Show simple item record

Isolation and Characterization of Single and Sulfide‐Bridged Double [4Fe–4S] Cubane Clusters with 4‐Pyridinethiolato Ligands

dc.contributor.authorGerlach, Deidra L.en_US
dc.contributor.authorCoucouvanis, Dimitrien_US
dc.contributor.authorKampf, Jeffen_US
dc.contributor.authorLehnert, Nicolaien_US
dc.date.accessioned2013-11-01T19:00:58Z
dc.date.available2014-11-03T16:20:38Zen_US
dc.date.issued2013-10-14en_US
dc.identifier.citationGerlach, Deidra L.; Coucouvanis, Dimitri; Kampf, Jeff; Lehnert, Nicolai (2013). "Isolation and Characterization of Single and Sulfide‐Bridged Double [4Fe–4S] Cubane Clusters with 4‐Pyridinethiolato Ligands." European Journal of Inorganic Chemistry 2013(30): 5253-5264. <http://hdl.handle.net/2027.42/100291>en_US
dc.identifier.issn1434-1948en_US
dc.identifier.issn1099-0682en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100291
dc.description.abstractCuboidal iron–sulfur clusters, [4Fe–4S], are important electron‐transfer (ET) sites in biology. In addition, more complex structures, usually consisting of modified or fused cubane clusters, are used as active sites in many important enzymes. For example, the Fe–Mo cofactor (FeMoco) of nitrogenase contains two fused cubanes. Here, we report the synthesis of three new para ‐pyridylthiolate ligated iron–sulfur cubane clusters, two single clusters (Bu 4 N) 2 [Fe 4 S 4 (SMePy) 4 ] and (Bu 4 N) 2 [Fe 4 S 4 (SPy) 4 ], and the sulfide‐bridged double cubane (Bu 4 N) 4 [{Fe 4 S 4 (SPy) 3 } 2 S] with 4‐pyridinethiolato exogenous ligands. The properties of these clusters were then explored by 1 H NMR, IR, and UV/Vis spectroscopy, cyclic voltammetry (CV), and X‐ray crystallography. Importantly, (Bu 4 N) 4 [{Fe 4 S 4 (SPy) 3 } 2 S] is the first example of a crystallographically characterized sulfide‐bridged double cubane with all‐thiolato exogenous ligands that is not supported by a large encapsulating ligand. This cluster shows a bridging Fe–S–Fe angle of 104°, its other structural parameters are in close agreement with those of the single‐cluster analog (Bu 4 N) 2 [Fe 4 S 4 (SPy) 4 ]. Finally, the one‐electron‐reduced forms of (Bu 4 N) 2 [Fe 4 S 4 (SPy) 4 ] and (Bu 4 N) 4 [{Fe 4 S 4 (SPy) 3 } 2 S] were studied by low‐temperature electron paramagnetic resonance (EPR) spectroscopy. Both clusters exhibit reversible one‐electron reductions at –401 and –528 mV [vs. the normal hydrogen electrode (NHE)], respectively. The one‐electron‐reduced forms of both clusters show S = 1/2 ground states as evident from EPR spectroscopy at liquid‐helium temperature. The temperature‐dependent data for the double cubane further indicate that the extra electron is trapped in one of the clusters of the dimer and that a low‐lying excited state is likely present in this complex, close in energy to the ground state. The syntheses of unique para ‐pyridylthiolate‐ligated cuboidal clusters, including two single [4Fe–4S] clusters and a sulfide‐bridged double [4Fe–4S] cubane, are described. The properties of these clusters are characterized by 1 H NMR, IR and UV/Vis spectroscopy, cyclic voltammetry, and X‐ray crystallography.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherS Ligandsen_US
dc.subject.otherElectron Transferen_US
dc.subject.otherCluster Compoundsen_US
dc.subject.otherProtein Modelsen_US
dc.subject.otherIronen_US
dc.titleIsolation and Characterization of Single and Sulfide‐Bridged Double [4Fe–4S] Cubane Clusters with 4‐Pyridinethiolato Ligandsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI 48109, http://www.umich.edu/~lehnert/en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100291/1/ejic_201300802_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100291/2/5253_ftp.pdf
dc.identifier.doi10.1002/ejic.201300802en_US
dc.identifier.sourceEuropean Journal of Inorganic Chemistryen_US
dc.identifier.citedreferenceR. A. Jones, A. R. Katritzky, J. Chem. Soc. 1958, 3610 – 3613.en_US
dc.identifier.citedreferenceS. Stoyanov, I. Petkov, L. Antonov, T. Stoyanova, P. Karagiannidis, P. Aslanidis, Can. J. Chem. 1990, 68, 1482 – 1489.en_US
dc.identifier.citedreferenceP. R. Challen, Ph. D. Thesis, University of Michigan, Ann Arbor, 1990.en_US
dc.identifier.citedreferenceY. Kim, J. Han, Bull. Korean Chem. Soc. 2012, 33, 48 – 54.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. Guodong, Z. Hongtu, H. Sheng‐Zhi, T. C. W. Mak, Acta Crystallogr., Sect. C 1987, 43, 352 – 353.en_US
dc.identifier.citedreferenceJ. Gloux, P. Gloux, H. Hendriks, G. Rius, J. Am. Chem. Soc. 1987, 109, 3220 – 3224.en_US
dc.identifier.citedreferenceC. Zhou, J. W. Raebiger, B. M. Segal, R. H. Holm, Inorg. Chim. Acta 2000, 300–302, 892 – 902.en_US
dc.identifier.citedreferenceT. Herskovitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips, J. F. Weiher, Proc. Natl. Acad. Sci. USA 1972, 69, 2437 – 2441.en_US
dc.identifier.citedreferenceP. A. Lindahl, E. P. Day, T. A. Kent, W. H. Orme‐Johnson, E. Münck, J. Biol. Chem. 1985, 260, 11160 – 11173.en_US
dc.identifier.citedreferenceD. L. Gerlach, D. Coucouvanis, N. Lehnert, Eur. J. Inorg. Chem. 2013, 3883 – 3890.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. H. Barnes, M. Fatome, C. E. L. Jones, S. G. Murray, Eur. J. Med. Chem. 1988, 23, 211 – 216.en_US
dc.identifier.citedreferenceD. Mascagna, M. d'Ischia, C. Costantini, G. Prota, Synth. Commun. 1994, 24, 35 – 42.en_US
dc.identifier.citedreferenceC. J. A. Daley, R. H. Holm, J. Inorg. Biochem. 2003, 97, 287 – 298.en_US
dc.identifier.citedreferenceJ. Huang, S. Mukerjee, B. M. Segal, H. Akashi, J. Zhou, R. H. Holm, J. Am. Chem. Soc. 1997, 119, 8662 – 8674.en_US
dc.identifier.citedreferenceT. Terada, T. Wakimoto, T. Nakamura, K. Hirabayashi, K. Tanaka, J. Li, T. Matsumoto, K. Tatsumi, Chem. Asian J. 2012, 7, 920 – 929.en_US
dc.identifier.citedreferenceM. A. Whitener, G. Peng, R. H. Holm, Inorg. Chem. 1991, 30, 2411 – 2417.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceR. Holm, P. Kennepohl, E. I. Solomon, Chem. Rev. 1996, 96, 2239 – 2314.en_US
dc.identifier.citedreferenceP. A. Frey, G. H. Reed, ACS Chem. Biol. 2012, 7, 1477 – 1481.en_US
dc.identifier.citedreferenceP. V. Rao, R. H. Holm, Chem. Rev. 2004, 104, 527 – 559.en_US
dc.identifier.citedreferenceA. Dey, F. E. Jenney Jr., M. W. W. Adams, E. Babini, Y. Takahashi, K. Fukuyama, K. O. Hodgson, B. Hedman, E. I. Solomon, Science 2007, 318, 1464 – 1468.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceB. A. Averill, T. Herskovitz, R. H. Holm, J. A. Ibers, J. Am. Chem. Soc. 1973, 95, 3523 – 3534.en_US
dc.identifier.citedreferenceH. Beinert, R. H. Holm, E. Münck, Science 1997, 277, 653 – 659.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceW. E. Cleland, D. A. Holtman, M. Sabat, J. A. Ibers, G. C. DeFotis, B. A. Averill, J. Am. Chem. Soc. 1983, 105, 6021 – 6031.en_US
dc.identifier.citedreferenceC. Zhou, R. H. Holm, Inorg. Chem. 1997, 36, 4066 – 4077.en_US
dc.identifier.citedreferenceW. Lo, P. Zhang, C.‐C. Ling, S. Huang, R. H. Holm, Inorg. Chem. 2012, 51, 9883 – 9892.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. Mochida, M. Ueda, H. Moriyama, Mol. Cryst. Liq. Cryst. 2000, 342, 91 – 06.en_US
dc.identifier.citedreferenceM. Ueda, T. Mochida, Inorg. Chim. Acta 2003, 353, 306 – 309.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceY. Zhang, J. Zuo, H. Zhou, R. H. Holm, J. Am. Chem. Soc. 2002, 124, 14292 – 14293.en_US
dc.identifier.citedreferenceY. Ohki, M. Imada, A. Murat, Y. O. Sunada, S. Honda, M. T. Sasamori, N. Tokitoh, M. Katada, K. Tatsumi, J. Am. Chem. Soc. 2009, 131, 13168 – 13178.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. D. P. Stack, M. J. Carney, R. H. Holm, J. Am. Chem. Soc. 1989, 111, 1670 – 1676.en_US
dc.identifier.citedreferenceP. R. Challen, S.‐M. Koo, W. R. Dunham, D. Coucouvanis, J. Am. Chem. Soc. 1990, 112, 2455 – 2456.en_US
dc.identifier.citedreferenceJ. A. Weigel, R. H. Holm, J. Am. Chem. Soc. 1991, 113, 4184 – 4191.en_US
dc.identifier.citedreference en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.