README: Turbulent boundary layer direct numerical simulations

Adrián Lozano-Durán*

Overview

This README describes the DNS dataset of turbulent boundary layers that is part of "A database for reduced-complexity modeling of fluid flows" [3]. Users of these data should cite:

A. Towne, S. Dawson, G. A. Brès, A. Lozano-Durán, T. Saxton-Fox, A. Parthasarthy, A. R. Jones, H. Biler, C.-A. Yeh, H. Patel, and K. Taira. A database for reduced-complexity modeling of fluid flows. *AIAA Journal*, 61:2867–2892, 2023

Flow conditions

This dataset corresponds to an incompressible zero-pressure-gradient flat-plate turbulent boundary layer. Two simulations are presented and labeled as BL1 and BL2. The dimensionless parameters for BL1 | BL2 are:

- $\blacksquare L_x/\theta_{\rm avg} = 480 \mid 469$
- $\blacksquare L_y / \theta_{\text{avg}} = 47 \mid 53$
- $\blacksquare L_z/\theta_{\rm avg} = 70 \mid 79$
- $\blacksquare \operatorname{Re}_{\tau,i} \operatorname{Re}_{\tau,o} = 292 729 \mid 481 1024$
- $\blacksquare \operatorname{Re}_{\theta,i} \operatorname{Re}_{\theta,o} = 832 1982 \mid 1272 2870$
- $\Delta t^+ = 1.5 \mid 4.0$
- $\bullet \Delta t_{\rm planes}^+ = 1.5 \mid 0.8$
- $\blacksquare T u_{\tau, \text{avg}} / \delta_{\text{avg}} = 26.1 \mid 7.4$

Here, L_x , L_y , and L_z are the streamwise, wall-normal and spanwise length of the computational domain, θ_{avg} is the streamwise-averaged momentum thickness, Re_{τ} and Re_{θ} are the Reynolds number based on friction velocity and the momentum thickness, respectively, $\text{Re}_{\tau,i}$ - $\text{Re}_{\tau,o}$ is the range of Re_{τ} covered from inflow to outflow (similarly for $\text{Re}_{\theta,i}$ - $\text{Re}_{\theta,o}$), Δt^+ is the time between provided flow fields (BLdns*_3D_t#####.h5) in plus units, $\Delta t^+_{\text{plane}}$ is the time between flow planes in the planar data (BLdns*_planes.h5) $u_{\tau,\text{avg}}$ is the streamwise-averaged friction velocity, δ_{avg} is the streamwise-averaged boundary layer thickness based on 99% of the freestream velocity, and T is the total time simulated after initial transients.

^{*}Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139

Data collection

The turbulent boundary layers are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. The spatial discretization is a staggered second-order central finite difference scheme [2]. Time advancement is achieved by a third-order Runge-Kutta scheme [4] combined with the fractional-step method [1]. The Poisson solver uses the cosine transform to account for the non-periodic boundary conditions in the streamwise direction. The code is parallelized using Message Passing Interface with a global transpose from y-z to x-y planes. All computations were run with constant time step such that CFL<0.5.

The publicly available database includes 3-D space/time-resolved velocity fields for both cases. For both cases, the fields are downsampled by a factor of two in the wall-normal and spanwise spatial directions. For BL2, the fields are also downsampled by a factor of five in time. The database also contains the following precomputed statistics for both BL1 and BL2:

- 1. C_f , δ , θ , $\operatorname{Re}_{\theta}$, Re_{τ} , and u_{τ} as a function of x.
- 2. Mean velocity and vorticity profiles, mean uv, and root-mean-squared (r.m.s.) velocity and vorticity fluctuations as a function of x and y.
- 3. Spatial correlations in x-z planes for each velocity component at $y^+ = 15$ and 100 and $y/\delta = 0.1, 0.3, ..., 0.9$, and 1.1, and streamwise locations $\text{Re}_{\tau} \approx 400, 600, 700$, and 900.
- 4. Time-space correlations in x-t planes for each velocity component at $y^+ = 15$ and 100 and $y/\delta = 0.1, 0.3, ..., 0.9$, and 1.1, and streamwise locations $\text{Re}_{\tau} \approx 400, 600, 700$, and 900.
- 5. Time-resolved velocities in the x-y plane.

Nondimensionalization

The database is nondimensionalized by the streamwise distance of the inlet to the origin of the boundary layer L_o and the freestream velocity U_{∞} .

File inventory

The database contains the following files and variables for BL1 (similarly for BL2):

- BLdns_example.zip: zip archive containing a representative subset of the following data and scripts as an entry point for users
- BLdns_read.m: Matlab script showing how the data can be read and manipulated.
- BLdns1_parameters.h5: hdf5 file containing flow and data parameters
 - Lx: streamwise length of the domain
 - Ly: wall-normal length of the domain
 - Lz: spanwise length of the domain
 - Lo: distance of the inlet to the boundary layer leading-edge
 - time: time
 - dt: time step between snapshots provided in BLdns1_3D_t####.zip
 - dt_plane: time step between planes provided in BLdns1_planes.h5
 - Uinf: freestream velocity
 - nu: kinematic viscosity
 - Retheta_inlet: $\operatorname{Re}_{\theta}$ at the inlet

- Retheta_outlet: $\operatorname{Re}_{\theta}$ at the outlet
- theta_inlet: θ at the inlet
- theta_outlet: θ at the outlet
- Retau_inlet: Re_{τ} at the inlet
- Retau_outlet: Re_{τ} at the outlet
- delta99_inlet: δ at the inlet
- delta99_outlet: δ at the outlet.
- BLdns1_grid.h5: hdf5 file containing grid information
 - x: streamwise grid
 - y: wall-normal grid
 - z: spanwise grid
 - yd: x2 downsampled wall-normal grid
 - zd: x2 downsampled spanwise grid
- BLdns1_3D_t####.h5: hdf5 file containing a snapshot of the three-dimensional flow field at time index ##### ∈ [00000, 10000] (only for BL1). The original full-resolution fields for BL1 and BL2 are available upon request to the authors.
 - u: streamwise velocity at each (x, yd, zd) grid point
 - v: streamwise velocity at each (x, yd, zd) grid point
 - w: streamwise velocity at each (x, yd, zd) grid point
- BLdns1_3D_t####.zip: zip archive of BLdns1_3D_t#####.h5 files, each containing 1000 snapshots
- BLdns1_means.h5: hdf5 file containing mean flow fields
 - Umean: mean streamwise velocity at each (x, y) grid point
 - Vmean: mean wall-normal velocity at each (x, y) grid point
 - Wmean: mean spanmwise velocity at each (x, y) grid point
 - UVmean: mean uv at each (x, y) grid point
 - urms: root-mean-squared streamwise velocity fluctuations at each (x, y) grid point
 - vrms: root-mean-squared wall-normal velocity fluctuations at each (x, y) grid point
 - wrms: root-mean-squared spanwise velocity fluctuations at each (x, y) grid point
 - oxrms: root-mean-squared streamwise vorticity fluctuations at each (x, y) grid point
 - oyrms: root-mean-squared wall-normal vorticity fluctuations at each (x, y) grid point
 - ozrms: root-mean-squared spanwise vorticity fluctuations at each (x, y) grid point
 - Cf: mean C_f at each x grid point
 - Retheta: mean $\operatorname{Re}_{\theta}$ at each x grid point
 - Retau: mean Re_{τ} at each x grid point
 - utau: mean u_{τ} at each x grid point
 - delta99: mean δ at each x grid point
 - theta: mean θ at each x grid point
- BLdns1_correlations.h5: hdf5 file containing the mean flow fields
 - Deltax: streamwise length of the correlation

- Deltaz: spanwise length of the correlation
- Deltat: time span of the correlation
- Retau_corr: Re_{τ} at Deltax=0
- y_corr: wall-normal location of the correlation
- delta99_corr: δ at Deltax=0
- Cuu_xz: x-z streamwise velocity correlations as a function of (Retau_corr, Deltax, y_corr, Deltaz) point
- Cvv_xz: x-z wall-normal velocity correlations as a function of (Retau_corr, Deltax, y_corr, Deltaz) point
- Cww_xz: x-z spanwise velocity correlations as a function of (Retau_corr, Deltax, y_corr, Deltaz) point
- Cuu_tx: *t*-*x* streamwise velocity correlations as a function of (Retau_corr, Deltat, Deltax, y_corr) point
- Cvv_tx: *t*-*x* wall-normal velocity correlations as a function of (Retau_corr, Deltat, Deltax, y_corr) point
- Cww_tx: *t*-*x* spanwise velocity correlations as a function of (Retau_corr, Deltat, Deltax, y_corr) point

BLdns1_planes.h5: hdf5 file containing x-y time-resolved velocity planes

- Uplane: streamwise velocity at each (t, x, y) time and grid point
- Vplane: wall-normal velocity at each (t, x, y) time and grid point
- Wplane: spanwise velocity at each (t, x, y) time and grid point

References

- J. Kim and P. Moin. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comp. Phys., 59:308–323, 1985.
- [2] P. Orlandi. *Fluid Flow Phenomena: A Numerical Toolkit.* Number 1 in Fluid Flow Phenomena: A Numerical Toolkit. Springer, 2000.
- [3] A. Towne, S. Dawson, G. A. Brès, A. Lozano-Durán, T. Saxton-Fox, A. Parthasarthy, A. R. Jones, H. Biler, C.-A. Yeh, H. Patel, and K. Taira. A database for reduced-complexity modeling of fluid flows. *AIAA Journal*, 61:2867–2892, 2023.
- [4] A. A. Wray. Minimal-storage time advancement schemes for spectral methods. Technical report, NASA Ames Research Center, 1990.