Show simple item record

S chizosaccharomyces pombe grows exponentially during the division cycle with no rate change points

dc.contributor.authorCooper, Stephenen_US
dc.date.accessioned2013-11-01T19:00:59Z
dc.date.available2015-01-05T13:54:45Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationCooper, Stephen (2013). " S chizosaccharomyces pombe grows exponentially during the division cycle with no rate change points." FEMS Yeast Research 13(7): 650-658.en_US
dc.identifier.issn1567-1356en_US
dc.identifier.issn1567-1364en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100295
dc.description.abstractLength measurements during the division cycle of 86 individual S chizosaccharomyces pombe cells demonstrate that length grows exponentially with no change in the growth rate and no rate change point ( RCP ) observed for any cell. These results support the proposal that length extension, or cell growth, is exponential during the division cycle. The finding of exponential growth during the cell cycle is significant because these results challenge and contradict the current, consensus, widely believed, and widely accepted view that growth of S . pombe during the division cycle is complex with ranges of linear growth changing at proposed RCP s. Biochemical synthetic patterns support and explain the observed exponential cell growth. Exponential growth of S . pombe is consistent with, and supports, the central tenets of the continuum model.en_US
dc.publisherPlenum Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherContinuum Modelen_US
dc.subject.otherFission Yeasten_US
dc.subject.otherExponential Growthen_US
dc.subject.otherBilinear Growthen_US
dc.subject.otherCell Cycleen_US
dc.titleS chizosaccharomyces pombe grows exponentially during the division cycle with no rate change pointsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100295/1/fyr12072.pdf
dc.identifier.doi10.1111/1567-1364.12072en_US
dc.identifier.sourceFEMS Yeast Researchen_US
dc.identifier.citedreferenceMitchison JM & Nurse P ( 1985 ) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J Cell Sci 75: 357 – 376.en_US
dc.identifier.citedreferenceMitchison JM, Sveiczer A & Novak B ( 1998 ) Length growth in fission yeast: is growth exponential?–No. Microbiology 144 ( Pt 2 ): 265 – 266.en_US
dc.identifier.citedreferenceHorvath A, Racz‐Monus A, Buchwald P & Sveiczer A ( 2013 ) Cell length growth in fission yeast: an analysis of its bilinear character and the nature of its rate change transition. FEMS Yeast Res. doi: 10.1111/1567‐1364.12064.en_US
dc.identifier.citedreferenceKubitschek HE ( 1967a ) The growth‐duplication cycle. 3. Evidence that linear growth is the fundamental form of cell growth and its implications. ANL‐7409. ANL Rep 134 – 135.en_US
dc.identifier.citedreferenceKubitschek HE ( 1967b ) The growth‐duplication cycle. II. Linear cell growth in bacteria. ANL‐7409. ANL Rep 131 – 134.en_US
dc.identifier.citedreferenceKubitschek HE ( 1968 ) Linear cell growth in Escherichia coli. Biophys J 8: 792 – 804.en_US
dc.identifier.citedreferenceKubitschek HE ( 1969 ) Growth during the bacterial cell cycle: analysis of cell size distribution. Biophys J 9: 792 – 809.en_US
dc.identifier.citedreferenceKubitschek HE ( 1970 ) Evidence for the generality of linear cell growth. J Theor Biol 28: 15 – 29.en_US
dc.identifier.citedreferenceKubitschek HE ( 1981 ) Bilinear cell growth of Escherichia coli. J Bacteriol 148: 730 – 733.en_US
dc.identifier.citedreferenceKubitschek HE ( 1986 ) Increase in cell mass during the division cycle of Escherichia coli B/rA. J Bacteriol 168: 613 – 618.en_US
dc.identifier.citedreferenceKubitschek HE & Clay KB ( 1986 ) A second growth state for Schizosaccharomyces pombe. Exp Cell Res 165: 243 – 254.en_US
dc.identifier.citedreferenceMarguerat S & Bahler J ( 2012 ) Coordinating genome expression with cell size. Trends Genet 28: 560 – 565.en_US
dc.identifier.citedreferenceMitchison JM ( 1957 ) The growth of single cells. I. Schizosaccharomyces pombe. Exp Cell Res 13: 244 – 262.en_US
dc.identifier.citedreferenceMiyata H, Miyata M & Johnson BF ( 1988 ) Pseudo‐exponential growth in length of the fission yeast, Schizosaccharomyces pombe. Can J Microbiol 34: 1338 – 1343.en_US
dc.identifier.citedreferenceNavarro FJ, Weston L & Nurse P ( 2012 ) Global control of cell growth in fission yeast and its coordination with the cell cycle. Curr Opin Cell Biol 24: 833 – 837.en_US
dc.identifier.citedreferenceOliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B & Leatherwood J ( 2005 ) The cell cycle‐regulated genes of Schizosaccharomyces pombe. PLoS Biol 3: e225.en_US
dc.identifier.citedreferencePeng X, Karuturi RK, Miller LD et al. ( 2005 ) Identification of cell cycle‐regulated genes in fission yeast. Mol Biol Cell 16: 1026 – 1042.en_US
dc.identifier.citedreferenceRappaz B, Cano E, Colomb T, Kuhn J, Depeursinge C, Simanis V, Magistretti PJ & Marquet P ( 2009 ) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14: 034049.en_US
dc.identifier.citedreferenceRustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P & Bahler J ( 2004 ) Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36: 809 – 817.en_US
dc.identifier.citedreferenceShedden K & Cooper S ( 2002 ) Analysis of cell‐cycle‐specific gene expression in human cells as determined by microarrays and double‐thymidine block synchronization. P Natl Acad Sci USA 99: 4379 – 4384.en_US
dc.identifier.citedreferenceSpellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D & Futcher B ( 1998 ) Comprehensive identification of cell cycle‐regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273 – 3297.en_US
dc.identifier.citedreferenceSveiczer A, Novak B & Mitchison JM ( 1996 ) The size control of fission yeast revisited. J Cell Sci 109 ( Pt 12 ): 2947 – 2957.en_US
dc.identifier.citedreferenceBaumgartner S & Tolic‐Norrelykke IM ( 2009 ) Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis. Biophys J 96: 4336 – 4347.en_US
dc.identifier.citedreferenceBuchwald P & Sveiczer A ( 2006 ) The time‐profile of cell growth in fission yeast: model selection criteria favoring bilinear models over exponential ones. Theor Biol Med Model 3: 16.en_US
dc.identifier.citedreferenceCho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW & Lockhart DJ ( 2001 ) Transcriptional regulation and function during the human cell cycle. Nat Genet 27: 48 – 54.en_US
dc.identifier.citedreferenceCooper S ( 1979 ) A unifying model for the G1 period in prokaryotes and eukaryotes. Nature 280: 17 – 19.en_US
dc.identifier.citedreferenceCooper S ( 1981 ) The continuum model: application to G1‐arrest and G(O). Cell Growth ( Nicolini C, ed.), pp. 315 – 336. Plenum Press, New York.en_US
dc.identifier.citedreferenceCooper S ( 1982 ) The continuum model: statistical implications. J Theor Biol 94: 783 – 800.en_US
dc.identifier.citedreferenceCooper S ( 1987 ) On G0 and cell cycle controls. BioEssays 7: 220 – 223.en_US
dc.identifier.citedreferenceCooper S ( 1988a ) The continuum model and c‐myc synthesis during the division cycle. J Theor Biol 135: 393 – 400.en_US
dc.identifier.citedreferenceCooper S ( 1988b ) Leucine uptake and protein synthesis are exponential during the division cycle of Escherichia coli B/r. J Bacteriol 170: 436 – 438.en_US
dc.identifier.citedreferenceCooper S ( 1988c ) What is the bacterial growth law during the division cycle? J Bacteriol 170: 5001 – 5005.en_US
dc.identifier.citedreferenceCooper S ( 1989 ) The constrained hoop: an explanation of the overshoot in cell length during a shift‐up of Escherichia coli. J Bacteriol 171: 5239 – 5243.en_US
dc.identifier.citedreferenceCooper S ( 1990 ) The Escherichia coli cell cycle. Res Microbiol 141: 17 – 29.en_US
dc.identifier.citedreferenceCooper S ( 1991 ) Bacterial Growth and Division. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferenceCooper S ( 1998 ) Length extension in growing yeast: is growth exponential?–yes. Microbiology 144: 263 – 264.en_US
dc.identifier.citedreferenceCooper S ( 2000 ) The continuum model and G1‐control of the mammalian cell cycle. Prog Cell Cycle Res 4: 27 – 39.en_US
dc.identifier.citedreferenceCooper S ( 2001 ) Size, volume, length and the control of the bacterial division cycle. Microbiology 147: 2629 – 2630; discussion, 2630–2622.en_US
dc.identifier.citedreferenceCooper S ( 2004 ) Control and maintenance of mammalian cell size. BMC Cell Biol 5: 35.en_US
dc.identifier.citedreferenceCooper S ( 2006 ) Distinguishing between linear and exponential cell growth during the division cycle: single‐cell studies, cell‐culture studies, and the object of cell‐cycle research. Theor Biol Med Model 3: 10.en_US
dc.identifier.citedreferenceCooper S ( 2012 ) On a heuristic point of view concerning the expression of numerous genes during the cell cycle. IUBMB Life 64: 10 – 17.en_US
dc.identifier.citedreferenceCooper S & Shedden K ( 2007 ) Microarrays and the relationship of mRNA variation to protein variation during the cell cycle. J Theor Biol 249: 574 – 581.en_US
dc.identifier.citedreferenceCooper S, Shedden K & Vu‐Phan D ( 2009 ) Invariant mRNA and mitotic protein breakdown solves the Russian Doll problem of the cell cycle. Cell Biol Int 33: 10 – 18.en_US
dc.identifier.citedreferenceElliott SG & McLaughlin CS ( 1978 ) Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. P Natl Acad Sci USA 75: 4384 – 4388.en_US
dc.identifier.citedreferenceHelmstetter CE ( 1991 ) Description of a baby machine for Saccharomyces cerevisiae. New Biol 3: 1089 – 1096.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.