Show simple item record

Imaging: What can it tell us about parkinsonian gait?

dc.contributor.authorBohnen, Nicolaas I.en_US
dc.contributor.authorJahn, Klausen_US
dc.date.accessioned2013-11-01T19:00:52Z
dc.date.available2014-10-06T19:17:43Zen_US
dc.date.issued2013-09-15en_US
dc.identifier.citationBohnen, Nicolaas I.; Jahn, Klaus (2013). "Imaging: What can it tell us about parkinsonian gait?." Movement Disorders 28(11): 1492-1500. <http://hdl.handle.net/2027.42/100273>en_US
dc.identifier.issn0885-3185en_US
dc.identifier.issn1531-8257en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100273
dc.description.abstractFunctional neuroimaging has provided new tools to study cerebral gait control in Parkinson's disease (PD). First, imaging of blood flow functions has identified a supraspinal locomotor network that includes the (frontal) cortex, basal ganglia, brainstem tegmentum, and cerebellum. These studies also emphasize the cognitive and attentional dependency of gait in PD. Furthermore, gait in PD and related syndromes like progressive supranuclear palsy may be associated with dysfunction of the indirect, modulatory prefrontal–subthalamic–pedunculopontine loop of locomotor control. The direct, stereotyped locomotor loop from the primary motor cortex to the spinal cord with rhythmic cerebellar input appears to be preserved and may contribute to the unflexible gait pattern in parkinsonian gait. Second, neurotransmitter and proteinopathy imaging studies are beginning to unravel novel mechanisms of parkinsonian gait and postural disturbances. Dopamine displacement imaging studies have shown evidence for a mesofrontal dopaminergic shift from a depleted striatum in parkinsonian gait. This may place additional burden on other brain systems mediating attention functions to perform previously automatic motor tasks. For example, our preliminary cholinergic imaging studies suggest significant slowing of gait speed when additional forebrain cholinergic denervation occurs in PD. Cholinergic denervation of the pedunculopontine nucleus and its thalamic projections have been associated with falls and impaired postural control. Deposition of β‐amyloid may represent another non‐dopaminergic correlate of gait disturbance in PD. These findings illustrate the emergence of dopamine non‐responsive gait problems to reflect the transition from a predominantly hypodopaminergic disorder to a multisystem neurodegenerative disorder involving non‐dopaminergic locomotor network structures and pathologies. © 2013 International Parkinson and Movement Disorder Societyen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMRIen_US
dc.subject.otherNetworken_US
dc.subject.otherSPECTen_US
dc.subject.otherParkinson's Diseaseen_US
dc.subject.otherPETen_US
dc.subject.otherProgressive Supranuclear Palsyen_US
dc.subject.otherPedunculopontine Nucleusen_US
dc.subject.otherAcetylcholineen_US
dc.subject.otherAmyloiden_US
dc.subject.otherCerebellumen_US
dc.subject.otherDopamineen_US
dc.subject.otherGaiten_US
dc.titleImaging: What can it tell us about parkinsonian gait?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid24132837en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100273/1/mds25534.pdf
dc.identifier.doi10.1002/mds.25534en_US
dc.identifier.sourceMovement Disordersen_US
dc.identifier.citedreferenceLopez IC, Ruiz PJ, Del Pozo SV, Bernardos VS. Motor complications in Parkinson's disease: ten year follow‐up study. Mov Disord 2010; 25: 2735 – 2739.en_US
dc.identifier.citedreferenceKarachi C, Grabli D, Bernard FA, et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 2010; 120: 2745 – 2754.en_US
dc.identifier.citedreferenceBohnen NI, Kotagal V, Albin RL, Koeppe RA, Frey KA, Muller MLTM. Gait speed is preserved in oligosystem compared to multisystem neurodegeneration in Parkinson disease [abstract]. Neurology 2013; 80: P04165.en_US
dc.identifier.citedreferenceHalliday G, Hely M, Reid W, Morris J. The progression of pathology in longitudinally followed patients with Parkinson's disease. Acta Neuropathol 2008; 115: 409 – 415.en_US
dc.identifier.citedreferenceMuller ML, Frey KA, Petrou M, et al. β‐Amyloid and postural instability and gait difficulty in Parkinson's disease at risk for dementia. Mov Disord 2013; 28: 296 – 301.en_US
dc.identifier.citedreferenceHausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T, Giladi N. Impaired regulation of stride variability in Parkinson's disease subjects with freezing of gait. Exp Brain Res 2003; 149: 187 – 194.en_US
dc.identifier.citedreferenceTakakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol 2008; 255 ( suppl 4 ): 19 – 29.en_US
dc.identifier.citedreferenceZwergal A, la Fougere C, Lorenzl S, et al. Postural imbalance and falls in PSP correlate with functional pathology of the thalamus. Neurology 2011; 77: 101 – 109.en_US
dc.identifier.citedreferenceAlbin RL, Koeppe RA, Bohnen NI, Wernette K, Kilbourn MA, Frey KA. Spared caudal brainstem SERT binding in early Parkinson's disease. J Cereb Blood Flow Metab 2008; 28: 441 – 444.en_US
dc.identifier.citedreferenceKotagal V, Bohnen NI, Muller JL, Koeppe RA, Frey KA, Albin RL. Cerebral amyloid deposition correlates inversely with serotoninergic innervation in Parkinson disease. Arch Neurol 2012; 69: 1628 – 1631.en_US
dc.identifier.citedreferenceJahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 2004; 22: 1722 – 1731.en_US
dc.identifier.citedreferenceSen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello‐thalamo‐cortical motor circuitry during progression of Parkinson's disease. Neuroscience 2010; 166: 712 – 719.en_US
dc.identifier.citedreferenceCamicioli R, Gee M, Bouchard TP, et al. Voxel‐based morphometry reveals extra‐nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism Relat Disord 2009; 15: 187 – 195.en_US
dc.identifier.citedreferenceHazrati LN, Parent A. Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 1992; 585: 267 – 271.en_US
dc.identifier.citedreferenceGrimbergen YA, Langston JW, Roos RA, Bloem BR. Postural instability in Parkinson's disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother 2009; 9: 279 – 290.en_US
dc.identifier.citedreferenceMoore RY, Bloom FE. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 1979; 2: 113 – 168.en_US
dc.identifier.citedreferenceZarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 2003; 60: 337 – 341.en_US
dc.identifier.citedreferenceMuller M, Bohnen N, Bhaumik A, Albin R, Frey K, Gilman S. Striatal dopaminergic denervation and cardiac post‐ganglionic sympathetic denervation correlate independently with gait velocity in Parkinson disease [abstract]. Neurology 2011; 76: A265.en_US
dc.identifier.citedreferenceGallezot JD, Weinzimmer D, Nabulsi N, et al. Evaluation of [(11)C]MRB for assessment of occupancy of norepinephrine transporters: studies with atomoxetine in non‐human primates. Neuroimage 2011; 56: 268 – 279.en_US
dc.identifier.citedreferenceFilippi M, Kulisevsky J. Advances with MRI in Parkinson disease: from freezing to festination. Neurology 2012; 79: 2222 – 2223.en_US
dc.identifier.citedreferenceThevathasan W, Pogosyan A, Hyam JA, et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain 2012; 135: 148 – 160.en_US
dc.identifier.citedreferenceHandojoseno AM, Shine JM, Nguyen TN, Tran Y, Lewis SJ, Nguyen HT. The detection of freezing of gait in Parkinson's disease patients using EEG signals based on Wavelet decomposition. Conf Proc IEEE Eng Med Biol Soc 2012;2012: 69 – 72.en_US
dc.identifier.citedreferenceMatsui H, Udaka F, Miyoshi T, et al. Three‐dimensional stereotactic surface projection study of freezing of gait and brain perfusion image in Parkinson's disease. Mov Disord 2005; 20: 1272 – 1277.en_US
dc.identifier.citedreferenceMito Y, Yoshida K, Yabe I, et al. Brain SPECT analysis by 3D‐SSP and clinical features of Parkinson's disease. Hokkaido Igaku Zasshi 2006; 81: 15 – 23.en_US
dc.identifier.citedreferenceBartels AL, de Jong BM, Giladi N, et al. Striatal dopa and glucose metabolism in PD patients with freezing of gait. Mov Disord 2006; 21: 1326 – 1332.en_US
dc.identifier.citedreferenceImamura K, Okayasu N, Nagatsu T. Cerebral blood flow and freezing of gait in Parkinson's disease. Acta Neurol Scand 2012; 126: 210 – 218.en_US
dc.identifier.citedreferenceGilman S, Koeppe RA, Nan B, et al. Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology 2010; 74: 1416 – 1423.en_US
dc.identifier.citedreferenceBaltadjieva R, Giladi N, Gruendlinger L, Peretz C, Hausdorff JM. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson's disease. Eur J Neurosci 2006; 24: 1815 – 1820.en_US
dc.identifier.citedreferenceSethi K. Levodopa unresponsive symptoms in Parkinson disease. Mov Disord 2008; 23 ( suppl 3 ): S521 – S533.en_US
dc.identifier.citedreferenceAzulay JP, Van Den Brand C, Mestre D, et al. Automatic motion analysis of gait in patients with Parkinson disease: effects of levodopa and visual stimulations [article in French]. Rev Neurol (Paris) 1996; 152: 128 – 134.en_US
dc.identifier.citedreferenceKemoun G, Defebvre L. Clinical description, analysis of posture, initiation of stabilized gait [article in French]. Presse Med 2001; 30: 452 – 459.en_US
dc.identifier.citedreferenceFactor SA. The clinical spectrum of freezing of gait in atypical parkinsonism. Mov Disord 2008; 23 ( suppl 2 ): S431 – S438.en_US
dc.identifier.citedreferenceSnijders AH, Leunissen I, Bakker M, et al. Gait‐related cerebral alterations in patients with Parkinson's disease with freezing of gait. Brain 2011; 134: 59 – 72.en_US
dc.identifier.citedreferenceBonnet AM, Loria Y, Saint‐Hilaire MH, Lhermitte F, Agid Y. Does long‐term aggravation of Parkinson's disease result from nondopaminergic lesions? Neurology 1987; 37: 1539 – 1542.en_US
dc.identifier.citedreferenceGreenstein JJ, Gastineau EA, Siegel BH, Macsata R, Conklin JJ, Maurer AH. Cerebral hemisphere activation during human bipedal locomotion [abstract]. Hum Brain Mapp 1995; 3 ( suppl 1 ): 320.en_US
dc.identifier.citedreferenceFukuyama H, Ouchi Y, Matsuzaki S, et al. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 1997; 228: 183 – 186.en_US
dc.identifier.citedreferenceMaillet A, Pollak P, Debu B. Imaging gait disorders in parkinsonism: a review. J Neurol Neurosurg Psychiatry 2012; 83: 986 – 993.en_US
dc.identifier.citedreferenceMiyai I, Tanabe HC, Sase I, et al. Cortical mapping of gait in humans: a near‐infrared spectroscopic topography study. Neuroimage 2001; 14: 1186 – 1192.en_US
dc.identifier.citedreferencela Fougere C, Zwergal A, Rominger A, et al. Real versus imagined locomotion: a [18F]‐FDG PET‐fMRI comparison. Neuroimage 2010; 50: 1589 – 1598.en_US
dc.identifier.citedreferenceWutte MG, Glasauer S, Jahn K, Flanagin VL. Moving and being moved: differences in cerebral activation during recollection of whole‐body motion. Behav Brain Res 2012; 227: 21 – 29.en_US
dc.identifier.citedreferenceShik ML, Orlovsky GN. Neurophysiology of locomotor automatism. Physiol Rev 1976; 56: 465 – 501.en_US
dc.identifier.citedreferenceArmstrong DM. The supraspinal control of mammalian locomotion. J Physiol 1988; 405: 1 – 37.en_US
dc.identifier.citedreferenceJahn K, Deutschlander A, Stephan T, et al. Supraspinal locomotor control in quadrupeds and humans. Prog Brain Res 2008; 171: 353 – 362.en_US
dc.identifier.citedreferencePahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson's disease. Brain 2000; 123: 1767 – 1783.en_US
dc.identifier.citedreferenceMori S, Matsuyama K, Mori F, Nakajima K. Supraspinal sites that induce locomotion in the vertebrate central nervous system. Adv Neurol 2001; 87: 25 – 40.en_US
dc.identifier.citedreferenceInglis WL, Winn P. The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 1995; 47: 1 – 29.en_US
dc.identifier.citedreferenceHashimoto T. Speculation on the responsible sites and pathophysiology of freezing of gait. Parkinsonism Rel Dis 2006; 12: S55 – S62.en_US
dc.identifier.citedreferenceHanakawa T, Fukuyama H, Katsumi Y, Honda M, Shibasaki H. Enhanced lateral premotor activity during paradoxical gait in Parkinson's disease. Ann Neurol 1999; 45: 329 – 336.en_US
dc.identifier.citedreferenceHanakawa T, Katsumi Y, Fukuyama H, et al. Mechanisms underlying gait disturbance in Parkinson's disease: a single photon emission computed tomography study. Brain 1999; 122: 1271 – 1282.en_US
dc.identifier.citedreferencedel Olmo MF, Arias P, Furio MC, Pozo MA, Cudeiro J. Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients—a combined motor and [18F]‐FDG PET study. Parkinsonism Relat Disord 2006; 12: 155 – 164.en_US
dc.identifier.citedreferenceZwergal A, la Fougere C, Lorenzl S, et al. Functional disturbance of the locomotor network in progressive supranuclear palsy. Neurology 2013; 80: 634 – 641.en_US
dc.identifier.citedreferenceWai YY, Wang JJ, Weng YH, et al. Cortical involvement in a gait‐related imagery task: comparison between Parkinson's disease and normal aging. Parkinsonism Relat Disord 2012; 18: 537 – 542.en_US
dc.identifier.citedreferenceBartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008; 23 ( suppl 2 ): S461 – S467.en_US
dc.identifier.citedreferenceShine JM, Matar E, Ward PB, et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson's disease. Brain 2013; 136: 1204 – 1215.en_US
dc.identifier.citedreferenceTessitore A, Amboni M, Esposito F, et al. Resting‐state brain connectivity in patients with Parkinson's disease and freezing of gait. Parkinsonism Relat Disord 2012; 18: 781 – 787.en_US
dc.identifier.citedreferenceKostic VS, Agosta F, Pievani M, et al. Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology 2012; 78: 409 – 416.en_US
dc.identifier.citedreferenceShine JM, Matar E, Ward PB, et al. Differential neural activation patterns in patients with Parkinson's disease and freezing of gait in response to concurrent cognitive and motor load [serial online]. PLoS One 2013; 8: e52602.en_US
dc.identifier.citedreferenceNaismith SL, Lewis SJ. A novel paradigm for modelling freezing of gait in Parkinson's disease. J Clin Neurosci 2010; 17: 984 – 987.en_US
dc.identifier.citedreferenceShine JM, Naismith SL, Lewis SJ. The pathophysiological mechanisms underlying freezing of gait in Parkinson's disease. J Clin Neurosci 2011; 18: 1154 – 1157.en_US
dc.identifier.citedreferenceHill KK, Campbell MC, McNeely ME, et al. Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson's disease. Exp Neurol 2012; 241: 105 – 112.en_US
dc.identifier.citedreferenceDoya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 2000; 10: 732 – 739.en_US
dc.identifier.citedreferenceBrudzynski SM, Houghton PE, Brownlee RD, Mogenson GJ. Involvement of neuronal cell bodies of the mesencephalic locomotor region in the initiation of locomotor activity of freely behaving rats. Brain Res Bull 1986; 16: 377 – 381.en_US
dc.identifier.citedreferenceJenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 2004; 15: 2621 – 2624.en_US
dc.identifier.citedreferenceMilner KL, Mogenson GJ. Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats. Brain Res 1988; 452: 273 – 285.en_US
dc.identifier.citedreferencePlaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease. Neuroreport 2005; 16: 1883 – 1887.en_US
dc.identifier.citedreferenceMoro E, Hamani C, Poon YY, et al. Unilateral pedunculopontine stimulation improves falls in Parkinson's disease. Brain 2010; 133: 215 – 224.en_US
dc.identifier.citedreferenceBallanger B, Lozano AM, Moro E, et al. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O] H2O PET study. Hum Brain Mapp 2009; 30: 3901 – 3909.en_US
dc.identifier.citedreferencePirker W, Asenbaum S, Bencsits G, et al. [123I]beta‐CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000; 15: 1158 – 1167.en_US
dc.identifier.citedreferenceOuchi Y, Kanno T, Okada H, et al. Presynaptic and postsynaptic dopaminergic binding densities in the nigrostriatal and mesocortical systems in early Parkinson's disease: a double‐tracer positron emission tomography study. Ann Neurol 1999; 46: 723 – 731.en_US
dc.identifier.citedreferenceYarnall A, Rochester L, Burn DJ. The interplay of cholinergic function, attention, and falls in Parkinson's disease. Mov Disord 2011; 26: 2496 – 2503.en_US
dc.identifier.citedreferenceBohnen NI, Mueller ML, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson disease J Cereb Blood Flow Metab 2012; 32: 1609 – 1617.en_US
dc.identifier.citedreferenceBohnen NI, Muller ML, Koeppe RA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 2009; 73: 1670 – 1676.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.