Show simple item record

LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate

dc.contributor.authorBarker, Steven A.en_US
dc.contributor.authorBorjigin, Jimoen_US
dc.contributor.authorLomnicka, Izabelaen_US
dc.contributor.authorStrassman, Ricken_US
dc.date.accessioned2013-12-04T18:56:47Z
dc.date.available2015-01-05T13:54:42Zen_US
dc.date.issued2013-12en_US
dc.identifier.citationBarker, Steven A.; Borjigin, Jimo; Lomnicka, Izabela; Strassman, Rick (2013). "LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate." Biomedical Chromatography 27(12): 1690-1700.en_US
dc.identifier.issn0269-3879en_US
dc.identifier.issn1099-0801en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101767
dc.description.abstractWe report a qualitative liquid chromatography–tandem mass spectrometry (LC/MS/MS) method for the simultaneous analysis of the three known N , N ‐dimethyltryptamine endogenous hallucinogens, their precursors and metabolites, as well as melatonin and its metabolic precursors. The method was characterized using artificial cerebrospinal fluid (aCSF) as the matrix and was subsequently applied to the analysis of rat brain pineal gland‐aCSF microdialysate. The method describes the simultaneous analysis of 23 chemically diverse compounds plus a deuterated internal standard by direct injection, requiring no dilution or extraction of the samples. The results demonstrate that this is a simple, sensitive, specific and direct approach to the qualitative analysis of these compounds in this matrix. The protocol also employs stringent MS confirmatory criteria for the detection and confirmation of the compounds examined, including exact mass measurements. The excellent limits of detection and broad scope make it a valuable research tool for examining the endogenous hallucinogen pathways in the central nervous system. We report here, for the first time, the presence of N , N ‐dimethyltryptamine in pineal gland microdialysate obtained from the rat. Copyright © 2013 John Wiley & Sons, Ltd.en_US
dc.publisherAlan R. Lissen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherLC/MS/MSen_US
dc.subject.otherN , N ‐Dimethyltryptaminesen_US
dc.subject.otherMicrodialysisen_US
dc.subject.otherRat Brainen_US
dc.subject.otherPineal Glanden_US
dc.titleLC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysateen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101767/1/bmc2981.pdf
dc.identifier.doi10.1002/bmc.2981en_US
dc.identifier.sourceBiomedical Chromatographyen_US
dc.identifier.citedreferenceSitaram BR and McLeod WR. Observations on the metabolism of the psychotomimetic indolealkylamines: implications for future clinical studies. Biological Psychiatry 1990; 28: 841 – 848.en_US
dc.identifier.citedreferenceBarker SA, McIlhenny EH and Strassman R. A critical review of reports of endogenous psychedelic N, N ‐dimethyltryptamines in humans: 1955–2010. Drug Testing and Analysis 2012; 4: 617 – 635.en_US
dc.identifier.citedreferenceBeaton JM and Morris PE. Ontogeny of N, N ‐dimethyltryptamine and related indolealkylamine levels in the neonatal rat. Mechanisms of Aging and Development 1984; 25: 343 – 347.en_US
dc.identifier.citedreferenceBorjigin J and Liu T. Application of long‐term microdialysis in circadian rhythm research. Pharmacology, Biochemistry and Behavior 2008; 90: 148 – 155.en_US
dc.identifier.citedreferenceCannazza G, Carrozzo MM, Cazzato AS, Bretis IM, Troisi L, Parenti C, Braghiroli D, Guiduccic S, Zoli M. Simultaneous measurement of adenosine, dopamine, acetylcholine and 5‐hydroxytryptamine in cerebral mice microdialysis samples by LC‐ESI‐MS/MS. Journal of Pharmaceutical and Biomedical Analysis 2012; 71: 183 – 186.en_US
dc.identifier.citedreferenceChefer VI, Thompson AC, Zapata A and Shippenberg TS. Overview of brain microdialysis. Current Protocols in Neuroscience 2009; 47: 7.1.1 – 7.1.28.en_US
dc.identifier.citedreferenceCorbett L, Christian ST, Morin RD, Benington F and Smythies JR. Hallucinogenic N ‐methylated indolealkylamines in the cerebrospinal fluid of psychiatric control populations. British Journal of Psychiatry 1978; 132: 139 – 144.en_US
dc.identifier.citedreferenceCozzi NV, Mavlyutov TA, Thompson MA and Ruoho AE. Indolethylamine N ‐methyltransferase expression in primate nervous tissue. Society for Neuroscience Abstracts 2011; 37: 840.19.en_US
dc.identifier.citedreferenceFish MS, Johnson NM, Lawrence EP and Horning EC. Oxidative N ‐dealkylation. Biochemica Biophysica Acta 1955; 18: 564 – 565.en_US
dc.identifier.citedreferenceFontanilla D, Johannessen, M, Hajipour AR, Cozzi NV, Jackson MB and Ruoho AE. The hallucinogen N, N ‐dimethyltryptamine (DMT) is an endogenous sigma‐1 receptor regulator. Science 2009; 323: 934 – 937.en_US
dc.identifier.citedreferenceGreco S, Danyszb W, Zivkovicc A, Grossb R and Stark H. Microdialysate analysis of monoamine neurotransmitters – a versatile and sensitive LC–MS/MS method. Analytica Chimica Acta 2013; 771; 65 – 72.en_US
dc.identifier.citedreferenceHo BT and Walker KE. 1,2,3,4‐Tetrahydro‐ β ‐carboline. Organic Synthesis 1964; 51: 136 – 138.en_US
dc.identifier.citedreferenceKari I, Airaksinen MM, Gynther J and Huhtikangas A. Mass spectrometric identification of 6‐methoxy‐1,2,3,4‐tetrahydro‐ β ‐carboline in pineal gland. (Analytical Chemistry Symposia Series 12.) Recent Developments in Mass Spectrometry, Biochemistry. Medicine and Environmental Research 1983; 8: 19 – 24.en_US
dc.identifier.citedreferenceKärkkäinen J, Forsstrom T, Tornaeus J, Wahala K, Kiuru P, Honkanen A, Stenman UH, Turpeinen U and Hesso A. Potentially hallucinogenic 5‐hydroxytryptamine receptor ligands bufotenine and dimethyltryptamine in blood and tissues. Scandinavian Journal of Clinical Laboratory Investigation 2005; 65: 189 – 199.en_US
dc.identifier.citedreferenceKendrick KM. Use of microdialysis in neuroendocrinology. Methods in Enzymology 1989; 168: 182 – 205.en_US
dc.identifier.citedreferenceMavlyutov TA, Epstein ML, Liu P, Verbny YI, Ziskind‐Conhaim L and Ruoho AE. Development of the sigma‐1 receptor in C‐terminals of motoneurons and colocalization with the N, N ′‐dimethyltryptamine forming enzyme, indole‐ N ‐methyl transferase. Neuroscience 2012; 206: 60 – 68.en_US
dc.identifier.citedreferenceMcIlhenny EH, Riba J, Barbanoj MJ, Strassman R and Barker SA. Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomedical Chromatography 2011; 25: 970 – 984.en_US
dc.identifier.citedreferenceMcIlhenny EH, Riba J, Barbanoj MJ, Strassman R and Barker SA. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomedical Chromatography 2012; 26: 301 – 313.en_US
dc.identifier.citedreferenceRiba J, McIlhenny EH, Valle M, Bouso JC and Barker SA. Metabolism and disposition of N, N ‐dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca. Drug Testing and Analysis 2012; 4: 610 – 616.en_US
dc.identifier.citedreferenceShoemaker DW, Cummins JT and Bidder TG. β ‐Carbolines in rat arcuate nucleus. Neuroscience 1978; 3: 233 – 239.en_US
dc.identifier.citedreferenceSitaram BR, Lockett L, Blackman GL and McLeod WR. Urinary excretion of 5‐methoxy‐ N, N ‐dimethyltryptamine, N, N ‐dimethyltryptamine and their N ‐oxides in the rat. Biochemical Pharmacology 1987a; 36: 2235 – 2237.en_US
dc.identifier.citedreferenceSitaram BR, Lockett L, Talomsin R, Blackman GL and McLeod WR. In vivo metabolism of 5‐methoxy‐ N, N ‐dimethyltryptamine and N, N ‐dimethyltryptamine in the rat. Biochemical Pharmacology 1987b; 36: 1509 – 1512.en_US
dc.identifier.citedreferenceSitaram BR, Talomsin R, Blackman GL and McLeod WR. Study of metabolism of psychotomimetic indolealkylamines by rat tissue extracts using liquid chromatography. Biochemical Pharmacology 1987c; 36: 1503 – 1508.en_US
dc.identifier.citedreferenceSmythies JR, Morin RD and Brown GB. Identification of dimethyltryptamine and O‐methyl‐bufotenin in human cerebrospinal fluid by combined gas chromatography/mass spectrometry. Biological Psychiatry 1979; 14: 549 – 556.en_US
dc.identifier.citedreferenceSu TP, Hayashi T and Vaupel DB. When the endogenous hallucinogenic trace amine N, N ‐dimethyltryptamine meets the sigma‐1 receptor. Science Signaling 2009; 2: pe12.en_US
dc.identifier.citedreferenceThompson MA and Weinshilboum RM. Rabbit lung indolethylamine N ‐methyltransferase: cDNA and gene cloning and characterization. Journal of Biological Chemistry 1998; 273: 34502 – 34510.en_US
dc.identifier.citedreferenceThompson MA, Moon E, Kim UJ, Xu J, Siciliano MJ and Weinshilboum RM. Human indolethylamine N ‐methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization. Genomics 1999; 61: 285 – 297.en_US
dc.identifier.citedreferenceUutela P, Reinila R, Harju K, Piepponen P, Ketola RA and Kostiainen R. Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography–tandem mass spectrometry. Analytical Chemistry 2009; 81: 8417 – 8425.en_US
dc.identifier.citedreferenceBarker SA. GC/MS quantification and identification of endogenous tetrahydro‐beta‐carbolines in rat brain and adrenal. In Usdin E (ed.) The Symposium on Beta‐Carbolines and Tetrahydro‐isoquinolines. Alan R. Liss: New York, 1982; pp. 113 – 124.en_US
dc.identifier.citedreferenceBarker SA, Harrison RE, Brown GB and Christian ST. Gas chromatographic mass spectrometric evidence for the identification of 1,2,3,4‐tetrahydro‐beta‐carboline as an in vivo constituent of rat brain. Biochemical and Biophysical Research Communications 1979; 87: 146 – 154.en_US
dc.identifier.citedreferenceBarker SA, Monti JA and Christian ST. Metabolism of the hallucinogen N, N ‐dimethyltryptamine in rat brain homogenates. Biochemical Pharmacology 1980; 29: 1049 – 1057.en_US
dc.identifier.citedreferenceBarker SA, Harrison REW, Monti JA, Brown GB and Christian ST. The identification and quantification of 1,2,3,4‐tetrahydro‐beta‐carboline, 2‐methyl‐1,2,3,4‐tetrahydro‐beta‐carboline and 6‐methoxy‐1,2,3,4‐tetrahydro‐beta‐carboline as in vivo constituents of rat brain and adrenal gland. Biochemical Pharmacology 1981b; 30: 9 – 17.en_US
dc.identifier.citedreferenceBarker SA, Monti, JA and Christian ST. N, N ‐Dimethyltryptamine: an endogenous hallucinogen. International Review of Neurobiology 1981a; 22: 83 – 110.en_US
dc.identifier.citedreferenceBarker SA, Beaton JM, Christian ST, Monti JA and Morris PE. The in vivo metabolism of alpha, alpha, beta, beta‐tetradeutero‐ N, N ‐dimethyl‐tryptamine in rat brain. Biochemical Pharmacology 1984; 33: 1395 – 1400.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.