Show simple item record

Variation in costs of parasite resistance among natural host populations

dc.contributor.authorAuld, S. K. J. R.en_US
dc.contributor.authorPenczykowski, R. M.en_US
dc.contributor.authorHousley Ochs, J.en_US
dc.contributor.authorGrippi, D. C.en_US
dc.contributor.authorHall, S. R.en_US
dc.contributor.authorDuffy, M. A.en_US
dc.date.accessioned2013-11-01T19:00:51Z
dc.date.available2015-01-05T13:54:44Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationAuld, S. K. J. R.; Penczykowski, R. M.; Housley Ochs, J.; Grippi, D. C.; Hall, S. R.; Duffy, M. A. (2013). "Variation in costs of parasite resistance among natural host populations." Journal of Evolutionary Biology 26(11): 2479-2486.en_US
dc.identifier.issn1010-061Xen_US
dc.identifier.issn1420-9101en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100270
dc.description.abstractOrganisms that can resist parasitic infection often have lower fitness in the absence of parasites. These costs of resistance can mediate host evolution during parasite epidemics. For example, large epidemics will select for increased host resistance. In contrast, small epidemics (or no disease) can select for increased host susceptibility when costly resistance allows more susceptible hosts to outcompete their resistant counterparts. Despite their importance for evolution in host populations, costs of resistance (which are also known as resistance trade‐offs) have mainly been examined in laboratory‐based host–parasite systems. Very few examples come from field‐collected hosts. Furthermore, little is known about how resistance trade‐offs vary across natural populations. We addressed these gaps using the freshwater crustacean D aphnia dentifera and its natural yeast parasite, M etschnikowia bicuspidata . We found a cost of resistance in two of the five populations we studied – those with the most genetic variation in resistance and the smallest epidemics in the previous year. However, yeast epidemics in the current year did not alter slopes of these trade‐offs before and after epidemics. In contrast, the no‐cost populations showed little variation in resistance, possibly because large yeast epidemics eroded that variation in the previous year. Consequently, our results demonstrate variation in costs of resistance in wild host populations. This variation has important implications for host evolution during epidemics in nature.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherResistanceen_US
dc.subject.otherTrade‐Offen_US
dc.subject.otherEpidemicen_US
dc.subject.otherD Aphniaen_US
dc.subject.otherHost–Parasite Interactionsen_US
dc.titleVariation in costs of parasite resistance among natural host populationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100270/1/jeb12243.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100270/2/jeb12243-sup-0001-FigS1.pdf
dc.identifier.doi10.1111/jeb.12243en_US
dc.identifier.sourceJournal of Evolutionary Biologyen_US
dc.identifier.citedreferenceIhaka, R. & Gentleman, R. 1996. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5: 299 – 314.en_US
dc.identifier.citedreferenceGillespie, J.H. 1975. Natural selection for resistance to epidemics. Ecology 56: 493 – 495.en_US
dc.identifier.citedreferenceHall, S.R., Sivars‐Becker, L., Becker, C., Duffy, M.A., Tessier, A.J. & Cáceres, C.E. 2007. Eating yourself sick: transmission of disease as a function of foraging ecology. Ecol. Lett. 10: 207 – 218.en_US
dc.identifier.citedreferenceHall, S.R., Becker, C.R., Duffy, M.A. & Cáceres, C.E. 2010. Variation in resource acquisition and use among hosts can create key epidemiological tradeoffs. Am. Nat. 176: 557 – 565.en_US
dc.identifier.citedreferenceHall, S.R., Becker, C.R., Duffy, M.A. & Cáceres, C.E. 2011. Epidemic size determines population‐level effects of fungal parasites on Daphnia hosts. Oecologia 166: 833 – 842.en_US
dc.identifier.citedreferenceHall, S.R., Becker, C.R., Duffy, M.A. & Cáceres, C.E. 2012. A power‐efficiency trade‐off in resource use alters epidemiological relationships. Ecology 93: 645 – 656.en_US
dc.identifier.citedreferenceHasu, T., Benesh, D.P. & Valtonen, E.T. 2009. Differences in parasite susceptibility and costs of resistance between naturally exposed and unexposed host populations. J. Evol. Biol. 22: 699 – 707.en_US
dc.identifier.citedreferenceHenter, H.J. & Via, S. 1995. The potential for coevolution in a host‐parasitoid system. I. Genetic variation within an aphid population in susceptibility to a parasitic wasp. Evolution 49: 427 – 438.en_US
dc.identifier.citedreferenceIbrahim, K.M. & Barrett, J.A. 1991. Evolution of mildew resistance in a hybrid bulk population of barley. Heredity 67: 247 – 256.en_US
dc.identifier.citedreferenceKluttgen, B.U., Dulmer, U., Engels, M. & Ratte, H.T. 1994. ADaM, an artificial freshwater for the culture of zooplankton. Water Res, 28: 743 – 746.en_US
dc.identifier.citedreferenceKraaijeveld, A.R. & Godfray, H.C.J. 1997. Trade‐off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389: 278 – 280.en_US
dc.identifier.citedreferenceKraaijeveld, A.R., Van Alphen, J.J. & Godfray, H.C.J. 1998. The coevolution of host resistance and parasitoid virulence. Parasitology 116: S29 – S45.en_US
dc.identifier.citedreferenceLaine, A.‐L. 2006. Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proc. R. Soc. Lond. B 273: 267 – 273.en_US
dc.identifier.citedreferenceLande, R. 1982. A quantitative genetic theory of life history evolution. Ecology 63: 607 – 615.en_US
dc.identifier.citedreferenceLegendre, P. & Legendre, L. 1998. Numerical Ecology. Elsevier Science, Amsterdam.en_US
dc.identifier.citedreferenceLuong, L.T. & Polak, M. 2007. Costs of resistance in the Drosophila‐Macrocheles system: a negating genetic correlation between ectoparasite resistance and reproduction. Evolution 61: 1391 – 1402.en_US
dc.identifier.citedreferenceMathWorks. 1999. MATLAB 5.3: The Language of Technical Computing. MathWorks, Nantick, MA, USA.en_US
dc.identifier.citedreferenceMcCallum, H., Barlow, N.D. & Hone, J. 2002. Modelling transmission: mass action and beyond. Trends Ecol. Evol. 17: 64 – 65.en_US
dc.identifier.citedreferenceR Foundation for Statistical Computing. 2005. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.en_US
dc.identifier.citedreferenceRigby, M.C., Hechinger, R.F. & Stevens, L. 2002. Why should parasite resistance be costly? Trends Parasitol. 18: 116 – 120.en_US
dc.identifier.citedreferenceRoff, D.A., Mostowy, S. & Fairbairn, D.J. 2002. The evolution of trade‐offs: testing predictions on response to selection and environmental variation. Evolution 56: 84 – 95.en_US
dc.identifier.citedreferencede Roode, J.C. & Altizer, S. 2010. Host‐parasite genetic interactions and virulence‐transmission relationships in natural populations of monarch butterflies. Evolution 64: 502 – 514.en_US
dc.identifier.citedreferenceSalvaudon, L., Heraudet, V. & Shykoff, J.A. 2007. Genotype‐specific interactions and the trade‐off between host and parasite fitness. BMC Evol. Biol. 7: 189 – 199.en_US
dc.identifier.citedreferenceSheldon, B.C. & Verhulst, S. 1996. Ecological immunology: costly parasite defences and trade‐offs in evolutionary ecology. Trends Ecol. Evol. 11: 319 – 321.en_US
dc.identifier.citedreferenceVia, S. & Lande, R. 1985. Genotype‐environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505 – 522.en_US
dc.identifier.citedreferenceAntonovics, J. & Thrall, P.H. 1994. The cost of resistance and maintenance of genetic polymorphism in host‐ pathogen systems. Proc. R. Soc. Lond. B 257: 105 – 110.en_US
dc.identifier.citedreferenceAuld, S.K.J.R., Hall, S.R. & Duffy, M.A. 2012. Epidemiology of a Daphnia‐ multiparasite system and its implications for the Red Queen. PLoS One 7: e39564.en_US
dc.identifier.citedreferenceBergelson, J. 1994. The effects of genotype and the environment on costs of resistance in lettuce. Am. Nat. 143: 349 – 359.en_US
dc.identifier.citedreferenceBiere, A. & Antonovics, J. 1996. Sex‐specific costs of resistance to the fungal pathogen Ustilago violacea ( Microbotryum violaceum ) in Silene alba. Evolution 50: 1098 – 1110.en_US
dc.identifier.citedreferenceBoots, M. 2011. The evolution of resistance to a parasite is determined by resources. Am. Nat. 178: 214 – 220.en_US
dc.identifier.citedreferenceBoots, M. & Haraguchi, Y. 1999. The evolution of costly resistance in host‐parasite systems. Am. Nat. 153: 359 – 370.en_US
dc.identifier.citedreferenceBoots, M., Best, A., Miller, M.R. & White, A. 2009. The role of ecological feedbacks in the evolution of host defence: what does theory tell us? Philos. Trans. R. Soc. Lond. B. 364: 27 – 36.en_US
dc.identifier.citedreferenceBuckling, A. & Rainey, P.B. 2002. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. Lond. B 269: 931 – 936.en_US
dc.identifier.citedreferenceCàceres, C.A. 1998. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79: 1699 – 1710.en_US
dc.identifier.citedreferenceCarius, H.J., Little, T.J. & Ebert, D. 2001. Genetic variation in a host‐parasite association: potential for coevolution and frequency‐dependent selection. Evolution 55: 1136 – 1145.en_US
dc.identifier.citedreferenceChao, L., Levin, B.R. & Stewart, F.M. 1977. A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58: 369 – 379.en_US
dc.identifier.citedreferenceCivitello, D.J., Forys, P., Johnson, A.P. & Hall, S.R. 2012. Chronic contamination decreases disease spread: a Daphnia ‐fungus‐copper case study. Proc. R. Soc. Lond. B 279: 3146 – 3153.en_US
dc.identifier.citedreferenceCivitello, D.J., Penczykowski, R.M., Hite, J., Duffy, M.A. & Hall, S.R. 2013. Potassium stimulates fungal epidemics in Daphnia by increasing host and parasite reproduction. Ecology 94: 380 – 388.en_US
dc.identifier.citedreferenceCrawley, M.J. 2007. The R Book. John Wiley & Sons, Ltd., Chichester.en_US
dc.identifier.citedreferenceCribari‐Neto, F. 2004. Asymptotic inference under heteroskedasticity of unknown form. Comput. Stat. Data. Anal. 45: 215 – 233.en_US
dc.identifier.citedreferenceDuffy, M.A. & Hall, S.R. 2008. Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations. Am. Nat. 171: 499 – 510.en_US
dc.identifier.citedreferenceDuffy, M.A. & Sivars‐Becker, L. 2007. Rapid evolution and ecological host‐parasite dynamics. Ecol. Lett. 10: 44 – 53.en_US
dc.identifier.citedreferenceDuffy, M.A., Brassil, C.E., Hall, S.R., Tessier, A.J., Cáceres, C.E. & Conner, J.K. 2008. Parasite‐mediated disruptive selection in a natural Daphnia population. BMC Evol. Biol. 8: 80.en_US
dc.identifier.citedreferenceDuffy, M.A., Hall, S.R., Cáceres, C.E. & Ives, A.R. 2009. Rapid evolution, seasonality, and the termination of parasite epidemics. Ecology 90: 1441 – 1448.en_US
dc.identifier.citedreferenceDuffy, M.A., Cáceres, C.E., Hall, S.R., Tessier, A.J. & Ives, A.R. 2010. Temporal, spatial and between‐host comparisons of patterns of parasitism in lake zooplankton. Ecology 91: 3322 – 3331.en_US
dc.identifier.citedreferenceDuffy, M.A., Housley Ochs, J., Penczykowski, R.M., Civitello, D.J., Klausmeier, C.A. & Hall, S.R. 2012. Ecological context influences epidemic size and parasite‐mediated selection. Science 335: 1636 – 1638.en_US
dc.identifier.citedreferenceDuncan, A.B. & Little, T.J. 2007. Parasite‐driven genetic change in a natural population of Daphnia. Evolution 61: 796 – 803.en_US
dc.identifier.citedreferenceDuncan, A.B., Fellous, S. & Kaltz, O. 2011. Reverse evolution: selection against costly resistance in disease‐free microcosm populations of Paramecium caudatum. Evolution 65: 3462 – 3474.en_US
dc.identifier.citedreferenceEbert, D. 2005. Ecology, Epidemeology and Evolution of Parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD.en_US
dc.identifier.citedreferenceGibson, A.K., Petit, E., Mena‐Ali, J., Oxelman, B. & Hood, M.E. 2013. Life‐history strategy defends against disease and may select against physiological resistance. Ecol. Evol. 3: 1741 – 1750.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.