Show simple item record

Background error covariance estimation for atmospheric CO 2 data assimilation

dc.contributor.authorChatterjee, Abhisheken_US
dc.contributor.authorEngelen, Richard J.en_US
dc.contributor.authorKawa, Stephan R.en_US
dc.contributor.authorSweeney, Colmen_US
dc.contributor.authorMichalak, Anna M.en_US
dc.date.accessioned2013-11-01T19:01:02Z
dc.date.available2014-10-06T19:17:43Zen_US
dc.date.issued2013-09-16en_US
dc.identifier.citationChatterjee, Abhishek; Engelen, Richard J.; Kawa, Stephan R.; Sweeney, Colm; Michalak, Anna M. (2013). "Background error covariance estimation for atmospheric CO 2 data assimilation." Journal of Geophysical Research: Atmospheres 118(17): 10,140-10,154. <http://hdl.handle.net/2027.42/100305>en_US
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100305
dc.description.abstractIn any data assimilation framework, the background error covariance statistics play the critical role of filtering the observed information and determining the quality of the analysis. For atmospheric CO 2 data assimilation, however, the background errors cannot be prescribed via traditional forecast or ensemble‐based techniques as these fail to account for the uncertainties in the carbon emissions and uptake, or for the errors associated with the CO 2 transport model. We propose an approach where the differences between two modeled CO 2 concentration fields, based on different but plausible CO 2 flux distributions and atmospheric transport models, are used as a proxy for the statistics of the background errors. The resulting error statistics: (1) vary regionally and seasonally to better capture the uncertainty in the background CO 2 field, and (2) have a positive impact on the analysis estimates by allowing observations to adjust predictions over large areas. A state‐of‐the‐art four‐dimensional variational (4D‐VAR) system developed at the European Centre for Medium‐Range Weather Forecasts (ECMWF) is used to illustrate the impact of the proposed approach for characterizing background error statistics on atmospheric CO 2 concentration estimates. Observations from the Greenhouse gases Observing SATellite “IBUKI” (GOSAT) are assimilated into the ECMWF 4D‐VAR system along with meteorological variables, using both the new error statistics and those based on a traditional forecast‐based technique. Evaluation of the four‐dimensional CO 2 fields against independent CO 2 observations confirms that the performance of the data assimilation system improves substantially in the summer, when significant variability and uncertainty in the fluxes are present. Key Points Difference in modeled CO2 fields is used to define background errors in CO2‐DA Both atmospheric transport & flux pattern differences impact background errors Evaluation using independent data shows positive impact on analysis estimatesen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherVariational Data Assimilationen_US
dc.subject.otherGOSAT CO2en_US
dc.subject.otherNMC Methoden_US
dc.subject.otherBackground Error Covariance Matrixen_US
dc.subject.otherAtmospheric CO2en_US
dc.subject.otherSpatial and Temporal CO2 Variationsen_US
dc.titleBackground error covariance estimation for atmospheric CO 2 data assimilationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100305/1/jgrd50654.pdf
dc.identifier.doi10.1002/jgrd.50654en_US
dc.identifier.sourceJournal of Geophysical Research: Atmospheresen_US
dc.identifier.citedreferenceNichols, D. ( 2010 ), Mathematical concepts of data assimilation, in Part I. Theory, Data Assimilation, Making Sense of Observations, edited by W. Lahoz, B. Khattatov, and R. Menard, pp. 13 – 40, Springer‐Verlag, Berlin.en_US
dc.identifier.citedreferenceLe Quere, C., et al. ( 2009 ), Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2 ( 12 ), 831 – 836, doi: 10.1038/ngeo689.en_US
dc.identifier.citedreferenceLiu, J., I. Fung, E. Kalnay, J.‐S. Kang, E. T. Olsen, and L. Chen ( 2012 ), Simultaneous assimilation of AIRS XCO 2 and meteorological observations in a carbon climate model with an ensemble Kalman filter, J. Geophys. Res., 117, D05309, doi: 10.1029/2011JD016642.en_US
dc.identifier.citedreferenceMachida, T., N. Vivo, N. de Noblet‐Ducoudre, J. Ogee, J. Polcher, P. Friedlingstein, P. Ciais, S. Stephen, and I. C. Prentice ( 2008 ), Worldwide measurements of atmospheric CO 2 and other trace gas species using commercial airlines, J. Atmos. Oceanic Technol., 25 ( 10 ), 1744 – 1754, doi: 10.1175/2008JTECHA1082.1.en_US
dc.identifier.citedreferenceMassart, S., A. Piacentini, and O. Pannekoucke ( 2012 ), Importance of using ensemble estimated background error covariances for the quality of atmospheric ozone analyses, Q. J. R. Meteorol. Soc., 138 ( 665 ), 889 – 905, doi: 10.1002/qj.971.en_US
dc.identifier.citedreferenceNocedal, J., and S. J. Wright ( 2006 ), Numerical Optimization, Springer Ser. Oper. Res., pp. 224 – 229, Springer‐Verlag, Berlin.en_US
dc.identifier.citedreferenceO'Dell, C. W., et al. ( 2012 ), The ACOS CO 2 retrieval algorithm. Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5 ( 1 ), 99 – 121, doi: 10.5194/amt‐5‐99‐2012.en_US
dc.identifier.citedreferencePannekoucke, O., L. Berre, and G. Desroziers ( 2007 ), Filtering properties of wavelets for local background‐error correlations, Q. J. R. Meteorol. Soc., 133 ( 623 ), 363 – 379, doi: 10.1002/qj.33.en_US
dc.identifier.citedreferenceParrish, D. F., and J. C. Derber ( 1992 ), The National Meteorological Centre's spectral statistical–interpolation analysis system, Mon. Weather Rev., 120 ( 8 ), 1747 – 1763, doi: 10.1175/1520‐0493(1992)120<1747:tnmcss>2.0.co;2.en_US
dc.identifier.citedreferenceRanderson, J. T., M. V. Thomps, T. J. Conw, I. Y. Fun, and C. B. Field ( 1997 ), The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide, Global Biogeochem. Cycles, 11 ( 4 ), 535 – 560, doi: 10.1029/97GB02268.en_US
dc.identifier.citedreferenceRaynaud, L., L. Berre, and G. Desroziers ( 2009 ), Objective filtering of ensemble‐based background‐error variances, Q. J. R. Meteorol. Soc., 135 ( 642 ), 1177 – 1199, doi: 10.1002/qj.438.en_US
dc.identifier.citedreferenceScholes, R. J., P. M. S. Monteiro, C. L. Sabine, and J. G. Canadell ( 2009 ). Systematic long‐term observations of the global carbon cycle, Trends Ecol. Evol., 24 ( 8 ), 427 – 430, doi: 10.1016/j.tree.2009.03.006.en_US
dc.identifier.citedreferenceSimeoni, D., C. Singer, and G. Chalon ( 1997 ), Infrared atmospheric sounding interferometer, Acta Astronaut., 40 ( 2–8 ), doi: 10.1016/s0094‐5765(97)00098‐2.en_US
dc.identifier.citedreferenceSingh, K., M. Jardak, A. Sandu, K. Bowman, M. Lee, and D. Jones ( 2011 ), Construction of non‐diagonal background error covariance matrices for global chemical data assimilation, Geoscientific Model Dev., 4 ( 2 ), 299 – 316, doi: 10.5194/gmd‐4‐299‐2011.en_US
dc.identifier.citedreferenceSiroka, M., C. Fischer, V. Casse, R. Brozkova, and J. F. Geleyn ( 2003 ), The definition of mesoscale selective forecast error covariances for a limited area variational analysis, Meteorol. Atmos. Phys., 82 ( 1–4 ), 227 – 244, doi: 10.1007/s00703‐001‐0588‐5.en_US
dc.identifier.citedreferenceStohl, A., S. Eckhardt, C. Forster, P. James, and N. Spichtinger ( 2002 ), On the pathways and timescales of intercontinental air pollution transport, J. Geophys. Res., 107 ( D23 ), 4684, doi: 10.1029/2001JD001396.en_US
dc.identifier.citedreferenceStorto, A., and R. Randriamampianina ( 2010 ), Ensemble variational assimilation for the representation of background error covariances in a high‐latitude regional model, J. Geophys. Res., 115, D17204, doi: 10.1029/2009JD013111.en_US
dc.identifier.citedreferenceTans, P. P. ( 1996 ), Carbon cycle (group report), in Summary Report 1994–1995, vol. 23, edited by D. J. Hoffman, J. Peterson, and R. M. Rosson, pp. 29 – 49, U. S. Dep. of Commer, Boulder, Colorado.en_US
dc.identifier.citedreferenceTiwari, Y. K., M. Gloor, R. J. Engelen, F. Chevallier, C. Rödenbeck, S. Körner, P. Peylin, B. H. Braswell, and M. Heimann ( 2006 ), Comparing CO 2 retrieved from Atmospheric Infrared Sounder with model predictions: Implications for constraining surface fluxes and lower‐to‐upper troposphere transport, J. Geophys. Res., 111, D17106, doi: 10.1029/2005JD006681.en_US
dc.identifier.citedreferenceWillmott, C. J., and K. Matsuura ( 2005 ), Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30 ( 1 ), 79 – 82, doi: 10.3354/cr030079.en_US
dc.identifier.citedreferenceWofsy, S. C. ( 2011 ), HIAPER Pole‐to‐Pole Observations (HIPPO): Fine‐grained, global‐scale measurements of climatically important atmospheric gases and aerosols, Proc. R. Soc. A, 369, 2073 – 2086, doi: 10.1098/rsta.2010.0313.en_US
dc.identifier.citedreferenceWunch, D., et al. ( 2011a ), A method for evaluating bias in global measurements of CO 2 total columns from space, Atmos. Chem. Phys., 11, 12,317 – 12,337, doi: 10.5194/acp‐11‐12317‐2011.en_US
dc.identifier.citedreferenceWunch, D., G. C. Toon, J.‐F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg ( 2011b ), The Total Carbon Column Observing Network, Phil. Trans. R. Soc. A‐Math. Phys. Eng. Sci., 369 ( 1943 ), 2087 – 2112, doi: 10.1098/rsta.2010.0240.en_US
dc.identifier.citedreferenceXueref‐Remy, I., P. Bousquet, C. Carouge, L. Rivier, and P. Ciais ( 2011 ), Variability and budget of CO 2 in Europe: Analysis of the CAATER airborne campaigns. Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework, Atmos. Chem. Phys., 11 ( 12 ), doi: 10.5194/acp‐11‐5673‐2011.en_US
dc.identifier.citedreferenceYokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov ( 2009 ), Global concentrations of CO 2 and CH 4 retrieved from GOSAT, SOLA, 5, 160 – 163, doi: 10.2151/sola.2009‐041.en_US
dc.identifier.citedreferenceAlkhaled, A. A., A. M. Michalak, S. Randolph Kawa, S. C. Olsen, and J.‐W. Wang ( 2008 ), A global evaluation of the regional spatial variability of column integrated CO 2 distributions, J. Geophys. Res., 113, D20303, doi: 10.1029/2007JD009693.en_US
dc.identifier.citedreferenceAndrews, A. E., K. A. Boering, S. C. Wofsy, B. C. Daube, D. B. Jones, S. Alex, M. Loewenstein, J. R. Podolske, and S. E. Strahan ( 2001 ), Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO 2: Quantitative evidence for a subtropical “barrier” to horizontal transport, J. Geophys. Res., 106 ( D10 ), 10,257 – 10,274, doi: 10.1029/2000JD900703.en_US
dc.identifier.citedreferenceAumann, H. H., et al. ( 2003 ), AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems, IEEE Trans. Geosci. Remote Sens., 41 ( 2 ), doi: 10.1109/tgrs.2002.808356.en_US
dc.identifier.citedreferenceBaker, D. F., H. Bösch, S. C. Doney, D. O'Brien, and D. S. Schimel ( 2010 ), Carbon source/sink information provided by column CO 2 measurements from the Oribiting Carbon Observatory, Atmos. Chem. Phys., 10, 4145 – 4165, doi: 10.5194/acp‐10‐4145‐2010.en_US
dc.identifier.citedreferenceBannister, R. N. ( 2008a ), A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. R. Meteorol. Soc., 134 ( 637 ), 1951 – 1970, doi: 10.1002/qj.339.en_US
dc.identifier.citedreferenceBannister, R. N. ( 2008b ), A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics, Q. J. R. Meteorol. Soc., 134 ( 637 ), 1971 – 1996, doi: 10.1002/qj.340.en_US
dc.identifier.citedreferenceBelo Pereira, M., and L. Berre ( 2006 ), The use of an ensemble approach to study the background error covariances in a global NWP model, Mon. Weather Rev., 134 ( 9 ), 2466 – 2489, doi: 10.1175/mwr3189.1.en_US
dc.identifier.citedreferenceBenedetti, A., and M. Fisher ( 2007 ), Background error statistics for aerosols, Q. J. R. Meteorol. Soc., 133 ( 623 ), 391 – 405, doi: 10.1002/qj.37.en_US
dc.identifier.citedreferenceBerre, L., and G. Desroziers ( 2010 ), Filtering of background error variances and correlations by local spatial averaging: A review, Mon. Weather Rev., 138 ( 10 ), 3693 – 3720, doi: 10.1175/2010mwr3111.1.en_US
dc.identifier.citedreferenceBerre, L., S. E. Stefanescu, and M. B. Pereira ( 2006 ), The representation of the analysis effect in three error simulation techniques, Tellus Ser. A. Dyn. Meteorol. Oceanogr., 58 ( 2 ), 196 – 209, doi: 10.1111/j.1600‐0870.2006.00165.x.en_US
dc.identifier.citedreferenceBonavita, M., L. Raynaud, and L. Isaksen ( 2011 ), Estimating background‐error variances with the ECMWF Ensemble of Data Assimilations system: Some effects of ensemble size and day‐to‐day variability, Q. J. R. Meteorol. Soc., 137 ( 655 ), 423 – 434, doi: 10.1002/qj.756.en_US
dc.identifier.citedreferenceBönisch, H., A. Engel, J. Curtius, T. Birner, and P. Hoor ( 2009 ), Quantifying transport into the lowermost stratosphere using simultaneous in‐situ measurements of SF 6 and CO 2, Atmos. Chem. Phys., 9 ( 16 ), 5905 – 5919, doi: 10.5194/acp‐9‐5905‐2009.en_US
dc.identifier.citedreferenceBösch, H., et al. ( 2006 ), Space‐based near‐infrared CO 2 measurements: Testing the orbiting carbon observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin, J. Geophys. Res., 111, D23302, doi: 10.1029/2006JD007080.en_US
dc.identifier.citedreferenceBrenninkmeijer, C. A. M., et al. ( 2007 ), Civil aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system, Atmos. Chem. Phys., 7 ( 18 ), 4953 – 4976, doi: 10.5194/acp‐7‐4953‐2007.en_US
dc.identifier.citedreferenceBrousseau, P., L. Berre, F. Bouttier, and G. Desroziers ( 2012 ), Flow‐dependent background‐error covariances for a convective‐scale data assimilation system, Q. J. R. Meteorol. Soc., 138 ( 663 ), 310 – 322, doi: 10.1002/qj.920.en_US
dc.identifier.citedreferenceBuehner, M., and M. Charron ( 2007 ), Spectral and spatial localization of background‐error correlations for data assimilation, Q. J. R. Meteorol. Soc., 133 ( 624 ), 615 – 630, doi: 10.1002/qj.50.en_US
dc.identifier.citedreferenceCardinali, C., S. Pezzulli, and E. Andersson ( 2004 ), Influence‐matrix diagnostic of a data assimilation system, Q. J. R. Meteorol. Soc., 130 ( 603 ), 2767 – 2786, doi: 10.1256/qj.03.205.en_US
dc.identifier.citedreferenceChai, T. F., et al. ( 2007 ), Four‐dimensional data assimilation experiments with International Consortium for Atmospheric Research on Transport and Transformation ozone measurements, J. Geophys. Res., 112, D12S15, doi: 10.1029/2006JD007763.en_US
dc.identifier.citedreferenceChevallier, F., R. J. Engelen, C. Carouge, T. J. Conway, P. Peylin, C. Pickett‐Heaps, M. Ramonet, P. J. Rayner, and I. Xueref‐Remy ( 2009a ), AIRS‐based versus flask estimation of carbon surface fluxes, J. Geophys. Res., 114, D20303, doi: 10.1029/2009JD012311.en_US
dc.identifier.citedreferenceChevallier, F., S. Maksyutov, P. Bousquet, F.‐M. Bréon, R. Saito, Y. Yoshida, and T. Yokota ( 2009b ) On the accuracy of the CO 2 surface fluxes to be estimated from the GOSAT observations, Geophys. Res. Lett., 36, L19807, doi: 10.1029/2009GL040108.en_US
dc.identifier.citedreferenceChiles, J.‐P., and P. Delfiner ( 2012 ), Geostatistics: Modeling Spatial Uncertainty (Wiley Series in Probability and Statistics), 734 pp., John Wiley & Sons, Inc., Hoboken, New Jersey.en_US
dc.identifier.citedreferenceConstantinescu, E. M., T. Chai, A. Sandu, and G. R. Carmichael ( 2007 ), Autoregressive models of background errors for chemical data assimilation, J. Geophys. Res., 112, D12309, doi: 10.1029/2006JD008103.en_US
dc.identifier.citedreferenceCrevoisier, C., A. Chedin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott ( 2009 ), First year of upper tropospheric integrated content of CO 2 from IASI hyperspectral infrared observations, Atmos. Chem. Phys., 9 ( 14 ), 4797 – 4810, doi: 10.5194/acp‐9‐4797‐2009.en_US
dc.identifier.citedreferenceCrevoisier, C., C. Sweeney, M. Gloor, J. L. Sarmiento, and P. P. Tans ( 2010 ), Regional US carbon sinks from three‐dimensional atmospheric CO 2 sampling, Proc. Natl. Acad. Sci. U. S. A., 107 ( 43 ), 18,348 – 18,353, doi: 10.1073/pnas.0900062107.en_US
dc.identifier.citedreferenceCrisp, D., et al. ( 2012 ), The ACOS CO 2 retrieval algorithm. Part II: Global XCO 2 data characterization, Atmos. Meas. Tech., 5, 687 – 707, doi: 10.5194/amt‐5‐687‐2012.en_US
dc.identifier.citedreferenceDenning, A. S., T. Takahashi, and P. Friedlingstein ( 1999 ), Can a strong atmospheric CO 2 rectifier effect be reconciled with a “reasonable” carbon budget?, Tellus Ser. B‐Chem. Phys. Meteorol., 51 ( 2 ), doi: 10.1034/j.1600‐0889.1999.t01‐1‐00010.x.en_US
dc.identifier.citedreferenceDerber, J., and F. Bouttier ( 1999 ), A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus Ser. A‐Dyn. Meteorol. Oceanogr., 51 ( 2 ), 195 – 221, doi: 10.1034/j.1600‐0870.1999.t01‐2‐00003.x.en_US
dc.identifier.citedreferenceEngelen, R. J., and A. P. McNally ( 2005 ), Estimating atmospheric CO 2 from advanced infrared satellite radiances within an operational four‐dimensional variational (4D‐Var) data assimilation system: Results and validation, J. Geophys. Res., 110, D18305, doi: 10.1029/2005JD005982.en_US
dc.identifier.citedreferencePannekoucke, O., L. Berre, and G. Desroziers ( 2008 ), Background‐error correlation length‐scale estimates and their sampling statistics, Q. J. R. Meteorol. Soc., 134 ( 631 ), 497 – 508, doi: 10.1002/qj.212.en_US
dc.identifier.citedreferenceEngelen, R. J., E. Andersson, F. Chevallier, A. Hollingsworth, M. Matricardi, A. P. McNally, J.‐N. Thepaut, and P. D. Watts ( 2004 ), Estimating atmospheric CO 2 from advanced infrared satellite radiances within an operational 4D‐Var data assimilation system: Methodology and first results, J. Geophys. Res., 109, D19309, doi: 10.1029/2004JD004777.en_US
dc.identifier.citedreferenceEngelen, R. J., S. Serrar, and F. Chevallier ( 2009 ), Four‐dimensional data assimilation of atmospheric CO 2 using AIRS observations, J. Geophys. Res., 114, D03303, doi: 10.1029/2008JD010739.en_US
dc.identifier.citedreferenceFisher, M. ( 2004 ), Background error covariance modelling, Proc. of ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, UK, 45–64.en_US
dc.identifier.citedreferenceFisher, M. ( 2006 ), “Wavelet”Jb –A new way to model the statistics of background errors. ECMWF Newsletter, 106, 23–28, Society, 130 ( 601 ), 2253 – 2275, doi: 10.1256/qj.03.26.en_US
dc.identifier.citedreferenceGurk, C., H. Fischer, P. Hoor, M. G. Lawrence, J. Lelieveld, and H. Wernli ( 2008 ), Airborne in‐situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe, Atmos. Chem. Phys., 8 ( 21 ), 6395 – 6403, doi: 10.5194/acp‐8‐6395‐2008.en_US
dc.identifier.citedreferenceHammerling, D. M., A. M. Michalak, and S. R. Kawa ( 2012a ), Mapping of CO 2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO‐2, J. Geophys. Res., 117, D06306, doi: 10.1029/2011JD017015.en_US
dc.identifier.citedreferenceHammerling, D. M., A. M. Michalak, C. O'Dell, and S. R. Kawa ( 2012b ), Global CO 2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT), Geophys. Res. Lett., 39, L08804, doi: 10.1029/2012GL051203.en_US
dc.identifier.citedreferenceHess, R. ( 2010 ), Flow dependence of background errors and their vertical correlations for radiance‐data assimilation, Q. J. R. Meteorol. Soc., 136 ( 647 ), 475 – 486, doi: 10.1002/qj.570.en_US
dc.identifier.citedreferenceHollingsworth, A., et al. ( 2008 ), Toward a monitoring and forecasting system for atmospheric composition: The GEMS project, Bull. Am. Meteorol. Soc., 89 ( 8 ), 1147 – 1164, doi: 10.1175/2008bams2355.1.en_US
dc.identifier.citedreferenceHolton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister ( 1995 ), Stratosphere‐troposphere exchange, Rev. Geophys., 33 ( 4 ), 403 – 439, doi: 10.1029/95RG02097.en_US
dc.identifier.citedreferenceHuntzinger, D. N., et al. ( 2012 ), North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison, Ecol. Model., 232, doi: 10.1016/j.ecolmodel.2012.02.004.en_US
dc.identifier.citedreferenceKahnert, M. ( 2008 ), Variational data analysis of aerosol species in a regional CTM: Background error covariance constraint and aerosol optical observation operators, Tellus Ser. B‐Chem. Phys. Meteorol., 60 ( 5 ), 753 – 770, doi: 10.1111/j.1600‐0889.2008.00377.x.en_US
dc.identifier.citedreferenceKawa, S. R., D. J. Erickson, S. Pawson, and Z. Zhu ( 2004 ), Global CO 2 transport simulations using meteorological data from the NASA data assimilation system, J. Geophys. Res., 109, D18312, doi: 10.1029/2004JD004554.en_US
dc.identifier.citedreferenceKrinner, G., et al. ( 2005 ), A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi: 10.1029/2003GB002199.en_US
dc.identifier.citedreferenceKulawik, S. S., N. Viovy, N. de Noblet‐Ducoudre, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. Colin Prentice ( 2010 ), Characterization of Tropospheric Emission Spectrometer (TES) CO 2 for carbon cycle science, Atmos. Chem. Phys., 10 ( 12 ), 5601 – 5623, doi: 10.5194/acp‐10‐5601‐2010.en_US
dc.identifier.citedreferenceKuze, A., H. Suto, M. Nakajima, and T. Hamazaki ( 2009 ), Thermal and near infrared sensor for carbon observation Fourier‐transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Opt., 48, 6716 – 6733, doi: 10.1364/AO.48.006716.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.