Show simple item record

SWI / SNF in cardiac progenitor cell differentiation

dc.contributor.authorLei, Ienglamen_US
dc.contributor.authorLiu, Liuen_US
dc.contributor.authorSham, Mai Haren_US
dc.contributor.authorWang, Zhongen_US
dc.date.accessioned2013-10-02T15:13:26Z
dc.date.available2015-01-05T13:54:44Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationLei, Ienglam; Liu, Liu; Sham, Mai Har; Wang, Zhong (2013). " SWI / SNF in cardiac progenitor cell differentiation." Journal of Cellular Biochemistry 114(11): 2437-2445.en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100161
dc.description.abstractCardiogenesis requires proper specification, proliferation, and differentiation of cardiac progenitor cells (CPCs). The differentiation of CPCs to specific cardiac cell types is likely guided by a comprehensive network comprised of cardiac transcription factors and epigenetic complexes. In this review, we describe how the ATP‐dependent chromatin remodeling SWI/SNF complexes work synergistically with transcription and epigenetic factors to direct specific cardiac gene expression during CPC differentiation. Furthermore, we discuss how SWI/SNF may prime chromatin for cardiac gene expression at a genome‐wide level. A detailed understanding of SWI/SNF‐mediated CPC differentiation will provide important insight into the etiology of cardica defects and help design novel therapies for heart disease. J. Cell. Biochem. 114: 2437–2445, 2013. © 2013 Wiley Periodicals, Inc.en_US
dc.publisherCold Spring Harbor Laboratory Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDIFFERENTIATIONen_US
dc.subject.otherATP ‐DEPENDENT CHROMATIN REMODELNGen_US
dc.subject.otherCARDIAC PROGENITOR CELLen_US
dc.subject.otherSWI / SNFen_US
dc.titleSWI / SNF in cardiac progenitor cell differentiationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100161/1/jcb24570.pdf
dc.identifier.doi10.1002/jcb.24570en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferenceTakeuchi JK, Bruneau BG. 2009. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459: 708 – 711.en_US
dc.identifier.citedreferenceRada‐Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470: 279 – 283.en_US
dc.identifier.citedreferenceRyba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM. 2010. Evolutionarily conserved replication timing profiles predict long‐range chromatin interactions and distinguish closely related cell types. Genome Res 20: 761 – 770.en_US
dc.identifier.citedreferenceSchones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao. K. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132: 887 – 898.en_US
dc.identifier.citedreferenceSrivastava D. 2006. Making or breaking the heart: From lineage determination to morphogenesis. Cell 126: 1037 – 1048.en_US
dc.identifier.citedreferenceStankunas K, Hang CT, Tsun ZY, Chen H, Lee NV, Wu JI, Shang C, Bayle JH, Shou W, Iruela‐Arispe ML, Chang CP. 2008. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14: 298 – 311.en_US
dc.identifier.citedreferenceStevens KN, Hakonarson H, Kim CE, Doevendans PA, Koeleman BP, Mital S, Raue J, Glessner JT, Coles JG, Moreno V, Granger A, Gruber SB, Gruber PJ. 2010. Common variation in ISL1 confers genetic susceptibility for human congenital heart disease. PLoS ONE 5: e10855.en_US
dc.identifier.citedreferenceSuzuki MM, Bird. A. 2008. DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet 9: 465 – 476.en_US
dc.identifier.citedreferenceWamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG. 2012. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151: 206 – 220.en_US
dc.identifier.citedreferenceWang W, Côté J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, Crabtree GR. 1996. Purification and biochemical heterogeneity of the mammalian SWI‐SNF complex. Embo J 15: 5370 – 5382.en_US
dc.identifier.citedreferenceWang Z, Zhai W, Richardson JA, Olson EN, Meneses JJ, Firpo MT, Kang C, Skarnes WC, Tjian R. 2004. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev 18: 3106 – 3116.en_US
dc.identifier.citedreferenceWen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP. 2009. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41: 246 – 250.en_US
dc.identifier.citedreferenceWhitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen‐Hughes T. 1999. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400: 784 – 787.en_US
dc.identifier.citedreferenceWu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL, Schultheiss TM, Orkin SH. 2006. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127: 1137 – 1150.en_US
dc.identifier.citedreferenceWu SM, Chien KR, Mummery C. 2008. Origins and fates of cardiovascular progenitor cells. Cell 132: 537 – 543.en_US
dc.identifier.citedreferenceWu JI, Lessard J, Crabtree GR. 2009. Understanding the words of chromatin regulation. Cell 136: 200 – 206.en_US
dc.identifier.citedreferenceXue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED, Wang. W. 2000. The human SWI/SNF‐B chromatin‐remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci U S A 97: 13015 – 13020.en_US
dc.identifier.citedreferenceYan Z, Cui K, Murray DM, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K, Wang. W. 2005. PBAF chromatin‐remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon‐responsive genes. Genes Dev 19: 1662 – 1667.en_US
dc.identifier.citedreferenceYan Z, Wang Z, Sharova L, Sharov AA, Ling C, Piao Y, Aiba K, Matoba R, Wang W, Ko MSH. 2008. The BAF250b‐associated SWI/SNF chromatin‐remodeling complex is required for the maintenance of undifferentiated mouse embryonic stem cells. Stem Cells 26: 1155 – 1165.en_US
dc.identifier.citedreferenceYang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. 2008. Human cardiovascular progenitor cells develop from a KDR+ embryonic‐stem‐cell‐derived population. Nature 453: 524 – 528.en_US
dc.identifier.citedreferenceYu Y, Chen Y, Kim B, Wang H, Zhao C, He X, Liu L, Liu W, Wu LM, Mao M, Chan JR, Wu J, Lu. QR. 2013. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 152: 248 – 261.en_US
dc.identifier.citedreferenceZaidi SK, Young DW, Montecino M, van Wijnen AJ, Stein JL, Lian JB, Stein GS. 2011. Bookmarking the genome: Maintenance of epigenetic information. J Biol Chem 286: 18355 – 18361.en_US
dc.identifier.citedreferenceZeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou. MM. 2010. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466: 258 – 262.en_US
dc.identifier.citedreferenceZhou VW, Goren A, Bernstein BE. 2011. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12: 7 – 18.en_US
dc.identifier.citedreferenceBeltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal‐Ginard B, Anversa P. 2003. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763 – 776.en_US
dc.identifier.citedreferenceBlack BL. 2007. Transcriptional pathways in second heart field development. Semin Cell Dev Biol 18: 67 – 76.en_US
dc.identifier.citedreferenceBlin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, Bellamy V, Rucker‐Martin C, Barbry P, Bel A, Bruneval P, Cowan C, Pouly J, Mitalipov S, Gouadon E, Binder P, Hagege A, Desnos M, Renaud JF, Menasche P, Puceat M. 2010. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120: 1125 – 1139.en_US
dc.identifier.citedreferenceBruneau BG. 2008. The developmental genetics of congenital heart disease. Nature 451: 943 – 948.en_US
dc.identifier.citedreferenceBu L, Jiang X, Martin‐Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR. 2009. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460: 113 – 117.en_US
dc.identifier.citedreferenceCai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5: 877 – 889.en_US
dc.identifier.citedreferenceCairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument‐Bromage H, Tempst P, Du J, Laurent B, Kornberg RD. 1996. RSC, an essential, abundant chromatin‐remodeling complex. Cell 87: 1249 – 1260.en_US
dc.identifier.citedreferenceChen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA, Baldini A. 2012. Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet 8: e1002571.en_US
dc.identifier.citedreferenceChristoforou N, Oskouei BN, Esteso P, Hill CM, Zimmet JM, Bian W, Bursac N, Leong KW, Hare JM, Gearhart JD. 2010. Implantation of mouse embryonic stem cell‐derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS ONE 5: e11536.en_US
dc.identifier.citedreferenceCreyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107: 21931 – 21936.en_US
dc.identifier.citedreferenceDacwag CS, Ohkawa Y, Pal S, Sif S, Imbalzano AN. 2007. The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP‐dependent chromatin remodeling. Mol Cell Biol 27: 384 – 394.en_US
dc.identifier.citedreferencede la Serna IL, Ohkawa Y, Imbalzano AN. 2006. Chromatin remodelling in mammalian differentiation: Lessons from ATP‐dependent remodellers. Nat Rev Genet 7: 461 – 473.en_US
dc.identifier.citedreferenceDixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren. B. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376 – 380.en_US
dc.identifier.citedreferenceEuskirchen GM, Auerbach RK, Davidov E, Gianoulis TA, Zhong G, Rozowsky J, Bhardwaj N, Gerstein MB, Snyder M. 2011. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet 7: e1002008.en_US
dc.identifier.citedreferenceGao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang. Z. 2008. ES cell pluripotency and germ‐layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA 105: 6656 – 6661.en_US
dc.identifier.citedreferenceHang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. 2010. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466: 62 – 67.en_US
dc.identifier.citedreferenceHansson EM, Lindsay ME, Chien KR. 2009. Regeneration next: Toward heart stem cell therapeutics. Cell stem cell 5: 364 – 377.en_US
dc.identifier.citedreferenceHeintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz‐Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren. B. 2009. Histone modifications at human enhancers reflect global cell‐type‐specific gene expression. Nature 459: 108 – 112.en_US
dc.identifier.citedreferenceHiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett‐Jones DP, Plath K, Dalton S, Rathjen PD, Gilbert DM. 2010. Genome‐wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 20: 155 – 169.en_US
dc.identifier.citedreferenceHo L, Crabtree GR. 2010. Chromatin remodelling during development. Nature 463: 474 – 484.en_US
dc.identifier.citedreferenceHo L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, Crabtree GR. 2009. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self‐renewal and pluripotency. Proc Natl Acad Sci U S A 106: 5181 – 5186.en_US
dc.identifier.citedreferenceHu G, Cui K, Northrup D, Liu C, Wang C, Tang Q, Ge K, Levens D, Crane‐Robinson C, Zhao. K. 2013. H2A. Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self‐renewal and differentiation. Cell Stem Cell 12: 180 – 192.en_US
dc.identifier.citedreferenceHuang X, Gao X, Diaz‐Trelles R, Ruiz‐Lozano P, Wang. Z. 2008. Coronary development is regulated by ATP‐dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol 319: 258 – 266.en_US
dc.identifier.citedreferenceJessup M, Brozena S. 2003. Heart failure. N Engl J Med 348: 2007 – 2018.en_US
dc.identifier.citedreferenceKattman SJ, Huber TL, Keller GM. 2006. Multipotent flk‐1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11: 723 – 732.en_US
dc.identifier.citedreferenceKeegan BR, Feldman JL, Begemann G, Ingham PW, Yelon D. 2005. Retinoic acid signaling restricts the cardiac progenitor pool. Science 307: 247 – 249.en_US
dc.identifier.citedreferenceKingston RE, Tamkun JW. 2007. Transcriptional regulation by Trithorax group proteins. In: Allis CD, Jenuwein T, Reinberg D, editors. Epgenetics. New York: Cold Spring Harbor Laboratory Press. 231 – 248.en_US
dc.identifier.citedreferenceKwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D. 2009. A regulatory pathway involving Notch1/beta‐catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11: 951 – 957.en_US
dc.identifier.citedreferenceLange M, Kaynak B, Forster UB, Tönjes M, Fischer JJ, Grimm C, Schlesinger J, Just S, Dunkel I, Krueger T, Mebus S, Lehrach H, Lurz R, Gobom J, Rottbauer W, Abdelilah‐Seyfried S, Sperling S. 2008. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22: 2370 – 2384.en_US
dc.identifier.citedreferenceLee S, Lee JW, Lee. SK. 2012. UTX, a histone H3‐lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell 22: 25 – 37.en_US
dc.identifier.citedreferenceLei I, Gao X, Sham MH, Wang. Z. 2012. SWI/SNF Protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field. J Biol Chem 287: 24255 – 24262.en_US
dc.identifier.citedreferenceLessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR. 2007. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55: 201 – 215.en_US
dc.identifier.citedreferenceLi Z, Gadue P, Chen K, Jiao Y, Tuteja G, Schug J, Li W, Kaestner KH. 2012. Foxa2 and H2A.Z. mediate nucleosome depletion during embryonic stem cell differentiation. Cell 151: 1608 – 1616.en_US
dc.identifier.citedreferenceLickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG. 2004. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432: 107 – 112.en_US
dc.identifier.citedreferenceLopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. 2006. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet 367: 1747 – 1757.en_US
dc.identifier.citedreferenceLorch Y, Zhang M, Kornberg RD. 1999. Histone octamer transfer by a chromatin‐remodeling complex. Cell 96: 389 – 392.en_US
dc.identifier.citedreferenceLou X, Deshwar AR, Crump JG, Scott IC. 2011. Smarcd3b and Gata5 promote a cardiac progenitor fate in the zebrafish embryo. Development 138: 3113 – 3123.en_US
dc.identifier.citedreferenceMartin‐Puig S, Wang Z, Chien KR. 2008. Lives of a heart cell: Tracing the origins of cardiac progenitors. Cell stem cell 2: 320 – 331.en_US
dc.identifier.citedreferenceMikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, Oapos Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein, BE. 2007. Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells. Nature 448: 553 – 560.en_US
dc.identifier.citedreferenceMoretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin‐Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR. 2006. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151 – 1165.en_US
dc.identifier.citedreferenceNie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK, Wang. W. 2000. A specificity and targeting subunit of a human SWI/SNF family‐related chromatin‐remodeling complex. Mol Cell Biol 20: 8879 – 8888.en_US
dc.identifier.citedreferenceOh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD. 2003. Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100: 12313 – 12318.en_US
dc.identifier.citedreferenceOlson EN. 2006. Gene regulatory networks in the evolution and development of the heart. Science 313: 1922 – 1927.en_US
dc.identifier.citedreferencePaige SL, Thomas S, Stoick‐Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon RT, Stamatoyannopoulos J, Murry CE. 2012. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151: 221 – 232.en_US
dc.identifier.citedreferencePeric‐Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B. 2010. Molecular maps of the reorganization of genome‐nuclear lamina interactions during differentiation. Mol Cell 38: 603 – 613.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.