Show simple item record

Methanobactin and MmoD work in concert to act as the ‘copper‐switch’ in methanotrophs

dc.contributor.authorSemrau, Jeremy D.en_US
dc.contributor.authorJagadevan, Sheejaen_US
dc.contributor.authorDiSpirito, Alan A.en_US
dc.contributor.authorKhalifa, Ashrafen_US
dc.contributor.authorScanlan, Julieen_US
dc.contributor.authorBergman, Brandt H.en_US
dc.contributor.authorFreemeier, Brittani C.en_US
dc.contributor.authorBaral, Bipin S.en_US
dc.contributor.authorBandow, Nathan L.en_US
dc.contributor.authorVorobev, Alexeyen_US
dc.contributor.authorHaft, Daniel H.en_US
dc.contributor.authorVuilleumier, Stéphaneen_US
dc.contributor.authorMurrell, J. Colinen_US
dc.date.accessioned2013-11-01T19:01:04Z
dc.date.available2015-01-05T13:54:45Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationSemrau, Jeremy D.; Jagadevan, Sheeja; DiSpirito, Alan A.; Khalifa, Ashraf; Scanlan, Julie; Bergman, Brandt H.; Freemeier, Brittani C.; Baral, Bipin S.; Bandow, Nathan L.; Vorobev, Alexey; Haft, Daniel H.; Vuilleumier, Stéphane ; Murrell, J. Colin (2013). "Methanobactin and MmoD work in concert to act as the â copperâ switchâ in methanotrophs." Environmental Microbiology (11): 3077-3086.en_US
dc.identifier.issn1462-2912en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100314
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUS Environmental Protection Agencyen_US
dc.titleMethanobactin and MmoD work in concert to act as the ‘copper‐switch’ in methanotrophsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100314/1/emi12150.pdf
dc.identifier.doi10.1111/1462-2920.12150en_US
dc.identifier.sourceEnvironmental Microbiologyen_US
dc.identifier.citedreferenceMorton, J.D., Hayes, K.F., and Semrau, J.D. ( 2000b ) The effect of copper speciation on whole‐cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl Environ Microbiol 66: 1730 – 1733.en_US
dc.identifier.citedreferenceKnapp, C.W., Fowle, D.A., Kulczycki, E., Roberts, J.A., and Graham, D.W. ( 2007 ) Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources. Proc Natl Acad Sci USA 104: 12040 – 12045.en_US
dc.identifier.citedreferenceKrentz, B.D., Mulheron, H.J., Semrau, J.D., DiSpirito, A.A., Bandow, N.L., Haft, D.H., et al. ( 2010 ) A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions. Biochemistry 49: 10117 – 10130.en_US
dc.identifier.citedreferenceKu, H.H. ( 1966 ) Notes on the use of propagation of error formulas. J Res Natl Bureau Std – C Eng Instrument 70C: 263 – 273.en_US
dc.identifier.citedreferenceLee, S.J., McCormick, M.S., Lippard, S.J., and Cho, U.‐S. ( 2013 ) Control of substrate access to the active site in methane monooxygenase. Nature 494: 380 – 384.en_US
dc.identifier.citedreferenceLee, S.‐W., Keeney, D.R., Lim, D.‐H., DiSpirito, A.A., and Semrau, J.D. ( 2006 ) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72: 7503 – 7509.en_US
dc.identifier.citedreferenceLipscomb, J.D. ( 1994 ) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48: 371 – 399.en_US
dc.identifier.citedreferenceLontoh, S., and Semrau, J.D. ( 1998 ) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microbiol 64: 1106 – 1114.en_US
dc.identifier.citedreferenceMartin, H., and Murrell, J.C. ( 1995 ) Methane monooxygenase mutants of Methylosinus trichosporium OB3b constructed by marker‐exchange mutagenesis. FEMS Microbiol Lett 127: 243 – 248.en_US
dc.identifier.citedreferenceMerkx, M., and Lippard, S.J. ( 2002 ) Why OrfY? Characterization of MmoD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 277: 5858 – 5865.en_US
dc.identifier.citedreferenceMorton, J.D., Hayes, K.F., and Semrau, J.D. ( 2000a ) Bioavailability of chelated and soil‐absorbed copper to Methylosinus trichosporium OB3b. Environ Sci Technol 34: 4917 – 4922.en_US
dc.identifier.citedreferenceNguyen, H.‐H.T., Shiemke, A.K., Jacobs, S.J., Hales, B.J., Lidstrom, M.E., and Chan, S.I. ( 1994 ) The nature of copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 269: 14995 – 15005.en_US
dc.identifier.citedreferenceNguyen, H.‐H.T., Elliott, S.J., Yip, J.H.‐K., and Chan, S.I. ( 1998 ) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper‐containing three‐subunit enzyme. J Biol Chem 273: 7957 – 7966.en_US
dc.identifier.citedreferencePhelps, P.A., Agarwal, S.K., Speitel, G.E., Jr, and Georgiou, G. ( 1992 ) Methylosinus trichosporium OB3b mutants having constitutive expression of the soluble methane monooxygenase in the presence of high levels of copper. Appl Environ Microbiol 58: 3701 – 3708.en_US
dc.identifier.citedreferencePol, A., Heijmans, K., Harhangi, H.R., Tedesco, D., Jetten, M.S.M., and Op den Camp, H.J.M. ( 2007 ) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874 – 878.en_US
dc.identifier.citedreferenceSemrau, J.D., DiSpirito, A.A., and Yoon, S. ( 2010 ) Methanotrophs and copper. FEMS Microbiol Rev 34: 496 – 531.en_US
dc.identifier.citedreferenceSmith, K.A., Dobbie, K.E., Ball, B.C., Bakken, L.R., Situala, B.K., Hansen, S., et al. ( 2000 ) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global methane sink. Global Change Biol 6: 791 – 803.en_US
dc.identifier.citedreferenceStanley, S.H., Prior, S.D., Leak, D.J., and Dalton, H. ( 1983 ) Copper stress underlies the fundamental change in intracellular location of methane mono‐oxygenase in methane‐oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5: 487 – 493.en_US
dc.identifier.citedreferenceStein, L.Y., Yoon, S., Semrau, J.D., DiSpirito, A.A., Crombie, A., Murrell, J.C., et al. ( 2010 ) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192: 6497 – 6498.en_US
dc.identifier.citedreferenceSummer, K.H., Lichtmannegger, J., Bandow, N., Choi, D.W., DiSpirito, A.A., and Michalke, B. ( 2011 ) The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson disease. J Trace Elem Med Biol 25: 36 – 41.en_US
dc.identifier.citedreferenceVorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N. ( 2011 ) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61: 2456 – 2463.en_US
dc.identifier.citedreferenceWang, L., and Brown, S.J. ( 2006 ) BindN: a web‐based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res 34: W243 – W248.en_US
dc.identifier.citedreferenceWhittenbury, R., Phillips, K.C., and Wilkinson, J.F. ( 1970 ) Enrichment, isolation and some properties of methane‐utilizing bacteria. J Gen Microbiol 61: 205 – 218.en_US
dc.identifier.citedreferenceYoon, S., DiSpirito, A.A., Kraemer, S.M., and Semrau, J.D. ( 2010 ) An assay for screening microbial cultures for chalkophore production. Environ Microbiol Rep 2: 295 – 303.en_US
dc.identifier.citedreferenceYoon, S., Im, J., Bandow, N., DiSpirito, A.A., and Semrau, J.D. ( 2011 ) Constitutive expression of pMMO by Methylocystis strain SB2 when grown on multi‐carbon substrates: implications for biodegradation of chlorinated ethenes. Environ Microbiol Rep 3: 182 – 188.en_US
dc.identifier.citedreferenceZahn, J.A., and DiSpirito, A.A. ( 1996 ) Membrane associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178: 1018 – 1029.en_US
dc.identifier.citedreferenceZischka, H., Lichtmannegger, J., Schmitt, S., Jägemann, N., Schulz, S., Wartini, D., et al. ( 2011 ) Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest 121: 1508 – 1518.en_US
dc.identifier.citedreferenceAnderson, B., Bartlett, K., Frolking, S., Hayhoe, K., Jenkins, J., and Salas, W. ( 2010 ) Methane and Nitrous Oxide Emissions from Natural Sources. Washington, DC, USA: US Environmental Protection Agency [WWW document]. URL http://www.epa.gov/methane/pdfs/Methane‐and‐Nitrous‐Oxide‐Emissions‐From‐Natural‐Sources.pdf.en_US
dc.identifier.citedreferenceBandow, N., Gilles, V.S., Freesmeier, B.C., Semrau, J.D., Krentz, B., Gallagher, W., et al. ( 2012 ) Spectral and copper binding properties of methanobactin from the facultative methanotroph Methylocystis strain SB2. J Inorg Biochem 110: 72 – 82.en_US
dc.identifier.citedreferenceBandow, N.L., Gallagher, W.H., Behling, L., Choi, D.W., Semrau, J.D., Hartsel, S.C., et al. ( 2011 ) Isolation of methanobactin from the spent media of methane oxidizing bacteria. Methods Enzymol 495B: 259 – 269.en_US
dc.identifier.citedreferenceBehling, L.A., Hartsel, S.C., Lewis, D.E., DiSpirito, A.A., Choi, D.W., Masterson, L.R., et al. ( 2008 ) NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings. J Am Chem Soc 130: 12604 – 12605.en_US
dc.identifier.citedreferenceBorodina, E., Nichol, T., Dumont, M.G., Smith, T.J., and Murrell, J.C. ( 2007 ) Mutagenesis of the ‘leucine gate’ to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 73: 6460 – 6467.en_US
dc.identifier.citedreferenceChoi, D.W., Bandow, N.L., McEllistrem, M.T., Semrau, J.D., Antholine, W.E., Hartsel, S.C., et al. ( 2010 ) Spectral and thermodynamic properties of methanobactin from γ‐proteobacterial methane oxidizing bacteria: a case for copper competition on a molecular level. J Inorgan Biochem 104: 1240 – 1247.en_US
dc.identifier.citedreferenceChoi, D.‐W., Kunz, R.C., Boyd, E.S., Semrau, J.D., Antholine, W.E., Han, J.‐I., et al. ( 2003 ) The membrane‐associated methane monooxygenase (pMMO) and pMMO‐NADH:Quinone oxidoreductase complex from Methylococcus capsulatus Bath. J Bacteriol 185: 5755 – 5764.en_US
dc.identifier.citedreferenceChoi, D.‐W., Do, Y.S., Zea, C.J., McEllistrem, M.T., Lee, S.‐W., Semrau, J.D., et al. ( 2006a ) Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg Biochem 100: 2150 – 2161.en_US
dc.identifier.citedreferenceChoi, D.‐W., Zea, C.J., Do, Y.S., Semrau, J.D., Antholine, W.E., Hargrove, M.S., et al. ( 2006b ) Spectral, kinetic and thermodynamic properties of Cu(I)‐ and Cu(II)‐binding by methanobactin from Methylosinus trichosporium OB3b. Biochemistry 45: 1142 – 1153.en_US
dc.identifier.citedreferenceDam, B., Dam, S., Kube, M., Reinhardt, R., and Liesack, W. ( 2012 ) Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high‐affinity methane oxidation potential. J Bacteriol 194: 6008 – 6009.en_US
dc.identifier.citedreferenceDedysh, S.N., Liesack, W., Khmelenina, V.K., Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., et al. ( 2000 ) Methylocella palustris gen. nov., sp. nov., a new methane‐oxidizing acidophilic bacterium from peat bogs, representing a new novel subtype of serine‐pathway methanotrophs. Int J Syst Evol Microbiol 50: 955 – 969.en_US
dc.identifier.citedreferenceDedysh, S.N., Berestovskaya, Y.Y., Vasylieva, L.V., Belova, S.E., Khmelenina, V.N., Suzina, N.E., et al. ( 2004 ) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54: 151 – 156.en_US
dc.identifier.citedreferenceDiSpirito, A.A., Zahn, J.A., Graham, D.W., Kim, H.J., Larive, C.K., Derrick, T.S., et al. ( 1998 ) Copper‐binding compounds from Methylosinus trichosporium OB3b. J Bacteriol 180: 3606 – 3613.en_US
dc.identifier.citedreferenceDunfield, P.F., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., and Dedysh, S.N. ( 2003 ) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53: 1231 – 1239.en_US
dc.identifier.citedreferenceDunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S., et al. ( 2007 ) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobium. Nature 450: 879 – 882.en_US
dc.identifier.citedreferenceEl Ghazouani, A., Baslé, A., Gray, J., Graham, D.W., Firbank, S.J., and Dennison, C. ( 2012 ) Variations in methanobactin structure influences copper utilization by methane‐oxidizing bacteria. Proc Natl Acad Sci USA 109: 8400 – 8404.en_US
dc.identifier.citedreferenceEttwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., et al. ( 2010 ) Nitrite‐driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543 – 548.en_US
dc.identifier.citedreferenceFox, B.G., Froland, W.A., Dege, J.E., and Lipscomb, J.D. ( 1989 ) Methane monooxygenase from Methylosinus trichosporium OB3b: purification and properties of a three‐component system with high specific activity from a Type II methanotroph. J Biol Chem 264: 10023 – 10033.en_US
dc.identifier.citedreferenceGreen, J., and Dalton, H. ( 1985 ) Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 260: 15795 – 15801.en_US
dc.identifier.citedreferenceHaft, D.H., Selengut, J.D., Richter, R.A., Harkins, D., Basu, M.K., and Beck, E. ( 2013 ) TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41: D387 – D395.en_US
dc.identifier.citedreferenceHerrero, M., de Lorenzo, V., and Timmis, K.N. ( 1990 ) Transposon vectors containing non‐antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram‐negative bacteria. J Bacteriol 172: 6557 – 6567.en_US
dc.identifier.citedreferenceIslam, T., Jensen, S., Reigstad, L.J., Larsen, Ø., and Birkeland, N.‐K. ( 2008 ) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105: 300 – 304.en_US
dc.identifier.citedreferenceJensen, L.M.R., Sanishvili, R., Davidson, V.L., and Wilmot, C.M. ( 2010 ) In crystallo posttranslational modification within a MauG/pre‐methylamine dehydrogenase complex. Science 327: 1392 – 1394.en_US
dc.identifier.citedreferenceKim, H.J., Graham, D.W., DiSpirito, A.A., Alterman, M.A., Galeva, N., Larive, C.K., et al. ( 2004 ) Methanobactin, a copper‐acquisition compound from methane‐oxidizing bacteria. Science 305: 1612 – 1615.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.