S chizosaccharomyces pombe grows exponentially during the division cycle with no rate change points

Show simple item record

dc.contributor.author Cooper, Stephen en_US
dc.date.accessioned 2013-11-01T19:00:59Z
dc.date.available 2015-01-05T13:54:45Z en_US
dc.date.issued 2013-11 en_US
dc.identifier.citation Cooper, Stephen (2013). " S chizosaccharomyces pombe grows exponentially during the division cycle with no rate change points." FEMS Yeast Research 13(7): 650-658. en_US
dc.identifier.issn 1567-1356 en_US
dc.identifier.issn 1567-1364 en_US
dc.identifier.uri http://hdl.handle.net/2027.42/100295
dc.description.abstract Length measurements during the division cycle of 86 individual S chizosaccharomyces pombe cells demonstrate that length grows exponentially with no change in the growth rate and no rate change point ( RCP ) observed for any cell. These results support the proposal that length extension, or cell growth, is exponential during the division cycle. The finding of exponential growth during the cell cycle is significant because these results challenge and contradict the current, consensus, widely believed, and widely accepted view that growth of S . pombe during the division cycle is complex with ranges of linear growth changing at proposed RCP s. Biochemical synthetic patterns support and explain the observed exponential cell growth. Exponential growth of S . pombe is consistent with, and supports, the central tenets of the continuum model. en_US
dc.publisher Plenum Press en_US
dc.publisher Wiley Periodicals, Inc. en_US
dc.subject.other Continuum Model en_US
dc.subject.other Fission Yeast en_US
dc.subject.other Exponential Growth en_US
dc.subject.other Bilinear Growth en_US
dc.subject.other Cell Cycle en_US
dc.title S chizosaccharomyces pombe grows exponentially during the division cycle with no rate change points en_US
dc.type Article en_US
dc.rights.robots IndexNoFollow en_US
dc.subject.hlbsecondlevel Microbiology and Immunology en_US
dc.subject.hlbtoplevel Health Sciences en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/100295/1/fyr12072.pdf
dc.identifier.doi 10.1111/1567-1364.12072 en_US
dc.identifier.source FEMS Yeast Research en_US
dc.identifier.citedreference Mitchison JM & Nurse P ( 1985 ) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J Cell Sci 75: 357 – 376. en_US
dc.identifier.citedreference Mitchison JM, Sveiczer A & Novak B ( 1998 ) Length growth in fission yeast: is growth exponential?–No. Microbiology 144 ( Pt 2 ): 265 – 266. en_US
dc.identifier.citedreference Horvath A, Racz‐Monus A, Buchwald P & Sveiczer A ( 2013 ) Cell length growth in fission yeast: an analysis of its bilinear character and the nature of its rate change transition. FEMS Yeast Res. doi: 10.1111/1567‐1364.12064. en_US
dc.identifier.citedreference Kubitschek HE ( 1967a ) The growth‐duplication cycle. 3. Evidence that linear growth is the fundamental form of cell growth and its implications. ANL‐7409. ANL Rep 134 – 135. en_US
dc.identifier.citedreference Kubitschek HE ( 1967b ) The growth‐duplication cycle. II. Linear cell growth in bacteria. ANL‐7409. ANL Rep 131 – 134. en_US
dc.identifier.citedreference Kubitschek HE ( 1968 ) Linear cell growth in Escherichia coli. Biophys J 8: 792 – 804. en_US
dc.identifier.citedreference Kubitschek HE ( 1969 ) Growth during the bacterial cell cycle: analysis of cell size distribution. Biophys J 9: 792 – 809. en_US
dc.identifier.citedreference Kubitschek HE ( 1970 ) Evidence for the generality of linear cell growth. J Theor Biol 28: 15 – 29. en_US
dc.identifier.citedreference Kubitschek HE ( 1981 ) Bilinear cell growth of Escherichia coli. J Bacteriol 148: 730 – 733. en_US
dc.identifier.citedreference Kubitschek HE ( 1986 ) Increase in cell mass during the division cycle of Escherichia coli B/rA. J Bacteriol 168: 613 – 618. en_US
dc.identifier.citedreference Kubitschek HE & Clay KB ( 1986 ) A second growth state for Schizosaccharomyces pombe. Exp Cell Res 165: 243 – 254. en_US
dc.identifier.citedreference Marguerat S & Bahler J ( 2012 ) Coordinating genome expression with cell size. Trends Genet 28: 560 – 565. en_US
dc.identifier.citedreference Mitchison JM ( 1957 ) The growth of single cells. I. Schizosaccharomyces pombe. Exp Cell Res 13: 244 – 262. en_US
dc.identifier.citedreference Miyata H, Miyata M & Johnson BF ( 1988 ) Pseudo‐exponential growth in length of the fission yeast, Schizosaccharomyces pombe. Can J Microbiol 34: 1338 – 1343. en_US
dc.identifier.citedreference Navarro FJ, Weston L & Nurse P ( 2012 ) Global control of cell growth in fission yeast and its coordination with the cell cycle. Curr Opin Cell Biol 24: 833 – 837. en_US
dc.identifier.citedreference Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B & Leatherwood J ( 2005 ) The cell cycle‐regulated genes of Schizosaccharomyces pombe. PLoS Biol 3: e225. en_US
dc.identifier.citedreference Peng X, Karuturi RK, Miller LD et al. ( 2005 ) Identification of cell cycle‐regulated genes in fission yeast. Mol Biol Cell 16: 1026 – 1042. en_US
dc.identifier.citedreference Rappaz B, Cano E, Colomb T, Kuhn J, Depeursinge C, Simanis V, Magistretti PJ & Marquet P ( 2009 ) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14: 034049. en_US
dc.identifier.citedreference Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P & Bahler J ( 2004 ) Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36: 809 – 817. en_US
dc.identifier.citedreference Shedden K & Cooper S ( 2002 ) Analysis of cell‐cycle‐specific gene expression in human cells as determined by microarrays and double‐thymidine block synchronization. P Natl Acad Sci USA 99: 4379 – 4384. en_US
dc.identifier.citedreference Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D & Futcher B ( 1998 ) Comprehensive identification of cell cycle‐regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273 – 3297. en_US
dc.identifier.citedreference Sveiczer A, Novak B & Mitchison JM ( 1996 ) The size control of fission yeast revisited. J Cell Sci 109 ( Pt 12 ): 2947 – 2957. en_US
dc.identifier.citedreference Baumgartner S & Tolic‐Norrelykke IM ( 2009 ) Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis. Biophys J 96: 4336 – 4347. en_US
dc.identifier.citedreference Buchwald P & Sveiczer A ( 2006 ) The time‐profile of cell growth in fission yeast: model selection criteria favoring bilinear models over exponential ones. Theor Biol Med Model 3: 16. en_US
dc.identifier.citedreference Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW & Lockhart DJ ( 2001 ) Transcriptional regulation and function during the human cell cycle. Nat Genet 27: 48 – 54. en_US
dc.identifier.citedreference Cooper S ( 1979 ) A unifying model for the G1 period in prokaryotes and eukaryotes. Nature 280: 17 – 19. en_US
dc.identifier.citedreference Cooper S ( 1981 ) The continuum model: application to G1‐arrest and G(O). Cell Growth ( Nicolini C, ed.), pp. 315 – 336. Plenum Press, New York. en_US
dc.identifier.citedreference Cooper S ( 1982 ) The continuum model: statistical implications. J Theor Biol 94: 783 – 800. en_US
dc.identifier.citedreference Cooper S ( 1987 ) On G0 and cell cycle controls. BioEssays 7: 220 – 223. en_US
dc.identifier.citedreference Cooper S ( 1988a ) The continuum model and c‐myc synthesis during the division cycle. J Theor Biol 135: 393 – 400. en_US
dc.identifier.citedreference Cooper S ( 1988b ) Leucine uptake and protein synthesis are exponential during the division cycle of Escherichia coli B/r. J Bacteriol 170: 436 – 438. en_US
dc.identifier.citedreference Cooper S ( 1988c ) What is the bacterial growth law during the division cycle? J Bacteriol 170: 5001 – 5005. en_US
dc.identifier.citedreference Cooper S ( 1989 ) The constrained hoop: an explanation of the overshoot in cell length during a shift‐up of Escherichia coli. J Bacteriol 171: 5239 – 5243. en_US
dc.identifier.citedreference Cooper S ( 1990 ) The Escherichia coli cell cycle. Res Microbiol 141: 17 – 29. en_US
dc.identifier.citedreference Cooper S ( 1991 ) Bacterial Growth and Division. Academic Press, San Diego, CA. en_US
dc.identifier.citedreference Cooper S ( 1998 ) Length extension in growing yeast: is growth exponential?–yes. Microbiology 144: 263 – 264. en_US
dc.identifier.citedreference Cooper S ( 2000 ) The continuum model and G1‐control of the mammalian cell cycle. Prog Cell Cycle Res 4: 27 – 39. en_US
dc.identifier.citedreference Cooper S ( 2001 ) Size, volume, length and the control of the bacterial division cycle. Microbiology 147: 2629 – 2630; discussion, 2630–2622. en_US
dc.identifier.citedreference Cooper S ( 2004 ) Control and maintenance of mammalian cell size. BMC Cell Biol 5: 35. en_US
dc.identifier.citedreference Cooper S ( 2006 ) Distinguishing between linear and exponential cell growth during the division cycle: single‐cell studies, cell‐culture studies, and the object of cell‐cycle research. Theor Biol Med Model 3: 10. en_US
dc.identifier.citedreference Cooper S ( 2012 ) On a heuristic point of view concerning the expression of numerous genes during the cell cycle. IUBMB Life 64: 10 – 17. en_US
dc.identifier.citedreference Cooper S & Shedden K ( 2007 ) Microarrays and the relationship of mRNA variation to protein variation during the cell cycle. J Theor Biol 249: 574 – 581. en_US
dc.identifier.citedreference Cooper S, Shedden K & Vu‐Phan D ( 2009 ) Invariant mRNA and mitotic protein breakdown solves the Russian Doll problem of the cell cycle. Cell Biol Int 33: 10 – 18. en_US
dc.identifier.citedreference Elliott SG & McLaughlin CS ( 1978 ) Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. P Natl Acad Sci USA 75: 4384 – 4388. en_US
dc.identifier.citedreference Helmstetter CE ( 1991 ) Description of a baby machine for Saccharomyces cerevisiae. New Biol 3: 1089 – 1096. en_US
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)


Search Deep Blue

Advanced Search

Browse by

My Account

Information

Available Now


MLibrary logo