Show simple item record

Synergy of Multiple Cylinders in Flow Induced Motion for Hydrokinetic Energy Harnessing.

dc.contributor.authorKim, Eun Sooen_US
dc.date.accessioned2013-09-24T16:03:20Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2013-09-24T16:03:20Z
dc.date.issued2013en_US
dc.date.submitted2013en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100015
dc.description.abstractVortex Induced Vibrations for Aquatic Clean Energy (VIVACE) Converter is a converter of marine hydro-kinetic (MHK) energy invented in the Marine Renewable Energy Lab (MRELab). It harnesses MHK from ocean currents. Using passive turbulence control, VIVACE maximizes and utilizes flow induced motion in the form of vortex induced vibration (VIV) or interference/proximity/wake/soft/hard galloping. MRELab has achieved back-to-back VIV and galloping for a single cylinder with passive turbulence control thus more than doubling the range of synchronization of flow induced motion. The goal of this research is to maximize the synergy of multiple cylinders in flow induced motion (FIM) for MHK energy harnessing in order to increase the power volume density. In order to achieve this goal, the effects of tandem spacing, staggering, passive turbulence control, mass ratio, spring stiffness, damping, and number of cylinders in FIM of multiple cylinders are studied experimentally. All model tests were conducted at high Reynolds numbers in the range of 28,000<Re<120,000, which primarily covers the TrSL2 and TrSL3 flow regimes. The following observations and conclusions are drawn: (a) By introducing PTC, all cylinders (2,3,4 tandem configurations) achieve galloping increasing the range of FIM synchronization with high amplitudes regardless of other parameters. (b) For tandem spacing of 1.43D, FIM of two cylinders in tandem is distinct: galloping starts earlier, amplitude is higher for the 2nd cylinder, oscillation frequency is lower for both cylinders, and energy conversion is 60% higher. (c) For two cylinders in close tandem proximity (d/D<2.0), contrary to single cylinder studies, energy envelope points in galloping may not correspond to the highest spring stiffness (d) Higher mass ratio (m*) results in higher MHK energy conversion in galloping with practically no change in the VIV region. Increase by a factor of 2.5 was measured for 0.65<m*<1.66. (e) Multiple cylinders in tandem can be in synergistic FIM in close proximity of d/D<2.0. (f) 2, 3, and 4 cylinders in synergistic FIM can harness more MHK energy than the sum of the energy harnessed by each cylinder acting in isolation.en_US
dc.language.isoen_USen_US
dc.subjectFlow Induced Motion, Multiple Cylinder, Energy Conversion, Renewable Energy Converteren_US
dc.titleSynergy of Multiple Cylinders in Flow Induced Motion for Hydrokinetic Energy Harnessing.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBernitsas, Michael M.en_US
dc.contributor.committeememberBernal, Luis P.en_US
dc.contributor.committeememberVlahopoulos, Nickolasen_US
dc.contributor.committeememberPerkins, Noel C.en_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100015/1/bblwith_2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100015/2/bblwith_3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100015/3/bblwith_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.