Show simple item record

The transporter–opsin– G  protein‐coupled receptor ( TOG ) superfamily

dc.contributor.authorYee, Daniel C.en_US
dc.contributor.authorShlykov, Maksim A.en_US
dc.contributor.authorVästermark, Åkeen_US
dc.contributor.authorReddy, Vamsee S.en_US
dc.contributor.authorArora, Sumiten_US
dc.contributor.authorSun, Eric I.en_US
dc.contributor.authorSaier, Milton H.en_US
dc.date.accessioned2013-11-01T19:00:55Z
dc.date.available2015-01-05T13:54:44Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationYee, Daniel C.; Shlykov, Maksim A.; Västermark, Åke ; Reddy, Vamsee S.; Arora, Sumit; Sun, Eric I.; Saier, Milton H. (2013). "The transporterâ opsinâ G  proteinâ coupled receptor ( TOG ) superfamily." FEBS Journal 280(22): 5780-5800.en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100282
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSecondary Carriersen_US
dc.subject.otherChannelsen_US
dc.subject.otherReceptorsen_US
dc.subject.otherRhodopsinen_US
dc.subject.otherTransport Proteinsen_US
dc.titleThe transporter–opsin– G  protein‐coupled receptor ( TOG ) superfamilyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100282/1/febs12499.pdf
dc.identifier.doi10.1111/febs.12499en_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceMerdanovic M, Sauer E & Reidl J ( 2005 ) Coupling of NAD + biosynthesis and nicotinamide ribosyl transport: characterization of NadR ribonucleotide kinase mutants of Haemophilus influenzae. J Bacteriol 187, 4410 – 4420.en_US
dc.identifier.citedreferenceMurakami M & Kouyama T ( 2008 ) Crystal structure of squid rhodopsin. Nature 453, 363 – 367.en_US
dc.identifier.citedreferenceVinothkumar KR & Henderson R ( 2010 ) Structures of membrane proteins. Q Rev Biophys 43, 65 – 158.en_US
dc.identifier.citedreferenceVenkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF & Babu MM ( 2013 ) Molecular signatures of G‐protein‐coupled receptors. Nature 494, 185 – 194.en_US
dc.identifier.citedreferencePalczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE et al. ( 2000 ) Crystal structure of rhodopsin: a G protein‐coupled receptor. Science 289, 739 – 745.en_US
dc.identifier.citedreferencePao SS, Paulsen IT & Saier MH Jr ( 1998 ) Major facilitator superfamily. Microbiol Mol Biol Rev 62, 1 – 34.en_US
dc.identifier.citedreferencePrakash S, Cooper G, Singhi S & Saier MH Jr ( 2003 ) The ion transporter superfamily. Biochim Biophys Acta 1618, 79 – 92.en_US
dc.identifier.citedreferenceCastillo R & Saier MH ( 2010 ) Functional promiscuity of homologues of the bacterial ArsA ATPases. Int J Microbiol 2010, 187373.en_US
dc.identifier.citedreferenceHvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF & Saier MH Jr ( 2003 ) The multidrug/oligosaccharidyl‐lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 270, 799 – 813.en_US
dc.identifier.citedreferenceSaier MH, Hvorup RN & Barabote RD ( 2005 ) Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans 33, 220 – 224.en_US
dc.identifier.citedreferenceRodionov DA, Hebbeln P, Eudes A, ter Beek J, Rodionova IA, Erkens GB, Slotboom DJ, Gelfand MS, Osterman AL, Hanson AD et al. ( 2009 ) A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191, 42 – 51.en_US
dc.identifier.citedreferenceHebbeln P, Rodionov DA, Alfandega A & Eitinger T ( 2007 ) Biotin uptake in prokaryotes by solute transporters with an optional ATP‐binding cassette‐containing module. Proc Natl Acad Sci USA 104, 2909 – 2914.en_US
dc.identifier.citedreferenceJosefsson LG ( 1999 ) Evidence for kinship between diverse G‐protein coupled receptors. Gene 239, 333 – 340.en_US
dc.identifier.citedreferenceDoolittle RF ( 1994 ) Convergent evolution: the need to be explicit. Trends Biochem Sci 19, 15 – 18.en_US
dc.identifier.citedreferenceBaeza‐Delgado C, Marti‐Renom MA & Mingarro I ( 2013 ) Structure‐based statistical analysis of transmembrane helices. Eur Biophys J 42, 199 – 207.en_US
dc.identifier.citedreferenceRemmert M, Biegert A, Linke D, Lupas AN & Soding J ( 2010 ) Evolution of outer membrane β‐barrels from an ancestral ββ hairpin. Mol Biol Evol 27, 1348 – 1358.en_US
dc.identifier.citedreferenceRied CL, Kube S, Kirrbach J & Langosch D ( 2012 ) Homotypic interaction and amino acid distribution of unilaterally conserved transmembrane helices. J Mol Biol 420, 251 – 257.en_US
dc.identifier.citedreferenceAltschul SF, Gish W, Miller W, Myers EW & Lipman DJ ( 1990 ) Basic local alignment search tool. J Mol Biol 215, 403 – 410.en_US
dc.identifier.citedreferenceMarchler‐Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ et al. ( 2013 ) CDD: conserved domains and protein three‐dimensional structure. Nucleic Acids Res 41, D348 – D352.en_US
dc.identifier.citedreferenceYoung GB, Jack DL, Smith DW & Saier MH Jr ( 1999 ) The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415, 306 – 322.en_US
dc.identifier.citedreferenceTusnady GE & Simon I ( 2001 ) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849 – 850.en_US
dc.identifier.citedreferenceZhai Y & Saier MH Jr ( 2001 ) A web‐based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol 3, 501 – 502.en_US
dc.identifier.citedreferenceBailey TL & Elkan C ( 1994 ) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28 – 36.en_US
dc.identifier.citedreferenceBailey TL & Gribskov M ( 1998 ) Combining evidence using p‐values: application to sequence homology searches. Bioinformatics 14, 48 – 54.en_US
dc.identifier.citedreferenceDevereux J, Haeberli P & Smithies O ( 1984 ) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387 – 395.en_US
dc.identifier.citedreferenceWallin E, Wettergren C, Hedman F & von Heijne G ( 1993 ) Fast Needleman‐Wunsch scanning of sequence databanks on a massively parallel computer. Comput Appl Biosci 9, 117 – 118.en_US
dc.identifier.citedreferenceDayhoff MO, Barker WC & Hunt LT ( 1983 ) Establishing homologies in protein sequences. Methods Enzymol 91, 524 – 545.en_US
dc.identifier.citedreferenceO'Hagan A & Leonard T ( 1976 ) Bayes estimation subject to uncertainty about parameter constraints. Biometrika 63, 201 – 202.en_US
dc.identifier.citedreferenceSoding J, Remmert M & Biegert A ( 2006 ) HHrep: de novo protein repeat detection and the origin of TIM barrels. Nucleic Acids Res 34, W137 – W142.en_US
dc.identifier.citedreferencePark JH & Saier MH Jr ( 1996 ) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol 153, 171 – 180.en_US
dc.identifier.citedreferenceKatoh K, Misawa K, Kuma K & Miyata T ( 2002 ) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059 – 3066.en_US
dc.identifier.citedreferenceSingh SK, Kurnasov OV, Chen B, Robinson H, Grishin NV, Osterman AL & Zhang H ( 2002 ) Crystal structure of Haemophilus influenzae NadR protein. A bifunctional enzyme endowed with NMN adenyltransferase and ribosylnicotinimide kinase activities. J Biol Chem 277, 33291 – 33299.en_US
dc.identifier.citedreferenceFredriksson R, Lagerstrom MC, Lundin LG & Schioth HB ( 2003 ) The G–protein‐coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 1256 – 1272.en_US
dc.identifier.citedreferenceLagerstrom MC & Schioth HB ( 2008 ) Structural diversity of G protein‐coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7, 339 – 357.en_US
dc.identifier.citedreferenceCivelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R & Schioth HB ( 2013 ) G protein‐coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 53, 127 – 146.en_US
dc.identifier.citedreferenceKrishnan A, Almen MS, Fredriksson R & Schioth HB ( 2012 ) The origin of GPCRs: identification of mammalian‐like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One 7, e29817.en_US
dc.identifier.citedreferenceNordstrom KJ, Sallman Almen M, Edstam MM, Fredriksson R & Schioth HB ( 2011 ) Independent HHsearch, Needleman–Wunsch‐based, and motif analyses reveal the overall hierarchy for most of the G protein‐coupled receptor families. Mol Biol Evol 28, 2471 – 2480.en_US
dc.identifier.citedreferenceSchioth HB & Fredriksson R ( 2005 ) The GRAFS classification system of G–protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142, 94 – 101.en_US
dc.identifier.citedreferenceAlmen MS, Nordstrom KJ, Fredriksson R & Schioth HB ( 2009 ) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7, 50.en_US
dc.identifier.citedreferenceKatritch V, Cherezov V & Stevens RC ( 2013 ) Structure–function of the G protein‐coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53, 531 – 556.en_US
dc.identifier.citedreferenceKatritch V, Cherezov V & Stevens RC ( 2012 ) Diversity and modularity of G protein‐coupled receptor structures. Trends Pharmacol Sci 33, 17 – 27.en_US
dc.identifier.citedreferenceTang XL, Wang Y, Li DL, Luo J & Liu MY ( 2012 ) Orphan G protein‐coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin 33, 363 – 371.en_US
dc.identifier.citedreferenceSato K, Pellegrino M, Nakagawa T, Vosshall LB & Touhara K ( 2008 ) Insect olfactory receptors are heteromeric ligand‐gated ion channels. Nature 452, 1002 – 1006.en_US
dc.identifier.citedreferenceSmart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD & Warr CG ( 2008 ) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38, 770 – 780.en_US
dc.identifier.citedreferenceTouhara K ( 2009 ) Insect olfactory receptor complex functions as a ligand‐gated ionotropic channel. Ann NY Acad Sci 1170, 177 – 180.en_US
dc.identifier.citedreferencePark JH & Saier MH Jr ( 1996 ) Phylogenetic, structural and functional characteristics of the Na–K–Cl cotransporter family. J Membr Biol 149, 161 – 168.en_US
dc.identifier.citedreferenceKuan J & Saier MH Jr ( 1993 ) The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol 28, 209 – 233.en_US
dc.identifier.citedreferenceKunji ER & Robinson AJ ( 2010 ) Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr Opin Struct Biol 20, 440 – 447.en_US
dc.identifier.citedreferenceLarkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. ( 2007 ) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947 – 2948.en_US
dc.identifier.citedreferenceZhai Y, Tchieu J & Saier MH Jr ( 2002 ) A web‐based Tree View (TV) program for the visualization of phylogenetic trees. J Mol Microbiol Biotechnol 4, 69 – 70.en_US
dc.identifier.citedreferencePark HH ( 2011 ) Structural analyses of death domains and their interactions. Apoptosis 16, 209 – 220.en_US
dc.identifier.citedreferencede la Horra C, Hernando N, Lambert G, Forster I, Biber J & Murer H ( 2000 ) Molecular determinants of pH sensitivity of the type IIa Na/P i cotransporter. J Biol Chem 275, 6284 – 6287.en_US
dc.identifier.citedreferenceAnantharaman V & Aravind L ( 2003 ) Application of comparative genomics in the identification and analysis of novel families of membrane‐associated receptors in bacteria. BMC Genomics 4, 34.en_US
dc.identifier.citedreferenceReddy VS & Saier MH Jr ( 2012 ) BioV Suite – a collection of programs for the study of transport protein evolution. FEBS J 279, 2036 – 2046.en_US
dc.identifier.citedreferenceFredriksson R, Lagerström MC, Lundin LG & Schiöth HB ( 2003 ) The G‐protein‐coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63, 1256 – 1272.en_US
dc.identifier.citedreferenceSaier MH Jr ( 1994 ) Computer‐aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58, 71 – 93.en_US
dc.identifier.citedreferenceSaier MH Jr ( 2000 ) A functional–phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64, 354 – 411.en_US
dc.identifier.citedreferenceSaier MH Jr, Tran CV & Barabote RD ( 2006 ) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34, D181 – D186.en_US
dc.identifier.citedreferenceSaier MH Jr, Yen MR, Noto K, Tamang DG & Elkan C ( 2009 ) The Transporter Classification Database: recent advances. Nucleic Acids Res 37, D274 – D278.en_US
dc.identifier.citedreferenceBusch W & Saier MH Jr ( 2002 ) The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 37, 287 – 337.en_US
dc.identifier.citedreferenceLam VH, Lee JH, Silverio A, Chan H, Gomolplitinant KM, Povolotsky TL, Orlova E, Sun EI, Welliver CH & Saier MH Jr ( 2011 ) Pathways of transport protein evolution: recent advances. Biol Chem 392, 5 – 12.en_US
dc.identifier.citedreferenceChang AB, Lin R, Studley WK, Tran CV & Saier MH Jr ( 2004 ) Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21, 171 – 181.en_US
dc.identifier.citedreferenceMansour NM, Sawhney M, Tamang DG, Vogl C & Saier MH Jr ( 2007 ) The bile/arsenite/riboflavin transporter (BART) superfamily. FEBS J 274, 612 – 629.en_US
dc.identifier.citedreferenceFurutani Y & Kandori H ( 2002 ) Internal water molecules of archaeal rhodopsins. Mol Membr Biol 19, 257 – 265.en_US
dc.identifier.citedreferenceHirai T, Subramaniam S & Lanyi JK ( 2009 ) Structural snapshots of conformational changes in a seven‐helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 19, 433 – 439.en_US
dc.identifier.citedreferenceZhou XE, Melcher K & Xu HE ( 2012 ) Structure and activation of rhodopsin. Acta Pharmacol Sin 33, 291 – 299.en_US
dc.identifier.citedreferenceShlykov MA, Zheng WH, Chen JS & Saier MH Jr ( 2012 ) Bioinformatic characterization of the 4–Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. Biochim Biophys Acta 1818, 703 – 717.en_US
dc.identifier.citedreferencePearson WR ( 1998 ) Empirical statistical estimates for sequence similarity searches. J Mol Biol 276, 71 – 84.en_US
dc.identifier.citedreferenceReddy VS & Saier MH Jr ( 2012 ) BioV Suite – a collection of programs for the study of transport protein evolution. FEBS J 279, 2036 – 2046.en_US
dc.identifier.citedreferenceZhai Y, Heijne WH, Smith DW & Saier MH Jr ( 2001 ) Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim Biophys Acta 1511, 206 – 223.en_US
dc.identifier.citedreferenceChen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, Yen MR & Saier MH Jr ( 2011 ) Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments. J Mol Microbiol Biotechnol 21, 83 – 96.en_US
dc.identifier.citedreferenceYen MR, Chen JS, Marquez JL, Sun EI & Saier MH ( 2010 ) Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. Methods Mol Biol 637, 47 – 64.en_US
dc.identifier.citedreferenceYen MR, Choi J & Saier MH Jr ( 2009 ) Bioinformatic analyses of transmembrane transport: novel software for deducing protein phylogeny, topology, and evolution. J Mol Microbiol Biotechnol 17, 163 – 176.en_US
dc.identifier.citedreferenceChung YJ, Krueger C, Metzgar D & Saier MH Jr ( 2001 ) Size comparisons among integral membrane transport protein homologues in bacteria, Archaea, and Eucarya. J Bacteriol 183, 1012 – 1021.en_US
dc.identifier.citedreferenceSaier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J et al. ( 1999 ) The major facilitator superfamily. J Mol Microbiol Biotechnol 1, 257 – 279.en_US
dc.identifier.citedreferenceIwig JS, Rowe JL & Chivers PT ( 2006 ) Nickel homeostasis in Escherichia coli – the rcnR – rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 62, 252 – 262.en_US
dc.identifier.citedreferenceRodrigue A, Effantin G & Mandrand‐Berthelot MA ( 2005 ) Identification of rcnA ( yohM ), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187, 2912 – 2916.en_US
dc.identifier.citedreferenceDawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV & Ballatori N ( 2005 ) The heteromeric organic solute transporter α–β, Ostα–Ostβ, is an ileal basolateral bile acid transporter. J Biol Chem 280, 6960 – 6968.en_US
dc.identifier.citedreferenceSeward DJ, Koh AS, Boyer JL & Ballatori N ( 2003 ) Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTα–OSTβ. J Biol Chem 278, 27473 – 27482.en_US
dc.identifier.citedreferenceWang W, Seward DJ, Li L, Boyer JL & Ballatori N ( 2001 ) Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc Natl Acad Sci USA 98, 9431 – 9436.en_US
dc.identifier.citedreferenceTakanaga H & Frommer WB ( 2010 ) Facilitative plasma membrane transporters function during ER transit. FASEB J 24, 2849 – 2858.en_US
dc.identifier.citedreferenceChen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B et al. ( 2010 ) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527 – 532.en_US
dc.identifier.citedreferenceSaier MH Jr ( 2003 ) Tracing pathways of transport protein evolution. Mol Microbiol 48, 1145 – 1156.en_US
dc.identifier.citedreferenceGhezzi C, Murer H & Forster IC ( 2009 ) Substrate interactions of the electroneutral Na + ‐coupled inorganic phosphate cotransporter (NaPi–IIc). J Physiol 587, 4293 – 4307.en_US
dc.identifier.citedreferenceFoster JW, Park YK, Penfound T, Fenger T & Spector MP ( 1990 ) Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA–pnuC operon. J Bacteriol 172, 4187 – 4196.en_US
dc.identifier.citedreferenceSoding J ( 2005 ) Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951 – 960.en_US
dc.identifier.citedreferencePenfound T & Foster JW ( 1999 ) NAD‐dependent DNA‐binding activity of the bifunctional NadR regulator of Salmonella typhimurium. J Bacteriol 181, 648 – 655.en_US
dc.identifier.citedreferenceKurnasov OV, Polanuyer BM, Ananta S, Sloutsky R, Tam A, Gerdes SY & Osterman AL ( 2002 ) Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J Bacteriol 184, 6906 – 6917.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.