Show simple item record

Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation

dc.contributor.authorLiu, Feien_US
dc.contributor.authorFang, Fangen_US
dc.contributor.authorYuan, Hebaoen_US
dc.contributor.authorYang, Dongyeen_US
dc.contributor.authorChen, Yongqiangen_US
dc.contributor.authorWilliams, Linforden_US
dc.contributor.authorGoldstein, Steven Aen_US
dc.contributor.authorKrebsbach, Paul Hen_US
dc.contributor.authorGuan, Jun‐linen_US
dc.date.accessioned2013-11-01T19:01:05Z
dc.date.available2015-01-05T13:54:45Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationLiu, Fei; Fang, Fang; Yuan, Hebao; Yang, Dongye; Chen, Yongqiang; Williams, Linford; Goldstein, Steven A; Krebsbach, Paul H; Guan, Jun‐lin (2013). "Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation." Journal of Bone and Mineral Research 28(11): 2414-2430.en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100319
dc.description.abstractAutophagy is a conserved lysosomal degradation process that has important roles in both normal human physiology and disease. However, the function of autophagy in bone homeostasis is not well understood. Here, we report that autophagy is activated during osteoblast differentiation. Ablation of focal adhesion kinase family interacting protein of 200 kD (FIP200), an essential component of mammalian autophagy, led to multiple autophagic defects in osteoblasts including aberrantly increased p62 expression, deficient LC3‐II conversion, defective autophagy flux, absence of GFP‐LC3 puncta in FIP200‐null osteoblasts expressing transgenic GFP‐LC3, and absence of autophagosome‐like structures by electron microscope examination. Osteoblast‐specific deletion of FIP200 led to osteopenia in mice. Histomorphometric analysis revealed that the osteopenia was the result of cell‐autonomous effects of FIP200 deletion on osteoblasts. FIP200 deletion led to defective osteoblast terminal differentiation in both primary bone marrow and calvarial osteoblasts in vitro. Interestingly, both proliferation and differentiation were not adversely affected by FIP200 deletion in early cultures. However, FIP200 deletion led to defective osteoblast nodule formation after initial proliferation and differentiation. Furthermore, treatment with autophagy inhibitors recapitulated the effects of FIP200 deletion on osteoblast differentiation. Taken together, these data identify FIP200 as an important regulator of bone development and reveal a novel role of autophagy in osteoblast function through its positive role in supporting osteoblast nodule formation and differentiation. © 2013 American Society for Bone and Mineral Research.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBONE DEVELOPMENTen_US
dc.subject.otherDIFFERENTIATIONen_US
dc.subject.otherMOUSEen_US
dc.subject.otherOSTEOBLASTen_US
dc.subject.otherAUTOPHAGYen_US
dc.titleSuppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100319/1/jbmr1971.pdf
dc.identifier.doi10.1002/jbmr.1971en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceVolkman SK, Galecki AT, Burke DT, Paczas MR, Moalli MR, Miller RA, Goldstein SA. Quantitative trait loci for femoral size and shape in a genetically heterogeneous mouse population. J Bone Miner Res. 2003; 18 ( 8 ): 1497 – 505.en_US
dc.identifier.citedreferenceFeldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989; 4 ( 1 ): 3 – 11.en_US
dc.identifier.citedreferenceMcCreadie BR, Goulet RW, Feldkamp LA, Goldstein SA. Hierarchical structure of bone and micro‐computed tomography. Adv Exp Med Biol. 2001; 496: 67 – 83.en_US
dc.identifier.citedreferenceKuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990; 8 ( 6 ): 833 – 42.en_US
dc.identifier.citedreferenceMeganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA. Beam hardening artifacts in micro‐computed tomography scanning can be reduced by X‐ray beam filtration and the resulting images can be used to accurately measure BMD. Bone. 2009; 45 ( 6 ): 1104 – 16.en_US
dc.identifier.citedreferenceVolkman SK, Galecki AT, Burke DT, Miller RA, Goldstein SA. Quantitative trait loci that modulate femoral mechanical properties in a genetically heterogeneous mouse population. J Bone Miner Res. 2004; 19 ( 9 ): 1497 – 505.en_US
dc.identifier.citedreferenceLiu F, Lee SK, Adams DJ, Gronowicz GA, Kream BE. CREM deficiency in mice alters the response of bone to intermittent parathyroid hormone treatment. Bone. 2007; 40 ( 4 ): 1135 – 43.en_US
dc.identifier.citedreferenceChandhoke TK, Huang YF, Liu F, Gronowicz GA, Adams DJ, Harrison JR, Kream BE. Osteopenia in transgenic mice with osteoblast‐targeted expression of the inducible cAMP early repressor. Bone. 2008; 43 ( 1 ): 101 – 9.en_US
dc.identifier.citedreferenceParfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987; 2 ( 6 ): 595 – 610.en_US
dc.identifier.citedreferenceMizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010; 140 ( 3 ): 313 – 26.en_US
dc.identifier.citedreferenceSlack‐Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C, Luzzio MJ, Cooper B, Kath JC, Roberts WG, Parsons JT. Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem. 2007; 282 ( 20 ): 14845 – 52.en_US
dc.identifier.citedreferenceStokes JB, Adair SJ, Slack‐Davis JK, Walters DM, Tilghman RW, Hershey ED, Lowrey B, Thomas KS, Bouton AH, Hwang RF, Stelow EB, Parsons JT, Bauer TW. Inhibition of focal adhesion kinase by PF‐562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther. 2011; 10 ( 11 ): 2135 – 45.en_US
dc.identifier.citedreferenceGomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011; 13 ( 5 ): 589 – 98.en_US
dc.identifier.citedreferenceRabinowitz JD, White E. Autophagy and metabolism. Science. 2010; 330 ( 6009 ): 1344 – 8.en_US
dc.identifier.citedreferenceYang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010; 12 ( 9 ): 814 – 22.en_US
dc.identifier.citedreferenceFimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007; 447 ( 7148 ): 1121 – 5.en_US
dc.identifier.citedreferenceKomatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation‐induced and constitutive autophagy in Atg7‐deficient mice. J Cell Biol. 2005; 169 ( 3 ): 425 – 34.en_US
dc.identifier.citedreferenceYue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003; 100 ( 25 ): 15077 – 82.en_US
dc.identifier.citedreferenceMijaljica D, Prescott M, Devenish RJ. Different fates of mitochondria: alternative ways for degradation?. Autophagy. 2007; 3 ( 1 ): 4 – 9.en_US
dc.identifier.citedreferenceHara T, Mizushima N. Role of ULK‐FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17?. Autophagy. 2009; 5 ( 1 ): 85 – 7.en_US
dc.identifier.citedreferenceKim JB, Leucht P, Luppen CA, Park YJ, Beggs HE, Damsky CH, Helms JA. Reconciling the roles of FAK in osteoblast differentiation, osteoclast remodeling, and bone regeneration. Bone. 2007; 41 ( 1 ): 39 – 51.en_US
dc.identifier.citedreferenceBuckbinder L, Crawford DT, Qi H, Ke HZ, Olson LM, Long KR, Bonnette PC, Baumann AP, Hambor JE, Grasser WA 3rd, Pan LC, Owen TA, Luzzio MJ, Hulford CA, Gebhard DF, Paralkar VM, Simmons HA, Kath JC, Roberts WG, Smock SL, Guzman‐Perez A, Brown TA, Li M. Proline‐rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci USA. 2007; 104 ( 25 ): 10619 – 24.en_US
dc.identifier.citedreferenceWullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006; 124 ( 3 ): 471 – 84.en_US
dc.identifier.citedreferenceMizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 2010; 22 ( 2 ): 132 – 9.en_US
dc.identifier.citedreferenceNarita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, Tavare S, Inoki K, Shimizu S. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 2011; 332 ( 6032 ): 966 – 70.en_US
dc.identifier.citedreferenceHubbard VM, Valdor R, Macian F, Cuervo AM. Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology. 2012; 13 ( 1 ): 21 – 35.en_US
dc.identifier.citedreferenceSpilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid‐beta levels in a mouse model of Alzheimer's disease. PLoS One. 2010; 5 ( 4 ): e9979.en_US
dc.identifier.citedreferenceShoji‐Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D, Huerta C, Virgin HW, Helms JB, Eerland R, Tooze SA, Xavier R, Lenschow DJ, Yamamoto A, King D, Lichtarge O, Grishin NV, Spector SA, Kaloyanova DV, Levine B. Identification of a candidate therapeutic autophagy‐inducing peptide. Nature. 2013; 494 ( 7436 ): 201 – 6.en_US
dc.identifier.citedreferenceMizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011; 147 ( 4 ): 728 – 41.en_US
dc.identifier.citedreferenceCecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008; 15 ( 3 ): 344 – 57.en_US
dc.identifier.citedreferenceMizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010; 12 ( 9 ): 823 – 30.en_US
dc.identifier.citedreferenceTsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008; 321 ( 5885 ): 117 – 20.en_US
dc.identifier.citedreferenceKuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004; 432 ( 7020 ): 1032 – 6.en_US
dc.identifier.citedreferenceSandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008; 454 ( 7201 ): 232 – 5.en_US
dc.identifier.citedreferenceZhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, Ney PA. Mitochondrial clearance is regulated by Atg7‐dependent and ‐independent mechanisms during reticulocyte maturation. Blood. 2009; 114 ( 1 ): 157 – 64.en_US
dc.identifier.citedreferenceMortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA. 2010; 107 ( 2 ): 832 – 7.en_US
dc.identifier.citedreferencePua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol. 2009; 182 ( 7 ): 4046 – 55.en_US
dc.identifier.citedreferenceStephenson LM, Miller BC, Ng A, Eisenberg J, Zhao Z, Cadwell K, Graham DB, Mizushima NN, Xavier R, Virgin HW, Swat W. Identification of Atg5‐dependent transcriptional changes and increases in mitochondrial mass in Atg5‐deficient T lymphocytes. Autophagy. 2009; 5 ( 5 ): 625 – 35.en_US
dc.identifier.citedreferencePua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med. 2007; 204 ( 1 ): 25 – 31.en_US
dc.identifier.citedreferenceMiller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat W, Virgin HWT. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy. 2008; 4 ( 3 ): 309 – 14.en_US
dc.identifier.citedreferenceBaerga R, Zhang Y, Chen PH, Goldman S, Jin S. Targeted deletion of autophagy‐related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy. 2009; 5 ( 8 ): 1118 – 30.en_US
dc.identifier.citedreferenceSingh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009; 119 ( 11 ): 3329 – 39.en_US
dc.identifier.citedreferenceZhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose‐specific deletion of autophagy‐related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA. 2009; 106 ( 47 ): 19860 – 5.en_US
dc.identifier.citedreferenceLevine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008; 132 ( 1 ): 27 – 42.en_US
dc.identifier.citedreferenceHocking LJ, Whitehouse C, Helfrich MH. Autophagy: a new player in skeletal maintenance?. J Bone Miner Res. 2012; 27 ( 7 ): 1439 – 47.en_US
dc.identifier.citedreferenceManolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010; 21 ( 6 ): 369 – 74.en_US
dc.identifier.citedreferenceSrinivas V, Bohensky J, Zahm AM, Shapiro IM. Autophagy in mineralizing tissues: microenvironmental perspectives. Cell Cycle. 2009; 8 ( 3 ): 391 – 3.en_US
dc.identifier.citedreferenceZhang L, Guo YF, Liu YZ, Liu YJ, Xiong DH, Liu XG, Wang L, Yang TL, Lei SF, Guo Y, Yan H, Pei YF, Zhang F, Papasian CJ, Recker RR, Deng HW. Pathway‐based genome‐wide association analysis identified the importance of regulation‐of‐autophagy pathway for ultradistal radius BMD. J Bone Miner Res. 2010; 25 ( 7 ): 1572 – 80.en_US
dc.identifier.citedreferencePan F, Liu XG, Guo YF, Chen Y, Dong SS, Qiu C, Zhang ZX, Zhou Q, Yang TL, Guo Y, Zhu XZ, Deng HW. The regulation‐of‐autophagy pathway may influence Chinese stature variation: evidence from elder adults. J Hum Genet. 2010; 55 ( 7 ): 441 – 7.en_US
dc.identifier.citedreferenceZahm AM, Bohensky J, Adams CS, Shapiro IM, Srinivas V. Bone cell autophagy is regulated by environmental factors. Cells Tissues Organs. 2011; 194 ( 2–4 ): 274 – 8.en_US
dc.identifier.citedreferenceXia X, Kar R, Gluhak‐Heinrich J, Yao W, Lane NE, Bonewald LF, Biswas SK, Lo WK, Jiang JX. Glucocorticoid‐induced autophagy in osteocytes. J Bone Miner Res. 2010; 25 ( 11 ): 2479 – 88.en_US
dc.identifier.citedreferenceJia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, Bonewald L, Jiang JX, Lane NE. Glucocorticoid dose determines osteocyte cell fate. FASEB J. 2011; 25 ( 10 ): 3366 – 76.en_US
dc.identifier.citedreferenceDeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell. 2011; 21 ( 5 ): 966 – 74.en_US
dc.identifier.citedreferenceWhitehouse CA, Waters S, Marchbank K, Horner A, McGowan NW, Jovanovic JV, Xavier GM, Kashima TG, Cobourne MT, Richards GO, Sharpe PT, Skerry TM, Grigoriadis AE, Solomon E. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci USA. 2010; 107 ( 29 ): 12913 – 8.en_US
dc.identifier.citedreferenceAbbi S, Ueda H, Zheng C, Cooper LA, Zhao J, Christopher R, Guan JL. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol Biol Cell. 2002; 13 ( 9 ): 3178 – 91.en_US
dc.identifier.citedreferenceUeda H, Abbi S, Zheng C, Guan JL. Suppression of Pyk2 kinase and cellular activities by FIP200. J Cell Biol. 2000; 149 ( 2 ): 423 – 30.en_US
dc.identifier.citedreferenceGan B, Guan JL. FIP200, a key signaling node to coordinately regulate various cellular processes. Cell Signal. 2008; 20 ( 5 ): 787 – 94.en_US
dc.identifier.citedreferenceHara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N. FIP200, a ULK‐interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008; 181 ( 3 ): 497 – 510.en_US
dc.identifier.citedreferenceHosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N. Nutrient‐dependent mTORC1 association with the ULK1‐Atg13‐FIP200 complex required for autophagy. Mol Biol Cell. 2009; 20 ( 7 ): 1981 – 91.en_US
dc.identifier.citedreferenceJung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. ULK‐Atg13‐FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009; 20 ( 7 ): 1992 – 2003.en_US
dc.identifier.citedreferenceGanley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009; 284 ( 18 ): 12297 – 305.en_US
dc.identifier.citedreferenceLiang CC, Wang C, Peng X, Gan B, Guan JL. Neural‐specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem. 2010; 285 ( 5 ): 3499 – 509.en_US
dc.identifier.citedreferenceLiu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, Guan JL. FIP200 is required for the cell‐autonomous maintenance of fetal hematopoietic stem cells. Blood. 2010; 116 ( 23 ): 4806 – 14.en_US
dc.identifier.citedreferenceHara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki‐Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006; 441 ( 7095 ): 885 – 9.en_US
dc.identifier.citedreferenceKomatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006; 441 ( 7095 ): 880 – 4.en_US
dc.identifier.citedreferenceKomatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice. Cell. 2007; 131 ( 6 ): 1149 – 63.en_US
dc.identifier.citedreferenceMortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi‐Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR, Simon AK. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 2011; 208 ( 3 ): 455 – 67.en_US
dc.identifier.citedreferenceWei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 2011; 25 ( 14 ): 1510 – 27.en_US
dc.identifier.citedreferenceBae H, Guan JL. Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents. Mol Cancer Res. 2011; 9 ( 9 ): 1232 – 41.en_US
dc.identifier.citedreferenceWang C, Liang CC, Bian ZC, Zhu Y, Guan JL. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci. 2013; 16 ( 5 ): 532 – 42.en_US
dc.identifier.citedreferenceGan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL. Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC‐mTOR signaling pathways. J Cell Biol. 2006; 175 ( 1 ): 121 – 33.en_US
dc.identifier.citedreferenceRodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006; 133 ( 16 ): 3231 – 44.en_US
dc.identifier.citedreferenceLiu F, Woitge HW, Braut A, Kronenberg MS, Lichtler AC, Mina M, Kream BE. Expression and activity of osteoblast‐targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol. 2004; 48 ( 7 ): 645 – 53.en_US
dc.identifier.citedreferenceMizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004; 15 ( 3 ): 1101 – 11.en_US
dc.identifier.citedreferenceMcLeod MJ. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology. 1980; 22 ( 3 ): 299 – 301.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.