Show simple item record

Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae

dc.contributor.authorNarwani, Anitaen_US
dc.contributor.authorAlexandrou, Markos A.en_US
dc.contributor.authorOakley, Todd H.en_US
dc.contributor.authorCarroll, Ian T.en_US
dc.contributor.authorCardinale, Bradley J.en_US
dc.contributor.authorMeester, Lucen_US
dc.date.accessioned2013-11-01T19:01:02Z
dc.date.available2015-01-05T13:54:45Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationNarwani, Anita; Alexandrou, Markos A.; Oakley, Todd H.; Carroll, Ian T.; Cardinale, Bradley J.; Meester, Luc (2013). "Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae." Ecology Letters 16(11): 1373-1381.en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100307
dc.description.abstractThe coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co‐occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae.en_US
dc.publisherUniversity of Chicago Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBiodiversityen_US
dc.subject.otherCoexistenceen_US
dc.subject.otherCommunity Phylogeneticsen_US
dc.subject.otherCompetitionen_US
dc.subject.otherEvolutionary Ecologyen_US
dc.subject.otherNiche Differencesen_US
dc.subject.otherPhytoplanktonen_US
dc.subject.otherRelative Fitness Differencesen_US
dc.titleExperimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algaeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100307/1/ele12182.pdf
dc.identifier.doi10.1111/ele.12182en_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceMayfield, M.M. & Levine, J.M. ( 2010 ). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett., 13, 1085 – 1093.en_US
dc.identifier.citedreferenceHall, J.D., Karol, K.G., McCourt, R.M. & Delwiche, C.F. ( 2008 ). Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. J. Phycol., 44, 467 – 477.en_US
dc.identifier.citedreferenceHillerislambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. ( 2012 ). Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Syst., 43, 227 – 248.en_US
dc.identifier.citedreferenceHubbell, S.P. ( 2001 ). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.en_US
dc.identifier.citedreferenceHutchinson, G.E. ( 1961 ). The paradox of the plankton. Am. Nat., 95, 137 – 145.en_US
dc.identifier.citedreferenceKunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N.E. et al. ( 2012 ). Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol. Lett., 15, 831 – 840.en_US
dc.identifier.citedreferenceLevine, J.M. & HilleRisLambers, J. ( 2009 ). The importance of niches for the maintenance of species diversity. Nature, 461, 254 – 257.en_US
dc.identifier.citedreferenceLosos, J.B. ( 2008 ). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett., 11, 995 – 1003.en_US
dc.identifier.citedreferenceMacArthur, R. & Levins, R. ( 1967 ). The limiting similarity, convergence, and divergence of coexisting species. Am. Nat., 101, 377 – 385.en_US
dc.identifier.citedreferenceMaherali, H. & Klironomos, J.N. ( 2007 ). Influence of Phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746 – 1748.en_US
dc.identifier.citedreferenceMaherali, H. & Klironomos, J.N. ( 2012 ). Phylogenetic and trait‐based assembly of arbuscular mycorrhizal fungal communities. PLoS ONE, 7, e36695.en_US
dc.identifier.citedreferencePeay, K.G., Belisle, M. & Fukami, T. ( 2012 ). Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. Royal Soc. B‐Biol. Sci., 279, 749 – 758.en_US
dc.identifier.citedreferencePosada, D. ( 2008 ). jModelTest: phylogenetic model averaging. Mol. Biol. Evol., 25, 1253 – 1256.en_US
dc.identifier.citedreferenceR Foundation ( 2012 ). R v 2.15.2. The R Foundation for Statistical Computing.en_US
dc.identifier.citedreferenceRambaut, A. & Drummond, A.J. ( 2004 ). Tracer v1.5en_US
dc.identifier.citedreferenceRescigno, A. & Richardson, I.W. ( 1965 ). On the competitive exclusion principle. Bull. Math. Biophys., 27, 85 – 89.en_US
dc.identifier.citedreferenceRevell, L.J., Harmon, L.J. & Collar, D.C. ( 2008 ). Phylogenetic signal, evolutionary process, and rate. Syst. Biol., 57, 591 – 601.en_US
dc.identifier.citedreferenceRodriguez‐Ezpeleta, N., Brinkmann, H., Burey, S.C., Roure, B., Burger, G., Loffelhardt, W. et al. ( 2005 ). Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol., 15, 1325 – 1330.en_US
dc.identifier.citedreferenceSchoener, T.W. ( 1970 ). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408 – 418.en_US
dc.identifier.citedreferenceSchwaderer, A.S., Yoshiyama, K., Pinto, P.T., Swenson, N.G., Klausmeier, C.A. & Litchman, E. ( 2011 ). Eco‐evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnol. Oceanogr., 56, 589 – 598.en_US
dc.identifier.citedreferenceStajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C. et al. ( 2002 ). The bioperl toolkit: perl modules for the life sciences. Genome Res., 12, 1611 – 1618.en_US
dc.identifier.citedreferenceStamatakis, A., Hoover, P. & Rougemont, J. ( 2008 ). A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst. Biol., 57, 758 – 771.en_US
dc.identifier.citedreferenceStrauss, S.Y., Webb, C.O. & Salamin, N. ( 2006 ). Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA, 103, 5841 – 5845.en_US
dc.identifier.citedreferenceTilman, D. ( 1981 ). Tests of resource competition theory using 4 species of Lake Michigan algae. Ecology, 62, 802 – 815.en_US
dc.identifier.citedreferenceVerdu, M., Gomez‐Aparicio, L. & Valiente‐Banuet, A. ( 2012 ). Phylogenetic relatedness as a tool in restoration ecology: a meta‐analysis. Proc. Royal Soc. B‐Biol. Sci., 279, 1761 – 1767.en_US
dc.identifier.citedreferenceViolle, C., Nemergut, D.R., Pu, Z.C. & Jiang, L. ( 2011 ). Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett., 14, 782 – 787.en_US
dc.identifier.citedreferenceVolterra, V. ( 1928 ). Variations and fluctuations of the number of individuals in animal species living together. J. du Conseil Perm. Inter. pour l'Exploration de la Mer, 3, 3 – 51.en_US
dc.identifier.citedreferenceWebb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. ( 2002 ). Phylogenies and community ecology. Annu. Rev. Ecol. Syst., 33, 475 – 505.en_US
dc.identifier.citedreferenceWiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V. et al. ( 2010 ). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett., 13, 1310 – 1324.en_US
dc.identifier.citedreferenceJiang, L., Tan, J.Q. & Pu, Z.C. ( 2010 ). An Experimental Test of Darwin's Naturalization Hypothesis. Am. Nat., 175, 415 – 423.en_US
dc.identifier.citedreferenceKilham, S.S., Kreeger, D.A., Lynn, S.G., Goulden, C.E. & Herrera, L. ( 1998 ). COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia, 377, 147 – 159.en_US
dc.identifier.citedreferenceKnouft, J.H., Losos, J.B., Glor, R.E. & Kolbe, J.J. ( 2006 ). Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology, 87, S29 – S38.en_US
dc.identifier.citedreferenceAdler, P.B., Hillerislambers, J. & Levine, J.M. ( 2007 ). A niche for neutrality. Ecol. Lett., 10, 95 – 104.en_US
dc.identifier.citedreferenceAlford, R.A. & Wilbur, H.M. ( 1985 ). Priority effects in experimental pond communities ‐ competition between Bufo and Rana. Ecology, 66, 1097 – 1105.en_US
dc.identifier.citedreferenceBest, R.J., Caulk, N.C. & Stachowicz, J.J. ( 2013 ). Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marine amphipods. Ecol. Lett., 16, 72 – 80.en_US
dc.identifier.citedreferenceBurns, J.H. & Strauss, S.Y. ( 2011 ). More closely related species are more ecologically similar in an experimental test. Proc.Natl Acad. Sci. USA, 108, 5302 – 5307.en_US
dc.identifier.citedreferenceCadotte, M.W., Cardinale, B.J. & Oakley, T.H. ( 2008 ). Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA, 105, 17012 – 17017.en_US
dc.identifier.citedreferenceCahill, J.F., Kembel, S.W., Lamb, E.G. & Keddy, P.A. ( 2008 ). Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspect. Plant Ecol. Evol. Syst., 10, 41 – 50.en_US
dc.identifier.citedreferenceCarroll, I.T., Cardinale, B.J. & Nisbet, R.M. ( 2011 ). Niche and fitness differences relate the maintenance of diversity to ecosystem function Ecology, 92, 1157 – 1165.en_US
dc.identifier.citedreferenceCavender‐Bares, J., Ackerly, D.D., Baum, D.A. & Bazzaz, F.A. ( 2004 ). Phylogenetic overdispersion in Floridian oak communities. Am. Nat., 163, 823 – 843.en_US
dc.identifier.citedreferenceCavender‐Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. ( 2009 ). The merging of community ecology and phylogenetic biology. Ecol. Lett., 12, 693 – 715.en_US
dc.identifier.citedreferenceChase, J.M. & Leibold, M.A. ( 2003 ). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceChesson, P. ( 2000 ). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst., 31, 343 – 366.en_US
dc.identifier.citedreferenceClesceri, L.S., Greenberg, A.E. & Eaton, A.D. (eds.) ( 1998 ). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington D.C., USA.en_US
dc.identifier.citedreferenceDarwin, C. (ed.) ( 1859 ). On the Origin of Species. John Murray, London.en_US
dc.identifier.citedreferenceDrummond, A.J. & Rambaut, A. ( 2007 ). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol., 7, 214. DOI: 10.1186/1471‐2148‐7‐214.en_US
dc.identifier.citedreferenceEdgar, R.C. ( 2004 ). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 1 – 19.en_US
dc.identifier.citedreferenceFaith, D.P. ( 1992 ). Conservation evaluation and phylogenetic diversity. Biol. Conserv., 61, 1 – 10.en_US
dc.identifier.citedreferenceFaul, F., Buchner, A., Erdfelder, E. & Lang, A.G. ( 2012 ). G*Power.en_US
dc.identifier.citedreferenceFlynn, D.F.B., Mirotchnick, N., Jain, M., Palmer, M.I. & Naeem, S. ( 2011 ). Functional and phylogenetic diversity as predictors of biodiversity‐ecosystem‐function relationships. Ecology, 92, 1573 – 1581.en_US
dc.identifier.citedreferenceGause, G.F. ( 1934 ). The Struggle for Existence. Hafner Publishing, New York, New York.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.