, J. (1997). Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon. Precambrian Research, 81(3), 197–221. https://doi.org/10.1016/S0301-9268(96)00035-6 Anderson, S. L., & Pufahl, P. K. (2009). The sedimentology of phosphatic iron formation from the Labrador Trough: implications for the accumulation of Precambrian phosphorite. Atlantic Geology, 45(1), 22. Arias, Z. (1986). Archean Stromatolites from the North Caribou Lake Greenstone Belt, Eyapamikama Lake Area, Northwestern Ontario (B.Sc.). Carleton University, Ottawa. Aspler, L. B., Chiarenzelli, J. R., Powis, K. B., & Cousens, B. L. (1998, June 1). Geology of southern Angikuni Lake area, District of Keewatin, Northwest Territories. Geological Survey of Canada. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/188870 Aspler, L. B., Chiarenzelli, J. R., Cousens, B. L., & Valentino, D. (1999). Precambrian geology, northern Angikuni Lake, and a transect across the Snowbird tectonic zone, western Angikuni Lake, Northwest Territories (Nunavut) (Current Research No. 1999– C) (pp. 107–118). Natural Resources Canada. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/189087 Aspler, Lawrence B., & Chiarenzelli, J. R. (1997). Initiation of ∼2.45-2.1 Ga intracratonic basin sedimentation of the Hurwitz Group, Keewatin Hinterland, Northwest territories, Canada. Precambrian Research, 81(3), 265–297. https://doi.org/10.1016/S0301-9268(96)00038-1 Awramik, S. M., & Buchheim, H. P. (2009). A giant, Late Archean lake system: The Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Research, 174(3), 215–240. https://doi.org/10.1016/j.precamres.2009.07.005 Banerjee, S., & Jeevankumar, S. (2005). Microbially originated wrinkle structures on sandstone and their stratigraphic context: Palaeoproterozoic Koldaha Shale, central India. Sedimentary Geology, 176(1), 211–224. https://doi.org/10.1016/j.sedgeo.2004.12.013 Banerjee, Santanu, Bhattacharya, S. K., & Sarkar, S. (2007). Carbon and oxygen isotopic variations in peritidal stromatolite cycles, Paleoproterozoic Kajrahat Limestone, Vindhyan basin of central India. Journal of Asian Earth Sciences, 29(5), 823–831. https://doi.org/10.1016/j.jseaes.2006.05.006 Banerjee, Santanu, Sarkar, S., Eriksson, P. G., Hu, X.-F., & Wang, Y. (2014). Palaeoenvironmental and biostratigraphic implications of microbial mat-related structures: Examples from the modern Gulf of Cambay and the Precambrian Vindhyan Basin, India. Journal of Palaeogeography, 3(2), 127–144. https://doi.org/10.3724/SP.J.1261.2014.00048 Barghoorn, E. S., & Tyler, S. A. (1965). Microorganisms from the Gunflint Chert. Science, 147(3658), 563–575. https://doi.org/10.1126/science.147.3658.563 Barlow, E., Van Kranendonk, M. J., Yamaguchi, K. E., Ikehara, M., & Lepland, A. (2016). Lithostratigraphic analysis of a new stromatolite–thrombolite reef from across the rise of atmospheric oxygen in the Paleoproterozoic Turee Creek Group, Western Australia. Geobiology, 14(4), 317–343. https://doi.org/10.1111/gbi.12175 Baumgartner, R. J., Van Kranendonk, M. J., Wacey, D., Fiorentini, M. L., Saunders, M., Caruso, S., et al. (2019). Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life. Geology, 47(11), 1039–1043. https://doi.org/10.1130/G46365.1 Bekker, A., Sial, A. N., Karhu, J. A., Ferreira, V. P., Noce, C. M., Kaufman, A. J., et al. (2003). Chemostratigraphy of Carbonates from the Minas Supergroup, Quadrilátero Ferryífero (Iron Quadrangle), Brazil: A Stratigraphic Record of Early Proterozoic Atmospheric, Biogeochemical and Climactic Change. American Journal of Science, 303(10), 865–904. https://doi.org/10.2475/ajs.303.10.865 Bekker, A, Karhu, J. A., Eriksson, K. A., & Kaufman, A. J. (2003). Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Research, 120(3), 279–325. https://doi.org/10.1016/S0301-9268(02)00164-X Bekker, A., Karhu, J. A., & Kaufman, A. J. (2006). Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Research, 148(1), 145–180. https://doi.org/10.1016/j.precamres.2006.03.008 Bekker, Andrey, & Eriksson, K. A. (2003). A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: a record of the Kenorland breakup. Precambrian Research, 120(3), 327–364. https://doi.org/10.1016/S0301-9268(02)00165-1 Bekker, Andrey, Kaufman, A. J., Karhu, J. A., Beukes, N. J., Swart, Q. D., Coetzee, L. L., & Eriksson, K. A. (2001). Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: Implications for Coupled Climate Change and Carbon Cycling. American Journal of Science, 301(3), 261–285. https://doi.org/10.2475/ajs.301.3.261 Bellefroid, E. J., Planavsky, N. J., Hood, A. V. S., Halverson, G. P., & Spokas, K. (2019). Shallow water redox conditions of the mid-Proterozoic Muskwa Assemblage, British Columbia, Canada. American Journal of Science, 319(2), 122–157. https://doi.org/10.2475/02.2019.03 Bengtson, S., Belivanova, V., Rasmussen, B., & Whitehouse, M. (2009). The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. Proceedings of the National Academy of Sciences, 106(19), 7729–7734. https://doi.org/10.1073/pnas.0812460106 Bernstein, L., & Young, G. M. (1990). Depositional environments of the Early Proterozoic Espanola Formation, Ontario, Canada. Canadian Journal of Earth Sciences, 27(4), 539–551. https://doi.org/10.1139/e90-051 Bertrand-Sarfati, J., & Eriksson, K. A. (1977). Columnar stromatolites from the Early Proterozoic Schmidtsdrift Formation, Northern Cape province, South Africa - Part I: systematic and diagnostic features. Retrieved from http://hdl.handle.net/10539/16207 Bickle, M. J., Martin, A., & Nisbet, E. G. (1975). Basaltic and peridotitic komatiites and stromatolites above a basal unconformity in the Belingwe greenstone belt, Rhodesia. Earth and Planetary Science Letters, 27(2), 155–162. https://doi.org/10.1016/0012-821X(75)90024-2 Blake, D. H. (1987). Geology of the Mount Isa Inlier and environs, Queensland and Northern Territory (No. Bulletin 225). Canberra: Australia Bureau of Mineral Resources. Bolhar, R., & Van Kranendonk, M. J. (2007). A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research, 155(3), 229–250. https://doi.org/10.1016/j.precamres.2007.02.002 Bolhar, R., Hofmann, A., Siahi, M., Feng, Y., & Delvigne, C. (2015). A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ∼3.0Ga Pongola Supergroup, Kaapvaal Craton. Geochimica et Cosmochimica Acta, 158, 57–78. https://doi.org/10.1016/j.gca.2015.02.026 Bond, G., Wilson, J. F., & Winnall, N. J. (1973). Age of the Huntsman Limestone (Bulawayan) Stromatolites. Nature, 244(5414), 275–276. https://doi.org/10.1038/244275a0 Boraiaha, C. K., Jafar, M. I. M., Chandra, S. V., Shivakumar, M., Reddy, K. V. B., & Kandasamy, S. (2024). Geochemical and Isotopic Investigation of Carbonate Deposits in the Central Kaladgi Basin, North Karnataka. Journal of the Geological Society of India, 100(3), 407–414. https://doi.org/10.17491/jgsi/2024/173847 Bosch, P. J. A., Eriksson, P. G., & Snyman, C. P. (1993). The Wolkberg Group in the northeastern Transvaal: palaeoenvironment derived from sedimentology and geochemistry. South African Journal of Geology, 96(4), 190–204. Buck, S. G. (1980). Stromatolite and ooid deposits within the fluvial and lacustrine sediments of the Precambrian Ventersdorp Supergroup of South Africa. Precambrian Research, 12(1), 311–330. https://doi.org/10.1016/0301-9268(80)90033-9 Buick, R. (1992). The Antiquity of Oxygenic Photosynthesis: Evidence from Stromatolites in Sulphate-Deficient Archaean Lakes. Science, 255(5040), 74–77. https://doi.org/10.1126/science.11536492 Button, A. (1973). A regional study of the stratigraphy and development of the Transvaal Basin in the eastern and northeastern Transvaal (Ph.D.). University of Witwatersrand, Johannesburg. Byerly, G. R., Lower, D. R., & Walsh, M. M. (1986). Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319(6053), 489–491. https://doi.org/10.1038/319489a0 Cai, Y.-H., Zhang, S.-H., Zhao, Y., Hu, G.-H., Zhang, Q.-Q., & Pei, J.-L. (2022). Ages of the Proterozoic strata in Fanhe Basin revisited: Implications for geological records of the Great Oxidation Event in the North China Craton. Precambrian Research, 368, 106466. https://doi.org/10.1016/j.precamres.2021.106466 Campbell, F. H. A., & Cecile, M. (1981). Evolution of the Early Proterozoic Kilohigok Basin, Bathurst Inlet - Victoria Island, Northwest Territories. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/112532 Catuneanu, O., & Eriksson, P. G. (2002). Sequence stratigraphy of the Precambrian Rooihoogte–Timeball Hill rift succession, Transvaal Basin, South Africa. Sedimentary Geology, 147(1), 71–88. https://doi.org/10.1016/S0037-0738(01)00188-9 Caty, J.-L. (1976). Stratigraphie et sédimentologie de la formation de Papaskwasati de la région du lac Mistassini, Québec (No. DPV 423). Quebec Ministère des richesses naturelles, Service de l’exploration géologique. Retrieved from https://www.cubiq.ribg.gouv.qc.ca/notice?id=p%3A%3Ausmarcdef_0000491025&locale=fr Cecile, M. P., & Campbell, F. H. A. (1978). REGRESSIVE STROMATOLITE REEFS AND ASSOCIATED FACIES, MIDDLE GOULBURN GROUP (LOWER PROTEROZOIC), IN KILOHIGOK BASIN, N.W.T.: AN EXAMPLE OF ENVIRONMENTAL CONTROL OF STROMATOLITE FORM. Bulletin of Canadian Petroleum Geology, 26(2), 237–267. https://doi.org/10.35767/gscpgbull.26.2.237 Chakrabarti, G., & Shome, D. (2010). Interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time — An example from basal Gulcheru Formation, Cuddapah basin, India. Sedimentary Geology, 226(1), 22–28. https://doi.org/10.1016/j.sedgeo.2010.02.003 Chakrabarti, G., Shome, D., Kumar, S., Stephens, G. M., & Kah, L. C. (2014). Carbonate platform development in a Paleoproterozoic extensional basin, Vempalle Formation, Cuddapah Basin, India. Journal of Asian Earth Sciences, 91, 263–279. https://doi.org/10.1016/j.jseaes.2013.09.028 Chakraborty, P. P., Pant, N. C., & Paul, P. P. (2015). Chapter 5 Controls on sedimentation in Indian Palaeoproterozoic basins: clues from the Gwalior and Bijawar basins, central India. Geological Society, London, Memoirs, 43(1), 67–83. https://doi.org/10.1144/M43.5 Chandler, F. W. (1984). Metallogenesis of an early Proterozoic foreland sequence, eastern Hudson Bay, Canada. Journal of the Geological Society, 141(2), 299–313. https://doi.org/10.1144/gsjgs.141.2.0299 Chauhan, D. S. (1979). Phosphate-bearing stromatolites of the Precambrian Aravalli phosphorite deposits of the Udaipur region, their environmental significance and genesis of phosphorite. Precambrian Research, 8(1), 95–126. https://doi.org/10.1016/0301-9268(79)90040-8 Cloud, P. E., & Semikhatov, M. A. (1969). Proterozoic stromatolite zonation. American Journal of Science, 267(9), 1017–1061. https://doi.org/10.2475/ajs.267.9.1017 Coetzee, L. L. (2001). Genetic stratigraphy of the paleoproterozoic Pretoria Group in the Western Transvaal (M.Sc.). University of Johannesburg. Coffey, J. M., Flannery, D. T., Walter, M. R., & George, S. C. (2013). Sedimentology, stratigraphy and geochemistry of a stromatolite biofacies in the 2.72Ga Tumbiana Formation, Fortescue Group, Western Australia. Precambrian Research, 236, 282–296. https://doi.org/10.1016/j.precamres.2013.07.021 Dahlin, P., Allen, R., & Sjöström, H. (2012). Palaeoproterozoic metavolcanic and metasedimentary succession hosting the Dannemora iron ore deposits, Bergslagen region, Sweden. GFF, 134(2), 71–85. https://doi.org/10.1080/11035897.2012.674551 Dai, Y., Song, H., & Shen, J. (2004). Fossil bacteria in Xuanlong iron ore deposits of Hebei Province. Science in China, 47(4), 347–356. Dardenne, M. A., & Campos Neto, M. D. C. (1975). Estromatólitos colunares na Série Minas (MG). Revista Brasileira de Geosciências, 5(2), 99–105. Davies, N. S., Liu, A. G., Gibling, M. R., & Miller, R. F. (2016). Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews, 154, 210–246. https://doi.org/10.1016/j.earscirev.2016.01.005 Davis, D. W., & Jackson, M. C. (1988). Geochronology of the Lumby Lake greenstone belt: A 3 Ga complex within the Wabigoon subprovince, northwest Ontario. GSA Bulletin, 100(6), 818–824. https://doi.org/10.1130/0016-7606(1988)100<0818:GOTLLG>2.3.CO;2 Davis, W. J., Rainbird, R. H., Aspler, L. B., & Chiarenzelli, J. R. (2005). Detrital zircon geochronology of the Paleoproterozoic Hurwitz and Kiyuk Groups, western Churchill Province, Nunavut (Current Research No. 2005-F1) (pp. 1–13). Geological Survey of Canada. Day, W. C., Sims, P. K., Snyder, G. L., Wilson, A. B., Klein, T. L., Peterman, Z. E., et al. (1999). Geologic map of Precambrian Rocks, Rawhide Buttes West quadrangle and part of Rawhide Buttes East quadrangle, Hartville Uplift, Goshen and Niobrara Counties, Wyoming (No. 2635). IMAP. U.S. Geological Survey. https://doi.org/10.3133/i2635 De, S., Mallik, L., Mazumder, R., Chatterjee, P., Ohta, T., Saito, S., & Chiarenzelli, J. (2016). Sedimentation history of the Paleoproterozoic Singhbhum Group of rocks, eastern India and its implications. Earth-Science Reviews, 163, 141–161. https://doi.org/10.1016/j.earscirev.2016.10.001 DiMarco, M. J., & Lowe, D. R. (1989). Shallow-water volcaniclastic deposition in the Early Archean Panorama Formation, Warrawoona Group, eastern Pilbara Block, Western Australia. Sedimentary Geology, 64(1), 43–63. https://doi.org/10.1016/0037-0738(89)90083-3 Djokic, T., Bolhar, R., Brengman, L. A., Havig, J. R., & Van Kranendonk, M. J. (2024). Trace elements (REE + Y) reveal marine, subaerial, and hydrothermal controls on an early Archean habitat for life: The 3.48 Ga volcanic-caldera system of the dresser formation, Pilbara Craton. Chemical Geology, 644, 121865. https://doi.org/10.1016/j.chemgeo.2023.121865 Djokic, Tara, Van Kranendonk, M. J., Campbell, K. A., Walter, M. R., & Ward, C. R. (2017). Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nature Communications 2017 8:1, 8(1), 1–9. https://doi.org/10.1038/ncomms15263 Djokic, Tara, Van Kranendonk, M. J., Campbell, K. A., Havig, J. R., Walter, M. R., & Guido, D. M. (2021). A Reconstructed Subaerial Hot Spring Field in the ∼3.5 Billion-Year-Old Dresser Formation, North Pole Dome, Pilbara Craton, Western Australia. Astrobiology, 21(1), 1–38. https://doi.org/10.1089/ast.2019.2072 Dodd, M. S., Papineau, D., She, Z., Fogel, M. L., Nederbragt, S., & Pirajno, F. (2018). Organic remains in late Palaeoproterozoic granular iron formations and implications for the origin of granules. Precambrian Research, 310, 133–152. https://doi.org/10.1016/j.precamres.2018.02.016 Donnellan, N. (2013). Geology and mineral resources of the Northern Territory: Tomkinson Province. Northern Territory Geological Survey. Retrieved from https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81496 Du, L., Yang, C., Wyman, D. A., Nutman, A. P., Lu, Z., Song, H., et al. (2016). Age and depositional setting of the Paleoproterozoic Gantaohe Group in Zanhuang Complex: Constraints from zircon U–Pb ages and Hf isotopes of sandstones and dacite. Precambrian Research, 286, 59–100. https://doi.org/10.1016/j.precamres.2016.09.027 Duda, J.-P., Kranendonk, M. J. V., Thiel, V., Ionescu, D., Strauss, H., Schäfer, N., & Reitner, J. (2016). A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia. PLOS ONE, 11(1), e0147629. https://doi.org/10.1371/journal.pone.0147629 El Tabakh, M., Grey, K., Pirajno, F., & Charlotte Schreiber, B. (1999). Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: Origin and significance. Geology, 27(10), 871–874. https://doi.org/10.1130/0091-7613(1999)027<0871:PAEMIW>2.3.CO;2 Eriksson, P. G., & Altermann, W. (1998). An overview of the geology of the Transvaal Supergroup dolomites (South Africa). Environmental Geology, 36(1), 179–188. https://doi.org/10.1007/s002540050334 Eriksson, P. G., Simpson, E. L., Eriksson, K. A., Bumby, A. J., Steyn, G. L., & Sarkar, S. (2000). Muddy Roll-up Structures in Siliciclastic Interdune Beds of the c. 1.8 Ga Waterberg Group, South Africa. PALAIOS, 15(3), 177–183. https://doi.org/10.1669/0883-1351(2000)015<0177:MRUSIS>2.0.CO;2 Eriksson, P. G, Altermann, W., Catuneanu, O., van der Merwe, R., & Bumby, A. J. (2001). Major influences on the evolution of the 2.67–2.1   Ga Transvaal basin, Kaapvaal craton. Sedimentary Geology, 141–142, 205–231. https://doi.org/10.1016/S0037-0738(01)00075-6 Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U., & Catuneanu, O. (2004a). Chapter 7 - Sedimentation through time. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, & O. Catuneanu (Eds.), Developments in Precambrian Geology (Vol. 12, pp. 593–680). Elsevier. https://doi.org/10.1016/S0166-2635(04)80009-4 Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U., & Catuneanu, O. (2004b). Chapter 8 - Sequence Stratigraphy and the Precambrian. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, & O. Catuneanu (Eds.), Developments in Precambrian Geology (Vol. 12, pp. 681–738). Elsevier. https://doi.org/10.1016/S0166-2635(04)80010-0 Eriksson, Patrick G., & Reczko, B. F. F. (1998). Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa. Sedimentary Geology, 120(1), 319–335. https://doi.org/10.1016/S0037-0738(98)00038-4 Eriksson, Patrick G., Sarkar, S., Samanta, P., Banerjee, S., Porada, H., & Catuneanu, O. (2010). Paleoenvironmental Context of Microbial Mat-Related Structures in Siliciclastic Rocks. In J. Seckbach & A. Oren (Eds.), Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems (pp. 71–108). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-3799-2_5 Farid, U. (2022). Petrographic characterization of evaporites in the Petäjäskoski Formation, Peräpohja Belt, Northern Finland (M.Sc.). University of Oulu. Flannery, D. T., & Walter, M. R. (2012). Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem. Australian Journal of Earth Sciences, 59(1), 1–11. https://doi.org/10.1080/08120099.2011.607849 Flannery, D. T. O. (2013). Palaeobiology of the Neoarchean Fortescue Group, Pilbara Craton, Western Australia (Thesis). UNSW Sydney. https://doi.org/10.26190/unsworks/16605 Flannery, David T., Allwood, A. C., & Van Kranendonk, M. J. (2016). Lacustrine facies dependence of highly 13C-depleted organic matter during the global age of methanotrophy. Precambrian Research, 285, 216–241. https://doi.org/10.1016/j.precamres.2016.09.021 Franchi, F. (2018). Petrographic and geochemical characterization of the Lower Transvaal Supergroup stromatolitic dolostones (Kanye Basin, Botswana). Precambrian Research, 310, 93–113. https://doi.org/10.1016/j.precamres.2018.02.018 Fraser, J. A. (1964). Geological notes on northeastern district of Mackenzie, Northwest Territories (No. 63–40) (p. 28). Geological Survey of Canada Department of Mines and Technical Surveys. Gabriel, N. W., Papineau, D., She, Z., Leider, A., & Fogel, M. L. (2021). Organic diagenesis in stromatolitic dolomite and chert from the late Palaeoproterozoic McLeary Formation. Precambrian Research, 354, 106052. https://doi.org/10.1016/j.precamres.2020.106052 Gall, Q., Peterson, T. D., & Donaldson, J. A. (1992). A proposed revision of early Proterozoic stratigraphy of the Thelon and Baker Lake Basins, Northwest Territories (Current Research, Part C, Canadian Shield No. 92– 1C) (pp. 129–137). Geological Survey of Canada. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/192918 Genest, S. (1989). Histoire géologique du bassin d’Otish, Protérozoïque inférieur (Québec) (Ph.D.). University of Montreal. Geoscience Australia, & Australian Stratigraphy Commission. (2017). Australian Stratigraphic Units Database [Data set]. Retrieved from https://asud.ga.gov.au/ Gibson, G. M., Champion, D. C., Withnall, I. W., Neumann, N. L., & Hutton, L. J. (2018). Assembly and breakup of the Nuna supercontinent: Geodynamic constraints from 1800 to 1600 Ma sedimentary basins and basaltic magmatism in northern Australia. Precambrian Research, 313, 148–169. https://doi.org/10.1016/j.precamres.2018.05.013 Gong, Z., & Evans, D. A. D. (2022). Paleomagnetic survey of the Goulburn Supergroup, Kilohigok Basin, Nunavut, Canada: Toward an understanding of the Orosirian apparent polar wander path of the Slave craton. Precambrian Research, 369, 106516. https://doi.org/10.1016/j.precamres.2021.106516 Goodwin, A., & Papineau, D. (2022). Biosignatures Associated with Organic Matter in Late Paleoproterozoic Stromatolitic Dolomite and Implications for Martian Carbonates. Astrobiology, 22(1), 49–74. https://doi.org/10.1089/ast.2021.0010 Grant, P. R., Murty, V. N., & Sengupta, S. (1980). The first record of stromatolites from the Koira Group (Iron Ore Series), Precambrian of Bihar-Orissa, India. In Stromatolites, characteristics, and utility (Vol. 44, pp. 49–53). Udaipur, Rajasthan, India: Geological Survey of India. Grey, K. (1981). Small conical stromatolites from the Archean near Kanowna, Western Australia (Annual Report of Geological Survey of Western Australia) (pp. 90–94). Perth: Geological Survey of Western Australia. Grey, K. (1984). Biostratigraphic studies of stromatolites from the Proterozoic Earaheedy Group, Nabberu Basin (No. Bulletin 130) (p. 132). Perth: Geological Survey of Western Australia. Grey, Kathleen. (1982). Aspects of Proterozoic stromatolite biostratigraphy in Western Australia. Precambrian Research, 18(4), 347–365. https://doi.org/10.1016/0301-9268(82)90008-0 Grey, Kathleen. (1994). Stromatolites from the Palaeoproterozoic (Orosirian) Glengarry Group, Glengarry Basin, Western Australia. Alcheringa: An Australasian Journal of Palaeontology, 18(4), 275–300. https://doi.org/10.1080/03115519408619500 Grey, Kathleen, & Thorne, A. M. (1985). Biostratigraphic significance of stromatolites in upward shallowing sequences of the early proterozoic Duck Creek Dolomite, Western Australia. Precambrian Research, 29(1), 183–206. https://doi.org/10.1016/0301-9268(85)90068-3 Grobler, N. J., & Emslie, D. P. (1976). Stromatolitic limestone and chert in the Ventersdorp Supergroup at the T’Kuip Hills area and surroundings, Britstown District, South Africa. South African Journal of Geology, 79(1), 49. https://doi.org/10.10520/AJA10120750_2918 Grobler, N. J., van der Westhuizen, W. A., & Tordiffe, E. A. W. (1989). The Sodium Group, South Africa: Reference section for Late Archaean-Early Proterozoic cratonic cover sequences. Australian Journal of Earth Sciences, 36(1), 41–64. https://doi.org/10.1080/14400958908527950 Grotzinger, J. P., McCormick, D. S., & Pelechaty, S. M. (1987). Progress report on the stratigraphy, sedimentology and significance of the Kimerot and Bear Creek groups, Kilohigok Basin, District of Mackenzie (Current Research, Part A No. 87– 1A) (pp. 219–238). Geological Survey of Canada. Retrieved from https://authors.library.caltech.edu/records/637y0-wbw33 Haines, P. W., Rawlings, D. J., Sweet, I. P., Pietsch, B. A., Plumb, K. A., Madigan, T. L. A., & Krassay, A. A. (1999). Blue Mud Bay, Northern Territory. Northern Territory Geological Survey. Harrison, J. M. (1952). The Quebec-Labrador iron belt, Quebec and Newfoundland. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/125506 Heard, A. W., Bekker, A., Kovalick, A., Tsikos, H., Ireland, T., & Dauphas, N. (2022). Oxygen production and rapid iron oxidation in stromatolites immediately predating the Great Oxidation Event. Earth and Planetary Science Letters, 582, 117416. https://doi.org/10.1016/j.epsl.2022.117416 Henderson, J. B. (1975). Archean Stromatolites in the Northern Slave Province, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 12(9), 1619–1630. https://doi.org/10.1139/e75-144 Heubeck, C. (2009). An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology, 37(10), 931–934. https://doi.org/10.1130/G30101A.1 Hickman, A. H. (2021). Cattle Well Formation (A-CDa-s) (Explanatory Notes extract). Geological Survey of Western Australia. Retrieved from https://reportviewer.dmp.wa.gov.au/reportviewer/Default.aspx?reportPath=/ENS/Lithstrat%20Report&rs%3ACommand=Render&GEOLCODE=A-CDa-s&Unit_name=Cattle%20Well%20Formation Hickman, A. H., & Van Kranendonk, M. J. (2012). Early Earth evolution: evidence from the 3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes, 35(1), 283. https://doi.org/10.18814/epiiugs/2012/v35i1/028 Hickman-Lewis, K., Garwood, R. J., Withers, P. J., & Wacey, D. (2017). X-ray microtomography as a tool for investigating the petrological context of Precambrian cellular remains. Geological Society, London, Special Publications, 448(1), 33–56. https://doi.org/10.1144/SP448.11 Hickman-Lewis, K., Cavalazzi, B., Foucher, F., & Westall, F. (2018). Most ancient evidence for life in the Barberton greenstone belt: Microbial mats and biofabrics of the ∼3.47 Ga Middle Marker horizon. Precambrian Research, 312, 45–67. https://doi.org/10.1016/j.precamres.2018.04.007 Hickman-Lewis, K., Gourcerol, B., Westall, F., Manzini, D., & Cavalazzi, B. (2020). Reconstructing Palaeoarchaean microbial biomes flourishing in the presence of emergent landmasses using trace and rare earth element systematics. Precambrian Research, 342, 105689. https://doi.org/10.1016/j.precamres.2020.105689 Hill, C., Corcoran, P. L., Aranha, R., & Longstaffe, F. J. (2016). Microbially induced sedimentary structures in the Paleoproterozoic, upper Huronian Supergroup, Canada. Precambrian Research, 281, 155–165. https://doi.org/10.1016/j.precamres.2016.05.010 Hocking, R. M. (2018). Scorpion Group (P_-MS-skcv) (Explanatory Notes extract). Geological Survey of Western Australia. Retrieved from www.dmp.wa.gov.au/ens Hoffman, P. (1976). Chapter 10.7 Environmental Diversity of Middle Precambrian Stromatolites. In M. R. Walter (Ed.), Developments in Sedimentology (Vol. 20, pp. 599–611). Elsevier. https://doi.org/10.1016/S0070-4571(08)71161-0 Hoffman, P. F. (1968). Stratigraphy of the Lower Proterozoic (Aphebian), Great Slave Supergroup, East Arm of Great Slave Lake, District of Mackenzie. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/103849 Hoffman, P. F. (1988). Pethei Reef Complex (1.9 Ga), Great Slave Lake, N.W.T. Canadian Society of Petroleum Geologists, Memoir, (13), 38–48. Hofmann, A., Bolhar, R., Kuznetsov, A. B., Jodder, J., Butler, M., & Nguyen, A. (2023). A craton-wide geochemical study of Neoarchaean carbonate rocks of Zimbabwe. Chemical Geology, 634, 121587. https://doi.org/10.1016/j.chemgeo.2023.121587 Hofmann, H. J. (1969). Attributes of stromatolites (Paper No. 69–39). Ottawa: Geological Survey of Canada. Hofmann, H. J. (1978). New stromatolites from the Aphebian Mistassini Group, Quebec. Canadian Journal of Earth Sciences, 15(4), 571–585. https://doi.org/10.1139/e78-062 Hofmann, H. J. (2000). Archean Stromatolites as Microbial Archives. In R. E. Riding & S. M. Awramik (Eds.), Microbial Sediments (pp. 315–327). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-04036-2_34 Hofmann, H J, & Davidson, A. (1998). Paleoproterozoic stromatolites, Hurwitz Group, Quartzite Lake area, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 35(3), 280–289. https://doi.org/10.1139/e97-103 Hofmann, H. J., & Grotzinger, J. P. (1985). Shelf-facies microbiotas from the Odjick and Rocknest formations (Epworth Group; 1.89 Ga), northwestern Canada. Canadian Journal of Earth Sciences, 22(12), 1781–1792. https://doi.org/10.1139/e85-189 Hofmann, H. J., & Snyder, G. L. (1985). Archean stromatolites from the Hartville Uplift, eastern Wyoming. GSA Bulletin, 96(7), 842–849. https://doi.org/10.1130/0016-7606(1985)96<842:ASFTHU>2.0.CO;2 Hofmann, H. J., Pearson, D. A. B., & Wilson, B. H. (1980). Stromatolites and fenestral fabric in Early Proterozoic Huronian Supergroup, Ontario. Canadian Journal of Earth Sciences, 17(10), 1351–1357. https://doi.org/10.1139/e80-142 Hofmann, H. J., Sage, R. P., & Berdusco, E. N. (1991). Archean stromatolites in Michipicoten Group siderite ore at Wawa, Ontario. Economic Geology, 86(5), 1023–1030. https://doi.org/10.2113/gsecongeo.86.5.1023 Hofmann, Hans J., & Masson, M. (1994). Archean stromatolites from Abitibi greenstone belt, Quebec, Canada. GSA Bulletin, 106(3), 424–429. https://doi.org/10.1130/0016-7606(1994)106<0424:ASFAGB>2.3.CO;2 Hofmann, H.J. (1976). Precambrian Microflora, Belcher Islands, Canada: Significance and Systematics. Journal of Paleontology, 50(6), 1040–1073. Hofmann, H.J., & Schopf, J. W. (1983). Early Proterozoic Microfossils. In J. W. Schopf (Ed.), Earth’s Earliest Biosphere (pp. 321–360). Princeton, NJ: Princeton University Press. Homann, M., Heubeck, C., Airo, A., & Tice, M. M. (2015). Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Research, 266, 47–64. https://doi.org/10.1016/j.precamres.2015.04.018 Homann, M., Sansjofre, P., Van Zuilen, M., Heubeck, C., Gong, J., Killingsworth, B., et al. (2018). Microbial life and biogeochemical cycling on land 3,220 million years ago. Nature Geoscience, 11(9), 665–671. https://doi.org/10.1038/s41561-018-0190-9 Howard, C. M., Sheldon, N. D., Smith, S. Y., & Noffke, N. (2024). Interpreting an Archaean paleoenvironment through 3D imagery of microbialites. Geobiology, 22(3), e12601. https://doi.org/10.1111/gbi.12601 Ielpi, A., Rainbird, R. H., Greenman, J. W., & Creason, C. G. (2017). Geology of Elu Inlet and Melville Sound, Nunavut, Arctic Canada. Journal of Maps. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/17445647.2016.1268981 Jackson, M. C. (1985). Geology of the Lumby Lake Area, Western Part, Districts of Kenora and Rainy River (No. Open File Report 5534) (p. 178). Ontario Geological Survey. Retrieved from https://www.geologyontario.mndmf.gov.on.ca/mndmfiles/pub/data/imaging/OFR5534/OFR5534.pdf Jansson, N. F., Zetterqvist, A., Allen, R. L., Billström, K., & Malmström, L. (2017). Genesis of the Zinkgruvan stratiform Zn-Pb-Ag deposit and associated dolomite-hosted Cu ore, Bergslagen, Sweden. Ore Geology Reviews, 82, 285–308. https://doi.org/10.1016/j.oregeorev.2016.12.004 Jansson, Nils F. (2016). Structural evolution of the Palaeoproterozoic Sala stratabound Zn-Pb-Ag carbonate-replacement deposit, Bergslagen, Sweden. GFF, 139(1), 21–35. https://doi.org/10.1080/11035897.2016.1196498 Jones, J. A., Pirajno, F., Hocking, R. M., & Grey, K. (2000). Revised stratigraphy for the Earaheedy Group: implications for the tectonic evolution and mineral potential of the Earaheedy Basin. Western Australian Geological Survey, 57–63. Kah, L. C., & Grotzinger, J. P. (1992). Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories. PALAIOS, 7(3), 305–315. https://doi.org/10.2307/3514975 Kakegawa, T., & Nanri, H. (2006). Sulfur and carbon isotope analyses of 2.7Ga stromatolites, cherts and sandstones in the Jeerinah Formation, Western Australia. Precambrian Research, 148(1), 115–124. https://doi.org/10.1016/j.precamres.2006.03.005 Kamber, B. S., Bolhar, R., & Webb, G. E. (2004). Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Research, 132(4), 379–399. https://doi.org/10.1016/j.precamres.2004.03.006 Karhu, J. A. (1993). Palaeoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geological Survey of Finland Bulletin, (371), 1–87. Khelen, A. C., Manikyamba, C., Subramanyam, K. S. V., Santosh, M., Ganguly, S., Kalpana, M. S., & Subba Rao, D. V. (2019). Archean seawater composition and depositional environment – Geochemical and isotopic signatures from the stromatolitic carbonates of Dharwar Craton, India. Precambrian Research, 330, 35–57. https://doi.org/10.1016/j.precamres.2019.04.020 Khelen, A. C., Manikyamba, C., Tang, L., Santosh, M., Subramanyam, K. S. V., & Singh, T. D. (2020). Detrital zircon U-Pb geochronology of stromatolitic carbonates from the greenstone belts of Dharwar Craton and Cuddapah basin of Peninsular India. Geoscience Frontiers, 11(1), 229–242. https://doi.org/10.1016/j.gsf.2019.04.010 Kiyokawa, S., Ito, T., Ikehara, M., & Kitajima, F. (2006). Middle Archean volcano-hydrothermal sequence: Bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. GSA Bulletin, 118(1–2), 3–22. https://doi.org/10.1130/B25748.1 Knoll, A. H., & Simonson, B. (1981). Early proterozoic microfossils and penecontemporaneous quartz cementation in the sokoman iron formation, Canada. Science (New York, N.Y.), 211(4481), 478–480. https://doi.org/10.1126/science.211.4481.478 Krapež, B., Müller, S. G., & Bekker, A. (2015). Stratigraphy of the Late Palaeoproterozoic (∼2.03   Ga) Wooly Dolomite, Ashburton Province, Western Australia: A carbonate platform developed in a failed rift basin. Precambrian Research, 271, 1–19. https://doi.org/10.1016/j.precamres.2015.09.022 Kumar, S. (1980). Stromatolites and Indian biostratigraphy: a review. Journal of the Palaeontological Society of India, 23–24, 166–183. Kunzmann, M., Schmid, S., Blaikie, T. N., & Halverson, G. P. (2019). Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn-Pb host succession: The Proterozoic middle McArthur Group, McArthur Basin, Australia. Ore Geology Reviews, 106, 150–175. https://doi.org/10.1016/j.oregeorev.2019.01.011 Laajoki, K. (2005). Chapter 7 Karelian supracrustal rocks. In M. Lehtinen, P. A. Nurmi, & O. T. Rämö (Eds.), Developments in Precambrian Geology (Vol. 14, pp. 279–341). Elsevier. https://doi.org/10.1016/S0166-2635(05)80008-8 Lambert, M. B. (1996). Stratigraphy of the southern portion of an Archean stratovolcano in the Back River volcanic complex, Slave Province, Northwest Territories (Curren Research No. 1996– C) (pp. 19–28). Geological Survey of Canada. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/192269 Lambert, M. B. (1998). Stromatolites of the late Archean Back River stratovolcano, Slave structural province, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 35(3), 290–301. https://doi.org/10.1139/e97-115 Lambert, M. B., Burbidge, G., Jefferson, C. W., Beaumont-smith, C., & Lustwerk, R. (1990). Stratigraphy, Facies and Structure in Volcanic and Sedimentary Rocks of the Archean Back River Volcanic Complex, N.w.t. (Current Research, Part C, Canadian Shield No. 90– 1C) (pp. 151–165). Geological Survey of Canada. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/136977 Larue, D. K. (1981). The Chocolay Group, Lake Superior region, U.S.A.: Sedimentologic evidence for deposition in basinal and platform settings on an early Proterozoic craton. GSA Bulletin, 92(7), 417–435. https://doi.org/10.1130/0016-7606(1981)92<417:TCGLSR>2.0.CO;2 Lepot, K. (2020). Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Science Reviews, 209, 103296. https://doi.org/10.1016/j.earscirev.2020.103296 Liang, Y., Zhu, S., Zhang, L., Cao, R., Gao, Z., & Bu, D. (1985). Stromatolite assemblages of the late precambrian in China. Precambrian Research, 29(1), 15–32. https://doi.org/10.1016/0301-9268(85)90056-7 Licari, G. R., Preston E Cloud, J., & Smith, W. D. (1969). A NEW CHROOCOCCACEAN ALGA FROM THE PROTEROZOIC OF QUEENSLAND. Proceedings of the National Academy of Sciences of the United States of America, 62(1), 56. https://doi.org/10.1073/pnas.62.1.56 Lindsay, J. F., & Brasier, M. D. (2002). Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Research, 114(1), 1–34. https://doi.org/10.1016/S0301-9268(01)00219-4 van Loon, A. J., & Mazumder, R. (2013). First find of biogenic activity in the Palaeoproterozoic of the Singhbhum craton (E India). Geologos, 19(3), 185–192. https://doi.org/10.2478/logos-2013-0011 van Loon, A. J., Mazumder, R., & De, S. (2016). The response of stromatolites to seismic shocks: Tomboliths from the Palaeoproterozoic Chaibasa Formation, E India. Journal of Palaeogeography, 5(4), 381–390. https://doi.org/10.1016/j.jop.2016.08.003 Maheshwari, A., Sial, A. N., Gaucher, C., Bossi, J., Bekker, A., Ferreira, V. P., & Romano, A. W. (2010). Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: A review of occurrences in Brazil, India, and Uruguay. Precambrian Research, 182(4), 274–299. https://doi.org/10.1016/j.precamres.2010.06.017 Markun, C. D., & Randazzo, A. F. (1980). Sedimentary structures in the Gunflint Iron Formation, Schreiber Beach, Ontario. Precambrian Research, 12(1), 287–310. https://doi.org/10.1016/0301-9268(80)90032-7 Martin, A., Nisbet, E. G., & Bickle, M. J. (1980). Archaean stromatolites of the Belingwe Greenstone Belt, Zimbabwe (Rhodesia). Precambrian Research, 13(4), 337–362. https://doi.org/10.1016/0301-9268(80)90049-2 Martin, D. M., Powell, C. M., & George, A. D. (2000). Stratigraphic architecture and evolution of the early Paleoproterozoic McGrath Trough, Western Australia. Precambrian Research, 99(1), 33–64. https://doi.org/10.1016/S0301-9268(99)00053-4 Martindale, R. C., Strauss, J. V., Sperling, E. A., Johnson, J. E., Van Kranendonk, M. J., Flannery, D., et al. (2015). Sedimentology, chemostratigraphy, and stromatolites of lower Paleoproterozoic carbonates, Turee Creek Group, Western Australia. Precambrian Research, 266, 194–211. https://doi.org/10.1016/j.precamres.2015.05.021 Matthäi, S. K., & Henley, R. W. (1996). Geochemistry and depositional environment of the gold-mineralized Proterozoic Koolpin Formation, Pine Creek Inlier, Northern Australia: a comparison with modern shale sequences. Precambrian Research, 78(4), 211–235. https://doi.org/10.1016/0301-9268(95)00057-7 Mccgregor, A. M. (1940). A Pre-Cambrian Algal limestone in Southern Rhodesia. South African Journal of Geology, 43(01), 9–15. https://doi.org/10.10520/AJA10120750_1412 McCormick, D. S., & Grotzinger, J. P. (1992). Evolution and significance of an overfilled alluvial foreland basin: Burnside Formation (1.9 Ga), Kilohigok Basin, N.W.T., Canada. Basin Research, 4(3–4), 253–278. https://doi.org/10.1111/j.1365-2117.1992.tb00048.x McIntyre, T., & Fralick, P. (2017). Sedimentology and Geochemistry of the 2930 Ma Red Lake–Wallace Lake Carbonate Platform, Western Superior Province, Canada. The Depositional Record, 3(2), 258–287. https://doi.org/10.1002/dep2.36 McKenzie, N. R., Hughes, N. C., Myrow, P. M., Xiao, S., & Sharma, M. (2011). Correlation of Precambrian–Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth and Planetary Science Letters, 312(3), 471–483. https://doi.org/10.1016/j.epsl.2011.10.027 McKenzie, N. R., Hughes, N. C., Myrow, P. M., Banerjee, D. M., Deb, M., & Planavsky, N. J. (2013). New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications. Precambrian Research, 238, 120–128. https://doi.org/10.1016/j.precamres.2013.10.006 Medvedev, P., Bekker, A., Karhu, J., & Kortelainen, N. (2005). Testing the biostratigraphic potential of early Paleoproterozoic microdigitate stromatolites. Retrieved from https://www.semanticscholar.org/paper/Testing-the-biostratigraphic-potential-of-early-Medvedev-Bekker/4b9c2ccca5d75a7d8f5ce8a50dec91e96a0eaccc Melezhik, V., Prave, A. R., Hanski, E. J., Fallick, A. E., Lepland, A., Kump, L. R., & Strauss, H. (Eds.). (2013). Reading the Archive of Earth’s Oxygenation: Volume 2: The Core Archive of the Fennoscandian Arctic Russia - Drilling Early Earth Project. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-29659-8 Melezhik, V. A., & Fallick, A. E. (2004). Palaeoproterozoic, rift-related, 13C-rich, lacustrine carbonates, NW Russia. Part I: Sedimentology and major element geochemistry. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 95(3–4), 393–421. https://doi.org/10.1017/S0263593300001140 Melezhik, Victor A., Fallick, A. E., Makarikhin, V. V., & Lyubtsov, V. V. (1997). Links between Palaeoproterozoic palaeogeography and rise and decline of stromatolites: Fennoscandian Shield. Precambrian Research, 82(3), 311–348. https://doi.org/10.1016/S0301-9268(96)00061-7 Melezhik, Victor A., Fallick, A. E., Medvedev, P. V., & Makarikhin, V. V. (2000). Palaeoproterozoic magnesite-stromatolite-dolostone-’red bed’ association, Russian Karelia: Palaeoenvironmental constraints on the 2.0 Ga-positive carbon isotope shift. Norsk Geologisk Tidsskrift, 80(3), 163–186. https://doi.org/10.1080/002919600433724 Melezhik, Victor A., Prave, A. R., Fallick, A. E., Kump, L. R., Strauss, H., Lepland, A., & Hanski, E. J. (Eds.). (2013). Reading the Archive of Earth’s Oxygenation: Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia - Drilling Early Earth Project. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-29682-6 Melezhik, Victor A., Prave, A. R., Hanski, E. J., Fallick, A. E., Lepland, A., Kump, L. R., & Strauss, H. (Eds.). (2013). Reading the Archive of Earth’s Oxygenation: Volume 3: Global Events and the Fennoscandian Arctic Russia - Drilling Early Earth Project. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-29670-3 Mezhelovskaya, S. V., Korsakov, A. K., Mezhelovskii, A. D., & Bibikova, E. V. (2016). Age range of formation of sedimentary-volcanogenic complex of the Vetreny Belt (the southeast of the Baltic Shield). Stratigraphy and Geological Correlation, 24(2), 105–117. https://doi.org/10.1134/S0869593816020040 Mirota, M. D., & Veizer, J. (1994). Geochemistry of precambrian carbonates: VI. Aphebian albanel formations, Quebec, Canada. Geochimica et Cosmochimica Acta, 58(7), 1735–1745. https://doi.org/10.1016/0016-7037(94)90533-9 Nelson, G. J., Pufahl, P. K., & Hiatt, E. E. (2010). Paleoceanographic constraints on Precambrian phosphorite accumulation, Baraga Group, Michigan, USA. Sedimentary Geology, 226(1), 9–21. https://doi.org/10.1016/j.sedgeo.2010.02.001 Noffke, N. (2007). Microbially induced sedimentary structures in Archean sandstones: A new window into early life. Gondwana Research, 11(3), 336–342. https://doi.org/10.1016/j.gr.2006.10.004 Noffke, N., Hazen, R., & Nhleko, N. (2003). Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology, 31(8), 673–676. https://doi.org/10.1130/G19704.1 Noffke, N., Eriksson, K. A., Hazen, R. M., & Simpson, E. L. (2006). A new window into Early Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology, 34(4), 253–256. https://doi.org/10.1130/G22246.1 Noffke, N., Beukes, N., Gutzmer, J., & Hazen, R. (2006). Spatial and temporal distribution of microbially induced sedimentary structures: A case study from siliciclastic storm deposits of the 2.9Ga Witwatersrand Supergroup, South Africa. Precambrian Research, 146(1), 35–44. https://doi.org/10.1016/j.precamres.2006.01.003 Noffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 Billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology, 13(12), 1103–1124. https://doi.org/10.1089/ast.2013.1030 Occhipinti, S. A., Sheppard, S., Tyler, I. M., Sircombe, K. N., Reddy, S., Hollingsworth, D., et al. (2003). Proterozoic geology of the western Capricorn Orogen - A field guide (Specialist Group in Tectonics and Structural Geology 12th Field Conference No. Record 2003/16). Kalbarri: Geological Survey of Western Australia. Ojakangas, R. W. (1994). Sedimentology and provenance of the early Proterozoic Michigamme Formation and Goodrich Quartzite, northern Michigan: Regional stratigraphic implications and suggested correlations (No. 1904- R). Bulletin. U.S. Geological Survey. https://doi.org/10.3133/b1904R Pant, C. C. (1985). Stromatolites from Middle-Riphean Gangolihat Dolomites (Deoban), Berinag-Gangolihat Area, Pithoragarh District, Kumaun Lesser Himalaya. Journal of the Geological Society of India, 26(1), 1–9. https://doi.org/10.17491/jgsi/1985/260101 Paterson, W., & Lewis, S. (2022). Exploration potential for Muskrat Dam Lake greenstone belt and Rottenfish River greenstone belt (Recommendations for Exploration Special Edition: Critical Minerals Compilation 2000-2022) (pp. 26–30). Ontario Geological Survey, Resident Geologist Program. Piché, M., & Jébrak, M. (2006). Determination of alteration facies using the normative mineral alteration index: Selbaie Cu–Zn deposit, northern Abitibi greenstone belt, Canada. Canadian Journal of Earth Sciences, 43(12), 1877–1885. https://doi.org/10.1139/e06-097 Planavsky, N., Rouxel, O., Bekker, A., Shapiro, R., Fralick, P., & Knudsen, A. (2009). Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 286(1), 230–242. https://doi.org/10.1016/j.epsl.2009.06.033 Pope, M. C., & Grotzinger, J. P. (2000). Controls on Fabric Development and Morphology of Tufas and Stromatolites, Uppermost Pethei Group (1.8 GA), Great Slave Lake, Northwest Canada. In John P. Grotzinger & N. P. James (Eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (Vol. 67, p. 0). SEPM Society for Sedimentary Geology. Retrieved from https://doi.org/10-2110/pec.00.67 Pope, M. C., & Grotzinger, J. P. (2003). Paleoproterozoic Stark Formation, Athapuscow Basin, Northwest Canada: Record of Cratonic-Scale Salinity Crisis. Journal of Sedimentary Research, 73(2), 280–295. https://doi.org/10.1306/091302730280 Préat, A., Bouton, P., Thiéblemont, D., Prian, J.-P., Ndounze, S. S., & Delpomdor, F. (2011). Paleoproterozoic high δ13C dolomites from the Lastoursville and Franceville basins (SE Gabon): Stratigraphic and synsedimentary subsidence implications. Precambrian Research, 189(1), 212–228. https://doi.org/10.1016/j.precamres.2011.05.013 Rasmussen, B., Blake, T. S., Fletcher, I. R., & Kilburn, M. R. (2009). Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments. Geology, 37(5), 423–426. https://doi.org/10.1130/G25300A.1 Rawlings, D. J., Sweet, I. P., & Kruse, P. D. (2008). Mount Drummond, Northern Territory: explanatory notes. Northern Territory Geological Survey. Retrieved from https://hdl.handle.net/10070/794830 Raye, U., Pufahl, P. K., Banerjee, S., Ricard, E., & Kurtis Kyser, T. (2024). Coupled δ56Fe and δ18O analysis of the Frere iron formation, Western Australia, and Paleoproterozoic ocean circulation. Precambrian Research, 410, 107461. https://doi.org/10.1016/j.precamres.2024.107461 Ricketts, B. D. (1979). Sedimentology and stratigraphy of eastern and central Belcher Islands, Northwest Territories. Carleton University. Retrieved from https://hdl.handle.net/20.500.14718/30552 Riedman, L. A., Porter, S. M., Lechte, M. A., dos Santos, A., & Halverson, G. P. (2023). Early eukaryotic microfossils of the late Palaeoproterozoic Limbunya Group, Birrindudu Basin, northern Australia. Papers in Palaeontology, 9(6), e1538. https://doi.org/10.1002/spp2.1538 Ross, G. M., & Donaldson, J. A. (1989). Reef Development and Facies Geometry on a High-Energy Early Proterozoic Carbonate Shelf (Hornby Bay Group, Northwest Territories, Canada), 120–128. Roy, A. B., & Paliwal, B. S. (1981). Evolution of lower proterozoic epicontinental deposits: Stromatolite-bearing Aravalli rocks of Udaipur, Rajasthan, India. Precambrian Research, 14(1), 49–74. https://doi.org/10.1016/0301-9268(81)90035-8 Salminen, P. E., Karhu, J. A., & Melezhik, V. A. (2013). Kolosjoki Sedimentary Formation: A record in the aftermath of the Paleoproterozoic global positive δ13C excursion in sedimentary carbonates. Chemical Geology, 362, 165–180. https://doi.org/10.1016/j.chemgeo.2013.10.018 Sami, T. T., & James, Noel. P. (1993). Evolution of an early Proterozoic foreland basin carbonate platform, lower Pethei Group, Great Slave Lake, north-west Canada. Sedimentology, 40(3), 403–430. https://doi.org/10.1111/j.1365-3091.1993.tb01343.x Schmidt, P. W., & Williams, G. E. (2008). Palaeomagnetism of red beds from the Kimberley Group, Western Australia: Implications for the palaeogeography of the 1.8   Ga King Leopold glaciation. Precambrian Research, 167(3), 267–280. https://doi.org/10.1016/j.precamres.2008.09.002 Schopf, J. William. (2006). Fossil Evidence of Archaean Life. Philosophical Transactions: Biological Sciences, 361(1470), 869–885. https://doi.org/10.1098/rstb.2006.1834. Schopf, J. William, Oehler, D. Z., Horodyski, R. J., & Kvenvolden, K. A. (1971). Biogenicity and Significance of the Oldest Known Stromatolites. Journal of Paleontology, 45(3), 477–485. Schreiber, U. M. (1990). A palaeoenvironmental study of the Pretoria group in the Eastern Transvaal (Ph.D.). University of Pretoria. Retrieved from https://repository.up.ac.za/handle/2263/82497 Schröder, S., Beukes, N. J., & Sumner, D. Y. (2009). Microbialite–sediment interactions on the slope of the Campbellrand carbonate platform (Neoarchean, South Africa). Precambrian Research, 169(1), 68–79. https://doi.org/10.1016/j.precamres.2008.10.014 Semikhatov, M. A., & Raaben, M. E. (1994). Dynamics of the Global Diversity of Proterozoic Stromatolites. Article 1: Northern Eurasia, China, and India. Stratigraphy and Geological Correlation, 2(6), 492–513. Semikhatov, M. A., Raaben, M. E., Sergeev, V. N., Veis, A. F., & Artemova, O. V. (1999). Biotic events and positive δCcarb anomaly at 2.3-2.06 Ga. Stratigraphy and Geological Correlation, 7(5), 413–436. Sharma, M., & Pandey, S. K. (2012). Stromatolites of the Kaladgi Basin, Karnataka, India: Systematics, biostratigraphy and age implications. Journal of Palaeosciences, 61((1-2)), 103–121. https://doi.org/10.54991/jop.2012.353 Sharma, M., & Shukla, M. (2004). A new Archaean stromatolite from the Chitradurga Group, Dharwar Craton, India and its significance. Palaeobotanist, 53, 5–16. https://doi.org/10.54991/jop.2004.204 She, Z., Yang, F., Liu, W., Xie, L., Wan, Y., Li, C., & Papineau, D. (2016). The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China. Journal of Earth Science, 27(2), 297–316. https://doi.org/10.1007/s12583-015-0654-4 Shircliff, C. E. (2014). Evaluation of Stromatolites from the 3.4 Ga Kromberg Formation, Barberton Greenstone Belt, South Africa (Master’s Thesis). Louisiana State University. https://doi.org/10.31390/gradschool_theses.1507 Siahi, M., Hofmann, A., Hegner, E., & Master, S. (2016). Sedimentology and facies analysis of Mesoarchaean stromatolitic carbonate rocks of the Pongola Supergroup, South Africa. Precambrian Research, 278, 244–264. https://doi.org/10.1016/j.precamres.2016.03.004 Simonson, B. M. (1984). High Energy Shelf-Deposit: Early Proterozoic Wishart Formation, Northeastern Canada. In R. W. Tillman & C. T. Siemers (Eds.), Siliciclastic Shelf Sediments (Vol. 34, p. 0). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.84.34.0251 Simonson, B. M. (1985). Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada. Sedimentology, 32(1), 23–40. https://doi.org/10.1111/j.1365-3091.1985.tb00490.x Singh, S. P. (1988). Sedimentation patterns of the Proterozoic Delhi Supergroup, northeastern Rajasthan, India, and their tectonic implications. Sedimentary Geology, 58(1), 79–94. https://doi.org/10.1016/0037-0738(88)90007-3 Srinivasan, R., Shukla, M., Naqvi, S. M., Yadav, V. K., Venkatachala, B. S., Uday Raj, B., & Subba Rao, D. V. (1989). Archaean stromatolites from the Chitradurga schist belt, Dharwar Craton, South India. Precambrian Research, 43(3), 239–250. https://doi.org/10.1016/0301-9268(89)90058-2 Stephens, M. B., & Jansson, N. F. (2020). Paleoproterozoic (1.9–1.8 Ga) syn-orogenic magmatism, sedimentation and mineralization in the Bergslagen lithotectonic unit, Svecokarelian orogen. In M. B. Stephens & J. Bergman Weihed (Eds.), Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources (Vol. 50, p. 0). Geological Society of London. https://doi.org/10.1144/M50-2017-40 Stratigraphy, sedimentology, and sulfide mineralization of the Kona Dolomite. (1972). (Ph.D.). Michigan Technological Institute, Lansing, MI. Stüeken, E. E., Buick, R., Anderson, R. E., Baross, J. A., Planavsky, N. J., & Lyons, T. W. (2017). Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology, 15(6), 767–783. https://doi.org/10.1111/gbi.12251 Sumner, D. Y. (2000). Microbial vs Environmental Influences on the Morphology of Late Archean Fenestrate Microbialites. In R. E. Riding & S. M. Awramik (Eds.), Microbial Sediments (pp. 307–314). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-04036-2_33 Sumner, D. Y., & Beukes, N. J. (2006). Sequence Stratigraphic Development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa. South African Journal of Geology, 109(1–2), 11–22. https://doi.org/10.2113/gssajg.109.1-2.11 Sumner, D. Y., & Grotzinger, J. P. (2004). Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 51(6), 1273–1299. https://doi.org/10.1111/j.1365-3091.2004.00670.x Sun, D., Hu, W., Tang, M., Zhao, F., & Condie, K. C. (1990). Origin of Late Archean and Early Proterozoic rocks and associated mineral deposits from the Zhongtiao Mountains, east-central China. Precambrian Research, 47(3), 287–306. https://doi.org/10.1016/0301-9268(90)90043-P Taner, M. F. (2000). The Geology of the Volcanic-associated Polymetallic (Zn, Cu, Ag and Au) Selbaie Deposits, Abitibi, Quebec, Canada. Exploration and Mining Geology, 9(3–4), 189–214. https://doi.org/10.2113/0090189 Tang, H., Chen, Y., Wu, G., & Lai, Y. (2011). Paleoproterozoic positive δ13Ccarb excursion in the northeastern Sino-Korean craton: Evidence of the Lomagundi Event. Gondwana Research, 19(2), 471–481. https://doi.org/10.1016/j.gr.2010.07.002 Tang, H.-S., Chen, Y.-J., Santosh, M., Zhong, H., Wu, G., & Lai, Y. (2013). C–O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: implications for the Great Oxidation Event and ore genesis. Geological Journal, 48(5), 467–483. https://doi.org/10.1002/gj.2486 Tewari, V. C. (1977). Conophyton misrai, a new stromatolite form from the Gangolihat Dolomites, Kathpuriachhina area, Almora district, U.P. Current Science, 46(18), 641–642. Thomazo, C., Ader, M., Farquhar, J., & Philippot, P. (2009). Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth and Planetary Science Letters, 279(1), 65–75. https://doi.org/10.1016/j.epsl.2008.12.036 Thorne, A. M., & Cutten, H. N. C. (2018). Edmund Group (P_-ME-xs-k) (Explanatory Notes extract). Geological Survey of Western Australia. Retrieved from www.dmp.wa.gov.au/ens Thorne, A. M., & Seymour, D. B. (1991). Geology of the Ashburton Basin, Western Australia (No. Bulletin 139) (p. 162). Perth: Geological Survey of Western Australia. Tice, M. M. (2009). Environmental Controls on Photosynthetic Microbial Mat Distribution and Morphogenesis on a 3.42 Ga Clastic-Starved Platform. Astrobiology, 9(10), 989–1000. https://doi.org/10.1089/ast.2008.0330 Tice, M. M., & Lowe, D. R. (2004). Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431(7008), 549–552. https://doi.org/10.1038/nature02888 Trower, E. J., & Lowe, D. R. (2016). Sedimentology of the ∼3.3   Ga upper Mendon Formation, Barberton Greenstone Belt, South Africa. Precambrian Research, 281, 473–494. https://doi.org/10.1016/j.precamres.2016.06.003 Van Kranendonk, M. J. (2007). Chapter 7.2 A Review of the Evidence for Putative Paleoarchean Life in the Pilbara Craton, Western Australia. In M. J. van Kranendonk, R. H. Smithies, & V. C. Bennett (Eds.), Developments in Precambrian Geology (Vol. 15, pp. 855–877). Elsevier. https://doi.org/10.1016/S0166-2635(07)15072-6 Van Kranendonk, M. J., Philippot, P., Lepot, K., Bodorkos, S., & Pirajno, F. (2008). Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Research, 167(1–2), 93–124. https://doi.org/10.1016/J.PRECAMRES.2008.07.003 Van Kranendonk, M. J., Baumgartner, R., Djokic, T., Ota, T., Steller, L., Garbe, U., & Nakamura, E. (2021). Elements for the Origin of Life on Land: A Deep-Time Perspective from the Pilbara Craton of Western Australia. Astrobiology, 21(1), 39–59. https://doi.org/10.1089/ast.2019.2107 Veillette, J. (2004). Ice-Flow Chronology and Palimpsest, Long-Distance Dispersal of Indicator Clasts, North of the St. Lawrence River Valley, Quebec. Géographie Physique et Quaternaire, 58(2–3), 187–216. https://doi.org/10.7202/013138ar Wacey, D. (Ed.). (2009). Early Life on Earth: A Practical Guide (1st ed., Vol. 31). Dordrecht: Springer. Retrieved from https://link.springer.com/book/10.1007/978-1-4020-9389-0 Walsh, M. M., & Lowe, D. R. (1999). Modes of accumulation of carbonaceous matter in the early Archean: A petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In D. R. Lowe & G. R. Byerly (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa (Vol. 329, p. 0). Geological Society of America. https://doi.org/10.1130/0-8137-2329-9.115 Walter, M. (1983). Archean stromatolites: evidence of Earth’s earliest benthos. In J. William Schopf (Ed.), Earth’s earliest biosphere (pp. 187–213). Princeton, NJ: Princeton University Press. Walter, M. R., Goode, A. D. T., & Hall, W. D. M. (1976). Microfossils from a newly discovered Precambrian stromatolitic iron formation in Western Australia. Nature, 261(5557), 221–223. https://doi.org/10.1038/261221a0 Walter, M. R., Krylov, I. N., & Muir, M. D. (1988). Stromatolites from Middle and Late Proterozoic sequences in the McArthur and Georgina Basins and the Mount Isa Province, Australia. Alcheringa. https://doi.org/10.1080/03115518808618998 Wanke, A., & Melezhik, V. (2005). Sedimentary and volcanic facies recording the Neoarchaean continent breakup and decline of the positive δ13Ccarb excursion. Precambrian Research, 140(1), 1–35. https://doi.org/10.1016/j.precamres.2005.05.003 Warke, M. R., & Schröder, S. (2018). Synsedimentary fault control on the deposition of the Duitschland Formation (South Africa): Implications for depositional settings, Paleoproterozoic stratigraphic correlations, and the GOE. Precambrian Research, 310, 348–364. https://doi.org/10.1016/j.precamres.2018.03.001 Westall, F., de Ronde, C. E. J., Southam, G., Grassineau, N., Colas, M., Cockell, C., & Lammer, H. (2006). Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1474), 1857–1876. https://doi.org/10.1098/rstb.2006.1896 Westall, F., Cavalazzi, B., Lemelle, L., Marrocchi, Y., Rouzaud, J.-N., Simionovici, A., et al. (2011). Implications of in situ calcification for photosynthesis in a ~3.3Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth and Planetary Science Letters, 310(3), 468–479. https://doi.org/10.1016/j.epsl.2011.08.029 Wilks, M. E., & Nisbet, E. G. (1988). Stratigraphy of the Steep Rock Group, northwest Ontario: a major Archaean unconformity and Archaean stromatolites. Canadian Journal of Earth Sciences, 25(3), 370–391. https://doi.org/10.1139/e88-040 Wilmeth, D. T., Corsetti, F. A., Beukes, N. J., Awramik, S. M., Petryshyn, V., Spear, J. R., & Celestian, A. J. (2019). Neoarchean (2.7 Ga) lacustrine stromatolite deposits in the Hartbeesfontein Basin, Ventersdorp Supergroup, South Africa: Implications for oxygen oases. Precambrian Research, 320, 291–302. https://doi.org/10.1016/j.precamres.2018.11.009 Wilmeth, Dylan T., Lalonde, S. V., Berelson, W. M., Petryshyn, V., Celestian, A. J., Beukes, N. J., et al. (2022). Evidence for benthic oxygen production in Neoarchean lacustrine stromatolites. Geology, 50(8), 907–911. https://doi.org/10.1016/j.precamres.2018.11.009 Wilson, A. H., & Versfeld, J. A. (1994). The early Archaean Nondweni greenstone belt, southern Kaapvaal Craton, South Africa, Part I. Stratigraphy, sedimentology, mineralization and depositional environment. Precambrian Research, 67(3), 243–276. https://doi.org/10.1016/0301-9268(94)90012-4 Wilson, J. P., Fischer, W. W., Johnston, D. T., Knoll, A. H., Grotzinger, J. P., Walter, M. R., et al. (2010). Geobiology of the late Paleoproterozoic Duck Creek Formation, Western Australia. Precambrian Research, 179(1), 135–149. https://doi.org/10.1016/j.precamres.2010.02.019 Winter, H. de la R. (1963). Algal structures in the sediments of the Ventersdorp system. South African Journal of Geology, 66(1), 114–128. https://doi.org/10.10520/AJA10120750_1540 Xie, H., Hofmann, A., Hegner, E., Wilson, A., Wan, Y., & Liu, D. (2012). Zircon SHRIMP dating confirms a Palaeoarchaean supracrustal terrain in the southeastern Kaapvaal Craton, southern Africa. Gondwana Research, 21(4), 818–828. https://doi.org/10.1016/j.gr.2011.08.014 Yeo, G. M., Percival, J. B., Jefferson, C. W., Ickert, R., & Hunt, P. A. (2007). Environmental significance of oncoids and crypto-microbial laminates from the Late Paleoproterozoic Athabasca Group, Saskatchewan and Alberta. Natural Resources Canada. Retrieved from https://ostrnrcan-dostrncan.canada.ca/handle/1845/181161 Zentmyer, R. A., Pufahl, P. K., James, N. P., & Hiatt, E. E. (2011). Dolomitization on an evaporitic Paleoproterozoic ramp: Widespread synsedimentary dolomite in the Denault Formation, Labrador Trough, Canada. Sedimentary Geology, 238(1), 116–131. https://doi.org/10.1016/j.sedgeo.2011.04.007 Zhang, Z. (1986). Solar cyclicity in the Precambrian microfossil record. Palaeontology, 29(1), 101–111. Zhu, S. (1982). An outline of studies on the Precambrian stromatolites of China. Precambrian Research, 18(4), 367–396. https://doi.org/10.1016/0301-9268(82)90009-2 Zhu, S., & Chen, H. (1992). Characteristics of Palaeoproterozoic stromatolites in China. Precambrian Research, 57(1), 135–163. https://doi.org/10.1016/0301-9268(92)90097-8 Zientek, M. L., Chechetkin, V. S., Parks, H. L., Box, S. E., Briggs, D. A., Cossette, P. M., et al. (2014). Assessment of undiscovered sandstone copper deposits of the Kodar-Udokan area, Russia (No. 2010-5090– M). Scientific Investigations Report. U.S. Geological Survey. https://doi.org/10.3133/sir20105090M