TCC III, Fired, Full View

Philipp Schiffmann, Ph.D.
University of Michigan
2016

Acknowledgement Request for published use:

It is requested that ALL published use of the TCC engine simulation geometry and/or data be acknowledged with the following statement.

"The study here used publicly available TCC engine data, which was created with funding by General Motors through the General Motors University of Michigan Automotive Cooperative Research Laboratory, Engine Systems Division."

This README document is an overview of the cataloged data in the Deep Blue Data work deposit "TCC-III, Fired, Full View", which is a permanent unaltered archive of the data used in Dr. Philipp Schiffmann's Ph. D. dissertation (http://hdl.handle.net/2027.42/137636) and subsequent publications, such as Philipp Schiffmann, David L. Reuss, Volker Sick, International Journal of Engine Research, 2017, DOI: 10.1177/1468087417720558.

This document includes descriptions of the following.

Engine Operating Conditions (Slide 2),
Data Summary and File Structure (Slides 3-9),
Engine Geometry (Slides 10 – 25)
Engine Intake and Exhaust System Geometry (Slides 26 -33).

Measured parameter locations and nomenclature are provided in the Geometry slides.

The Deep Blue Data TCC-III "Collection README.pdf" file contains references and errata, and will be updated in time.

TCC-III Fired Full View Test Conditions & File Summary

					Recorded		Recorded	Image	Crankangles			
RPM	MAP	φ	Image Plane	Grid	Pressure	Imaged	Images	Range	between	IMEP	COV IMEP	Data ID
					cycles/test	cycles/test	imgs/test	deg. ATDCE	images			
					500	375	65	35 -340	5			S_2014_02_05_01
					300	373	03	341 - 442	1	333	0.6%	
			x =0	PIV & Com	500	375	65	35 -340	5			S_2014_02_12_01
								341 - 342	1	333	0.7%	
					500	375	65	35 -340	5			S_2014_02_13_02
								341 - 342	1	323	0.5%	0_001,_00_00_00
					400	358	59	45 -340	5			S_2013_10_29_01
								341 - 370	1	343	1.9%	
			y =0	PIV & Com	400	379	88	30 -340	5			S_2013_10_31_02
4200	40	4	,					341 - 365	1	333	0.8%	
1300	40	1			500	457	73	30 -340	5			S_2013_11_07_03
								341 - 365	2.5	333	0.7%	
					700	622	57	60 - 340	5	343	1.9%	S_2014_05_06_01
			z=-5	PIV & Com	700	643	57	60 - 340	5	329	0.9%	S_2014_05_08_01
					2000	643	59	50 - 340	5	326	1.2%	S_2014_05_13_01
			- 20	DIV	1200	1134	49	60 - 300	5	332	1.1%	S_2014_04_01_01
			z = -30	PIV	1134	1134	49	60 - 300	5	329	0.7%	S_2014_04_03_02
			All Transient	PIV	1400	1 - 1157	50	60 - 300	5	n.a.	n.a.	S_2014_04_16_03
			Motored SS		1400	1 - 400	50	60 - 300	5	-17	n.a.	S_2014_04_16_03_A
			Fired SS		1400	757 - 1157	50	60 - 300	5	334	0.6%	S_2014_04_16_03_B

Start of Ignition, SOIgn = 342 ATDCE which is Maximum Brake Torque, MBT, timing.

RPM - Revolutions Per Minute,

MAP - Manifold Absolute Pressure

ATDCE – degrees After Top Dead Center Exhaust, all data use this crank angle convention.

Data ID – File name used in archive directory, indicating when the data was taken S_year_month_day_test# Files in blue-bold font indicate recommendations from Schiffmann's PhD dissertation.

Fired Full View: Data Summary and File Structure

Slides 3 – 9 summarize archive data-file directory structure, which contains pressure and velocity measurements acquired at multiple crank angles, during hundreds of contiguously engine cycles, at each engine-operating condition. There is one complete data set cataloged by **Test ID (bottom, Slide 2)** at each of the particle image velocimetry, **PIV, measurement planes (Slide 4)**.

Pressure data for each test is cataloged in Excel Workbooks, which contain worksheets with the following parameters.

Test Info (pressure-data cycle number vs. imaged-data cycle numbers)

Per_Run_Summary (test average & standard deviation)

Per_Cycle_Data (cycle averaged pressure parameters, heat release, and spark-plasma energy and duration.)

Ensemble_Average (cylinder volume and average pressures per crank angle)

P_IntakePlenIn (kPa) (5 measured pressures (Slide 5) acquired each 0.5 crank angle degree)

P_IntkPort (kPa) . P Cyl (kPa) .

P_ExhPort (kPa)

P_ExhPlenOut (kPa)

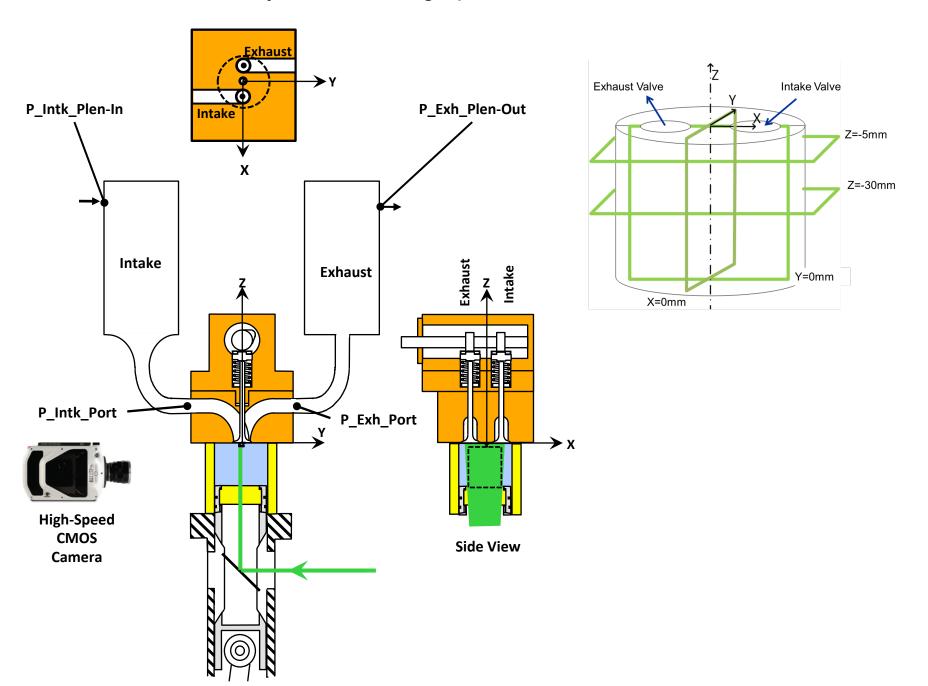
There is one Pressure file for each test, located in the **Pressure Data-File Directories (Slide 6)**. The Pressure files include parameters that were directly measured or computed as described in **Schiffmann's Dissertation (http://hdl.handle.net/2027.42/137636)**.

Velocity data are in text files, B000##.txt, containing the x,y,z coordinates and u,v,w velocity components of the two-component, PIV measurement planes (Slide 4). Each velocity file contains the velocity distribution from one image pair, taken with frame straddling. Thus, one image was taken at the beginning of the specified crank angle, and one was take Δt μs earlier (laser pulse separation), at the end of the previous crank angle.

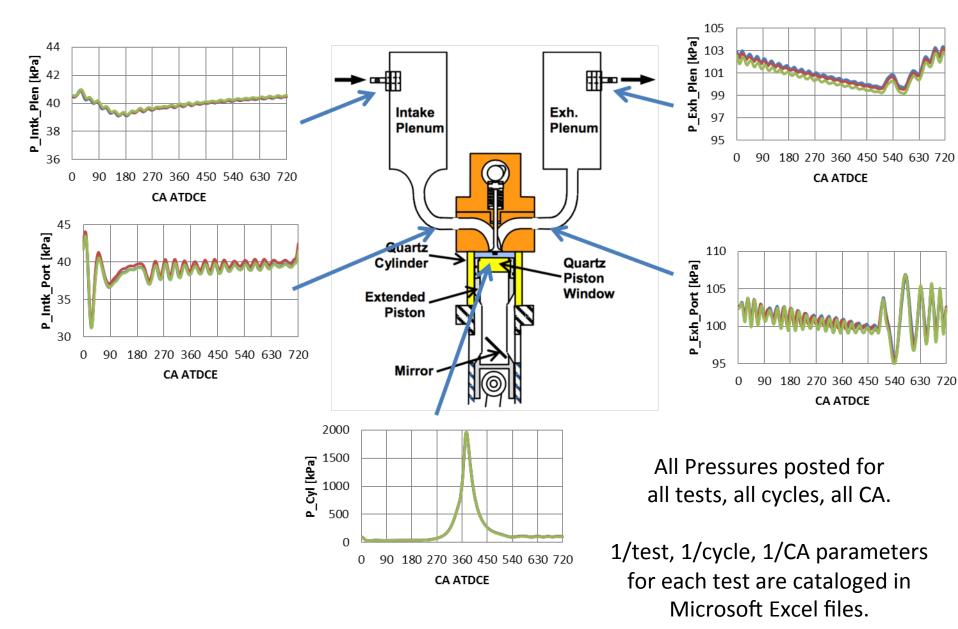
The velocity data are located in the PIV Data-File Directories (Slide 7), cataloged by

Test ID, S_year_month_day_test#, e.g., S_2013_01_30_01.

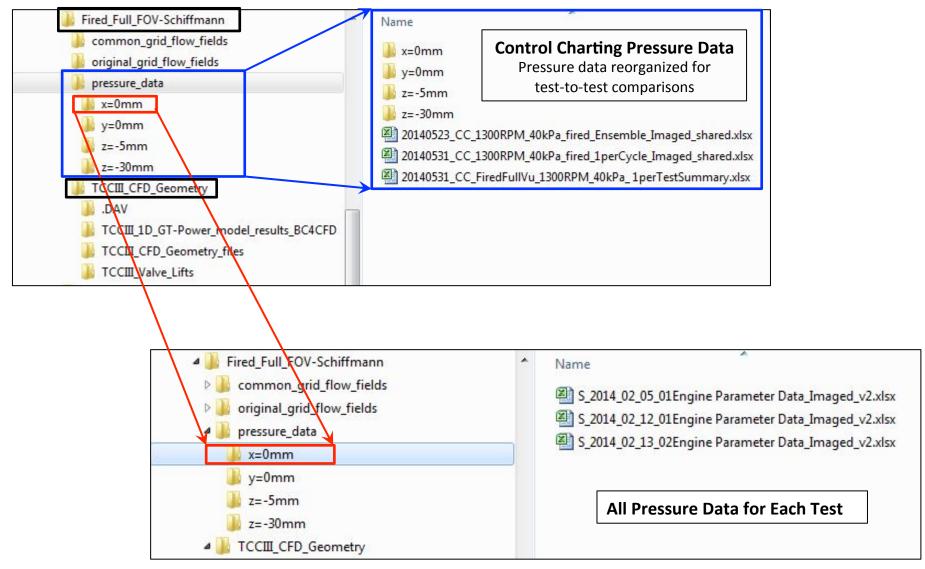
PIV measurement plane, e.g., x=0 as shown in Slide 4.

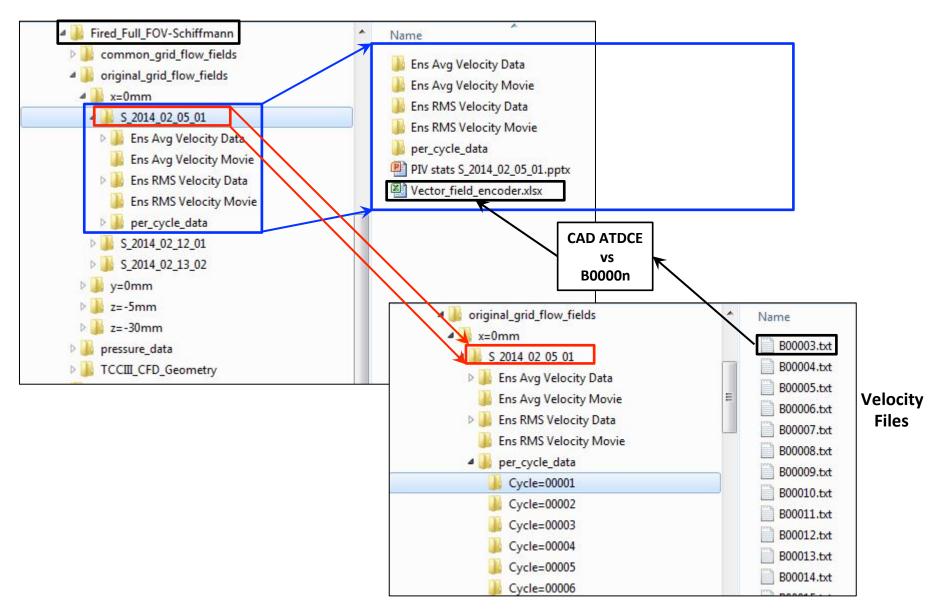

Test cycle number, Cycle=000##

Crank angle,


B000## = crank angle ATDC, values found in **Vector_field_encoder.xls (cf. Slide 7)**

The velocity distribution are provided on the Original Grids and a Common Grid (Slide 8) with the Resolution and Dynamic Range (Slide 9).


Coordinate system and image-plane labels used in file structure


Pressure Measurement Locations, TCC-III

Fired Full View: Pressure Data-File Directory Structure

Fired Full View: Pressure Data-File Directory Structure

Motored Full View: PIV FOV & Spatial Resolution

Original Grid:

The field of view (FOV) is restricted by the piston window to approximately the center 60-70mm for both vertical and horizontal cutting planes. In both the z=-5mm and z=-30mm planes the light sheet is brought into the cylinder from the positive x-direction. Thus, during intake stroke a major part of the FOV is blocked by the intake valve and its shade for the z=-5mm images. The vertical cutting planes have a FOV from piston to cylinder head with an approximate width of just below 70mm. The spatial resolution is 2.0 - 2.4mm with a vector spacing of 1 - 1.2mm.

Videos of the ensemble average flow field and ensemble RMS velocities can be found in each dataset folder, together with ensemble average data, as well as cycle resolved velocity data.

Common Grid:

For some datasets both the original PIV grid and a re-gridded version of the data is available, which was used by the author to compare flow fields of different tests and conditions. All vectors were interpolated on a common grid, of about the original grid size using a linear interpolation.

The re-gridded datasets loose one grid at edge of the FOV and at the edges of the burned gas regions. The re-gridded data sets also use interpolation to fill locally bad vectors.

Motored Full View: Velocity Resolution and Dynamic Range

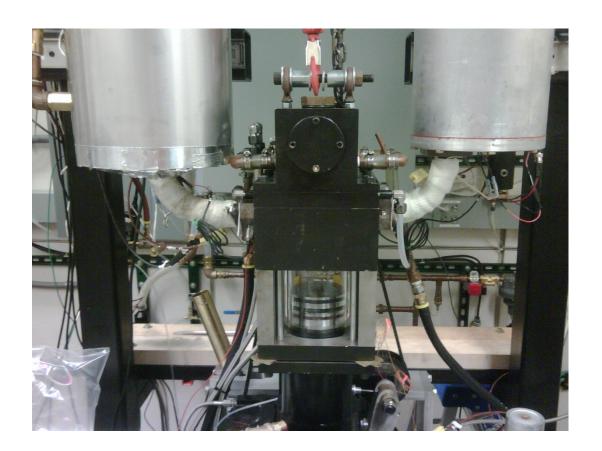
The minimum and maximum resolved velocity are defined here using the criterion that PIV correlation-peak displacements, Δx_{piv} , need be limited to 0.2 pixels and 8 pixels, respectively, as described in Ref.1. A practical resolution limit of 0.2 pixels is used here, as demonstrated in Refs.2 & 3. Thus, an estimated dynamic range of 40:1 one is achieved. The laser-pulse separation, Δt , was changed throughout the cycle as described in Ref. 4, to assure that three standard deviations of the velocity distribution was 8 pixels or less. For cutting planes x=0 and y=0, within and during the intake jet, 12 pixels were allowed to better capture the lower speed flows away from the jet; this is justified by the fact that most of the jet flow is in plane for x=0 and y=0, and recursive and adaptive interrogations spots were used to capture the large velocities. Some data sets catalogued here have a file called "PIV Stats" to show the range of velocities and number of first choice vectors throughout the cycle. These plots were used to determine the Δt need at each measurement plane of each crank angle. The velocity dynamic range for any data set can be computed as follows. Since 32x32pixel interrogation spots and grid-spacing, Δx)_{grid}, of 50% overlap are used in all tests here, the resolution dynamic range can be estimated as

$V \downarrow min = 0.2 [2\Delta x \downarrow grid/32\Delta t]$ and $V \downarrow max = 8 [2\Delta x \downarrow grid/32\Delta t]$

where V is m/s when Av is in maters (from the valority data file) and At in seconds from the tables helow

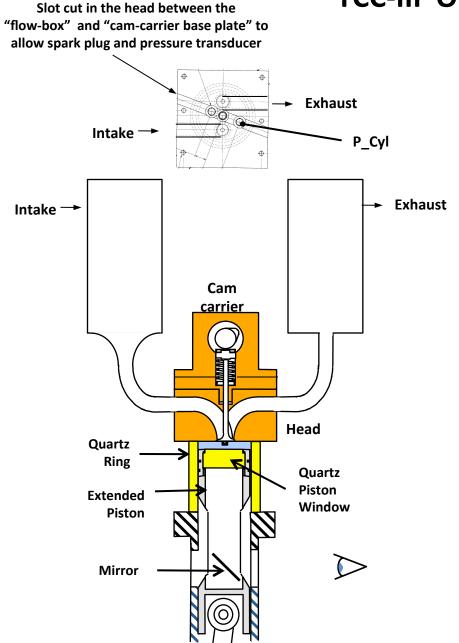
117C W/11011 // V 1C 111 111010						
1300RPM40kPa fired Dt x=0mm						
CA Range (° ATDCc) dt (µs)						
-335	-335	20				
-330	-330	15				
-325	-320	6				
-315	-310	5				
-305	-300	4				
-295	-240	5				
-235	-230	8				
-225	-215	10				
-210	-205	15				
-200	-195	20				
-190	-180	25				
-175	-135	30				
-130	-65	35				
-60	-17	40				
-16	-11	25				
-10	-5	20				
-4	-2	15				
-1	0	8				
1	5	5				

<u>/ΔΙ/\/ ΙΙ\/ /</u>	1212 1110	<u>i ana at in</u>				
1300RPM40kPa fired Dt y=0mm						
CA Range	(° ATDCc)	dt (µs)				
-360	-350	100				
-345	-335	60				
-330	-330	40				
-325	-325	10				
-320	-260	5				
-255	-225	10				
-220	-200	15				
-195	-180	20				
-175	-165	25				
-160	-30	30				
-25	-20	40				
-19	-2	25				
-1	0	10				
1	5	6				

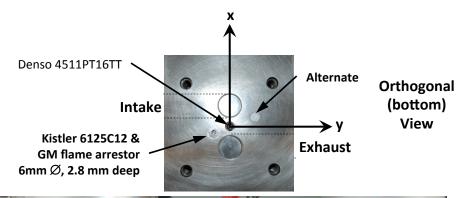

tha tahla	c halaw	,			
1300RPM40kPa fired Dt z=-5mm					
CA Range (° A	TDCc)	dt (µs)			
-360	-350	20			
-345	-335	10			
-330	-330	5			
-325	-325	4			
-320	-295	3			
-290	-190	4.5			
-185	-180	7			
-175	-165	10			
-160	-125	20			
-120	-55	25			
-50	-20	20			
-18	-2	25			
-1	0	10			
1	10	5			

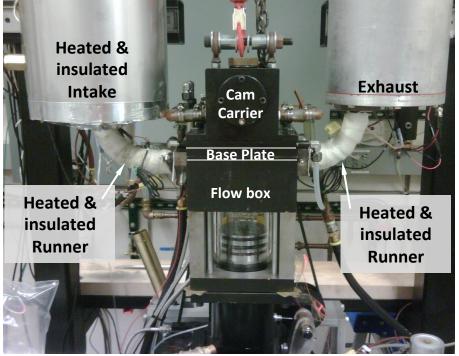
- 1. Adrian, R.J. and J. Westerweel, Particle image velocimetry. 2011: Cambridge University Press.
- 2. Reuss, D.L., M. Megerle, and V. Sick, Particle-image velocimetry Measurement Errors when Imaging through a Transparent Engine Cylinder. Measurement Science and Technology, 2002.
- 3. Megerle, M., V. Sick, and D.L. Reuss, Measurement of Digital PIV Precision using Electrooptically-Created Particle-Image Displacements. Measurement Science and Technology, 2002. 13: p. 997-1005.
- 4. Abraham, P.S., D.L. Reuss, and V. Sick. High-speed particle image velocimetry study of in-cylinder flows with improved dynamic range. in SAE Paper 2013-01-0542.

TCC-III Engine Geometry

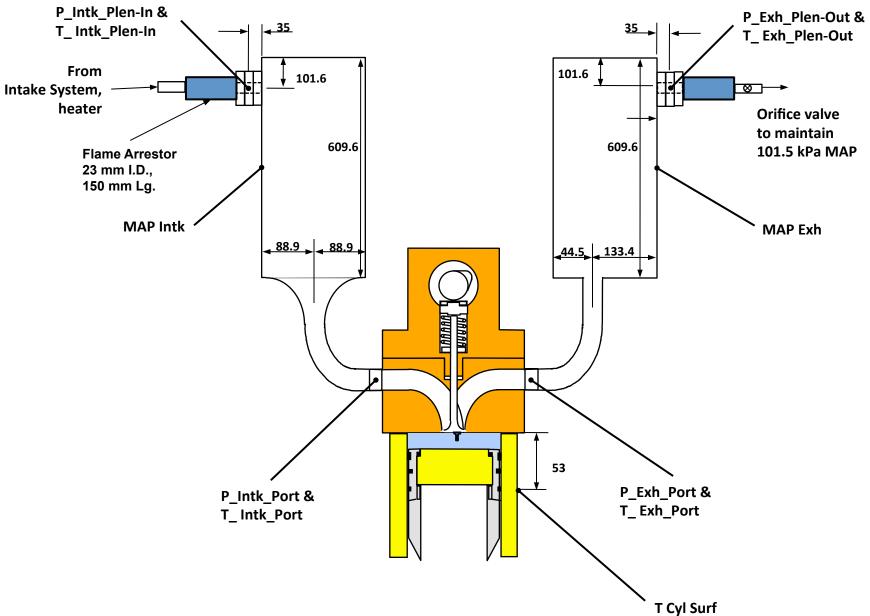

The Slides 10 – 25 quantify the TCC-III engine geometry, that was used to create the CFD .stl and igs files. In addition, these geometry slides define the nomenclature and locations of the pressure transducers and thermocouples cataloged in the Pressure Data Files.

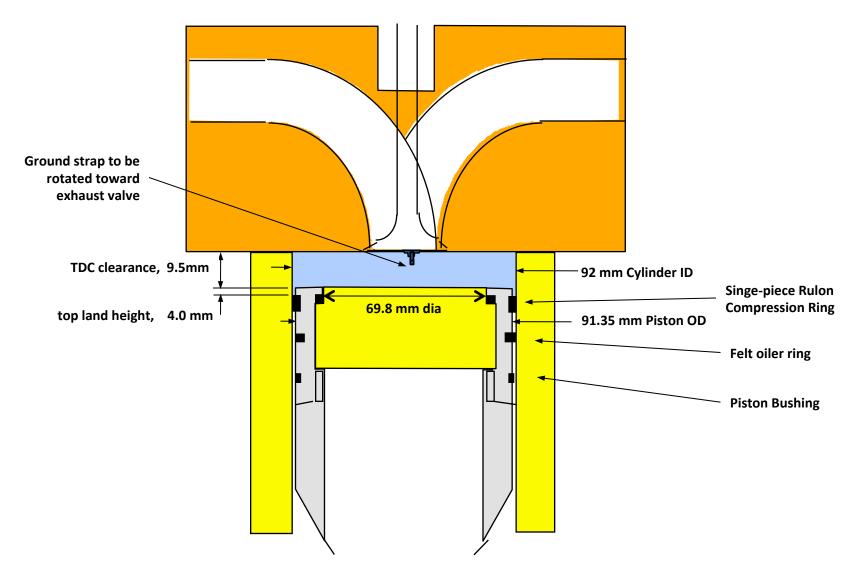
Scanned figures of original printed material are used to avoid transposition errors. The Deep Blue Data TCC-III Collection README file contains errata, which are updated as they become available.



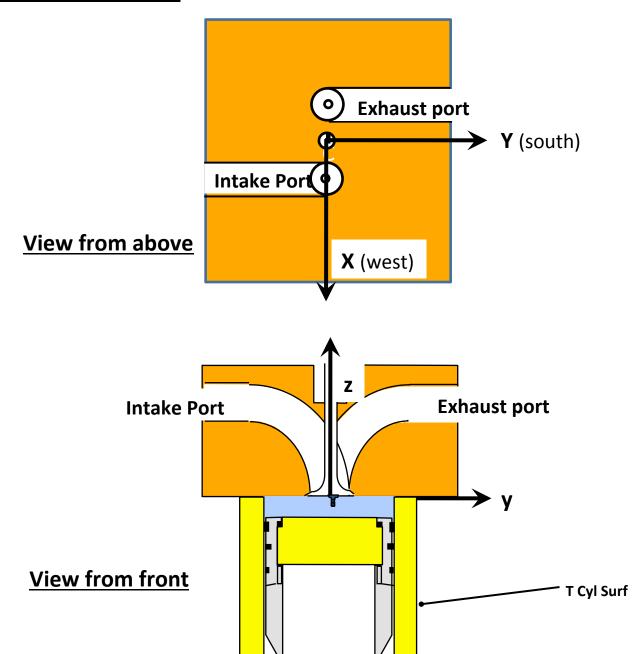

TCC-III Engine Geometry					
Bore, cm	9.20	Connecting-rod length, cm	23.1		
Stroke, cm	8.60	Piston-pin offset, cm	0.0		
Clearance @ TDC, cm	0.95	Conn rod offset, cm	0.0		
Combustion chamber volume, cc	63.15	Exhaust Valve Closing, aTDCexh	12.8		
Top-land crevice volume, cc	0.37	Intake Peak Lift, aTDCexh	114.8		
Spark-plug crevice volume, cc	0.02	Intake Valve Closing, aTDCexh	240.8		
TDC Volume, cc	63.54	Exhaust Valve Opening, aTDCexh	484.8		
Swept volume, cc	571.7	Exhaust Peak Lift, aTDCexh	606.8		
Geometric CR	10.0	Intake Valve Opening, aTDCexh	712.8		
Effective (IVC) CR	8.0	Valve-seat angles, deg.	30/45/60/75		
Steady-flow swirl ratio	0.4	Spark Plug	AC Delco R44LTS		

TCC-III Overview

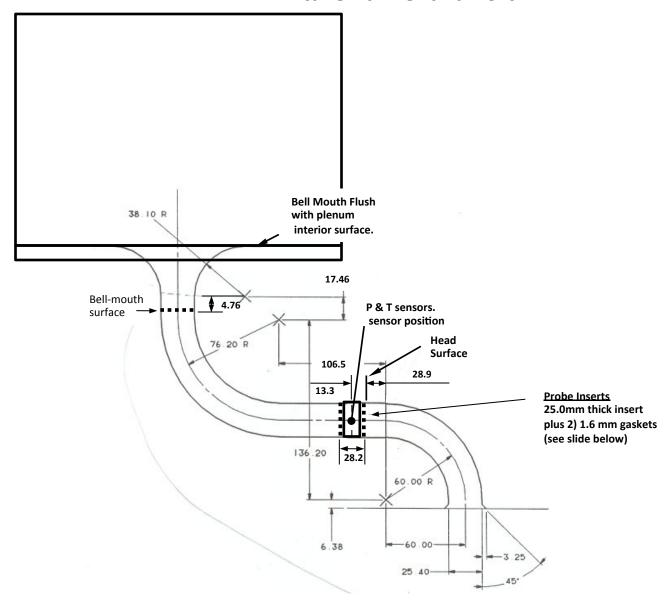

The three-piece head
"cam carrier" (cam and lifters)
"base plate" (valves & guides)
"flow box" (ports, plug, valve seats)

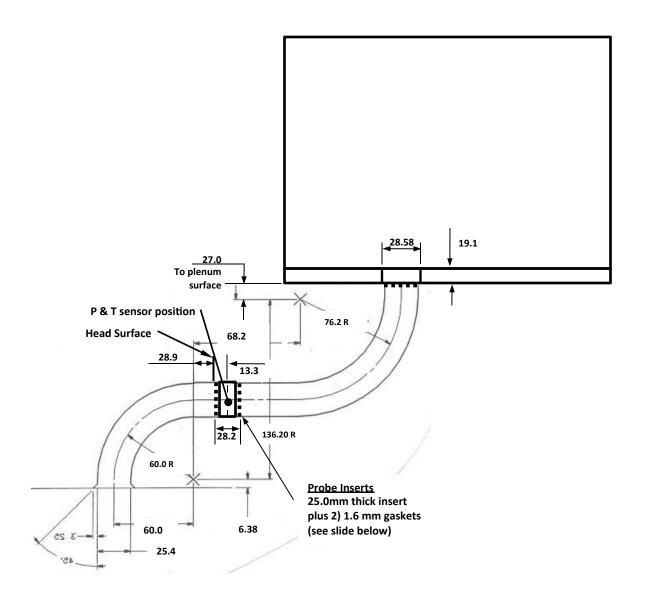


Plenum Interior Dimensions & Measurement Locations


Dimensions in mm

Combustion Chamber

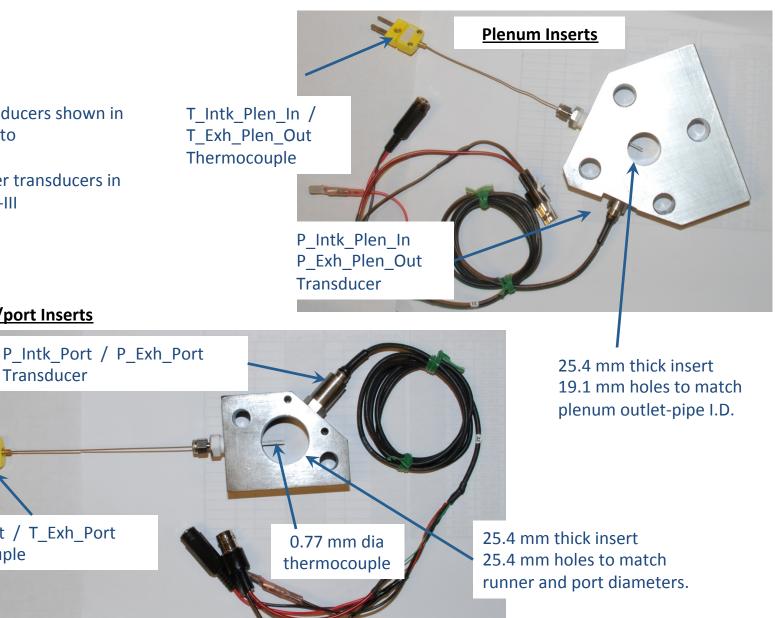

Coordinates


HeadTop View

P_Cyl **Kistler 6125C Pressure** Transducer **Hole Diameter = 6mm** Ground Strap Spark Plug **Depth = 2.75mm** Orientation 19.05 MM .750 IN .ROOVE WIDTH \bigoplus 50. **Exhaust port** MM SG. 6 NI 375. Intake\\\\\ Port **Heat Flux** MM 00.5S .906 IN Probe MM 03.3Σ NI 89Σ.1

Intake Runner and Port

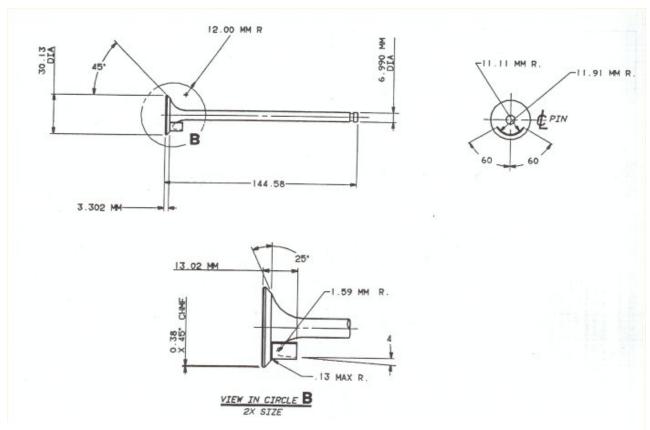
Exhaust Runner and Port



Intake and Exhaust Probe Inserts

For pressure transducers and thermocouples

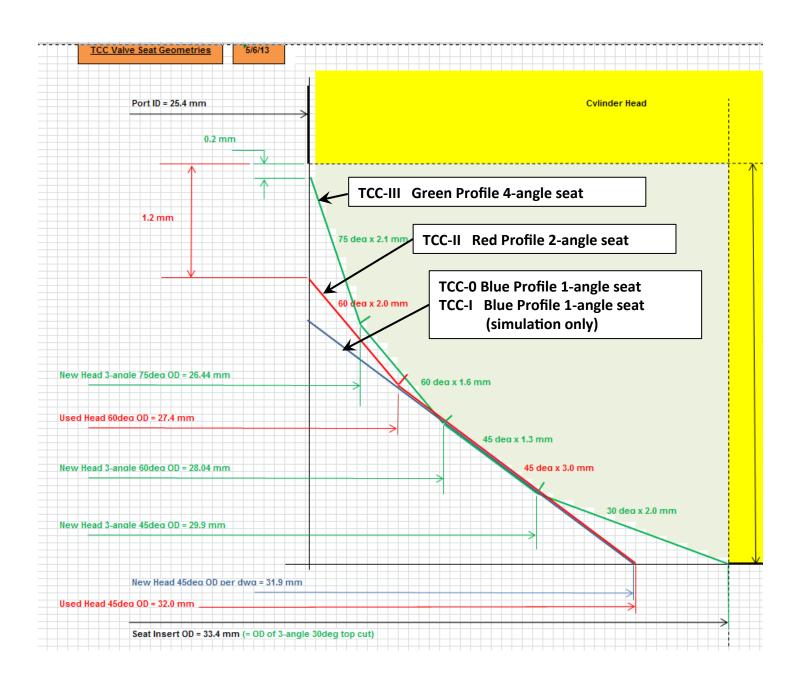
Replaced by Kistler transducers in TCC-III


Runner/port Inserts

T_Intk_Port / T_Exh_Port

Thermocouple

Transducer


TCC-0 single-angle Valves

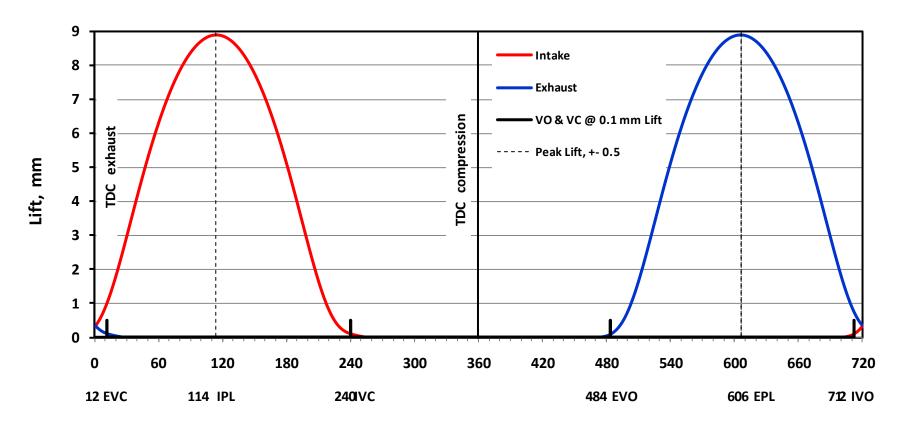
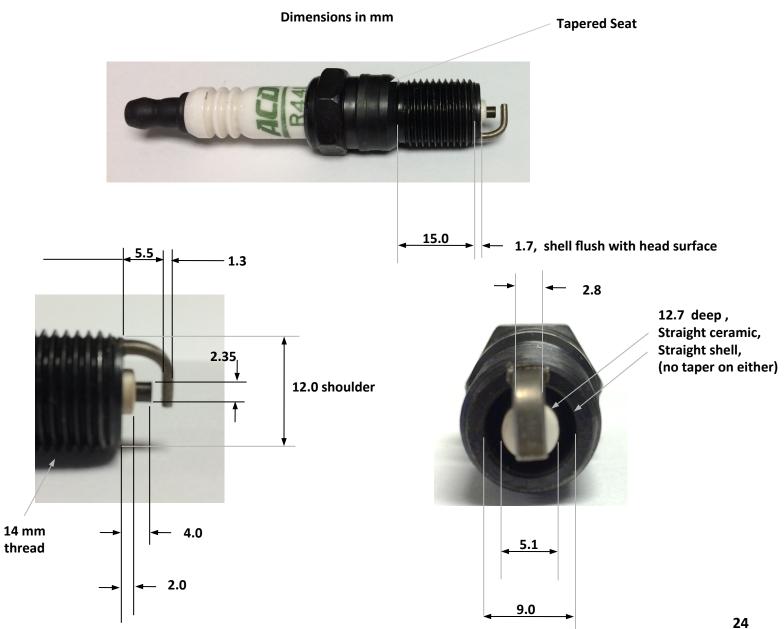

Unshrouded intake valve and exhaust valve are the same but with no shroud.

Figure 3 Details of the TCC-engine shrouded intake valve.

TCC Valve Seat Anthology

Nominal Cam Timing

Crank angle, deg aTDC exhaust


Cam Profile

Original used for grinding cams

F-252	• • • • • • • • • • • • • • • • • • • •	, (CAM	CONTOU	R DATA	1.00	. 14.
	OPENING	CLOSING	ANGLE	OPENING	CLOSING		1 4
0 . 2 . 3 . 4	8.8900 8.8864 8.8758 8.8580 8.8331	8.8900 8.8864 8.8758 8.8580 8.8331	40 4841 42 4443 44	3.4591 3.2182 2.9780 2.7397 2.5045	3.4647 %3.2246 2.9853 2.7481 2.5141	541.	
5 6 7 8 9	8.8011 8.7620 8.7158 8.6625 8.6021	8.8011 8.7620 8.7158 8.6625 8.6021	4045 46 3647 48 3249	2.2736 2.0485 1.8306 1.6212 1.4218	182.2846 2.0610 141.8448 1.6374 40.4402		
10 11 12 13	8.5346 8.4600 8.3783 8.2896 8.1939	8.5346 8.4600 8.3783 8.2896 8.1939	50 151 52 153 54	1.2337 1.0582 0.8963 0.7490 0.6167	1.2547 361.0820 0.9233 720.7793 0.6508		
15 16 17 18 19	8.0911 7.9813 7.8646 7.7409 7.6102	8.0911 7.9813 7.8646 7.7409 7.6102	**55* *56 *57** 58 *59	-0.4997 0.3979 -0.3109 0.2379 0.1776	0.5379 0.4404 440.3578 0.2892	6	TOC
20 21 22 23 24	7.4727 7.3284 7.1772 7.0194 6.8548	7.4728 7.3286 7.1775 7.0197 6.8552	60 61 5 62 1/63 64	0.1290 0.0904 0.0605 0.0381 0.0220	0.1882 60.1525 0.1242 0.1016 0.0830	6	closed
25 26 27 28 29	6.6837 6.5061 6.3222 6.1320 5.9357	6.6842 6.5067 6.3229 6.1329 5.9367	%65 4 66 67 68	0.0113 0.0047 0.0014 0.0002 0.0000	0.0669 0.0522 10.0384 0.0259 00.015324		
30 31 32 33 34	5.7335 5.5256 5.3123 5.0939 4.8707	5.7347 5.5271 5.3140 5.0959 4.8730	70 71 72 73		0.0074 0.0025 0.0006 0.0000		
6035 36 4637 38 4039	4.6431 4.4116 4.1768 3.9393 3.6998	4.6458 4.4148 4.1805 3.9435 03.7046					

Spark Plug

AC Delco R44LTS

HIGH OUTPUT IGBT COIL 30-2853

The model **30-2853 HO IGBT Coil** is specially designed for racing applications and does not require a CDI or external Igniter to function. This is a very high energy coil so you must take special attention to the quality of the connections. Make sure to apply a liberal amount of dielectric grease to the connector terminals and the tip and body of the spark plugs. Failure to do this may cause arcs to the cylinder head and cause a misfire.

The 30-2853 Kit Contains:

1 High Output IGBT Coil

1 Mating Connector & 6 Contacts

SPECIFICATIONS:

Output (no load): 40kV minimum Output (50pF load): 40kV +/- 10% Output Energy: 103 mJ +/- 7% Peak Secondary Current: 102 mA +/- 10% Arc Duration: 2.9mS +/- 10% Turns Ratio 71:1 Maximum Current: 19 Amps Maximum Battery Voltage: 17 Volts Base Dwell: 3.0 mS

Max Continuous Dwell: 9 mS but don't exceed 40% duty cycle
Max Intermittent Dwell: 80% duty cycle, 5 seconds maximum
Mating Connector: Packard/Delphi 12162825 "Pull to Seat"
Mating Contacts: Packard/Delphi 12124075 "Pull to Seat"

High Tension Wire Terminal: HEI "spark plug top" Style

A: Coil Trigger (0-5V signal)

B: Coil Trigger (Ref Ground)

C: Ground to Cylinder Head

D: Battery Ground

E: Battery Positive (Relay or switched ignition)

IMPORTANT!

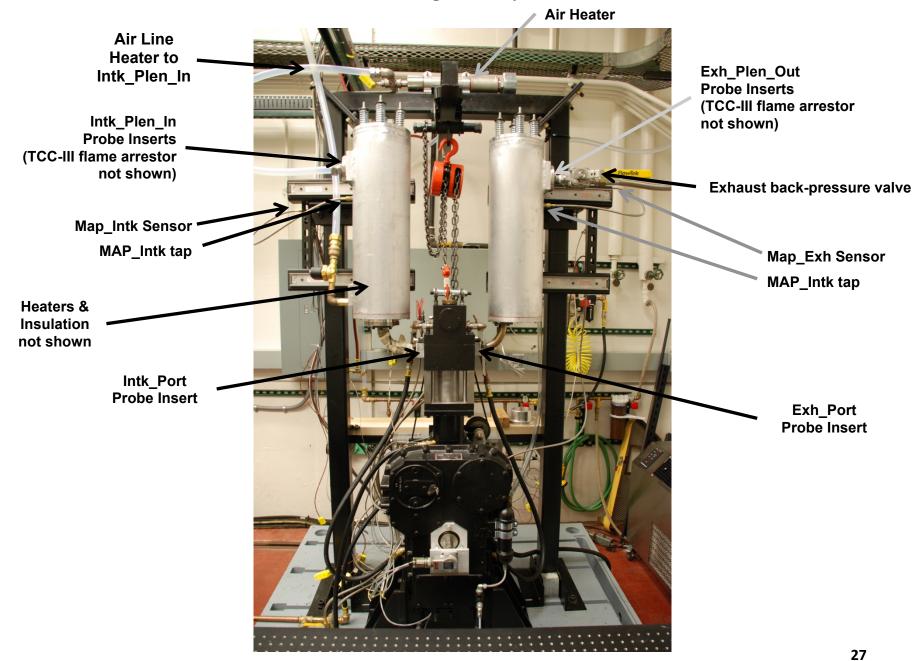
The contacts are "Pull to Seat" meaning you must feed the wire through the connector housing BEFORE you crimp on the contacts. The wire is then pulled back into the housing and the contact locks in place. The contact cannot be inserted or removed from the rear (wire side entry) of the housing

DWELL:

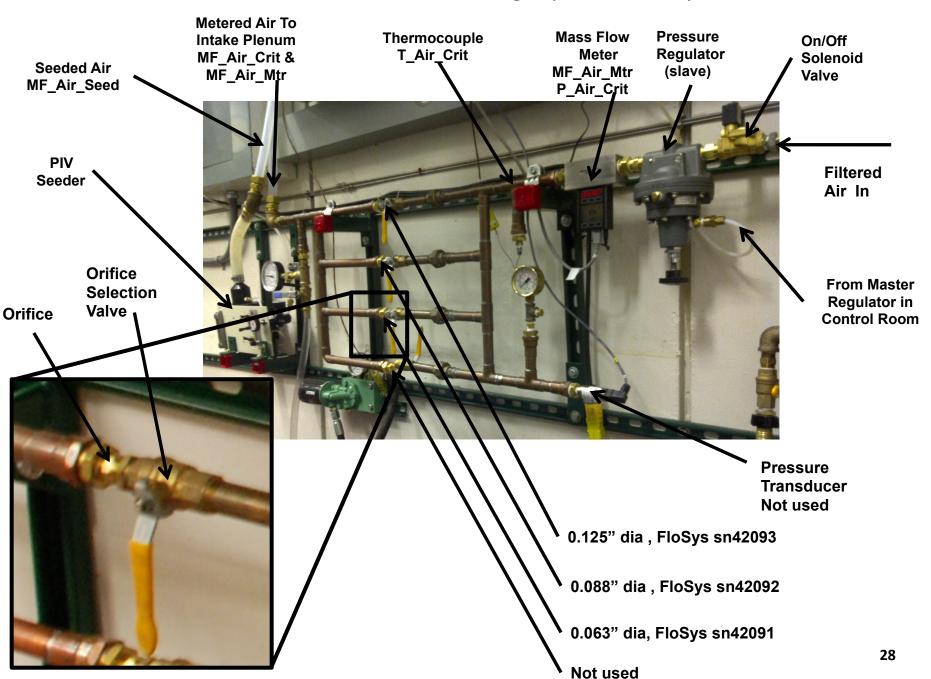
When setting the dwell the following guidelines should be used:

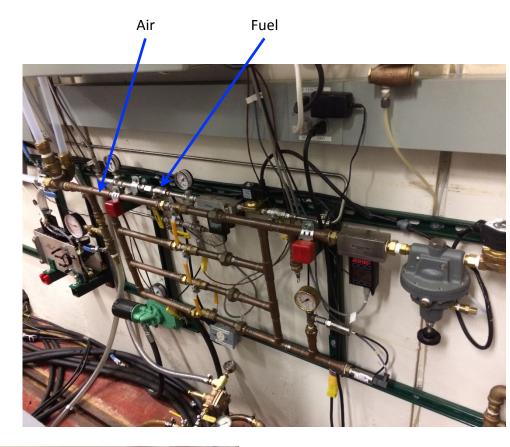
- Target a base dwell time of 3mS and only increase it when needed due to high cylinder pressures.
- The maximum individual coil dwell "ON" time must not exceed 9mS at any time, regardless of engine RPM.
 Exceeding this time will cause the coil to overheat and fail.
- For continuous duty the maximum "ON" time must remain below 40% duty (on 40% of the time, off 60% of the time). Exceeding this will cause the coil to overheat and fail.
- For short bursts, the coil dwell can go as high as 80% "ON" duty but these forays need to be short (under 5 seconds or so) and cannot be frequent.

For technical assistance, contact AEM Tech support at emstech@aempower.com

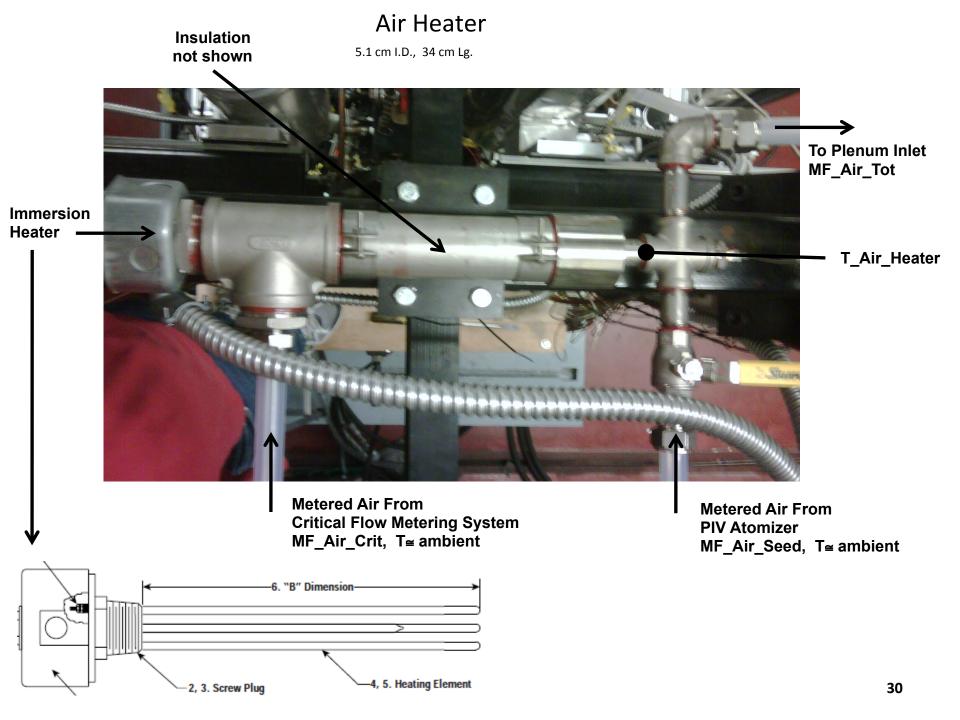

TCC-III GT-Power Summary of Intake and Exhaust Systems

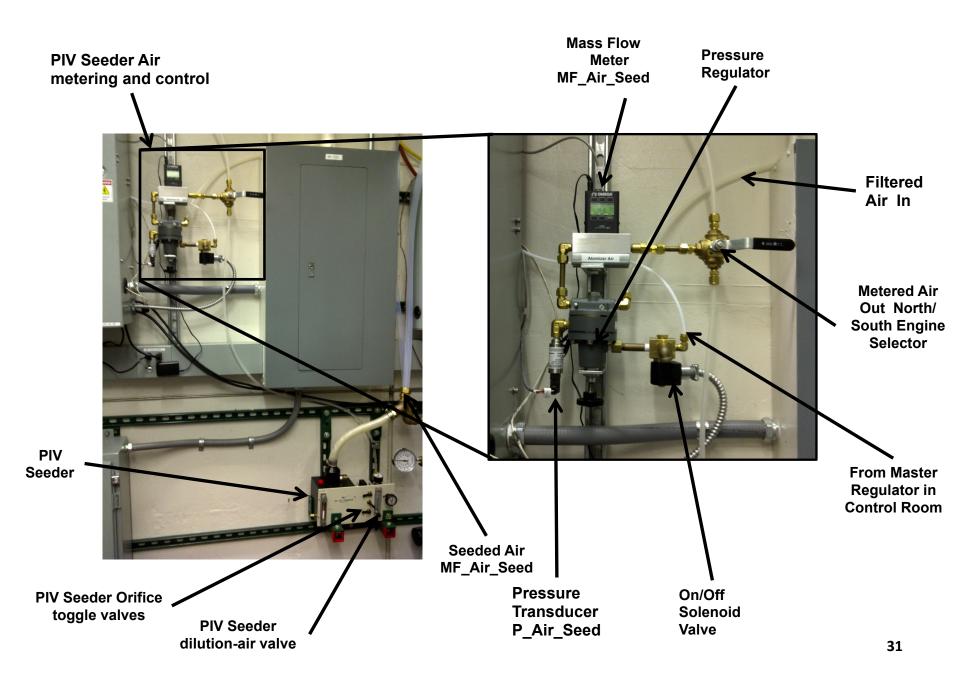
Slides 26 - 33 provide detailed information on the intake and exhaust system geometries. This was used to create the GTPower 1-D model .gtm and .gdx files (located in the TCC-III_Geometry directory shown in Slide 6). In addition, the geometry slides define the nomenclature and locations of the pressure transducers and thermocouples cataloged in the Pressure Data Files.

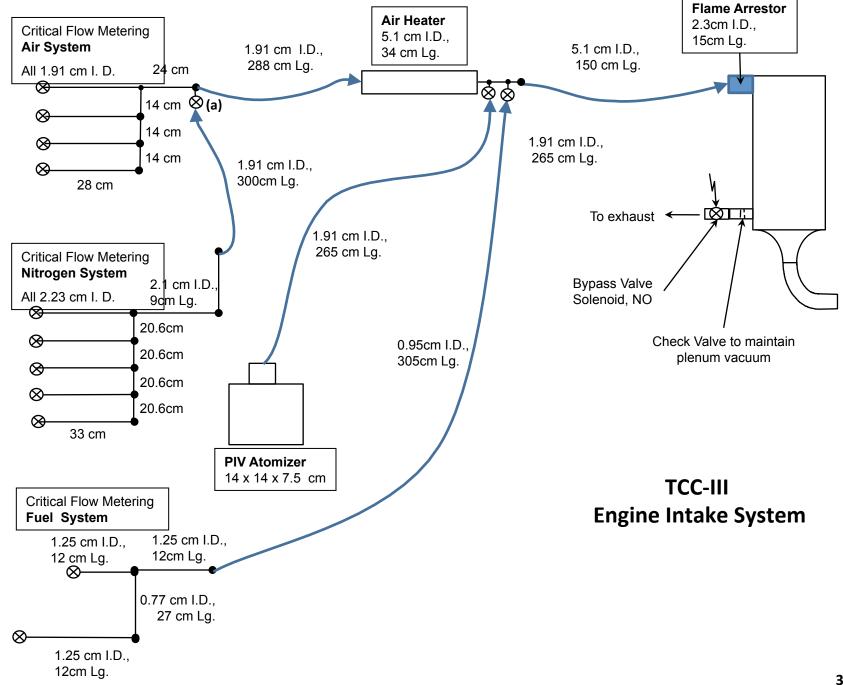

Scanned figures of original printed material are used to avoid transposition errors. The Deep Blue Data TCC-III Collection README file contains errata, which are updated as they become available.


TCC-II Engine & Systems

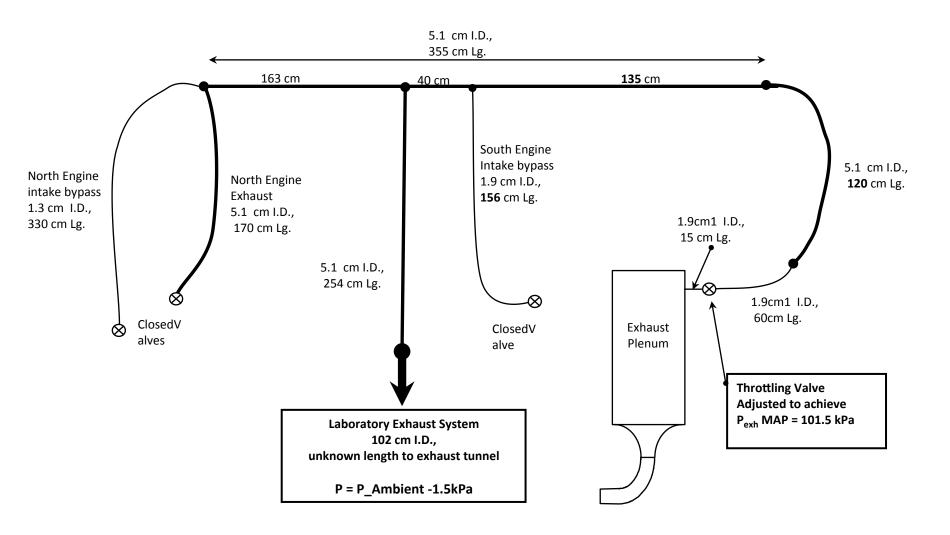
TCC-II Critical Flow Metering System, Air only




TCC-III Critical Flow Fuel Metering Systems, Air + Fuel



Air Fuel



TCC-III Engine Exhaust System

