Show simple item record

Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale

dc.contributor.authorKim, Jonghoen_US
dc.contributor.authorIvanov, Valeriy Y.en_US
dc.contributor.authorKatopodes, Nikolaos D.en_US
dc.date.accessioned2013-11-01T19:00:52Z
dc.date.available2014-10-06T19:17:43Zen_US
dc.date.issued2013-09en_US
dc.identifier.citationKim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D. (2013). "Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale." Water Resources Research 49(9): 5134-5154. <http://hdl.handle.net/2027.42/100271>en_US
dc.identifier.issn0043-1397en_US
dc.identifier.issn1944-7973en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100271
dc.publisherNortonen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSaint‐Venant Equationen_US
dc.subject.otherHydrologyen_US
dc.subject.otherHairsine‐Rose Modelen_US
dc.subject.otherSediment Transporten_US
dc.subject.otherSoil Erosionen_US
dc.titleModeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scaleen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100271/1/wrcr20373-sup-0001-suppinfo1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100271/2/wrcr20373-sup-0002-suppinfo2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100271/3/wrcr20373.pdf
dc.identifier.doi10.1002/wrcr.20373en_US
dc.identifier.sourceWater Resources Researchen_US
dc.identifier.citedreferenceSander, G. C., T. Zheng, and C. W. Rose ( 2007 ), Update to “Modeling water erosion due to overland flow using physical principles: 1. Sheet flow”, Water Resour. Res., 43, W04408, doi: 10.1029/2006WR005601.en_US
dc.identifier.citedreferenceNearing, M. A., M. H. Nichols, J. J. Stone, K. G. Renard, and J. R. Simanton ( 2007 ), Sediment yields from unit‐source semiarid watersheds at Walnut Gulch, Water Resour. Res., 43, W06426, doi: 10.1029/2006WR005692.en_US
dc.identifier.citedreferenceNichols, M. H., J. J. Stone, and M. A. Nearing ( 2008 ), Sediment database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S06, doi: 10.1029/2006WR005682.en_US
dc.identifier.citedreferenceNoel, D. U. ( 2001 ), A note on soil erosion and its environmental consequences in the United States, Water Air Soil Pollut., 129 ( 1 ), 181 – 197.en_US
dc.identifier.citedreferenceNord, G., and M. Esteves ( 2005 ), PSEM_2D: A physically based model of erosion processes at the plot scale, Water Resour. Res., 41,W08407, doi: 10.1029/2004WR003690.en_US
dc.identifier.citedreferenceNoto, L. V., V. Y. Ivanov, R. L. Bras, and E. R. Vivoni ( 2008 ), Effects of initialization on response of a fully‐distributed hydrologic model, J. Hydrol., 352 ( 1–2 ), 107 – 125.en_US
dc.identifier.citedreferenceOldeman, L. R., R. T. A. Hakkeling, and W. G. Sombroek ( 1991 ), World Map of the Status of Human‐Induced Soil Degradation, 2nd ed., Int. Soil Ref. and Inf. Cent., Wageningen.en_US
dc.identifier.citedreferencePapanicolaou, A. N., J. T. Sanford, D. C. Dermisis, and G. A. Mancilla ( 2010 ), A 1‐D morphodynamic model for rill erosion, Water Resour. Res., 46, W09541, doi: 10.1029/2009WR008486.en_US
dc.identifier.citedreferenceParlange, J. Y., W. L. Hogarth, C. W. Rose, G. C. Sander, P. Hairsine, and I. Lisle ( 1999 ), Addendum to unsteady soil erosion model, J. Hydrol., 217 ( 1–2 ), 149 – 156.en_US
dc.identifier.citedreferencePenman, H. L. ( 1948 ), Natural evaporation from open water, bare soil and grass, Proc. R. Soc. London, Ser. A., A193, 120 – 145.en_US
dc.identifier.citedreferencePimentel, D., et al. ( 1995 ), Environmental and economic costs of soil erosion and conservation benefits, Science, 267 ( 5201 ), 1117 – 1123.en_US
dc.identifier.citedreferencePoff, N. L., and J. D. Allan ( 1995 ), Functional organization of stream fish assemblages in relation to hydrological variability, Ecology, 76 ( 2 ), 606 – 627.en_US
dc.identifier.citedreferencePoff, N. L., and J. K. H. Zimmerman ( 2010 ), Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows, Freshwater Biol., 55 ( 1 ), 194 – 205.en_US
dc.identifier.citedreferencePoulos, M. J., J. L. Pierce, A. N. Flores, and S. G. Benner ( 2012 ), Hillslope asymmetry maps reveal widespread, multi‐scale organization, Geophys. Res. Lett., 39, L06406, doi: 10.1029/2012GL051283.en_US
dc.identifier.citedreferenceProffitt, A. P. B., C. W. Rose, and P. B. Hairsine ( 1991 ), Rainfall detachment and deposition: Experiments with low slopes and significant water depths, Soil Sci. Soc. Am. J., 55 ( 2 ), 325 – 332.en_US
dc.identifier.citedreferenceRenard, K. G., J. R. Simanton, and C. E. Fancher ( 1986 ), Small watershed automatic water quality sampler, edited, in Proceedings of the 4th Federal Interagency Sedimentation Conference, Las Vegas, Nev., pp. 1–51 to 51–58, United States Government Printing Office, Washington, D. C.en_US
dc.identifier.citedreferenceRinehart A. J., E. R. Vivoni, and P. D. Brooks ( 2008 ), Effects of vegetation, albedo, and solar radiation sheltering on the solution of snow in the Walles Caldera, New Mexico, Ecohydrology 1, 253 – 270.en_US
dc.identifier.citedreferenceRoe, P. L. ( 1981 ), Approximate Riemann solvers, parameter vectors, and difference‐schemes, J. Comput. Phys., 43 ( 2 ), 357 – 372.en_US
dc.identifier.citedreferenceRutter, A. J., K. A. Kershaw, P. C. Robins, and A. J. Morton ( 1971 ), A predictive model of rainfall interception in forests, 1. Derivation of the model from observation in a plantation of Corsican pine, Agri. Meteorol., 9, 367 – 384.en_US
dc.identifier.citedreferenceRutter, A. J., A. J. Morton, and P. C. Robins ( 1975 ), A predictive model of interception in forests, 2. Generalization of the model and comparison with observations in some coniferous and hardwood stands., J. Appl. Ecol., 12, 367 – 380.en_US
dc.identifier.citedreferenceSander, G. C., P. B. Hairsine, C. W. Rose, D. Cassidy, J. Y. Parlange, W. L. Hogarth, and I. G. Lisle ( 1996 ), Unsteady soil erosion model, analytical solutions and comparison with experimental results, J. Hydrol., 178 ( 1‐4 ), 351 – 367.en_US
dc.identifier.citedreferenceSander, G. C., P. B. Hairsine, L. Beuselinck, and G. Govers ( 2002 ), Steady state sediment transport through an area of net deposition: Multisize class solutions, Water Resour. Res., 38 ( 6 ), doi: 10.1029/2001WR000323.en_US
dc.identifier.citedreferenceDunne, T., and R. D. Black ( 1970 ), An experimental investigation of runoff production in permeable soils, Water Resour. Res., 6 ( 2 ), 478 – 490.en_US
dc.identifier.citedreferenceAbbott, M. B. ( 1974 ), Continuous flows, discontinuous flows and numerical analysis, J. Hydraul. Res., 12 ( 4 ), 417 – 467.en_US
dc.identifier.citedreferenceAksoy, H., and M. L. Kavvas ( 2005 ), A review of hillslope and watershed scale erosion and sediment transport models, Catena, 64 ( 2–3 ), 247 – 271.en_US
dc.identifier.citedreferenceBagnold, R. A. ( 1966 ), An approach to the sediment transport problem for general physics, U.S. Geol. Surv. Prof. Pap., 442‐I, p. I1 – I37, USGS, Washington, D. C.en_US
dc.identifier.citedreferenceBai, Z. G., D. L. Dent, L. Olsson, and M. E. Schaepman ( 2008 ), Proxy global assessment of land degradation, Soil Use Manage., 24, 223 – 234.en_US
dc.identifier.citedreferenceBegnudelli, L., and B. F. Sanders ( 2006 ), Unstructured grid finite‐volume algorithm for shallow‐water flow and scalar transport with wetting and drying, J. Hydraul. Eng., 132 ( 4 ), 371 – 384.en_US
dc.identifier.citedreferenceBegnudelli, L., and B. F. Sanders ( 2007 ), Simulation of the St. Francis dam‐break flood, J. Eng. Mech., 133, 1200 – 1212.en_US
dc.identifier.citedreferenceBeuselinck, L., G. Govers, A. Steegen, and P. B. Hairsine ( 1998 ), Experiments on sediment deposition by overland flow, Modell. Soil Erosion, Sediment Transp. Closely Related Hydrol. Processes, ( 249 ), 91 – 96.en_US
dc.identifier.citedreferenceBeuselinck, L., G. Govers, A. Steegen, and T. A. Quine ( 1999 ), Sediment transport by overland flow over an area of net deposition, Hydrol. Processes, 13 ( 17 ), 2769 – 2782.en_US
dc.identifier.citedreferenceBegnudelli, L., B. F. Sanders, and S. F. Bradford ( 2008 ), Adaptive Godunov‐based model for flood simulation, J. Hydraul. Eng., 134 ( 6 ), 714 – 725.en_US
dc.identifier.citedreferenceBradford, S. F., and N. D. Katopodes ( 1999 ), Hydrodynamics of turbid underflows, I: Formulation and numerical analysis, J. Hydraul. Eng., 125 ( 10 ), 1006 – 1015.en_US
dc.identifier.citedreferenceBradford, S. F., and N. D. Katopodes ( 2001 ), Finite volume model for nonlevel basin irrigation, J. Irrig. Drain. Eng., 127 ( 4 ), 216 – 223.en_US
dc.identifier.citedreferenceBradford, S. F., and B. F. Sanders ( 2002 ), Finite‐volume model for shallow‐water flooding of arbitrary topography, J. Hydraul. Eng., 128 ( 3 ), 289 – 298.en_US
dc.identifier.citedreferenceBrown, L. R. ( 1984 ), Conserving soils, in State of the World, edited by L. R. Brown, pp. 53 – 75, Norton, New York.en_US
dc.identifier.citedreferenceBrufau, P., and P. Garcia‐Navarro ( 2003 ), Unsteady free surface flow simulation over complex topography with a multidimensional upwind technique, J. Comput. Phys., 186 ( 2 ), 503 – 526.en_US
dc.identifier.citedreferenceBrufau, P., P. Garcia‐Navarro, and M. E. Vazquez‐Cendon ( 2004 ), Zero mass error using unsteady wetting‐drying conditions in shallow flows over dry irregular topography, Int. J. Numer. Methods Fluids, 45 ( 10 ), 1047 – 1082.en_US
dc.identifier.citedreferenceBunn, S. E., and A. H. Arthington ( 2002 ), Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity, Environ. Manage., 30 ( 4 ), 492 – 507.en_US
dc.identifier.citedreferenceBuringh, P. ( 1981 ), An assessment of losses and degradation of productive agricultural land in the world, Working Group on Soils Policy, Food Agricultural Organization, Rome.en_US
dc.identifier.citedreferenceCabral M. C., L. Garrote, R. L. Bras, and D. Entekhabi ( 1992 ), A kinematic model of infiltration and runoff generation in layered and sloped soils, Adv. Water Resour., 15, 311 – 324.en_US
dc.identifier.citedreferenceCaldwell, T. G., M. H. Young, E. V. McDonald, and J. Zhu ( 2012 ), Soil heterogeneity in Mojave Desert shrublands: Biotic and abiotic processes, Water Resour. Res., 48, W09551, doi: 10.1029/2012WR011963.en_US
dc.identifier.citedreferenceCao, Z., R. Day, and S. Egashira ( 2002 ), Coupled and decoupled numerical modeling of flow and morphological evolution in alluvial rivers, J. Hydraul. Eng., 128 ( 3 ), 306 – 321.en_US
dc.identifier.citedreferenceCao, Z., G. Pender, S. Wallis, and P. Carling ( 2004 ), Computational dam‐break hydraulics over erodible sediment bed, J. Hydraul. Eng., 130 ( 7 ), 689 – 703.en_US
dc.identifier.citedreferenceCheng, N. ( 1997 ), Simplified settling velocity formula for sediment particle, J. Hydraul. Eng., 123 ( 2 ), 149 – 152.en_US
dc.identifier.citedreferenceDeardorff, J. W. ( 1978 ), Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, J. Geophys. Res., 83 ( C4 ), 1889 – 1903.en_US
dc.identifier.citedreferenceSanders, B. F. ( 2008 ), Integration of a shallow water model with a local time step, J. Hydraul. Res., 46 ( 4 ), 466 – 475.en_US
dc.identifier.citedreferenceSanders, B. F., J. E. Schubert, and H. A. Gallegos ( 2008 ), Integral formulation of shallow‐water equations with anisotropic porosity for urban flood modeling, J. Hydrol., 362 ( 1–2 ), 19 – 38.en_US
dc.identifier.citedreferenceSimpson, G., and S. Castelltort ( 2006 ), Coupled model of surface water flow, sediment transport and morphological evolution, Comput. Geosci., 32 ( 10 ), 1600 – 1614.en_US
dc.identifier.citedreferenceStone, J. J., M. H. Nichols, D. C. Goodrich, and J. Buono ( 2008 ), Long‐term runoff database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S05, doi: 10.1029/2006WR005733.en_US
dc.identifier.citedreferenceTitov, V. V., and C. E. Synolakis ( 1995 ), Modeling of breaking, and nonbreaking long‐wave evolution and runup using VTCS‐2, J. Waterway Port Coastal Ocean Eng., 121 ( 6 ), 308 – 316.en_US
dc.identifier.citedreferenceTromp‐van Meerveld, H. J., J. Y. Parlange, D. A. Barry, M. F. Tromp, G. C. Sander, M. T. Walter, and M. B. Parlange ( 2008 ), Influence of sediment settling velocity on mechanistic soil erosion modeling, Water Resour. Res., 44, W06401, doi: 10.1029/2007WR006361.en_US
dc.identifier.citedreferenceWainwright, J., A. J. Parsons, and A. D. Abrahams ( 2000 ), Plot‐scale studies of vegetation, overland flow and erosion interactions: Case studies from Arizona and New Mexico, Hydrol. Processes, 14, 2921 – 2943.en_US
dc.identifier.citedreferenceWeyman, D. R. ( 1970 ), Throughflow on hillslopes and its relation to the stream hydrograph, Hydrol. Sci. Bull., 15, 25 – 33.en_US
dc.identifier.citedreferenceWilcox, B. P., D. D. Breshears, and H. J. Turin ( 2003 ), Hydraulic conductivity in a Piñon‐Juniper Woodland: Influence of vegetation, Soil Sci. Soc. Am. J., 67, 1243 – 1249.en_US
dc.identifier.citedreferenceXia, J., R. A. Falconer, B. Lin, and T. G. ( 2010 ), Modelling flood routing on initially dry beds with refined treatment of wetting and drying, Int. J. River Basin Manage., 8 ( 3–4 ), 225 – 243.en_US
dc.identifier.citedreferenceZehe, E., and M. Sivapalan ( 2009 ), Threshold behaviour in hydrological systems as (human) geo‐ecosystems: manifestations, controls, implications, Hydrol. Earth Syst. Sci., 13 ( 7 ), 1273 – 1297.en_US
dc.identifier.citedreferenceEltahir, E. A. B., and R. L. Bras ( 1993 ), A description of rainfall interception over large areas, J. Clim., 6, 1002 – 1008.en_US
dc.identifier.citedreferenceEntekhabi, D. ( 2000 ), Land Surface Processes: Basic Tools and Concepts, Department of Civil and Environmental Engineering, MIT, Cambridge, Mass.en_US
dc.identifier.citedreferenceFiener, P., G. Govers, and K. Van Oost ( 2008 ), Evaluation of a dynamic multi‐class sediment transport model in a catchment under soil‐conservation agriculture, Earth Surf. Processes Landforms, 33 ( 11 ), 1639 – 1660.en_US
dc.identifier.citedreferenceFrancipane, A., V. Y. Ivanov, L. V. Noto, E. Istanbulluoglu, E. Arnone, and R. L. Bras ( 2012 ), tRIBS‐Erosion: A parsimonious physically‐based model for studying catchment hydro‐geomorphic response, Catena, 92, 216 – 231.en_US
dc.identifier.citedreferenceGoodrich, D. C., T. O. Keefer, C. L. Unkrich, M. H. Nichols, H. B. Osborn, J. J. Stone, and J. R. Smith ( 2008 ), Long‐term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S04, doi: 10.1029/2006WR005782.en_US
dc.identifier.citedreferenceGutiérrez‐Jurado, H. A., E. R. Vivoni, E. Istanbulluoglu, and R. L. Bras ( 2007 ), Ecohydrological response to a geomorphically significant flood event in a semiarid catchment with contrasting ecosystems, Geophys. Res. Lett., 34, L24S25, doi: 10.1029/2007GL030994.en_US
dc.identifier.citedreferenceHairsine, P. B., and C. W. Rose ( 1991 ), Rainfall detachment and deposition: Sediment transport in the absence of flow‐driven processes, Soil Sci. Soc. Am. J., 55 ( 2 ), 320 – 324.en_US
dc.identifier.citedreferenceHairsine, P. B., and C. W. Rose ( 1992 ), Modeling water erosion due to overland flow using physical principles: 1. Sheet flow, Water Resour. Res., 28 ( 1 ), 237 – 243.en_US
dc.identifier.citedreferenceHairsine, P. B., G. C. Sander, C. W. Rose, J. Y. Parlange, W. L. Hogarth, I. Lisle, and H. Rouhipour ( 1999 ), Unsteady soil erosion due to rainfall impact: A model of sediment sorting on the hillslope, J. Hydrol., 220 ( 3–4 ), 115 – 128.en_US
dc.identifier.citedreferenceHeng, B. C. P., G. C. Sander, and C. F. Scott ( 2009 ), Modeling overland flow and soil erosion on nonuniform hillslopes: A finite volume scheme, Water Resour. Res., 45, W05423, doi: 10.1029/2008WR007502.en_US
dc.identifier.citedreferenceHeng, B. C. P., G. C. Sander, A. Armstrong, J. N. Quinton, J. H. Chandler, and C. F. Scott ( 2011 ), Modeling the dynamics of soil erosion and size‐selective sediment transport over nonuniform topography in flume‐scale experiments, Water Resour. Res., 47, W02513, doi: 10.1029/2010WR009375.en_US
dc.identifier.citedreferenceHirsch, C. ( 1990 ), Numerical Computation of Internal and External Flows, John Wiley, New York.en_US
dc.identifier.citedreferenceHogarth, W. L., C. W. Rose, J. Y. Parlange, G. C. Sander, and G. Carey ( 2004a ), Soil erosion due to rainfall impact with no inflow: A numerical solution with spatial and temporal effects of sediment settling velocity characteristics, J. Hydrol., 294 ( 4 ), 229 – 240.en_US
dc.identifier.citedreferenceHogarth, W. L., J. Y. Parlange, C. W. Rose, G. C. Sander, T. S. Steenhuis, and A. Barry ( 2004b ), Soil erosion due to rainfall impact with inflow: An analytical solution with spatial and temporal effects, J. Hydrol., 295 ( 1–4 ), 140 – 148.en_US
dc.identifier.citedreferenceHorton, R. E. ( 1933 ), The role of infiltration in the hydrological cycle, Trans., Am. Geophys. Union, 14, 446 – 460.en_US
dc.identifier.citedreferenceHu, Z., and S. Islam ( 1995 ), Prediction of ground surface temperature and soil moisture content by the force‐restore method, Water Resour. Res., 31 ( 10 ), 2531 – 2539.en_US
dc.identifier.citedreferenceHuang, C., L. K. Wells, and L. D. Norton ( 1999 ), Sediment transport capacity and erosion processes: Model concepts and reality, Earth Surf. Processes Landforms, 24 ( 6 ), 503 – 516.en_US
dc.identifier.citedreferenceHursh, C. R., and E. F. Brater ( 1941 ), Separating storm‐hydrographs from small drainage‐areas into surface and subsurface flow, Trans., Am. Geophys. Union, 22, 863 – 870.en_US
dc.identifier.citedreferenceIstanbulluoglu, E., O. Yetemen, E. R. Vivoni, H. A. Gutierrez‐Jurado, and R. L. Bras ( 2008 ), Eco‐geomorphic implications of hillslope aspect: Inferences from analysis of landscape morphology in central New Mexico, Geophys. Res. Lett., 35, L14403, doi: 10.1029/2008GL034477.en_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004a ), Preserving high‐resolution surface and rainfall data in operational‐scale basin hydrology: A fully‐distributed physically‐based approach, J. Hydrol., 298 ( 1–4 ), 80 – 111.en_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004b ), Catchment hydrologic response with a fully distributed triangulated irregular network model, Water Resour. Res., 40, W11102, doi: 10.1029/2004WR003218.en_US
dc.identifier.citedreferenceKim, J., V. Y. Ivanov, and N. D. Katopodes ( 2012a ), Hydraulic resistance to overland flow on surfaces with partially submerged vegetation, Water Resour. Res., 48, W10540, doi:10510.11029/12012WR012047.en_US
dc.identifier.citedreferenceKim, J., A. Warnock, V. Y. Ivanov, and N. D. Katopodes ( 2012b ), Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow, Adv. Water Resour., 37, 104 – 126.en_US
dc.identifier.citedreferenceLaws, J. O., and D. A. Parsons ( 1943 ), The relation of raindrop size to intensity, Trans. Am. Geophys. Union, 24, 452 – 460.en_US
dc.identifier.citedreferenceLeendertse, J. J. ( 1967 ), Aspects of a computational model for long‐period water wave propagation, Memor. RM‐5294‐PR, The Rand Corp., Santa Monica, Calif.en_US
dc.identifier.citedreferenceLeopold, L. B., and W. L. Langbein ( 1962 ), The concept of entropy in landscape evolution, U.S. Geol. Surv. Prof. Pap., 500‐A, p. A1 – A20, USGS, Washington, D. C.en_US
dc.identifier.citedreferenceLiggett, J. A. ( 1968 ), Mathematical flow determination in open channels, J. Eng. Mech. Div., 94 ( EM4 ), 947 – 963.en_US
dc.identifier.citedreferenceLin, J. D. ( 1980 ), On the force‐restore method for prediction of ground surface temperature, J. Geophys. Res., 85 ( C6 ), 3251 – 3254.en_US
dc.identifier.citedreferenceMerritt, W. S., R. A. Letcher, and A. J. Jakeman ( 2003 ), A review of erosion and sediment transport models, Environ. Modell. Software, 18 ( 8–9 ), 761 – 799.en_US
dc.identifier.citedreferenceMichaelides, K., and A. Chappell ( 2009 ), Connectivity as a concept for characterising hydrological behaviour, Hydrol. Processes, 23, 517 – 522.en_US
dc.identifier.citedreferenceMonteith, J. L. ( 1965 ), Evaporation and environment, Symposia of the Society for Experimental Biology, 19, 205 – 234.en_US
dc.identifier.citedreferenceMurillo, J., P. Garcia‐Navarro, P. Brufau, and J. Burguete ( 2008 ), 2D modelling of erosion/deposition processes with suspended load using upwind finite volumes, J. Hydraul. Res., 46 ( 1 ), 99 – 112.en_US
dc.identifier.citedreferenceMutchler, C. K., and K. C. McGregor ( 1983 ), Erosion from low slopes, Water Resour. Res., 19 ( 5 ), 1323 – 1326.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.