The TOPPE' pulse programming environment

for GE MRI scanners

This document applies to version 2b of the pulse sequence (toppev2b.e).

Tested on a GE Discovery MR750 scanner running software version DV26.
Version of this document: 2b-2019/01/14

This pdf is available from the TOPPE website: https://toppemri.github.io/

This document is open-source. Latex code can be found in the TOPPE repository:
https://github.com/toppeMRI/toppe.
Alternatively, you can get a copy of the repository by typing the following in a Linux console:
git clone git@github.com:toppeMRI/toppe.git

Other resources:
Wiki: https://github.com/toppeMRI/toppemri.github.io/wiki
Discussion forum: https://github.com/orgs/toppeMRI/teams/discussion-forum

Jon-Fredrik Nielsen, Ph.D.
jfnielse@umich.edu

'“The End Of Pulse Programming”, rearranged; pronounced “toppee”

https://toppemri.github.io/
https://github.com/toppeMRI/toppe
https://github.com/toppeMRI/toppemri.github.io/wiki
https://github.com/orgs/toppeMRI/teams/discussion-forum

Contents

1 Overview
1.1 Introduction. L e e
1.2 Requiredfiles e
1.21 x.modfiles e
1.2.2 modules.txXt e e e e e e
1.2.83 scanloop.txt
1.3 Source code and otherresourceso
1.3.1 https://github.com/toppeMRI/toppe Lo o
1.3.2 Binary executable (driver/interpreter) o Lo
1.3.3 https:/toppemri.github.io/ oo

2 Using the toppe sequence
2.1 Getting started: running an example sequence Lo
2.2 Creating.modfiles L
2.3 Creatingmodules.txt
2.4 Creating scanloop.txt L
2.5 Pre-viewing your sequence with playseq.m
2.6 Compiling the toppe pulse sequence
2.7 Step-by-step scannerinstructions L L
2.8 Checklist e e
2.9 Knownbugs and limitations

3 Controlling sequence timing

4 Using toppe.e as an interpreter module for Pulseq files
4.1 Pulseq e
4.2 Using toppev2b.etoplay .seqfiles

Appendices

AR W WO NN MDD N =2 =

0 0 O O O O O O o1 »

11

A Tools for RF and gradient waveform design 15

A.1 Matlab scripts included in this distribution oo oo oL 15
A.2 John Pauly’s RF pulse design code (Matlab) 15
A.3 Brian Hargreaves’ spiral gradient design code (Matlab) 15

A.4 Generating Pulseq files

Chapter 1

Overview

1.1 Introduction

Implementing research pulse sequences on GE MR scanners requires EPIC programming, a time-consuming
and error-prone task with a steep learning curve. Moreover, pulse sequences need to be recompiled after
each scanner software upgrade, which is sometimes problematic.

This user guide describes the “toppe.e” pulse sequence for GE scanners, which allows the entire sequence
to be specified with a set of files created with a high-level software tool such as Matlab. This makes it pos-
sible to play arbitrary sequences of RF pulses and gradient waveforms, which enables rapid prototyping
of sequences without the need for low-level EPIC programming. With toppev2b. e, the task of pulse
programming a GE scanner becomes one of creating the various files that define the sequence.

TOPPE
interpreter

Sequence files:
*.mod, scanloop.txt

MATLAB

Figure 1.1: Overview of pulse sequence programming with toppev2b.e. The TOPPE sequence files (orange)
specify all details of the MR acquisition, such as RF phase cycling, gradient waveforms, and timing information. These
files are created in MATLAB using the TOPPE MATLAB toolbox (https: // github. com/ toppeMRI/ matlab/).
The TOPPE sequence files are passed on to the TOPPE interpreter (green), a binary executable that executes
the sequence on the scanner. The interpreter only needs to be compiled and installed once per scanner software
upgrade. With this setup, arbitrary sequences of RF and gradient pulses can be played out, which enables rapid
pulse sequence prototyping without the need for EPIC programming.

toppev2b.e was developed as a research tool at the fMRI laboratory at University of Michigan, and has to
date been used in several projects including stack-of-spirals imaging, Bloch-Siegert B1+ mapping, echo-
shifted RF-spoiled imaging (PRESTO), steady-state imaging with 3D tailored RF excitation, and dual-echo
steady-state (DESS) imaging.

We are currently making toppev2b. e compatible with Pulseq, an open file format for compactly describing
MR sequences. See Chapter 4 for more information about using toppev2b. e as a GE “interpreter module”

https://github.com/toppeMRI/matlab/

for Pulseq files.
Your feedback is most welcome.

1.2 Required files

In addition to the toppe and toppe.psd. o executables, the following files are needed to run a particular
scan (see Fig. 1.2):

1.2.1 x.mod files

toppev2b.e creates several unique “cores” (or modules), with each core/module associated with one
.mod file (Fig. 1.2). For example, an RF excitation module may be defined by a file called tipdown.mod
that specifies the RF amplitude and phase waveforms (rho and theta) and all three gradients. Similarly, a
Cartesian (spin-warp) gradient-echo readout may be defined in a file readout .mod that contains readout
and phase-encode gradient waveforms. Finally, a spoiler gradient can be defined in a file spoiler.mod.
Each .mod file is unique up to waveform scale factors and to a rotation in the logical xy-plane, and typically
only a few .mod files are needed. Note that each .mod file gives rise to a separate createseq() call in
toppev2b.e. Also, each .mod file can contain multiple waveform shapes, that can be selected dynamically
(column 16 in scanloop. txt).

1.2.2 modules.txt

The various x.mod files needed to define a scan are listed in a small text file named modules. txt, which
simply contains a line for each .mod file specifying the file name, core duration, and whether it is an RF
excitation module, readout module, or gradients-only module. Values are tab-separated. A modules. txt
file for our simple spin-warp imaging example may look like this:

Total number of unique cores

3

wavfile_name duration (us) hasRF? hasDAQ?
tipdown.mod 0 1 0

readout .mod 0 0 1

spoiler.mod 0 0 0

A duration of 0 means that the minimum core duration for that .mod file will be used.

1.2.3 scanloop.txt

Finally, the complete MR scan loop is specified in scanloop.txt, in which each line corresponds to
a separate startseq() call in toppev2b.e. Each line in scanloop.txt must contain the following tab-
separated values:

column # entry units/type

1 module number positive integer, starting at 1

2 rf waveform (rho) amplitude signed even short int16 (-32766 to +32766)

3 phase waveform (theta) amplitude signed even short int16 (-32766 to +32766)

4 Gx waveform amplitude signed even short int16 (-32766 to +32766)

5 Gy waveform amplitude signed even short int16 (-32766 to +32766)

6 Gz waveform amplitude signed even short int16 (-32766 to +32766)

7 data storage ’slice’ index positive integer, starting at 1

8 data storage ’echo’ index positive integer, starting at 0

9 data storage 'view’ index positive integer, starting at 1

10 turn on/off data acquisition one of two integers: 0 (off) or 1 (on)

11 in-plane (x-y) rotation angle signed even short int16: -32766 (-pi rad) to +32766 (+pi rad)
12 RF transmit phase signed even short int16: -32766 (-pi rad) to +32766 (+pi rad)
13 receive phase signed even short int16: -32766 (-pi rad) to +32766 (+pi rad)
14 time added to end of module positive integer, in microseconds

15 RF transmit frequency offset integer, in Hz

16 waveform number positive integer, starting at 1

Example: A scanloop.txt file for single-slice, RF-spoiled spin-warp imaging with 256 phase-encodes
might begin like this:

nt maxslice maxecho maxview
768 1 0 768
Core iarf iath iagx iagy iagz slice echo view dabon rot rfph recph textra freq
1 32766 32766 0 0 32766 0 0 0 0 0 0 0 0 1

0 0 32766 32766 —32638 0 0 0 0 1
0 0 0 0 32766 0 0 0 0 1
32766 32766 0 0 32766 21298 0 0 0 1
0 0 32766 32766 —32382 0 21298 0 0 1
0 0 0 0 32766 0 0 0 0 1

W NP WwWwN
o O OoR
O O O O O O
oON O O
o O o
o O O O o

where nt is the total number of startseq() calls (256 phase-encodes x 3 cores per TR), and maxslice,
maxecho, and maxview correspond to the maximum values of slice, echo, and view, respectively. Values
are tab-separated. For long scans, scanloop.txt can contain many tens of thousands of lines.

1.3 Source code and other resources

TOPPE is open-source and is available at the following sites:

1.3.1 https://github.com/toppeMRIl/toppe

Matlab scripts for creating and viewing TOPPE files. Also contains complete sequence examples. To
access the code, you can either browse the website, or copy the entire repository to local disk as follows:

git clone git@github.com:toppeMRI/toppe.git

4 3\ 4 N N\
module 1 module 2 module 3 module 4
rf1.mod readout.mod rf2.mod spoil.mod

modules. txt: Ib1| WN M —

module file dur(us) has RF? Acquire?
rfl.mod 0 1 0
readout.mod

R I S < M IV\/\A/\/\A/\/\/\/\/\/V\/W o | —
spoil.mod 0 0 0
gy | rerari fv\/\/\/V\/\/\/\/\/\/\/W | | —

0z | | [TVH [~dtoaam J [
\ J O\ J\ J\ v
scanloop.txt:
module a_rf a_th a_gx a_gy a_gz slice echo view dabon phi rfphs recphs textra rf_freq
1 3640 32768 32768 32768 32768 [¢]] [¢] [¢] 0 [¢] 0 [¢] [¢]
2] [¢] 32768 32768 -32768 0] 1 1 [¢] 0] [¢] 0] [¢]
3 3640 32768 32768 32768 32768 0] [}] [} (0] [} 0] [}
4 0] 32768 32768 32768]]]]]]]]]
1 3640 32768 32768 32768 32768 [¢]] [¢]] [¢] 21298 21298 <] [¢]
2] [¢] 32768 32768 -31444 1] 1 1 [¢] 0 [¢] [¢] [¢]
3 3640 32768 32768 32768 32768 0] 0] 0 21298 21298 [¢] 0
4] 0 32768 32768 32768 0] 0] [¢] [¢] [¢] [¢] 0

Figure 1.2: Overview of the TOPPE file structure. A TOPPE MR sequence is comprised of a (usually) small number
of unique modules that are listed in the file *modules. tzt’ (a). Each module contains a set of arbitrary gradient
waveforms and a complex RF waveform (if applicable), and is contained within a file with extension ‘.mod’. These
modules are unique up to waveform scale factors, and to a rotation in the logical transverse (k) plane. (b) Example
of four different modules within an MR sequence: two 3D RF excitations, one spiral-in readout, and one gradient
spoiler. (c) The file *scanloop. txzt’ lists the order in which to execute the modules, and specifies all other dynamic
sequence information. Each row specifies the module number as listed in modules. tzt; RF and gradient waveform
amplitudes; where to store the acquired data in memory (’slice/echo/view’ indices). in-plane rotation angle (‘phi’);
transmit and receive phase; a parameter ’textra’ by which to extend module duration (for dynamic TR changes); and
RF transmit frequency (for slice offsets). For detailing sequence timing information, see Ch. 3.

1.3.2 Binary executable (driver/interpreter)

See https://toppemri.github.io/ for more info.

1.3.3 https://toppemri.github.io/

The TOPPE website.

https://toppemri.github.io/

Chapter 2

Using the toppe sequence

2.1

Getting started: running an example sequence

The MATLAB code repository contains several complete pulse sequence examples, such as 3D spoiled
gradient-echo (SPGR) and stack-of-spirals echo-shifted dynamic imaging (PRESTO fMRI). We recommend
starting by running of these sequences. See the TOPPE website (https://toppemri.github.io/) for
details.

2.2

Creating .mod files

The TOPPE MATLAB repository (https://github.com/toppeMRI/matlab/) includes the Matlab script
mat2mod.m that writes rho, theta, gx, gy, and gz waveforms for a module to a .mod file. Important notes
and caveats:

All waveforms in a module must have the same length, i.e., they must be padded with zeroes as
needed.

In each module (.mod file), all gradient waveforms must begin and end at 0.

Even if the module is not an RF excitation module, you must create a non-zero 'dummy’ RF pulse to
ensure that the .mod file will be loaded correctly on the scanner (hopefully this bug will be fixed in
future releases). A simple hard RF pulse of low amplitude (e.g., 0.01 Gauss) seems to work well.

If the module is a readout module, data will be acquired every 4 us for the entire duration of the
waveforms in the .mod file. Depending on your readout trajectory, you may therefore need to discard
some of the data (near the beginning and/or end of the module) before reconstructing.

If more than one readout .mod file is used, they must all be the same length (readout windows of
different widths are not permitted).

For backward compatibility, the following must be done (this may change in future releases):

— One of the readout .mod files must be named readout.mod
— One of the RF excitation .mod files must be named tipdown.mod

For some tips on waveform design, see Appendix A.

https://toppemri.github.io/
https://github.com/toppeMRI/matlab/

2.3 Creating modules.txt

modules.txt can simply be created by hand, as specified above. Columns are tab-separated.

2.4 Creating scanloop.txt

The examples folder in the TOPPE MATLAB repository (https://github.com/toppeMRI/matlab/)
contains several examples of how scanloop.txt can be created. Specifically, this is done in each exam-
ple with the script writeloop.m.

We have determined empirically that to avoid data corruption, the number of slices should be even. In
addition, avoid loading the s1ice= 0 slot with data.

2.5 Pre-viewing your sequence with playseq.m

We recommend displaying your sequence in Matlab using playseq.m before attempting to play it on the
scanner, to verify that the correct modules are played out in the intended order. playseq.m attempts to
reproduce the exact module timing seen on the scanner, using CV values in the file timing.txt. For
examples of how to use playseq.m, see the readme file in the examples folder in the Matlab repository
(https://github.com/toppeMRI/toppe).

2.6 Compiling the toppe pulse sequence

The current version of toppev2b. e has been compiled for DV26, and has been tested on a GE Discovery
MR750 3T scanner.

To compile, follow the usual EPIC compilation steps. First, check compiler version:

which psdgmake

Then prepare directory for compilation and compile:

prep-psd.dir
psdgmake hw

This will create two executables: toppev2b and toppev2b.psd.o.

2.7 Step-by-step scanner instructions

Follow these steps to prescribe and run the toppe sequence:

1. Copy toppev2b and toppev2b.psd.o to /usr/g/bin/ on the scanner host computer (console). This
only needs to be done once per scanner software upgrade.

2. Copy modules.txt, scanloop.txt, and all .mod files to /usr/g/bin/.

https://github.com/toppeMRI/matlab/
https://github.com/toppeMRI/toppe

File Edit Wiew Insert Tools Desktop Window Help »

NEES | M RALTDEL- |G 08| aD

theta
: o
1

|
1

-
=
|

q
[
o

a] 10 15 20 25 3n 35 40 45
msec

Figure 2.1: Example sequence display created with playseq.m. The sequence shown is a Bloch-Siegert B1 transmit
mapping sequence with a 3D Cartesian readout. Like the toppe and toppe.psd.o executables on the scanner,
playseq.m loads modules.txzt and the .mod files listed therein, and scanloop. txt. In addition, playseq.m
obtains exact sequence timing information from the file timing. txt.

3. Required files:

» Make sure one of the readout (acquisition) .mod files is named readout .mod.
» Make sure one of the RF excitation .mod files is named tipdown.mod.

4. Prescribe the toppe sequence:

» Select Axial 2D pulse sequence; Family: ‘Gradient Echo’; pulse: 'GRE’; PSD Name: 'toppev2b’;
click ’Accept’. (Fig. 2.2)
* Prescribe a number of slices that is larger than the maximum ’slice’ value in scanloop.txt.
» Other settings do not matter but must be specified. Suggested values are: Slice thickness 3,
slice spacing 0.
5. Save and download the sequence, and run autoprescan.

6. Click scan button. This will create a Pfile in /usr/g/mrraw/.

7. To run a different TOPPE scan, simply overwrite modules.txt and scanloop.ixt and make sure the
new .mod files for the next sequence exist in /usr/g/bin/. Then download the sequence (right-click)

and hit Scan button. You do not need to prescribe a new sequence every time you load a new set of
external files.

00:00

IDLE

325PM
December2

Figure 2.2: Scanner prescription, screenshot 1.

2.8 Checklist

* One of the RF files must be named tipdown.mod
* One of the readout files must be named readout .mod

» Make sure your .mod files comply with the requirements listed in Section 2.2.

In addition, remember the following recommendations, which have been determined empirically:

* It seems that the number of ’slices’ should be even to avoid corrupt data.

* It seems safest to avoid storing data in the s1ice=0 slot (in Loaddab()), since data frames (“views”)
for this slot are often flipped (reversed) with respect to the rest of the Pfile.

2.9 Known bugs and limitations

« Data may be saved in reverse order (due to oeff and eeff flags), so keep an eye out for this. IN-
SPECT YOUR RAW DATA.

= s

2567 sos3d_hao

Series Data

Done 1: 3Plane Loc FGRE
Done 2:s0s3d
Done 3 3
Done 4:3Plane Loc FGRE

Done 5:toppe6

Done 6: toppes 185!

7 Done 7: ASSET calibration
Done 8: func_8abyCry_new
InRx toppe7

+ Reset/Download TPS was successful. *** [_ ol T

(X)) 195

Figure 2.3: Scanner prescription, screenshot 2.

We have observed empirically that data for the last slice is sometimes flipped.
B1 scaling across multiple RF pulses has not been verified. May need to expand rfpulse struct.

toppev2b.e does not support cardiac/respiratory gating at the moment. If other groups have a
need for this we believe gating can be easily added.

toppev2b. e does not currently do any checks for SAR, PNS, or gradient heating.

2567 sos3d_hao

R 00:00

divy Prescanning
007 W researcE| SAR First
Series Data

BXam 2567, Serles 10 - prescanning
B/t First, 100% 5 3

3Plane Loc FGRE

s0s3d

Manual Prescan

Fles Windows Froquency Markers Options
sos3d = —

e o Transceiver Hardware Settings

& |l
toppe6 185 2 (0|

7: ASSET calibration

e Center Fre m,[" |
toppe6 el |

fne | TR
(o) | mime)

8: func_BabyCry_new Analog Gain (R1) d
- G
S: 3Plane Loc FGRE il
Digital Gain (R2) =
toppe? ST 1
o S

Center Freq (A%) 127789008

i =
Delta Freq (DX) ,_._-L—#— Apply
Add Task P

A [wavetomms
Gradient Shimming - tmap acspisiton: Ean e GaFES oS DO
.

uses fust/g/binfreconB11, which creates wav/tipdown wav aad
wav tipup wav

RF Drive Settings
gt

o

A
o

sy 00 [

aawke 0.0
+++ Reset/Download TPS was successful.

Figure 2.4: Scanner prescription, with manual prescan window.

10

Chapter 3

Controlling sequence timing

The default module duration is set to the value specified in modules. txt, however the duration can be
extended in real-time by setting the value of the 'textra’ column in scanloop. txt to a non-zero value. This
allows the sequence timing to be controlled dynamically, e.g., for the purpose of varying TE or TR during a
scan.

If the minimum module duration exceeds the prescribed duration in modules.txt, the minimum module
duration is used (without warning). It is therefore perfectly fine to set the module duration in modules.txt
to ’0’, since this guarantees that the minimum duration will be used which is often the desired behavior.

Figure 3.1 shows detailed timing information for the three module types: gradients-only, RF excitation, and
data acquisition. For gradients-only modules, the minimum module duration is equal to the waveform dura-
tion plus the controls variables (CVs) 'start_core’, timetrwait’, and 'timessi’. These have been determined
empirically, and are currently set to 224us, 64us, and 100us, respectively. For RF and acquisition modules,
the module duration must be extended by 'myrfdel’ and ‘daqdel’, respectively, to account for gradient delays
with respect to RF transmission and data acquisition, respectively.

11

(a) start_core

-~ timessi
e —

gradients \/ \/

N - .
timetrwait

minimum module duration

(b)

-~

RF i ‘k
gradients \ \/ \/

start_core myrfdel
/ timessi
P ——

timetrwait

minimum module duration

(C) start_core

-— timessi
e —

gradients \/ \/

DAQ

| | |
daqdel timetrwait

minimum module duration

Figure 3.1: Detailed timing diagram for the three module types: (a) gradients-only, (b) RF excitation, and (c) data
acquisition. The labels correspond to Control Variables (CVs) intoppev2b.e. Note that playseq.m uses timing
values in timing. txt (see sequence examples in the Matlab repository) to reproduce the precise sequence timing
one should expect to observe on the scanner.

12

Chapter 4

Using toppe.e as an interpreter module for
Pulseq files

4.1 Pulseq

An effort is currently underway to make toppev2b.e compatible with Pulseq, an open file format for com-
pactly describing MR sequences. The Pulseq file specification, along with supporting Matlab and C++
libraries, is available at

http://pulseq.github.io/

Pulseq relies on vendor-dependent “interpreter modules” to load a Pulseq (.seq) file onto a particular
scanner platform. toppev2b.e can serve as the interpreter module for GE scanners. Interpreters cur-
rently also exist for Siemens and Bruker scanners, enabling truly platform-independent MR pulse pro-
gramming. The following publication has more information about the Pulseq platform and philosophy:
http://onlinelibrary.wiley.com/doi/10.1002/mrm.26235/abstract.

4.2 Using toppev2b.e to play .seq files

To usetoppev2b.e as a GE interpreter module for Pulseq files, use the Matlab script seq2ge.m in the
pulseq directory in the beta distribution (v0.9). seq2ge.m takes as input a .seq file and outputs the
various files needed bytoppev2b. e (modules.txt, scanloop.txt, and .mod files). For an example, see
main.m in the pulseq directory.

13

http://pulseq.github.io/
http://onlinelibrary.wiley.com/doi/10.1002/mrm.26235/abstract

Appendices

14

Appendix A

Tools for RF and gradient waveform design

A.1 Matlab scripts included in this distribution

My own Matlab scripts for generating slice-selective RF pulses, balanced cartesian readouts, spoiler gra-
dients, etc, are included in the wavgen directory in this distribution. The code is provided as-is, and is
undocumented at the moment.

A.2 John Pauly’s RF pulse design code (Matlab)

John Pauly has made his Shinnar-Le Roux code available for download at
http://rsl.stanford.edu/research/software.html

The code included in the wavgen/tipdown directory in this distribution uses Pauly’s code to generate SLR
slice-select pulses.

A.3 Brian Hargreaves’ spiral gradient design code (Matlab)

Brian Hargreaves has made his spiral readout gradient design code available for download at

http://mrsrl.stanford.edu/~brian/vdspiral/

A.4 Generating Pulseq files

Pulseq provides tools for waveform and sequence creation, available on the Pulseq web page. Alter-
natively, sequences can be designed, simulated, and exported in Pulseq (.seq) format using JEMRIS,
available at

http://www. jemris.org/

15

http://rsl.stanford.edu/research/software.html
http://mrsrl.stanford.edu/~brian/vdspiral/
http://www.jemris.org/

	1 Overview
	1.1 Introduction
	1.2 Required files
	1.2.1 .mod files
	1.2.2 modules.txt
	1.2.3 scanloop.txt

	1.3 Source code and other resources
	1.3.1 https://github.com/toppeMRI/toppe
	1.3.2 Binary executable (driver/interpreter)
	1.3.3 https://toppemri.github.io/

	2 Using the toppe sequence
	2.1 Getting started: running an example sequence
	2.2 Creating .mod files
	2.3 Creating modules.txt
	2.4 Creating scanloop.txt
	2.5 Pre-viewing your sequence with playseq.m
	2.6 Compiling the toppe pulse sequence
	2.7 Step-by-step scanner instructions
	2.8 Checklist
	2.9 Known bugs and limitations

	3 Controlling sequence timing
	4 Using toppe.e as an interpreter module for Pulseq files
	4.1 Pulseq
	4.2 Using toppev2b.e to play .seq files

	Appendices
	A Tools for RF and gradient waveform design
	A.1 Matlab scripts included in this distribution
	A.2 John Pauly's RF pulse design code (Matlab)
	A.3 Brian Hargreaves' spiral gradient design code (Matlab)
	A.4 Generating Pulseq files

