Show simple item record

Sclerostin antibody stimulates bone regeneration after experimental periodontitis

dc.contributor.authorTaut, Andrei Den_US
dc.contributor.authorJin, Qimingen_US
dc.contributor.authorChung, Jong‐hyuken_US
dc.contributor.authorGalindo‐moreno, Pabloen_US
dc.contributor.authorYi, Erica Sen_US
dc.contributor.authorSugai, James Ven_US
dc.contributor.authorKe, Hua Zen_US
dc.contributor.authorLiu, Minen_US
dc.contributor.authorGiannobile, William Ven_US
dc.date.accessioned2013-11-01T19:00:55Z
dc.date.available2015-01-05T13:54:44Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationTaut, Andrei D; Jin, Qiming; Chung, Jong‐hyuk ; Galindo‐moreno, Pablo ; Yi, Erica S; Sugai, James V; Ke, Hua Z; Liu, Min; Giannobile, William V (2013). "Sclerostin antibody stimulates bone regeneration after experimental periodontitis." Journal of Bone and Mineral Research 28(11): 2347-2356.en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100280
dc.description.abstractThe reconstruction of large osseous defects due to periodontitis is a challenge in regenerative therapy. Sclerostin, secreted by osteocytes, is a key physiological inhibitor of osteogenesis. Pharmacologic inhibition of sclerostin using sclerostin‐neutralizing monoclonal antibody (Scl‐Ab) thus increases bone formation, bone mass and bone strength in models of osteopenia and fracture repair. This study assessed the therapeutic potential of Scl‐Ab to stimulate alveolar bone regeneration following experimental periodontitis (EP). Ligature‐induced EP was induced in rats to generate localized alveolar bone defects. Following 4 weeks of disease induction, Scl‐Ab (+EP) or vehicle (+/− EP) were systemically delivered, twice weekly for up to 6 wks to determine the ability of Scl‐Ab to regenerate bone around tooth‐supporting osseous defects. 3 and 6 wks after the initiation of Scl‐Ab or vehicle treatment, femur and maxillary jawbones were harvested for histology, histomorphometry, and micro‐computed tomography (micro‐CT) of linear alveolar bone loss (ABL) and volumetric measures of bone support, including bone volume fraction (BVF) and tissue mineral density (TMD). Serum was analyzed to examine bone turnover markers during disease and regenerative therapy. Vehicle + EP animals exhibited maxillary bone loss (BVF, TMD and ABL) at ligature removal and thereafter. 6 weeks of Scl‐Ab significantly improved maxillary bone healing, as measured by BVF, TMD and ABL, when compared to vehicle + EP. After 6 weeks of treatment, BVF and TMD values in the Scl‐Ab + EP group were similar to those of healthy controls. Serum analysis demonstrated higher levels of bone formation markers osteocalcin and PINP in Scl‐Ab treatment groups. Scl‐Ab restored alveolar bone mass following experimental periodontitis. These findings warrant further exploration of Scl‐Ab therapy in this and other oral bone defect disease scenarios. © 2013 American Society for Bone and Mineral Research.en_US
dc.publisherJohn Wiley & Sons, Incen_US
dc.subject.otherPERIODONTAL DISEASESen_US
dc.subject.otherBONE HEALINGen_US
dc.subject.otherBONE ANABOLIC AGENTSen_US
dc.subject.otherTISSUE ENGINEERINGen_US
dc.subject.otherREGENERATIVE MEDICINEen_US
dc.titleSclerostin antibody stimulates bone regeneration after experimental periodontitisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100280/1/jbmr1984.pdf
dc.identifier.doi10.1002/jbmr.1984en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceMcDonald MM, Morse A, Mikulec K, Peacock L, Yu N, Baldock PA, Birke O, Liu M, Ke HZ, Little DG. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res. 2012; 30 ( 10 ): 1541 – 8.en_US
dc.identifier.citedreferenceBalemans W, Cleiren E, Siebers U, Horst J, Van Hul W. A generalized skeletal hyperostosis in two siblings caused by a novel mutation in the SOST gene. Bone. 2005; 36 ( 6 ): 943 – 7.en_US
dc.identifier.citedreferenceBalemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes‐Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001; 10 ( 5 ): 537 – 43.en_US
dc.identifier.citedreferenceBrunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot‐containing protein. Am J Hum Genet. 2001; 68 ( 3 ): 577 – 89.en_US
dc.identifier.citedreferenceLi X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008; 23 ( 6 ): 860 – 9.en_US
dc.identifier.citedreferenceOpar A. Late‐stage osteoporosis drugs illustrate challenges in the field. Nat Rev Drug Discov. 2009; 8 ( 10 ): 757 – 8.en_US
dc.identifier.citedreferenceLi X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009; 24 ( 4 ): 578 – 88.en_US
dc.identifier.citedreferenceOminsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, Asuncion FJ, Dwyer D, Han CY, Vlasseros F, Samadfam R, Jolette J, Smith SY, Stolina M, Lacey DL, Simonet WS, Paszty C, Li G, Ke HZ. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011; 26 ( 5 ): 1012 – 21.en_US
dc.identifier.citedreferencePadhi D, Jang G, Stouch B, Fang L, Posvar E. Single‐dose, placebo‐controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011; 26 ( 1 ): 19 – 26.en_US
dc.identifier.citedreferenceJin Q, Cirelli JA, Park CH, Sugai JV, Taba M Jr, Kostenuik PJ, Giannobile WV. RANKL inhibition through osteoprotegerin blocks bone loss in experimental periodontitis. J Periodontol. 2007; 78 ( 7 ): 1300 – 8.en_US
dc.identifier.citedreferenceCirelli JA, Park CH, MacKool K, Taba M Jr, Lustig KH, Burstein H, Giannobile WV. AAV2/1‐TNFR:Fc gene delivery prevents periodontal disease progression. Gene Ther. 2009; 16 ( 3 ): 426 – 36.en_US
dc.identifier.citedreferencePark CH, Abramson ZR, Taba M Jr, Jin Q, Chang J, Kreider JM, Goldstein SA, Giannobile WV. Three‐dimensional micro‐computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol. 2007; 78 ( 2 ): 273 – 81.en_US
dc.identifier.citedreferenceAlbers J, Schulze J, Beil FT, Gebauer M, Baranowsky A, Keller J, Marshall RP, Wintges K, Friedrich FW, Priemel M, Schilling AF, Rueger JM, Cornils K, Fehse B, Streichert T, Sauter G, Jakob F, Insogna KL, Pober B, Knobeloch KP, Francke U, Amling M, Schinke T. Control of bone formation by the serpentine receptor Frizzled‐9. J Cell Biol. 2011; 192 ( 6 ): 1057 – 72.en_US
dc.identifier.citedreferenceSinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013; 28 ( 1 ): 73 – 80.en_US
dc.identifier.citedreferenceJawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, Babij P, Genovese MC. Effects of sclerostin antibody on healing of a non‐critical size femoral bone defect. J Orthop Res. 2013; 31 ( 1 ): 155 – 63.en_US
dc.identifier.citedreferencePaszty C, Turner CH, Robinson MK. Sclerostin: a gem from the genome leads to bone‐building antibodies. J Bone Miner Res. 2010; 25 ( 9 ): 1897 – 904.en_US
dc.identifier.citedreferenceEddleston A, Marenzana M, Moore AR, Stephens P, Muzylak M, Marshall D, Robinson MK. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J Bone Miner Res. 2009; 24 ( 10 ): 1662 – 71.en_US
dc.identifier.citedreferenceLi X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, Dwyer D, Stouch B, Thway TM, Stolina M, Ominsky MS, Kostenuik PJ, Simonet WS, Paszty C, Ke HZ. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010; 25 ( 12 ): 2647 – 56.en_US
dc.identifier.citedreferenceShahnazari M, Wronski T, Chu V, Williams A, Leeper A, Stolina M, Ke HZ, Halloran B. Early response of bone marrow osteoprogenitors to skeletal unloading and sclerostin antibody. Calcif Tissue Int. 2012; 91 ( 1 ): 50 – 8.en_US
dc.identifier.citedreferenceRyan ZC, Ketha H, McNulty MS, McGee‐Lawrence M, Craig TA, Grande JP, Westendorf JJ, Singh RJ, Kumar R. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA. 2013; 110 ( 15 ): 6199 – 204.en_US
dc.identifier.citedreferenceBonnet N, Conway SJ, Ferrari SL. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci USA. 2012; 109 ( 37 ): 15048 – 53.en_US
dc.identifier.citedreferenceGalli C, Passeri G, Macaluso GM. Osteocytes and WNT: the mechanical control of bone formation. J Dent Res. 2010; 89 ( 4 ): 331 – 43.en_US
dc.identifier.citedreferenceSpatz J, Ellman R, Cloutier A, Louis L, van Vliet M, Suva L, Dwyer D, Stolina M, Ke H, Bouxsein M. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 2013; 28: 865 – 74.en_US
dc.identifier.citedreferenceMcCauley LK, Somerman MJ. editors. Mineralized tissues in oral and craniofacial science: biological principles and clinical correlates. 1st ed. Hoboken, (NJ): John Wiley & Sons, Inc; Table 9.1, A comparison of characteristic clinical features of VBD and sclerosteosis; 2012, 75 p.en_US
dc.identifier.citedreferenceStephen LX, Hamersma H, Gardner J, Beighton P. Dental and oral manifestations of sclerosteosis. Int Dent J. 2001; 51 ( 4 ): 287 – 90.en_US
dc.identifier.citedreferencevan Bezooijen RL, Bronckers AL, Gortzak RA, Hogendoorn PC, van der Wee‐Pals L, Balemans W, Oostenbroek HJ, Van Hul W, Hamersma H, Dikkers FG, Hamdy NA, Papapoulos SE, Lowik CW. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res. 2009; 88 ( 6 ): 569 – 74.en_US
dc.identifier.citedreferenceLehnen SD, Gotz W, Baxmann M, Jager A. Immunohistochemical evidence for sclerostin during cementogenesis in mice. Ann Anat. 2012; 194 ( 5 ): 415 – 21.en_US
dc.identifier.citedreferencePihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005; 366 ( 9499 ): 1809 – 20.en_US
dc.identifier.citedreferenceGiannobile WV. Host‐response therapeutics for periodontal diseases. J Periodontol. 2008; 79(8 Suppl): 1592 – 600.en_US
dc.identifier.citedreferenceKinney JS, Ramseier CA, Giannobile WV. Oral fluid‐based biomarkers of alveolar bone loss in periodontitis. Ann NY Acad Sci. 2007; 1098: 230 – 51.en_US
dc.identifier.citedreferenceMurphy KG, Gunsolley JC. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann Periodontol. 2003; 8 ( 1 ): 266 – 302.en_US
dc.identifier.citedreferenceKe HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf‐1 as therapeutic targets in bone diseases. Endocr Rev. 2012; 33 ( 5 ): 747 – 83.en_US
dc.identifier.citedreferenceSemenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005; 280 ( 29 ): 26770 – 5.en_US
dc.identifier.citedreferenceLi X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005; 280 ( 20 ): 19883 – 7.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.